WO2023213150A1 - 用电装置及其自加热的控制方法、装置及介质 - Google Patents

用电装置及其自加热的控制方法、装置及介质 Download PDF

Info

Publication number
WO2023213150A1
WO2023213150A1 PCT/CN2023/082781 CN2023082781W WO2023213150A1 WO 2023213150 A1 WO2023213150 A1 WO 2023213150A1 CN 2023082781 W CN2023082781 W CN 2023082781W WO 2023213150 A1 WO2023213150 A1 WO 2023213150A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
heating
motor
self
charge
Prior art date
Application number
PCT/CN2023/082781
Other languages
English (en)
French (fr)
Inventor
赵元淼
颜昱
李占良
但志敏
陈新伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023213150A1 publication Critical patent/WO2023213150A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • This application relates to battery management technology, in particular to an electrical device and its self-heating control method, device and medium.
  • battery self-heating is a new function of electric vehicles.
  • the use of this function needs to take into account the actual conditions of the battery, motor, and vehicle.
  • the heating should be turned on in certain scenarios to protect the battery, motor and other components, and protect the electric vehicle.
  • the car breaks down. Thereby meeting drivers’ expectations for using electric vehicles.
  • Embodiments of the present application provide an electrical device and a control method, device and medium for its self-heating. This solves the problem in related technologies that the user manually controls the battery's self-heating function, resulting in increased ineffective heating and thus energy consumption.
  • a battery heating control method including:
  • the charge and discharge circuit is controlled to charge and discharge the battery.
  • the technical solution of the embodiment of the present application it is possible to receive a battery self-heating start command from outside the electrical device; determine that the electrical device is in a fault-free state and a static state; determine that the battery meets the self-heating conditions; and determine the charge and discharge of the battery.
  • the motor in the circuit is in a fault-free state and a static state; the charging and discharging circuit is controlled to charge and discharge the battery.
  • determining that the electrical device is in a fault-free state and a static state includes: determining that the electrical device is in a fault-free state; and detecting that the electrical device is in a fault-free state; The moving rate of the electrical device. If the moving rate is determined to be zero, it is determined that the electrical device is in a stationary state.
  • the vehicle controller or domain controller can be used to activate the self-heating function of the battery only when ensuring that the electrical device carrying the battery satisfies the stationary state. This avoids the problem that the electrical device cannot move due to activating the self-heating function, thereby affecting the user experience.
  • determining that the battery meets the self-heating condition includes: determining that the battery is in a fault-free state; and determining whether the current temperature value of the battery is less than the A preset temperature threshold, and whether the current remaining power value of the battery is greater than the preset power threshold; if both are yes, it is determined that the battery meets the self-heating condition.
  • the battery management system or domain controller can be used to ensure that the battery is not overheated and has a large amount of remaining power before activating the self-heating function of the battery. This avoids potential safety hazards caused by the battery rashly activating the self-heating function before reaching the preset static state.
  • determining that the motor in the battery's charge and discharge circuit is in a fault-free state and a static state includes: determining that the motor is in a fault-free state; and, determining Whether the motor torque, motor speed and motor current of the motor are zero; if they are all, it is determined that the motor is in a stationary state.
  • the motor controller or domain controller can be used to ensure that the motor is in a fault-free state and is in a stationary state before activating the self-heating function of the battery. This avoids potential safety hazards caused by the motor rashly activating the self-heating function before reaching the preset static state.
  • the battery when determining that the battery Satisfy the self-heating condition; and, after determining that the motor in the charge and discharge circuit of the battery is in a fault-free state and a static state, it also includes: controlling the battery to precharge the motor, and generating a first charge after the precharge is completed. Pre-start signal; and, determine that the power supply voltage of the battery is within the preset voltage range, generate a second pre-start signal; determine to generate the first pre-start signal and the second pre-start signal, control the charge and discharge The circuit charges and discharges the battery.
  • the battery management system and the motor controller or domain controller can be used to send a pre-start signal to the vehicle controller before the vehicle controller sends it to the motor controller. Control the charging and discharging circuit to charge and discharge the battery. This avoids potential safety hazards caused by the battery and motor rashly activating the self-heating function before they are fully precharged.
  • controlling the charge and discharge circuit to charge and discharge the battery includes: detecting the heating index of the battery every first preset time period; based on The preset association set determines the operating index that matches the heating index.
  • the operating index is used to determine the charging and discharging parameters of the battery; the charging and discharging circuit is controlled to charge the battery with the operating index. Discharge.
  • the battery management system or domain controller can be used to periodically detect the temperature value and remaining power value of the battery when the self-heating function is activated, and accordingly adjust the operation of the battery self-heating accordingly. current and operating frequency.
  • controlling the charge and discharge circuit to charge and discharge the battery includes: the heating indicator includes the current temperature value and the remaining power value of the battery.
  • controlling the charge and discharge circuit to charge and discharge the battery includes: operating indicators include current amplitude and current frequency; wherein, the controlling the The charging and discharging circuit charges and discharges the battery, including: controlling the charging and discharging circuit to charge and discharge the battery using the current amplitude and the current frequency represented by the operating index.
  • determining the power supply of the battery The voltage is within the preset voltage range; the neutral switch on the center line of the motor is controlled to close; and/or, during the battery self-heating process, if the power device connected to the neutral line of the motor is determined to be faulty, the center line of the motor is controlled.
  • the neutral switch on the power supply is open.
  • the neutral switch can be closed to prevent the motor center line from being connected to the positive electrode of the battery or The negative pole is short-circuited, so that the first, second, and third bridge arms and the three-phase winding of the motor can still maintain power supply and avoid power loss.
  • controlling the charge and discharge circuit to charge and discharge the battery further includes: collecting the current temperature of the battery every second preset time period. value and temperature rise rate; if it is determined that the current temperature value is greater than the preset temperature threshold, or it is detected that the temperature rise rate does not meet the preset rate range, the charge and discharge circuit is controlled to stop charging and discharging the battery. .
  • the motor in the charging and discharging circuit of the battery after determining that the motor in the charging and discharging circuit of the battery is in a fault-free state and a static state, it further includes: determining that the motor inside the electrical device is Whether there is a user; if not, control the electrical device to a self-heating state.
  • the self-heating state includes locking the electrical device, controlling the light of the electrical device, and controlling the electrical device. At least one sound device; if present, adjust the distance between the steering wheel of the electric device and the user's seat.
  • the electrical equipment can be locked, thereby reminding other users that the current battery is in the process of self-heating. .
  • a battery heating control device including: a receiving module configured to receive a battery heating start instruction; and a determining module configured to determine that the electrical device is in a fault-free state. state and a static state; the determination module is configured to determine that the battery meets the self-heating condition; and, determine that the motor in the charge and discharge circuit of the battery is in a fault-free state and a static state; the control module is configured to control The charging and discharging circuit charges and discharges the battery.
  • an electrical device including:
  • the display is configured to execute the executable instructions with the memory to complete the operation of any of the above battery heating control methods.
  • a computer-readable storage medium which is used to store computer-readable instructions.
  • the instructions When the instructions are executed, the operations of any of the above battery heating control methods are performed.
  • Figure 1 is a schematic structural diagram of a power supply device applied to a battery proposed by this application;
  • FIG. 2 is a schematic diagram of a battery heating control method proposed in this application.
  • FIG. 3 is a schematic diagram of the architecture of a battery controller node proposed in this application.
  • Figure 4 is a schematic flow chart of battery heating control through each controller node proposed in this application.
  • Figure 5 is a schematic diagram of the internal structure of an electrical device proposed in this application.
  • Figure 6 is a schematic flow chart of battery heating control through a domain controller proposed in this application.
  • Figure 7 is a schematic diagram of the architecture of a battery domain controller proposed in this application.
  • FIG. 8 is a schematic structural diagram of the battery heating control electronic device proposed in this application.
  • Figure 9 is a schematic diagram of the electrical device proposed in this application.
  • FIGS. 1-7 A method for battery heating control according to an exemplary embodiment of the present application will be described below with reference to FIGS. 1-7 . It should be noted that the following application scenarios are only shown to facilitate understanding of the spirit and principles of the present application, and the implementation of the present application is not subject to any limitation in this regard. On the contrary, the embodiments of the present application can be applied to any applicable scenario.
  • power batteries are the core component of electric vehicles, but power batteries are more sensitive to temperature, and low temperatures will affect the discharge performance of the battery. In order to discharge the power battery better and extend the service life of the power battery, the power battery needs to be heated when the electric vehicle is driving at low temperatures.
  • the traditional method of heating the battery in the related art generally uses a fixed-power heating device to continuously heat the power battery. That is, heating is stopped when it reaches a certain temperature or after heating for a period of time.
  • the batteries disclosed in the embodiments of the present application may be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of the battery or battery pack disclosed in this application. This can help alleviate and automatically adjust the operating current and operating frequency of the battery's self-heating, thereby improving the stability of battery performance and battery life.
  • Embodiments of the present application provide an electrical device with a battery as a power source.
  • the electrical device may be but is not limited to a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • the battery pack in this application is rechargeable and dischargeable, such as lithium-ion battery, nickel-hydrogen battery, nickel-chromium battery, nickel-zinc battery, etc.
  • a vehicle 1000 is used as an example in which an electrical device according to an embodiment of the present application is used.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • this application also proposes an electrical device and its self-heating control method, device and medium.
  • FIG 2 schematically shows a flow chart of a battery heating control method according to an embodiment of the present application. As shown in Figure 2, this method includes:
  • the self-heating start instruction in the embodiment of the present application can be manually turned on by the user, or the power supply device can automatically generate an instruction to start the self-heating when it detects that a certain preset condition is met.
  • determining that the electrical device is in a fault-free state and a static state may include: determining that the electrical device is in a fault-free state; and detecting the moving rate of the electrical device. If the moving rate is determined to be zero, determine The electrical device is at rest.
  • most current popular models can include an electronic control unit ECU.
  • each ECU exists independently.
  • Each ECU monitors and manages the system it is responsible for, and interacts through CAN bus messages.
  • the steps for turning on battery self-heating can be set as follows.
  • the VCU Vehicle Controller
  • the instruction may be a signal from the VCU detecting the start button device on the vehicle, or the user can use the 4G APP on the mobile phone to Or the 5G wireless communication technology transmits instructions to the vehicle-mounted remote terminal.
  • the VCU determines that the current vehicle status and speed are 0 and there is no vehicle failure, it sends a command to turn on the battery self-heating and issues a high-voltage command.
  • ECU Electronic Control Unit
  • driving computer also known as “driving computer”, “vehicle computer”, etc.
  • vehicle computer Like an ordinary computer, it consists of a microcontroller (MCU), memory (ROM, RAM), input/output interface (I/O), analog-to-digital converter (A/D), and large-scale integrated circuits such as shaping and driving. composition.
  • MCU microcontroller
  • ROM read-only memory
  • RAM random access memory
  • I/O input/output interface
  • A/D analog-to-digital converter
  • large-scale integrated circuits such as shaping and driving. composition.
  • the BMS battery management system
  • the BMS battery management system in the power supply device can receive the self-heating start command for the battery.
  • BMS is to intelligently manage and maintain each battery unit, prevent the battery from overcharging and over-discharging, extend the service life of the battery, and monitor the status of the battery.
  • the BMS battery management system unit includes a BMS battery management system, a control module, a display module, a wireless communication module, electrical equipment, a battery pack for powering the electrical equipment, and a battery pack for collecting battery information.
  • the acquisition module, the BMS battery management system is connected to the wireless communication module and the display module respectively through the communication interface, the output end of the acquisition module is connected to the input end of the BMS battery management system, and the output end of the BMS battery management system is connected to the control module.
  • the input terminals of the group are connected, and the control modules are respectively Connected to the battery pack and electrical equipment, the BMS battery management system is connected to the server through the wireless communication module.
  • Step 1 The VCU vehicle controller receives the signal from the external driver to turn on self-heating.
  • the instruction may be a signal from the start button device detected by the VCU on the vehicle, or an instruction transmitted from the user's mobile APP to the vehicle-mounted remote terminal through 4G or 5G wireless communication technology.
  • the VCU vehicle controller determines that the current vehicle status and speed are 0 (that is, it is determined that the electrical device is in a stationary state), and there is no vehicle fault (that is, it is determined that the electrical device is in a fault-free state), it sends a command to turn on the battery self-heating and issued high-voltage instructions.
  • Step 2 After the BMS battery management system determines that the current temperature value of the battery is less than the first preset temperature threshold, determines that the current remaining power value of the battery is greater than the preset power threshold, and the battery is in a fault-free state, it continues to send battery messages on the CAN communication bus. A signal whose status satisfies the self-heating condition.
  • Step 3 After the MCU motor controller determines that the current motor torque, motor speed, and motor current are all 0 (that is, it is determined that the motor corresponds to the static state), and the motor has no fault, it continues to send the motor status on the CAN communication bus to enable self-heating. condition signal.
