WO2023213155A1 - 车辆导航方法、装置及计算机设备、存储介质 - Google Patents

车辆导航方法、装置及计算机设备、存储介质 Download PDF

Info

Publication number
WO2023213155A1
WO2023213155A1 PCT/CN2023/084028 CN2023084028W WO2023213155A1 WO 2023213155 A1 WO2023213155 A1 WO 2023213155A1 CN 2023084028 W CN2023084028 W CN 2023084028W WO 2023213155 A1 WO2023213155 A1 WO 2023213155A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
vehicle
warning
area
current vehicle
Prior art date
Application number
PCT/CN2023/084028
Other languages
English (en)
French (fr)
Inventor
张洪龙
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Publication of WO2023213155A1 publication Critical patent/WO2023213155A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3635Guidance using 3D or perspective road maps

Definitions

  • the present application relates to the field of computer technology, and in particular, to a vehicle navigation method, device, computer equipment, and storage medium.
  • Vehicle navigation technology refers to mapping the real-time position relationship between the vehicle and the road into a visual navigation interface based on the positioning data provided by the satellite positioning system, so as to associate objects (such as Vehicle driving objects or vehicle riding objects, etc.) technology that provides navigation functions.
  • objects such as Vehicle driving objects or vehicle riding objects, etc.
  • vehicle-associated objects such as vehicle driving objects or vehicle riding objects, etc.
  • vehicle-associated objects can learn the current location of the vehicle, the vehicle's driving route, the vehicle's speed, road conditions ahead and other information.
  • Embodiments of the present application provide a vehicle navigation method, device, computer equipment, and storage medium, which can focus on obstacles in the environment of the vehicle during the vehicle navigation process, improve the vehicle navigation effect, and thereby improve the safety of the vehicle driving process. .
  • the vehicle navigation method includes:
  • a navigation interface is displayed.
  • the navigation interface includes a virtual map.
  • the virtual map is used to present the road scene of the environment in which the current vehicle is located.
  • the navigation interface includes a vehicle identification object for identifying the current vehicle. There are useful settings around the vehicle identification object.
  • a warning sign display area for displaying warning signs; wherein, when the current environment of the vehicle includes obstacles, the navigation interface further includes an obstacle identification object for identifying obstacles;
  • the display attribute of the warning sign display area is set to display the warning sign about the obstacle in the navigation interface, so that the vehicle navigation system of the current vehicle can be configured according to the
  • the warning sign controls the driving state of the current vehicle; the warning sign is used to indicate at least one of the following: the distance between the current vehicle and the obstacle is less than or equal to the warning distance corresponding to the warning area, and the distance between the current vehicle and the obstacle direction relationship.
  • a vehicle navigation device which includes:
  • a display unit is used to display a navigation interface.
  • the navigation interface includes a virtual map.
  • the virtual map is used to present the road scene of the environment in which the current vehicle is located.
  • the navigation interface includes a vehicle identification object used to identify the current vehicle.
  • a warning sign display area for displaying warning signs is provided around the vehicle identification object; wherein, when the current environment of the vehicle includes obstacles, the navigation interface further includes a warning sign display area for identifying the obstacles. Obstacle identification object;
  • a processing unit configured to, when the obstacle enters the warning area of the current vehicle, set the display attribute of the warning sign display area to display the warning sign about the obstacle in the navigation interface so that The vehicle navigation system of the current vehicle controls the driving state of the current vehicle according to the warning sign; the warning sign is used to indicate at least one of the following: the distance between the current vehicle and the obstacle is less than or equal to The warning distance corresponding to the warning area, and the directional relationship between the current vehicle and the obstacle.
  • An embodiment of the present application also provides a computer device, which includes a processor and a computer-readable storage medium; wherein:
  • the processor is adapted to implement a computer program; and the computer-readable storage medium stores a computer program, and the computer program is adapted to be loaded by the processor and execute the above-mentioned vehicle navigation method.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program When the computer program is read and executed by a processor of a computer device, it causes the computer device to execute the above vehicle navigation method. .
  • Embodiments of the present application also provide a computer program product or computer program.
  • the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device performs the above-mentioned vehicle navigation method.
  • Figure 1 is a schematic architectural diagram of a vehicle navigation system provided by an embodiment of the present application.
  • Figure 2 is a schematic layout diagram of a sensing device provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of cross-domain communication provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of another cross-domain communication provided by an embodiment of the present application.
  • FIGS. 5A and 5B are schematic flow charts of a vehicle navigation method provided by embodiments of the present application.
  • Figure 6 is a schematic diagram of a vehicle coordinate system provided by an embodiment of the present application.
  • Figure 7A is a schematic diagram of a method for determining relative position data of obstacles provided by an embodiment of the present application.
  • Figure 7B is a schematic diagram of the longitude section of the current vehicle provided by the embodiment of the present application.
  • Figure 8 is a schematic flowchart of a query process for obstacle elevation data provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a navigation interface provided by an embodiment of the present application.
  • Figure 10 is a schematic flow chart of another vehicle navigation method provided by an embodiment of the present application.
  • Figure 11A is a schematic diagram of a collision detection area of an obstacle provided by an embodiment of the present application.
  • Figure 11B is a schematic diagram of a current vehicle warning area provided by an embodiment of the present application.
  • Figure 11C is a schematic flowchart of the intersection detection between the warning area of the current vehicle and the collision detection area of the obstacle provided by the embodiment of the present application;
  • Figure 12 is a schematic diagram of a method for determining early warning area data provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of a method for determining detection area data provided by an embodiment of the present application.
  • Figure 14A is a schematic diagram in which the collision detection area of an obstacle is located above the warning area of the current vehicle provided by an embodiment of the present application;
  • Figure 14B is a schematic diagram in which the collision detection area of an obstacle is located on the left side of the warning area of the current vehicle provided by an embodiment of the present application;
  • Figure 14C is a schematic diagram in which the collision detection area of an obstacle is located below the warning area of the current vehicle provided by an embodiment of the present application;
  • Figure 14D is a schematic diagram in which the collision detection area of an obstacle is located on the right side of the warning area of the current vehicle provided by an embodiment of the present application;
  • Figure 15A is a schematic diagram of a color-coded warning mark provided by an embodiment of the present application.
  • Figure 15B is a schematic diagram of a warning sign differentiated by the number of annular areas provided by an embodiment of the present application.
  • Figure 15C is a schematic diagram of a warning sign differentiated by color and number of ring areas provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of a method of dividing early warning areas provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of a warning sign distinguished by direction provided by an embodiment of the present application.
  • Figure 18 is a schematic diagram of distinguishing warning signs according to direction and distance provided by an embodiment of the present application.
  • Figure 19 is a schematic structural diagram of a vehicle navigation device provided by an embodiment of the present application.
  • Figure 20 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • Intelligent Traffic System also known as Intelligent Transportation System
  • Intelligent Transportation System is a combination of advanced science and technology (such as information technology, computer technology, data communication technology, sensor technology, electronic control technology, automatic Control theory, operations research and artificial intelligence, etc.) are effectively and comprehensively applied to transportation, service control and vehicle manufacturing to strengthen the connection between vehicles, roads and users, thereby forming a system that ensures safety, improves efficiency and improves the environment. , energy-saving integrated transportation system.
  • the current vehicle navigation technology focuses on the self-vehicle (that is, the vehicle where the smart vehicle terminal is located, or the vehicle that the vehicle-related object is currently driving or riding in), focusing on the navigation effect of the self-vehicle's vehicle navigation technology in the actual vehicle navigation process. Not good.
  • embodiments of the present application provide a vehicle navigation method.
  • the vehicle navigation method In addition to paying attention to the own vehicle (that is, the vehicle where the smart vehicle terminal is located, or the vehicle where the vehicle-associated object is currently driving or riding), the vehicle navigation method also pays attention to the location of the own vehicle. Obstacles in the environment, and focus on the distance between the vehicle and the obstacle, as well as any one or more of the directions between the vehicle and the obstacle.
  • the embodiment of the present application can provide a visual navigation interface to the vehicle-related objects.
  • the navigation interface can display a vehicle identification object for identifying the own vehicle.
  • the navigation interface may also display an obstacle identification object for identifying obstacles, wherein a warning identification display area is set around the obstacle identification object, and when an obstacle enters the warning area of the own vehicle, By setting the display attributes of the warning sign display area, warning signs about obstacles are displayed in the navigation interface.
  • the warning signs can be used to indicate that the distance between the vehicle and the obstacle is less than or equal to the distance corresponding to the warning area, and any one or more of the directional relationships between the vehicle and obstacles.
  • vehicle driving status information such as the vehicle's current speed information, the vehicle's starting position (i.e., starting position) information, the vehicle's destination position (i.e., end position) information, distance The remaining distance information from the end point and the remaining time information from the end point, etc.
  • traffic information such as traffic light information, vehicle speed limit information, vehicle restriction information, etc.
  • navigation information such as instructions to go straight to XX road, instructions to turn left to XX road) , indicating a right turn into XX road, indicating a U-turn, etc. navigation information).
  • obstacles refer to objects other than the own vehicle in the environment where the own vehicle is located, such as other vehicles other than the own vehicle in the environment where the own vehicle is located, pedestrians in the environment where the own vehicle is located, and objects in the environment where the own vehicle is located.
  • Traffic facilities such as traffic signs, isolation piers, isolation columns, anti-collision barrels, etc.
  • the vehicle identification object of the own vehicle refers to the object used to identify the own vehicle in the navigation interface.
  • the obstacle identification object that identifies obstacles refers to the object used to identify obstacles in the navigation interface.
  • the obstacle identification objects of different obstacle types can be the same or different.
  • the vehicle navigation method provided by the embodiment of the present application can be applied in the vehicle navigation process of the automatic driving scene.
  • the automatic driving scene that is, the driving scene, refers to the scene where the vehicle is controlled by the vehicle-mounted automatic driving system.
  • the vehicle navigation process of the automatic driving scene by presenting a visual navigation interface to the vehicle-associated object (i.e., the vehicle riding object), the vehicle-associated object can clearly and intuitively understand the relationship between the vehicle and the obstacles in the environment where the vehicle is located, as well as the automatic driving system's capabilities and status, which can improve the sense of security of vehicle-related objects in autonomous driving scenarios.
  • autonomous driving systems such as smart vehicle terminals, can control the driving status of the vehicle based on warning signs, such as controlling the vehicle's driving speed, driving direction, etc. wait.
  • the vehicle navigation system provided by the embodiments of the present application can also be applied to the vehicle navigation process of the active driving system.
  • the active driving scenario that is, the human driving scenario, refers to the scenario where the vehicle is controlled by a human driver.
  • vehicle-associated objects i.e., vehicle driving objects and vehicle riding objects
  • the vehicle-associated objects can clearly and intuitively understand the relationship between their own vehicle and obstacles in the environment where their own vehicle is located, and Depending on the driving status of the vehicle, the vehicle driving object can make driving plans based on the relationship between the vehicle and obstacles, which can improve the safety of the vehicle during driving and improve the sense of security of the vehicle occupants while riding in the vehicle.
  • the vehicle navigation system may include a target vehicle 101 , a positioning device 102 , a sensing device 103 and an intelligent vehicle terminal 104 .
  • the positioning device 102 , the sensing device 103 and the intelligent vehicle terminal 104 are mounted in the target vehicle 101 . in:
  • Positioning device 102 The positioning device can be used to obtain the position data of the target vehicle (ie, the own vehicle) in the world coordinate system (ie, the absolute position data of the target vehicle), where the world coordinate system refers to the absolute coordinate system of the system.
  • the positioning device can send the position data of the target vehicle in the world coordinate system to the smart vehicle terminal.
  • the positioning device mentioned in the embodiment of this application can be an RTK (Real Time Kinematic, carrier phase difference technology) device.
  • the RTK device can provide high-precision (for example, centimeter-level) positioning data of the target vehicle (that is, the absolute position data of the target vehicle) in real time. ).
  • the sensing device can be used to sense the environment where the target vehicle is located and obtain environmental sensing data.
  • the environmental sensing data can include position data of obstacles in the vehicle coordinate system (that is, relative coordinate data of obstacles), as well as the obstacles of obstacles. Type, where the vehicle coordinate system refers to the coordinate system established with the target vehicle as the coordinate origin.
  • the sensing device can send environment sensing data to the smart vehicle terminal.
  • the sensing range of the sensing device to sense the environment where the target vehicle is located is determined by the sensors integrated with the sensing device.
  • the sensing device can include but is not limited to at least one of the following sensors: visual sensor (such as camera), long-distance sensor Radar and short-range radar.
  • FIG. 2 shows a schematic layout diagram of a sensing device.
  • the sensing device includes a camera, a 360-degree panoramic camera, a long-range radar and a short-range radar. distance radar, as shown in Figure 2.
  • the sensing range of the device is approximately 200 meters forward, 100 meters backward, and 80 meters left and right.
  • Intelligent vehicle terminal 104 are terminal equipment that integrates satellite positioning technology, mileage positioning technology and automobile black box technology, and can be used for vehicle driving safety management, operation management, service quality management, intelligent centralized dispatch management, electronic stop sign control management, etc.
  • Smart vehicle terminals can include display screens, such as central control screens, instrument screens, AR-HUD (Augmented Reality Head Up Display) displays, etc.
  • the smart vehicle terminal After receiving the absolute position data and environmental perception data of the target vehicle, the smart vehicle terminal can convert the position data of the obstacle in the vehicle coordinate system into the position data of the obstacle in the world coordinate system, that is, the relative position of the obstacle.
  • the data is converted into absolute position data of the obstacle, and then the smart vehicle terminal can display an obstacle identification object identifying the obstacle in the navigation interface displayed on the display screen based on the absolute position data of the obstacle.
  • the smart vehicle terminal can determine the direction between the target vehicle and the obstacle, and the distance between the target vehicle and the obstacle based on the absolute position data of the target vehicle and the absolute position data of the obstacle. Then, a warning sign about the obstacle can be displayed in the navigation interface according to any one or more of the direction between the target vehicle and the obstacle and the distance between the target vehicle and the obstacle.
  • the vehicle navigation method provided by the embodiment of the present application involves cross-domain communication between the autonomous driving domain and the cockpit domain; where the autonomous driving domain refers to the system used to control autonomous driving in the vehicle.
  • the cockpit domain refers to the central control screen, instrument screen, operation buttons, etc. in the vehicle that are used to control the interaction with vehicle-related objects in the cockpit.
  • a collection of software and hardware, such as the above-mentioned smart vehicle terminal 104 belongs to the cockpit domain.
  • the cockpit domain and the autonomous driving domain are two relatively independent processing systems.
  • the two systems carry out cross-domain data transmission through data transmission protocols based on vehicle Ethernet.
  • vehicle Ethernet is a network-dependent connection to electronic units in the vehicle.
  • the new LAN technology can achieve relatively high data transmission rates (for example, 100Mbit/s (megabits per second), 1000Mbit/s or 10000Mbit/s, etc.) on a single pair of unshielded twisted pairs, while also meeting the needs of the automotive industry.
  • the data transmission protocol can be, for example, TCP (Transmission Control Protocol, Transmission Control Protocol), UDP (User Datagram Protocol, User Datagram Protocol) and SOME/IP (Scalable Service-Oriented Middleware over IP, a data transmission protocol), etc.
  • the data transmission protocol specifies the data transmission format between the autonomous driving domain and the cockpit domain. As shown in Figure 3 and Figure 4, after obtaining the absolute position data and environmental perception data of the target vehicle, the autonomous driving domain transmits the absolute position data and environmental perception data of the target vehicle to the cockpit domain through cross-domain communication; the cockpit domain can The absolute position data of the obstacle is calculated based on the absolute position data of the target vehicle and the environmental sensing data.
  • the distance between the target vehicle and the target vehicle can be determined based on the absolute position data of the target vehicle and the absolute position data of the obstacle.
  • the direction between obstacles and the distance between the target vehicle and the obstacle can be rendered.
  • the cockpit domain can render the obstacle object identification of the obstacle in the navigation interface based on the absolute position data of the obstacle.
  • a warning sign about the obstacle is rendered in the navigation interface based on any one or more of the direction between the target vehicle and the obstacle and the distance between the target vehicle and the obstacle.
  • the obstacle identification objects that identify obstacles in the environment where the target vehicle is located can be displayed in the navigation interface, as well as warning signs about obstacles, which can enrich
  • the display content of the navigation interface improves the vehicle navigation effect and further improves the safety of the vehicle driving process.
  • Embodiments of the present application provide a vehicle navigation method.
  • the vehicle navigation method mainly introduces the content of converting the relative position data of obstacles into the absolute position data of obstacles.
  • the vehicle navigation method can be used by the intelligent vehicle-mounted terminal in the above-mentioned vehicle navigation system.
  • 104 is executed, please refer to Figure 5A.
  • the vehicle navigation method may include the following steps S501-step S502:
  • S501 Display a navigation interface.
  • a vehicle identification object identifying the target vehicle is displayed in the navigation interface.
  • an obstacle identification object identifying the obstacle is displayed in the navigation interface.
  • the current vehicle identification object is displayed in the navigation interface.
  • a warning sign display area is set around the vehicle identification object of the vehicle.
  • the navigation interface may be displayed.
  • the navigation interface may include a virtual map.
  • the virtual map may be drawn based on map data corresponding to the environment where the current vehicle is located.
  • the virtual map may be used to present the environment where the current vehicle is located.
  • road scene it can be understood that the virtual map can be a virtual mapping of the road scene of the current environment where the vehicle is located. For example, if the real road contains three lanes, then the mapped road of the real road in the virtual map also contains 3 lanes, and the mapping The guide arrows for each lane on the road are exactly the same as the guide arrows for the corresponding road on the real road.
  • the virtual map can present the road scene in a three-dimensional form.
  • the virtual map is a virtual road scene obtained by three-dimensional modeling of the road scene in the environment where the current vehicle is located.
  • the current vehicle Each road in the environment corresponds to height data (or can be called elevation data), which is especially suitable for road scenes with multiple overlapping roads of different heights or intricate viaducts; in another implementation, a virtual map
  • the road scene can be presented in a two-dimensional form.
  • the virtual map is a two-dimensional virtual mapping of the top view of the road scene in the environment where the current vehicle is located. In this case, each road in the environment where the current vehicle is located does not have Height data is especially suitable for road scenes with simple road networks.
  • the navigation interface also includes a vehicle identification object of the current vehicle.
  • the vehicle identification object of the current vehicle may be displayed in the navigation interface according to the position data of the current vehicle in the world coordinate system.
  • the navigation interface may display an obstacle identification object identifying the obstacles, and the navigation interface may be based on Displayed in the world coordinate system, the obstacle identification object identifying the obstacle may be displayed in the navigation interface based on the position data of the obstacle in the world coordinate system.
  • the process of displaying obstacle identification objects that identify obstacles in the navigation interface may include the following sub-steps s11-sub-step s13:
  • the position data of the obstacles in the vehicle coordinate system can be obtained, where the vehicle coordinate system can refer to the coordinate system established with the current vehicle as the coordinate origin; more specifically, As shown in Figure 6, the vehicle coordinate system may refer to taking the rear half-axle center of the current vehicle (that is, the center point of the half-axle line connecting the two rear wheels of the current vehicle) as the coordinate origin (O), and taking the forward direction of the current vehicle.
  • the vehicle coordinate system can refer to the coordinate system established with the current vehicle as the coordinate origin; more specifically, As shown in Figure 6, the vehicle coordinate system may refer to taking the rear half-axle center of the current vehicle (that is, the center point of the half-axle line connecting the two rear wheels of the current vehicle) as the coordinate origin (O), and taking the forward direction of the current vehicle.
  • the direction is the horizontal axis (i.e., x-axis), the direction of the current vehicle to the left is the vertical axis (i.e., y-axis), and the upward direction perpendicular to the O-xy plane is the vertical axis (i.e., z-axis);
  • the vehicle coordinate system may refer to taking the center of the current vehicle (i.e., the center point of the symmetry axis of the current vehicle) as the coordinate origin, taking the direction of the current vehicle forward as the vertical axis (i.e., the y-axis), and taking the direction of the current vehicle to the right.
  • the embodiment of the present application does not limit the establishment method of the vehicle coordinate system.
  • s12 perform coordinate transformation on the position data of the obstacle in the vehicle coordinate system to obtain the position data of the obstacle in the world coordinate system.
  • the coordinate transformation of the position data of the obstacle in the vehicle coordinate system can be performed based on the position data of the current vehicle in the world coordinate system. That is to say, the position data of the current vehicle in the world coordinate system can be obtained. According to the current The position data of the vehicle in the world coordinate system is used to coordinate the position data of the obstacle in the vehicle coordinate system to obtain the position data of the obstacle in the world coordinate system.
  • coordinate transformation is performed on the position data of the obstacle in the vehicle coordinate system.
  • the process of obtaining the position data of the obstacle in the world coordinate system may include: obtaining the world coordinates.
  • the conversion relationship between the vehicle coordinate system and the vehicle coordinate system Based on the conversion relationship, the position data of the obstacle in the vehicle coordinate system is calculated to obtain the position change of the obstacle relative to the current vehicle in the world coordinate system.
  • the position data and position change in the world coordinate system determine the position data of the obstacle in the world coordinate system.
  • the position data of the current vehicle in the world coordinate system may include the coordinate data of the current vehicle in the world coordinate system
  • the coordinate data of the current vehicle in the world coordinate system may include: longitude data of the current vehicle and latitude data of the current vehicle
