WO2023213025A1 - 隧穿氧化层钝化接触电池背面结构及其制备方法和应用 - Google Patents
隧穿氧化层钝化接触电池背面结构及其制备方法和应用 Download PDFInfo
- Publication number
- WO2023213025A1 WO2023213025A1 PCT/CN2022/113241 CN2022113241W WO2023213025A1 WO 2023213025 A1 WO2023213025 A1 WO 2023213025A1 CN 2022113241 W CN2022113241 W CN 2022113241W WO 2023213025 A1 WO2023213025 A1 WO 2023213025A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- phosphorus
- doped
- passivation
- silicon
- Prior art date
Links
- 238000002161 passivation Methods 0.000 title claims abstract description 85
- 230000005641 tunneling Effects 0.000 title claims abstract description 14
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 50
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 50
- 239000010703 silicon Substances 0.000 claims abstract description 50
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 43
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 38
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 34
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000010409 thin film Substances 0.000 claims abstract description 24
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 19
- 229910021419 crystalline silicon Inorganic materials 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims description 54
- 229920005591 polysilicon Polymers 0.000 claims description 38
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 29
- 230000003647 oxidation Effects 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 18
- 239000010408 film Substances 0.000 claims description 17
- 238000000137 annealing Methods 0.000 claims description 14
- 238000007747 plating Methods 0.000 claims description 14
- 238000007650 screen-printing Methods 0.000 claims description 13
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 238000007772 electroless plating Methods 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 claims description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- 238000000231 atomic layer deposition Methods 0.000 claims description 4
- 229910000521 B alloy Inorganic materials 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- 229910001096 P alloy Inorganic materials 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims description 3
- OFNHPGDEEMZPFG-UHFFFAOYSA-N phosphanylidynenickel Chemical compound [P].[Ni] OFNHPGDEEMZPFG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 239000011135 tin Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 239000011573 trace mineral Substances 0.000 claims description 3
- 235000013619 trace mineral Nutrition 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 230000005684 electric field Effects 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 abstract description 6
- 230000035515 penetration Effects 0.000 abstract description 4
- 230000008021 deposition Effects 0.000 abstract description 2
- 239000002245 particle Substances 0.000 abstract description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 18
- 238000005245 sintering Methods 0.000 description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005553 drilling Methods 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 239000003513 alkali Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/128—Annealing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/129—Passivating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/219—Arrangements for electrodes of back-contact photovoltaic cells
Definitions
- the present invention relates to the technical field of solar cells, and specifically to a tunnel oxide layer passivation contact cell backside structure and its preparation method and application.
- the back electrode of P-type TOPCon cells usually uses aluminum paste. On the one hand, it forms ohmic contact with P-type polysilicon.
- aluminum is much cheaper than silver, which can significantly reduce the cost of the paste.
- aluminum will interact with silicon at the sintering temperature. An alloy phase is formed and rapidly diffuses in silicon. The diffusion depth can reach more than ten microns, resulting in significant recombination in the aluminum contact area and seriously affecting battery efficiency. If the polysilicon is made very thick to block the penetration of aluminum, it will cause great optical loss.
- the technical problem to be solved by the present invention is how to inhibit the diffusion of aluminum to the silicon substrate, thereby improving the cell efficiency.
- the first aspect of the present invention provides a tunnel oxide layer passivation contact battery backside structure, including a tunnel layer, a silicon oxide layer, a boron-doped polysilicon layer, and a phosphorus layer that are sequentially stacked on a crystalline silicon substrate.
- the passivation layer has openings exposing the phosphorus-doped silicon film layer, the openings of the passivation layer are provided with a nickel alloy layer, the nickel alloy layer There is an aluminum electrode layer on the surface.
- the main component of the nickel alloy layer is selected from one or more combinations of nickel, nickel-phosphorus alloy, and nickel-boron alloy.
- the nickel alloy layer is doped with one or more trace elements of chromium, copper, tin, silver and sulfur, with a doping amount of 0.01-1%.
- the thickness of the silicon oxide layer is 1-2nm
- the thickness of the boron-doped polysilicon layer is 20-200nm
- the thickness of the phosphorus-doped silicon thin film layer is 20-500nm
- the thickness of the nickel alloy layer is The thickness is 20-10000nm, preferably 100-200nm
- the thickness of the aluminum electrode layer is 100-20000nm.
- the phosphorus-doped silicon thin film layer is selected from the group consisting of phosphorus-doped polysilicon, phosphorus-doped amorphous silicon and phosphorus-doped microcrystalline silicon.
- the passivation layer is a stack composed of aluminum oxide and silicon nitride.
- the tunnel oxide layer passivation contact battery backside structure of the present invention has the following beneficial effects: the battery backside structure can take into account both low contact resistivity and passivation effect; a layer of phosphorus-doped is deposited on the boron-doped polysilicon Mixed silicon film layer, deposit a layer of nickel alloy layer on the surface of the phosphorus-doped silicon film layer that can block aluminum and provide good contact; the deposition rate of nickel and the diffusion rate in the crystalline silicon body are both small, and most of the nickel will form Larger particles are deposited on the surface of the phosphorus-doped silicon film and will not affect battery performance; the nickel alloy layer is very dense and can effectively block the penetration of aluminum, thereby ensuring that the battery has good passivation performance; the nickel alloy layer The material cost is low and it is easy to achieve mass production; the back electrode is made of nickel and aluminum metal, which has good chemical stability.
- a second aspect of the present invention provides a method for preparing the above-mentioned tunnel oxide layer passivation contact battery backside structure, which includes the following steps:
- the electroless plating method in S7 is to deposit a nickel alloy layer on the phosphorus-doped amorphous silicon under the induction of light field, electric field or sensitizer.
- the method for preparing boron-doped amorphous silicon in step S2 is PECVD, LPCVD, Sputtering, MWCVD, etc.