  • Step 4 As shown in Figure 5, the BMS battery management system controls the main positive switch K1 and the precharge switch in the charge and discharge circuit to close. After the precharge time is met, the main negative switch closes, the precharge switch opens, and the high voltage is completed and sent. The first pre-start signal is given to the VCU vehicle controller.
  • Step 5 The MCU motor controller determines that the battery high-voltage supply voltage is normal. If the neutral line switch is set, it closes the motor center line K4 switch and then sends the second pre-start signal.
  • the second pre-start signal is directly sent to the VCU vehicle controller.
  • the advantage of setting K4 is that the fourth bridge arm is a special module when the battery is self-heating. If the fourth bridge arm is short-circuited during self-heating and cannot be separated, the K4 relay is disconnected to avoid the center of the motor. If the line is short-circuited to the positive or negative pole of the battery, the first, second, and third bridge arms and the three-phase winding of the motor can still maintain driving and avoid loss of power.
  • Step 6 After receiving the first pre-start signal and the second pre-start signal, the VCU vehicle controller sends a start command to the motor controller;
  • Step 7 The MCU motor controller sends a precharge instruction to the MBS battery management system, so that the battery management system controls the battery to precharge the motor in response to the precharge instruction.
  • Step 8 After the MBS battery management system determines that the motor precharge is completed, it controls the charge and discharge circuit to charge and discharge the battery.
  • Domain controllers interact with each other through a communication bus, which can be a CAN line, a LIN line, or a high-speed network such as an optical fiber network cable.
  • a communication bus can be a CAN line, a LIN line, or a high-speed network such as an optical fiber network cable.
  • the power domain governs the battery and motor. After collecting and judging the status of the battery and motor, the status is exchanged through the software interface information within the controller, and then the domain controller turns on the battery self-heating control.
  • the cockpit domain controller mainly obtains human operation commands, displays, human-computer interaction and other functional controls inside the cockpit. Therefore, combined with the battery self-heating function, the following expansions can be made.
  • the driver is in the cockpit , click on the operation panel to turn on the battery self-heating command, and the cockpit domain controller receives personnel instructions. During the heating process, personnel in the cockpit are reminded that the vehicle is in battery self-heating state.
  • the body domain controller is mainly responsible for controlling windows, door locks, lights, etc., as well as some sensors. Since the battery self-heating has a certain amount of noise, when the battery self-heating function is turned on remotely, the lights are turned on to provide a prompt to avoid pedestrians misunderstanding that the vehicle is in an abnormal state.
  • the chassis domain controller it can determine whether the vehicle is in a stationary state, and when the vehicle is self-heating, it can control the parking system to lock the vehicle to avoid losing control of the vehicle.
  • the remote interactive domain controller it is mainly responsible for receiving remote commands in the battery self-heating function.
  • the battery heating control method proposed in the embodiment of this application has the following steps:
  • Step 1 The cockpit domain in the domain controller receives a signal from an external driver to turn on self-heating. Or the remote interaction domain in the domain controller receives the self-heating turn-on command sent by the driver's mobile phone, and the cockpit domain or remote interaction domain sends the turn-on command to the communication bus.
  • Step 2 The chassis domain in the domain controller determines that the current vehicle status and speed are 0 (that is, it is determined that the electrical device is in a stationary state), the chassis is fault-free (that is, it is determined that the chassis of the electrical device is in a fault-free state), and the vehicle is in a braking state .
  • Step 3 The power domain in the domain controller determines that the current temperature of the battery is less than the first preset temperature threshold, that the battery power is greater than the set threshold SOCn, and that the battery system is fault-free (that is, it is determined that the battery is in a fault-free state. shape).
  • the power domain determines that the current remaining power value of the battery is greater than the preset power threshold.
  • the motor speed and motor current are 0 (that is, it is determined that the motor corresponds to the stationary state), and that the motor is fault-free (that is, it is determined that the motor is in a fault-free state)
  • Step 4 The body domain controller in the domain controller senses whether there is anyone in the car through door lock and temperature detection. If there is no one, it keeps the vehicle door lock locked and prompts that the vehicle is in the battery self-heating state through the body horn or lights. Please Do not disturb. If there is someone, the cockpit domain in the domain controller controls the driver's seat away from the steering wheel, and asks the driver whether to play music during battery self-heating operation to ensure comfort, etc.
  • Step 5 After the execution of step 4 is completed, the power domain control main positive switch and precharge switch are closed. And after the precharge time is met, the main negative switch is closed, the precharge switch is turned off, and the high voltage is completed.
  • Step 6 As shown in Figure 7, after the power domain determines that the high-voltage supply voltage of the battery is normal (that is, it is determined that the supply voltage is within the preset voltage range), the power domain controls the charge and discharge circuit to charge and discharge the battery. It should be noted that if a neutral switch is set in the battery system, the motor neutral switch will be closed.
  • the technical solution of the embodiment of the present application it is possible to receive a battery self-heating start command from outside the electrical device; determine that the electrical device is in a fault-free state and a static state; determine that the battery meets the self-heating conditions; and determine the charge and discharge of the battery.
  • the motor in the circuit is in a fault-free state and a static state; the charging and discharging circuit is controlled to charge and discharge the battery.
  • determining that the electrical device is in a fault-free state and a static state includes: determining that the electrical device is in a fault-free state; and detecting that the electrical device is in a fault-free state; The moving rate of the electrical device. If the moving rate is determined to be zero, it is determined that the electrical device is in a stationary state.
  • the process of determining that the electrical device is in a fault-free state and a static state can be implemented through the VCU vehicle controller.
  • the VCU vehicle controller can determine whether the current vehicle speed is 0 in real time based on the speed sensor or positioning status (that is, determine whether the electrical device is in a stationary state).
  • the VCU vehicle controller can also determine whether a certain module is faulty (that is, determine whether the electrical device is in a fault-free state) by collecting various communication signals of the electrical device or whether the current and voltage are within the normal threshold range. ). And only after confirming that the electrical device is in a fault-free state and static state, it will send a command to turn on the battery self-heating and issue a high-voltage command.
  • the vehicle controller can be used to activate the self-heating function of the battery only when ensuring that the electrical device carrying the battery satisfies the stationary state. This avoids the problem that the electrical device cannot move due to activating the self-heating function, thereby affecting the user experience.
  • determining that the electrical device is in a fault-free state and a static state includes: using the chassis domain in the domain controller to determine that the chassis of the electrical device is in a fault-free state; And, use the chassis domain to detect the movement rate of the electrical device. If the movement rate is determined to be zero, it is determined that the electrical device is in a stationary state.
  • the process of determining that the electrical device is in a fault-free state and a static state can also be implemented through the chassis domain in the domain controller.
  • the chassis domain in the domain controller can determine whether the current vehicle status and speed is 0 in real time based on the speed sensor or positioning status (that is, determine whether the electrical device is in a stationary state).
  • the chassis domain in the domain controller can also determine whether a certain module is faulty by collecting the communication signals of each module of the electrical device chassis or whether the current and voltage are within the normal threshold range (that is, determining whether the electrical device is faulty or not). is in a fault-free state). And only when it is determined that the electrical device is in a fault-free state and in a static state, a command to turn on the battery self-heating and a high-voltage command will be sent.
  • the chassis domain in the domain controller can be used to activate the self-heating function of the battery only when it is ensured that the electrical device carrying the battery satisfies the static state. This avoids the problem that the electrical device cannot move due to activating the self-heating function, thereby affecting the user experience.
  • determining that the battery meets the self-heating condition includes: using the battery management system to determine that the battery is in a fault-free state; and using the battery management system to determine whether the current temperature value of the battery is less than a first preset temperature threshold, and determine whether the current remaining power value of the battery is greater than the preset power threshold; if so, determine that the battery meets the self-heating condition.
  • the process of determining that the battery meets the self-heating condition can also be implemented through the battery management system.
  • the BMS battery management system can determine that the current temperature value of the battery is less than the first preset temperature threshold, determine that the current remaining power value of the battery is greater than the preset power threshold, and the battery is in a fault-free state, and then continue to send the battery status on the CAN communication bus. Signal that satisfies self-heating conditions
  • the battery management system can be used to ensure that the battery is not overheated and has a large amount of remaining power before activating the self-heating function of the battery. This avoids the risk of accidents caused by the battery rashly activating the self-heating function before reaching the preset static state. All hidden dangers.
  • determining that the battery meets the self-heating condition includes: using the power domain in the domain controller to determine that the battery is in a fault-free state; and using the power domain to determine the current state of the battery. Whether the temperature value is less than the first preset temperature threshold, and whether the current remaining power value of the battery is greater than the preset power threshold; if so, it is determined that the static indicator of the battery meets the self-heating condition.
  • the process of determining that the battery meets the self-heating condition can also be implemented through the power domain in the domain controller.
  • the power domain in the domain controller can determine that the current temperature value of the battery is less than the first preset temperature threshold, determine that the current remaining power value of the battery is greater than the preset power threshold, and the battery continues to be on the CAN communication bus after it is in a fault-free state. Send a signal that the battery status meets the self-heating conditions
  • the first preset temperature threshold is not specifically limited in this application, and may be 50 degrees, 30 degrees, etc., for example. In addition, this application also does not specifically limit the preset power threshold, for example, it can be 50%, 30%, etc.
  • the power domain in the domain controller can be used to ensure that the battery is not overheated and has a large amount of remaining power before activating the self-heating function of the battery. This avoids potential safety hazards caused by the battery rashly activating the self-heating function before reaching the preset static state.
  • determining that the motor in the battery's charge and discharge circuit is in a fault-free state and a static state includes: using the motor controller to determine that the motor is in a fault-free state; and, using The motor controller determines whether the motor's motor torque, motor speed, and motor current are zero; if so, it determines that the motor is at rest.
  • the process of determining that the motor in the battery charging and discharging circuit is in a fault-free state and a static state can be implemented through an MCU motor controller.
  • the MCU motor controller determines that the current motor torque, motor speed, and motor current are all 0 by collecting parameters corresponding to the motor operation module (that is, determining that the motor corresponds to a stationary state).
  • the motor controller can be used to activate the self-heating function of the battery only when the motor is in a fault-free and stationary state. This avoids potential safety hazards caused by the motor rashly activating the self-heating function before reaching the preset static state. question.
  • determining that the motor in the charging and discharging circuit of the battery is in a fault-free state and a static state includes: using the power domain in the domain controller to determine that the motor is in a fault-free state. ; and, use the power domain to determine whether the motor torque, motor speed, and motor current of the motor are zero; if so, determine that the motor corresponds to a stationary state.
  • the process of determining that the motor in the battery charge and discharge circuit is in a fault-free state and a static state can be implemented through the power domain in the domain controller.
  • the power domain in the domain controller determines that the current motor torque, motor speed, and motor current are all 0 by collecting parameters corresponding to the motor operation module (that is, determining that the motor corresponds to a stationary state).
  • the power domain in the domain controller can be used to ensure that the motor is in a fault-free state and is in a stationary state before activating the self-heating function of the battery. This avoids potential safety hazards caused by the motor rashly activating the self-heating function before reaching the preset static state.
  • the management system controls the battery to precharge the motor, and sends a first pre-start signal to the vehicle controller after the precharging is completed; and, after using the motor controller to determine that the battery supply voltage is within the preset voltage range, it sends a first pre-start signal to the vehicle controller.
  • Two pre-start signals the vehicle controller receives the first pre-start signal and the second pre-start signal, and sends a start command to the motor controller; in response to the start command, the motor controller controls the charge and discharge circuit to charge and discharge the battery.
  • the battery management system can also be used to control the battery to precharge the motor, which specifically includes controlling the charge and discharge circuit by the BMS battery management system.
  • the main positive switch K1 and the precharge switch are closed. After the precharge time is met, the main negative switch is closed, the precharge switch is turned off, the high voltage is completed, and the first pre-start signal is sent to the VCU vehicle controller.
  • the MCU motor controller also needs to determine whether the battery's high-voltage supply voltage is within the normal voltage range. If so, send the second pre-start signal to the VCU vehicle controller.
  • the battery management system and the motor controller can be used to send a pre-start signal to the vehicle controller before the vehicle controller sends a pre-start signal to the motor controller. Issue an opening command that controls the charging and discharging circuit to charge and discharge the battery. This avoids potential safety hazards caused by the battery and motor rashly activating the self-heating function before they are fully precharged.
  • the battery management system before using the battery management system to control the battery to precharge the motor, it also includes: using the vehicle controller to send a precharge instruction to the battery management system, and the battery management system responds The precharge command controls the battery to precharge the motor.
  • the battery management system needs to first control the battery to precharge the motor. Specifically, after receiving the first pre-start signal and the second pre-start signal, the VCU vehicle controller can send a start command to the motor controller, and the MCU motor controller can send a pre-charge command to the MBS battery management system. So that the battery management system controls the battery to precharge the motor in response to the precharge command.