  • the position data of the obstacle in the vehicle coordinate system may include the coordinate data of the obstacle in the vehicle coordinate system.
  • the coordinate data of the obstacle in the vehicle coordinate system may include: horizontal axis data of the obstacle and vertical axis data of the obstacle;
  • the position data of the obstacle in the world coordinate system may include the coordinate data of the obstacle in the world coordinate system.
  • the coordinate data of the obstacle in the world coordinate system may include: longitude data of the obstacle and latitude data of the obstacle.
  • the process of converting the horizontal axis data of the obstacle into the longitude data of the obstacle can be Including: obtaining the longitude conversion relationship between the world coordinate system and the vehicle coordinate system, calculating the latitude data of the current vehicle and the horizontal axis data of the obstacle based on the longitude conversion relationship, and obtaining the longitude of the obstacle relative to the current vehicle in the world coordinate system Change amount, determine the longitude data of the obstacle based on the longitude data of the current vehicle and the longitude change amount.
  • the process of converting the vertical axis data of the obstacle into the latitude data of the obstacle may include: obtaining the latitude conversion relationship between the world coordinate system and the vehicle coordinate system, and converting the vertical axis data of the obstacle based on the latitude conversion relationship. Perform calculations to obtain the latitude change of the obstacle relative to the current vehicle in the world coordinate system, and determine the latitude data of the obstacle based on the latitude data and latitude change of the current vehicle.
  • point A represents the current vehicle
  • point B represents the obstacle
  • the coordinate system A-xy is a vehicle coordinate system established with the current vehicle as the coordinate origin
  • the coordinate data of the obstacle in the vehicle coordinate system (x B , y B ) can be determined based on the distance d between the current vehicle and the obstacle, and the angle ⁇ of the obstacle relative to the current vehicle in the vehicle coordinate system.
  • x B d ⁇ sin ⁇ Formula 1
  • y B d ⁇ cos ⁇ Formula 2
  • the first sine parameter sin ⁇ and the first cosine parameter cos ⁇ can be determined according to the angle ⁇ of the obstacle relative to the current vehicle.
  • the horizontal axis data x B of the obstacle can be the distance between d and the first
  • the product of a sine parameter sin ⁇ , the vertical axis data y B of the obstacle may be the product of the distance d and the first cosine parameter cos ⁇ .
  • the coordinate data of the current vehicle in the world coordinate system can be expressed as (Lng A , Lat A ), Lng A represents the longitude data of the current vehicle, and Lat A represents the latitude data of the current vehicle.
  • the longitude section shown in Figure 7B can be determined. Indicates the latitude data of the current vehicle, that is, R represents the radius of the earth, and r represents the radius of the latitudinal section of the latitude where point A is located. Based on the longitude conversion relationship, the latitude data of the current vehicle and the horizontal axis data of the obstacle are calculated.
  • the slice radius r of the latitude slice of the current vehicle's latitude can be determined based on the latitude data Lat A of the current vehicle and the earth's radius R, and then the slice radius r can be determined based on the slice radius r and the horizontal axis data of the obstacle.
  • x B determine the longitude change deltaLng of the obstacle relative to the current vehicle in the world coordinate system.
  • the latitude change deltaLat of the obstacle relative to the current vehicle in the world coordinate system can be determined based on the radius of the earth R and the vertical axis data y B of the obstacle.
  • the process of determining the longitude data of the obstacle can be seen in the following formula 6.
  • the process of determining the latitude data of the obstacle can be seen in the following formula 7:
  • the longitude data Lng B of the obstacle is equal to the sum of the longitude data Lng A of the current vehicle and the longitude change deltaLng;
  • the latitude data Lat B of the obstacle is equal to the latitude data Lat A of the current vehicle and The sum of latitude changes deltaLat.
  • the obstacle identification object identifying the obstacle is displayed in the navigation interface.
  • the virtual map can be drawn based on the map data corresponding to the environment where the current vehicle is located, and the map data of the environment where the current vehicle is located is based on the map data of the current vehicle's environment. It is a three-dimensional virtual mapping of the road scene in the environment, so the map data contains elevation data (that is, height data).
  • the environment where the current vehicle is located is divided into multiple environmental areas (Tiles). Each environmental area includes one or more roads (Lane).
  • the map data corresponding to each environmental area includes the elevation of each road in the corresponding environmental area. Data, the elevation data of the obstacle can be determined based on the elevation data of the road where the obstacle is located.
  • the process of displaying an obstacle identification object identifying the obstacle in the navigation interface according to the position data of the obstacle in the world coordinate system may include: determining the obstacle according to the position data of the obstacle in the world coordinate system.
  • the target environment area to which it belongs, and the target road to which the obstacle belongs in the target environment area obtain the elevation data of the target road from the map data corresponding to the target environment area, and determine the elevation data of the target road as the elevation data of the obstacle.
  • the position data of the obstacle in the world coordinate system and the elevation data of the obstacle are displayed in the navigation interface to identify the obstacle identification object.
  • the elevation data of each road in the map data is related to the elevation data of the road, the road identification (Lane ID) and the environmental area identification (Tile ID) to which the road belongs.
  • Formal storage The embodiment of this application provides a map database and an elevation cache module.
  • the elevation cache module can be used to cache elevation data that has been queried from the map database. After determining the target environment area to which the obstacle belongs and the target road to which the obstacle belongs in the target environment area based on the position data of the obstacle in the world coordinate system (i.e., the absolute position data of the obstacle), you can first determine the target environment area to which the obstacle belongs.
  • the identification of the area and the identification of the target road are in the elevation cache module Query the elevation data corresponding to the identification of the target environment area and the identification of the target road in The identification of the target environment area and the identification of the target road are queried in the map database for the elevation data corresponding to the identification of the target environment area and the identification of the target road.
  • the queried elevation data is determined as the elevation data of the obstacle, and the queried elevation data is compared with the identification of the target road.
  • the identification of the target environment area and the identification of the target road are stored in the elevation cache module.
  • Embodiments of the present application also provide a cache management module.
  • the cache management module is used to calculate expired elevation data in the elevation cache module based on the current vehicle's position data in the world coordinate system (that is, the absolute position data of the current vehicle), and store the expired elevation data in the elevation cache module.
  • the data is stored in the secondary cache. If the elevation data stored in the secondary cache is not queried within the target time period, these expired elevation data will be completely discarded.
  • the expired elevation data refers to the corresponding location and the current vehicle. Elevation data whose distance between locations exceeds the distance threshold.
  • the elevation data corresponding to each road in the target environment area will be discarded from the cache, so that The cache can be cleared in time to store the elevation data corresponding to each road in the new environmental area that the current vehicle is driving into.
  • the display position of the obstacle identification object in the navigation interface can be quickly determined.
  • the above sub-steps s11-sub-step s13 focus on the obstacle identification object that displays the obstacle in the navigation interface and the position data of the obstacle in the world coordinate system.
  • displaying the obstacle in the navigation interface The obstacle object identification is also related to the obstacle type of the obstacle.
  • the number of obstacles in the current environment where the vehicle is located may be one or more, and obstacles of different obstacle types may exist in one or more obstacles.
  • the obstacle identification objects of different obstacle types may be the same.
  • pedestrians and vehicles are obstacles of different obstacle types, and the obstacle identification objects of pedestrians and the obstacle identification objects of vehicles They can be the same.
  • the obstacle identification object for pedestrians and the obstacle identification object for vehicles are both rectangular parallelepipeds.
  • Buses and trucks are obstacles of different obstacle types.
  • the obstacle identification objects for buses and the obstacle identification objects for trucks The objects can be the same.
  • the obstacle identification object of the bus and the obstacle identification object of the truck are both cuboids.
  • the same obstacle identification object is used for obstacles of different obstacle types, which can save different obstacles.
  • the rendering time of obstacle type obstacle identification objects can improve the real-time presentation of the navigation interface for some vehicle-mounted terminals with low rendering performance.
  • the obstacle identification objects of different obstacle types can also be different.
  • the sensing device currently mounted on the vehicle can identify the obstacle type of the obstacle and can identify the obstacle according to the position of the obstacle in the world coordinate system.
  • Data, the obstacle identification object under the recognized obstacle type is displayed in the navigation interface, for example, pedestrian obstacles
  • the obstacle identification object is different from the obstacle identification object of the vehicle.
  • the obstacle identification object of the pedestrian can be a three-dimensional model of the human body
  • the obstacle identification object of the vehicle can be the three-dimensional model of the vehicle
  • the identification objects are different.
  • the obstacle identification object for the bus can be a three-dimensional model of the bus
  • the obstacle identification object for the truck can be the three-dimensional model of the truck.
  • the form of the obstacle object identification presented in the navigation interface is It fits the actual shape of the obstacles so that the vehicle-related objects can see through the navigation interface how many obstacles exist around the current vehicle and the specific type of each obstacle. It is very vivid, clear and intuitive, and improves the vehicle navigation effect.
  • the navigation interface displays a vehicle identification object 901 of the current vehicle and multiple obstacle identification objects 902 that identify obstacles included in the environment where the current vehicle is located.
  • the multiple obstacles include pedestrians and The obstacle identification objects for vehicles and pedestrians are different from the obstacle identification objects for vehicles.
  • the navigation interface can also display vehicle driving status information, such as the vehicle's current speed information 903, the vehicle's starting location information 904, the vehicle's destination location information 905, the remaining distance information from the end point, and the remaining time information from the end point.
  • the vehicle's starting position information 904, the vehicle's destination position information 905, the remaining distance information from the end point, and the remaining time information from the end point 906 can be presented in the navigation interface in the form of a mini map; mini map
  • the virtual map and the virtual map are two maps with different dimensions.
  • the virtual map focuses on the road scene of the environment where the current vehicle is located. It can be understood that the virtual map focuses on the local details between the starting point and the end point of the current vehicle, while the small map focuses on The focus is on the route, distance, driving time, etc. between the starting point and the end point of the current vehicle. It can be understood that the mini map focuses on the entirety between the starting point and the end point of the current vehicle.
  • the navigation interface may also display traffic information of the environment where the current vehicle is located, such as traffic light information 908, vehicle speed limit information 909, road name information 910, and navigation information 911 of the current vehicle.
  • traffic information such as traffic light information 908, vehicle speed limit information 909, road name information 910, and navigation information 911 of the current vehicle.
  • the navigation interface can also display the mapping trajectory and prediction of the predicted movement trajectory of the current vehicle.
  • the speed information of the current vehicle can be obtained.
  • the speed information of the current vehicle can include any one or more of the following: 1 the speed value and speed direction of the current vehicle, 2 the acceleration value and acceleration direction of the current vehicle;
  • the movement trajectory of the current vehicle is predicted, and the mapping trajectory of the predicted movement trajectory of the current vehicle is displayed in the navigation interface. As shown in Figure 9, the mapping trajectory of the movement trajectory of the current vehicle is displayed in the navigation interface. 912.
  • the speed information of the obstacle can be obtained.
  • the speed information of the obstacle can include any one or more of the following: 1 the speed value and speed direction of the obstacle, 2 the acceleration value and acceleration direction of the obstacle; it can be based on speed information of obstacles, Predict the movement trajectory of the obstacle, and display the mapping trajectory of the predicted movement trajectory of the obstacle in the navigation interface.
  • the navigation interface displays the mapping trajectory 913 of the predicted movement trajectory of the pedestrian obstacle, and displays There is a mapped trajectory 914 of the predicted motion trajectory of the vehicle obstacle.
  • the predicted mapping trajectory of the current vehicle's motion trajectory intersects with the predicted mapping trajectory of the obstacle's motion trajectory, it can serve as a reminder to the vehicle-associated object of the current vehicle, prompting the vehicle-associated object to pay attention Avoid and improve the safety of vehicle driving.
  • the warning sign about the obstacle can be displayed in the navigation interface by setting the display attribute of the warning sign display area.
  • the warning sign can be used to indicate at least one of the following: the current vehicle and the obstacle
  • the distance between objects is less than or equal to the corresponding warning distance of the warning area, and the directional relationship between the current vehicle and the obstacle.
  • the display position of the obstacle identification object in the navigation interface can be quickly determined and the obstacle can be improved.
  • the content presented in the navigation interface is richer and more diverse.
  • it In addition to displaying the vehicle identification object of the current vehicle and obstacle identification objects identifying obstacles, it also displays vehicle driving status information, traffic information, navigation information, etc., and vehicle-related objects. Through the navigation interface, you can obtain more information that is beneficial to vehicle driving and improve the safety of the vehicle driving process.
  • Embodiments of the present application provide a vehicle navigation method.
  • the vehicle navigation method mainly introduces content such as determining the early warning area where obstacles enter the current vehicle, and the presentation form of warning signs about the obstacles in the navigation interface.
  • the vehicle navigation method can be composed of The smart vehicle terminal 104 in the above vehicle navigation system is executed. Please refer to Figure 10.
  • the vehicle navigation method may include the following steps S1001 to S1005:
  • the navigation interface is displayed.
  • the vehicle identification object of the current vehicle is displayed in the navigation interface, and a warning sign display area for displaying warning signs is set around the vehicle identification object; when the current vehicle When the environment contains obstacles, an obstacle identification object identifying the obstacles is also displayed on the navigation interface.
  • step S1001 is the same as the execution process of step S501 in the embodiment shown in Figure 5A.
  • execution process please refer to the description of step S501 in the embodiment shown in Figure 5A, which will not be described again. .
  • the collision detection area of the obstacle can be determined based on the surrounding area of the obstacle. Furthermore, the collision detection area of the obstacle can be determined based on the surrounding area of the obstacle.
  • the collision detection area can be the area outside the area surrounded by obstacles; collisions between vehicles and obstacles usually occur at the front, rear, left, right, and rear of the vehicle and the front, rear, left, and right sides of the obstacle. Therefore, the area surrounded by an obstacle refers to the area that can be separated from the obstacle.
  • the area surrounded by an obstacle may be a rectangular area, a circular area, or an elliptical area.
  • the embodiment of the present application does not limit the shape of the area surrounded by the obstacle.
  • Figure 11A takes the obstacle as a vehicle obstacle and the surrounding area of the obstacle as a rectangular area as an example to illustrate the surrounding area and the circumscribed area of the obstacle.
  • the circumscribed area 1103 of the surrounding area 1102 of the obstacle 1101 is the surrounding area of the obstacle 1101. 1102's non-rotated bounding rectangle.
  • S1003 Perform intersection detection on the warning area of the current vehicle and the collision detection area of the obstacle.
  • the current vehicle's warning area can be formed by expanding the surrounding area of the current vehicle according to the warning distance.
  • the area surrounded by the current vehicle refers to the area that can completely surround the current vehicle from the top view of the current vehicle.
  • the area surrounded by the current vehicle can be a rectangular area, a circular area, or an elliptical area.
  • the embodiment of the present application does not limit the shape of the area surrounded by the current vehicle.
  • the warning area of the current vehicle may include warning areas corresponding to N warning levels.
  • the N levels of warning areas are formed by expanding the surrounding area of the current vehicle according to N different warning distances, and N is a positive integer.
  • Figure 11B takes the early warning area of the current vehicle including three levels of early warning areas, and the surrounding area of the current vehicle is a rectangular area as an example to introduce the early warning area of the current vehicle.
  • the early warning area of the current vehicle 1104 includes the first level warning area 1105, the second level warning area 1105, and the second level warning area 1105.
  • the first-level early warning area 1105 is formed by expanding the surrounding area 1108 of the current vehicle 1104 according to the first-level early warning distance W1.
  • the second-level early warning area 1106 is formed by enlarging the surrounding area 1108 of the current vehicle according to the second-level early warning distance W2.
  • the surrounding area 1108 of 1104 is expanded.
  • the third-level early warning area 1107 is formed by expanding the surrounding area 1108 of the current vehicle 1104 according to the third-level early warning distance W3.
  • the first-level early warning distance W1 is smaller than the second-level early warning distance W2.
  • the second-level early warning distance W2 Less than the level three warning distance W3.
  • the process of region intersection detection may include the following sub-steps s21-s23, as shown in Figure 11C:
  • the process of obtaining the warning area data of the current vehicle's warning area in the vehicle coordinate system may include: obtaining the position data of the feature points of the current vehicle's surrounding area in the vehicle coordinate system, and based on the feature points of the current vehicle's surrounding area in the vehicle coordinate system.
  • the position data and warning distance in the coordinate system determine the warning area data of the current vehicle's warning area in the vehicle coordinate system.
  • the warning area of the current vehicle may specifically refer to the warning area formed by expanding the surrounding area of the current vehicle according to the maximum warning distance among N levels of warning areas; that is to say, the characteristic points of the surrounding area of the current vehicle can be obtained at
  • the position data in the vehicle coordinate system can then be calculated based on the feature points of the area surrounded by the current vehicle.
  • the position data and maximum warning distance in the vehicle coordinate system determine the warning area data of the current vehicle's warning area in the vehicle coordinate system.
  • the area surrounded by the current vehicle is a rectangle mnpq
  • the warning area of the current vehicle is a rectangular area formed by expanding the area surrounded by the current vehicle according to the maximum warning distance WN.
  • the coordinate system O-xy is based on the center of the current vehicle.
  • the vehicle coordinate system established by the coordinate origin.
  • the characteristic points of the area surrounded by the current vehicle can include any of the following: 1 The upper left corner point n and the lower right corner point q of the area surrounded by the current vehicle, 2 The upper right corner point m and the lower left corner point p of the area surrounded by the current vehicle, 3 The left intersection point r and the right intersection point s between the current vehicle's surrounding area and the x-axis, and the upper intersection point j and lower intersection point k between the current vehicle's surrounding area and the y-axis.
  • the position data of the upper left corner point n in the vehicle coordinate system can be expressed as (O left , O top )
  • the position data of the lower right corner point q in the vehicle coordinate system can be expressed as (O right ,O bottom );
  • the warning area data of the current vehicle's warning area can include the first warning angle of the current vehicle's warning area in the vehicle coordinate system boundary value, the second warning height boundary value, the first warning width boundary value and the second warning width boundary value;
  • the first warning height boundary value is the upper boundary value of the warning area of the current vehicle, which can be the vertical direction according to the upper left corner point n
  • the axis data O top is determined by the maximum warning distance WN.
  • the first warning height boundary value is O top + WN; the second warning height boundary value is the lower boundary value of the warning area of the current vehicle, which can be the longitudinal value based on the lower right corner point q.
  • the axis data O bottom is determined by the maximum warning distance WN.
  • the first warning height boundary value is O bottom -WN; the first warning width boundary value is the left boundary value of the warning area of the current vehicle, which can be the horizontal direction based on the upper left corner point n.
  • the axis data O left is determined by the maximum warning distance WN.
  • the first warning height boundary value is O left -WN; the second warning width boundary value is the right boundary value of the warning area of the current vehicle, which can be the horizontal value based on the lower right corner point q.
  • the axis data O right and the maximum warning distance WN are determined, and the first warning degree boundary value is O right + WN.
  • the obstacle coordinate system is a coordinate system established with the obstacle as the coordinate origin. More Specifically, the obstacle coordinate system can refer to the center of the obstacle coordinate system (i.e., the center point of the symmetry axis of the obstacle) as the coordinate origin (O′), and the direction in which the obstacle advances as the vertical axis (i.e., y′ axis), a coordinate system established with the direction to the right of the obstacle as the horizontal axis (i.e. x' axis) and the upward direction perpendicular to the O'-x'y' plane as the vertical axis (i.e. z' axis).
  • the process of obtaining the detection area data of the collision detection area of the obstacle in the vehicle coordinate system may include: obtaining the position data of the feature points of the obstacle's surrounding area in the obstacle coordinate system, and obtaining the characteristic points of the obstacle's surrounding area. Perform coordinate transformation on the position data in the obstacle coordinate system to obtain the position data of the characteristic points of the obstacle's surrounding area in the vehicle coordinate system. Based on the position data of the characteristic points of the obstacle's surrounding area in the vehicle coordinate system, determine The detection area data of the collision detection area of the obstacle in the vehicle coordinate system.
  • the surrounding area of the obstacle is the rectangle abcd
  • the collision detection area of the obstacle is the rectangle efgh
  • the coordinate system O′-x′y′ is a coordinate system established with the obstacle as the coordinate origin (O′).
  • the characteristic points of the area surrounded by the obstacle can include the upper left corner point b, the upper right corner point a, the lower left corner point c and the lower right corner point d of the obstacle surrounded area.
  • the position data of the upper left corner point b in the obstacle coordinate system can be expressed as (O′ left ,O′ top ), the position data of the upper right corner point a in the obstacle coordinate system can be expressed as (O′ right ,O′ top ), the position data of the lower left corner point c in the obstacle coordinate system
  • the position data can be expressed as (O′ left ,O′ bottom ), and the position data of the lower right corner point d in the obstacle coordinate system can be expressed as (O′ right ,O′ bottom ).
  • the position data of the coordinate origin O′ in the vehicle coordinate system O-xy can be expressed as (O x′ ,O y′ ), and the intermediate coordinate system O′′-x′′y′′ is the vehicle coordinate system O- xy is translated to the origin O′ of the obstacle coordinate system.
  • the intermediate coordinate system O′′-x′′y′′ is rotated counterclockwise by an angle ⁇ and coincides with the obstacle coordinate system O′-x′y′.
  • the upper right corner point a is on the obstacle.
  • the position data under the coordinate system O′-x′y′ can be expressed as (x′, y′), and the position data of the upper right corner point a under the intermediate coordinate system O′′-x′′y′′ can be expressed as (x′′, y′′), the position data of the upper right corner point a in the vehicle coordinate system O-xy can be expressed as (x, y), then the position data of the upper right corner point a in the intermediate coordinate system O′′-x′′y′′ (x