- the method for preparing phosphorus-doped silicon thin film by tubular PECVD method in step S4 is PECVD, LPCVD, Sputtering. , MWCVD, etc.
- the preparation method of silicon oxide in S1 is selected from any one of the following technologies: wet chemical oxidation, high temperature oxidation, plasma-assisted oxidation, ozone oxidation, and plasma-assisted atomic layer deposition. any kind.
- the passivation layer opening method in step S6 is laser drilling or etching opening.
- the method for preparing the back structure of the tunnel oxide layer passivation contact battery of the present invention has the following beneficial effects: the hole concentration in boron-doped polysilicon is much higher than the electron concentration, and direct electroless nickel plating cannot be used. Electric assistance, etc. are required.
- the nickel plating process can be realized only by depositing a layer of phosphorus-doped silicon film on boron-doped polysilicon, which can provide electrons for the subsequent electroless nickel plating process, thereby avoiding the use of complex electrically assisted processes; through electroless plating technology A nickel alloy layer is plated on the phosphorus-doped silicon film layer.
- the nickel alloy layer not only has good adhesion with the phosphorus-doped silicon film, but also can form a good ohmic contact by adjusting the composition of the nickel alloy layer and annealing treatment. Obtain low contact resistivity; electroless nickel plating has self-aligning properties and only deposits on the phosphorus-doped silicon film layer, which helps to simplify the process complexity; screen printing aluminum paste is used on the nickel alloy layer, which is better than electroplating method , its production capacity is higher and its cost is lower; the preparation method is simple, its cost is lower, and it is suitable for industrial mass production.
- the third aspect of the present invention provides the application of the above tunnel oxide layer passivation contact battery back structure, and the tunnel oxide layer passivation contact battery back structure is applied to N-type or P-type tunnel oxide layer passivation contact solar cells.
- Figure 1 is a schematic flowchart of the preparation method of the tunnel oxide layer passivation contact battery backside structure in the embodiment
- FIG. 2 is a schematic structural diagram of a tunnel oxide layer passivation contact battery in Embodiment 4.
- 1-crystalline silicon substrate 2-tunneling layer, 3-silicon oxide layer, 4-boron doped polysilicon layer, 5-phosphorus doped silicon thin film layer, 6-passivation layer, 7-nickel alloy layer, 8- Aluminum electrode layer, 9-boron emitter, 10-silver electrode.
- Embodiments of the present invention provide a tunnel oxide layer passivation contact battery backside structure, including a tunnel layer 2, a silicon oxide layer 3, a boron-doped polysilicon layer 4, a phosphorus-doped polysilicon layer 4 and a Mixed silicon thin film layer 5 and passivation layer 6, passivation layer 6 has openings exposing phosphorus-doped silicon thin film layer 5, the openings of passivation layer 6 are provided with nickel alloy layer 7, and the surface of nickel alloy layer 7 is provided with There is an aluminum electrode layer 8.
- the tunnel oxide passivation contact battery back structure forms a good ohmic contact through the nickel alloy layer 7 to obtain low contact resistivity.
- the nickel alloy layer 7 can inhibit the diffusion of aluminum to the silicon substrate, thereby ensuring that the battery has good passivation. Performance, this structure can be applied to N-type or P-type tunnel oxide layer passivation contact solar cells, thereby improving cell efficiency.
- the preparation method of the tunnel oxide layer passivation contact battery backside structure includes the following steps:
- the silicon oxide preparation method is selected from wet chemical oxidation, high temperature oxidation, plasma-assisted oxidation, ozone oxidation, and plasma-assisted atomic layer deposition. In any one of the methods, the thickness of the silicon oxide layer 3 is 1 to 2 nm;
- the phosphorus-doped silicon film is phosphorus-doped polysilicon, phosphorus-doped amorphous silicon or phosphorus-doped microcrystalline silicon, using PECVD or LPCVD. , Sputtering, MWCVD and other methods, the thickness of the phosphorus-doped silicon thin film layer 5 is 20 to 500nm; the phosphorus-doped silicon thin film layer 5 provides electrons for the subsequent electroless nickel plating process, avoiding the use of complex electrically assisted nickel plating processes;
- the passivation layer 6 is a stack of aluminum oxide and silicon nitride layers.
- the aluminum oxide is prepared by the ALD method, and the silicon nitride is prepared by the tubular PECVD method. preparation;
- the passivation layer 6 is opened for hole opening processing to expose the phosphorus-doped silicon thin film layer 5.
- the hole opening method can be laser drilling, or it can be patterned by photolithography, spraying, printing, etc., and then through Etching is used to form openings;
- the main component of the nickel alloy layer 7 is selected from nickel, nickel-phosphorus alloy, and nickel-boron alloy.
- One or more combinations of chromium, copper, tin, silver and sulfur can be doped with one or more trace elements, the doping amount is 0.01-1%, and the thickness of the nickel alloy layer 7 is 20-10000nm. , preferably 100 to 200nm; the nickel alloy layer 7 not only has good adhesion to the phosphorus-doped silicon film, but also can form good ohmic contact and obtain low contact resistivity by adjusting the composition and annealing treatment;
- the polysilicon surface usually needs to be able to provide electrons.
- the surface is made of boron-doped polysilicon, which cannot provide electrons.
- electrically assisted electroless plating which is a very complicated process.
- the above method deposits a layer of phosphorus-doped silicon film on boron-doped polysilicon, thereby providing electrons for the subsequent electroless nickel plating process and avoiding the use of complex electrically assisted nickel plating processes.
- the preparation method is simple and low-cost, and is suitable for Industrial mass production.
- the solar cells provided in the following examples and comparative examples are P-type tunneling oxide layer passivation contact cells.