  • the MBS battery management system determines that the pre-charging of the motor is completed, it can control the charging and discharging circuit to charge and discharge the battery. This enables the battery to self-heat.
  • the vehicle controller can be used to send instructions for precharging the motor to the battery management system.
  • the charging and discharging preparations for the self-heating function of the battery can be achieved to ensure that the subsequent self-heating function of the battery can be fully realized.
  • the controller controls the battery to precharge the motor; and uses the power domain to determine that the battery's supply voltage is within a preset voltage range; and uses the power domain to control the charge and discharge circuit to charge and discharge the battery.
  • the battery management system needs to first control the battery to precharge the motor.
  • the power domain in the domain controller can also control the closing of the main positive switch and the precharge switch in the circuit. And after the precharge time is met, the main negative switch is closed, the precharge switch is turned off, and the high voltage is completed. So that after the power domain determines that the battery's high-voltage supply voltage is within the preset voltage range, the power domain control charge and discharge circuit is used to charge and discharge the battery.
  • the power domain in the domain controller can be used to ensure that the power supply voltage of the battery is within a reasonable voltage range before issuing an opening command to control the charging and discharging circuit to charge and discharge the battery. This avoids potential safety hazards caused by the battery and motor rashly activating the self-heating function before they are fully precharged.
  • controlling the charge and discharge circuit to charge and discharge the battery includes: detecting the heating indicator of the battery every first preset time period; based on the preset association set, Determine the operating index that matches the heating index, and the operating index is used to determine the charging and discharging parameters of the battery; control the charging and discharging circuit to charge and discharge the battery with the operating index.
  • the above embodiment will be specifically described in order to avoid the problem existing in the related art that the battery is continuously heated with a fixed power heating method, which affects the service life of the battery.
  • the embodiment of the present application can periodically detect the current temperature value and remaining power value of the battery during the self-heating process. So that the operating current and operating frequency of the battery's self-heating function can be adjusted in real time based on these two heating indicators. To ensure that the battery can implement the self-heating function more reasonably.
  • this application uses the BMS battery management system to determine the operating current and operating frequency of the corresponding battery based on the heating index, which can be implemented based on a preset association set.
  • the correlation set records the correlation between each heating indicator and its corresponding operating current and operating frequency.
  • the BMS battery management system can select the battery with the current temperature value A and the remaining power value C based on the preset association set. corresponding current amplitude.
  • the current frequency value corresponding to the current temperature value A and the remaining power value C can also be selected according to the preset association set.
  • the two current amplitudes and current frequency values are used as operating indicators. So that the operating indicator is subsequently sent to the motor controller to instruct the motor controller to control the charging and discharging circuit to charge and discharge the battery with the current amplitude and current frequency.
  • the association set may include a current index association set and a frequency index association set.
  • the BMS battery management system can match the heating index with the current index association set to determine whether it matches the heating index (that is, the temperature in the corresponding table and the remaining power value SOC)
  • the operating current I is the heating index (that is, the temperature in the corresponding table and the remaining power value SOC)
  • embodiments of the present application can also use the BMS battery management system to match the heating index with the frequency index associated set, and determine the operating frequency f that matches the heating index (that is, the temperature in the corresponding table and the remaining power value SOC). .
  • the BMS battery management system can be used to determine the operating indicators that match the heating indicators (that is, the operating current and operating frequency when the battery starts the self-heating function). ).
  • the battery management system can be used to periodically detect the temperature value and remaining power value of the battery when the self-heating function is activated, and thereby the motor controller can adjust the operating current of the battery self-heating accordingly. and operating frequency.
  • the motor controller can adjust the operating current of the battery self-heating accordingly. and operating frequency.
  • controlling the charge and discharge circuit to charge and discharge the battery includes: using the power domain in the domain controller to detect the heating indicator of the battery every first preset time period , the heating indicator includes the current temperature value and remaining power value of the battery; based on the preset association set, determine the operating indicator that matches the heating indicator.
  • the operating indicator includes current amplitude and current frequency; use the power domain to control the charge and discharge circuit to use the current The amplitude and current frequency are used to charge and discharge the battery.
  • the power domain in the domain controller can also be used to determine the operating current and operating frequency of the corresponding battery based on the heating index, which can be implemented based on a preset association set.
  • each heating indicator and its corresponding operating power are recorded in the association set. flow and operating frequency.
  • the power domain in the domain controller can be used to select the current temperature value A and the remaining power value C according to the preset association set. corresponding current amplitude.
  • the current frequency value corresponding to the current temperature value A and the remaining power value C can also be selected according to the preset association set.
  • the two current amplitudes and current frequency values are used as operating indicators. In order to use this operating indicator as a standard in the future, the power domain control charge and discharge circuit is used to charge and discharge the battery according to the current amplitude and current frequency.
  • the association set may include a current index association set and a frequency index association set.
  • embodiments of the present application can use the power domain in the domain controller to match the heating index and the current index associated set, and determine the heating index (that is, the temperature in the corresponding table and the remaining power value SOC ) matches the operating current I:
  • embodiments of the present application can also use the power domain in the domain controller to match the heating index with the frequency index associated set, and determine the heating index (that is, the temperature in the corresponding table and the remaining power value SOC) that matches the heating index.
  • the power domain in the domain controller can be used to determine the operating indicator that matches the heating indicator (that is, the operating current when the battery starts the self-heating function). and operating frequency).
  • the power domain in the domain controller can be used to periodically detect the temperature value and remaining power value of the battery when the self-heating function is activated, and accordingly adjust the battery self-heating function accordingly. Heating operating current and operating frequency. In this way, a reasonable adjustment strategy can be developed for the battery's self-heating function to ensure that heat is evenly distributed to the entire battery. This avoids the problem in related technologies that affects the service life of the battery caused by continuous heating of the battery using a fixed-power heating method.
  • a neutral line switch is provided on the neutral line of the motor; it also includes: after determining that the supply voltage of the battery is within a preset voltage range, controlling the neutral line switch Closed; and/or, during the battery self-heating process, if it is determined that the power device connected to the neutral line is faulty, the neutral line switch is controlled to open.
  • the neutral switch can be closed to prevent the motor center line from being connected to the positive electrode of the battery or The negative pole is short-circuited, so that the first, second, and third bridge arms and the three-phase winding of the motor can still maintain power supply and avoid power loss.
  • controlling the charge and discharge circuit to charge and discharge the battery further includes: collecting the current temperature value and temperature rise rate of the battery every second preset time period; If it is determined that the current temperature value is greater than the preset temperature threshold, or it is detected that the temperature rise rate does not meet the preset rate range, the charge and discharge circuit is controlled to stop charging and discharging the battery.
  • the battery management system can be used to determine whether there is an abnormality in the self-heating process based on the current temperature or heating rate returned by the battery, thereby turning on and off the battery's self-heating process in real time. Heating function. This will avoid problems affecting battery life caused by overcharging.
  • the power domain in the user domain controller can be used to determine whether there is an abnormality in the self-heating process based on the current temperature or heating rate returned by the battery. , thereby turning on and off the self-heating function of the battery in real time. This will avoid problems affecting battery life caused by overcharging.
  • the motor in the circuit when determining the charge and discharge of the battery After the motor in the circuit is in a fault-free state and in a static state, it also includes: determining whether there is a user inside the electrical device; if not, controlling the electrical device to a self-heating state.
  • the self-heating state includes locking the electrical device, Control at least one of the light of the electrical device and the sound device of the electrical device; if present, adjust the distance between the steering wheel of the electrical device and the user's seat.
  • the electrical equipment can be locked, thereby reminding other users that the current battery is in the process of self-heating. .
  • the present application also provides a battery heating control device.
  • a battery heating control device include:
  • the receiving module 201 is configured to receive a battery heating start instruction
  • the determination module 202 is configured to determine that the electrical device is in a fault-free state and a static state
  • the determination module 202 is configured to determine that the battery meets the self-heating condition; and, determine that the motor in the charge and discharge circuit of the battery is in a fault-free state and a static state;
  • the control module 203 is configured to control the charging and discharging circuit to charge and discharge the battery.
  • the technical solution of the embodiment of the present application it is possible to receive a battery self-heating start command from outside the electrical device; determine that the electrical device is in a fault-free state and a static state; determine that the battery meets the self-heating conditions; and determine the charge and discharge of the battery.
  • the motor in the circuit is in a fault-free state and a static state; the charging and discharging circuit is controlled to charge and discharge the battery.
  • the determination module 202 is configured as:
  • the movement speed of the electric device is detected. If the movement speed is determined to be zero, it is determined that the electric device is in a stationary state.
  • the determination module 202 is configured as:
  • the determination module 202 is configured as:
  • control module 203 is configured as:
  • the determination module 202 is configured as:
  • the charge and discharge circuit is controlled to charge and discharge the battery according to the operating index.
  • control module 203 is configured as:
  • Heating indicators include the current temperature value of the battery and the remaining power value.
  • control module 203 is configured as:
  • the operating indicators include current amplitude and current frequency
  • controlling the charging and discharging circuit to charge and discharge the battery includes:
  • the charging and discharging circuit is controlled to charge and discharge the battery using the current amplitude and the current frequency represented by the operating index.
  • control module 203 is configured as:
  • the neutral line switch on the center line of the motor is controlled to open.
  • control module 203 is configured as:
  • the charging and discharging circuit is controlled to stop charging and discharging the battery.
  • control module 203 is configured as:
  • control the electrical device to a self-heating state includes locking the electrical device, controlling the light of the electrical device, and controlling the sound device of the electrical device. at least one of;
  • Figure 9 is a logical structural block diagram of an electrical device according to an exemplary embodiment.
  • the battery 300 may include an electrical device carrying a battery.
  • a non-transitory computer-readable storage medium including instructions such as a memory including instructions.
  • the instructions can be executed by a battery processor to complete the above battery heating control method.
  • the method includes: receiving Battery heating start command; determine that the electrical device is in a fault-free state and a static state; determine that the battery meets the self-heating condition; and determine that the motor in the charge and discharge circuit of the battery is in a fault-free state and a static state; control The charging and discharging circuit charges and discharges the battery.
  • the above instructions can also be executed by the processor of the battery to complete other steps involved in the above exemplary embodiments.
  • non-transitory computer-readable storage media may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • an application program/computer program product including one or more instructions, which can be executed by a processor of the battery to complete the above battery heating control method.
  • the method includes: receiving a battery heating start command; determining that the electrical device is in a fault-free state and in a static state; determining that the battery meets self-heating conditions; and determining that the motor in the charge and discharge circuit of the battery is in a fault-free state and in a static state. state; control the charging and discharging circuit to charge and discharge the battery.
  • the above instructions can also be executed by the processor of the battery to complete other steps involved in the above exemplary embodiments.
  • FIG. 9 is an example diagram of battery 300.
  • the battery 300 may include more or fewer components than shown, or some components may be combined, or different components may be used, such as
  • the battery 300 may also include input and output devices, network access devices, buses, etc.
  • the so-called processor 302 may be a central processing unit (CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), or special processor. Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general processor can be a microprocessor or the processor 302 can also be any conventional processor.
  • the processor 302 is the control center of the battery 300 and uses various interfaces and lines to connect various parts of the entire battery 300 .
  • the memory 301 can be used to store computer readable instructions 303.
  • the processor 302 implements various functions of the battery 300 by running or executing computer readable instructions or modules stored in the memory 301 and calling data stored in the memory 301.
  • the memory 301 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store a program based on Data created by the use of battery 300, etc.
  • the memory 301 may include a hard disk, memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card), at least one disk storage device, flash memory device, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM) or other non-volatile/volatile storage devices.
  • smart memory card Smart Media Card, SMC
  • flash memory card Flash Card
  • at least one disk storage device flash memory device
  • read-only memory Read-Only Memory
  • RAM random access memory
  • the integrated modules of the battery 300 are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through computer-readable instructions.
  • the computer-readable instructions can be stored in a computer-readable storage medium. When executed by the processor, the computer-readable instructions can implement the steps of each of the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种用电装置及其自加热的控制方法、装置及介质。通过应用本申请的技术方案,可以在接收到用电装置外部的电池自加热启动指令后,不第一时间启动电池加热功能,而是在分别检测到用电装置、电池以及电机满足特定的条件下才会控制充放电电路对电池进行充放电。进而避免相关技术中出现的,由于用户手动控制电池自加热功能所导致的增加无效加热的情况,进而出现耗费能源的问题。