  • the horizontal axis data x′′ of the upper right corner point a in the intermediate coordinate system O′′-x′′y′′ can be based on the upper right corner point a in the obstacle coordinate system O′-x′y
  • the horizontal axis data x′, vertical axis data y′ and rotation angle ⁇ under ′ are determined;
  • the vertical axis data y′′ of the upper right corner point a under the intermediate coordinate system O′′-x′′y′′ can be based on the upper right corner point a is determined by the horizontal axis data x′, vertical axis data y′ and rotation angle ⁇ in the obstacle coordinate system O′-x′y′.
  • the position data (x′′, y′′) of the upper right corner point a in the intermediate coordinate system O′′-x′′y′′ can be translated to the vehicle coordinate system O-xy, and the position data (x′′, y′′) of the upper right corner point a in the vehicle coordinate system O-
  • the horizontal axis data x of the upper right corner point a in the vehicle coordinate system O-xy can be the horizontal axis data O x′ in the vehicle coordinate system O-xy based on the coordinate origin O′ , And the horizontal axis data x" of the upper right corner point a in the intermediate coordinate system O"-x"y" is determined; the vertical axis data y of the upper right corner point a in the vehicle coordinate system O-xy can be determined It is determined based on the vertical axis data O y′ of the coordinate origin O′ in the vehicle coordinate system O-xy, and the vertical axis data y′′ of the upper right corner point a in the intermediate coordinate system O′′-x′′y′′.
  • the detection area data of the collision detection area of the obstacle may include the second upper boundary coordinate value, the second lower boundary coordinate value, the second left boundary coordinate value and the second right boundary coordinate value of the obstacle in the vehicle coordinate system; wherein,
  • the first upper boundary coordinate value is the upper boundary coordinate value of the collision detection area of the obstacle, which can be the vertical axis data y of the upper right corner point a in the vehicle coordinate system, expressed as O′ top ;
  • the second lower boundary coordinate value is the obstacle
  • the lower boundary coordinate value of the object's collision detection area can be the vertical axis data of the lower left corner point c in the vehicle coordinate system, expressed as O′ bottom ;
  • the second left boundary coordinate value is the left boundary coordinate of the obstacle's collision detection area.
  • the value can be the horizontal axis data of the upper left corner point b in the vehicle coordinate system, expressed as O′ left ;
  • the second right boundary coordinate value is the right boundary coordinate value of the collision detection area of the obstacle, which can be the lower right corner point d in
  • the horizontal axis data in the vehicle coordinate system is expressed as O′ right .
  • warning area data and the detection area data meet the preset conditions, it is determined that the warning area of the current vehicle and the collision detection area of the obstacle do not intersect; otherwise, it is determined that they intersect.
  • the warning area data may include a first upper boundary coordinate value O top +WN, a first lower boundary coordinate value O bottom -WN, a first left boundary coordinate value O left -WN and a first right boundary coordinate value O right +WN;
  • the detection area data may include the second upper boundary coordinate value O' top , the second lower boundary coordinate value O' bottom , the second left boundary coordinate value O' left and the second right boundary coordinate value O' right .
  • the preset conditions include at least one of the following: as shown in Figure 14A , when the collision detection area of the obstacle is located on the upper side of the warning area of the current vehicle, the first upper boundary coordinate value is smaller than the second lower boundary coordinate value (i.e. O top +WN ⁇ O′ bottom ); as shown in Figure 14B, When the collision detection area of the obstacle is located on the left side of the warning area of the current vehicle, the first left boundary coordinate value is greater than the second right boundary coordinate value (i.e.
  • the warning area of the current vehicle is larger than the area surrounded by the current vehicle. area.
  • the collision detection area of an obstacle is an area larger than the surrounding area of the obstacle.
  • Steps S1004-S1005 if the warning area of the current vehicle intersects with the collision detection area of the obstacle, it can be determined that the obstacle enters the warning area of the current vehicle.
  • the warning sign display area can be set. Display attributes are used to display warning signs about obstacles in the navigation interface.
  • the warning signs can be used to indicate at least one of the following: the distance between the current vehicle and the obstacle, and the directional relationship between the current vehicle and the obstacle. It should be noted that the warning sign can be directly displayed on the virtual map, or, in order to serve as an early warning prompt, when an obstacle enters the warning area of the current vehicle, the warning sign can be enlarged and displayed in the form of a top-down view in the navigation interface, including the current vehicle.
  • the vehicle identification object and the obstacle identification object identifying the obstacle are in an area, and a warning sign is displayed in this area. This is not limited in the embodiments of the present application.
  • the warning sign may be used to indicate the distance between the current vehicle and the obstacle.
  • the warning area of the current vehicle can include warning areas corresponding to N warning levels.
  • the warning areas corresponding to the N warning levels are formed by expanding the surrounding area of the current vehicle according to N different warning distances.
  • the content described in sub-steps s21-s23 can determine that the obstacle enters the i-th level warning area among the N levels.
  • the i-th level warning area can be formed by expanding the surrounding area of the current vehicle according to the i-th warning distance.
  • N is a positive integer
  • i is a positive integer less than or equal to N.
  • the warning area of the current vehicle may include a first-level warning area, a second-level warning area and a third-level warning area.
  • the first-level warning area is formed by expanding the area surrounding the current vehicle according to the first-level warning distance.
  • the second-level warning area It is formed by expanding the surrounding area of the current vehicle according to the second-level early warning distance.
  • the third-level early warning area is formed by expanding the surrounding area of the current vehicle according to the third-level early warning distance.
  • the first-level early warning distance is smaller than the second-level early warning distance.
  • the second-level early warning distance Less than the level 3 warning distance; if the collision detection area of the obstacle intersects with the level 3 warning area but does not intersect with the level 2 warning area, it can mean that the obstacle enters the level 3 warning area of the current vehicle; if the collision detection area of the obstacle intersects with the level 3 warning area If the secondary warning area intersects but does not intersect with the primary warning area, it can indicate that the obstacle has entered the secondary warning area of the current vehicle; if the collision detection area of the obstacle intersects with the primary warning area, it can indicate that the obstacle has entered the current vehicle Level 1 warning area.
  • the display attribute of the warning sign display area to display warning signs about the obstacle in the navigation interface, which may include: According to the i-th warning level, Set the display properties of the warning sign display area to display the warning sign of the i-th warning level in the navigation interface.
  • the warning sign corresponding to the i-th warning level can be used to indicate: the distance between the current vehicle and the obstacle is less than or equal to The i-th warning distance.
  • the warning mark display area may be a ring surrounding the vehicle object mark of the current vehicle.
  • the annular area may be a circular annular area, a rectangular annular area, an elliptical annular area, etc.
  • the embodiment of the present application does not limit the shape of the annular area surrounding the vehicle object identification of the current vehicle.
  • the display attributes of the warning sign display area can include color attributes, so that different levels of warning signs can be displayed by setting the color displayed in the warning sign display area. For example: According to the distance between the obstacle and the current vehicle, the colors of the warning sign display areas corresponding to N warning levels are different. The farther the obstacle is from the current vehicle, the lighter the color. The closer the obstacle is to the current vehicle, the more conspicuous the color. . Taking the current vehicle warning area as an example, including the first-level warning area, the second-level warning area and the third-level warning area, as shown in Figure 15A, for the first-level warning level, that is, when an obstacle enters the first warning area, the warning sign can be displayed The color attribute corresponding to the area is set to dark gray.
  • the color attribute corresponding to the warning sign display area can be set to medium gray.
  • the color attribute corresponding to the warning sign display area can be set to light gray; that is, the greater the warning distance, the lighter the color of the corresponding warning sign, and the smaller the warning distance, the darker the color of the warning sign.
  • the warning sign display area may include multiple sub-areas, each of which has a display attribute. By setting the display attributes of different sub-areas, warning representations of different display styles can be obtained.
  • the display attribute of each sub-region may include a hidden attribute, so that the display and hiding of different sub-regions can be set through the hidden attribute to display warning signs of different sizes.
  • the warning sign display area includes three sub-areas (each sub-area is a ring area).
  • the warning signs corresponding to the first-level warning level include one annular area
  • the warning signs corresponding to the second-level warning level include two annular areas
  • the warning signs corresponding to the third-level warning level include three annular areas; each sub-area (i.e. Ring area) has display and hide attributes.
  • warning signs containing different numbers of ring areas can be displayed. That is to say, the warning area corresponding to a larger warning distance includes a greater number of annular areas, and the warning area corresponding to a smaller warning distance includes a smaller number of annular areas.
  • the warning sign display area may include multiple sub-areas, each of which has a display attribute, where the display attribute includes a color attribute and a hidden attribute.
  • the colors of the warning signs corresponding to the N warning levels are different, and the number of ring-shaped areas they contain is also different.
  • the warning area of the current vehicle includes a first-level warning area, a second-level warning area, and a third-level warning area.
  • the warning sign corresponding to the first-level warning level includes a ring-shaped area and the color is dark gray
  • the warning sign corresponding to the second-level warning level includes two ring-shaped areas and the color is medium gray
  • the warning mark corresponding to the level-three warning level includes two ring-shaped areas and is medium gray in color.
  • the warning sign corresponding to the warning level includes three annular areas and is light gray in color; that is to say, the warning level corresponding to the greater the warning distance includes more annular areas and the lighter the color, the greater the warning distance.
  • the smaller the warning level the smaller the number of ring-shaped areas included in the warning mark and the darker the color. In this way, different police Warning signs of different levels appear in different forms in the navigation interface.
  • Smart vehicle terminals can control the current vehicle's driving status according to different levels of warning signs, such as adjusting the current vehicle's driving speed, driving direction, etc.
  • Vehicle-related objects can quickly determine the distance between the current vehicle and obstacles through the form of warning signs, which can improve the safety of the vehicle driving process.
  • the warning sign can be used to indicate the directional relationship between the current vehicle and the obstacle.
  • the warning sign display area can be divided into M sub-regions (sectors), and the M sectors correspond to different angle ranges.
  • the angle range of the M sectors may be determined based on the angles of the M sectors, where M is an integer greater than 1.
  • the warning area composed of a rectangle and two semicircles is divided into eight sectors, namely A1 (the area in front of the current vehicle on the right), A2 (the area directly in front of the current vehicle), A3 (the area in front of the current vehicle) The left front area of the current vehicle), A4 (the right left area of the current vehicle), A5 (the left rear area of the current vehicle), A6 (the right rear area of the current vehicle), A7 (the right rear area of the current vehicle), and A8 (area directly on the right side of the current vehicle); sectors A1, A2, A3, A5, A6 and A7 have the same angles, sectors A4 and A8 have the same angles; the first length h1 represents the center of the front axle of the current vehicle (connected The distance from the center point of the axis of the two front wheels) to the front bumper of the vehicle.
  • the second length h2 represents the distance from the center of the front axle to the center of the rear axle (the center point of the axis connecting the two rear wheels).
  • the angle between the area directly on the left side of the current vehicle and the area directly on the right side of the current vehicle can be calculated based on the distance from the center of the front axle to the center of the rear axle and the width of the current vehicle.
  • the angle range of each sector can be determined. For example, if the angle of sector A8 is 90 degrees, then the angle range corresponding to sector A8 is (0, 90]; if the angle of sector A7 is 30 degrees, then the angle range corresponding to sector A7 is (90, 120) ]; The angle of sector A6 is 30 degrees, then the angle range corresponding to sector A6 is (120, 150]; the angle of sector A5 is 30 degrees, then the angle range corresponding to sector A5 is (150, 180]; If the angle of sector A4 is 90 degrees, then the corresponding angle range of sector A4 is (180, 270]; if the angle of sector A3 is 30 degrees, then the corresponding angle range of sector A3 is (270, 300]; The angle of A2 is 30 degrees, so the angle range corresponding to sector A2 is (300, 330]; the angle of sector A1 is 30 degrees, then the angle range corresponding to sector A
  • the display attributes of the warning sign display area can include the hidden attributes of each sub-area.
  • Setting the display attributes of the warning sign display area to display warning signs about obstacles in the navigation interface can include: determining the relative position of the obstacle. With respect to the angle of the current vehicle, the angle of the obstacle relative to the current vehicle can specifically be at the angle of the vehicle The angle of the obstacle relative to the current vehicle in the coordinate system can be determined based on the position data of the obstacle in the vehicle coordinate system; then, the position of the obstacle in M can be determined based on the angle range of the obstacle relative to the current vehicle.
  • the target sector For the corresponding target sector in each sector, set the hidden attribute of the target sub-area to not hidden, and set the hidden attributes of other sub-areas to hidden, so that the warning mark corresponding to the target sector is displayed in the navigation interface.
  • the target sector The corresponding warning mark may be used to indicate that the obstacle is located in the direction indicated by the angle range corresponding to the target sector of the current vehicle.
  • the warning mark corresponding to the early warning area may be an annular area surrounding the vehicle object identifier of the current vehicle.
  • the annular area may be a circular annular area, a rectangular annular area, an elliptical annular area, etc., in the embodiment of the present application
  • the shape of the annular area surrounding the vehicle object identification of the current vehicle is not limited.
  • the hidden attribute is set to not hidden, and the hidden attributes corresponding to other sectors except the target sector are set to hidden, or the hidden attribute is set to not hidden but faded (for example, the brightness of the target sector is higher than that of other sectors, or the target sector The transparency of the sector is lower than that of other sectors, etc.), which is not limited in the embodiment of the present application.
  • sector A8 can be set not to be hidden, so that the corresponding warning sign can be displayed in the navigation interface. In this way, the direction of the obstacle relative to the current vehicle is different, and the warning sign appears in a different form in the navigation interface.
  • the vehicle-associated object can quickly determine the direction of the obstacle relative to the current vehicle through the shape of the warning sign, which can improve the vehicle Safety during driving.
  • the warning sign may be used to indicate: the distance between the current vehicle and the obstacle and the directional relationship between the current vehicle and the obstacle.
  • the i-th level warning area can be based on the i-th warning distance.
  • the warning sign display area can be divided into M sectors. The M sectors correspond to different angle ranges. M is an integer greater than 1, N is a positive integer, and i is less than or equal to N. positive integer.
  • the target sectors corresponding to the obstacle in the M sectors can be determined according to the angle range of the obstacle relative to the current vehicle, and the corresponding target sectors can be set respectively.
  • the display attributes of the target sector and the display attributes of other M-1 sectors are displayed in the navigation interface, so that the warning signs corresponding to the target sectors are displayed in the navigation interface.
  • the warning signs corresponding to the target sectors can be used to indicate: between the current vehicle and obstacles. The distance between is less than or equal to the i-th warning distance, and the obstacle is located in the direction indicated by the angle range corresponding to the target sector of the current vehicle.
  • the warning sign can be used to understand the distance between the current vehicle and the obstacle Distance, you can also know the position of the obstacle relative to the current vehicle.
  • the warning signs presented in the navigation interface are different.
  • the ring-shaped area in the warning sign The greater the number, the farther the distance between the obstacle and the current vehicle. In this way, the vehicle-related object can quickly determine the distance between the current vehicle and obstacles through the shape of the warning sign. The distance and direction of obstacles relative to the current vehicle can improve the safety of the vehicle driving process.
  • any one or more of different colors and different numbers of annular areas are used to distinguish the distance between the obstacle and the current vehicle. It allows the vehicle-associated object to clearly and intuitively understand the distance between the obstacle and the current vehicle, which helps the vehicle-associated object to avoid the vehicle in time and plan the vehicle driving strategy. This can improve the safety of the vehicle driving process and improve the vehicle The sense of security associated with the object.
  • different annular sub-areas are used to indicate the direction of the obstacle relative to the current vehicle, so that the vehicle-associated object can clearly and intuitively understand the direction of the obstacle relative to the current vehicle.
  • warning sign can also simultaneously indicate the distance between the obstacle and the current vehicle, as well as the direction of the obstacle relative to the current vehicle. This can display a richer and more detailed navigation interface to vehicle-related objects, which can improve the navigation interface in vehicle navigation. Navigation effects during the process.
  • Figure 19 is a schematic structural diagram of a vehicle navigation device provided by an embodiment of the present application.
  • the vehicle navigation device can be provided in the computer device provided by the embodiment of the present application.
  • the computer device can be the computer device provided in the above method embodiment. and vehicle-mounted terminals.
  • the vehicle navigation device shown in Figure 19 may be a computer program (including program code) running in a computer device, and the vehicle navigation device may be used to perform some or all of the steps in the method embodiment shown in Figure 5A or Figure 10 .
  • the vehicle navigation device may include the following units:
  • the display unit 1901 is used to display a navigation interface.
  • the navigation interface includes a virtual map.
  • the virtual map is used to present the road scene of the environment in which the current vehicle is located.
  • the navigation interface includes a vehicle identification for identifying the current vehicle. object, and a warning sign display area for displaying warning signs is provided around the vehicle identification object; wherein, when the current environment of the vehicle includes obstacles, the navigation interface further includes a warning sign display area for identifying the obstacles. obstacle identification object;
  • the processing unit 1902 is configured to set the display attribute of the warning sign display area when the obstacle enters the warning area of the current vehicle, so as to display the warning sign about the obstacle in the navigation interface, so as to causing the vehicle navigation system of the current vehicle to control the driving state of the current vehicle according to the warning sign;
  • the warning sign is used to indicate at least one of the following: the distance between the current vehicle and the obstacle is less than or It is equal to the warning distance corresponding to the warning area and the directional relationship between the current vehicle and the obstacle.
  • each unit in the vehicle navigation device shown in FIG. 19 can be individually or completely The parts can be combined into one or several other units, or some of the units can be further divided into functionally smaller units, which can achieve the same operation without affecting the original unit. Realization of the technical effects of the applied embodiments.
  • the above units are divided based on logical functions. In practical applications, the function of one unit can also be realized by multiple units, or the functions of multiple units can be realized by one unit. In other embodiments of the present application, the vehicle navigation device may also include other units. In practical applications, these functions may also be implemented with the assistance of other units, and may be implemented by multiple units in cooperation.
  • the method can be implemented on a general computing device such as a computer including a central processing unit (CPU), a random access storage medium (RAM), a read-only storage medium (ROM), and other processing elements and storage elements.
  • a computer program (including program code) capable of executing some or all steps involved in the method as shown in Figure 5A or Figure 10 to construct the vehicle navigation device as shown in Figure 19, and to implement the embodiments of the present application vehicle navigation method.
  • the computer program can be recorded on, for example, a computer-readable storage medium, loaded into the above-mentioned computing device through the computer-readable storage medium, and run therein.
  • the obstacle identification of the obstacles can be displayed on the navigation interface.
  • information about the obstacles can be displayed on the navigation interface.
  • the warning sign may be used to indicate at least one of the following: the distance between the current vehicle and the obstacle, and the directional relationship between the current vehicle and the obstacle. It can be seen that in the vehicle navigation process, the embodiment of the present application not only pays attention to the current vehicle, but also pays attention to the obstacles of the current vehicle, and focuses on the distance between the current vehicle and the obstacles, and the distance between the current vehicle and the obstacles. In any one or more directions, by displaying obstacle identification objects and warning signs about obstacles in the navigation interface, the presentation content of the navigation interface can be enriched, thereby improving the vehicle navigation effect and further improving the safety of the vehicle driving process. safety.
  • FIG. 20 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • the computer device shown in FIG. 20 includes at least a processor 2001, an input interface 2002, an output interface 2003, and a computer-readable storage medium 2004.
  • the processor 2001, the input interface 2002, the output interface 2003 and the computer-readable storage medium 2004 can be connected through a bus or other means.
  • the input interface 2002 can be used to receive data sent by the positioning device and the sensing device (such as the position data of the current vehicle in the world coordinate system, the position data of the obstacle in the vehicle coordinate system, and the obstacle type of the obstacle, etc.).
  • the output interface 2003 can be used to send a connection confirmation message to the positioning device and the sensing device to ensure that the connection with the positioning device and the sensing device is stable and not interrupted, which is beneficial to the normal display of the navigation interface.
  • the computer-readable storage medium 2004 can be stored in the memory of the computer device.
  • the computer-readable storage medium 2004 is used to store a computer program.
  • the computer program includes computer instructions.
  • the processor 2001 is used to execute the computer program. Read the program instructions stored in the storage medium 2004.
  • the processor 2001 (or CPU (Central Processing Unit)) is the computing core and control core of the computer device. It is suitable for implementing one or more computer instructions, specifically suitable for loading and executing one or more computer instructions. Thereby realizing the corresponding method process or corresponding functions.
  • Embodiments of the present application also provide a computer-readable storage medium (Memory).
  • the computer-readable storage medium is a memory device in a computer device and is used to store programs and data. It can be understood that the computer-readable storage media here may include built-in storage media in the computer device, and of course may also include extended storage media supported by the computer device.
  • Computer-readable storage media provide storage space that stores the operating system of the computer device. Furthermore, the storage space also stores one or more computer instructions suitable for being loaded and executed by the processor. These computer instructions may be one or more computer programs (including program codes).
  • the computer-readable storage medium here can be a high-speed RAM memory or a non-volatile memory (Non-Volatile Memory), such as at least one disk memory; optionally, it can also be at least one located far away from the aforementioned A computer-readable storage medium for the processor.
  • Non-Volatile Memory Non-Volatile Memory
  • one or more computer instructions stored in the computer-readable storage medium 2004 can be loaded and executed by the processor 2001 to implement the above corresponding steps related to the vehicle navigation method shown in FIG. 5A or FIG. 10 .
  • a computer program product or computer program includes computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the vehicle navigation method provided in the above various optional ways.

Abstract

一种车辆导航方法、装置及计算机设备、存储介质,可以应用于自动驾驶领域或主动驾驶领域的车辆导航场景中,该车辆导航方法包括:显示导航界面,导航界面中包括用于标识当前车辆的车辆标识对象,车辆标识对象周围设置有用于展示警示标识的警示标识展示区域(S501);当障碍物进入当前车辆的预警区域时,设置警示标识展示区域的显示属性,以在导航界面中显示关于障碍物的警示标识(S502),以使当前车辆的车辆导航系统根据警示标识控制当前车辆的行驶状态;警示标识用于指示以下至少一项:当前车辆与障碍物之间的距离小于或等于预警区域对应的预警距离,以及当前车辆与障碍物之间的方向关系。

Description

车辆导航方法、装置及计算机设备、存储介质
本申请要求于2022年5月5日提交中国专利局、申请号为202210478168.8,发明名称为“一种车辆导航方法、装置及计算机设备、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,尤其涉及一种车辆导航方法、装置及计算机设备、存储介质。
背景技术
随着计算机技术的快速发展,车辆导航技术已经广泛应用于日常生活中。车辆导航技术是指基于卫星定位系统提供的定位数据,将车辆与道路之间的实时位置关系映射到可视化的导航界面中,以在车辆从起点行驶到终点的行驶过程中向车辆关联对象(例如车辆驾驶对象或车辆乘坐对象等)提供导航功能的技术。
目前,在车辆导航过程中会向车辆关联对象(例如车辆驾驶对象或车辆乘坐对象等)呈现可视化的导航界面,通过导航界面,车辆关联对象可以了解到车辆的当前位置、车辆的行驶路线、车辆的速度、前方路况等信息。
技术内容
本申请实施例提供了一种车辆导航方法、装置及计算机设备、存储介质,可以在车辆导航过程中重点关注车辆所处环境中的障碍物,提升车辆导航效果,从而提升车辆行驶过程的安全性。
本申请实施例提供了一种车辆导航方法,该车辆导航方法包括:
显示导航界面,导航界面包括虚拟地图,虚拟地图用于呈现当前车辆所处环境的道路场景;所述导航界面中包括用于标识所述当前车辆的车辆标识对象,所述车辆标识对象周围设置有用于展示警示标识的警示标识展示区域;其中,当当前车辆所处环境中包括障碍物时,导航界面中进一步包括用于标识障碍物的障碍物标识对象;
当障碍物进入所述当前车辆的预警区域时,设置所述警示标识展示区域的显示属性,以在导航界面中显示关于障碍物的警示标识,以使所述当前车辆的车辆导航系统根据所述 警示标识控制所述当前车辆的行驶状态;警示标识用于指示以下至少一项:当前车辆与障碍物之间的距离小于或等于所述预警区域对应的预警距离,以及当前车辆与障碍物之间的方向关系。
相应地,本申请实施例提供了一种车辆导航装置,该车辆导航装置包括:
显示单元,用于显示导航界面,所述导航界面包括虚拟地图,所述虚拟地图用于呈现当前车辆所处环境的道路场景;所述导航界面中包括用于标识所述当前车辆的车辆标识对象,所述车辆标识对象周围设置有用于展示警示标识的警示标识展示区域;其中,当所述当前车辆所处环境中包括障碍物时,所述导航界面中进一步包括用于标识所述障碍物的障碍物标识对象;
处理单元,用于当所述障碍物进入所述当前车辆的预警区域时,设置所述警示标识展示区域的显示属性,以在所述导航界面中显示关于所述障碍物的警示标识,以使所述当前车辆的车辆导航系统根据所述警示标识控制所述当前车辆的行驶状态;所述警示标识用于指示以下至少一项:所述当前车辆与所述障碍物之间的距离小于或等于所述预警区域对应的预警距离,以及所述当前车辆与所述障碍物之间的方向关系。
本申请实施例还提供了一种计算机设备,该计算机设备包括处理器和计算机可读存储介质;其中:
处理器,适于实现计算机程序;以及,计算机可读存储介质存储有计算机程序,计算机程序适于由处理器加载并执行上述的车辆导航方法。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机设备的处理器读取并执行时,使得计算机设备执行上述的车辆导航方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述的车辆导航方法。
附图简要说明
图1是本申请实施例提供的一种车辆导航系统的架构示意图;
图2是本申请实施例提供的一种感知设备的布局示意图;
图3是本申请实施例提供的一种跨域通信的流程示意图;
图4是本申请实施例提供的另一种跨域通信的流程示意图;
图5A和5B是本申请实施例提供的一种车辆导航方法的流程示意图;
图6是本申请实施例提供的一种车辆坐标系的示意图;
图7A是本申请实施例提供的一种障碍物的相对位置数据的确定方式示意图;
图7B是本申请实施例提供的一种当前车辆的经度切面示意图;
图8是本申请实施例提供的一种障碍物的高程数据的查询过程的流程示意图;
图9是本申请实施例提供的一种导航界面的示意图;
图10是本申请实施例提供的另一种车辆导航方法的流程示意图;
图11A是本申请实施例提供的一种障碍物的碰撞检测区域的示意图;
图11B是本申请实施例提供的一种当前车辆的预警区域的示意图;
图11C是本申请实施例提供的对当前车辆的预警区域和障碍物的碰撞检测区域进行相交检测的流程示意图;
图12是本申请实施例提供的一种预警区域数据的确定方式的示意图;
图13是本申请实施例提供的一种检测区域数据的确定方式的示意图;
图14A是本申请实施例提供的一种障碍物的碰撞检测区域位于当前车辆的预警区域上侧的示意图;
图14B是本申请实施例提供的一种障碍物的碰撞检测区域位于当前车辆的预警区域左侧的示意图;
图14C是本申请实施例提供的一种障碍物的碰撞检测区域位于当前车辆的预警区域下侧的示意图;
图14D是本申请实施例提供的一种障碍物的碰撞检测区域位于当前车辆的预警区域右侧的示意图;
图15A是本申请实施例提供的一种按颜色区分的警示标识的示意图;
图15B是本申请实施例提供的一种按环状区域数量区分的警示标识的示意图;
图15C是本申请实施例提供的一种按颜色和环状区域数量区分的警示标识的示意图;
图16是本申请实施例提供的一种预警区域的划分方式的示意图;
图17是本申请实施例提供的一种按方向区分警示标识的示意图;
图18是本申请实施例提供的一种按方向和距离区分警示标识的示意图;
图19是本申请实施例提供的一种车辆导航装置的结构示意图;
图20是本申请实施例提供的一种计算机设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请涉及智能交通系统中的车辆导航技术。智能交通系统(Intelligent Traffic System,ITS),也可以称为智能运输系统(Intelligent Transportation System),是将先进的科学技术(例如信息技术、计算机技术、数据通信技术、传感器技术、电子控制技术、自动控制理论、运筹学以及人工智能等)有效地综合运用于交通运输、服务控制和车辆制造,加强车辆、道路、使用者三者之间的联系,从而形成一种保障安全、提高效率、改善环境、节约能源的综合运输系统。
目前的车辆导航技术重点关注的是自车(即智能车载终端所在的车辆、或者车辆关联对象当前驾驶或乘坐的车辆),重点关注自车的车辆导航技术在实际的车辆导航过程中的导航效果不佳。基于此,本申请实施例提供了一种车辆导航方法,该车辆导航方法除了关注自车(即智能车载终端所在的车辆、或者车辆关联对象当前驾驶或乘坐的车辆)外,还关注自车所处环境中的障碍物,并且重点关注自车与障碍物之间的距离远近程度,以及自车与障碍物之间的方向中的任意一种或多种。具体来说,本申请实施例在车辆行驶过程中,可以向车辆关联对象提供可视化的导航界面,导航界面中可以显示有用于标识自车的车辆标识对象,当自车所处环境中包括障碍物时,导航界面中还可以显示有用于标识障碍物的障碍物标识对象,其中,在所述障碍物标志对象的周围设置有警示标识展示区域,并且,当障碍物进入自车的预警区域时,通过设置所述警示标志展示区域的显示属性,在导航界面中显示关于障碍物的警示标识,警示标识可以用于指示自车与障碍物之间的距离小于或等于所述预警区域对应的距离,以及自车与障碍物之间的方向关系中的任意一种或多种。此外,还可以在导航界面中呈现以下至少一种:车辆行驶状态信息(例如车辆的当前速度信息、车辆的出发位置(即起点位置)信息、车辆的目的地位置(即终点位置)信息、距离终点的剩余距离信息以及距离终点的剩余时间信息等)、交通信息(例如交通信号灯信息、车辆速度限制信息以及车辆限行信息等)以及导航信息(例如指示直行进入XX道路,指示左转进入XX道路,指示右转进入XX道路,指示掉头等的导航信息)。其中,障碍物是指自车所处环境中除自车外的其他对象,例如自车所处环境中除自车外的其他车辆、自车所处环境中的行人以及自车所处环境中的交通设施(例如交通指示牌、隔离墩、隔离柱以及防撞桶等)等都是障碍物;自车的车辆标识对象是指用于在导航界面中标识自车的对 象,标识障碍物的障碍物标识对象是指用于在导航界面中标识障碍物的对象,不同障碍物类型的障碍物标识对象可以是相同的,也可以是不相同的。
本申请实施例提供的车辆导航方法可以应用于自动驾驶场景的车辆导航过程中,自动驾驶场景即车驾场景,是指车辆由车载的自动驾驶系统控制行驶的场景,在自动驾驶场景的车辆导航过程中,通过向车辆关联对象(即车辆乘坐对象)呈现可视化的导航界面,车辆关联对象可以清楚直观地了解到自车与自车所处环境中的障碍物之间的关系,以及自动驾驶系统的能力和状态,这样可以提升自动驾驶场景中车辆关联对象的安全感,此外,自动驾驶系统,比如智能车载终端可以根据警示标识对车辆的行驶状态进行控制,比如控制车辆的行驶速度、行驶方向等等。本申请实施例提供的车辆导航系统还可以应用于主动驾驶系统的车辆导航过程中,主动驾驶场景即人驾场景,是指车辆由人类驾驶员控制行驶的场景,在主动驾驶场景的车辆导航过程中,通过向车辆关联对象(即车辆驾驶对象和车辆乘坐对象)呈现可视化的导航界面,车辆关联对象可以清楚直观地了解到自车与自车所处环境中的障碍物之间的关系,以及车辆的行驶状态,车辆驾驶对象可以基于自车与障碍物之间的关系进行驾驶规划,这样可以提升车辆行驶过程中的安全性,并且可以提升车辆乘坐对象在车辆乘坐过程中的安全感。
下面结合附图对本申请实施例提供的车辆导航系统进行介绍。如图1所示,车辆导航系统中可以包括目标车辆101、定位设备102、感知设备103以及智能车载终端104,定位设备102、感知设备103以及智能车载终端104搭载于目标车辆101中。其中:
(1)定位设备102。定位设备可以用于获取目标车辆(即自车)在世界坐标系下的位置数据(即目标车辆的绝对位置数据),其中,世界坐标系是指系统的绝对坐标系。定位设备可以将目标车辆在世界坐标系下的位置数据发送至智能车载终端。本申请实施例提及的定位设备可以是RTK(Real Time Kinematic,载波相位差分技术)设备,RTK设备可以实时地提供目标车辆高精度(例如厘米级)的定位数据(即目标车辆的绝对位置数据)。
(2)感知设备103。感知设备可以用于对目标车辆所处环境进行感知,得到环境感知数据,环境感知数据可以包括障碍物在车辆坐标系下的位置数据(即障碍物的相对坐标数据),以及障碍物的障碍物类型,其中,车辆坐标系是指以目标车辆为坐标原点所建立的坐标系。感知设备可以将环境感知数据发送至智能车载终端。感知设备对目标车辆所处环境进行感知的感知范围是由感知设备集成的传感器所决定的,一般情况下,感知设备可以包括但不限于以下至少一种传感器:视觉传感器(例如相机)、长距雷达以及短距雷达,长距雷达支持探测的距离大于短距雷达支持探测的距离;图2示出了一种感知设备的布局示意图,感知设备包括相机、360度全景相机、长距雷达和短距雷达,如图2所示的感知 设备的感知范围大概是前向200米,后向100米,左右各80米。
(3)智能车载终端104。智能车载终端是融合了卫星定位技术、里程定位技术及汽车黑匣技术,能用于对车辆进行行车安全管理、运营管理、服务质量管理、智能集中调度管理、电子站牌控制管理等的终端设备,智能车载终端可以包括显示屏,例如中控屏、仪表屏、AR-HUD(Augmented Reality Head Up Display,增强显示抬头显示器)显示屏等。智能车载终端在接收到目标车辆的绝对位置数据和环境感知数据后,可以将障碍物在车辆坐标系下的位置数据,转换为障碍物在世界坐标系下的位置数据,即将障碍物的相对位置数据转换为障碍物的绝对位置数据,然后,智能车载终端可以根据障碍物的绝对位置数据在显示屏中显示的导航界面中显示标识障碍物的障碍物标识对象。此外,当障碍物进入目标车辆的预警区域时,智能车载终端可以根据目标车辆的绝对位置数据和障碍物的绝对位置数据确定目标车辆与障碍物之间的方向,以及目标车辆与障碍物之间距离,然后,可以根据目标车辆与障碍物之间的方向,以及目标车辆与障碍物之间距离中的任意一种或多种在导航界面中显示关于障碍物的警示标识。
需要说明的是,以自动驾驶场景为例,本申请实施例提供的车辆导航方法涉及自动驾驶域与座舱域之间的跨域通信;其中,自动驾驶域是指车辆中用于控制自动驾驶的软硬件集合,例如上述提及的定位设备102以及感知设备103均属于自动驾驶域;座舱域是指车辆中用于控制座舱内与车辆关联对象进行交互的中控屏、仪表屏、操作按钮等软硬件集合,例如上述提及的智能车载终端104属于座舱域。座舱域与自动驾驶域是两个相对独立的处理系统,两个系统之间基于车载以太网通过数据传输协议进行数据跨域传输;其中,车载以太网是一种用依赖网络连接车内电子单元的新型局域网技术,在单对非屏蔽双绞线上可实现比较高的数据传输速率(例如,100Mbit/s(兆比特每秒)、1000Mbit/s或者10000Mbit/s等),同时还满足汽车行业要求的高可靠性、低电磁辐射、低功耗、低延迟等方面的要求;数据传输协议例如可以是TCP(Transmission Control Protocol,传输控制协议)、UDP(User Datagram Protocol,用户数据报协议)和SOME/IP(Scalable Service-Oriented Middleware over IP,一种数据传输协议)等,数据传输协议规定了自动驾驶域和座舱域之间的数据传输格式。如图3和图4所示,自动驾驶域在获取到目标车辆的绝对位置数据和环境感知数据后,通过跨域通信将目标车辆的绝对位置数据和环境感知数据传输至座舱域;座舱域可以根据目标车辆的绝对位置数据和环境感知数据计算出障碍物的绝对位置数据,当障碍物进入目标车辆的预警区域时,可以根据目标车辆的绝对位置数据和障碍物的绝对位置数据确定目标车辆与障碍物之间的方向,以及目标车辆与障碍物之间距离,然后,座舱域可以根据障碍物的绝对位置数据在导航界面中渲染出障碍物的障碍物对象标识,可 以根据目标车辆与障碍物之间的方向,以及目标车辆与障碍物之间距离中的任意一种或多种在导航界面中渲染出关于障碍物的警示标识。
通过目标车辆、定位设备、感知设备以及车载终端组成的车辆导航系统,可以在导航界面中显示目标车辆所处环境中标识障碍物的障碍物标识对象,以及关于障碍物的警示标识,这样可以丰富导航界面的显示内容,提升车辆导航效果,进一步可以提升车辆行驶过程的安全性。可以理解的是,本申请实施例描述的车辆导航系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请实施例提供的车辆导航方法进行更为详细的介绍。
本申请实施例提供一种车辆导航方法,该车辆导航方法主要介绍将障碍物的相对位置数据转换为障碍物的绝对位置数据的内容,该车辆导航方法可以由上述车辆导航系统中的智能车载终端104执行,请参见图5A,该车辆导航方法可以包括以下步骤S501-步骤S502:
S501,显示导航界面,导航界面中显示有标识目标车辆的车辆标识对象,当当前车辆所处环境中包括障碍物时,导航界面中显示有标识所述障碍物的障碍物标识对象,所述当前车辆的车辆标识对象周围设置有警示标识展示区域。
在当前车辆的行驶过程中,可以显示导航界面,导航界面中可以包括虚拟地图,虚拟地图可以是根据当前车辆所处环境对应的地图数据进行绘制的,虚拟地图可以用于呈现当前车辆所处环境的道路场景,可以理解为,虚拟地图可以是当前车辆所处环境的道路场景的虚拟映射,例如,真实道路中包含三条车道,则虚拟地图中该真实道路的映射道路也包含3条车道,映射道路中每条车道的导向箭头与真实道路中对应道路的导向箭头完全一致。在一种实现方式中,虚拟地图可以三维的形式呈现道路场景,可以理解为,虚拟地图是对当前车辆所处环境的道路场景进行三维建模得到的虚拟道路场景,在此情况下,当前车辆所处环境中的每条道路都对应有高度数据(或者可以称为高程数据),尤其适用于多条高度不同的道路重叠或者高架桥错综复杂的道路场景中;在另一种实现方式中,虚拟地图可以二维的形式呈现道路场景,可以理解为,虚拟地图是对当前车辆所处环境的道路场景的俯视图的二维虚拟映射,在此情况下,当前车辆所处环境中的每条道路不具备高度数据,尤其适用于道路网络简单的道路场景中。
导航界面中还包括当前车辆的车辆标识对象,当前车辆的车辆标识对象可以是根据当前车辆在世界坐标系下的位置数据在导航界面中进行显示的。当当前车辆所处环境中包括障碍物时,导航界面中可以显示有标识所述障碍物的障碍物标识对象,导航界面可以是基 于世界坐标系进行显示的,标识障碍物的障碍物标识对象可以是根据障碍物在世界坐标系下的位置数据在导航界面中进行显示的。具体来说,在导航界面中显示标识障碍物的障碍物标识对象的过程,如图5B所示,可以包括以下子步骤s11-子步骤s13:
s11,当当前车辆所处环境中包括障碍物时,获取障碍物在车辆坐标系下的位置数据。
当当前车辆所处环境中包括障碍物时,可以获取障碍物在车辆坐标系下的位置数据,其中,车辆坐标系可以是指以当前车辆为坐标原点所建立的坐标系;更为具体的,如图6所示,车辆坐标系可以是指以当前车辆的后半轴中心(即当前车辆的两个后轮的半轴连线的中心点)为坐标原点(O),以当前车辆前进的方向为横轴(即x轴),以当前车辆向左的方向为纵轴(即y轴),以垂直于O-xy平面向上的方向为竖轴(即z轴)所建立的坐标系;或者,车辆坐标系可以是指以当前车辆的中心(即当前车辆的对称轴的中心点)为坐标原点,以当前车辆前进的方向为纵轴(即y轴),以当前车辆向右的方向为横轴(即x轴),以垂直于O-xy平面向上的方向为竖轴(即z轴)所建立的坐标系;本申请实施例不对车辆坐标系的建立方式进行限定。
s12,对障碍物在车辆坐标系下的位置数据进行坐标转换,得到障碍物在世界坐标系下的位置数据。
对障碍物在车辆坐标系下的位置数据进行坐标转换,可以是根据当前车辆在世界坐标系下的位置数据进行的,也就是说,可以获取当前车辆在世界坐标系下的位置数据,根据当前车辆在世界坐标系下的位置数据,对障碍物在车辆坐标系下的位置数据进行坐标转换,得到障碍物在世界坐标系下的位置数据。
具体来说,根据当前车辆在世界坐标系下的位置数据,对障碍物在车辆坐标系下的位置数据进行坐标转换,得到障碍物在世界坐标系下的位置数据的过程可以包括:获取世界坐标系与车辆坐标系之间的转换关系,基于转换关系对障碍物在车辆坐标系下的位置数据进行计算,得到世界坐标系下障碍物相对于当前车辆的位置变化量,根据当前车辆在世界坐标系下的位置数据和位置变化量,确定障碍物在世界坐标系下的位置数据。
其中,当前车辆在世界坐标系下的位置数据可以包括当前车辆在世界坐标系下的坐标数据,当前车辆在世界坐标系下的坐标数据可以包括:当前车辆的经度数据和当前车辆的纬度数据;障碍物在车辆坐标系下的位置数据可以包括障碍物在车辆坐标系下的坐标数据,障碍物在车辆坐标系下的坐标数据可以包括:障碍物的横轴数据和障碍物的纵轴数据;障碍物在世界坐标系下的位置数据可以包括障碍物在世界坐标系下的坐标数据,障碍物在世界坐标系下的坐标数据可以包括:障碍物的经度数据和障碍物的纬度数据。
针对障碍物的经度数据,将障碍物的横轴数据转换为障碍物的经度数据的过程,可以 包括:获取世界坐标系与车辆坐标系之间的经度转换关系,基于经度转换关系对当前车辆的纬度数据和障碍物的横轴数据进行计算,得到世界坐标系下障碍物相对于当前车辆的经度变化量,根据当前车辆的经度数据和经度变化量,确定障碍物的经度数据。针对纬度数据,将障碍物的纵轴数据转换为障碍物的纬度数据的过程,可以包括:获取世界坐标系与车辆坐标系之间的纬度转换关系,基于纬度转换关系对障碍物的纵轴数据进行计算,得到世界坐标系下障碍物相对于当前车辆的纬度变化量,根据当前车辆的纬度数据和纬度变化量,确定障碍物的纬度数据。
为了便于理解,下面结合具体的示意图和公式对关于障碍物的坐标转换过程进行更为详细的介绍:
如图7A所示,A点表示当前车辆,B点表示障碍物,坐标系A-xy是以当前车辆为坐标原点建立的车辆坐标系,障碍物在车辆坐标系下的坐标数据(xB,yB),可以是根据当前车辆与障碍物之间的距离d,以及车辆坐标系下障碍物相对于当前车辆的角度α确定的,具体可参见如下公式1和公式2:
xB=d×sin α          公式1
yB=d×cos α          公式2
参见上述公式1和公式2可知,可以根据障碍物相对于当前车辆的角度α确定第一正弦参数sin α和第一余弦参数cos α,障碍物的横轴数据xB可以是距离d与第一正弦参数sin α之间的乘积,障碍物的纵轴数据yB可以是距离d与第一余弦参数cos α之间的乘积。
当前车辆在世界坐标系下的坐标数据可以表示为(LngA,LatA),LngA表示当前车辆的经度数据,LatA表示当前车辆的纬度数据。根据当前车辆在世界坐标系下的坐标数据可以确定如图7B所示的经度切面,经度切面中的表示当前车辆的纬度数据,即R表示地球半径,r表示A点所处纬度的纬度切面的切面半径。基于经度转换关系对当前车辆的纬度数据和障碍物的横轴数据进行计算,得到世界坐标系下障碍物相对于当前车辆的经度变化量的过程可参见下述公式3和公式4:

deltaLng=(xB/2πr)×360=(d×sin α×360)/2πR cos(LatA)   公式4
参见上述公式3和公式4可知,可以根据当前车辆的纬度数据LatA和地球半径R,确定当前车辆所处纬度的纬度切面的切面半径r,然后可以根据切面半径r和障碍物的横轴数据xB,确定世界坐标系下障碍物相对于当前车辆的经度变化量deltaLng。
基于纬度转换关系对障碍物的纵轴数据进行计算,得到世界坐标系下障碍物相对于当前车辆的纬度变化量可参见下述公式5:
deltaLat=(yB/2πR)×360=(d×cos α×360)/2πR   公式5
参见上述公式5可知,可以根据地球半径R和障碍物的纵轴数据yB,确定世界坐标系下障碍物相对于当前车辆的纬度变化量deltaLat。
根据当前车辆的经度数据和经度变化量,确定障碍物的经度数据的过程可参见下述公式6,根据当前车辆的纬度数据和纬度变化量,确定障碍物的纬度数据的过程可参见下述公式7:
LngB=LngA+deltaLng=LngA+(d×sin α×360)/2πR cos(LatA)   公式6
LatB=LatA+deltaLat=LatA+(d×cos α×360)/2πR   公式7
参见上述公式6和公式7可知,障碍物的经度数据LngB,等于当前车辆的经度数据LngA与经度变化量deltaLng之和;障碍物的纬度数据LatB,等于当前车辆的纬度数据LatA与纬度变化量deltaLat之和。
s13,根据障碍物在世界坐标系下的位置数据,在导航界面中显示标识障碍物的障碍物标识对象。
由前述内容可知,对于以三维的形式呈现道路场景的虚拟地图而言,虚拟地图可以是根据当前车辆所处环境对应的地图数据进行绘制的,而当前车辆所处环境的地图数据是对当前车辆所处环境的道路场景的三维虚拟映射,因此地图数据中是包含高程数据(即高度数据)的。当前车辆所处环境被划分为多个环境区域(Tile),每个环境区域中包括一条或多条道路(Lane),每个环境区域对应的地图数据中包括对应环境区域中每条道路的高程数据,障碍物的高程数据可以是根据障碍物所处道路的高程数据确定的。具体来说,根据障碍物在世界坐标系下的位置数据,在导航界面中显示标识障碍物的障碍物标识对象的过程,可以包括:根据障碍物在世界坐标系下的位置数据,确定障碍物所属的目标环境区域,以及障碍物在目标环境区域中所属的目标道路,从目标环境区域对应的地图数据中获取目标道路的高程数据,将目标道路的高程数据确定为障碍物的高程数据,根据障碍物在世界坐标系下的位置数据,以及障碍物的高程数据,在导航界面中显示标识障碍物的障碍物标识对象。
更为具体地,参见图8所示的高程数据查询流程,地图数据中每条道路的高程数据采用道路的高程数据、道路标识(Lane ID)以及道路所属环境区域标识(Tile ID)相互关联的形式存储;本申请实施例提供地图数据库和高程缓存模块,高程缓存模块可以用于缓存已从地图数据库中查询到的高程数据。在根据障碍物在世界坐标系下的位置数据(即障碍物的绝对位置数据),确定障碍物所属的目标环境区域,以及障碍物在目标环境区域中所属的目标道路后,可以先根据目标环境区域的标识和目标道路的标识,在高程缓存模块 中查询目标环境区域的标识和目标道路的标识对应的高程数据;若能够查询到,则可以将查询到的高程数据确定为障碍物的高程数据;若未能查询到,则需要根据目标环境区域的标识和目标道路的标识,在地图数据库中查询目标环境区域的标识和目标道路的标识对应的高程数据,将查询到的高程数据确定为障碍物的高程数据,并将查询到的高程数据与目标环境区域的标识以及目标道路的标识关联存储在高程缓存模块中。本申请实施例还提供缓存管理模块,缓存管理模块用于根据当前车辆在世界坐标系下的位置数据(即当前车辆的绝对位置数据)计算高程缓存模块中过期的高程数据,并将过期的高程数据存储至二级缓存中,二级缓存中存储的高程数据若在目标时间段内未被查询,则这些过期的高程数据将被彻底丢弃,过期的高程数据是指对应的位置与当前车辆的位置之间的距离超过距离阈值的高程数据,也就是说,在当前车辆的行驶过程中,当当前车辆远离目标环境区域后,目标环境区域内各道路对应的高程数据会从缓存中丢弃,这样可以及时清空缓存来存储当前车辆驶入的新的环境区域内各条道路对应的高程数据。
基于上述子步骤s11-s13,通过将障碍物在车辆坐标系下的位置数据转换为障碍物在世界坐标系下的位置数据,可以快速确定出障碍物标识对象在导航界面中的显示位置,另外,按照获取到的障碍物的高程数据在导航界面中显示障碍物标识对象,使得导航界面中显示的障碍物标识对象更贴近于道路场景中的障碍物。上述子步骤s11-子步骤s13的重点介绍了在导航界面中显示标识障碍物的障碍物标识对象与障碍物在世界坐标系下的位置数据相关,除此之外,在导航界面中显示障碍物的障碍物对象标识还与障碍物的障碍物类型相关。当前车辆所处环境中的障碍物的数量可以为一个或多个,一个或多个障碍物中可以存在不同障碍物类型的障碍物。
在一种实现方式中,不同障碍物类型的障碍物标识对象可以是相同的,举例来说,行人和车辆是不同障碍物类型的障碍物,行人的障碍物标识对象和车辆的障碍物标识对象可以是相同的,例如,行人的障碍物标识对象和车辆的障碍物标识对象均是长方体,公交车和货车是不同障碍物类型的障碍物,公交车的障碍物标识对象和货车的障碍物标识对象可以是相同的,例如,公交车的障碍物标识对象和货车的障碍物标识对象均是长方体,在此实现方式中,不同障碍物类型的障碍物采用相同的障碍物标识对象,可以节省不同障碍物类型的障碍物标识对象的渲染时间,对于一些渲染性能低的车载终端,可以提升导航界面的呈现实时性。
在另一种实现方式中,不同障碍物类型的障碍物标识对象也可以是不相同的,当前车辆搭载的感知设备可以识别障碍物的障碍物类型,可以根据障碍物在世界坐标系下的位置数据,在导航界面中显示识别出的障碍物类型下的障碍物标识对象,举例来说,行人的障 碍物标识对象和车辆的障碍物标识对象不相同,行人的障碍物标识对象可以为人体三维模型,车辆的障碍物标识对象可以为车辆三维模型,公交车的障碍物标识对象和货车的障碍物标识对象不相同,公交车的障碍物标识对象可以是公交车的三维模型,货车的障碍物标识对象可以为货车的三维模型,在此实现方式中,导航界面中呈现的障碍物对象标识的形态与障碍物的实际形态贴合,便于车辆关联对象通过导航界面查看到当前车辆周围存在多少个障碍物,每一个障碍物具体是什么类型,非常生动形象,清楚直观,提升车辆导航效果。
如图9所示的导航界面,导航界面中显示有当前车辆的车辆标识对象901和当前车辆所处环境中包括的多个标识障碍物的障碍物标识对象902,多个障碍物中包括行人和车辆,行人的障碍物标识对象和车辆的障碍物标识对象不相同。此外,导航界面还可以显示有车辆行驶状态信息,例如,车辆的当前速度信息903、车辆的出发位置信息904、车辆的目的地位置信息905、距离终点的剩余距离信息以及距离终点的剩余时间信息906等,并且,车辆的出发位置信息904、车辆的目的地位置信息905、距离终点的剩余距离信息以及距离终点的剩余时间信息906可以是以小地图的形式呈现在导航界面中的;小地图与虚拟地图是两个不同维度的地图,虚拟地图重点关注的是当前车辆所处环境的道路场景,可以理解为虚拟地图关注的是当前车辆的起点与终点之间的局部细节,而小地图重点关注的是当前车辆的起点与终点之间的路线、距离、行驶时间等,可以理解为小地图关注的是当前车辆的起点与终点之间的整体。此外,导航界面中还可以显示有当前车辆所处环境的交通信息,例如,交通信号灯信息908、车辆速度限制信息909、道路名称信息910,还可以显示有当前车辆的导航信息911。通过在导航界面中显示车辆行驶状态信息、交通信息以及导航信息,使得导航界面中呈现的内容更加丰富多样,车辆关联对象通过导航界面可以获取更多有利于车辆驾驶的信息,提升车辆行驶过程的安全性。
导航界面中除了可以呈现标识当前车辆的车辆标识对象、标识障碍物的障碍物标识对象、车辆行驶状态信息、交通信息以及导航信息外,还可以显示预测的当前车辆的运动轨迹的映射轨迹以及预测的障碍物的运动轨迹的映射轨迹。具体来说,可以获取当前车辆的速度信息,例如,当前车辆的速度信息可以包括以下任一种或多种:①当前车辆的速度数值和速度方向,②当前车辆的加速度数值和加速度方向;可以根据当前车辆的速度信息,预测当前车辆的运动轨迹,并在导航界面中显示预测的当前车辆的运动轨迹的映射轨迹,如图9所示的导航界面中显示有当前车辆的运动轨迹的映射轨迹912。类似地,可以获取障碍物的速度信息,例如,障碍物的速度信息可以包括以下任一种或多种:①障碍物的速度数值和速度方向,②障碍物的加速度数值和加速度方向;可以根据障碍物的速度信息, 预测障碍物的运动轨迹,并在导航界面中显示预测的障碍物的运动轨迹的映射轨迹,如图9所示的导航界面中显示有预测的行人障碍物的运动轨迹的映射轨迹913,以及显示有预测的车辆障碍物的运动轨迹的映射轨迹914。通过这种方式,当预测的当前车辆的运动轨迹的映射轨迹与预测的障碍物的运动轨迹的映射轨迹之间相交时,可以对当前车辆的车辆关联对象起到提示作用,提示车辆关联对象注意避让,提升车辆行驶过程的安全性。
S502,当障碍物进入当前车辆的预警区域时,设置所述警示标识展示区域的显示属性,以在导航界面中显示关于障碍物的警示标识。
当障碍物进入当前车辆的预警区域时,可以通过设置警示标识展示区域的显示属性,从而在导航界面中显示关于障碍物的警示标识,警示标识可以用于指示以下至少一项:当前车辆与障碍物之间的距离小于或等于所述预警区域对应预警距离,以及当前车辆与障碍物之间的方向关系。
本申请实施例中,通过将障碍物在车辆坐标系下的位置数据转换为障碍物在世界坐标系下的位置数据,可以快速确定出障碍物标识对象在导航界面中的显示位置,提升障碍物标识对象在导航界面中的渲染速度;按照获取到的障碍物的高程数据在导航界面中显示障碍物标识对象,使得导航界面中显示的障碍物标识对象更贴近于道路场景中的障碍物,提升车辆导航效果。并且,导航界面中呈现的内容更加丰富多样,除了显示有当前车辆的车辆标识对象和标识障碍物的障碍物标识对象外,还显示有车辆行驶状态信息、交通信息以及导航信息等,车辆关联对象通过导航界面可以获取更多有利于车辆驾驶的信息,提升车辆行驶过程的安全性。
本申请实施例提供一种车辆导航方法,该车辆导航方法主要介绍确定障碍物进入当前车辆的预警区域,以及关于障碍物的警示标识在导航界面中的呈现形态等内容,该车辆导航方法可以由上述车辆导航系统中的智能车载终端104执行,请参见图10,该车辆导航方法可以包括以下步骤S1001-步骤S1005:
S1001,在当前车辆的行驶过程中,显示导航界面,所述导航界面中显示有当前车辆的车辆标识对象,,所述车辆标识对象周围设置有用于展示警示标识的警示标识展示区域;当当前车辆所处环境中包括障碍物时,导航界面中还显示有标识障碍物的障碍物标识对象。
本申请实施例中,步骤S1001的执行过程与上述图5A所示实施例中步骤S501的执行过程相同,具体执行过程可参见上述图5A所示实施例中步骤S501的描述,在此不再赘述。
S1002,确定障碍物的碰撞检测区域。
障碍物的碰撞检测区域可以是根据障碍物的包围区域确定的,更进一步地,障碍物的 碰撞检测区域可以是障碍物的包围区域的外接区域;车辆与障碍物之间的碰撞通常发生在车辆的前后左右和障碍物的前后左右,因此,障碍物的包围区域是指能够从障碍物的俯视视图上完全包围障碍物的区域,障碍物的包围区域可以是矩形区域、圆形区域或者椭圆形区域,本申请实施例不对障碍物的包围区域的形状进行限定。图11A以障碍物是车辆障碍物,障碍物的包围区域是矩形区域为例对障碍物的包围区域和外接区域进行示意,障碍物1101的包围区域1102的外接区域1103是障碍物1101的包围区域1102的无旋转外接矩形。
S1003,对当前车辆的预警区域和障碍物的碰撞检测区域进行相交检测。
在介绍当前车辆的预警区域和障碍物的碰撞检测区域之间相交检测的内容之前,先对当前车辆的预警区域进行介绍:当前车辆的预警区域可以是按照预警距离对当前车辆的包围区域扩大形成的,与障碍物的包围区域类似,当前车辆的包围区域是指能够从当前车辆的俯视视图上完全包围当前车辆的区域,当前车辆的包围区域可以是矩形区域、圆形区域或者椭圆形区域,本申请实施例不对当前车辆的包围区域的形状进行限定。更进一步地,当前车辆的预警区域可以包括N个警示级别分别对应的预警区域,N个级别的预警区域是按照N个不同的预警距离对当前车辆的包围区域扩大形成的,N为正整数。图11B以当前车辆的预警区域包括3个级别的预警区域,当前车辆的包围区域是矩形区域为例,对当前车辆的预警区域进行介绍,当前车辆1104的预警区域包括一级预警区域1105、二级预警区域1106以及三级预警区域1107,一级预警区域1105是按照一级预警距离W1对当前车辆1104的包围区域1108扩大形成的,二级预警区域1106是按照二级预警距离W2对当前车辆1104的包围区域1108扩大形成的,三级预警区域1107是按照三级预警距离W3对当前车辆1104的包围区域1108扩大形成的,一级预警距离W1小于二级预警距离W2,二级预警距离W2小于三级预警距离W3。
在了解障碍物的碰撞检测区域和当前车辆的预警区域后,在此介绍对当前车辆的预警区域和障碍物的碰撞检测区域进行相交检测的内容,对当前车辆的预警区域和障碍物的碰撞检测区域进行相交检测的过程可以包括以下子步骤s21-s23,如图11C所示:
s21,获取当前车辆的预警区域在车辆坐标系下的预警区域数据。
获取当前车辆的预警区域在车辆坐标系下的预警区域数据的过程,可以包括:获取当前车辆的包围区域的特征点在车辆坐标系下的位置数据,根据当前车辆的包围区域的特征点在车辆坐标系下的位置数据和预警距离,确定当前车辆的预警区域在车辆坐标系下的预警区域数据。此处,当前车辆的预警区域具体可以是指N个级别的预警区域中按照最大预警距离对当前车辆的包围区域扩大形成的预警区域;也就是说,可以获取当前车辆的包围区域的特征点在车辆坐标系下的位置数据,然后可以根据当前车辆的包围区域的特征点在 车辆坐标系下的位置数据和最大预警距离,确定当前车辆的预警区域在车辆坐标系下的预警区域数据。
如图12所示,当前车辆的包围区域为矩形mnpq,当前车辆的预警区域为按照最大预警距离WN对当前车辆的包围区域扩大形成的矩形区域,坐标系O-xy是以当前车辆的中心为坐标原点建立的车辆坐标系。当前车辆的包围区域的特征点可以包括以下任一种:①当前车辆的包围区域的左上角点n和右下角点q,②当前车辆的包围区域的右上角点m和左下角点p,③当前车辆的包围区域与x轴的左交点r、右交点s以及当前车辆的包围区域与y轴的上交点j、下交点k。以当前车辆的包围区域的特征点包括当前车辆的包围区域的左上角点n和右下角点q为例,左上角点n在车辆坐标系下的位置数据可以表示为(Oleft,Otop),右下角点q在车辆坐标系下的位置数据可以表示为(Oright,Obottom);当前车辆的预警区域的预警区域数据可以包括当前车辆的预警区域在车辆坐标系下的第一预警长度边界值、第二预警长度边界值、第一预警宽度边界值以及第二预警宽度边界值;第一预警长度边界值即当前车辆的预警区域的上边界值,可以是根据左上角点n的纵轴数据Otop与最大预警距离WN确定的,第一预警长度边界值为Otop+WN;第二预警长度边界值即当前车辆的预警区域的下边界值,可以是根据右下角点q的纵轴数据Obottom与最大预警距离WN确定的,第一预警长度边界值为Obottom-WN;第一预警宽度边界值即当前车辆的预警区域的左边界值,可以是根据左上角点n的横轴数据Oleft与最大预警距离WN确定的,第一预警长度边界值为Oleft-WN;第二预警宽度边界值即当前车辆的预警区域的右边界值,可以是根据右下角点q的横轴数据Oright与最大预警距离WN确定的,第一预警长度边界值为Oright+WN。
s22,获取障碍物的碰撞检测区域在车辆坐标系下的检测区域数据。
获取障碍物的碰撞检测区域在车辆坐标系下的检测区域数据需要进行车辆坐标系与障碍物坐标系之间的坐标转换,障碍物坐标系是以障碍物为坐标原点所建立的坐标系,更为具体地,障碍物坐标系可以是指以障碍物坐标系的中心(即障碍物的对称轴的中心点)为坐标原点(O′),以障碍物前进的方向为纵轴(即y′轴),以障碍物向右的方向为横轴(即x′轴),以垂直于O′-x′y′平面向上的方向为竖轴(即z′轴)所建立的坐标系。
获取障碍物的碰撞检测区域在车辆坐标系下的检测区域数据的过程,可以包括:获取障碍物的包围区域的特征点在障碍物坐标系下的位置数据,对障碍物的包围区域的特征点在障碍物坐标系下的位置数据进行坐标转换,得到障碍物的包围区域的特征点在车辆坐标系下的位置数据,根据障碍物的包围区域的特征点在车辆坐标系下的位置数据,确定障碍物的碰撞检测区域在车辆坐标系下的检测区域数据。
如图13所示,障碍物的包围区域为矩形abcd,障碍物的碰撞检测区域为矩形efgh,坐标系O′-x′y′是以障碍物为坐标原点(O′)所建立的坐标系,障碍物的包围区域的特征点可以包括障碍物的包围区域的左上角点b、右上角点a、左下角点c以及右下角点d,左上角点b在障碍物坐标系下的位置数据可以表示为(O′left,O′top),右上角点a在障碍物坐标系下的位置数据可以表示为(O′right,O′top),左下角点c在障碍物坐标系下的位置数据可以表示为(O′left,O′bottom),右下角点d在障碍物坐标系下的位置数据可以表示为(O′right,O′bottom)。
在此以障碍物的包围区域的右上角点a为例,介绍对障碍物的包围区域的特征点在障碍物坐标系下的位置数据进行坐标转换,得到障碍物的包围区域的特征点在车辆坐标系下的位置数据的过程,除障碍物的包围区域的右上角点a外的其他特征点的坐标转换过程,均可以参考障碍物的包围区域的右上角点a的坐标转换过程。如图13所示,坐标原点O′在车辆坐标系O-xy下的位置数据可以表示为(Ox′,Oy′),中间坐标系O″-x″y″是车辆坐标系O-xy平移到障碍物坐标系原点O′的状态,中间坐标系O″-x″y″逆时针旋转角度β后与障碍物坐标系O′-x′y′重合,右上角点a在障碍物坐标系O′-x′y′下的位置数据可以表示为(x′,y′),右上角点a在中间坐标系O″-x″y″下的位置数据可以表示为(x″,y″),右上角点a在车辆坐标系O-xy下的位置数据可以表示为(x,y),则右上角点a在中间坐标系O″-x″y″下的位置数据(x″,y″)的确定过程可参见下述公式8和公式9:
x″=x′×cos β-y′×sin β   公式8
y″=y′×cos β+x′×sin β   公式9
参见上述公式8和公式9可知,右上角点a在中间坐标系O″-x″y″下的横轴数据x″,可以是根据右上角点a在障碍物坐标系O′-x′y′下的横轴数据x′、纵轴数据y′以及旋转角度β确定的;右上角点a在中间坐标系O″-x″y″下的纵轴数据y″,可以是根据右上角点a在障碍物坐标系O′-x′y′下的横轴数据x′、纵轴数据y′以及旋转角度β确定的。
然后,可以将右上角点a在中间坐标系O″-x″y″下的位置数据(x″,y″)平移至车辆坐标系O-xy,得到右上角点a在车辆坐标系O-xy下的位置数据(x,y),平移过程可参见下述公式10和公式11:
x=Ox′+x″=Ox′+x′×cos β-y′×sin β   公式10
y=Oy′+y″=Oy′+y′×cos β+x′×sin β    公式11
参见上述公式10和公式11可知,右上角点a在车辆坐标系O-xy下的横轴数据x,可以是根据坐标原点O′在车辆坐标系O-xy下的横轴数据Ox′,以及右上角点a在中间坐标系O″-x″y″下的横轴数据x″确定的;右上角点a在车辆坐标系O-xy下的纵轴数据y,可 以是根据坐标原点O′在车辆坐标系O-xy下的纵轴数据Oy′,以及右上角点a在中间坐标系O″-x″y″下的纵轴数据y″确定的。
同理,可以确定左上角点b在车辆坐标系下的位置数据,左下角点c在车辆坐标系下的位置数据,右下角点d在车辆坐标系下的位置数据。障碍物的碰撞检测区域的检测区域数据可以包括障碍物在车辆坐标系下的第二上边界坐标值、第二下边界坐标值、第二左边界坐标值以及第二右边界坐标值;其中,第一上边界坐标值即障碍物的碰撞检测区域的上边界坐标值,可以为右上角点a在车辆坐标系下的纵轴数据y,表示为O′top;第二下边界坐标值即障碍物的碰撞检测区域的下边界坐标值,可以为左下角点c在车辆坐标系下的纵轴数据,表示为O′bottom;第二左边界坐标值即障碍物的碰撞检测区域的左边界坐标值,可以为左上角点b在车辆坐标系下的横轴数据,表示为O′left;第二右边界坐标值即障碍物的碰撞检测区域的右边界坐标值,可以为右下角点d在车辆坐标系下的横轴数据,表示为O′right
s23,若预警区域数据和检测区域数据满足预设条件,则确定当前车辆的预警区域和障碍物的碰撞检测区域不相交;否则,则确定相交。
由前述内容可知,预警区域数据可以包括第一上边界坐标值Otop+WN、第一下边界坐标值Obottom-WN、第一左边界坐标值Oleft-WN和第一右边界坐标值Oright+WN;检测区域数据可以包括第二上边界坐标值O′top、第二下边界坐标值O′bottom、第二左边界坐标值O′left和第二右边界坐标值O′right。若预警区域数据和检测区域数据满足预设条件,则确定当前车辆的预警区域和障碍物的碰撞检测区域不相交,否则,则确定相交;预设条件包括以下至少一种:如图14A所示,当障碍物的碰撞检测区域位于当前车辆的预警区域的上侧时,第一上边界坐标值小于第二下边界坐标值(即Otop+WN<O′bottom);如图14B所示,当障碍物的碰撞检测区域位于当前车辆的预警区域的左侧时,第一左边界坐标值大于第二右边界坐标值(即Oleft-WN>O′right);如图14C所示,当障碍物的碰撞检测区域位于当前车辆的预警区域的下侧时,第一下边界坐标值大于第二上边界坐标值(即Obottom-WN>O′top);如图14D所示,当障碍物的碰撞检测区域位于当前车辆的预警区域的右侧时,第一右边界坐标值小于第二左边界坐标值(即Oright+WN<O′left)。
基于上述子步骤s21-s23,通过检测当前车辆的预警区域与障碍物的碰撞检测区域是否相交,可以快速确定障碍物是否进入当前车辆的预警区域;当前车辆的预警区域是范围大于当前车辆的包围区域的区域,障碍物的碰撞检测区域是范围大于障碍物的包围区域的区域,采用当前车辆的预警区域与障碍物的碰撞检测区域来确定当前车辆与障碍物是否相交,可以保证即使当前车辆的预警区域与障碍物的碰撞检测区域相交时,当前车辆与障碍物仍然间隔一段距离,提升车辆行驶过程的安全性。
S1004,若当前车辆的预警区域和障碍物的碰撞检测区域相交,则确定障碍物进入当前车辆的预警区域。
S1005,当障碍物进入当前车辆的预警区域时,设置警示标识展示区域的显示属性,从而在导航界面中显示关于障碍物的警示标识。
步骤S1004-S1005,若当前车辆的预警区域和障碍物的碰撞检测区域相交,则可以确定障碍物进入当前车辆的预警区域,当障碍物进入当前车辆的预警区域时,可以设置警示标识展示区域的显示属性,在导航界面中显示关于障碍物的警示标识,警示标识可以用于指示以下至少一项:当前车辆与障碍物之间的距离远近程度,以及当前车辆与障碍物之间的方向关系。需要说明的是,警示标识可以直接显示于虚拟地图中,或者,为了起到预警提示作用,当障碍物进入当前车辆的预警区域时,可以在导航界面中以俯视视图的形式放大显示包含当前车辆的车辆标识对象与标识障碍物的障碍物标识对象的区域,并在该区域中显示警示标识,本申请实施例对此不进行限定。
在一种实现方式中,警示标识可以用于指示当前车辆与障碍物之间的距离远近程度。由前述内容可知,当前车辆的预警区域可以包括N个警示级别分别对应的预警区域,N个警示级别对应的预警区域是按照N个不同的预警距离对当前车辆的包围区域扩大形成的,按照上述子步骤s21-s23所描述的内容可以确定出障碍物进入N个级别中第i个级别的预警区域,第i个级别的预警区域可以是按照第i个预警距离对当前车辆的包围区域扩大形成的,N为正整数,i为小于或等于N的正整数。举例来说,当前车辆的预警区域可以包括一级预警区域、二级预警区域和三级预警区域,一级预警区域是按照一级预警距离对当前车辆的包围区域扩大形成的,二级预警区域是按照二级预警距离对当前车辆的包围区域扩大形成的,三级预警区域是按照三级预警距离对当前车辆的包围区域扩大形成的,一级预警距离小于二级预警距离,二级预警距离小于三级预警距离;若障碍物的碰撞检测区域与三级预警区域相交,与二级预警区域不相交,则可以说明障碍物进入当前车辆的三级预警区域;若障碍物的碰撞检测区域与二级预警区域相交,与一级预警区域不相交,则可以说明障碍物进入当前车辆的二级预警区域;若障碍物的碰撞检测区域与一级预警区域相交,则可以说明障碍物进入当前车辆的一级预警区域。
当障碍物进入当前车辆的第i个警示级别对应的预警区域时,设置警示标识展示区域的显示属性,以在导航界面中显示关于障碍物的警示标识,可以包括:根据第i个警示级别,设置警示标识展示区域的显示属性,从而在导航界面中显示第i个警示级别的警示标识,第i个警示级别对应的警示标识可以用于指示:当前车辆与障碍物之间的距离小于或等于第i个预警距离。其中,警示标识展示区域可以是包围当前车辆的车辆对象标识的环 状区域,环状区域可以是圆形环状区域、矩形环状区域或者椭圆形环状区域等等,本申请实施例不对包围当前车辆的车辆对象标识的环状区域的形状进行限定。
此外,警示标识展示区域的显示属性可以包括颜色属性,从而可以通过设置警示标识展示区域显示的颜色来展示不同级别的警示标识。例如:根据障碍物与当前车辆之间的距离,N个警示级别对应的警示标识展示区域的颜色不相同,障碍物距离当前车辆越远颜色越淡化,障碍物距离当前车辆越近则颜色越显眼。以当前车辆的预警区域包括一级预警区域、二级预警区域和三级预警区域为例,如图15A所示,对于一级警示级别,即障碍物进入第一预警区域,可以将警示标识展示区域对应的颜色属性设置为深灰色,对于二级警示级别,即障碍物进入二级预警区域,可以将警示标识展示区域对应的颜色属性设置为中灰色,对于三级警示级别,即障碍物进入三级预警区域,可以将警示标识展示区域对应的颜色属性设置为浅灰色;也就是说,预警距离越大,对应的警示标识的颜色越浅,预警距离越小,警示标识的颜色越深。
或者,警示标识展示区域可以包括多个子区域,每个子区域分别具有显示属性,通过设置不同子区域各自的显示属性,可以得到不同显示样式的警示表示。
在一些实施例中,每个子区域的显示属性可以包括隐藏属性,从而可以通过隐藏属性设置不同子区域的显示和隐藏来展示不同大小的警示标识。以当前车辆的预警区域包括一级预警区域、二级预警区域和三级预警区域为例,如图15B所示,警示标识展示区域包括三个子区域(每个子区域为一个环状区域),一级警示级别对应的警示标识包括一个环状区域,二级警示级别对应的警示标识中包括两个环状区域,三级警示级别对应的警示标识中包括三个环状区域;每个子区域(即环状区域)具有显示和隐藏属性,通过设置各个子区域的显示和隐藏属性,实现包含不同数量的环状区域的警示标识的展示。也就是说,预警距离越大的预警区域对应的警示标识包括的环状区域的数量越多,预警距离越小的预警区域对应的警示标识包括的环状区域的数量越少。
或者,警示标识展示区域可以包括多个子区域,每个子区域分别具有显示属性,其中,显示属性包括颜色属性、隐藏属性。这样,N个警示级别对应的警示标识的颜色不相同,且包含的环状区域的数量也不相同,以当前车辆的预警区域包括一级预警区域、二级预警区域和三级预警区域为例,如图15C所示,一级警示级别对应的警示标识中包括一个环状区域且颜色为深灰色,二级警示级别对应的警示标识中包括两个环状区域且颜色为中灰色,三级警示级别对应的警示标识中包括三个环状区域且颜色为浅灰色;也就是说,预警距离越大的警示级别对应的警示标识中包括的环状区域数量越多且颜色越浅,预警距离越小的警示级别对应的警示标识中包括的环状区域数量越少且颜色越深。通过这种方式,不同警 示级别的警示标识在导航界面中呈现不同的形态,智能车载终端可以根据不同级别的警示标识对当前车辆的行驶状态进行控制,比如,调整当前车辆的行驶速度、行驶方向等等。车辆关联对象可以通过警示标识的形态快速确定出当前车辆与障碍物之间的距离远近程度,可以提升车辆驾驶过程的安全性。
在另一种实现方式中,警示标识可以用于指示当前车辆与障碍物之间的方向关系,警示标识展示区域可以被划分为M个子区域(扇区),M个扇区对应不同的角度范围,M个扇区的角度范围可以是根据M个扇区的角度确定的,M为大于1的整数。如图16所示,由矩形和两个半圆形组成的预警区域被划分为8个扇区,分别是A1(当前车辆的右前方区域)、A2(当前车辆的正前方区域)、A3(当前车辆的左前方区域)、A4(当前车辆的正左侧区域)、A5(当前车辆的左后方区域)、A6(当前车辆的正后方区域)、A7(当前车辆的右后方区域)和A8(当前车辆的正右侧区域);扇区A1、A2、A3、A5、A6和A7的角度相同,扇区A4和A8的角度相同;第一长度h1表示当前车辆的车前轴中心(连接两个前轮的轴线的中心点)到车前保险杠的距离,第二长度h2表示车前轴中心到车后轴中心(连接两个后轮的轴线的中心点)的距离,第三长度h3表示车后轴中心到车尾保险杠的距离,目标宽度w表示当前车辆的宽度,扇区A4和A8的角度的计算方式可参见下述公式12:
A4=A8=2×arctan(h2/w)      公式12
由上述公式12可知,当前车辆的正左侧区域和当前车辆的正右侧区域的角度,可以是根据车前轴中心到车后轴中心的距离与当前车辆的宽度计算得到的。
扇区A1、A2、A3、A5、A6和A7的角度的计算方式可参见下述公式13:
A1=A2=A3=A5=A6=A7=(2π-2×arctan(h2/w))/6   公式13
在基于上述公式12和公式13计算出各个扇区角度之后,可以确定各个扇区的角度范围。举例来说,扇区A8的角度为90度,则扇区A8对应的角度范围为(0,90];扇区A7的角度为30度,则扇区A7对应的角度范围为(90,120];扇区A6的角度为30度,则扇区A6对应的角度范围为(120,150];扇区A5的角度为30度,则扇区A5对应的角度范围为(150,180];扇区A4的角度为90度,则扇区A4对应的角度范围为(180,270];扇区A3的角度为30度,则扇区A3对应的角度范围为(270,300];扇区A2的角度为30度,则扇区A2对应的角度范围为(300,330];扇区A1的角度为30度,则扇区A1对应的角度范围为(330,360]。
在此情况下,警示标识展示区域的显示属性可以包括各个子区域的隐藏属性,设置警示标识展示区域的显示属性,从而在导航界面中显示关于障碍物的警示标识,可以包括:确定障碍物相对于当前车辆的角度,此处障碍物相对于当前车辆的角度具体可以是在车辆 坐标系下障碍物相对于当前车辆的角度,可以是根据障碍物在车辆坐标系下的位置数据确定的;然后,可以根据障碍物相对于当前车辆的角度所属的角度范围,确定障碍物在M个扇区中对应的目标扇区,将目标子区域的隐藏属性设置为不隐藏,将其他子区域的隐藏属性设置为隐藏,从而在导航界面中显示目标扇区对应的警示标识,目标扇区对应的警示标识可以用于指示:障碍物位于当前车辆的目标扇区对应的角度范围指示的方向处。
其中,预警区域对应的警示标识可以是包围当前车辆的车辆对象标识的环状区域,环状区域可以是圆形环状区域、矩形环状区域或者椭圆形环状区域等等,本申请实施例不对包围当前车辆的车辆对象标识的环状区域的形状进行限定,当警示标识展示区域被划分为M个扇区时,在导航界面中显示目标扇区对应的警示标识,即将目标扇区对应的隐藏属性设置为不隐藏,除了目标扇区外的其他扇区对应的隐藏属性设置为隐藏,或者将隐藏属性设置为不隐藏但是淡化显示(例如目标扇区的亮度高于其他扇区,或者目标扇区的透明度低于其他扇区等),本申请实施例对此不进行限定。如图17所示,障碍物相对于当前车辆的角度属于扇区A8,则可以将扇区A8设置为不隐藏,从而在导航界面中展示出对应的警示标识。通过这种方式,障碍物相对于当前车辆的方向不同,警示标识在导航界面中呈现的形态不同,车辆关联对象可以通过警示标识的形态快速确定出障碍物相对于当前车辆的方向,可以提升车辆驾驶过程的安全性。
在另一种实现方式中,警示标识可以用于指示:当前车辆与障碍物之间的距离远近程度和当前车辆与障碍物之间的方向关系。在此方式下,按照上述子步骤s21-s23所描述的内容可以确定出障碍物进入N个级别中第i个级别的预警区域,第i个级别的预警区域可以是按照第i个预警距离对当前车辆的包围区域扩大形成的,警示标识展示区域可以被划分为M个扇区,M个扇区对应不同的角度范围,M为大于1的整数,N为正整数,i为小于或等于N的正整数。在确定障碍物进入N个级别中第i个级别的预警区域后,可以根据障碍物相对于当前车辆的角度所属的角度范围,确定障碍物在M个扇区中对应的目标扇区,分别设置目标扇区的显示属性以及其他M-1个扇区的显示属性,从而在导航界面中显示目标扇区对应的警示标识,目标扇区对应的警示标识可以用于指示:当前车辆与障碍物之间的距离小于或等于第i个预警距离,且障碍物位于当前车辆的目标扇区对应的角度范围指示的方向处,也就是说,通过警示标识不仅可以了解到当前车辆与障碍物之间的距离,还可以了解到障碍物相对于当前车辆的方位。如图18所示,障碍物相对于当前车辆的方向是相同的,但是障碍物与当前车辆的距离不同,则在导航界面中呈现出的警示标识是不相同的,警示标识中的环状区域的数量越多,表示障碍物与当前车辆之间的距离越远。通过这种方式,车辆关联对象可以通过警示标识的形态快速确定出当前车辆与障碍物之间的距 离远近程度,以及障碍物相对于当前车辆的方向,可以提升车辆驾驶过程的安全性。
本申请实施例中,当障碍物进入当前车辆的预警区域时,通过不同的颜色和不同数量的环状区域中的任意一种或多种,来区分障碍物与当前车辆之间的距离,可以使得车辆关联对象清楚直观地了解到障碍物与当前车辆之间的距离远近程度,有助于车辆关联对象驾驶车辆及时避让,以及规划车辆驾驶策略,这样可以提升车辆行驶过程的安全性,提升车辆关联对象的安全感。类似地,当障碍物进入当前车辆的预警区域时,通过不同的环状子区域来指示障碍物相对于当前车辆的方向,可以使得车辆关联对象清楚直观地了解到障碍物相对于当前车辆的方向,有助于车辆关联对象驾驶车辆及时避让,以及规划车辆驾驶策略,这样可以提升车辆行驶过程的安全性,提升车辆关联对象的安全感。此外,警示标识还可以同时指示障碍物与当前车辆之间的距离,以及障碍物相对于当前车辆的方向,这样可以向车辆关联对象展示更加丰富且详细的导航界面,可以提升导航界面在车辆导航过程中的导航效果。
上述详细阐述了本申请实施例的方法,为了便于更好地实施本申请实施例的上述方案,相应地,下面提供了本申请实施例的装置。
请参见图19,图19是本申请实施例提供的一种车辆导航装置的结构示意图,该车辆导航装置可以设置于本申请实施例提供的计算机设备中,计算机设备可以是上述方法实施例中提及的车载终端。图19所示的车辆导航装置可以是运行于计算机设备中的一个计算机程序(包括程序代码),该车辆导航装置可以用于执行图5A或图10所示的方法实施例中的部分或全部步骤。请参见图19,该车辆导航装置可以包括如下单元:
显示单元1901,用于显示导航界面,所述导航界面包括虚拟地图,所述虚拟地图用于呈现当前车辆所处环境的道路场景;所述导航界面中包括用于标识所述当前车辆的车辆标识对象,所述车辆标识对象周围设置有用于展示警示标识的警示标识展示区域;其中,当所述当前车辆所处环境中包括障碍物时,所述导航界面中进一步包括用于标识所述障碍物的障碍物标识对象;
处理单元1902,用于当所述障碍物进入所述当前车辆的预警区域时,设置所述警示标识展示区域的显示属性,以在所述导航界面中显示关于所述障碍物的警示标识,以使所述当前车辆的车辆导航系统根据所述警示标识控制所述当前车辆的行驶状态;所述警示标识用于指示以下至少一项:所述当前车辆与所述障碍物之间的距离小于或等于所述预警区域对应的预警距离,以及所述当前车辆与所述障碍物之间的方向关系。
根据本申请的另一个实施例,图19所示的车辆导航装置中的各个单元可以分别或全 部合并为一个或若干个另外的单元来构成,或者其中的某个(些)单元还可以再拆分为功能上更小的多个单元来构成,这可以实现同样的操作,而不影响本申请的实施例的技术效果的实现。上述单元是基于逻辑功能划分的,在实际应用中,一个单元的功能也可以由多个单元来实现,或者多个单元的功能由一个单元实现。在本申请的其它实施例中,车辆导航装置也可以包括其它单元,在实际应用中,这些功能也可以由其它单元协助实现,并且可以由多个单元协作实现。
根据本申请的另一个实施例,可以通过在包括中央处理单元(CPU)、随机存取存储介质(RAM)、只读存储介质(ROM)等处理元件和存储元件的例如计算机的通用计算设备上运行能够执行如图5A或图10所示的部分或全部方法所涉及的各步骤的计算机程序(包括程序代码),来构造如图19中所示的车辆导航装置,以及来实现本申请实施例的车辆导航方法。计算机程序可以记载于例如计算机可读存储介质上,并通过计算机可读存储介质装载于上述计算设备中,并在其中运行。
本申请实施例中,当当前车辆所处环境中包括障碍物时,导航界面中可以显示有障碍物的障碍物标识,当障碍物进入当前车辆的预警区域时,可以在导航界面中显示关于障碍物的警示标识,警示标识可以用于指示以下至少一项:当前车辆与障碍物之间的距离远近程度,以及当前车辆与障碍物之间的方向关系。可见,本申请实施例在车辆导航过程中除了关注当前车辆外,还关注当前车辆的障碍物,并且重点关注的是当前车辆与障碍物之间的距离远近程度、以及当前车辆与障碍物之间的方向中的任意一种或多种,通过在导航界面中显示障碍物标识对象和关于障碍物的警示标识,可以丰富导航界面的呈现内容,从而提升车辆导航效果,进一步可以提升车辆行驶过程的安全性。
基于上述方法以及装置实施例,本申请实施例提供了一种计算机设备,该计算机设备可以是前述所提及的车载终端。请参见图20,图20是本申请实施例提供的一种计算机设备的结构示意图。图20所示的计算机设备至少包括处理器2001、输入接口2002、输出接口2003以及计算机可读存储介质2004。其中,处理器2001、输入接口2002、输出接口2003以及计算机可读存储介质2004可通过总线或其他方式连接。
输入接口2002可以用于接收定位设备和感知设备发送的数据(例如当前车辆在世界坐标系下的位置数据,障碍物在车辆坐标系下的位置数据,以及障碍物的障碍物类型等)。输出接口2003可以用于向定位设备和感知设备发送连接确认消息,以确保与定位设备和感知设备的连接是稳定的,没有中断,有利于导航界面能够正常显示。
计算机可读存储介质2004可以存储在计算机设备的存储器中,计算机可读存储介质2004用于存储计算机程序,计算机程序包括计算机指令,处理器2001用于执行计算机可 读存储介质2004存储的程序指令。处理器2001(或称CPU(Central Processing Unit,中央处理器))是计算机设备的计算核心以及控制核心,其适于实现一条或多条计算机指令,具体适于加载并执行一条或多条计算机指令从而实现相应方法流程或相应功能。
本申请实施例还提供了一种计算机可读存储介质(Memory),计算机可读存储介质是计算机设备中的记忆设备,用于存放程序和数据。可以理解的是,此处的计算机可读存储介质既可以包括计算机设备中的内置存储介质,当然也可以包括计算机设备支持的扩展存储介质。计算机可读存储介质提供存储空间,该存储空间存储了计算机设备的操作系统。并且,在该存储空间中还存放了适于被处理器加载并执行的一条或多条的计算机指令,这些计算机指令可以是一个或一个以上的计算机程序(包括程序代码)。需要说明的是,此处的计算机可读存储介质可以是高速RAM存储器,也可以是非不稳定的存储器(Non-Volatile Memory),例如至少一个磁盘存储器;可选的还可以是至少一个位于远离前述处理器的计算机可读存储介质。
在一些实施例中,可由处理器2001加载并执行计算机可读存储介质2004中存放的一条或多条计算机指令,以实现上述有关图5A或图10所示的车辆导航方法的相应步骤。
根据本申请的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述各种可选方式中提供的车辆导航方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种车辆导航方法,由智能车载终端执行,所述方法包括:
    显示导航界面,所述导航界面中包括虚拟地图,所述虚拟地图用于呈现当前车辆所处环境的道路场景;所述导航界面中包括用于标识所述当前车辆的车辆标识对象,所述车辆标识对象周围设置有用于展示警示标识的警示标识展示区域;其中,当所述当前车辆所处环境中包括障碍物时,所述导航界面中进一步包括用于标识所述障碍物的障碍物标识对象;
    当所述障碍物进入所述当前车辆的预警区域时,设置所述警示标识展示区域的显示属性,以在所述导航界面中显示关于所述障碍物的警示标识,以使所述当前车辆的车辆导航系统根据所述警示标识控制所述当前车辆的行驶状态;所述警示标识用于指示以下至少一项:所述当前车辆与所述障碍物之间的距离小于或等于所述预警区域对应的预警距离,以及所述当前车辆与所述障碍物之间的方向关系。
  2. 如权利要求1所述的方法,其中,所述当前车辆的预警区域包括N个警示级别的预警区域,所述N个警示级别的预警区域是按照N个不同的预警距离对所述当前车辆的包围区域扩大形成的;所述障碍物进入的预警区域为所述N个警示级别中第i个警示级别的预警区域,N为正整数,i为小于或等于N的正整数;
    所述设置所述警示标识展示区域的显示属性,以在所述导航界面中显示关于所述障碍物的警示标识,包括:
    根据所述第i个警示级别,设置所述预警标识展示区域的显示属性,以在所述导航界面中显示所述第i个警示级别对应的警示标识,用于指示所述当前车辆与所述障碍物之间的距离小于或等于第i个预警距离;其中,不同警示级别对应不同颜色的警示标识。
  3. 如权利要求1或2所述的方法,其中,所述警示标识展示区域进一步被划分为M个扇区,所述M个扇区对应不同的角度范围,M为大于1的整数;每个扇区分别具有隐藏属性;
    所述设置所述警示标识展示区域的显示属性,以在所述导航界面中显示关于所述障碍物的警示标识,包括:
    确定所述障碍物相对于所述当前车辆的角度;
    根据所述障碍物相对于所述当前车辆的角度所属的角度范围,确定所述障碍物在所述M个扇区中对应的目标扇区;
    将所述目标扇区的隐藏属性设置为不隐藏,并将所述M个扇区中其他M-1个扇区的隐 藏属性设置为隐藏,以显示所述目标扇区对应的警示标识,以指示所述障碍物位于所述当前车辆的所述目标扇区对应的角度范围指示的方向处。
  4. 如权利要求1所述的方法,其中,所述当前车辆的预警区域包括N个警示级别的预警区域,所述N个警示级别的预警区域是按照N个不同的预警距离对所述当前车辆的包围区域扩大形成的;所述障碍物进入的预警区域为所述N个警示级别中第i个警示级别的预警区域,N为正整数,i为小于或等于N的正整数;
    所述警示标识展示区域包括N个子区域,每个子区域为包围所述当前车辆标识对象的环状区域,且每个子区域分别具有显示属性;
    所述设置所述警示标识展示区域的显示属性,以在所述导航界面中显示关于所述障碍物的警示标识,包括:
    根据所述第i个警示级别,分别设置所述N个子区域的显示属性,以在所述导航界面中显示所述第i个警示级别对应的警示标识,用于指示所述当前车辆与所述障碍物之间的距离小于或等于第i个预警距离;其中,不同警示级别对应不同显示样式的警示标识。
  5. 如权利要求4所述的方法,其中,每个子区域进一步被划分为M个扇区,所述M个扇区对应不同的角度范围,M为大于1的整数;每个扇区分别具有隐藏属性;
    所述设置所述警示标识展示区域的显示属性,以在所述导航界面中显示关于所述障碍物的警示标识,进一步包括:
    确定所述障碍物相对于所述当前车辆的角度;
    根据所述障碍物相对于所述当前车辆的角度所属的角度范围,确定所述障碍物在每个子区域的所述M个扇区中对应的目标扇区;
    将每个子区域的所述目标扇区的隐藏属性设置为不隐藏,并将其他M-1个扇区的隐藏属性设置为隐藏,以显示所述目标扇区对应的警示标识,以指示所述障碍物位于所述当前车辆的所述目标扇区对应的角度范围指示的方向处。
  6. 如权利要求1所述的方法,其中,所述导航界面是基于世界坐标系进行显示的;所述方法还包括:
    当所述当前车辆所处环境中包括所述障碍物时,获取所述障碍物在车辆坐标系下的位置数据,所述车辆坐标系是以所述当前车辆为坐标原点所建立的坐标系;
    对所述障碍物在所述车辆坐标系下的位置数据进行坐标转换,得到所述障碍物在所述 世界坐标系下的位置数据;
    根据所述障碍物在所述世界坐标系下的位置数据,在所述导航界面中显示标识所述障碍物的障碍物标识对象。
  7. 如权利要求6所述的方法,其中,所述虚拟地图是根据所述当前车辆所处环境对应的地图数据进行绘制的,所述当前车辆所处环境被划分为多个环境区域,每个环境区域中包括一条或多条道路,每个环境区域对应的地图数据中包括对应环境区域中每条道路的高程数据;所述根据所述障碍物在所述世界坐标系下的位置数据,在所述导航界面中显示标识所述障碍物的障碍物标识对象,包括:
    根据所述障碍物在所述世界坐标系下的位置数据,确定所述障碍物所属的目标环境区域,以及所述障碍物在所述目标环境区域中所属的目标道路;
    从所述目标环境区域对应的地图数据中获取所述目标道路的高程数据,将所述目标道路的高程数据确定为所述障碍物的高程数据;
    根据所述障碍物在所述世界坐标系下的位置数据,以及所述障碍物的高程数据,在所述导航界面中显示标识所述障碍物的障碍物标识对象。
  8. 如权利要求6所述的方法,其中,所述根据所述障碍物在所述世界坐标系下的位置数据,在所述导航界面中显示标识所述障碍物的障碍物标识对象,包括:
    识别所述障碍物的障碍物类型;
    根据所述障碍物在所述世界坐标系下的位置数据,在所述导航界面中显示代表所述障碍物类型下的障碍物标识对象,不同障碍物类型下的障碍物标识对象不相同。
  9. 如权利要求6所述的方法,其中,所述对所述障碍物在所述车辆坐标系下的位置数据进行坐标转换,得到所述障碍物在所述世界坐标系下的位置数据,包括:
    获取所述当前车辆在所述世界坐标系下的位置数据;
    根据所述当前车辆在所述世界坐标系下的位置数据,对所述障碍物在所述车辆坐标系下的位置数据进行坐标转换,得到所述障碍物在所述世界坐标系下的位置数据。
  10. 如权利要求9所述的方法,其中,所述根据所述当前车辆在所述世界坐标系下的位置数据,对所述障碍物在所述车辆坐标系下的位置数据进行坐标转换,得到所述障碍物在所述世界坐标系下的位置数据,包括:
    获取所述世界坐标系与所述车辆坐标系之间的转换关系;
    基于所述转换关系对所述障碍物在所述车辆坐标系下的位置数据进行计算,得到所述世界坐标系下所述障碍物相对于所述当前车辆的位置变化量;
    根据所述当前车辆在所述世界坐标系下的位置数据和所述位置变化量,确定所述障碍物在所述世界坐标系下的位置数据。
  11. 如权利要求1所述的方法,其中,所述方法还包括:
    确定所述障碍物的碰撞检测区域;
    对所述当前车辆的预警区域和所述障碍物的碰撞检测区域进行相交检测;
    若所述当前车辆的预警区域和所述障碍物的碰撞检测区域相交,则确定所述障碍物进入所述当前车辆的预警区域。
  12. 如权利要求11所述的方法,其中,所述对所述当前车辆的预警区域和所述障碍物的碰撞检测区域进行相交检测,包括:
    获取所述当前车辆的预警区域在车辆坐标系下的预警区域数据,所述车辆坐标系是以所述当前车辆为坐标原点所建立的坐标系;
    获取所述障碍物的碰撞检测区域在所述车辆坐标系下的检测区域数据;
    若所述预警区域数据和所述检测区域数据满足预设条件,则确定所述当前车辆的预警区域和所述障碍物的碰撞检测区域不相交;否则,则确定相交。
  13. 如权利要求12所述的方法,其中,所述预警区域数据包括所述当前车辆的预警区域在所述车辆坐标系下的第一上边界坐标值、第一下边界坐标值、第一左边界坐标值以及第一右边界坐标值;所述检测区域数据包括所述障碍物的碰撞检测区域在所述车辆坐标系下的第二上边界坐标值、第二下边界坐标值、第二左边界坐标值以及第二右边界坐标值;
    所述预设条件,包括以下至少一种:
    所述第一上边界坐标值小于所述第二下边界坐标值;
    所述第一左边界坐标值大于所述第二右边界坐标值;
    所述第一下边界坐标值大于所述第二上边界坐标值;
    所述第一右边界坐标值小于所述第二左边界坐标值。
  14. 如权利要求12所述的方法,其中,所述障碍物的碰撞检测区域是根据所述障碍物 的包围区域确定的;所述获取所述障碍物的碰撞检测区域在所述车辆坐标系下的检测区域数据,包括:
    获取所述障碍物的包围区域的特征点在障碍物坐标系下的位置数据,所述障碍物坐标系是以所述障碍物为坐标原点所建立的坐标系;
    对所述障碍物的包围区域的特征点在所述障碍物坐标系下的位置数据进行坐标转换,得到所述障碍物的包围区域的特征点在所述车辆坐标系下的位置数据;
    根据所述障碍物的包围区域的特征点在所述车辆坐标系下的位置数据,确定所述障碍物的碰撞检测区域在所述车辆坐标系下的检测区域数据。
  15. 如权利要求12所述的方法,其中,所述当前车辆的预警区域是按照预警距离对所述当前车辆的包围区域扩大形成的;所述获取所述当前车辆的预警区域在车辆坐标系下的预警区域数据,包括:
    获取所述当前车辆的包围区域的特征点在所述车辆坐标系下的位置数据;
    根据所述当前车辆的包围区域的特征点在所述车辆坐标系下的位置数据和所述预警距离,确定所述当前车辆的预警区域在所述车辆坐标系下的预警区域数据。
  16. 如权利要求1所述的方法,进一步包括:
    获取所述当前车辆的速度信息;
    根据所述当前车辆的速度信息,预测所述当前车辆的运动轨迹;
    在所述导航界面中显示所述运动轨迹的映射轨迹。
  17. 一种车辆导航装置,包括:
    显示单元,用于显示导航界面,所述导航界面包括虚拟地图,所述虚拟地图用于呈现当前车辆所处环境的道路场景;所述导航界面中包括用于标识所述当前车辆的车辆标识对象,所述车辆标识对象周围设置有用于展示警示标识的警示标识展示区域;其中,当所述当前车辆所处环境中包括障碍物时,所述导航界面中进一步包括用于标识所述障碍物的障碍物标识对象;
    处理单元,用于当所述障碍物进入所述当前车辆的预警区域时,设置所述警示标识展示区域的显示属性,以在所述导航界面中显示关于所述障碍物的警示标识,以使所述当前车辆的车辆导航系统根据所述警示标识控制所述当前车辆的行驶状态;所述警示标识用于指示以下至少一项:所述当前车辆与所述障碍物之间的距离小于或等于所述预警区域对应 的预警距离,以及所述当前车辆与所述障碍物之间的方向关系。
  18. 一种计算机设备,包括:
    处理器,适于实现计算机程序;
    计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序适于由所述处理器加载并执行如权利要求1-16任一项所述的车辆导航方法。
  19. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序适于由处理器加载并执行如权利要求1-16任一项所述的车辆导航方法。
  20. 一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,当所述计算机指令被执行时,实现如权利要求1-16中任一项所述的车辆导航方法。
PCT/CN2023/084028 2022-05-05 2023-03-27 车辆导航方法、装置及计算机设备、存储介质 WO2023213155A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210478168.8 2022-05-05
CN202210478168.8A CN114577233B (zh) 2022-05-05 2022-05-05 一种车辆导航方法、装置及计算机设备、存储介质

Publications (1)

Publication Number Publication Date
WO2023213155A1 true WO2023213155A1 (zh) 2023-11-09

Family

ID=81784114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084028 WO2023213155A1 (zh) 2022-05-05 2023-03-27 车辆导航方法、装置及计算机设备、存储介质

Country Status (2)

Country Link
CN (1) CN114577233B (zh)
WO (1) WO2023213155A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116022174A (zh) * 2023-03-29 2023-04-28 北京易控智驾科技有限公司 远程驾驶信息显示方法、装置、电子设备及存储介质
CN116682096B (zh) * 2023-08-03 2024-02-27 腾讯科技(深圳)有限公司 信息添加方法、装置、计算机设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227947A (ja) * 2004-02-12 2005-08-25 Alpine Electronics Inc ナビゲーション装置及び障害物表示方法
US20070219720A1 (en) * 2006-03-16 2007-09-20 The Gray Insurance Company Navigation and control system for autonomous vehicles
JP2010235072A (ja) * 2009-03-31 2010-10-21 Equos Research Co Ltd 制御装置
CN110171362A (zh) * 2019-06-25 2019-08-27 重庆紫光华山智安科技有限公司 一种人体识别和车辆识别的防撞预警方法及装置
CN110539638A (zh) * 2018-05-30 2019-12-06 深圳疆程技术有限公司 一种交通设备辅助驾驶的方法及装置
WO2021134441A1 (zh) * 2019-12-31 2021-07-08 深圳元戎启行科技有限公司 基于自动驾驶的车辆速度控制方法、装置和计算机设备
CN113734048A (zh) * 2020-05-29 2021-12-03 广州汽车集团股份有限公司 一种倒车预警方法和装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263699B2 (ja) * 1992-12-22 2002-03-04 三菱電機株式会社 走行環境監視装置
JP2005258941A (ja) * 2004-03-12 2005-09-22 Toyota Central Res & Dev Lab Inc 障害物検出装置
CN103389104B (zh) * 2013-07-17 2015-12-02 北京龙图通信息技术有限公司 一种与二维导航同步的三维方向性导航方法及其装置
CN106004659B (zh) * 2016-08-03 2017-08-04 安徽工程大学 车辆周围环境感知系统及其控制方法
WO2018119701A1 (zh) * 2016-12-27 2018-07-05 深圳前海达闼云端智能科技有限公司 导航界面显示方法和装置
US10699565B2 (en) * 2018-04-04 2020-06-30 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for inferring lane obstructions
CN109455177B (zh) * 2018-10-25 2020-12-15 广州小鹏汽车科技有限公司 一种自动泊车的安全距离警示方法及车载终端
CN110909671B (zh) * 2019-11-21 2020-09-29 大连理工大学 一种融合概率和高度信息的栅格地图障碍物检测方法
CN110889362B (zh) * 2019-11-21 2022-12-20 大连理工大学 一种利用栅格地图高度信息的障碍物检测方法
CN110715671B (zh) * 2019-12-12 2020-03-20 中智行科技有限公司 三维地图生成方法、装置、车辆导航设备和无人驾驶车辆
CN111751824B (zh) * 2020-06-24 2023-08-04 杭州海康汽车软件有限公司 车辆周围的障碍物检测方法、装置及设备
CN112224132B (zh) * 2020-10-28 2022-04-19 武汉极目智能技术有限公司 一种车用全景环视障碍物预警方法
CN112519797A (zh) * 2020-12-10 2021-03-19 广州小鹏自动驾驶科技有限公司 一种车辆安全距离预警方法、预警系统、汽车及存储介质
CN112558072A (zh) * 2020-12-22 2021-03-26 北京百度网讯科技有限公司 车辆定位方法、装置、系统、电子设备及存储介质
CN112562414B (zh) * 2021-02-25 2021-07-13 郑州森鹏电子技术有限公司 基于5g通讯技术的自动驾驶辅助系统、方法及存储介质
CN113268057A (zh) * 2021-04-07 2021-08-17 银隆新能源股份有限公司 无人驾驶车辆的避障处理方法及装置
CN113607162B (zh) * 2021-10-09 2021-12-28 创泽智能机器人集团股份有限公司 一种基于三维地图的路径规划方法及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227947A (ja) * 2004-02-12 2005-08-25 Alpine Electronics Inc ナビゲーション装置及び障害物表示方法
US20070219720A1 (en) * 2006-03-16 2007-09-20 The Gray Insurance Company Navigation and control system for autonomous vehicles
JP2010235072A (ja) * 2009-03-31 2010-10-21 Equos Research Co Ltd 制御装置
CN110539638A (zh) * 2018-05-30 2019-12-06 深圳疆程技术有限公司 一种交通设备辅助驾驶的方法及装置
CN110171362A (zh) * 2019-06-25 2019-08-27 重庆紫光华山智安科技有限公司 一种人体识别和车辆识别的防撞预警方法及装置
WO2021134441A1 (zh) * 2019-12-31 2021-07-08 深圳元戎启行科技有限公司 基于自动驾驶的车辆速度控制方法、装置和计算机设备
CN113734048A (zh) * 2020-05-29 2021-12-03 广州汽车集团股份有限公司 一种倒车预警方法和装置

Also Published As

Publication number Publication date
CN114577233B (zh) 2022-07-29
CN114577233A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2023213155A1 (zh) 车辆导航方法、装置及计算机设备、存储介质
WO2021226776A1 (zh) 一种车辆可行驶区域检测方法、系统以及采用该系统的自动驾驶车辆
JP3568621B2 (ja) 地図表示装置
US10248196B2 (en) System for occlusion adjustment for in-vehicle augmented reality systems
CN111874006B (zh) 路线规划处理方法和装置
CN113748314B (zh) 交互式三维点云匹配
EP4213068A1 (en) Target detection method and apparatus based on monocular image
CN111595357B (zh) 可视化界面的显示方法、装置、电子设备和存储介质
WO2006092853A1 (ja) 地図表示装置および地図表示方法
US20230230330A1 (en) Synthesizing three-dimensional visualizations from perspectives of onboard sensors of autonomous vehicles
US20220414917A1 (en) Method and apparatus for obtaining 3d information of vehicle
WO2023179028A1 (zh) 一种图像处理方法、装置、设备及存储介质
CN114485700A (zh) 高精度动态地图生成方法及装置
WO2024001554A1 (zh) 车辆导航方法、装置、设备、存储介质和计算机程序产品
WO2022060701A1 (en) External facing communications for autonomous vehicles
WO2022078464A1 (zh) 基于全景环视的人机交互方法及装置
US20210382560A1 (en) Methods and System for Determining a Command of an Occupant of a Vehicle
US20220065647A1 (en) Autonomous vehicle planned route prediction
CN114954440A (zh) 具有自主探索模式的泊车方法、泊车系统及电子设备
CN114771510A (zh) 基于路线图的泊车方法、泊车系统及电子设备
WO2024066881A1 (zh) 地图导航方法、装置、计算机设备和存储介质
US20220065638A1 (en) Joint routing of transportation services for autonomous vehicles
CN112590670A (zh) 三车道环境显示方法、装置、设备及存储介质
WO2023039737A1 (zh) 自动泊车的方法和装置
CN114820971B (zh) 一种描述复杂驾驶环境信息的图形化表达方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799142

Country of ref document: EP

Kind code of ref document: A1