- N-type crystalline silicon substrate double-sided alkali polishing and cleaning; use nitric acid oxidation method to prepare ultra-thin silicon oxide layer on both sides of the silicon wafer; use PECVD method to deposit 30nm boron-doped amorphous silicon on both sides; conduct 850°C ⁇ 950°C High-temperature annealing to form a tunneling layer and a boron-doped polysilicon layer; after removing the oxide layer by HF treatment, PECVD is used to deposit a 30nm phosphorus-doped amorphous silicon layer on both sides, and is rapidly thermally annealed at 500-800°C to crystallize it to form a phosphorus-doped amorphous silicon layer.
- Hybrid polysilicon layer use aluminum oxide and silicon nitride to cover and deposit the front and rear surfaces to prepare a passivation layer; then perform laser drilling on the passivation layer; use electroless plating to prepare a 20nm nickel alloy layer at the opening of the passivation layer, and Perform annealing at 150-600°C to form a nickel alloy layer; then use screen printing to print a 100nm aluminum electrode layer on the nickel alloy layer; then perform a belt furnace sintering process to prepare a tunnel oxide layer passivation contact battery.
- N-type crystalline silicon substrate double-sided alkali polishing and cleaning; use nitric acid oxidation method to prepare ultra-thin silicon oxide layer on both sides of the silicon wafer; use PECVD method to deposit 30nm boron-doped amorphous silicon on both sides; conduct 850°C ⁇ 950°C High-temperature annealing to form a tunneling layer and a boron-doped polysilicon layer; after removing the oxide layer by HF treatment, PECVD is used to deposit a 30nm phosphorus-doped amorphous silicon layer on both sides, and is rapidly thermally annealed at 500-800°C to crystallize it to form a phosphorus-doped amorphous silicon layer.
- Hybrid polysilicon layer use aluminum oxide and silicon nitride to cover and deposit the front and rear surfaces to prepare a passivation layer; then perform laser drilling on the passivation layer; use electroless plating to prepare a 200nm nickel alloy layer at the opening of the passivation layer, and Perform annealing at 150-600°C to form a nickel alloy layer; then use screen printing to print a 100nm aluminum electrode layer on the nickel alloy layer; then perform a belt furnace sintering process to prepare a tunnel oxide layer passivation contact battery.
- N-type crystalline silicon substrate double-sided alkali polishing and cleaning; use nitric acid oxidation method to prepare ultra-thin silicon oxide layer on both sides of the silicon wafer; use PECVD method to deposit 30nm boron-doped amorphous silicon on both sides; conduct 850°C ⁇ 950°C High-temperature annealing to form a tunneling layer and a boron-doped polysilicon layer; after removing the oxide layer by HF treatment, PECVD is used to deposit a 30nm phosphorus-doped amorphous silicon layer on both sides, and is rapidly thermally annealed at 500-800°C to crystallize it to form a phosphorus-doped amorphous silicon layer.
- Hybrid polycrystalline silicon layer use aluminum oxide and silicon nitride to cover and deposit the front and rear surfaces to prepare a passivation layer; then perform laser drilling on the passivation layer; use electroless plating to prepare a 2000nm nickel alloy layer at the opening of the passivation layer, and Perform annealing at 150-600°C to form a nickel alloy layer; then use screen printing to print a 100nm aluminum electrode layer on the nickel alloy layer; then perform a belt furnace sintering process to prepare a tunnel oxide layer passivation contact battery.
- N-type crystalline silicon substrate double-sided alkali polishing and cleaning; use nitric acid oxidation method to prepare ultra-thin silicon oxide layer on both sides of the silicon wafer; use PECVD method to deposit 30nm boron-doped amorphous silicon on both sides; conduct 850°C ⁇ 950°C High-temperature annealing to form a tunneling layer and a boron-doped polysilicon layer; after removing the oxide layer by HF treatment, PECVD is used to deposit a 30nm phosphorus-doped amorphous silicon layer on both sides, and is rapidly thermally annealed at 500-800°C to crystallize it to form a phosphorus-doped amorphous silicon layer.
- Hybrid polysilicon layer use aluminum oxide and silicon nitride to cover and deposit the front and rear surfaces to prepare a passivation layer; then perform laser drilling on the passivation layer; use screen printing to print 100nm aluminum on the phosphorus-doped amorphous silicon layer The electrode layer is then subjected to a belt furnace sintering process to prepare a tunnel oxide layer passivation contact battery.
- Example 2 The performance is optimal, indicating that the tunnel oxide layer passivation contact battery backside structure of the present invention has low contact resistivity and good passivation effect, and can greatly improve battery performance.