Description

用电装置及其自加热的控制方法、装置及介质
相关申请的交叉引用
本申请要求享有于2022年5月6日提交的名称为“用电装置及其自加热的控制方法、装置及介质”的中国专利申请202210486964.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请中涉及电池管理技术,尤其是一种用电装置及其自加热的控制方法、装置及介质。
背景技术
随着科学技术的发展,越来越多的用电装置都会以承载电池的方式实现运行功能。
以用电装置为电动汽车为例,相关技术中,当前为了提升电动汽车在寒冷地区的适配性,逐渐都适配了电池自加热功能。其中,电池自加热属于电动汽车一种新的功能,该功能的使用需要考虑到电池、电机、整车的实际条件,在一定场景下开启加热,达到保护电池、电机等零部件,和保护电动汽车出现故障。从而满足驾驶人员在电动汽车的使用预期。
然而,相关技术中电池自加热功能的控制大多采用通过用户手动开启或关闭的方式来实现,这也容易出现由于用户的控制不合理所导致的增加无效加热的情况,进而出现耗费能源的问题。
发明内容
本申请实施例提供一种用电装置及其自加热的控制方法、装置及介质。从而解决相关技术中出现的,由于用户手动控制电池自加热功能所导致的增加无效加热的情况,进而出现耗费能源的问题。
其中,根据本申请实施例的一个方面,提供的一种电池加热控制方法,包括:
接收电池加热启动指令;
确定所述用电装置处于无故障状态以及静止状态;
确定所述电池满足自加热条件;以及,确定所述电池的充放电电路中的电机处于无故障状态以及静止状态;
控制所述充放电电路对所述电池进行充放电。
本申请实施例的技术方案中,可以在接收来自用电装置外部的电池自加热启动指令;确定用电装置处于无故障状态以及静止状态;确定电池满足自加热条件;以及,确定电池的充放电电路中的电机处于无故障状态以及静止状态;控制充放电电路对电池进行充放电。通过应用本申请的技术方案,可以在接收到用电装置外部的电池自加热启动指令后,不第一时间启动电池加热功能,而是在分别检测到用电装置、电池以及电机满足特定的条件下才会控制充放电电路对电池进行充放电。进而避免相关技术中出现的,由于用户手动控制电池自加热功能所导致的增加无效加热的情况,进而出现耗费能源的问题。
可选地,在基于本申请上述方法的另一个实施例中,确定所述用电装置处于无故障状态以及静止状态,包括:确定所述用电装置处于无故障状态;以及,检测所述用电装置的移动速率,若确定所述移动速率为零,确定所述用电装置处于静止状态。通过应用本申请实施例的技术方案,能够利用整车控制器或域控制器在确保承载电池的用电装置满足静止状态的情况下才会启动电池的自加热功能。从而避免出现用电装置由于启动自加热功能所导致的无法移动进而影响用户体验的问题。
可选地,在基于本申请上述方法的另一个实施例中,确定所述电池满足自加热条件,包括:确定所述电池处于无故障状态;以及,确定所述电池的当前温度值是否小于第一预设温度阈值,以及,所述电池的当前剩余电量值是否大于预设电量阈值;若均是,则确定所述电池满足所述自加热条件。通过应用本申请实施例的技术方案,能够利用电池管理系统或域控制器在确保电池处于未过热以及剩余电量较多的状态下才会启动电池的自加热功能。从而避免出现电池在未达到预设的静态状态下就贸然启动自加热功能所导致的容易出现安全隐患的问题。
可选地,在基于本申请上述方法的另一个实施例中,确定所述电池的充放电电路中的电机处于无故障状态以及静止状态,包括:确定所述电机处于无故障状态;以及,确定所述电机的电机扭矩、电机转速以及电机电流是否为零;若均是,则确定所述电机处于静止状态。通过应用本申请实施例的技术方案,能够利用电机控制器或域控制器在确保电机处于无故障状态以及静止状态下才会启动电池的自加热功能。从而避免出现电机在未达到预设的静态状态下就贸然启动自加热功能所导致的容易出现安全隐患的问题。
可选地,在基于本申请上述方法的另一个实施例中,在所述确定所述电池 满足自加热条件;以及,确定所述电池的充放电电路中的电机处于无故障状态以及静止状态之后,还包括:控制所述电池为所述电机预充电,并在预充电完成后生成第一预启动信号;以及,确定所述电池的供电电压位于预设电压范围内,生成第二预启动信号;确定生成所述第一预启动信号以及所述第二预启动信号,控制所述充放电电路对所述电池进行充放电。通过应用本申请实施例的技术方案,能够利用电池管理系统以及电机控制器或域控制器在向整车控制器发送预启动信号的情况下,才会由整车控制器向电机控制器下发控制充放电电路对电池进行充放电的开启指令。从而避免出现电池以及电机在未达到预充完毕的情况下就贸然启动自加热功能所导致的容易出现安全隐患的问题。
可选地,在基于本申请上述方法的另一个实施例中,控制所述充放电电路对所述电池进行充放电,包括:每隔第一预设时间段检测所述电池的加热指标;基于预设的关联集合,确定与所述加热指标相匹配的运行指标,所述运行指标用于确定所述电池的充放电参数;控制所述充放电电路以所述运行指标对所述电池进行充放电。通过应用本申请实施例的技术方案,可以利用电池管理系统或域控制器周期性的检测启动自加热功能下的电池的温度值以及剩余电量值,并以此来由对应调整电池自加热的运行电流以及运行频率。从而实现为电池的自加热功能制定一种合理的调整策略以保证热量均匀的分布至整个电池。进而避免相关技术中出现的,以固定功率的加热方式对电池持续加热所导致的影响电池使用寿命的问题。
可选地,在基于本申请上述方法的另一个实施例中,控制所述充放电电路对所述电池进行充放电,包括:加热指标包括电池当前的温度值以及剩余电量值
可选地,在基于本申请上述方法的另一个实施例中,控制所述充放电电路对所述电池进行充放电,包括:运行指标包括电流幅值以及电流频率;其中,所述控制所述充放电电路对所述电池进行充放电,包括:控制所述充放电电路以所述运行指标所表征的电流幅值及所述电流频率对所述电池进行充放电。通过应用本申请实施例的技术方案,可以周期性的检测启动自加热功能下的电池的温度值以及剩余电量值,并以此来对应调整电池自加热的电流幅值及电流频率。从而实现为电池的自加热功能制定一种合理的调整策略以保证热量均匀的分布至整个电池。进而避免相关技术中出现的,以固定功率的加热方式对电池持续加热所导致的影响电池使用寿命的问题。
可选地,在基于本申请上述方法的另一个实施例中,确定所述电池的供电 电压位于预设电压范围内;控制电机中心线上的中性线开关闭合;和/或,在电池自加热过程中,若确定与电机的中性线连接的功率器件故障,则控制电机中心线上的中性线开关断开。通过应用本申请实施例的技术方案,可以中性线开关在电池自加热状态下,如果因为自加热时出现短路而无法分开,则可以通过闭合中性线开关来避免电机中心线与电池正极或负极短路,从而让第一、二、三桥臂和电机三相绕组仍能维持供电,避免动力丧失。
可选地,在基于本申请上述方法的另一个实施例中,控制所述充放电电路对所述电池进行充放电,还包括:每隔第二预设时间段,采集所述电池的当前温度值以及温升速率;若确定所述当前温度值大于预设温度阈值,或,检测到所述温升速率不满足预设速率范围时,控制所述充放电电路停止对所述电池进行充放电。通过应用本申请实施例的技术方案,可以在将运行指标下发给电池后,基于电池返回的当前温度或升温率判断自加热过程是否出现异常,从而实时的启闭电池的自加热功能。进而避免出现充电过度所导致的影响电池使用寿命的问题。
可选地,在基于本申请上述方法的另一个实施例中,在所述确定所述电池的充放电电路中的电机处于无故障状态以及静止状态之后,还包括:确定所述用电装置内部是否存在用户;若不存在,控制所述用电装置为自加热状态,所述自加热状态包括对所述用电装置进行锁闭、控制所述用电装置的灯光、控制所述用电装置的鸣音装置的至少一种;若存在,调整所述用电装置的方向盘与用户座椅之间的距离。通过应用本申请实施例的技术方案,可以在启动电池自加热的过程中,如果用电装备内部无人,则可以对用电装置进行锁闭状态,从而提示其他用户当前电池处于自加热过程中。另外,若检测到用电装备内部有人,则可以为了保证其舒适性,选择适应性的调整方向盘与用户座椅之间的距离。
其中,根据本申请实施例的又一个方面,提供的一种电池加热控制装置,包括:接收模块,被配置为接收电池加热启动指令;确定模块,被配置为确定所述用电装置处于无故障状态以及静止状态;所述确定模块,被配置为确定所述电池满足自加热条件;以及,确定所述电池的充放电电路中的电机处于无故障状态以及静止状态;控制模块,被配置为控制所述充放电电路对所述电池进行充放电。
根据本申请实施例的又一个方面,提供的一种用电装置,包括:
存储器,用于存储可执行指令;以及
显示器,用于与所述存储器执行所述可执行指令从而完成上述任一所述电池加热控制方法的操作。
根据本申请实施例的还一个方面,提供的一种计算机可读存储介质,用于存储计算机可读取的指令,所述指令被执行时执行上述任一所述电池加热控制方法的操作。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请提出的一种应用于电池的供电装置的结构示意图;
图2为本申请提出的一种电池加热控制方法示意图;
图3为本申请提出的一种电池的控制器节点的架构示意图;
图4为本申请提出的一种通过各个控制器节点对电池加热控制的流程示意图
图5为本申请提出的一种用电装置内部的结构示意图;
图6为本申请提出的一种通过域控制器对电池加热控制的流程示意图;
图7为本申请提出的一种电池的域控制器的架构示意图;
图8为本申请提出的电池加热控制电子装置的结构示意图;
图9为本申请提出的用电装置的示意图。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,不作为对本 申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
另外,本申请各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
需要说明的是,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
下面结合图1-图7来描述根据本申请示例性实施方式的用于进行电池加热控制方法。需要注意的是,下述应用场景仅是为了便于理解本申请的精神和原理而示出,本申请的实施方式在此方面不受任何限制。相反,本申请的实施方式可以应用于适用的任何场景。
随着科学技术的发展,越来越多的用电装置都会以承载电池的方式实现运行功能。
以用电装置为汽车为例,相关技术中,汽车是人类的重要的交通工具之一,随着时代的进步,汽车在中国的人均保有量持续增加,并已走进千家万户。采用动力电池驱动汽车行驶的电动汽车,以其环保的特性,越来越受到大家的欢迎。
进一步的,动力电池是电动汽车的核心部件,但是动力电池对温度较为敏感,低温会影响电池的放电性能。为了使动力电池更好的放电,延长动力电池的使用寿命,低温情况下,在电动汽车行驶的过程中,需要对动力电池进行加热。
本申请人注意到,现有技术中至少存在两个问题,即,一方面,相关技术中电池自加热功能的控制大多采用通过用户手动开启或关闭的方式来实现,这也容易出现由于用户的控制不合理所导致的增加无效加热的情况,进而出现耗费能源的问题。例如,当用电装置处于行驶状态时,用户手动启动电池自加热功能便会出现供电系统分配不均匀的情况。又或,当电池或电机存在故障时,用户手动启动电池自加热功能便可能会出现用电装置存在安全隐患的问题。
另一方面,相关技术中对电池加热的传统方式一般为采用固定功率的加热装置对动力电池持续加热。也即当加热到一定温度或者加热一段时间之后停止加热。
然而,由于动力电池的体积较大,加热的过程中并没有使热量均匀地分布到动力电池,导致动力电池的热量分布十分不均匀,无法保证动力电池的使用寿命。
本申请实施例公开的电池可以包括但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池或电池组等组成该用电装置的电源系统,这样,有利于缓解并自动调节电池自加热的运行电流以及运行频率,从而提升电池性能的稳定性和电池寿命。
本申请实施例提供一种电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
一种方式中,本申请中的电池包为可充放电式的,例如锂离子电池、镍氢电池、镍铬电池、镍锌电池等等。
以下实施例为了方便说明,以本申请一个实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
一种方式中,本申请还提出一种用电装置及其自加热的控制方法、装置及介质。
图2示意性地示出了根据本申请实施方式的一种电池加热控制方法的流程示意图。如图2所示,该方法,包括:
S101,接收电池加热启动指令。
进一步的,本申请实施例中的自加热启动指令可以由用户手动开启,也可以由供电装置在检测到满足某个预设条件时,自动生成启动自加热的指令。
S102,确定用电装置处于无故障状态以及静止状态。
其中,本申请实施例中在确定用电装置处于无故障状态以及静止状态,可以包括:确定用电装置处于无故障状态;以及,检测用电装置的移动速率,若确定移动速率为零,确定用电装置处于静止状态。
S103,确定电池满足自加热条件;以及,确定电池的充放电电路中的电机处于无故障状态以及静止状态。
一种方式中,如图3所示,在当前大多数普遍车型上,均可以包括由电子控制单元ECU。其中,各个ECU单独存在,各个ECU对自身负责的系统进行监控和管理,并通过CAN总线报文的形式进行交互,在这种车型上,电池自加热开启的方法步骤可以如下设置。
本申请实施例中,可以由VCU(整车控制器)接收到外部驾驶员指令开启自加热的信号,该指令可以是VCU检测到车上的启动按钮装置的信号、或者用户在手机APP通过4G或者5G无线通信技术传输到车载远程终端的指令,VCU判断当前车辆状态车速为0,及无整车故障后,发送开启电池自加热命令并下发上高压指令。
其中,ECU(Electronic Control Unit)电子控制单元,又称“行车电脑”、“车载电脑”等。它和普通的电脑一样,由微控制器(MCU)、存储器(ROM、RAM)、输入/输出接口(I/O)、模数转换器(A/D)以及整形、驱动等大规模集成电路组成。
需要说明的是,本申请可以由供电装置中的BMS(电池管理系统)来接收作用于电池的自加热启动指令。其中,BMS是为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
一种方式中,BMS电池管理系统单元包括BMS电池管理系统、控制模组、显示模组、无线通信模组、电气设备、用于为电气设备供电的电池组以及用于采集电池组的电池信息的采集模组,BMS电池管理系统通过通信接口分别与无线通信模组及显示模组连接,采集模组的输出端与BMS电池管理系统的输入端连接,BMS电池管理系统的输出端与控制模组的输入端连接,控制模组分别 与电池组及电气设备连接,BMS电池管理系统通过无线通信模块与服务器端连接。
如图4所示,以下对本申请一种实施例中,电池加热控制方法进行说明:
步骤1:VCU整车控制器接收到外部驾驶员指令开启自加热的信号。一种方式中,该指令可以是VCU检测到车上的启动按钮装置的信号、或者用户在手机APP通过4G或者5G无线通信技术传输到车载远程终端的指令。其中,在VCU整车控制器判断当前车辆状态车速为0(即确定用电装置处于静止状态),及无整车故障(即确定用电装置处于无故障状态)后,发送开启电池自加热命令并下发上高压指令。
步骤2:由BMS电池管理系统判断电池的当前温度值小于第一预设温度阈值、判断电池的当前剩余电量值大于预设电量阈值、电池处于无故障状态后,持续在CAN通信总线上发送电池状态满足自加热条件的信号。
步骤3:由MCU电机控制器判断当前电机扭矩、电机转速、电机电流均为0(即确定电机对应于静止状态)、且电机无故障后,持续在CAN通信总线上发送电机状态满足开启自加热条件的信号。