- N-type crystalline silicon substrate 1 is cleaned, double-sided textured, and boron-expanded on one side (front surface) to form a boron emitter 9; acid etching is performed on the non-boron-expanded surface to remove the boron plating layer and textured surface; use Preparing ultra-thin silicon oxide on the backside by nitric acid oxidation method to form silicon oxide layer 3; then using PECVD to prepare 30nm boron-doped amorphous silicon on the backside silicon oxide; annealing at high temperatures of 850°C to 950°C for different times to form a tunneling layer 2 and boron-doped polysilicon layer 4 to obtain the TOPCon structure; after removing the oxide layer by HF treatment, PECVD is used to deposit a 30nm phosphorus-doped amorphous silicon layer on the back, and is rapidly thermally annealed at 500-800°C to crystallize it to form phosphorus-doped poly
- N-type crystalline silicon substrate is cleaned, double-sided textured, and boron is expanded on one side (front surface) to form a boron emitter; acid etching is performed on the non-boron-expanded surface to remove the boron plating layer and textured surface; nitric acid is used for oxidation Method to prepare ultra-thin silicon oxide on the backside to form a silicon oxide layer; then use PECVD to prepare 30nm boron-doped amorphous silicon on the backside silicon oxide; anneal at high temperatures of 850°C to 950°C for different times to form tunneling layer 2 and boron Dope the polysilicon layer to obtain the TOPCon structure; after removing the oxide layer by HF treatment, use PECVD to deposit a 30nm phosphorus-doped amorphous silicon layer on the back, and rapidly anneal it at 500-800°C to crystallize it to form a phosphorus-doped polysilicon layer; then use Aluminum oxide and silicon
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明提供一种隧穿氧化层钝化接触电池背面结构及其制备方法和应用,电池背面结构包括依次叠加设置在晶硅衬底上的隧穿层、氧化硅层、硼掺杂多晶硅层、磷掺杂硅薄膜层和钝化层,所述钝化层具有露出所述磷掺杂硅薄膜层的开孔,所述钝化层的开孔部位设有镍合金层,所述镍合金层的表面设有铝电极层。该电池背面结构在硼掺杂多晶硅之上沉积一层磷掺杂硅薄膜层,在磷掺杂硅薄膜层表面沉积一层可以阻挡铝并提供良好接触的镍合金层,镍在晶体硅体内的扩散和沉积速率较小,且镍大部分会形成较大的颗粒沉积在磷掺杂硅薄膜表面的表面,不会对电池性能造成影响,镍合金层十分致密,可以有效阻挡铝的穿透,从而保证电池具有良好的钝化性能。
Description
本发明涉及太阳能电池技术领域,具体而言,涉及一种隧穿氧化层钝化接触电池背面结构及其制备方法和应用。
多晶硅(poly-Si)和超薄氧化硅(SiOx)钝化接触技术简称TOPCon,自2013年以来一直备受关注。在世界各光伏机构的努力下,TOPCon技术的N型和P型太阳能电池的最高效率分别提升到25.8%和26.1%。这种结构可以避免金属电极和硅晶圆之间的直接接触,显著提高表面钝化的质量,从而大幅提高太阳能电池的性能,开路电压(Voc)和填充系数(FF)比传统钝化发射极和后触点(PERC)太阳能电池更高。且TOPCon与PERC在工艺与设备上兼容度在70%以上,被认为是PERC电池背面升级最有前景的技术。
电极在太阳能电池中起着汇聚与导出电流的作用。P型TOPCon电池的背面电极通常采用铝浆,一方面为了与P型多晶硅形成欧姆接触;另一方面,铝比银便宜很多,可以显著降低浆料成本;但是,铝在烧结温度下会与硅形成合金相,且在硅中快速扩散,扩散深度可达十几微米,导致铝接触区的复合十分显著,严重影响电池效率。若将多晶硅做的很厚来阻挡铝的穿透,又会造成很大的光学损失。
发明内容
针对现有技术的不足,本发明所要解决的技术问题是如何抑制铝向硅衬底的扩散,从而提高电池效率。
为解决上述问题,本发明第一方面提供一种隧穿氧化层钝化接触电池背面结构,包括依次叠加设置在晶硅衬底上的隧穿层、氧化硅层、硼掺杂多晶硅层、磷掺杂硅薄膜层和钝化层,所述钝化层具有露出所述磷掺杂硅薄膜层的开孔,所述钝化层的开孔部位设有镍合金层,所述镍合金层的表面设有铝电极层。
进一步地,所述镍合金层的主要成分选自镍、镍磷合金、镍硼合金中的一种或多种组合。
进一步地,所述镍合金层中掺杂铬、铜、锡、银和硫中的一种或多种微量元素,掺杂量为0.01-1%。
进一步地,所述氧化硅层的厚度为1~2nm,所述硼掺杂多晶硅层的厚度为20~200nm,所述磷掺杂硅薄膜层的厚度为20~500nm,所述镍合金层的厚度为20~10000nm,优选为100~200nm,所述铝电极层的厚度为100~20000nm。
进一步地,所述磷掺杂硅薄膜层选自磷掺杂多晶硅、磷掺杂非晶硅和磷掺杂微晶硅。
进一步地,所述钝化层的为氧化铝和氮化硅构成的叠层。
相对于现有技术,本发明隧穿氧化层钝化接触电池背面结构具有以下有益效果:该电池背面结构可以兼顾低接触电阻率和钝化效果;在硼掺杂多晶硅之上沉积一层磷掺杂硅薄膜层,在磷掺杂硅薄膜层表面沉积一层可以阻挡铝并提供良好接触的镍合金层;镍的沉积速率以及在晶体硅体内的扩散速率都较小,且镍大部分会形成较大的颗粒沉积在磷掺杂硅薄膜表面的表面,不会对电池性能造成影响;镍合金层十分致密,可以有效阻挡铝的穿透,从而保证电池具有良好的钝化性能;镍合金层材料成本低,易于实现量产;背面电极采用镍和铝金属,具有很好的化学稳定性。
本发明第二方面提供一种上述隧穿氧化层钝化接触电池背面结构的制备方法,包括以下步骤:
S1、在晶硅衬底背面制备一层氧化硅层;
S2、在氧化硅层上制备一层硼掺杂非晶硅;
S3、进行高温退火,形成隧穿层和硼掺杂多晶硅层;
S4、在硼掺杂多晶硅层上制备一层磷掺杂硅薄膜层;
S5、在磷掺杂硅薄膜层上制备钝化层;
S6、钝化层开孔进行开孔处理,露出磷掺杂硅薄膜层;
S7、使用化学镀法在钝化层开孔部位对应的磷掺杂硅薄膜层上制备一层镍合金层;
S8、用丝网印刷的方法在镍合金层上制备铝电极层,烧结制得背面电极。
进一步地,所述S7中的化学镀法是在光场、电场或敏化剂的诱导下,在磷掺杂非晶硅上沉积一层镍合金层。
进一步地,所述步骤S2中制备硼掺杂非晶硅的方法为PECVD、LPCVD、Sputtering、MWCVD等,所述步骤S4采用管式PECVD法制备磷掺杂硅薄膜的方法为PECVD、LPCVD、Sputtering、MWCVD等。
进一步地,所述S1中氧化硅的制备方法选自以下技术中的任意一种:湿化学氧化法、高温氧化法、等离子体辅助氧化法、臭氧气氧化法、等离子体辅助原子层沉积法中的任意一种。
进一步地,所述步骤S6中钝化层开孔方法为激光开孔或刻蚀开孔。
相对于现有技术,本发明隧穿氧化层钝化接触电池背面结构的制备方法具有以下有益效果:硼掺杂多晶硅中空穴浓度远高于电子浓度,无法直接化学镀镍,需使用电辅助等才可实现镀镍工艺,而本发明通过在硼掺杂多晶硅之上沉积一层磷掺杂硅薄膜,可为后续化学镀镍工艺提供电子,从而避免使用复杂的电辅助工艺;通过化学镀技术在磷掺杂硅薄膜层上镀一层镍合金层,镍合金层既与磷掺杂硅薄膜有着良好的粘附力,又能通过调节镍合金层成份及退火处理,形成良好的欧姆接触,获得低接触电阻率;化学镀镍具有自对准特性,仅在磷掺杂硅薄膜层上发生沉积,从而有利于简化工艺复杂度;镍合金层上采用丝网印刷铝浆,相对于电镀法,其产能更高,成本更低;该制备方法简单,成本较低,适用于工业量产。
本发明第三方面提供上述隧穿氧化层钝化接触电池背面结构的应用,将所述隧穿氧化层钝化接触电池背面结构应用于N型或P型隧穿氧化层钝化接触太阳能电池。
图1为实施例中隧穿氧化层钝化接触电池背面结构的制备方法的流程示意图;
图2为实施例4中隧穿氧化层钝化接触电池的结构示意图。
附图标记说明:
1-晶硅衬底,2-隧穿层,3-氧化硅层,4-硼掺杂多晶硅层,5-磷掺杂硅薄膜层,6-钝化层,7-镍合金层,8-铝电极层,9-硼发射极,10-银电极。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。需要说明的是,以下各实施例仅用于说明本发明的实施方法和典型参数,而不用于限定本发明所述的参数范围,由此引申出的合理变化,仍处于本发明权利要求的保护范围内。
需要说明的是,在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明的实施例提供一种隧穿氧化层钝化接触电池背面结构,包括依次叠加设置在晶硅衬底1上的隧穿层2、氧化硅层3、硼掺杂多晶硅层4、磷掺杂硅薄膜层5和钝化层6,钝化层6具有露出磷掺杂硅薄膜层5的开孔,钝化层6的开孔部位设有镍合金层7,镍合金层7的表面设有铝电极层8。该隧穿氧化层钝化接触电池背面结构通过镍合金层7形成良好的欧姆接触,获得低接触电阻率,镍合金层7可以抑制铝向硅衬底的扩散,从而保证电池具有良好的钝化性能,该结构可以应用于N型或P型隧穿氧化层钝化接触太阳能电池,从而提高电池效率。
结合图1所示,隧穿氧化层钝化接触电池背面结构的制备方法包括以下步骤:
S0、晶硅衬底1进行RCA标准清洗
S1、在晶硅衬底1背面制备一层氧化硅层3,氧化硅的制备方法选自湿化学氧化法、高温氧化法、等离子体辅助氧化法、臭氧气氧化法、等离子体辅助原子层沉积法中的任意一种,氧化硅层3的厚度为1~2nm;
S2、在氧化硅层3上制备一层硼掺杂非晶硅,采用PECVD、LPCVD、Sputtering、MWCVD等方法制备硼掺杂非晶硅,硼掺杂非晶硅的厚度为20~200nm;
S3、将沉积完硼掺杂非晶硅层的样品在扩散退火炉中进行高温退火,晶化温度为800℃~950℃,形成隧穿层2和硼掺杂多晶硅层4;
S4、在硼掺杂多晶硅层4上制备一层磷掺杂硅薄膜层5,磷掺杂硅薄膜为磷掺杂多晶硅、磷掺杂非晶硅或磷掺杂微晶硅,采用PECVD、LPCVD、Sputtering、MWCVD等方法制备,磷掺杂硅薄膜层5的厚度为20~500nm;磷掺杂硅薄膜层5为后续化学镀镍工艺提供电子,避免使用复杂的电辅助镀镍工艺;
S5、在磷掺杂硅薄膜层5上制备钝化层6,钝化层6的为氧化铝和氮化硅层构成的叠层,氧化铝采用ALD法制备,氮化硅采用管式PECVD法制备;
S6、钝化层6开孔进行开孔处理,露出磷掺杂硅薄膜层5,开孔的方法可以是激光开孔,也可以是通过光刻、喷涂、印刷等方法形成图案化,进而通过刻蚀的方法形成开孔;
S7、使用化学镀法在钝化层6开孔部位对应的磷掺杂硅薄膜层5上制备一层镍合金层7,镍合金层7的主要成分选自镍、镍磷合金、镍硼合金中的一种或多种组合,可以掺杂铬、铜、锡、银和硫中的一种或多种微量元素,掺杂量为0.01-1%,镍合金层7的厚度为20~10000nm,优选为100~200nm;镍合金层7既与磷掺杂硅薄膜有着良好的粘附力,又能通过调节成份及退火处理,形成良好的欧姆接触,获得低接触电阻率;