步骤4:如图5所示,由BMS电池管理系统控制充放电电路中主正开关K1、预充开关闭合,满足预充时间后闭合主负开关,断开预充开关,完成上高压,发送第一预启动信号给VCU整车控制器。
步骤5:MCU电机控制器判断电池高压供电电压正常,若设置了中性线开关,则闭合电机中心线K4开关,再发送第二预启动信号。
可选的,若无电机中性线开关,则判断电池供电电压正常后直接发送第二预启动信号给VCU整车控制器。
需要说明的是,设置K4的好处在于,第四桥臂是在电池自加热状态下专用模块,若第四桥臂在自加热时出现短路而无法分开,则通过断开K4继电器,避免电机中心线与电池正极或负极短路,让第一、二、三桥臂和电机三相绕组仍能维持行车,避免动力丧失。
步骤6:VCU整车控制器根接收第一预启动信号以及第二预启动信号后,发送开启指令给电机控制器;
步骤7:MCU电机控制器给MBS电池管理系统发送预充电指令,以使该电池管理系统响应于预充电指令控制电池为电机预充电。
步骤8:MBS电池管理系统确定电机预充电结束后,控制充放电电路对电池进行充放电。
可选的,以下对本申请提出的另一种实施例中,电池加热控制方法进行说明:
随着电动汽车技术的发展,电动汽车ECU节点朝着智能化、集成化方向发展,域控制器具备更加强大算力、更复杂功能,和更简单的执行逻辑。其中,对于电池自加热功能的执行,可以包括如图5所示的域控制器来实现。
其中,域控制器ECU的控制节点和架构如图中虚框中所示。域控制器间通过通信总线进行交互,可以是CAN线,也可以是LIN线、或者光纤网线等高速网络。
进一步的,在域控制器方案中,动力域管辖电池、电机,对电池、电机状态进行采集和判断后,在控制器内部通过软件接口信息进行状态交换,进而域控制器开启电池自加热控制。
另外,除动力域,座舱域控制器主要是获取驾驶舱内部的人员操作命令、显示、人机交互等功能控制,因此,结合电池自加热功能可以有以下扩展,首先,假设驾驶人员在座舱内,通过操作面板点击开启电池自加热命令,座舱域控制器接收人员指令。在加热过程中,在座舱内提醒人员车辆处于电池自加热状态。
还有,车身域控制器主要是负责车窗门锁灯光等控制,以及一些传感器。由于电池自加热具有一定噪音,在电池自加热功能进行远程开启运行时,开启灯光进行提示,避免行人误会车辆处于异常状态。
最后,对于底盘域控制器,可以确定车辆是否处于静止状态,以及车辆在进行自加热时,控制驻车系统锁死车辆,避免车辆失控。以及,对于远程交互域控制器,在电池自加热功能中主要负责接收远程命令。
具体的,在域控制器节点下,本申请实施例中提出的电池加热控制方法如下步骤所示:
步骤1:域控制器中的座舱域接收到外部驾驶员指令开启自加热的信号。或者域控制器中的远程交互域接收驾驶员手机发送的开启自加热指令,座舱域或远程交互域将开启命令发送到通信总线上。
步骤2:域控制器中的底盘域判断当前车辆状态车速为0(即确定用电装置处于静止状态),底盘无故障(即确定用电装置的底盘处于无故障状态),车辆处于制动状态。
步骤3:域控制器中的动力域判断电池当前温度值小于第一预设温度阈值、判断电池电量大于设定阈值SOCn、电池系统无故障(即确定电池处于无故障 状)。动力域判断电池的当前剩余电量值大于预设电量阈值。以及动力域判断电机转速、电机电流为0(即确定电机对应于静止状态)、电机无故障(即确定电机处于无故障状态)后,在通信总线上发送动力域准备就绪信号。
步骤4:域控制器中的车身域控制器通过门锁、温度检测,感知车内是否有人,若无人,保持车辆门锁锁定,通过车身喇叭或灯光提示车辆处于电池自加热状态中,请勿打扰。若有人,由域控制器中的座舱域控制驾驶员座椅远离方向盘,询问驾驶员为保证舒适性,电池自加热运行中是否播放音乐等等。
步骤5:步骤4执行完成后,动力域控制主正开关、预充开关闭合。并在满足预充时间后闭合主负开关,断开预充开关,完成上高压。
步骤6:如图7所示,动力域判断电池高压供电电压正常(即确定供电电压位于预设电压范围)后,利用动力域控制充放电电路对电池进行充放电。需要说明的是,若电池系统中若设置了中性线开关,则闭合电机中性线开关。
本申请实施例的技术方案中,可以在接收来自用电装置外部的电池自加热启动指令;确定用电装置处于无故障状态以及静止状态;确定电池满足自加热条件;以及,确定电池的充放电电路中的电机处于无故障状态以及静止状态;控制充放电电路对电池进行充放电。通过应用本申请的技术方案,可以在接收到用电装置外部的电池自加热启动指令后,不第一时间启动电池加热功能,而是在分别检测到用电装置、电池以及电机满足特定的条件下才会控制充放电电路对电池进行充放电。进而避免相关技术中出现的,由于用户手动控制电池自加热功能所导致的增加无效加热的情况,进而出现耗费能源的问题。
可选地,在基于本申请上述方法的另一个实施例中,确定所述用电装置处于无故障状态以及静止状态,包括:确定所述用电装置处于无故障状态;以及,检测所述用电装置的移动速率,若确定所述移动速率为零,确定所述用电装置处于静止状态。
其一种方式中,本申请实施例在确定用电装置处于无故障状态以及静止状态的过程中,可以通过VCU整车控制器来实现。例如可以由VCU整车控制器根据速度传感器或者定位状态等方式来实时的判断当前车辆状态车速是否为0(即确定用电装置是否处于静止状态)。
又或,还可以由VCU整车控制器通过采集电装置的各个通信信号或者电流电压是否位于正常阈值范围内的方式来确定是否存在某个模块出现故障(即确定用电装置是否处于无故障状态)。并只有在确定用电装置处于无故障状态以 及静止状态,才会发送开启电池自加热命令并下发上高压指令。
通过应用本申请实施例的技术方案,能够利用整车控制器在确保承载电池的用电装置满足静止状态的情况下才会启动电池的自加热功能。从而避免出现用电装置由于启动自加热功能所导致的无法移动进而影响用户体验的问题。
可选地,在基于本申请上述方法的另一个实施例中,确定用电装置处于无故障状态以及静止状态,包括:利用域控制器中的底盘域确定用电装置的底盘处于无故障状态;以及,利用底盘域检测用电装置的移动速率,若确定移动速率为零,确定用电装置处于静止状态。
可选的,本申请实施例在确定用电装置处于无故障状态以及静止状态的过程中,还可以通过域控制器中的底盘域来实现。例如可以由域控制器中的底盘域根据速度传感器或者定位状态等方式来实时的判断当前车辆状态车速是否为0(即确定用电装置是否处于静止状态)。
又或,还可以由域控制器中的底盘域通过采集电装置底盘的各个模块的通信信号或者电流电压是否位于正常阈值范围内的方式来确定是否存在某个模块出现故障(即确定用电装置是否处于无故障状态)。并只有在确定用电装置处于无故障状态以及静止状态,才会发送开启电池自加热命令并下发上高压指令。
通过应用本申请实施例的技术方案,能够利用域控制器中的底盘域在确保承载电池的用电装置满足静止状态的情况下才会启动电池的自加热功能。从而避免出现用电装置由于启动自加热功能所导致的无法移动进而影响用户体验的问题。
可选地,在基于本申请上述方法的另一个实施例中,确定电池满足自加热条件,包括:利用电池管理系统确定电池处于无故障状态;以及利用电池管理系统确定电池的当前温度值是否小于第一预设温度阈值,以及,确定电池的当前剩余电量值是否大于预设电量阈值;若是,则确定电池满足自加热条件。
可选的,本申请实施例在确定电池满足自加热条件的过程中,还可以通过电池管理系统来实现。例如可以由BMS电池管理系统判断电池的当前温度值小于第一预设温度阈值、判断电池的当前剩余电量值大于预设电量阈值、电池处于无故障状态后,持续在CAN通信总线上发送电池状态满足自加热条件的信号
通过应用本申请实施例的技术方案,能够利用电池管理系统在确保电池处于未过热以及剩余电量较多的状态下才会启动电池的自加热功能。从而避免出现电池在未达到预设的静态状态下就贸然启动自加热功能所导致的容易出现安 全隐患的问题。
可选地,在基于本申请上述方法的另一个实施例中,确定电池满足自加热条件,包括:利用域控制器中的动力域确定电池处于无故障状态;以及,利用动力域确定电池的当前温度值是否小于第一预设温度阈值,以及,确定电池的当前剩余电量值是否大于预设电量阈值;若是,则确定电池的静态指标满足自加热条件。
可选的,本申请实施例在确定电池满足自加热条件的过程中,还可以通过域控制器中的动力域来实现。例如可以由域控制器中的动力域判断电池的当前温度值小于第一预设温度阈值、判断电池的当前剩余电量值大于预设电量阈值、电池处于无故障状态后,持续在CAN通信总线上发送电池状态满足自加热条件的信号
其中,本申请不对第一预设温度阈值进行具体限定,例如可以为50度,也可以为30度等等。另外,本申请同样不对预设电量阈值进行具体限定,例如可以为50%,也可以为30%等等。
通过应用本申请实施例的技术方案,能够利用域控制器中的动力域在确保电池处于未过热以及剩余电量较多的状态下才会启动电池的自加热功能。从而避免出现电池在未达到预设的静态状态下就贸然启动自加热功能所导致的容易出现安全隐患的问题。
可选地,在基于本申请上述方法的另一个实施例中,确定电池的充放电电路中的电机处于无故障状态以及静止状态,包括:利用电机控制器确定电机处于无故障状态;以及,利用电机控制器确定电机的电机扭矩、电机转速以及电机电流是否为零;若是,则确定电机处于静止状态。
其中,本申请实施例在确定电池的充放电电路中的电机处于无故障状态以及静止状态的过程中,可以通过MCU电机控制器来实现。例如包括由MCU电机控制器通过采集电机运行模块对应的参数,确定当前电机扭矩、电机转速、电机电流均为0(即确定电机对应于静止状态)。
另外,还需要通过MCU电机控制器采集电机运行模块对应的通信参数,确定电机无任何模块出现故障后,即可以持续在CAN通信总线上发送电机状态满足开启自加热条件的信号。
通过应用本申请实施例的技术方案,能够利用电机控制器在确保电机处于无故障状态以及静止状态下才会启动电池的自加热功能。从而避免出现电机在未达到预设的静态状态下就贸然启动自加热功能所导致的容易出现安全隐患的 问题。
可选地,在基于本申请上述方法的另一个实施例中,确定电池的充放电电路中的电机处于无故障状态以及静止状态,包括:利用域控制器中的动力域确定电机处于无故障状态;以及,利用动力域确定电机的电机扭矩、电机转速以及电机电流是否为零;若是,则确定电机对应于静止状态。
其中,本申请实施例在确定电池的充放电电路中的电机处于无故障状态以及静止状态的过程中,可以通域控制器中的动力域来实现。例如包括由域控制器中的动力域通过采集电机运行模块对应的参数,确定当前电机扭矩、电机转速、电机电流均为0(即确定电机对应于静止状态)。
另外,还需要通过域控制器中的动力域采集电机运行模块对应的通信参数,确定电机无任何模块出现故障后,即可以持续在CAN通信总线上发送电机状态满足开启自加热条件的信号。
通过应用本申请实施例的技术方案,能够利用域控制器中的动力域在确保电机处于无故障状态以及静止状态下才会启动电池的自加热功能。从而避免出现电机在未达到预设的静态状态下就贸然启动自加热功能所导致的容易出现安全隐患的问题。
可选地,在基于本申请上述方法的另一个实施例中,在确定电池满足自加热条件;以及,确定电池的充放电电路中的电机处于无故障状态以及静止状态之后,还包括:利用电池管理系统控制电池为电机预充电,预充电完成后向整车控制器发送第一预启动信号;以及,利用电机控制器确定电池的供电电压位于预设电压范围后,向整车控制器发送第二预启动信号;整车控制器接收第一预启动信号以及第二预启动信号,发送开启指令给电机控制器;电机控制器响应于开启指令,控制充放电电路对电池进行充放电。
其中,本申请实施例在确定电池的充放电电路中的电机处于无故障状态以及静止状态之后,还可以利用电池管理系统控制电池为电机预充电,其中具体包括由BMS电池管理系统控制充放电电路中主正开关K1、预充开关闭合,满足预充时间后闭合主负开关,断开预充开关,完成上高压,发送第一预启动信号给VCU整车控制器。
进一步的,还需要由MCU电机控制器判断电池高压供电电压是否位于正常的电压范围内。若是,再发送第二预启动信号给VCU整车控制器。
通过应用本申请实施例的技术方案,能够利用电池管理系统以及电机控制器在向整车控制器发送预启动信号的情况下,才会由整车控制器向电机控制器 下发控制充放电电路对电池进行充放电的开启指令。从而避免出现电池以及电机在未达到预充完毕的情况下就贸然启动自加热功能所导致的容易出现安全隐患的问题。
可选地,在基于本申请上述方法的另一个实施例中,利用电池管理系统控制电池为电机预充电之前,还包括:利用整车控制器发送预充电指令给电池管理系统,电池管理系统响应于预充电指令控制电池为电机预充电。
其中,本申请在为电池进行自加热过程中,需要首先由电池管理系统控制电池为电机预充电。具体的,可以由VCU整车控制器根据接收第一预启动信号以及第二预启动信号后,发送开启指令给电机控制器,并在由MCU电机控制器给MBS电池管理系统发送预充电指令,以使该电池管理系统响应于预充电指令控制电池为电机预充电。
可以理解的,在当MBS电池管理系统确定电机预充电结束后,即可控制充放电电路对电池进行充放电。从而实现为电池自加热的功能。
通过应用本申请实施例的技术方案,能够利用整车控制器向电池管理系统发送用于为电机预充电的指令。从而实现为电池的自加热功能做好充放电准备的工作,以确保后续电池的自加热功能能够完全实现。
可选地,在基于本申请上述方法的另一个实施例中,在确定电池满足自加热条件;以及,确定电池的充放电电路中的电机处于无故障状态以及静止状态之后,还包括:利用域控制器中的动力域控制电池为电机预充电;以及,利用动力域确定电池的供电电压位于预设电压范围;利用动力域控制充放电电路对电池进行充放电。
可选的,本申请在为电池进行自加热过程中,需要首先由电池管理系统控制电池为电机预充电。具体的,还可以由域控制器中的动力域来控制电路中的主正开关、预充开关闭合。并在满足预充时间后闭合主负开关,断开预充开关,完成上高压。以使后续在动力域判断电池高压供电电压位于预设电压范围后,利用动力域控制充放电电路对电池进行充放电。
其中需要说明的是,若电池系统中若设置了中性线开关,则需要利用动力域来控制闭合电机中性线开关。
通过应用本申请实施例的技术方案,能够利用域控制器中的动力域在确保电池的供电电压位于合理电压范围的情况下,才会下发控制充放电电路对电池进行充放电的开启指令。从而避免出现电池以及电机在未达到预充完毕的情况下就贸然启动自加热功能所导致的容易出现安全隐患的问题。
可选地,在基于本申请上述方法的另一个实施例中,控制充放电电路对电池进行充放电,包括:每隔第一预设时间段检测电池的加热指标;基于预设的关联集合,确定与加热指标相匹配的运行指标,运行指标用于确定电池的充放电参数;控制充放电电路以运行指标对所述电池进行充放电。
具体对上述实施例进行说明,为了避免出现相关技术中存在的,始终以固定功率的加热方式对电池持续加热所导致的影响电池使用寿命的问题。本申请实施例可以周期性的检测自加热过程中,电池的当前温度值以及剩余电量值。以使在后续根据这两项加热指标,实时的调整电池的自加热功能的运行电流以及运行频率。以保证电池更为合理的实施自加热功能。
一种方式中,本申请在利用BMS电池管理系统依据加热指标确定与其对应的电池的运行电流以及运行频率的方式中,可以根据预设的关联集合来实现。其中可选的,该关联集合中记录有各个加热指标及其对应的运行电流以及运行频率的关联关系。
再次举例说明,也即当检测到电池的当前温度值为A,剩余电量值为C时,BMS电池管理系统可以根据预设的关联集合,选取与该当前温度值为A以及剩余电量值为C相对应的电流幅值。且,还可以根据预设的关联集合,选取与该当前温度值为A以及剩余电量值为C相对应的电流频率值。并将该两个电流幅值以及电流频率值作为运行指标。以使后续将该运行指标发送给电机控制器,以指示电机控制器控制充放电电路以该电流幅值及电流频率对电池进行充放电。
具体举例进行说明,例如关联集合可以包括电流指标关联集合以及频率指标关联集合。
进一步的,如下表1所示,本申请实施例可以由BMS电池管理系统将加热指标与电流指标关联集合相匹配,确定与该加热指标(即对应表中的温度以及剩余电量值SOC)相匹配的运行电流I:
表1