S8、用丝网印刷的方法在镍合金层7上制备铝电极层8,铝电极层8厚度为100~20000nm;采用丝网印刷法印上铝浆,镍合金层7十分致密,可以有效阻挡铝浆的穿透,从而保证电池具有良好的钝化性能,再经过链式炉进行烧结,使铝浆与合金镍层形成良好的欧姆接触,烧结温度为400-600℃,制得背面电极。
如果通过光诱导化学镀法在多晶硅表面沉积一层可以阻挡铝并提供良好接触的镍合金层,通常需要多晶硅表面能够提供电子。然而对于P型TOPCon 电池而言,表面采用硼掺杂的多晶硅,不能提供电子,若想实现镀镍,就要采用电辅助化学镀法,工艺非常复杂。上述方法通过在硼掺杂多晶硅之上沉积一层磷掺杂硅薄膜,从而为后续化学镀镍工艺提供电子,避免使用复杂的电辅助镀镍工艺,该制备方法简单,成本较低,适用于工业量产。
以下将通过具体实施例对本发明进行详细描述,以下实施例和对比例提供的太阳能电池为P型隧穿氧化层钝化接触电池。
实施例1
N型晶硅衬底,双面碱抛,清洗;采用硝酸氧化法在硅片正反面制备超薄氧化硅层;采用PECVD法双面沉积30nm硼掺杂非晶硅;进行850℃~950℃高温退火,形成隧穿层和硼掺杂多晶硅层;HF处理去除氧化层之后,采用PECVD双面沉积30nm磷掺杂非晶硅层,并500-800℃快速热退火,使其结晶形成磷掺杂多晶硅层;采用氧化铝和氮化硅对前后表面进行覆盖沉积制备钝化层;随后对钝化层进行激光开孔;在钝化层开孔部位采用化学镀法制备20nm镍合金层,并进行150-600℃退火,形成镍合金层;接着用丝网印刷法在镍合金层之上印刷100nm铝电极层;随后进行带式炉烧结处理,制得隧穿氧化层钝化接触电池。
实施例2
N型晶硅衬底,双面碱抛,清洗;采用硝酸氧化法在硅片正反面制备超薄氧化硅层;采用PECVD法双面沉积30nm硼掺杂非晶硅;进行850℃~950℃高温退火,形成隧穿层和硼掺杂多晶硅层;HF处理去除氧化层之后,采用PECVD双面沉积30nm磷掺杂非晶硅层,并500-800℃快速热退火,使其结晶形成磷掺杂多晶硅层;采用氧化铝和氮化硅对前后表面进行覆盖沉积制备钝化层;随后对钝化层进行激光开孔;在钝化层开孔部位采用化学镀法制备200nm镍合金层,并进行150-600℃退火,形成镍合金层;接着用丝网印刷法在镍合金层之上印刷100nm铝电极层;随后进行带式炉烧结处理,制得隧穿氧化层钝化接触电池。
实施例3
N型晶硅衬底,双面碱抛,清洗;采用硝酸氧化法在硅片正反面制备超 薄氧化硅层;采用PECVD法双面沉积30nm硼掺杂非晶硅;进行850℃~950℃高温退火,形成隧穿层和硼掺杂多晶硅层;HF处理去除氧化层之后,采用PECVD双面沉积30nm磷掺杂非晶硅层,并500-800℃快速热退火,使其结晶形成磷掺杂多晶硅层;采用氧化铝和氮化硅对前后表面进行覆盖沉积制备钝化层;随后对钝化层进行激光开孔;在钝化层开孔部位采用化学镀法制备2000nm镍合金层,并进行150-600℃退火,形成镍合金层;接着用丝网印刷法在镍合金层之上印刷100nm铝电极层;随后进行带式炉烧结处理,制得隧穿氧化层钝化接触电池。
对比例1
N型晶硅衬底,双面碱抛,清洗;采用硝酸氧化法在硅片正反面制备超薄氧化硅层;采用PECVD法双面沉积30nm硼掺杂非晶硅;进行850℃~950℃高温退火,形成隧穿层和硼掺杂多晶硅层;HF处理去除氧化层之后,采用PECVD双面沉积30nm磷掺杂非晶硅层,并500-800℃快速热退火,使其结晶形成磷掺杂多晶硅层;采用氧化铝和氮化硅对前后表面进行覆盖沉积制备钝化层;随后对钝化层进行激光开孔;用丝网印刷法在磷掺杂非晶硅层之上印刷100nm铝电极层;随后进行带式炉烧结处理,制得隧穿氧化层钝化接触电池。
测试实施例1-3和对比例1制得的隧穿氧化层钝化接触电池的关键参数,结果如下表1所示。
表1实施例与对比例TOPCon电池关键参数对比表
根据检测结果可知,实施例1-3制得的隧穿氧化层钝化接触电池的寿命、暗饱和电流密度、隐含开路电压、接触电阻等关键参数均优于对比例1,其中实施例2的性能最优,说明本发明的隧穿氧化层钝化接触电池背面结构具有 低接触电阻率和良好的钝化效果,可以大幅提高电池性能。
实施例4
N型晶硅衬底1,清洗,双面制绒,单面扩硼(正表面),形成硼发射极9;对非扩硼面进行酸刻蚀处理去除绕镀硼层及绒面;采用硝酸氧化法在背面制备超薄氧化硅,形成氧化硅层3;随后用PECVD在背面氧化硅上制备30nm的硼掺杂非晶硅;进行850℃~950℃高温不同时间退火,形成隧穿层2和硼掺杂多晶硅层4,得到TOPCon结构;HF处理去除氧化层之后,采用PECVD背面沉积30nm磷掺杂非晶硅层,并500-800℃快速热退火,使其结晶形成磷掺杂多晶硅层5;随后采用氧化铝和氮化硅对前后表面进行覆盖沉积,形成钝化层6;随后对背面钝化层6激光开孔;采用化学镀法在磷掺杂多晶硅层5之上镀200nm的镍,并进行150-600℃退火,形成镍合金层7;接着用丝网印刷法在镍合金层7之上印刷100nm铝浆,随后进行带式炉烧结处理,形成铝电极层8;正面同时采用丝网印刷法制备银电极10;制得如图2所示的隧穿氧化层钝化接触太阳能电池。经测试,该电池的平均效率大于23.5%。
对比例2
N型晶硅衬底,清洗,双面制绒,单面扩硼(正表面),形成硼发射极;对非扩硼面进行酸刻蚀处理去除绕镀硼层及绒面;采用硝酸氧化法在背面制备超薄氧化硅,形成氧化硅层;随后用PECVD在背面氧化硅上制备30nm的硼掺杂非晶硅;进行850℃~950℃高温不同时间退火,形成隧穿层2和硼掺杂多晶硅层,得到TOPCon结构;HF处理去除氧化层之后,采用PECVD背面沉积30nm磷掺杂非晶硅层,并500-800℃快速热退火,使其结晶形成磷掺杂多晶硅层;随后采用氧化铝和氮化硅对前后表面进行覆盖沉积,形成钝化层;随后对背面钝化层激光开孔;接着用丝网印刷法在磷掺杂多晶硅之上印刷100nm铝电极层,随后进行带式炉烧结处理;正面同时采用丝网印刷法制备银电极;制得隧穿氧化层钝化接触太阳能电池。经测试,该电池的平均效率大于18.6%。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。
Claims (10)
- 一种隧穿氧化层钝化接触电池背面结构,其特征在于,包括依次叠加设置在晶硅衬底上的隧穿层、氧化硅层、硼掺杂多晶硅层、磷掺杂硅薄膜层和钝化层,所述钝化层具有露出所述磷掺杂硅薄膜层的开孔,所述钝化层的开孔部位设有镍合金层,所述镍合金层的表面设有铝电极层。
- 根据权利要求1所述的隧穿氧化层钝化接触电池背面结构,其特征在于,所述镍合金层的主要成分选自镍、镍磷合金、镍硼合金中的一种或多种组合。
- 根据权利要求2所述的隧穿氧化层钝化接触电池背面结构,其特征在于,所述镍合金层中掺杂铬、铜、锡、银和硫中的一种或多种微量元素,掺杂量为0.01-1%。
- 根据权利要求1所述的隧穿氧化层钝化接触电池背面结构,其特征在于,所述氧化硅层的厚度为1~2nm,所述硼掺杂多晶硅层的厚度为20~200nm,所述磷掺杂硅薄膜层的厚度为20~500nm,所述镍合金层的厚度为20~10000nm,所述铝电极层的厚度为100~20000nm。
- 根据权利要求1所述的隧穿氧化层钝化接触电池背面结构,其特征在于,所述磷掺杂硅薄膜层选自磷掺杂多晶硅、磷掺杂非晶硅和磷掺杂微晶硅。
- 根据权利要求1所述的隧穿氧化层钝化接触电池背面结构,其特征在于,所述钝化层的为氧化铝和氮化硅构成的叠层。
- 一种如权利要求1-6任一所述的隧穿氧化层钝化接触电池背面结构的制备方法,其特征在于,包括以下步骤:S1、在晶硅衬底背面制备一层氧化硅层;S2、在氧化硅层上制备一层硼掺杂非晶硅;S3、进行高温退火,形成隧穿层和硼掺杂多晶硅层;S4、在硼掺杂多晶硅层上制备一层磷掺杂硅薄膜层;S5、在磷掺杂硅薄膜层上制备钝化层;S6、钝化层开孔进行开孔处理,露出磷掺杂硅薄膜层;S7、使用化学镀法在钝化层开孔部位对应的磷掺杂硅薄膜层上制备一层镍合金层;S8、用丝网印刷的方法在镍合金层上制备铝电极层,烧结制得背面电极。
- 根据权利要求5所述的隧穿氧化层钝化接触电池背面结构的制备方法,其特征在于,所述S7中的化学镀法是在光场、电场或敏化剂的诱导下,在磷掺杂非晶硅上沉积一层镍合金层。
- 根据权利要求5所述的隧穿氧化层钝化接触电池背面结构的制备方法,其特征在于,所述S1中氧化硅的制备方法选自以下技术中的任意一种:湿化学氧化法、高温氧化法、等离子体辅助氧化法、臭氧气氧化法、等离子体辅助原子层沉积法。
- 如权利要求1-4任一所述的隧穿氧化层钝化接触电池背面结构的应用,其特征在于,将所述隧穿氧化层钝化接触电池背面结构应用于N型或P型隧穿氧化层钝化接触太阳能电池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210499873.6A CN115050843B (zh) | 2022-05-06 | 2022-05-06 | 隧穿氧化层钝化接触电池背面结构及其制备方法和应用 |
CN202210499873.6 | 2022-05-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023213025A1 true WO2023213025A1 (zh) | 2023-11-09 |
Family
ID=83157628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/113241 WO2023213025A1 (zh) | 2022-05-06 | 2022-08-18 | 隧穿氧化层钝化接触电池背面结构及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115050843B (zh) |
WO (1) | WO2023213025A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117525180A (zh) * | 2024-01-05 | 2024-02-06 | 通威太阳能(眉山)有限公司 | 太阳电池及其制备方法、光伏组件 |
CN117525179A (zh) * | 2024-01-05 | 2024-02-06 | 通威太阳能(眉山)有限公司 | 太阳电池及其制备方法、光伏组件 |
CN117976744A (zh) * | 2024-03-21 | 2024-05-03 | 金阳(泉州)新能源科技有限公司 | 无单晶硅衬底的背接触电池及其制备方法和柔性电池组件 |
CN118431308A (zh) * | 2024-07-05 | 2024-08-02 | 绵阳炘皓新能源科技有限公司 | 一种双层位错微晶Poly-Si结构、太阳能电池及制备方法 |
CN119133265A (zh) * | 2024-11-18 | 2024-12-13 | 通威太阳能(成都)有限公司 | 一种钝化接触太阳电池及光伏组件 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115394863A (zh) * | 2022-09-29 | 2022-11-25 | 通威太阳能(眉山)有限公司 | 一种太阳电池及其制备方法 |
CN115621333B (zh) | 2022-11-22 | 2023-03-10 | 金阳(泉州)新能源科技有限公司 | 双面隧穿氧化硅钝化的背接触太阳能电池及其制备方法 |
CN116314375A (zh) * | 2023-03-14 | 2023-06-23 | 新疆中部合盛硅业有限公司 | 一种基于硼浆印刷的TOPCon电池及其制备工艺 |
CN118073436A (zh) * | 2023-12-27 | 2024-05-24 | 江苏林洋太阳能有限公司 | 一种钝化接触结构及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019204870A (ja) * | 2018-05-23 | 2019-11-28 | 京セラ株式会社 | 太陽電池素子および太陽電池素子の製造方法 |
CN111628052A (zh) * | 2020-07-13 | 2020-09-04 | 苏州腾晖光伏技术有限公司 | 一种钝化接触电池的制备方法 |
CN113421949A (zh) * | 2021-08-23 | 2021-09-21 | 晶科能源(海宁)有限公司 | 太阳能电池及其制备方法、光伏组件 |
CN114005908A (zh) * | 2021-11-23 | 2022-02-01 | 晶澳(扬州)太阳能科技有限公司 | 一种太阳能电池以及太阳能电池的制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101768907B1 (ko) * | 2016-09-27 | 2017-08-18 | 충남대학교산학협력단 | 태양 전지 제조 방법 |