更进一步的,本申请实施例还可以利用BMS电池管理系统将加热指标与频率指标关联集合相匹配,确定与该加热指标(即对应表中的温度以及剩余电量值SOC)相匹配的运行频率f。
表2
可以理解的,本申请实施例中,根据上述所示的预设关联集合,即可利用BMS电池管理系统确定与加热指标相匹配的运行指标(即电池启动自加热功能时的运行电流以及运行频率)。
通过应用本申请实施例的技术方案,可以利用电池管理系统周期性的检测启动自加热功能下的电池的温度值以及剩余电量值,并以此来由电机控制器对应调整电池自加热的运行电流以及运行频率。从而实现为电池的自加热功能制定一种合理的调整策略以保证热量均匀的分布至整个电池。进而避免相关技术中出现的,以固定功率的加热方式对电池持续加热所导致的影响电池使用寿命的问题。
可选地,在基于本申请上述方法的另一个实施例中,控制充放电电路对电池进行充放电,包括:利用域控制器中的动力域每隔第一预设时间段检测电池的加热指标,加热指标包括电池当前的温度值以及剩余电量值;基于预设的关联集合,确定与加热指标相匹配的运行指标,运行指标包括电流幅值以及电流频率;利用动力域控制充放电电路以电流幅值及电流频率对电池进行充放电。
可选的,本申请实施例中还可以利用域控制器中的动力域依据加热指标确定与其对应的电池的运行电流以及运行频率的方式中,可以根据预设的关联集合来实现。其中可选的,该关联集合中记录有各个加热指标及其对应的运行电 流以及运行频率的关联关系。
也即当检测到电池的当前温度值为A,剩余电量值为C时,利用域控制器中的动力域可以根据预设的关联集合,选取与该当前温度值为A以及剩余电量值为C相对应的电流幅值。且,还可以根据预设的关联集合,选取与该当前温度值为A以及剩余电量值为C相对应的电流频率值。并将该两个电流幅值以及电流频率值作为运行指标。以使后续以该运行指标为标准,利用动力域控制充放电电路以电流幅值及电流频率对电池进行充放电
再具体举例进行说明,例如关联集合可以包括电流指标关联集合以及频率指标关联集合。
进一步的,如下表1所示,本申请实施例可以利用域控制器中的动力域将加热指标与电流指标关联集合相匹配,确定与该加热指标(即对应表中的温度以及剩余电量值SOC)相匹配的运行电流I:
表1
更进一步的,本申请实施例还可以利用域控制器中的动力域将加热指标与频率指标关联集合相匹配,确定与该加热指标(即对应表中的温度以及剩余电量值SOC)相匹配的运行频率f。
表2

可以理解的,本申请实施例中,根据上述所示的预设关联集合,即可利用域控制器中的动力域确定与加热指标相匹配的运行指标(即电池启动自加热功能时的运行电流以及运行频率)。
可以理解的,通过应用本申请实施例的技术方案,可以利用域控制器中的动力域周期性的检测启动自加热功能下的电池的温度值以及剩余电量值,并以此来对应调整电池自加热的运行电流以及运行频率。从而实现为电池的自加热功能制定一种合理的调整策略以保证热量均匀的分布至整个电池。进而避免相关技术中出现的,以固定功率的加热方式对电池持续加热所导致的影响电池使用寿命的问题。
可选地,在基于本申请上述方法的另一个实施例中,电机的中性线上设置有中性线开关;还包括:确定电池的供电电压位于预设电压范围后,控制中性线开关闭合;和/或,在电池自加热过程中,若确定与中性线连接的功率器件故障,则控制中性线开关断开。
通过应用本申请实施例的技术方案,可以中性线开关在电池自加热状态下,如果因为自加热时出现短路而无法分开,则可以通过闭合中性线开关来避免电机中心线与电池正极或负极短路,从而让第一、二、三桥臂和电机三相绕组仍能维持供电,避免动力丧失。
可选地,在基于本申请上述方法的另一个实施例中,控制充放电电路对电池进行充放电,还包括:每隔第二预设时间段,采集电池的当前温度值以及温升速率;若确定当前温度值大于预设温度阈值,或,检测到温升速率不满足预设速率范围时,控制充放电电路停止对电池进行充放电。
通过应用本申请实施例的技术方案,可以在将运行指标下发给电池后,利用电池管理系统基于电池返回的当前温度或升温率判断自加热过程是否出现异常,从而实时的启闭电池的自加热功能。进而避免出现充电过度所导致的影响电池使用寿命的问题。
可选地,本申请实施例的技术方案中,还可以在将运行指标下发给电池后,利用用域控制器中的动力域基于电池返回的当前温度或升温率判断自加热过程是否出现异常,从而实时的启闭电池的自加热功能。进而避免出现充电过度所导致的影响电池使用寿命的问题。
可选地,在基于本申请上述方法的另一个实施例中,在确定电池的充放电 电路中的电机处于无故障状态以及静止状态之后,还包括:确定用电装置内部是否存在用户;若不存在,控制用电装置为自加热状态,自加热状态包括对用电装置进行锁闭、控制所述用电装置的灯光、控制用电装置的鸣音装置的至少一种;若存在,调整用电装置的方向盘与用户座椅之间的距离。
通过应用本申请实施例的技术方案,可以在启动电池自加热的过程中,如果用电装备内部无人,则可以对用电装置进行锁闭状态,从而提示其他用户当前电池处于自加热过程中。另外,若检测到用电装备内部有人,则可以为了保证其舒适性,选择适应性的调整方向盘与用户座椅之间的距离。
可选的,在本申请的另外一种实施方式中,如图8所示,本申请还提供一种电池加热控制装置。其中,包括:
接收模块201,被配置为接收电池加热启动指令;
确定模块202,被配置为确定所述用电装置处于无故障状态以及静止状态;
所述确定模块202,被配置为确定所述电池满足自加热条件;以及,确定所述电池的充放电电路中的电机处于无故障状态以及静止状态;
控制模块203,被配置为控制所述充放电电路对所述电池进行充放电。
本申请实施例的技术方案中,可以在接收来自用电装置外部的电池自加热启动指令;确定用电装置处于无故障状态以及静止状态;确定电池满足自加热条件;以及,确定电池的充放电电路中的电机处于无故障状态以及静止状态;控制充放电电路对电池进行充放电。通过应用本申请的技术方案,可以在接收到用电装置外部的电池自加热启动指令后,不第一时间启动电池加热功能,而是在分别检测到用电装置、电池以及电机满足特定的条件下才会控制充放电电路对电池进行充放电。进而避免相关技术中出现的,由于用户手动控制电池自加热功能所导致的增加无效加热的情况,进而出现耗费能源的问题。
在本申请的另外一种实施方式中,确定模块202,被配置为:
确定所述用电装置处于无故障状态;以及,
检测所述用电装置的移动速率,若确定所述移动速率为零,确定所述用电装置处于静止状态。
在本申请的另外一种实施方式中,确定模块202,被配置为:
确定所述电池处于无故障状态;以及,
确定所述电池的当前温度值是否小于第一预设温度阈值,以及,所述电池 的当前剩余电量值是否大于预设电量阈值;
若均是,则确定所述电池满足所述自加热条件。
在本申请的另外一种实施方式中,确定模块202,被配置为:
确定所述电机处于无故障状态;以及,
确定所述电机的电机扭矩、电机转速以及电机电流是否为零;
若均是,则确定所述电机处于静止状态。
在本申请的另外一种实施方式中,控制模块203,被配置为:
控制所述电池为所述电机预充电,并在预充电完成后生成第一预启动信号;以及,
确定所述电池的供电电压位于预设电压范围内,生成第二预启动信号;
确定生成所述第一预启动信号以及所述第二预启动信号,控制所述充放电电路对所述电池进行充放电。
在本申请的另外一种实施方式中,确定模块202,被配置为:
每隔第一预设时间段检测所述电池的加热指标;
基于预设的关联集合,确定与所述加热指标相匹配的运行指标,所述运行指标用于确定所述电池的充放电参数;
控制所述充放电电路以所述运行指标对所述电池进行充放电。
在本申请的另外一种实施方式中,控制模块203,被配置为:
加热指标包括电池当前的温度值以及剩余电量值。
在本申请的另外一种实施方式中,控制模块203,被配置为:
所述运行指标包括电流幅值以及电流频率;
其中,所述控制所述充放电电路对所述电池进行充放电,包括:
控制所述充放电电路以所述运行指标所表征的电流幅值及所述电流频率对所述电池进行充放电。
在本申请的另外一种实施方式中,控制模块203,被配置为:
确定所述电池的供电电压位于预设电压范围内;
控制电机中心线上的中性线开关闭合;和/或,
在电池自加热过程中,若确定与电机的中性线连接的功率器件故障,则控制电机中心线上的中性线开关断开。
在本申请的另外一种实施方式中,控制模块203,被配置为:
每隔第二预设时间段,采集所述电池的当前温度值以及温升速率;
若确定所述当前温度值大于预设温度阈值,或,检测到所述温升速率不满 足预设速率范围时,控制所述充放电电路停止对所述电池进行充放电。
在本申请的另外一种实施方式中,控制模块203,被配置为:
确定所述用电装置内部是否存在用户;
若不存在,控制所述用电装置为自加热状态,所述自加热状态包括对所述用电装置进行锁闭、控制所述用电装置的灯光、控制所述用电装置的鸣音装置的至少一种;
若存在,调整所述用电装置的方向盘与用户座椅之间的距离。
图9是根据一示例性实施例示出的一种用电装置的逻辑结构框图。例如,电池300可以是包含一种承载有电池的用电装置。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由电池处理器执行以完成上述电池加热控制方法,该方法包括:接收电池加热启动指令;确定所述用电装置处于无故障状态以及静止状态;确定所述电池满足自加热条件;以及,确定所述电池的充放电电路中的电机处于无故障状态以及静止状态;控制所述充放电电路对所述电池进行充放电。可选地,上述指令还可以由电池的处理器执行以完成上述示例性实施例中所涉及的其他步骤。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在示例性实施例中,还提供了一种应用程序/计算机程序产品,包括一条或多条指令,该一条或多条指令可以由电池的处理器执行,以完成上述电池加热控制方法,该方法包括:接收电池加热启动指令;确定所述用电装置处于无故障状态以及静止状态;确定所述电池满足自加热条件;以及,确定所述电池的充放电电路中的电机处于无故障状态以及静止状态;控制所述充放电电路对所述电池进行充放电。可选地,上述指令还可以由电池的处理器执行以完成上述示例性实施例中所涉及的其他步骤。
图9为电池300的示例图。本领域技术人员可以理解,示意图9仅仅是电池300的示例,并不构成对电池300的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如电池300还可以包括输入输出设备、网络接入设备、总线等。
所称处理器302可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集 成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器302也可以是任何常规的处理器等,处理器302是电池300的控制中心,利用各种接口和线路连接整个电池300的各个部分。
存储器301可用于存储计算机可读指令303,处理器302通过运行或执行存储在存储器301内的计算机可读指令或模块,以及调用存储在存储器301内的数据,实现电池300的各种功能。存储器301可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据电池300的使用所创建的数据等。此外,存储器301可以包括硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)或其他非易失性/易失性存储器件。
电池300集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机可读指令来指令相关的硬件来完成,的计算机可读指令可存储于一计算机可读存储介质中,该计算机可读指令在被处理器执行时,可实现上述各个方法实施例的步骤。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种电池加热控制方法,其特征在于,包括:
    接收电池加热启动指令;
    确定用电装置处于无故障状态以及静止状态;
    确定所述电池满足自加热条件;以及,确定所述电池的充放电电路中的电机处于无故障状态以及静止状态;
    控制所述充放电电路对所述电池进行充放电。
  2. 如权利要求1所述的方法,其特征在于,所述确定用电装置处于无故障状态以及静止状态,包括:
    确定所述用电装置处于无故障状态;以及,
    检测所述用电装置的移动速率,若确定所述移动速率为零,确定所述用电装置处于静止状态。
  3. 如权利要求1或2所述的方法,其特征在于,所述确定所述电池满足自加热条件,包括:
    确定所述电池处于无故障状态;以及,
    确定所述电池的当前温度值是否小于第一预设温度阈值,以及,所述电池的当前剩余电量值是否大于预设电量阈值;
    若均是,则确定所述电池满足所述自加热条件。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述确定所述电池的充放电电路中的电机处于无故障状态以及静止状态,包括:
    确定所述电机处于无故障状态;以及,
    确定所述电机的电机扭矩、电机转速以及电机电流是否为零;
    若均是,则确定所述电机处于静止状态。
  5. 如权利要求1-4任一项所述的方法,其特征在于,在所述确定所述电池满足自加热条件;以及,确定所述电池的充放电电路中的电机处于无故障状态以及静止状态之后,还包括:
    控制所述电池为所述电机预充电,并在预充电完成后生成第一预启动信号;以及,
    确定所述电池的供电电压位于预设电压范围内,生成第二预启动信号;
    确定生成所述第一预启动信号以及所述第二预启动信号,控制所述充放电电路对所述电池进行充放电。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述控制所述充放电电路对所述电池进行充放电,包括:
    每隔第一预设时间段检测所述电池的加热指标;
    基于预设的关联集合,确定与所述加热指标相匹配的运行指标,所述运行指标用于确定所述电池的充放电参数;
    控制所述充放电电路以所述运行指标对所述电池进行充放电。
  7. 如权利要求6所述的方法,其特征在于,所述加热指标包括电池当前的温度值以及剩余电量值。
  8. 如权利要求6所述的方法,其特征在于,所述运行指标包括电流幅值以及电流频率;
    其中,所述控制所述充放电电路对所述电池进行充放电,包括:
    控制所述充放电电路以所述运行指标所表征的电流幅值及所述电流频率对所述电池进行充放电。
  9. 如权利要求1-8任一项所述的方法,其特征在于,还包括:
    确定所述电池的供电电压位于预设电压范围内;
    控制电机中心线上的中性线开关闭合;和/或,
    在电池自加热过程中,若确定与电机的中性线连接的功率器件故障,则控制电机中心线上的中性线开关断开。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述控制所述充放电电路对所述电池进行充放电,还包括:
    每隔第二预设时间段,采集所述电池的当前温度值以及温升速率;
    若确定所述当前温度值大于预设温度阈值,或,检测到所述温升速率不满足预设速率范围时,控制所述充放电电路停止对所述电池进行充放电。
  11. 如权利要求1-10任一项所述的方法,其特征在于,在所述确定所述电池的充放电电路中的电机处于无故障状态以及静止状态之后,还包括:
    确定所述用电装置内部是否存在用户;
    若不存在,控制所述用电装置为自加热状态,所述自加热状态包括对所述用电装置进行锁闭、控制所述用电装置的灯光、控制所述用电装置的鸣音装置的至少一种;
    若存在,调整所述用电装置的方向盘与用户座椅之间的距离。
  12. 一种电池加热控制装置,其特征在于,包括:
    接收模块,被配置为接收电池加热启动指令;
    确定模块,被配置为确定用电装置处于无故障状态以及静止状态;
    所述确定模块,被配置为确定所述电池满足自加热条件;以及,确定所述电池的充放电电路中的电机处于无故障状态以及静止状态;
    控制模块,被配置为控制所述充放电电路对所述电池进行充放电。
  13. 一种用电装置,其特征在于,包括:
    存储器,用于存储可执行指令;以及,
    处理器,用于与所述存储器执行所述可执行指令从而完成权利要求1-11中任一所述电池加热控制方法的操作。
  14. 一种计算机可读存储介质,用于存储计算机可读取的指令,其特征在于,所述指令被执行时执行权利要求1-11中任一所述电池加热控制方法的操作。
PCT/CN2023/082781 2022-05-06 2023-03-21 用电装置及其自加热的控制方法、装置及介质 WO2023213150A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210486964.6A CN115377556A (zh) 2022-05-06 2022-05-06 用电装置及其自加热的控制方法、装置及介质
CN202210486964.6 2022-05-06

Publications (1)

Publication Number Publication Date
WO2023213150A1 true WO2023213150A1 (zh) 2023-11-09

Family

ID=84060298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082781 WO2023213150A1 (zh) 2022-05-06 2023-03-21 用电装置及其自加热的控制方法、装置及介质

Country Status (2)

Country Link
CN (1) CN115377556A (zh)
WO (1) WO2023213150A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377556A (zh) * 2022-05-06 2022-11-22 宁德时代新能源科技股份有限公司 用电装置及其自加热的控制方法、装置及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030231005A1 (en) * 2002-03-18 2003-12-18 Hirofumi Kohama Battery control apparatus
CN113206325A (zh) * 2021-04-30 2021-08-03 重庆长安新能源汽车科技有限公司 一种动力电池内外部联合加热方法
CN113964418A (zh) * 2021-09-30 2022-01-21 三一汽车起重机械有限公司 电池加热控制方法、系统以及作业机械
CN114069102A (zh) * 2020-07-31 2022-02-18 比亚迪股份有限公司 一种动力电池的自加热方法、装置、系统及电动车辆
CN114204163A (zh) * 2020-09-02 2022-03-18 威马智慧出行科技(上海)有限公司 电动汽车电池包加热方法及电子设备
CN115377556A (zh) * 2022-05-06 2022-11-22 宁德时代新能源科技股份有限公司 用电装置及其自加热的控制方法、装置及介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120115086A (ko) * 2011-04-08 2012-10-17 박준 알에프아이디카드와 인체감지기를 이용한 독서실 관리 시스템
CN103419650B (zh) * 2012-05-22 2016-03-30 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
CN105762434B (zh) * 2016-05-16 2018-12-07 北京理工大学 一种具有自加热功能的电源系统和车辆
CN110970690B (zh) * 2018-12-29 2021-01-29 宁德时代新能源科技股份有限公司 电池加热系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030231005A1 (en) * 2002-03-18 2003-12-18 Hirofumi Kohama Battery control apparatus
CN114069102A (zh) * 2020-07-31 2022-02-18 比亚迪股份有限公司 一种动力电池的自加热方法、装置、系统及电动车辆
CN114204163A (zh) * 2020-09-02 2022-03-18 威马智慧出行科技(上海)有限公司 电动汽车电池包加热方法及电子设备
CN113206325A (zh) * 2021-04-30 2021-08-03 重庆长安新能源汽车科技有限公司 一种动力电池内外部联合加热方法
CN113964418A (zh) * 2021-09-30 2022-01-21 三一汽车起重机械有限公司 电池加热控制方法、系统以及作业机械
CN115377556A (zh) * 2022-05-06 2022-11-22 宁德时代新能源科技股份有限公司 用电装置及其自加热的控制方法、装置及介质

Also Published As

Publication number Publication date
CN115377556A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN107662500B (zh) 纯电动汽车上电控制方法及纯电动汽车
EP3154150B1 (en) Battery controller
US20140306658A1 (en) Charging system and charging reservation method
US10703355B2 (en) Vehicle and method for automatically selecting driving mode of the same
US10000137B2 (en) Hybrid vehicle with means for disconnection of a depleted auxiliary battery in order to allow for more rapid main battery charging
CN104487280B (zh) 车辆、电源系统和电源系统的控制方法
US10052964B2 (en) Method and apparatus for preventing deep discharging of auxiliary battery in association with reprogramming of ECU
WO2023213150A1 (zh) 用电装置及其自加热的控制方法、装置及介质
US20190130318A1 (en) Charge management server and method of controlling the same
US20190351775A1 (en) Vehicle reservation-based charging device and method of controlling the same
JP5301948B2 (ja) 制御装置
CN112572152B (zh) 一种电动汽车的控制方法、系统及装置
WO2019024648A1 (zh) 电动汽车的控制系统和汽车
CN209103151U (zh) 一种自动驾驶开放测试系统
US10836276B2 (en) Display device
WO2023207444A1 (zh) 用电装置及其加热的控制方法、装置及介质
WO2024032370A1 (zh) 应用于车辆中的空调远程控制方法、装置及电子设备
JP5757262B2 (ja) 空調装置およびそれを備える車両
JP6819471B2 (ja) 車両
CN114987207A (zh) 一种上下电模式的切换控制方法、装置、电子设备及介质
KR20130101893A (ko) 전기자동차 및 그 동작방법
CN112078484A (zh) 一种车辆启动提醒的控制方法、整车控制器、系统及车辆
CN215097119U (zh) 一种氢能汽车的低压电源智能保护系统
US11560134B2 (en) Default charging of automotive battery while parked
US20220297563A1 (en) Auxiliary Battery System for Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799138

Country of ref document: EP

Kind code of ref document: A1