TWI671914B (zh) * | 2018-01-23 | 2019-09-11 | 茂迪股份有限公司 | 太陽能電池及其製造方法 |
CN113707734B (zh) * | 2021-08-24 | 2024-04-26 | 上海交通大学 | 具有空穴选择钝化结构的晶硅/钙钛矿叠层太阳电池 |
-
2022
- 2022-05-06 CN CN202210499873.6A patent/CN115050843B/zh active Active
- 2022-08-18 WO PCT/CN2022/113241 patent/WO2023213025A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019204870A (ja) * | 2018-05-23 | 2019-11-28 | 京セラ株式会社 | 太陽電池素子および太陽電池素子の製造方法 |
CN111628052A (zh) * | 2020-07-13 | 2020-09-04 | 苏州腾晖光伏技术有限公司 | 一种钝化接触电池的制备方法 |
CN113421949A (zh) * | 2021-08-23 | 2021-09-21 | 晶科能源(海宁)有限公司 | 太阳能电池及其制备方法、光伏组件 |
CN114005908A (zh) * | 2021-11-23 | 2022-02-01 | 晶澳(扬州)太阳能科技有限公司 | 一种太阳能电池以及太阳能电池的制备方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117525180A (zh) * | 2024-01-05 | 2024-02-06 | 通威太阳能(眉山)有限公司 | 太阳电池及其制备方法、光伏组件 |
CN117525179A (zh) * | 2024-01-05 | 2024-02-06 | 通威太阳能(眉山)有限公司 | 太阳电池及其制备方法、光伏组件 |
CN117525180B (zh) * | 2024-01-05 | 2024-03-12 | 通威太阳能(眉山)有限公司 | 太阳电池及其制备方法、光伏组件 |
CN117525179B (zh) * | 2024-01-05 | 2024-04-02 | 通威太阳能(眉山)有限公司 | 太阳电池及其制备方法、光伏组件 |
CN117976744A (zh) * | 2024-03-21 | 2024-05-03 | 金阳(泉州)新能源科技有限公司 | 无单晶硅衬底的背接触电池及其制备方法和柔性电池组件 |
CN118431308A (zh) * | 2024-07-05 | 2024-08-02 | 绵阳炘皓新能源科技有限公司 | 一种双层位错微晶Poly-Si结构、太阳能电池及制备方法 |
CN119133265A (zh) * | 2024-11-18 | 2024-12-13 | 通威太阳能(成都)有限公司 | 一种钝化接触太阳电池及光伏组件 |
Also Published As
Publication number | Publication date |
---|---|
CN115050843A (zh) | 2022-09-13 |
CN115050843B (zh) | 2024-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023213025A1 (zh) | 隧穿氧化层钝化接触电池背面结构及其制备方法和应用 | |
CN108807565B (zh) | 一种钝化接触电极结构,其适用的太阳能电池及制作方法 | |
JP5223004B2 (ja) | 低温精密エッチ・バック及び不動態化プロセスで製造された選択エミッタを有する結晶シリコンpv電池 | |
CN116525708A (zh) | 正面宽带隙掺杂的联合钝化背接触太阳电池及其制备方法 | |
JP5174635B2 (ja) | 太陽電池素子 | |
WO2022142343A1 (zh) | 太阳能电池及其制备方法 | |
CN210200743U (zh) | 太阳能电池 | |
CN108922936A (zh) | 一种mwt太阳能电池及其制备方法 | |
WO2023123814A1 (zh) | 一种ibc太阳能电池及其制备方法 | |
CN117476796A (zh) | 一种TOPCon电池及TOPCon电池的制备方法 | |
WO2024007495A1 (zh) | 改性隧穿氧化层及制备方法、TOPCon结构及制备方法和太阳电池 | |
JP3619681B2 (ja) | 太陽電池及びその製造方法 | |
CN117594674A (zh) | 一种背接触电池及其制备方法和电池组件 | |
CN112133769A (zh) | 太阳能电池及其制造方法 | |
CN115064600B (zh) | 一种TOPCon电池的电极结构及其制备方法和应用 | |
CN102376821A (zh) | 晶体硅太阳电池背钝化工艺及其结构 | |
CN112635583A (zh) | 一种p型多晶硅钝化接触的金属化电极 | |
CN116247123A (zh) | P型背面隧穿氧化钝化接触太阳能电池的制备方法 | |
CN108389914A (zh) | 一种钝化隧穿层材料制备及其在太阳电池的应用 | |
CN118281087B (zh) | 一种背接触电池及其制作方法和光伏组件 | |
CN115692517A (zh) | 一种采用电镀工艺金属化的P型Topcon背结电池及其制备方法 | |
WO2024234954A1 (zh) | 太阳电池及其制备方法 | |
CN115207135B (zh) | 一种perc电池的制备方法 | |
CN117577732A (zh) | 一种选择性发射极结构及其制备方法 | |
CN112133768A (zh) | 背接触太阳电池的制作方法及背接触太阳电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22940719 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |