WO2023211213A1 - 유기 화합물 및 이를 이용한 유기 전계 발광 소자 - Google Patents

유기 화합물 및 이를 이용한 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2023211213A1
WO2023211213A1 PCT/KR2023/005798 KR2023005798W WO2023211213A1 WO 2023211213 A1 WO2023211213 A1 WO 2023211213A1 KR 2023005798 W KR2023005798 W KR 2023005798W WO 2023211213 A1 WO2023211213 A1 WO 2023211213A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
aryl
arylphosphine
alkyl
Prior art date
Application number
PCT/KR2023/005798
Other languages
English (en)
French (fr)
Inventor
이의건
손효석
박우재
정동기
심재의
Original Assignee
솔루스첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔루스첨단소재 주식회사 filed Critical 솔루스첨단소재 주식회사
Publication of WO2023211213A1 publication Critical patent/WO2023211213A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a novel organic compound and an organic electroluminescent device using the same. More specifically, it relates to a compound having excellent electron transport ability, luminescence ability, etc., and properties such as luminous efficiency, driving voltage, and lifespan by including it in one or more organic material layers. This relates to improved organic electroluminescent devices.
  • an organic electroluminescent device When a voltage is applied between two electrodes in an organic electroluminescent device (hereinafter referred to as an 'organic EL device'), holes are injected into the organic material layer from the anode, and electrons are injected into the organic material layer from the cathode. When the injected hole and electron meet, an exciton is formed, and when this exciton falls to the ground state, light is emitted. At this time, the material used as the organic material layer can be classified into light-emitting material, hole injection material, hole transport material, electron transport material, electron injection material, etc., depending on its function.
  • Light-emitting materials can be divided into blue, green, and red light-emitting materials according to their emission color, and yellow and orange light-emitting materials to achieve better natural colors. Additionally, in order to increase color purity and increase luminous efficiency through energy transfer, a host/dopant system can be used as a luminescent material.
  • Dopant materials can be divided into fluorescent dopants using organic materials and phosphorescent dopants using metal complex compounds containing heavy atoms such as Ir and Pt. At this time, because the development of phosphorescent materials can theoretically improve luminous efficiency by up to 4 times compared to fluorescence, much research is being conducted on phosphorescent host materials as well as phosphorescent dopants.
  • NPB, BCP, Alq 3 , etc. are widely known as hole blocking layer and electron transport layer materials, and anthracene derivatives are reported as light emitting layer materials.
  • metal complex compounds containing Ir such as Firpic, Ir(ppy) 3 , and (acac)Ir(btp) 2 , which have advantages in terms of efficiency improvement among light emitting layer materials, produce blue, green, and red colors. (red) is used as a phosphorescent dopant material, and 4,4-dicarbazolybiphenyl (CBP) is used as a phosphorescent host material.
  • the present invention provides a novel organic compound that has excellent electron injection and transport capabilities, electrochemical stability, thermal stability, etc., and can be used as an organic material layer material for an organic electroluminescent device, specifically an electron transport layer material or an N-type charge generation layer material.
  • the purpose is to
  • Another object of the present invention is to provide an organic electroluminescent device that exhibits low driving voltage, high luminous efficiency, and improved lifespan, including the novel organic compound described above.
  • the present invention provides an organic compound represented by the following formula (1):
  • Ar 1 to Ar 3 are the same as or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, phosphine oxide group, C 1 to C 40 alkylphosphine oxide group, C 1 to C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 ⁇ C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, C 1 to C 40 alkyloxy group, C 6 to C 60 aryloxy group, C 1 to C 40 alkylsilyl group, C 6 to C 60 aryl Silyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇ C 60 aryl
  • any one of Ar 1 to Ar 3 is a substituent represented by the following formula (2),
  • X 1 to X 5 are the same or different from each other, and are each independently N or CR 1 ,
  • a plurality of R 1 is the same as or different from each other, and each independently represents hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, C 1 to C 40 Alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 Aryl boron group, phosphine oxide group, C 1 ⁇ C 40 alkylphosphine oxide group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇ C 60
  • any one of the plurality of R 1 is a substituent represented by the following formula (3),
  • Y 1 is selected from the group consisting of O, S, C(R 3 )(R 4 ), Si(R 5 )(R 6 ), and P(R 7 ),
  • a is an integer from 0 to 4,
  • R 2 to R 7 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C 1 ⁇ C 40 alkylphosphine oxide group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇ C
  • Ar 1 to Ar 3 and R 1 to R 7 of an alkyl group, alkenyl group, alkynyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group, alkylsilyl group, arylsilyl group, alkyl boron group, aryl boron group, alkyl phosphine oxide group, aryl phosphine group, aryl phosphine oxide group, aryl amine group and condensed ring are each independently selected from deuterium, halogen, cyano group, nitro group, C 2 to C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 1 ⁇ C 40 alkyl group, C 6 ⁇ C 60 aryl group , heteroaryl group with 5 to 60 nuclear
  • the present invention is an anode; cathode; and one or more organic material layers interposed between the anode and the cathode, wherein at least one of the one or more organic material layers includes the above-described organic compound.
  • the organic material layer containing the compound may be any one of an electron transport layer, an electron transport auxiliary layer, and a light emitting layer.
  • the present invention includes an anode and a cathode that are oriented and spaced apart from each other; a plurality of light emitting units interposed between the anode and the cathode; It provides an organic electroluminescent device comprising a charge generation layer interposed between adjacent light emitting units, wherein each light emitting unit includes a hole transport layer, a light emitting layer, and an electron transport layer, and the charge generation layer includes the above-described compound.
  • the compound of the present invention can be used as an organic layer material of an organic electroluminescent device because it has excellent electron transport ability, luminescence ability, electrochemical stability, and thermal stability.
  • the compound of the present invention when used as at least one of an electron transport layer material, an electron transport auxiliary layer material, a light-emitting layer material (e.g., a host material), and a charge generation layer material (e.g., an N-type charge generation layer material), it can be used in conventional materials. It is possible to manufacture organic electroluminescent devices with excellent light-emitting performance, low driving voltage, high efficiency, and long lifespan characteristics, and furthermore, full-color display panels with improved performance and lifespan can be manufactured.
  • FIG. 1 is a cross-sectional view schematically showing an organic electroluminescent device according to a first embodiment of the present invention.
  • Figure 2 is a cross-sectional view schematically showing an organic electroluminescent device according to a second embodiment of the present invention.
  • Figure 3 is a cross-sectional view schematically showing an organic electroluminescent device according to a third embodiment of the present invention.
  • Figure 4 is a cross-sectional view schematically showing an organic electroluminescent device according to a fourth embodiment of the present invention.
  • 300 organic material layer
  • 310 hole injection layer
  • a pyrimidine moiety and a dibenzo-based moiety are bonded through a divalent pyridine group, and the divalent pyridine group is located at positions 2, 4, and 6 of the pyrimidine moiety. It contains a basic structure bonded to any one of the carbon positions, and is represented by Formula 1 above.
  • the compound of Formula 1 according to the present invention has excellent electron injection and transport ability, luminescence ability, electrochemical stability, and thermal stability, and can improve the high efficiency, long life, driving voltage characteristics, and progressive driving voltage characteristics of organic electroluminescent devices.
  • novel compounds that can be used as an electron transport layer material, an electron transport auxiliary layer material, a host material for a light-emitting layer, or a charge generation layer material (e.g., N-type charge generation layer material).
  • a charge generation layer material e.g., N-type charge generation layer material.
  • the carbon/nitrogen position number of the pyrimidine moiety can be expressed as follows.
  • the pyrimidine moiety has higher LUMO energy than triazine, so it can improve device efficiency (particularly, current efficiency).
  • One of the 2, 4, and 6 carbon positions of this pyrimidine moiety is a divalent pyridine group, which is a linker group.
  • -Carbazole-based moiety is introduced.
  • the dibenzo moiety e.g. dibenzofuran, dibenzothiophene, fluorene moiety, etc.
  • the dibenzo moiety has high hole mobility
  • the pyrimidine moiety has electron withdrawing properties.
  • the compound represented by Formula 1 since the compound represented by Formula 1 has excellent electron transport ability and luminescence properties, it can be used in any of the organic material layers of the organic electroluminescent device: a hole injection layer, a hole transport layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer, and an electron injection layer. It can be used as a single material.
  • the compound represented by Formula 1 may be used as a material for any one of a light emitting layer, an electron transport layer, and an electron transport auxiliary layer additionally laminated on the electron transport layer.
  • the compound represented by Formula 1 can be used as a charge generation layer material, especially an N-type charge generation layer material (e.g., host), in which case electrons flow smoothly from the charge generation layer to the electron transport layer (or electron injection layer). can be conveyed.
  • an N-type charge generation layer material e.g., host
  • the compound represented by Formula 1 has high triplet energy and can be used as a material for an auxiliary electron transport layer due to the TTF (triplet-triplet fusion) effect, showing excellent efficiency increase.
  • excitons generated in the light-emitting layer can be prevented from diffusing into the electron transport layer or hole transport layer adjacent to the light-emitting layer.
  • the organic electroluminescent device to which the compound represented by Formula 1 is applied can be driven at low voltage and thus exhibits physical characteristics that improve its lifespan.
  • the compound represented by Formula 1 when used in an organic electroluminescent device, not only can it be expected to have excellent thermal stability, carrier transport ability (especially electron transport ability), and luminous ability, but also to improve the driving voltage, efficiency, lifespan, etc. of the device. This can be improved.
  • the compound represented by Formula 1 is not only very advantageous for electron transport but also exhibits long-life characteristics.
  • the excellent electron transport ability of these compounds allows them to have high efficiency and fast mobility in organic electroluminescent devices, and the HOMO and LUMO energy levels can be easily adjusted depending on the direction or position of the substituent. Therefore, organic electroluminescent devices using these compounds can exhibit high electron transport properties.
  • Ar 1 to Ar 3 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, 5 to 60 nuclear atoms heteroaryl group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, phosphine oxide group, C 1 ⁇ C 40 alkyl phosphine oxide group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 arylphosphine group, C 6 phosphine group,
  • Ar 1 -Ar 2 Ar 1 -R 1 , Ar 2 -R 1 , Ar 1 -R 2 , Ar 2 -R 2 , Ar 1 -Ar 3, Ar 2 -Ar 3 , It can form a condensed ring with Ar 3 -R 1 and Ar 3 -R 2 ), provided that any one of Ar 1 to Ar 3 is a substituent represented by Formula 2.
  • the condensed ring is a C 3 ⁇ C 60 condensed aliphatic ring (specifically, a C 3 ⁇ C 30 condensed aliphatic ring), a C 6 ⁇ C 60 condensed aromatic ring (specifically, a C 6 ⁇ C 30 condensed ring) aromatic ring), a 5- to 60-membered condensed heteroaromatic ring containing one or more heteroatoms (e.g., N, O, S, Se, etc.) (specifically, a 5- to 30-membered ring containing one or more heteroatoms) It may be one or more types selected from the group consisting of a circular condensed heteroaromatic ring), a C 3 to C 60 spiro ring, and a combination thereof.
  • Ar 1 to Ar 3 are hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, phosphine oxide group and C 1 to C 40 is selected from the group consisting of alkylphosphine oxide groups, or adjacent groups (e.g.
  • Ar 1 -Ar 2 , Ar 1 -R 1 , Ar 2 -R 1 , Ar 1 -R 2 , Ar 2 -R 2 , Ar 1 -Ar 3, Ar 2 -Ar 3, Ar 3 -R 1, Ar 3 -R 2 ) may be combined to form a condensed ring, provided that any one of Ar 1 to Ar 3 is represented by Formula 2 It is a substituent represented by .
  • Ar 1 to Ar 3 are an alkyl group of C 1 to C 20 , a cycloalkyl group of C 3 to C 20 , a heterocycloalkyl group of 3 to 20 nuclear atoms, an aryl group of C 6 to C 30 , and a nuclear atom. selected from the group consisting of 5 to 30 heteroaryl groups, or adjacent groups (e.g.
  • Ar 1 -Ar 2 , Ar 1 -R 1 , Ar 2 -R 1 , Ar 1 -R 2 , Ar 2 -R 2, Ar 1 -Ar 3, Ar 2 -Ar 3 , Ar 3 -R 1, Ar 3 -R 2 ) can be combined to form a condensed ring, provided that any one of Ar 1 to Ar 3 is a substituent represented by the formula (2).
  • Ar 1 to Ar 3 are the same or different from each other, and may each independently be selected from the group consisting of the following substituents S-a1 to S-a17, provided that any one of Ar 1 to Ar 3 is It is a substituent represented by Formula 2.
  • b is an integer from 0 to 5
  • c is an integer from 0 to 7
  • d is an integer from 0 to 4,
  • e is an integer from 0 to 9
  • f is an integer from 0 to 3
  • g is an integer from 0 to 6
  • h is an integer from 0 to 8
  • R s , R a and R b are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, hydroxy group, C 1 to C 40 alkyl group, C 1 to C 40 halo Alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, nucleus Heteroaryl group having 5 to 60 atoms, C 1 to C 40 alkyloxy group, C 6 to C 60 aryloxy group, C 1 to C 40 alkylsilyl group, C 6 to C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇ C 60 aryl
  • R s -R s , R a -R b , etc. to form a condensed ring, and specifically, each independently hydrogen, deuterium, halogen group, cyano group, Hydroxy group, C 1 ⁇ C 40 alkyl group, C 1 ⁇ C 40 haloalkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, number of nuclear atoms 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, and heteroaryl groups having 5 to 60 nuclear atoms, or adjacent groups (e.g.
  • R s -R s , R a -R b etc. can form a condensed ring, and more specifically, deuterium, cyano group, hydroxy group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 haloalkyl group, C 3 ⁇ C 20 cycloalkyl group, nucleus selected from the group consisting of heterocycloalkyl groups having 3 to 20 atoms, aryl groups having C 6 to C 30 , and heteroaryl groups having 5 to 30 nuclear atoms, or adjacent groups (e.g., R s -R s , R a -R b, etc.) can form a condensed ring.
  • deuterium cyano group, hydroxy group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 haloalkyl group, C 3 ⁇ C 20 cycloalkyl group, nucleus selected from the group consisting of heterocycloalkyl groups having 3 to 20 atom
  • Ar 1 to Ar 3 are the same or different from each other, and may each independently be selected from the group consisting of the following substituents S-b1 to S-b28, provided that any one of Ar 1 to Ar 3 is It is a substituent represented by Formula 2 above.
  • one of Ar 1 to Ar 3 may be a substituent represented by Formula 2, and the others may be different aryl groups.
  • the compound represented by Formula 1 may be a compound represented by Formula 4 or 5 below, depending on the binding (introduction) position of the substituent represented by Formula 2, but is not limited thereto.
  • Ar 1 and Ar 2 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C 1 ⁇ C 40 alkylphosphine oxide group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇ C
  • Ar 2 and Ar 3 are the same as or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C 1 ⁇ C 40 alkylphosphine oxide group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇
  • X 1 to X 5 are each as defined in Formula 2 above.
  • X 1 to X 5 are the same or different from each other and are each independently N or CR 1 , provided that one of X 1 to A plurality of CR 1 may be the same as or different from each other.
  • Ar 1 and Ar 2 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C 1 ⁇ C 40 alkylphosphine oxide group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇ C
  • Ar 2 and Ar 3 are the same as or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C 1 ⁇ C 40 alkylphosphine oxide group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇
  • R 1 is as defined in Formula 2 above.
  • a plurality of R 1 is the same or different from each other, and each independently represents hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, 5 to 60 nuclear atoms Heteroaryl group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C 1 ⁇ C 40 alkylphosphine oxide group, C 6 ⁇ C 60 arylphosphine group,
  • the substituent represented by Formula 3 is a dibenzo-based substituent, and Y 1 is selected from the group consisting of O, S, C(R 3 )(R 4 ), Si(R 5 )(R 6 ), and P(R 7 ). is selected.
  • the substituent represented by Formula 2 may be a monovalent dibenzofuran group, a monovalent dibenzothiophene group, a monovalent fluorene group, or a monovalent dibenzoselenophene group.
  • a is an integer from 0 to 4, and specifically, a is 0 or 1.
  • R 2 are the same or different from each other, and each independently represents deuterium, halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, 5 to 5 nuclear atoms 60 heteroaryl groups, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl
  • R 2 -R 2, etc. to form a condensed ring
  • an adjacent group e.g. R 2 -R 2, etc.
  • R 3 to R 7 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, 5 nuclear atoms to 60 heteroaryl groups, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, phosphine oxide group, C 1 ⁇ C 40 alkyl phosphine oxide group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 arylphosphine group
  • R 3 -R 4 , R 5 -R 6, etc. to form a condensed ring.
  • each independently may be selected from the group consisting of deuterium, a C 1 to C 20 alkyl group, a C 6 to C 30 aryl group, and a heteroaryl group having 5 to 30 nuclear atoms.
  • the compound represented by the formula (1) may be a compound represented by any one of the following formulas (12 to 25), but is not limited thereto.
  • Ar 1 and Ar 2 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C 1 ⁇ C 40 alkylphosphine oxide group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇ C
  • Ar 2 and Ar 3 are the same as or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C 1 ⁇ C 40 alkylphosphine oxide group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇
  • Heterocycloalkyl group C 1 ⁇ C 40 alkyl group, C 6 ⁇ C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group Period, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 arylphos It is substituted or unsubstituted with one or more substituents selected from the group consisting of pin group, C 6 ⁇ C 60 arylphosphine oxide group, and C 6 ⁇ C 60 arylamine group, and when the substituents are plural, they are the same or different from each other
  • Y 1 , R 2 and a are each as defined in Formula 1 above.
  • Ar 1 to Ar 3 , and R 1 to R 7 alkyl group, alkenyl group, alkynyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group, alkyl Silyl group, arylsilyl group, alkyl boron group, aryl boron group, alkyl phosphine oxide group, aryl phosphine group, aryl phosphine oxide group, aryl amine group and condensed ring are each independently a deuterium, halogen, cyano or nitro group.
  • the compound represented by Formula 1 according to the present invention described above may be further specified as the following compounds A001 to E090, but is not limited thereto.
  • alkyl refers to a monovalent substituent derived from a straight-chain or branched-chain saturated hydrocarbon having 1 to 40 carbon atoms. Examples thereof include, but are not limited to, methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl, and hexyl.
  • alkenyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having one or more carbon-carbon double bonds. Examples thereof include vinyl, allyl, isopropenyl, 2-butenyl, etc., but are not limited thereto.
  • alkynyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having one or more carbon-carbon triple bonds. Examples thereof include ethynyl, 2-propynyl, etc., but are not limited thereto.
  • cycloalkyl refers to a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms.
  • examples of such cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, and adamantine.
  • heterocycloalkyl refers to a monovalent substituent derived from a non-aromatic hydrocarbon having 3 to 40 nuclear atoms, and at least one carbon in the ring, preferably 1 to 3 carbons, is N, O, S Or it is substituted with a hetero atom such as Se.
  • heterocycloalkyl include, but are not limited to, morpholine and piperazine.
  • aryl refers to a monovalent substituent derived from an aromatic hydrocarbon having 6 to 60 carbon atoms, either a single ring or a combination of two or more rings.
  • a form in which two or more rings are simply attached to each other (pendant) or condensed may also be included. Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, and anthryl.
  • heteroaryl refers to a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms. At this time, at least one carbon, preferably 1 to 3 carbons, of the ring is replaced with a heteroatom such as N, O, S or Se.
  • a form in which two or more rings are simply pendant or condensed with each other may be included, and a form in which two or more rings are condensed with an aryl group may also be included.
  • heteroaryls include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, and triazinyl, phenoxathienyl, indolizinyl, and indolyl ( Polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carbazolyl, and 2-furanyl, N-imidazolyl, 2-isoxazolyl , 2-pyridinyl, 2-pyrimidinyl, etc., but are not limited thereto.
  • alkyloxy is a monovalent substituent represented by R'O-, where R' refers to alkyl having 1 to 40 carbon atoms and has a linear, branched, or cyclic structure. may include. Examples of such alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, and pentoxy.
  • aryloxy is a monovalent substituent represented by RO-, where R refers to aryl having 5 to 40 carbon atoms.
  • R refers to aryl having 5 to 40 carbon atoms.
  • Examples of such aryloxy include phenyloxy, naphthyloxy, diphenyloxy, etc., but are not limited thereto.
  • alkylsilyl refers to silyl substituted with alkyl having 1 to 40 carbon atoms, and includes not only mono-, but also di- and tri-alkylsilyl.
  • arylsilyl refers to silyl substituted with aryl having 5 to 60 carbon atoms, and includes polyarylsilyl such as mono-, di-, and tri-arylsilyl.
  • alkyl boron group refers to a boron group substituted with alkyl having 1 to 40 carbon atoms
  • aryl boron group refers to a boron group substituted with aryl having 6 to 60 carbon atoms.
  • alkylphosphinyl group refers to a phosphine group substituted with alkyl having 1 to 40 carbon atoms, and includes mono- as well as di-alkylphosphinyl groups.
  • arylphosphinyl group refers to a phosphine group substituted with monoaryl or diaryl having 6 to 60 carbon atoms, and includes not only mono- but also di-arylphosphinyl groups.
  • arylamine refers to an amine substituted with aryl having 6 to 60 carbon atoms, and includes mono- as well as di-arylamine.
  • heteroarylamine refers to an amine substituted with heteroaryl having 5 to 60 nuclear atoms, and includes mono- as well as di-heteroarylamine.
  • (aryl)(heteroaryl)amine refers to an amine substituted with aryl having 6 to 60 carbon atoms and heteroaryl having 5 to 60 nuclear atoms.
  • condensed ring refers to a fused aliphatic ring having 3 to 40 carbon atoms, a fused aromatic ring having 6 to 60 carbon atoms, a fused heteroaliphatic ring having 3 to 60 nuclear atoms, a fused heteroaromatic ring having 5 to 60 nuclear atoms, or It refers to a combination of these forms.
  • the present invention provides an organic electroluminescent device (hereinafter referred to as 'organic EL device') containing the compound represented by the above-mentioned formula (1).
  • FIG. 1 to 4 are cross-sectional views schematically showing organic electroluminescent devices according to first to fourth embodiments of the present invention.
  • the organic electroluminescent device includes an anode 100, a cathode 200, and one or more layers interposed between the anode and the cathode. It includes an organic material layer 300, and at least one of the one or more organic material layers includes the compound represented by Formula 1. At this time, the above compounds may be used alone, or two or more may be used in combination.
  • the one or more organic layer 300 may include one or more of a hole injection layer 310, a hole transport layer 320, a light emitting layer 330, an electron transport layer 340, and an electron injection layer 350, Optionally, an auxiliary electron transport layer 360 may be additionally included.
  • at least one organic layer 300 includes the compound represented by Formula 1 above.
  • the organic material layer containing the compound of Formula 1 may be at least one of the light emitting layer 330, the electron transport layer 340, and the electron transport auxiliary layer 360.
  • the one or more organic material layers include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, and may optionally further include an electron transport auxiliary layer.
  • the electron transport layer includes the compound represented by Formula 1 above.
  • the compound represented by Formula 1 is included in the organic electroluminescent device as an electron transport layer material.
  • electrons are easily injected from the cathode or the electron injection layer into the electron transport layer due to the compound of Formula 1, and can also quickly move from the electron transport layer to the light-emitting layer, so that the bonding force between holes and electrons in the light-emitting layer is increased. high. Therefore, the organic electroluminescent device of the present invention has excellent luminous efficiency, power efficiency, brightness, etc.
  • the compound of Formula 1 has excellent thermal and electrochemical stability, and can improve the performance of organic electroluminescent devices.
  • the compound of Formula 1 may be used alone or mixed with electron transport layer materials known in the art.
  • electron transport layer materials that can be used interchangeably with the compound of Formula 1 include electron transport materials commonly known in the art.
  • usable electron transport materials include oxazole-based compounds, isoxazole-based compounds, triazole-based compounds, isothiazole-based compounds, oxadiazole-based compounds, thiadiazole-based compounds, perylene ( perylene)-based compounds, aluminum complexes (e.g. Alq 3, tris(8-quinolinolato)-aluminium), gallium complexes (e.g. Gaq'2OPiv, Gaq'2OAc, 2(Gaq'2)), etc. These can be used alone or two or more types can be used together.
  • the one or more organic material layers include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer, and an electron injection layer
  • the electron transport auxiliary layer includes the compound represented by Formula 1.
  • the compound represented by Formula 1 is included in the organic electroluminescent device as an electron transport auxiliary layer material.
  • the compound of Formula 1 has high triplet energy. For this reason, when the compound of Formula 1 is included as an electron transport auxiliary layer material, the efficiency of the organic electroluminescent device can be increased due to the triplet-triplet fusion (TTF) effect.
  • TTF triplet-triplet fusion
  • the compound of Formula 1 can prevent excitons or holes generated in the light-emitting layer from diffusing into the electron transport layer adjacent to the light-emitting layer. Accordingly, the number of excitons contributing to light emission in the light-emitting layer can be increased to improve the light-emitting efficiency of the device, and the durability and stability of the device can be improved to effectively increase the lifespan of the device.
  • the compound of Formula 1 may be used alone or mixed with materials for the electron transport layer auxiliary layer known in the art.
  • the electron transport auxiliary layer material that can be mixed with the compound of Formula 1 includes electron transport materials commonly known in the art, such as oxadiazole derivatives, triazole derivatives, and phenanthroline derivatives (e.g. , BCP), heterocyclic derivatives containing nitrogen, etc., but are not limited thereto.
  • the one or more organic material layers include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, and may optionally further include an electron transport auxiliary layer, and the light emitting layer is a host. and a dopant, and the host may be a compound represented by Formula 1 above.
  • the light-emitting layer of the present invention may include a compound known in the art as a second host in addition to the compound of Formula 1 above.
  • the content of the host may be about 70 to 99.9% by weight based on the total amount of the light-emitting layer, and the content of the dopant may be about 0.1 to 30% by weight based on the total amount of the light-emitting layer.
  • the compound represented by Formula 1 is included as a light-emitting layer material of an organic electroluminescent device, specifically a blue, green, and red phosphorescent host material, the binding force between holes and electrons in the light-emitting layer increases, thereby increasing the efficiency of the organic electroluminescent device ( Luminous efficiency and power efficiency), lifespan, brightness, and driving voltage can be improved.
  • the compound represented by Formula 1 is preferably included in an organic electroluminescent device as a green and/or red phosphorescent host, fluorescent host, or dopant material.
  • the compound represented by Formula 1 of the present invention is a green phosphorescent exciplex N-type host material of a highly efficient light-emitting layer.
  • the structure of the organic electroluminescent device of the present invention described above is not particularly limited, but for example, the anode 100, one or more organic layer 300, and cathode 200 may be sequentially stacked on a substrate (FIGS. 1 to 1) 3). In addition, although not shown, it may have a structure in which an insulating layer or an adhesive layer is inserted at the interface between the electrode and the organic material layer.
  • the organic electroluminescent device includes an anode 100, a hole injection layer 310, a hole transport layer 320, a light emitting layer 330, an electron transport layer 340, and a cathode on a substrate. (200) may have a sequentially stacked structure.
  • an electron injection layer 350 may be positioned between the electron transport layer 340 and the cathode 200.
  • an auxiliary electron transport layer 360 may be located between the light emitting layer 330 and the electron transport layer 340 (see FIG. 3).
  • the organic electroluminescent device of the present invention uses materials and methods known in the art, except that at least one of the organic layers 300 (e.g., electron transport layer 340) includes the compound represented by Formula 1 above. It can be manufactured by forming an organic material layer and electrode.
  • the organic layers 300 e.g., electron transport layer 340
  • the compound represented by Formula 1 above It can be manufactured by forming an organic material layer and electrode.
  • the organic material layer may be formed by vacuum deposition or solution application.
  • the solution application method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • the substrate that can be used in the present invention is not particularly limited, and non-limiting examples include silicon wafers, quartz, glass plates, metal plates, plastic films and sheets.
  • examples of anode materials include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as polythiophene, poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT), polypyrrole, or polyaniline; and carbon black, but are not limited thereto.
  • metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof
  • metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb
  • Conductive polymers such as polythiophene, poly
  • cathode materials include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver (Ag), tin, or lead, or alloys thereof; and multilayer structure materials such as LiF/Al or LiO 2 /Al, etc., but are not limited thereto.
  • hole injection layer hole transport layer, light emitting layer, and electron injection layer are not particularly limited, and common materials known in the art can be used.
  • the organic electroluminescent device is a tandem type device, and includes an anode 100 and a cathode 200 facing each other on a substrate; a plurality of light emitting units (400, 500) interposed between the anode (100) and the cathode (200); and a charge generation layer 600 disposed between adjacent light emitting units 400 and 500, wherein the charge generation layer 600 includes the compound represented by Formula 1 described above.
  • This tandem-type organic electroluminescent device has at least two light-emitting units, and can be configured by interposing a charge generation layer between adjacent light-emitting units to increase the number of light-emitting units.
  • a charge generation layer 600 including an N-type charge generation layer 610 and a P-type charge generation layer 620 is disposed between adjacent light-emitting units, and the N-type charge generation layer 610 has the above-described chemical formula. Includes compounds indicated by 1.
  • the organic electroluminescent device includes an anode 100 and a cathode 200 facing each other; a first light emitting unit 400 disposed on the anode 100; a second light-emitting unit 500 disposed on the first light-emitting unit 400; It includes a charge generation layer 600 interposed between the first and second light emitting units 400 and 500, and the charge generation layer 600 includes a compound represented by the above-described formula (1).
  • the charge generation layer 600 includes an N-type charge generation layer 610 and a P-type charge generation layer 620, and the N-type charge generation layer 610 is a compound represented by Formula 1 described above. may include.
  • the P-type charge generation layer 620 may be omitted.
  • a hole injection layer (not shown) disposed on the charge generation layer 600 may replace the role of the P-type charge generation layer.
  • Each light emitting unit (400, 500) may include a hole transport layer (410, 510), a light emitting layer (420, 520), and an electron transport layer (430, 530), and may optionally further include a hole injection layer (not shown). It can be included.
  • the first light-emitting unit 400 includes a first hole transport layer 410, a first light-emitting layer 420, and a first electron transport layer 430
  • the second light-emitting unit 500 includes a hole transport layer 510.
  • the first light emitting unit 400 may additionally include a hole injection layer 440.
  • the hole transport layers 410 and 510, the light emitting layers 420 and 520, the electron transport layers 430 and 530, and the hole injection layer 440 are not particularly limited, and common materials known in the art can be used.
  • the charge generation layer (CGL) 600 is disposed between adjacent light-emitting units 400 and 500, thereby controlling the charges between the light-emitting units 400 and 500 to achieve charge balance.
  • the charge generation layer 600 includes an N-type charge generation layer 610 located adjacent to the first light-emitting unit 400 and supplying electrons to the first light-emitting unit 400; and a P-type charge generation layer 620 located adjacent to the second light-emitting unit 500 and supplying holes to the second light-emitting unit 500.
  • the N-type charge generation layer 610 includes a compound represented by the above-mentioned formula (1).
  • the compound of Formula 1 has excellent electron mobility and thus has excellent electron injection and transport capabilities. Therefore, when the compound of Formula 1 is applied to an organic electroluminescent device as an N-type charge generation layer material, the progressive increase in driving voltage and decrease in lifespan of the device can be prevented.
  • the N-type charge generation layer 610 includes a host having electron transport properties, and the one host is a compound represented by Chemical Formula 1.
  • the N-type charge generation layer 610 may further include an N-type dopant.
  • the N-type dopant usable in the present invention is not particularly limited as long as it is a material commonly used in the N-type charge generation layer in the art, and includes, for example, alkali metals such as Li, Na, K, Rb, Cs, Fr, etc.; Alkaline earth metals such as Be, Mg, Ca, Sr, Ba, Ra, etc.; La(lanthanum), Ce(cerium), Pr(preseodyminum), Nd(neodymium), Pm(promethium), Sm(samarium), europium(europium), Gd(gadolinium), Tb(terbium), Dy(dysprosium), Lanthanide metals such as Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), Lu (lutetium), etc.; and one or more of the above metal compounds.
  • alkali metals such as Li, Na, K, Rb, Cs, Fr, etc.
  • an organic N-type dopant that has electron donor properties and is capable of donating at least some electron charges to an organic host (e.g., the cargo of Formula 1) to form a charge-transfer complex with the organic host.
  • organic host e.g., the cargo of Formula 1
  • examples thereof include bis(ethylenethiio)tetrathiafulvalene (BEDT-TTF), Tetrathiafulvalene (TTF), etc.
  • the thickness of the N-type charge generation layer 610 is not particularly limited, and may range from about 5 to 30 nm, for example.
  • the P-type charge generation layer 620 may be made of metal or a P-type doped organic material.
  • the metals include Al, Cu, Fe, Pb, Zn, Au, Pt, W, In, Mo, Ni, and Ti, and these may be used alone or as an alloy of two or more.
  • the P-type dopant and host materials used in the P-type doped organic material are not particularly limited as long as they are commonly used materials.
  • the P-type dopants include F 4 -TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane), iodine, FeCl 3 , FeF 3 and SbCl 5 .
  • non-limiting examples of the host include NPB (N,N'-bis(naphthaen-1-yl)-N,N'-bis(phenyl)-benzidine), TPD(N,N'-bis(3- There are methylphenyl)N,N'-bis(phenyl)-benzidine) and TNB(N,N,N',N'-tetra-naphthalenyl-benzidine), which can be used alone or in a mixture of two or more types. there is.
  • anode 100, cathode 200, hole injection layer, hole transport layer, light emitting layer, and electron injection layer is the same as that described in the first to third embodiments described above, , omitted.
  • 2,4,6-trichloropyrimidine (20.0g, 109.0mmol), 2-([1,1'-biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ( 67.2g, 239.9mmol), Pd(PPh 3 ) 4 (3.8g, 3.3mmol), and K 2 CO 3 (45.2g, 327.1mmol) were added to 360ml of Toluene, 60ml of DIW, and 60ml of EtOH, heated, refluxed, and stirred for 2 hours.
  • Compound B004 (17.8 g, 27.2 g) was prepared in the same manner as in Synthesis Example 1, except that Pm04 synthesized in Preparation Example 4 was used instead of Pm02 used in Synthesis Example 1, and Py08 synthesized in Preparation Example 13 was used instead of Py02. mmol, yield 76%) was prepared.
  • Compound B005 (22.3 g, 30.6 g) was prepared in the same manner as in Synthesis Example 1, except that Pm04 synthesized in Preparation Example 4 was used instead of Pm02 used in Synthesis Example 1, and Py10 synthesized in Preparation Example 15 was used instead of Py02. mmol, yield 85%) was prepared.
  • Compound B025 (18.2 g, 27.8 g) was prepared in the same manner as in Synthesis Example 1, except that Pm04 synthesized in Preparation Example 4 was used instead of Pm02 used in Synthesis Example 1, and Py12 synthesized in Preparation Example 17 was used instead of Py02. mmol, yield 78%) was prepared.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) to a thickness of 1200 ⁇ was washed with distilled water ultrasonic waves. After cleaning with distilled water, ultrasonic cleaning with solvents such as isopropyl alcohol, acetone, and methanol, drying, transferring to a UV OZONE cleaner (Power sonic 405, Hwashin Tech), and then cleaning the substrate for 5 minutes using UV.
  • the substrate was transferred to a vacuum evaporator.
  • Compound 1 and Compound 2 were co-deposited at a weight ratio of 98:2 to form a 100 ⁇ thick hole injection layer, and then Compound 1 was deposited on top of the hole injection layer to form a 1400 ⁇ thick layer. A hole transport layer was formed. Thereafter, Compound 3 was deposited on top of the hole transport layer to a thickness of 50 ⁇ to form a hole transport auxiliary layer, and Compound 4 and Compound 5 were co-deposited at a weight ratio of 98:2 to form a 200 ⁇ thick light emitting layer.
  • Compound 6 was deposited on top of the emitting layer to form an electron transport auxiliary layer with a thickness of 50 ⁇ , and then Compound A010 and Compound 7 were co-deposited at a weight ratio of 1:1 to form an electron transport layer with a thickness of 300 ⁇ .
  • LiF was deposited on top of the electron transport layer to form an electron injection layer with a thickness of 10 ⁇ , and then Al was deposited on top of the electron injection layer to form a cathode with a thickness of 1000 ⁇ , thereby manufacturing an organic light emitting device.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compounds listed in Table 1 below were used instead of Compound A010, which was used as the electron transport layer material in Example 1.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compounds A to I were used instead of Compound A010 as the electron transport layer material. At this time, the structures of compounds A to I are as follows.
  • Example 1 Compound A010 3.8 453 8.2
  • Example 2 Compound A022 3.5 457 9.0
  • Example 3 Compound A024 3.7 456 8.4
  • Example 4 Compound A046 4.1 451 8.8
  • Example 5 Compound A047 3.5 455 8.6
  • Example 6 Compound B004 3.7 453 8.5
  • Example 7 Compound B005 3.4 456 9.0
  • Example 8 Compound B025 3.8 454 8.7
  • Example 9 Compound B046 4.0 454 8.2
  • Example 10 Compound B047 4.1 458 7.9
  • Example 11 Compound B061 3.7 451 8.8
  • Example 12 Compound B088 3.6 451 7.9
  • Example 13 Compound C001 3.5 453 8.1
  • Example 14 Compound C013 3.8 456 8.5
  • Example 15 Compound C018 4.0 452 8.7
  • Example 16 Compound C046 4.1 451 8.9
  • Example 17 Compound C082 3.9 452 8.3
  • the blue organic electroluminescent devices of Examples 1 to 30 using the compounds of the present invention (A010 to E090) in the electron transport layer are the blue organic electroluminescent devices of Comparative Examples 1 to 9 using the compounds A to I in the electron transport layer. It was found that compared to organic electroluminescent devices, it exhibited superior performance in terms of driving voltage, emission peak, and current efficiency.
  • the blue organic electroluminescent devices of Examples 1 to 30 contained a pyrimidine moiety and a dibenzoic moiety.
  • organic electroluminescent device and a compound containing [divalent pyridine group-phenylene group] as a linker group (e.g., compounds E, F, G) in the electron transport layer.
  • a compound containing [divalent pyridine group-phenylene group] as a linker group e.g., compounds E, F, G
  • a glass substrate coated with a 1200 ⁇ thin film of ITO (indium tin oxide) was washed with distilled water ultrasonic waves. After cleaning with distilled water, ultrasonic cleaning with solvents such as isopropyl alcohol, acetone, and methanol, drying, transferring to a UV OZONE cleaner (Power sonic 405, Hwashin Tech), and then cleaning the substrate for 5 minutes using UV.
  • the substrate was transferred to a vacuum evaporator.
  • Compound 1 and Compound 2 were co-deposited at a weight ratio of 98:2 to form a 100 ⁇ thick hole injection layer, and then Compound 1 was deposited on top of the hole injection layer to form a 200 ⁇ thick layer. A hole transport layer was formed. Next, Compound 3 was deposited on the hole transport layer to a thickness of 50 ⁇ to form a hole transport auxiliary layer, and Compound 4 and Compound 5 were co-deposited at a weight ratio of 98:2 to form a 200 ⁇ thick light emitting layer.
  • Compound 7 was deposited on the emission layer to a thickness of 150 ⁇ to form an electron transport layer, and Compound B004 was deposited on the electron transport layer to a thickness of 80 ⁇ to form a charge generation layer.
  • Compound 1 and Compound 2 were co-deposited on the charge generation layer at a weight ratio of 98:2 to form a 100 ⁇ thick hole injection layer, and then Compound 1 was deposited on the hole injection layer to form a 350 ⁇ thick hole transport layer. .
  • Compound 3 was deposited on top of the hole transport layer to a thickness of 50 ⁇ to form a hole transport auxiliary layer, and then Compound 4 and Compound 5 were co-deposited at a weight ratio of 98:2 to form a 200 ⁇ thick light emitting layer.
  • Compound 6 was deposited on top of the emitting layer to form an electron transport auxiliary layer with a thickness of 50 ⁇ , and then compound 7 and compound 8 were co-deposited at a weight ratio of 1:1 to form an electron transport layer with a thickness of 300 ⁇ , and the electrons LiF was deposited on top of the transport layer to form an electron injection layer with a thickness of 10 ⁇ , and then Al was deposited on top of the electron injection layer to form a cathode with a thickness of 1000 ⁇ , thereby manufacturing an organic light emitting device.
  • An organic electroluminescent device was manufactured in the same manner as in Example 31, except that the compounds listed in Table 2 below were used instead of compound B004 used as the charge generation layer material in Example 31.
  • Example 31 An organic electroluminescent device was manufactured in the same manner as in Example 31, except that Compound B004, which was used as a charge generation layer material in Example 31, was used instead of Compounds A to I, respectively. At this time, the structures of compounds A to I are the same as those described in Comparative Examples 1 to 9.
  • the organic electroluminescent devices of Examples 31 to 40 in which the compounds of the present invention (B004 to E035) were used in the charge generation layer were divalent pyridines in which the pyrimidine moiety and the dibenzoic moiety were linker groups.
  • Comparative Examples 10 to 13 in which compounds bonded through a group, in which a pyrimidine moiety and a carbazole moiety are bonded through a divalent pyridine group as a linker group e.g., compounds A to D, H, and I), were used in the electrolytically generated layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 유기 화합물 및 이를 이용한 유기 전계 발광 소자에 대한 것으로, 보다 상세하게는 전자 수송 및 주입능, 발광능, 열적 안정성이 우수한 유기 화합물 및 이를 하나 이상의 유기물층에 포함함으로써 발광효율, 구동 전압, 수명 등의 특성이 향상된 유기 전계 발광 소자에 대한 것이다.

Description

유기 화합물 및 이를 이용한 유기 전계 발광 소자
본 발명은 신규한 유기 화합물 및 이를 이용한 유기 전계 발광 소자에 관한 것으로, 보다 상세하게는 전자수송능, 발광능 등이 우수한 화합물 및 이를 하나 이상의 유기물층에 포함함으로써 발광효율, 구동 전압, 수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.
유기 전계 발광 소자(이하, '유기 EL 소자'라 함)는 두 전극 사이에 전압을 걸어주면 양극에서는 정공이 유기물층으로 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이때, 유기물층으로 사용되는 물질은 그 기능에 따라, 발광물질, 정공주입 물질, 정공수송 물질, 전자수송 물질, 전자주입 물질 등으로 분류될 수 있다.
발광 물질은 발광색에 따라 청색, 녹색, 적색 발광 물질과, 보다 나은 천연색을 구현하기 위한 노란색 및 주황색 발광 물질로 구분될 수 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 물질로서 호스트/도펀트 계를 사용할 수 있다.
도펀트 물질은 유기 물질을 사용하는 형광 도펀트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도펀트로 나눌 수 있다. 이때, 인광 재료의 개발은 이론적으로 형광에 비해 4배까지 발광 효율을 향상시킬 수 있기 때문에, 인광 도펀트 뿐만 아니라 인광 호스트 재료들에 대한 연구도 많이 진행되고 있다.
현재까지 정공 주입층, 정공 수송층. 정공 차단층, 전자 수송층 재료로는 NPB, BCP, Alq3 등이 널리 알려져 있으며, 발광층 재료로는 안트라센 유도체들이 보고되고 있다. 특히, 발광층 재료 중 효율 향상 측면에서 장점을 가지고 있는 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등과 같은 Ir을 포함하는 금속 착체 화합물이 청색(blue), 녹색(green), 적색(red)의 인광 도판트 재료로 사용되고 있으며, 4,4-디카바졸리비페닐(4,4-dicarbazolybiphenyl, CBP)은 인광 호스트 재료로 사용되고 있다.
그러나 종래의 유기물층 재료들은 발광 특성 측면에서는 유리한 면이 있으나, 유리전이온도가 낮아 열적 안정성이 매우 좋지 않기 때문에, 유기 전계 발광 소자의 수명 측면에서 만족할 만한 수준이 되지 못하고 있다. 따라서, 성능이 뛰어난 유기물층 재료의 개발이 요구되고 있다.
본 발명은 전자 주입 및 수송능, 전기화학적 안정성, 열적 안정성 등이 모두 우수하여 유기 전계 발광 소자의 유기물층 재료, 구체적으로 전자 수송층 재료나 N형 전하생성층 재료로 사용될 수 있는 신규 유기 화합물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 전술한 신규 유기 화합물을 포함하여 낮은 구동전압과 높은 발광효율을 나타내며 수명이 향상되는 유기 전계 발광 소자를 제공하는 것을 또 다른 목적으로 한다.
상기한 목적을 달성하기 위해, 본 발명은 하기 화학식 1로 표시되는 유기 화합물을 제공한다:
Figure PCTKR2023005798-appb-img-000001
(상기 화학식 1에서,
Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
다만, 상기 Ar1 내지 Ar3 중 어느 하나는 하기 화학식 2로 표시되는 치환체이고,
Figure PCTKR2023005798-appb-img-000002
상기 화학식 2에서,
X1 내지 X5는 서로 동일하거나 또는 상이하고, 각각 독립적으로 N 또는 CR1이고,
다만 X1 내지 X5 중 하나는 N이고, 나머지는 CR1이며, 이때 복수의 CR1은 서로 동일하거나 상이하고,
복수의 R1은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40 의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되며,
다만 복수의 R1 중 어느 하나는 하기 화학식 3으로 표시되는 치환체이고,
Figure PCTKR2023005798-appb-img-000003
상기 화학식 3에서,
Y1는 O, S, C(R3)(R4), Si(R5)(R6), P(R7)로 이루어진 군에서 선택되고,
a는 0 내지 4의 정수이고,
R2 내지 R7은 서로 동일하거나 상이하며, 각각 독립적인 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 축합하여 축합고리를 형성할 수 있고,
상기 Ar1 내지 Ar3, 및 R1 내지 R7의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 알킬포스핀옥사이드기, 아릴포스핀기, 아릴포스핀옥사이드기, 아릴아민기 및 축합 고리는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이함).
또, 본 발명은 애노드; 캐소드; 및 상기 애노드와 캐소드 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 전술한 유기 화합물을 포함하는 유기 전계 발광 소자를 제공한다. 이때, 상기 화합물을 포함하는 유기물층은 상기 유기 화합물을 포함하는 유기물층은 전자 수송층, 전자수송 보조층 및 발광층 중 어느 하나일 수 있다.
또한, 본 발명은 서로 이격 배향된 애노드와 캐소드; 상기 애노드와 캐소드 사이에 개재된 복수의 발광 유닛; 서로 인접한 발광 유닛 사이에 개재된 전하 생성층을 포함하고, 상기 각 발광 유닛은 정공 수송층, 발광층 및 전자 수송층을 포함하고, 상기 전하 생성층은 전술한 화합물을 포함하는 유기 전계 발광 소자를 제공한다.
본 발명의 화합물은 전자수송능, 발광능, 전기화학적 안정성, 열적 안정성 등이 우수하기 때문에 유기 전계 발광 소자의 유기물층 재료로 사용될 수 있다. 특히, 본 발명의 화합물을 전자 수송층 재료, 전자수송 보조층 재료, 발광층 재료(예: 호스트 재료) 및 전하생성층 재료(예: N형 전하생성층 재료) 중 적어도 어느 하나로 사용될 경우, 종래 재료에 비해 우수한 발광 성능, 낮은 구동전압, 높은 효율 및 장수명 특성을 갖는 유기 전계 발광 소자를 제조할 수 있고, 나아가 성능 및 수명이 향상된 풀 칼라 디스플레이 패널도 제조할 수 있다.
도 1은 본 발명의 제1 실시 형태에 따른 유기 전계 발광 소자를 개략적으로 나타낸 단면도이다.
도 2는 본 발명의 제2 실시 형태에 따른 유기 전계 발광 소자를 개략적으로 나타낸 단면도이다.
도 3은 본 발명의 제3 실시 형태에 따른 유기 전계 발광 소자를 개략적으로 나타낸 단면도이다.
도 4는 본 발명의 제4 실시 형태에 따른 유기 전계 발광 소자를 개략적으로 나타낸 단면도이다.
<부호의 설명>
100: 애노드, 200: 캐소드,
300: 유기물층, 310: 정공주입층,
320: 정공수송층, 330: 발광층,
340: 전자수송층, 350: 전자주입층,
360: 전자 수송 보조층, 400: 제1 발광 유닛,
410: 제1정공수송층, 420: 제1발광층,
430: 제1전자수송층, 440: 정공주입층,
500: 제2 발광 유닛, 510: 제2정공수송층,
520: 제2발광층, 530: 제2전자수송층,
600: 전하생성층, 610: N형 전하생성층,
620: P형 전하생성층
이하, 본 발명에 대해 설명한다.
<신규 화합물>
본 발명에 따른 화합물은 피리미딘 모이어티(pymidine moiety)와 디벤조계 모이어티(dibenzo-based moiety)가 2가의 피리딘기를 통해 결합되되, 2가의 피리딘기가 피리미딘 모이어티의 2, 4, 6번 탄소 위치 중 어느 하나에 결합되어 이루어진 기본 구조를 포함하는 것으로, 상기 화학식 1로 표시된다. 이러한 본 발명에 따른 화학식 1의 화합물은 전자 주입 및 수송능, 발광능, 전기화학적 안정성, 열적 안정성 등이 우수하여 유기 전계 발광 소자의 고효율, 장수명, 구동전압 특성 및 진행성 구동전압 특성을 향상시킬 수 있는 전자수송층 재료, 전자수송 보조층 재료, 발광층의 호스트 재료 또는 전하 생성층 재료(예, N형 전하 생성층 재료)로 사용될 수 있는 신규 화합물을 제공한다. 여기서, 피리미딘 모이어티의 탄소/질소 위치 번호는 다음과 같이 나타낼 수 있다.
Figure PCTKR2023005798-appb-img-000004
구체적으로, 상기 화학식 1로 표시되는 화합물에서, 피리미딘 모이어티는 트리아진에 비해 LUMO 에너지가 높기 때문에 소자의 효율(특히, 전류효율)을 향상시킬 수 있다.
이러한 피리미딘 모이어티의 2, 4, 6번 탄소 위치 중 어느 하나에는 링커기인 2가의 피리딘기를 통해 디벤조계 모이어티 중에서 디벤조퓨란, 디벤조싸이오펜, 플루오렌 모이어티 등과 같이 비(非)-카바졸계 모이어티가 도입되어 있다.
상기 디벤조계 모이어티(예: 디벤조퓨란, 디벤조싸이오펜, 플루오렌 모이어티 등)는 정공 이동도가 높고, 상기 피리미딘 모이어티는 전자 끄는(electron withdrawing) 특성을 갖는다. 이러한 디벤조계 모이어티 및 피리미딘 모이어티가 2가의 피리딘기를 통해 하나의 골격으로 연결됨으로써, 상기 화학식 1로 표시되는 화합물은 분자 간 패킹이 더 잘 이루어져 전자 수송성이 우수할 뿐만 아니라, 삼중항 에너지가 높고, 또 유리전이온도가 높아 열적 안정성이 우수하다. 따라서, 상기 화학식 1로 표시되는 화합물은 전자 수송 능력 및 발광 특성이 우수하기 때문에, 유기 전계 발광 소자의 유기물층인 정공 주입층, 정공 수송층, 발광층, 전자 수송 보조층, 전자 수송층 및 전자 주입층 중 어느 하나의 재료로 사용될 수 있다. 바람직하게, 상기 화학식 1로 표시되는 화합물은 발광층, 전자 수송층 및 전자 수송층에 추가로 적층되는 전자수송 보조층 중 어느 하나의 재료로 사용될 수 있다. 또, 상기 화학식 1로 표시되는 화합물은 전하 생성층 재료, 특히 N형 전하생성층 재료(예: 호스트)로 사용될 수 있고, 이 경우 전하 생성층에서 전자수송층(또는 전자주입층)으로 전자가 원활하게 전달될 수 있다.
또, 상기 화학식 1로 표시되는 화합물은 높은 삼중항 에너지를 가지므로 TTF(triplet-triplet fusion) 효과로 인해 전자수송 보조층의 재료로 사용되어 우수한 효율 상승을 나타낼 수 있다. 또한, 발광층에서 생성된 엑시톤이 발광층에 인접하는 전자수송층 또는 정공수송층으로 확산되는 것을 방지할 수 있다. 발광층 내에서 발광에 기여하는 엑시톤의 수가 증가되어 소자의 발광 효율이 개선될 수 있고, 소자의 내구성 및 안정성이 향상되어 소자의 수명이 효율적으로 증가될 수 있다. 이러한 화학식 1로 표시되는 화합물이 적용된 유기 전계 발광 소자는 저전압 구동이 가능하여 이로 인한 수명이 개선되는 물리적 특징들을 나타낸다. 따라서, 상기 화학식 1로 표시되는 화합물은 유기 전계 발광 소자에 사용할 경우, 우수한 열적 안정성 및 캐리어 수송능(특히, 전자 수송능) 및 발광능을 기대할 수 있을 뿐만 아니라 소자의 구동전압, 효율, 수명 등이 향상될 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 전자 수송에 매우 유리할 뿐만 아니라 장수명 특성을 보여준다. 이러한 화합물의 우수한 전자수송 능력은 유기 전계 발광 소자에서 높은 효율과 빠른 이동성(mobility)을 가질 수 있고, 치환기의 방향이나 위치에 따라 HOMO 및 LUMO 에너지 레벨을 용이하게 조절할 수 있다. 그러므로, 이러한 화합물을 사용한 유기 전계 발광 소자에서 높은 전자 수송성을 나타낼 수 있다.
상기 화학식 1로 표시되는 화합물에서, Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기(예: Ar1-Ar2, Ar1-R1, Ar2-R1, Ar1-R2, Ar2-R2, Ar1-Ar3, Ar2-Ar3, Ar3-R1, Ar3-R2)와 축합 고리를 형성할 수 있고, 다만, 상기 Ar1 내지 Ar3 중 어느 하나는 상기 화학식 2로 표시되는 치환체이다. 여기서, 상기 축합 고리는 C3~C60의 축합 지방족 고리(구체적으로, C3~C30의 축합 지방족 고리), C6~C60의 축합 방향족 고리(구체적으로, C6~C30의 축합 방향족 고리), 1종 이상의 헤테로원자(예: N, O, S, Se 등)를 함유하는 5원~60원의 축합 헤테로방향족고리(구체적으로, 1종 이상의 헤테로원자를 함유하는 5원~30원의 축합 헤테로방향족고리), C3~C60의 스파이로(spiro) 고리 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상일 수 있다.
구체적으로, Ar1 내지 Ar3은 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, 포스핀옥사이드기 및 C1~C40의 알킬포스핀옥사이드기로 이루어진 군에서 선택되거나, 또는 인접한 기(예: Ar1-Ar2, Ar1-R1, Ar2-R1, Ar1-R2, Ar2-R2, Ar1-Ar3, Ar2-Ar3, Ar3-R1, Ar3-R2)와 결합하여 축합 고리를 형성할 수 있고, 다만, 상기 Ar1 내지 Ar3 중 어느 하나는 상기 화학식 2로 표시되는 치환체이다.
더 구체적으로, Ar1 내지 Ar3은 C1~C20의 알킬기, C3~C20의 시클로알킬기, 핵원자수 3 내지 20개의 헤테로시클로알킬기, C6~C30의 아릴기, 및 핵원자수 5 내지 30개의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 인접한 기(예: Ar1-Ar2, Ar1-R1, Ar2-R1, Ar1-R2, Ar2-R2, Ar1-Ar3, Ar2-Ar3, Ar3-R1, Ar3-R2)와 결합하여 축합 고리를 형성할 수 있고, 다만 상기 Ar1 내지 Ar3 중 어느 하나는 상기 화학식 2로 표시되는 치환체이다.
일례에 따르면, 상기 Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 하기 치환체 S-a1 내지 S-a17로 이루어진 군에서 선택될 수 있고, 다만 상기 Ar1 내지 Ar3 중 어느 하나는 상기 화학식 2로 표시되는 치환체이다.
Figure PCTKR2023005798-appb-img-000005
상기 치환체 S-a1 내지 S-a17에서,
*은 상기 화학식 1과 연결되는 부위이고,
b는 0 내지 5의 정수이고,
c는 0 내지 7의 정수이며,
d는 0 내지 4의 정수이고,
e는 0 내지 9의 정수이며,
f는 0 내지 3의 정수이고,
g는 0 내지 6의 정수이며,
h는 0 내지 8의 정수이고,
Rs, Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, 히드록시기, C1~C40의 알킬기, C1~C40의 할로알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기(예: Rs-Rs, Ra-Rb 등)와 결합하여 축합 고리를 형성하고, 구체적으로 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 히드록시기, C1~C40의 알킬기, C1~C40의 할로알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 및 핵원자수 5 내지 60개의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 인접한 기(예: Rs-Rs, Ra-Rb 등)와 결합하여 축합 고리를 형성할 수 있고, 더 구체적으로 중수소, 시아노기, 히드록시기, C1~C20의 알킬기, C1~C20의 할로알킬기, C3~C20의 시클로알킬기, 핵원자수 3 내지 20개의 헤테로시클로알킬기, C6~C30의 아릴기, 및 핵원자수 5 내지 30개의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 인접한 기(예: Rs-Rs, Ra-Rb 등)와 결합하여 축합 고리를 형성할 수 있다.
다른 일례에 따르면, 상기 Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 하기 치환체 S-b1 내지 S-b28로 이루어진 군에서 선택될 수 있고, 다만 상기 Ar1 내지 Ar3 중 어느 하나는 상기 화학식 2로 표시되는 치환체이다.
Figure PCTKR2023005798-appb-img-000006
상기 치환체 S-b1 내지 S-b28에서,
*은 상기 화학식 1과 연결되는 부위이다.
또 다른 일례에 따르면, 상기 Ar1 내지 Ar3 중 하나는 상기 화학식 2로 표시되는 치환체이고, 나머지들은 서로 상이한 아릴기일 수 있다.
상기 화학식 1로 표시되는 화합물은 상기 화학식 2로 표시되는 치환체의 결합(도입) 위치에 따라, 하기 화학식 4 또는 5로 표시되는 화합물일 수 있는데, 이에 한정되지 않는다.
Figure PCTKR2023005798-appb-img-000007
Figure PCTKR2023005798-appb-img-000008
상기 화학식 4에서,
Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
상기 화학식 5에서,
Ar2 및 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
상기 화학식 4 및 5에서,
X1 내지 X5는 각각 상기 화학식 2에 정의된 바와 같다.
상기 화학식 2로 표시되는 치환체에서, X1 내지 X5는 서로 동일하거나 또는 상이하고, 각각 독립적으로 N 또는 CR1이고, 다만 X1 내지 X5 중 하나는 N이고, 나머지는 CR1이며, 이때 복수의 CR1은 서로 동일하거나 상이하다.
이러한 X1 내지 X5에 따라, 상기 화학식 1로 표시되는 화합물은 하기 화학식 6 내지 11 중 어느 하나로 표시되는 화합물일 수 있는데, 이에 한정되지 않는다:
Figure PCTKR2023005798-appb-img-000009
Figure PCTKR2023005798-appb-img-000010
Figure PCTKR2023005798-appb-img-000011
Figure PCTKR2023005798-appb-img-000012
Figure PCTKR2023005798-appb-img-000013
Figure PCTKR2023005798-appb-img-000014
상기 화학식 6 내지 8에서,
Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
상기 화학식 9 내지 11에서,
Ar2 및 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
상기 화학식 6 내지 11에서,
R1은 상기 화학식 2에 정의된 바와 같다.
상기 화학식 6 내지 11로 표시되는 화합물에서, 상기 화학식 3으로 표시되는 치환체가 피리딘 모이어티의 질소에 바로 인접한 위치, 즉 오르소(ortho) 위치에 결합될 경우, 피리딘기의 질소와 디벤조계 모이어티(예: 디벤조퓨란, 디벤조싸이오펜, 플루오렌 모이어티 등) 사이, 및 피리미딘의 질소와 디벤조계 모이어티(예: 디벤조퓨란, 디벤조싸이오펜, 플루오렌 모이어티 등) 사이에서 수소 결합이 이뤄지게 된다. 이러한 수소 결합은 분자 간 인력을 더 강하게 하여 분자의 열적 안정성을 상승시키게 된다.
상기 화학식 2로 표시되는 치환체에서, 복수의 R1은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40 의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되며, 다만 복수의 R1 중 어느 하나는 상기 화학식 3으로 표시되는 치환체이다.
상기 화학식 3으로 표시되는 치환체는 디벤조계 치환체로, Y1는 O, S, C(R3)(R4), Si(R5)(R6), P(R7)로 이루어진 군에서 선택된다. 이러한 Y1에 따라 상기 화학식 2로 표시되는 치환체는 1가의 디벤조퓨란기, 1가의 디벤조티오펜기, 1가의 플루오렌기, 1가의 디벤조셀레노펜기 (benzoselenophene) 등일 수 있다.
또, 상기 화학식 3으로 표시되는 치환체에서, a는 0 내지 4의 정수이고, 구체적으로 a는 0 또는 1이다. 여기서, a가 0인 경우, 수소가 치환기 R2로 비(非)-치환되는 것을 의미한다. 한편, a가 1 내지 4인 경우, 1개 또는 복수의 R2가 서로 동일하거나 상이하고, 각각 독립적으로 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기(예: R2-R2 등)와 축합하여 축합고리를 형성할 수 있고, 구체적으로 각각 독립적으로 중수소, 할로겐기, 시아노기, C1~C20의 알킬기, C6~C30의 아릴기, 핵원자수 5 내지 30개의 헤테로아릴기, 포스핀옥사이드기, C1~C20의 알킬포스핀옥사이드기, C6~C30의 아릴포스핀옥사이드기 및 C6~C30의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기(예: R2-R2 등)와 축합하여 축합고리를 형성할 수 있다.
또, 상기 화학식 3으로 표시되는 치환체에서, R3 내지 R7은 서로 동일하거나 상이하며, 각각 독립적인 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기(예: R3-R4, R5-R6 등)와 축합하여 축합고리를 형성할 수 있고, 구체적으로 각각 독립적으로 중수소, C1~C20의 알킬기, C6~C30의 아릴기, 및 핵원자수 5 내지 30개의 헤테로아릴기로 이루어진 군에서 선택될 수 있다.
전술한 화학식 3으로 표시되는 치환체의 결합 위치에 따라, 상기 화학식 1로 표시되는 화합물은 하기 화학식 12 내지 25 중 어느 하나로 표시되는 화합물일 수 있는데, 이에 한정되지 않는다.
Figure PCTKR2023005798-appb-img-000015
Figure PCTKR2023005798-appb-img-000016
Figure PCTKR2023005798-appb-img-000017
Figure PCTKR2023005798-appb-img-000018
Figure PCTKR2023005798-appb-img-000019
Figure PCTKR2023005798-appb-img-000020
Figure PCTKR2023005798-appb-img-000021
Figure PCTKR2023005798-appb-img-000022
Figure PCTKR2023005798-appb-img-000023
Figure PCTKR2023005798-appb-img-000024
Figure PCTKR2023005798-appb-img-000025
Figure PCTKR2023005798-appb-img-000026
Figure PCTKR2023005798-appb-img-000027
Figure PCTKR2023005798-appb-img-000028
상기 화학식 12 내지 18에서,
Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
상기 화학식 19 내지 25에서,
Ar2 및 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있고, 상기 Ar1 내지 Ar3의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 포스핀옥사이드기, 알킬포스핀옥사이드기, 아릴포스핀기, 아릴포스핀옥사이드기, 아릴아민기 및 축합 고리는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이하고, Y1, R2 및 a는 각각 상기 화학식 1에 정의된 바와 같다.
상기 화학식 1에서, 상기 Ar1 내지 Ar3, 및 R1 내지 R7의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 알킬포스핀옥사이드기, 아릴포스핀기, 아릴포스핀옥사이드기, 아릴아민기 및 축합 고리는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환될 수 있다. 이때, 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이하다.
전술한 본 발명에 따른 화학식 1로 표시되는 화합물은 하기 화합물 A001 내지 E090으로 보다 더 구체화될 수 있는데, 이에 한정되지 않는다.
Figure PCTKR2023005798-appb-img-000029
Figure PCTKR2023005798-appb-img-000030
Figure PCTKR2023005798-appb-img-000031
Figure PCTKR2023005798-appb-img-000032
Figure PCTKR2023005798-appb-img-000033
Figure PCTKR2023005798-appb-img-000034
Figure PCTKR2023005798-appb-img-000035
Figure PCTKR2023005798-appb-img-000036
Figure PCTKR2023005798-appb-img-000037
Figure PCTKR2023005798-appb-img-000038
Figure PCTKR2023005798-appb-img-000039
Figure PCTKR2023005798-appb-img-000040
Figure PCTKR2023005798-appb-img-000041
Figure PCTKR2023005798-appb-img-000042
Figure PCTKR2023005798-appb-img-000043
Figure PCTKR2023005798-appb-img-000044
Figure PCTKR2023005798-appb-img-000045
Figure PCTKR2023005798-appb-img-000046
Figure PCTKR2023005798-appb-img-000047
Figure PCTKR2023005798-appb-img-000048
Figure PCTKR2023005798-appb-img-000049
Figure PCTKR2023005798-appb-img-000050
Figure PCTKR2023005798-appb-img-000051
Figure PCTKR2023005798-appb-img-000052
Figure PCTKR2023005798-appb-img-000053
Figure PCTKR2023005798-appb-img-000054
Figure PCTKR2023005798-appb-img-000055
Figure PCTKR2023005798-appb-img-000056
Figure PCTKR2023005798-appb-img-000057
Figure PCTKR2023005798-appb-img-000058
Figure PCTKR2023005798-appb-img-000059
Figure PCTKR2023005798-appb-img-000060
Figure PCTKR2023005798-appb-img-000061
Figure PCTKR2023005798-appb-img-000062
Figure PCTKR2023005798-appb-img-000063
Figure PCTKR2023005798-appb-img-000064
Figure PCTKR2023005798-appb-img-000065
Figure PCTKR2023005798-appb-img-000066
Figure PCTKR2023005798-appb-img-000067
본 발명에서 "알킬"은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "시클로알킬"은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine) 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "헤테로시클로알킬"은 핵원자수 3 내지 40의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "아릴"은 단독 고리 또는 2이상의 고리가 조합된 탄소수 6 내지 60의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "헤테로아릴"은 핵원자수 5 내지 60의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의축합된 형태도 포함될 수 있다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "알킬옥시"는 R'O-로 표시되는 1가의 치환기로, 상기 R'는 탄소수 1 내지 40의 알킬을 의미하며, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 이러한 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "아릴옥시"는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 5 내지 40의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "알킬실릴"은 탄소수 1 내지 40의 알킬로 치환된 실릴을 의미하며, 모노-뿐만 아니라 디-, 트리-알킬실릴을 포함한다. 또, "아릴실릴"은 탄소수 5 내지 60의 아릴로 치환된 실릴을 의미하고, 모노-뿐만 아니라 디-, 트리-아릴실릴 등의 폴리아릴실릴을 포함한다.
본 발명에서 "알킬보론기"는 탄소수 1 내지 40의 알킬로 치환된 보론기를 의미하며, "아릴보론기"는 탄소수 6 내지 60의 아릴로 치환된 보론기를 의미한다.
본 발명에서 "알킬포스피닐기"는 탄소수 1 내지 40의 알킬로 치환된 포스핀기를 의미하고, 모노- 뿐만 아니라 디-알킬포스피닐기를 포함한다. 또, 본 발명에서 "아릴포스피닐기"는 탄소수 6 내지 60의 모노아릴 또는 디아릴로 치환된 포스핀기를 의미하고, 모노- 뿐만 아니라 디-아릴포스피닐기를 포함한다.
본 발명에서 "아릴아민"은 탄소수 6 내지 60의 아릴로 치환된 아민을 의미하며, 모노-뿐만 아니라 디-아릴아민를 포함한다.
본 발명에서 "헤테로아릴아민"은 핵원자수 5 내지 60의헤테로아릴로 치환된 아민을 의미하며, 모노-뿐만 아니라 디-헤테로아릴아민를 포함한다.
본발명에서 (아릴)(헤테로아릴)아민은 탄소수 6 내지 60의 아릴 및 핵원자수 5 내지 60의헤테로아릴로 치환된 아민을 의미한다.
본 발명에서 "축합고리"는 탄소수 3 내지 40의 축합지방족 고리, 탄소수 6 내지 60의 축합 방향족 고리, 핵원자수 3 내지 60의축합헤테로지방족 고리, 핵원자수 5 내지 60의축합헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
<유기 전계 발광 소자>
한편, 본 발명은 전술한 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자(이하, '유기 EL 소자')를 제공한다.
도 1 내지 도 4는 본 발명의 제1 내지 제4 실시 형태에 따른 유기 전계 발광 소자를 개략적으로 나타낸 단면도이다.
이하, 도 1 내지 도 3을 참고하여, 본 발명의 제1 내지 제3 실시 형태에 따른 유기 전계 발광 소자에 대해 상세히 설명한다.
도 1 내지 도 3에 도시된 바와 같이, 본 발명에 따른 유기 전계 발광 소자는 애노드(anode)(100), 캐소드(cathode)(200) 및 상기 애노드와 캐소드 사이에 개재(介在)된 1층 이상의 유기물층(300)을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화합물은 단독으로 사용되거나, 또는 2 이상이 혼합되어 사용될 수 있다.
상기 1층 이상의 유기물층(300)은 정공 주입층(310), 정공 수송층(320), 발광층(330), 전자 수송층(340), 및 전자 주입층(350) 중 어느 하나 이상을 포함할 수 있고, 선택적으로 전자 수송 보조층(360)을 추가적으로 더 포함할 수 있다. 이때, 적어도 하나의 유기물층(300)은 상기 화학식 1로 표시되는 화합물을 포함한다. 구체적으로, 상기 화학식 1의 화합물을 포함하는 유기물층은 발광층(330), 전자수송층(340) 및 전자수송 보조층(360) 중에서 적어도 어느 하나일 수 있다.
일례에 따르면, 상기 1층 이상의 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송층, 및 전자주입층을 포함하고, 선택적으로 전자수송보조층을 더 포함할 수 있다. 상기 전자 수송층은 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화학식 1로 표시되는 화합물은 전자수송층 물질로 유기 전계 발광 소자에 포함된다. 이러한 유기 전계 발광 소자에서, 전자는 상기 화학식 1의 화합물 때문에, 캐소드 또는 전자주입층에서 전자수송층으로 용이하게 주입되고, 또한 전자수송층에서 발광층으로 빠르게 이동할 수 있어, 발광층에서의 정공과 전자의 결합력이 높다. 그러므로, 본 발명의 유기 전계 발광 소자는 발광효율, 전력효율, 휘도 등이 우수하다. 게다가, 상기 화학식 1의 화합물은 열적 안정성, 전기화학적 안정성이 우수하여, 유기 전계 발광 소자의 성능을 향상시킬 수 있다.
이와 같은 화학식 1의 화합물은 단독으로 사용되거나, 또는 당 분야에 공지된 전자수송층 재료와 혼용될 수 있다.
본 발명에서 상기 화학식 1의 화합물과 혼용될 수 있는 전자수송층 재료는 당 분야에서 통상적으로 공지된 전자수송 물질을 포함한다. 사용 가능한 전자 수송 물질의 비제한적인 예로는 옥사졸계 화합물, 이소옥사졸계 화합물, 트리아졸계 화합물, 이소티아졸(isothiazole)계 화합물, 옥사디아졸계 화합물, 티아다아졸(thiadiazole)계 화합물, 페릴렌(perylene)계 화합물, 알루미늄 착물(예: Alq3, tris(8-quinolinolato)-aluminium), 갈륨착물(예: Gaq'2OPiv, Gaq'2OAc, 2(Gaq'2)) 등이 있다. 이들을 단독으로 사용하거나 또는 2종 이상 혼용할 수 있다.
본 발명에서, 상기 화학식 1의 화합물과 전자수송층 재료를 혼용할 경우, 이들의 혼합 비율은 특별히 제한되지 않으며, 당 분야에 공지된 범위 내에서 적절히 조절될 수 있다.
다른 일례에 따르면, 상기 1층 이상의 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송 보조층, 전자수송층, 및 전자주입층을 포함하고, 상기 전자수송 보조층은 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화학식 1로 표시되는 화합물은 전자수송 보조층 물질로 유기 전계 발광 소자에 포함된다. 이때, 상기 화학식 1의 화합물이 높은 삼중항 에너지를 갖는다. 이 때문에, 상기 화학식 1의 화합물을 전자수송 보조층 물질로 포함할 경우, TTF(triplet-triplet fusion) 효과로 인해 유기 전계 발광 소자의 효율이 상승될 수 있다. 또한, 상기 화학식 1의 화합물은 발광층에서 생성된 엑시톤이나 정공이 발광층에 인접하는 전자수송층으로 확산되는 것을 방지할 수 있다. 따라서, 발광층 내에서 발광에 기여하는 엑시톤의 수가 증가되어 소자의 발광 효율이 개선될 수 있고, 소자의 내구성 및 안정성이 향상되어 소자의 수명이 효율적으로 증가될 수 있다.
이와 같은 화학식 1의 화합물은 단독으로 사용되거나, 또는 당 분야에 공지된 전자수송층 보조층 재료와 혼용될 수 있다.
본 발명에서 상기 화학식 1의 화합물과 혼용될 수 있는 전자수송 보조층 재료로는 당 분야에서 통상적으로 공지된 전자수송 물질을 포함하며, 예컨대 옥사디아졸 유도체, 트리아졸 유도체, 페난트롤린 유도체(예, BCP), 질소를 포함하는 헤테로환 유도체 등이 있는데, 이에 한정되지 않는다.
또 다른 일례에 따르면, 상기 1층 이상의 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송층, 및 전자주입층을 포함하고, 선택적으로 전자수송 보조층을 추가적으로 더 포함할 수 있으며, 상기 발광층은 호스트 및 도펀트를 포함하고, 상기 호스트는 상기 화학식 1로 표시되는 화합물일 수 있다. 이 경우, 본 발명의 발광층은 상기 화학식 1의 화합물 이외, 당 분야의 공지된 화합물을 제2 호스트로 포함할 수 있다.
본 발명에서, 호스트의 함량은 발광층의 총량을 기준으로 약 70 내지 99.9 중량%일 수 있고, 도펀트의 함량은 발광층의 총량을 기준으로 약 0.1 내지 30 중량%일 수 있다.
상기 화학식 1로 표시되는 화합물을 유기 전계 발광 소자의 발광층 재료, 구체적으로 청색, 녹색, 적색의 인광 호스트 재료로 포함할 경우, 발광층에서 정공과 전자의 결합력이 높아지기 때문에, 유기 전계 발광 소자의 효율(발광효율 및 전력효율), 수명, 휘도 및 구동전압 등을 향상시킬 수 있다. 구체적으로, 상기 화학식 1로 표시되는 화합물은 녹색 및/또는 적색의 인광 호스트, 형광 호스트, 또는 도펀트 재료로서 유기 전계 발광 소자에 포함되는 것이 바람직하다. 특히, 본 발명의 화학식 1로 표시되는 화합물은 고효율을 가진 발광층의 그린 인광 exciplex N-type 호스트 재료인 것이 바람직하다.
전술한 본 발명의 유기 전계 발광 소자의 구조는 특별히 한정되지 않으나, 예컨대 기판 위에, 애노드(100), 1층 이상의 유기물층(300) 및 캐소드(200)가 순차적으로 적층될 수 있다(도 1 내지 도 3 참조). 뿐만 아니라, 도시되지 않았지만, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입된 구조일 수 있다.
일례에 따르면, 유기 전계 발광 소자는 도 1에 도시된 바와 같이, 기판 위에, 애노드(100), 정공주입층(310), 정공수송층(320), 발광층(330), 전자수송층(340) 및 캐소드(200)가 순차적으로 적층된 구조를 가질 수 있다. 선택적으로, 도 2에 도시된 바와 같이, 상기 전자수송층(340)과 캐소드(200) 사이에 전자주입층(350)이 위치할 수 있다. 또한, 상기 발광층(330)과 전자수송층(340) 사이에 전자수송 보조층(360)이 위치할 수 있다(도 3 참조).
본 발명의 유기 전계 발광 소자는 상기 유기물층(300) 중 적어도 하나[예, 전자수송층(340)]가 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는, 당 기술 분야에 알려져 있는 재료 및 방법으로 유기물층 및 전극을 형성하여 제조할 수 있다.
상기 유기물층은 진공 증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이에 한정되지는 않는다.
본 발명에서 사용 가능한 기판은 특별히 한정되지 않으며, 비제한적인 예로는 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등이 있다.
또, 애노드 물질의 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 또는 폴리아닐린과 같은 전도성 고분자; 및 카본블랙 등이 있는데, 이에 한정되지는 않는다.
또, 캐소드 물질의 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은(Ag), 주석, 또는 납과 같은 금속 또는 이들의 합금; 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있는데, 이에 한정되지는 않는다.
또한, 정공주입층, 정공수송층, 발광층 및 전자 주입층은 특별히 한정되는 것은 아니며, 당 업계에 알려진 통상의 물질을 사용할 수 있다.
이하, 도 4를 참조하여, 본 발명의 제4실시 형태에 따른 유기 전계 발광 소자에 대해 설명한다.
도 4에 도시된 바와 같이, 본 발명의 제4실시 형태에 따른 유기 전계 발광 소자는 탠덤(tandem)형 소자로, 기판 상에 서로 대향된 애노드(100)와 캐소드(200); 상기 애노드(100)와 캐소드(200) 사이에 개재된 복수의 발광 유닛(400, 500); 및 서로 인접한 발광 유닛(400, 500) 사이에 개재된 전하 생성층(600)을 포함하고, 상기 전하 생성층(600)은 전술한 화학식 1로 표시되는 화합물을 포함한다.
이러한 탠덤형 유기 전계 발광 소자는 발광 유닛이 최소 2개이며, 전하 생성층을 인접한 발광 유닛들 사이에 개재하여 발광 유닛의 수를 늘려 구성할 수 있다.
일례에 따르면, 복수의 발광 유닛은 제1 발광 유닛(400), 제2 발광 유닛(500), …, 및 제m-1 발광 유닛(m=3 이상의 정수, 구체적으로 3~4)을 포함할 수 있다. 이때, 인접한 발광 유닛 사이에는 N형 전하 생성층(610) 및 P형 전하 생성층(620)을 포함하는 전하 생성층(600)이 배치되고, 상기 N형 전하 생성층(610)이 전술한 화학식 1로 표시되는 화합물을 포함한다.
구체적으로, 본 발명에 따른 유기 전계 발광 소자는 서로 대향된 애노드(100)와 캐소드(200); 상기 애노드(100) 상에 배치된 제1 발광 유닛(400); 상기 제1 발광 유닛(400) 상에 배치된 제2 발광 유닛(500); 상기 제1 및 제2 발광 유닛(400, 500) 사이에 개재된 전하 생성층(600)을 포함하고, 상기 전하 생서층(600)은 전술한 화학식 1로 표시되는 화합물을 포함한다. 일례로, 상기 전하 생성층(600)은 N형 전하 생성층(610) 및 P형 전하 생성층(620)을 포함하고, 상기 N형 전하 생성층(610)이 전술한 화학식 1로 표시되는 화합물을 포함할 수 있다. 이때, P형 전하 생성층(620)은 생략될 수 있다. 이 경우, 상기 전하 생성층(600) 상에 배치된 정공 주입층(미도시됨)이 P형 전하 생성층의 역할을 대신할 수 있다.
각 발광 유닛(400, 500)은 정공 수송층(410, 510), 발광층(420, 520) 및 전자 수송층(430, 530)을 포함할 수 있고, 선택적으로 정공 주입층(미도시됨)을 추가적으로 더 포함할 수 있다. 구체적으로, 제1 발광 유닛(400)은 제1 정공 수송층(410), 제1 발광층(420) 및 제1 전자 수송층(430)을 포함하고, 제2 발광 유닛(500)은 정공 수송층(510), 발광층(520) 및 전자 수송층(530)을 포함할 수 있다. 선택적으로, 상기 제1 발광 유닛(400)은 정공 주입층(440)을 추가적으로 포함할 수 있다.
상기 정공 수송층(410, 510), 발광층(420, 520), 전자 수송층(430, 530) 및 정공 주입층(440)은 특별히 한정되는 것은 아니며, 당 업계에 알려진 통상의 물질을 사용할 수 있다.
상기 전하 생성층(Charge Generation Layer, CGL)(600)은 서로 인접한 발광 유닛(400, 500) 사이에 배치됨으로써, 발광 유닛(400, 500) 사이의 전하를 조절하여 전하 균형이 이루어지도록 한다.
전하 생성층(600)은 제1 발광 유닛(400)과 인접하게 위치하여 제1 발광 유닛(400)에 전자를 공급하는 N형 전하 생성층(610); 및 제2 발광 유닛(500)과 인접하게 위치하여 제2 발광 유닛(500)에 정공을 공급하는 P형 전하 생성층(620)을 포함한다.
상기 N형 전하 생성층(610)은 전술한 화학식 1로 표시되는 화합물을 포함한다. 상기 화학식 1의 화합물은 전자 이동성이 우수하여 전자 주입 및 수송 능력이 우수하다. 따라서, 상기 화학식 1의 화합물을 N형 전하 생성층 재료로 유기 전계 발광 소자에 적용할 경우, 소자의 진행성 구동 전압의 증가 및 수명 저하를 방지할 수 있다.
일례에 따르면, 상기 N형 전하 생성층(610)은 전자 수송 특성을 갖는 하나의 호스트(host)를 포함하고, 상기 하나의 호스트는 상기 화학식 1로 표시되는 화합물이다.
상기 N형 전하 생성층(610)은 N형 도펀트를 더 포함할 수 있다.
본 발명에서 사용 가능한 N형 도펀트는 당 분야에서 일반적으로 N형 전하 생성층에 사용되는 물질이라면, 특별히 한정하지 않으며, 예를 들어 Li, Na, K, Rb, Cs, Fr 등과 같은 알칼리 금속; Be, Mg, Ca, Sr, Ba, Ra 등과 같은 알칼리 토금속; La(lanthanum), Ce(cerium), Pr(preseodyminum), Nd(neodymium), Pm(promethium), Sm(samarium), europium(europium), Gd(gadolinium), Tb(terbium), Dy(dysprosium), Ho(holmium), Er(erbium), Tm(thulium), Yb(ytterbium), Lu(lutetium) 등과 같은 란타나이드계 금속; 및 상기 1종 이상의 금속 화합물 등이 있다. 또한, 전자 공여(electron donor) 특성을 가지며, 적어도 일부의 전자 전하를 유기 호스트(예, 화학식 1의 화물물)에 공여하여 상기 유기 호스트와 전하-전달 착체를 형성할 수 있는 유기 N형 도펀트일 수 있고, 이의 예로는 bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF), Tetrathiafulvalene (TTF) 등이 있다.
상기 N형 전하 생성층(610)의 두께는 특별히 한정되지 않으며, 예컨대 약 5 내지 30㎚ 범위일 수 있다.
상기 P형 전하 생성층(620)은 금속 또는 P형이 도핑된 유기 물질로 이루어질 수 있다. 여기서, 상기 금속은 Al, Cu, Fe, Pb, Zn, Au, Pt, W, In, Mo, Ni 및 Ti 등이 있고, 이들은 단독으로 사용되거나, 또는 2개 이상의 합금으로 사용될 수 있다. 또한, 상기 P형이 도핑된 유기 물질에 사용되는 P형 도펀트와 호스트의 물질은 통상적으로 사용되는 물질이라면 특별히 한정되지 않는다. 예를 들면, 상기 P형 도펀트는 F4-TCNQ(2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane), 요오드, FeCl3, FeF3 및 SbCl5 등이 있는데, 이들은 단독으로 사용되거나 2종 이상이 혼합되어 사용될 수 있다. 또, 상기 호스트의 비제한적인 예로는 NPB (N,N'-bis(naphthaen-1-yl)-N,N'-bis(phenyl)-benzidine), TPD(N,N'-bis(3-methylphenyl)N,N'-bis(phenyl)-benzidine) 및 TNB(N,N,N',N'-tetra-naphthalenyl-benzidine) 등이 있는데, 이들은 단독으로 사용되거나 2종 이상이 혼합되어 사용될 수 있다.
상기 기판(미도시됨), 애노드(100), 캐소드(200), 정공주입층, 정공수송층, 발광층 및 전자 주입층에 대한 설명은 전술한 제1~제3 실시 형태 부분에 설명한 바와 동일하기 때문에, 생략한다.
이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[준비예 1] 2-([1,1'-biphenyl]-2-yl)-4,6-dichloropyrimidine (Pm01)의 합성
Figure PCTKR2023005798-appb-img-000068
2-([1,1'-biphenyl]-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (30.0g, 107.1 mmol), 2-bromo-4,6-dichloropyrimidine (36.6g, 160.6mmol), Pd(PPh3)4 (3.7g, 3.2mmol), K2CO3 (44.4g, 321.2mmol)을 THF 300ml, DIW 100ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후, Methylene Chloride로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-([1,1'-biphenyl]-2-yl)-4,6-dichloropyrimidine (25.8g, 85.7mmol, 수율 80%)을 얻었다.
Mass : [(M+H)+] : 302
[준비예 2] 2,4-di([1,1'-biphenyl]-2-yl)-6-chloropyrimidine (Pm02)의 합성
Figure PCTKR2023005798-appb-img-000069
2-([1,1'-biphenyl]-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (18.0g, 64.2mmol), 준비예 1에서 합성된 Pm01 (25.2g, 83.5mmol), Pd(PPh3)4 (2.2g, 1.9mmol), K2CO3 (26.6g, 192.7mmol)를 Toluene 180ml, Ethanol 45ml, DIW 45ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2,4-di([1,1'-biphenyl]-2-yl)-6-chloropyrimidine (20.2g, 48.2mmol, 수율 75%)을 얻었다.
Mass : [(M+H)+] : 420
[준비예 3] 2-([1,1'-biphenyl]-4-yl)-4,6-dichloropyrimidine (Pm03)의 합성
Figure PCTKR2023005798-appb-img-000070
2-([1,1'-biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (30.0g, 107.1mmol), 2-bromo-4,6-dichloropyrimidine (36.6g, 160.7mmol), Pd(PPh3)4 (3.7g, 3.2mmol), K2CO3 (44.4g, 321.2mmol)을 THF 300ml, DIW 100ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-([1,1'-biphenyl]-4-yl)-4,6-dichloropyrimidine (27.1g, 90.0mmol, 수율 84%)을 얻었다.
Mass : [(M+H)+] : 302
[준비예 4] 2,4-di([1,1'-biphenyl]-4-yl)-6-chloropyrimidine (Pm04)의 합성
Figure PCTKR2023005798-appb-img-000071
2-([1,1'-biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (19.0g, 67.8mmol), 준비예 3에서 합성된 Pm03 (26.6g, 88.2mmol), Pd(PPh3)4 (2.4g, 2.0mmol), K2CO3 (28.1g, 203.4mmol)를 Toluene 190ml, Ethanol 48ml, DIW 48ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2,4-di([1,1'-biphenyl]-4-yl)-6-chloropyrimidine (22.7g, 54.2mmol, 수율 80%)을 얻었다.
Mass : [(M+H)+] : 420
[준비예 5] 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-(dibenzo[b,d]furan-1-yl) pyrimidine (Pm 05) 의 합성
Figure PCTKR2023005798-appb-img-000072
2-(dibenzo[b,d]furan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (30.0g, 102.0 mmol), 준비예 3에서 합성된 Pm03 ( 39.9g , 132.6mmol ) , Pd(PPh3)4 ( 3.5g, 3.1mmol ), K2CO3 ( 42.3g, 306.0mmol )를 Toluene 300ml, Ethanol 75ml, DIW 75ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-(dibenzo[b,d]furan-1-yl)pyrimidine ( 32.0g, 73.9mmol , 수율 72% )을 얻었다.
Mass : [(M+H)+] : 434
[준비예 6] 3-chloro-2-(9,9-dimethyl-9H-fluoren-2-yl)pyridine (Py01)의 합성
Figure PCTKR2023005798-appb-img-000073
2-(9,9-dimethyl-9H-fluoren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20.0g, 62.5mmol), 2-bromo-3-chloropyridine (18.0g, 93.7mmol), Pd(PPh3)4 (2.2g, 1.9mmol), K2CO3 (25.9g, 187.4mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-chloro-2-(9,9-dimethyl-9H-fluoren-2-yl)pyridine (15.9g, 52.0mmol, 수율 83%)을 얻었다.
Mass : [(M+H)+] : 307
[준비예 7] 2-(9,9-dimethyl-9H-fluoren-2-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxabor olan-2-yl)pyridine (Py02)의 합성
Figure PCTKR2023005798-appb-img-000074
준비예 6에서 합성된 Py01 (15.0g, 49.1mmol), bis(pinacolato)diboron (16.2g, 63.8mmol), Pd(dppf)Cl2 (1.1g, 1.5mmol), X-Phos (1.4g, 2.9mmol), KOAc (9.6g, 98.1mmol)를 1,4-Dioxane 150ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-(9,9-dimethyl-9H-fluoren-2-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (13.6g, 34.2mmol, 수율 70%)을 얻었다.
Mass : [(M+H)+] : 398
[준비예 8] 7-(3-chloropyridin-2-yl)-9,9-dimethyl-9H-fluorene-2-carbonitrile (Py03)의 합성
Figure PCTKR2023005798-appb-img-000075
9,9-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene-2-carbonitrile (20.0g, 57.9mmol), 2-bromo-3-chloropyridine (16.7g, 86.9mmol), Pd(PPh3)4 (2.0g, 1.7mmol), K2CO3 (24.0g, 173.8mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 7-(3-chloropyridin-2-yl)-9,9-dimethyl-9H-fluorene-2-carbonitrile (15.1g, 45.6mmol, 수율 79%)을 얻었다.
Mass : [(M+H)+] : 332
[준비예 9] 9,9-dimethyl-7-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyri dine-2-yl)-9H-fluorene-2-carbonitrile (Py04)의 합성
Figure PCTKR2023005798-appb-img-000076
준비예 8에서 합성된 Py03 (15.0g, 45.3mmol), bis(pinacolato)diboron (15.0g, 58.9mmol), Pd(dppf)Cl2 (1.0g, 1.4mmol), X-Phos (1.3g, 2.7mmol), KOAc (8.9g, 90.7mmol)를 1,4-Dioxane 150ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 9,9-dimethyl-7-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)-9H-fluorene-2-carbonitrile ( 14.0g, 33.1mmol, 수율 73%)을 얻었다.
Mass : [(M+H)+] : 423
[준비예 10] (7-(3-chloropyridin-2-yl)-9,9-dimethyl-9H-fluoren-2-yl)dimethyl phosphine oxide (Py05)의 합성
Figure PCTKR2023005798-appb-img-000077
(9,9-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluoren-2-yl)(methyl)phosphine oxide (20.0g, 52.3mmol), 2-bromo-3-chloropyridine (15.1g, 78.5mmol), Pd(PPh3)4 (1.8g, 1.6mmol), K2CO3 (21.7g, 157.0mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 (7-(3-chloropyridin-2-yl)-9,9-dimethyl-9H-fluoren-2-yl)dimethylphosphine oxide (15.9g, 41.6mmol, 수율 80%)을 얻었다.
Mass : [(M+H)+] : 383
[준비예 11] (9,9-dimethyl-7-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyri din-2-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (Py06)의 합성
Figure PCTKR2023005798-appb-img-000078
준비예 10에서 합성된 Py05 (15.0g, 39.8mmol), bis(pinacolato)diboron (13.0g, 51.1mmol), Pd(dppf)Cl2 (0.9g, 1.2mmol), X-Phos (1.1g, 2.4mmol), KOAc (7.7g, 78.6mmol)를 1,4-Dioxane 150ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 (9,9-dimethyl-7-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (17.0g, 35.9mmol, 수율 91%)을 얻었다.
Mass : [(M+H)+] : 474
[준비예 12] 2-chloro-5-(9,9-dimethyl-9H-fluoren-2-yl)pyridine (Py07)의 합성
Figure PCTKR2023005798-appb-img-000079
2-(9,9-dimethyl-9H-fluoren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20.0g, 62.5mmol), 5-bromo-2-chloropyridine (18.0g, 93.7mmol), Pd(PPh3)4 (2.2g, 1.9mmol), K2CO3 (25.9g, 187.4mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-chloro-5-(9,9-dimethyl-9H-fluoren-2-yl)pyridine (16.5g, 54.0mmol, 수율 86%)을 얻었다.
Mass : [(M+H)+] : 307
[준비예 13] 5-(9,9-dimethyl-9H-fluoren-2-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxa borolan -2-yl)pyridine (Py08)의 합성
Figure PCTKR2023005798-appb-img-000080
준비예 12에서 합성된 Py 07 (16.0g, 52.3mmol), bis(pinacolato)diboron (17.3g, 68.0mmol), Pd(dppf)Cl2 (1.1g, 1.6mmol), X-Phos (1.5g, 3.1mmol), KOAc (10.3g, 104.6mmol)를 1,4-Dioxane 160ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 5-(9,9-dimethyl-9H-fluoren-2-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (17.3g, 43.5mmol, 수율 83%)을 얻었다.
Mass : [(M+H)+] : 398
[준비예 14] (7-(6-chloropyridin-3-yl)-9,9-dimethyl-9H-fluoren-2-yl)dimethyl phosphine oxide (Py09)의 합성
Figure PCTKR2023005798-appb-img-000081
(9,9-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (20.0g, 50.5mmol), 5-bromo-2-chloropyridine (14.6g, 75.7mmol), Pd(PPh3)4 (1.7g, 1.5mmol), K2CO3 (20.9g, 151.4mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반 하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 (7-(6-chloropyridin-3-yl)-9,9-dimethyl-9H-fluoren-2-yl)dimethylphosphine oxide (15.3g, 40.1mmol, 수율 79%)을 얻었다.
Mass : [(M+H)+] : 383
[준비예 15] (9,9-dimethyl-7-(6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyridine-3-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (Py10)의 합성
Figure PCTKR2023005798-appb-img-000082
준비예 14에서 합성된 Py09 (15.0g, 39.3mmol), bis(pinacolato)diboron (13.0g, 51.1mmol), Pd(dppf)Cl2 (0.9g, 1.2mmol), X-Phos (1.1g, 2.4mmol), KOAc (7.7g, 78.6mmol)를 1,4-Dioxane 150ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 (9,9-dimethyl-7-(6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (13.8g, 29.2mmol, 수율 74%)을 얻었다.
Mass : [(M+H)+] : 474
[준비예 16] 2-chloro-3-(dibenzo[b,d]furan-3-yl)pyridine (Py11)의 합성
Figure PCTKR2023005798-appb-img-000083
2-(dibenzo[b,d]furan-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20.0g, 68.0mmol), 4-bromo-3-chloropyridine (19.6g , 102.0mmol), Pd(PPh3)4 (2.4g, 2.0mmol), K2CO3 (28.2g, 204.0mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-chloro-3-(dibenzo[b,d]furan-3-yl)pyridine (15.7g, 56.1mmol, 수율 83%)을 얻었다.
Mass : [(M+H)+] : 281
[준비예 17] 3-(dibenzo[b,d]furan-3-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaboro lan-2-yl)pyridine (Py12)의 합성
Figure PCTKR2023005798-appb-img-000084
준비예 16에서 합성된 Py11 (15.0g, 53.6mmol), bis(pinacolato)diboron (17.7g, 69.7mmol), Pd(dppf)Cl2 (1.2g, 1.6mmol), X-Phos (1.5g, 3.2mmol), KOAc (10.5g, 107.3mmol)를 1,4-Dioxane 150ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-(dibenzo[b,d]furan-3-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (14.9g, 40.1mmol, 수율 75%)을 얻었다.
Mass : [(M+H)+] : 372
[준비예 18] 3-chloro-5-(9,9-dimethyl-9H-fluoren-2-yl)pyridine (Py13)의 합성
Figure PCTKR2023005798-appb-img-000085
2-bromo-9,9-dimethyl-9H-fluorene (20.0g, 73.2mmol), (5-chloropyridin-3-yl)boronic acid (17.3g, 109.8mmol), Pd(PPh3)4 (2.5g, 2.2mmol), K2CO3 (30.4g, 219.6mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-chloro-5-(9,9-dimethyl-9H-fluoren-2-yl)pyridine (16.3g, 53.3mmol, 수율 73%)을 얻었다.
Mass : [(M+H)+] : 307
[준비예 19] 3-(9,9-dimethyl-9H-fluoren-2-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxa borolan-2-yl)pyridine (Py14)의 합성
Figure PCTKR2023005798-appb-img-000086
준비예 18에서 합성된 Py13 (16.0g, 52.3mmol), bis(pinacolato)diboron (17.3g, 68.0mmol), Pd(dppf)Cl2 (1.1g, 1.6mmol , X-Phos (1.5g, 3.1mmol), KOAc (10.3g, 104.6mmol)를 1,4-Dioxane 160ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-(9,9-dimethyl-9H-fluoren-2-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (17.2g, 43.3mmol, 수율 83%)을 얻었다.
Mass : [(M+H)+] : 398
[준비예 20] (7-(5-chloropyridin-3-yl)-9,9-dimethyl-9H-fluoren-2-yl)dimethyl phosphine oxide (Py15)의 합성
Figure PCTKR2023005798-appb-img-000087
(7-bromo-9,9-dimethyl-9H-fluoren-2-yl)dimethylphosphine oxide (20.0g, 57.3mmol), (5-chloropyridin-3-yl)boronic acid (13.5g, 85.9mmol), Pd(PPh3)4 (2.0g, 1.7mmol), K2CO3 (23.7g, 171.8mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 (7-(5-chloropyridin-3-yl)-9,9-dimethyl-9H-fluoren-2-yl)dimethylphosphine oxide (18.6g, 48.7mmol, 수율 85%)을 얻었다.
Mass : [(M+H)+] : 383
[준비예 21] (9,9-dimethyl-7-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyri dine-3-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (Py16)의 합성
Figure PCTKR2023005798-appb-img-000088
준비예 20에서 합성된 Py15 (18.0g, 47.1mmol), bis(pinacolato)diboron (15.6g, 61.3mmol), Pd(dppf)Cl2 (1.0g, 1.4mmol), X-Phos (1.3g, 2.8mmol), KOAc (9.3g, 94.3mmol)를 1,4-Dioxane 180ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 (9,9-dimethyl-7-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (18.2g, 38.4mmol, 수율 82%)을 얻었다.
Mass : [(M+H)+] : 474
[준비예 22] 3-chloro-4-(dibenzo[b,d]furan-2-yl)pyridine (Py17)의 합성
Figure PCTKR2023005798-appb-img-000089
2-(dibenzo[b,d]furan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20.0g, 68.0mmol), 4-bromo-3-chloropyridine (19.6g , 102.0mmol), Pd(PPh3)4 (2.4g, 2.0mmol), K2CO3 (28.2g, 204.0mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-chloro-4-(dibenzo[b,d]furan-2-yl)pyridine (16.7g, 59.7mmol, 수율 88%)을 얻었다.
Mass : [(M+H)+] : 281
[준비예 23] 4-(dibenzo[b,d]furan-2-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxa borolan-2-yl)pyridine (Py18) 의 합성
Figure PCTKR2023005798-appb-img-000090
준비예 22에서 합성된 Py17(16.0g, 57.2mmol), bis(pinacolato)diboron (18.9g, 74.4mmol), Pd(dppf)Cl2 (1.3g, 1.7mmol), X-Phos (1.6g, 3.4mmol), KOAc (11.2g, 114.4mmol)를 1,4-Dioxane 160ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4-(dibenzo[b,d]furan-2-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (16.3g, 43.9mmol, 수율 77%)을 얻었다.
Mass : [(M+H)+] : 372
[준비예 24] 4-chloro-3-(9,9-dimethyl-9H-fluoren-3-yl)pyridine (Py19)의 합성
Figure PCTKR2023005798-appb-img-000091
2-(9,9-dimethyl-9H-fluoren-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20.0g, 62.5mmol), 4-bromo-3-chloropyridine (18.0g, 93.7mmol), Pd(PPh3)4 (2.2g, 1.9mmol), K2CO3 (25.9g, 187.4mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4-chloro-3-(9,9-dimethyl-9H-fluoren-3-yl)pyridine (15.2g, 49.7mmol, 수율 80%)을 얻었다.
Mass : [(M+H)+] : 307
[준비예 25] 3-(9,9-dimethyl-9H-fluoren-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (Py20)의 합성
Figure PCTKR2023005798-appb-img-000092
준비예 24에서 합성된 Py19 (15.0g, 49.1mmol), bis(pinacolato)diboron (16.2g, 63.8mmol), Pd(dppf)Cl2 (1.1g, 1.5mmol), X-Phos (1.4g, 2.9mmol), KOAc (9.6g, 98.1mmol)를 1,4-Dioxane 150ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-(9,9-dimethyl-9H-fluoren-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (14.3g, 36.0mmol, 수율 73%)을 얻었다.
Mass : [(M+H)+] : 398
[준비예 26] 2-chloro-3-(dibenzo[b,d]furan-1-yl)pyridine (Py21)의 합성
Figure PCTKR2023005798-appb-img-000093
2-(dibenzo[b,d]furan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20.0g, 68.0mmol) 및 4-bromo-3-chloropyridine (19.6g , 102.0mmol) , Pd(PPh3)4 (2.4g, 2.0mmol), K2CO3 (28.2g, 204.0mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-chloro-3-(dibenzo[b,d]furan-1-yl)pyridine (16.1g, 57.6mmol, 수율 85%)을 얻었다.
Mass : [(M+H)+] : 281
[준비예 27] 3-(dibenzo[b,d]furan-1-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaboro lan-2-yl)pyridine (Py22)의 합성
Figure PCTKR2023005798-appb-img-000094
준비예 26에서 합성된 Py 21(16.0g, 57.2mmol), bis(pinacolato)diboron (18.9g, 74.4mmol), Pd(dppf)Cl2 (1.3g, 1.7mmol), X-Phos (1.6g, 3.4mmol), KOAc (11.2g, 114.4mmol )를 1,4-Dioxane 160ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-(dibenzo[b,d]furan-1-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (14.7g, 39.6mmol, 수율 69%)을 얻었다.
Mass : [(M+H)+] : 372
[준비예 28] 2-chloro-3-(9,9-diphenyl-9H-fluoren-4-yl)pyridine (Py23)의 합성
Figure PCTKR2023005798-appb-img-000095
2-(9,9-diphenyl-9H-fluoren-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20.0g, 45.0mmol), 3-bromo-2-chloropyridine (13.0g, 67.5mmol), Pd(PPh3)4 (1.6g, 1.4mmol), K2CO3 (18.7g, 135.0mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-chloro-3-(9,9-diphenyl-9H-fluoren-4-yl)pyridine (16.4g, 38.1mmol, 수율 85%)을 얻었다.
Mass : [(M+H)+] : 431
[준비예 29] 3-(9,9-diphenyl-9H-fluoren-4-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxa borolan-2-yl)pyridine (Py24)의 합성
Figure PCTKR2023005798-appb-img-000096
준비예 28에서 합성된 Py23 (16.0g, 37.2mmol), bis(pinacolato)diboron (12.3g ,48.4mmol), Pd(dppf)Cl2 (0.8g, 1.1mmol), X-Phos (1.1g, 2.2mmol), KOAc (7.3g, 74.4mmol)를 1,4-Dioxane 160ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-(9,9-diphenyl-9H-fluoren-4-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (15.3g, 29.3mmol, 수율 79%)을 얻었다.
Mass : [(M+H)+] : 522
[준비예 30] 5-(2-chloropyridin-3-yl)-9,9-diphenyl-9H-fluorene-2-carbonitrile (Py25)의 합성
Figure PCTKR2023005798-appb-img-000097
9,9-diphenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene-2-carbonitrile (20.0g, 42.6mmol), 3-bromo-2-chloropyridine (12.3g, 63.9mmol), Pd(PPh3)4 (1.5g, 1.3mmol), K2CO3 (17.7g, 127.8mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 5-(2-chloropyridin-3-yl)-9,9-diphenyl-9H-fluorene-2-carbonitrile (17.6g, 38.7mmol, 수율 91% )을 얻었다.
Mass : [(M+H)+] : 456
[준비예 31] 9,9-diphenyl-5-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluorene-2-carbonitrile (Py26)의 합성
Figure PCTKR2023005798-appb-img-000098
준비예 30에서 합성된 Py 25 (17.0g, 37.4mmol) 및 bis(pinacolato)diboron (12.3g, 48.6mmol), Pd(dppf)Cl2 (0.8g, 1.1mmol), X-Phos (1.1g, 2.2mmol), KOAc (7.3g, 74.7mmol)를 1,4-Dioxane 170ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 9,9-diphenyl-5-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluorene-2-carbonitrile (15.3g, 28.0mmol, 수율 75%)을 얻었다.
Mass : [(M+H)+] : 547
[준비예 32] 2-chloro-3-(5a,9a-dihydrodibenzo[b,d]thiophen-4-yl)pyridine (Py27)의 합성
Figure PCTKR2023005798-appb-img-000099
2-(5a,9a-dihydrodibenzo[b,d]thiophen-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20.0g, 64.1mmol), 3-bromo-2-chloropyridine (18.5g, 96.1mmol), Pd(PPh3)4 (2.2g, 1.2mmol), K2CO3 (26.6g, 192.2mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반 하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-chloro-3-(5a,9a-dihydrodibenzo[b,d]thiophen-4-yl)pyridine (15.5g, 52.0mmol, 수율 81%)을 얻었다.
Mass : [(M+H)+] : 299
[준비예 33] 3-(5a,9a-dihydrodibenzo[b,d]thiophen-4-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (Py28)의 합성
Figure PCTKR2023005798-appb-img-000100
준비예 32에서 합성된 Py 27(15.0g, 50.4mmol), bis(pinacolato)diboron (6.6g, 65.5mmol), Pd(dppf)Cl2 (1.1g, 1.5mmol), X-Phos (1.4g, 3.0mmol), KOAc (9.9g, 100.7mmol )를 1,4-Dioxane 150ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-(5a,9a-dihydrodibenzo[b,d]thiophen-4-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (15.3g, 39.3mmol, 수율 78%)을 얻었다.
Mass : [(M+H)+] : 390
[준비예 34] 3-chloro-2-(5,5-diphenyl-5H-dibenzo[b,d]silol-3-yl)pyridine (Py29)의 합성
Figure PCTKR2023005798-appb-img-000101
5,5-diphenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5H-dibenzo[b,d]silole (20.0g, 43.4mmol), 2-bromo-3-chloropyridine (12.5g, 65.2mmol), Pd(PPh3)4 (1.5g, 1.3mmol ), K2CO3 (18.0g, 130.3mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-chloro-2-(5,5-diphenyl-5H-dibenzo[b,d]silol-3-yl)pyridine (16.2g, 36.3mmol, 수율 84%)을 얻었다.
Mass : [(M+H)+] : 447
[준비예 35] 2-(5,5-diphenyl-5H-dibenzo[b,d]silol-3-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (Py30) 의 합성
Figure PCTKR2023005798-appb-img-000102
준비예 34에서 합성된 Py 29 (16.0g, 35.9mmol), bis(pinacolato)diboron (11.8g, 46.9mmol), Pd(dppf)Cl2 (0.8g, 1.1mmol), X-Phos (1.0g, 2.2mmol), KOAc (7.0g, 71.7mmol)를 1,4-Dioxane 160ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-(5,5-diphenyl-5H-dibenzo[b,d]silol-3-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (15.0g, 27.9mmol, 수율 78%)을 얻었다.
Mass : [(M+H)+] : 539
[준비예 36] 8-chloro-N,N-diphenyldibenzo[b,d]furan-3-amine (Py31P2)의 합성
Figure PCTKR2023005798-appb-img-000103
7-bromo-2-chlorodibenzo[b,d]furan (20.0g, 71.0mmol), diphenylamine (12.0g, 71.0mmol), Pd2(dba)3 (2.0g, 2.1mmol), P(t-Bu)3 (50Wt%)(1.7g, 4.3mmol), NaOtBu (20.5g, 213.1mmol)를 Toluene 200ml 에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 8-chloro-N,N-diphenyldibenzo[b,d]furan-3-amine (23.0g, 62.2mmol, 수율 88%)을 얻었다.
Mass : [(M+H)+] : 371
[준비예 37] N,N-diphenyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) dibenzo [b,d]furan-3-amine (Py31P1) 의 합성
Figure PCTKR2023005798-appb-img-000104
준비예 36에서 합성된 Py31P2 (22.0g, 59.5mmol), bis(pinacolato)diboron (19.6g , 77.3mmol), Pd(dppf)Cl2 (1.3g, 1.8mmol), X-Phos (1.7g, 3.6mmol), KOAc (11.7g, 119.0mmol)를 1,4-Dioxane 220ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 N,N-diphenyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzo[b,d]furan-3-amine (21.3g, 46.2mmol, 수율 78%)을 얻었다.
Mass : [(M+H)+] : 462
[준비예 38] 8-(3-chloropyridin-2-yl)-N,N-diphenyldibenzo[b,d]furan-3-amine (Py31)의 합성
Figure PCTKR2023005798-appb-img-000105
준비예 37에서 합성된 Py31P1(21.0g, 45.5mmol), 2-bromo-3-chloropyridine (13.1g, 68.3mmol), Pd(PPh3)4 (1.6g, 1.4mmol), K2CO3(18.9g, 136.5mmol)를 THF 210ml, DIW 70ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 8-(3-chloropyridin-2-yl)-N,N-diphenyldibenzo[b,d]furan-3-amine (16.2g, 36.2mmol, 수율 80%)을 얻었다.
Mass : [(M+H)+] : 448
[준비예 39] N,N-diphenyl-8-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyridin-2-yl)dibenzo[b,d]furan-3-amine (Py32)의 합성
Figure PCTKR2023005798-appb-img-000106
준비예 38에서 합성된 Py 31(16.0g, 35.8mmol), bis(pinacolato)diboron (11.8g, 46.5mmol), Pd(dppf)Cl2 (0.8g, 1.1mmol), X-Phos (1.0g, 2.1mmol), KOAc (7.0g, 71.6mmol)를 1,4-Dioxane 160ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 N,N-diphenyl-8-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)dibenzo[b,d]furan-3-amine (13.0g, 24.1mmol, 수율 67%)을 얻었다.
Mass : [(M+H)+] : 539
[준비예 40] 3-chloro-2-(9,9-dimethyl-7-nitro-9H-fluoren-3-yl)pyridine (Py33)의 합성
Figure PCTKR2023005798-appb-img-000107
2-(9,9-dimethyl-7-nitro-9H-fluoren-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20.0g, 54.8mmol), 2-bromo-3-chloropyridine (15.8g, 82.1mmol), Pd(PPh3)4 (1.9g, 1.6mmol), K2CO3 (22.7g, 164.3mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-chloro-2-(9,9-dimethyl-7-nitro-9H-fluoren-3-yl)pyridine (16.3g, 46.5mmol, 수율 85%)을 얻었다.
Mass : [(M+H)+] : 352
[준비예 41] 2-(9,9-dimethyl-7-nitro-9H-fluoren-3-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (Py34)의 합성
Figure PCTKR2023005798-appb-img-000108
준비예 40에서 합성된 Py 33 (16.0g, 35.8mmol), bis(pinacolato)diboron (11.8g, 46.5mmol), Pd(dppf)Cl2 (0.8g, 1.1mmol), X-Phos (1.0g, 2.1mmol), KOAc (7.0g, 71.6mmol)를 1,4-Dioxane 160ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-(9,9-dimethyl-7-nitro-9H-fluoren-3-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (12.5g, 28.3mmol, 수율 79%)을 얻었다.
Mass : [(M+H)+] : 443
[준비예 42] 3-(6-chloro-9,9-dimethyl-9H-fluoren-3-yl)pyridine (Py35P2)의 합성
Figure PCTKR2023005798-appb-img-000109
3-bromo-6-chloro-9,9-dimethyl-9H-fluorene (20.0g, 65.0mmol) 및 pyridin-3-ylboronic acid (12.0g , 2.0mmol), Pd(PPh3)4 (2.3g, 2.0mmol), K2CO3 ( 27.0g, 195.0mmol)를 THF 200ml, DIW 66ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-(6-chloro-9,9-dimethyl-9H-fluoren-3-yl)pyridine (17.3g, 56.6mmol, 수율 87%)을 얻었다.
Mass : [(M+H)+] : 307
[준비예 43] 3-(9,9-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluoren-3-yl)pyridine (Py35P1)의 합성
Figure PCTKR2023005798-appb-img-000110
준비예 42에서 합성된 Py35P2 (17.0g, 55.6mmol), bis(pinacolato)diboron (18.4g, 72.3mmol), Pd(dppf)Cl2 (1.2g, 1.7mmol ), X-Phos (1.6g, 3.3mmol), KOAc (10.9g, 111.2mmol)를 1,4-Dioxane 170ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-(9,9-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluoren-3-yl)pyridine (19.3g, 48.6mmol, 수율 87%)을 얻었다.
Mass : [(M+H)+] : 398
[준비예 44] 4-chloro-3-(9,9-dimethyl-6-(pyridin-3-yl)-9H-fluoren-3-yl)pyridine (Py35)의 합성
Figure PCTKR2023005798-appb-img-000111
준비예 43에서 합성된 Py35P1 (19.0g, 47.8mmol), 3-bromo-4-chloropyridine (13.8g, 71.7mmol), Pd(PPh3)4 (1.7g, 1.4mmol), K2CO3 (19.8g, 143.5mmol)를 THF 190ml, DIW 63ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4-chloro-3-(9,9-dimethyl-6-(pyridin-3-yl)-9H-fluoren-3-yl)pyridine (16.7g, 43.6mmol, 수율 91%)을 얻었다.
Mass : [(M+H)+] : 384
[준비예 45] 3-(9,9-dimethyl-6-(pyridin-3-yl)-9H-fluoren-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (Py36)의 합성
Figure PCTKR2023005798-appb-img-000112
준비예 44에서 합성된 Py 35(16.0g, 41.8mmol), bis(pinacolato)diboron (13.8g, 54.3mmol), Pd(dppf)Cl2 (0.9g, 1.3mmol), X-Phos (1.2g, 2.5mmol), KOAc (8.2g, 83.6mmol)를 1,4-Dioxane 160ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-(9,9-dimethyl-6-(pyridin-3-yl)-9H-fluoren-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (17.2g, 36.3mmol, 수율 87%)을 얻었다.
Mass : [(M+H)+] : 475
[준비예 46] 4-([1,1'-biphenyl]-4-yl)-2,6-dichloropyrimidine (PM06 )의 합성
Figure PCTKR2023005798-appb-img-000113
2-([1,1'-biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (30.0g, 107.1mmol), 2,4,6-trichloropyrimidine (29.5g, 160.6mmol), Pd(PPh3)4 (3.7g, 3.2mmol), K2CO3 (44.4g, 321.2mmol)를 Toluene 360ml, DIW 60ml , EtOH 60ml 에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4-([1,1'-biphenyl]-4-yl)-2,6-dichloropyrimidine (28.6g, 95.0mmol, 수율89%)을 얻었다.
Mass : [(M+H)+] : 302
[준비예 47 ] 4,6-di([1,1'-biphenyl]-4-yl)-2-chloropyrimidine (PM07 )의 합성
Figure PCTKR2023005798-appb-img-000114
2,4,6-trichloropyrimidine (20.0g, 109.0mmol), 2-([1,1'-biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (67.2g, 239.9mmol), Pd(PPh3)4 (3.8g, 3.3mmol), K2CO3 (45.2g, 327.1mmol)를 Toluene 360ml, DIW 60ml , EtOH 60ml 에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4,6-di([1,1'-biphenyl]-4-yl)-2-chloropyrimidine (40.5g, 96.7mmol, 수율89%)을 얻었다.
Mass : [(M+H)+] : 420
[준비예 48] 4-([1,1'-biphenyl]-4-yl)-2,6-dichloropyrimidine (PM08 )의 합성
Figure PCTKR2023005798-appb-img-000115
준비예 46에서 합성된 PM06 (30.0g, 99.6mmol), 4,4,5,5-tetramethyl-2-(4-(naphthalen-1-yl)phenyl)-1,3,2-dioxaborolane (32.9g, 99.6mmol), Pd(PPh3)4 (3.5g, 3.0mmol), K2CO3 (41.3g, 298.8mmol)를 Toluene 360ml, DIW 60ml , EtOH 60ml 에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4-([1,1'-biphenyl]-4-yl)-2,6-dichloropyrimidine (40.1g, 85.5mmol, 수율86%)을 얻었다.
Mass : [(M+H)+] : 470
[준비예 49] 4-([1,1'-biphenyl]-4-yl)-2-chloro-6-(9,9-dimethyl-9H-fluoren-2-yl)pyrimidine (PM09 )의 합성
Figure PCTKR2023005798-appb-img-000116
준비예 46에서 합성된 PM06 (30.0g, 99.6mmol), 2-(9,9-dimethyl-9H-fluoren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (31.9g, 99.6mmol), Pd(PPh3)4 (3.5g, 3.0mmol), K2CO3 (41.3g, 298.8mmol)를 Toluene 360ml, DIW 60ml , EtOH 60ml 에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4-([1,1'-biphenyl]-4-yl)-2-chloro-6-(9,9-dimethyl-9H-fluoren-2-yl)pyrimidine (38.7g, 84.3mmol, 수율85%)을 얻었다.
Mass : [(M+H)+] : 460
[준비예 50] 4-([1,1'-biphenyl]-4-yl)-2,6-dichloropyrimidine (PM10 )의 합성
Figure PCTKR2023005798-appb-img-000117
준비예 46에서 합성된 PM06 (30.0g, 99.6mmol), 4,4,5,5-tetramethyl-2-(naphthalen-2-yl)-1,3,2-dioxaborolane (25.3g, 99.6mmol), Pd(PPh3)4 (3.5g, 3.0mmol), K2CO3 (41.3g, 298.8mmol)를 Toluene 360ml, DIW 60ml , EtOH 60ml 에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4-([1,1'-biphenyl]-4-yl)-2,6-dichloropyrimidine (33.6g, 85.5mmol, 수율86%)을 얻었다.
Mass : [(M+H)+] : 394
[준비예 51] 4-([1,1'-biphenyl]-4-yl)-2-chloro-6-(3-(triphenylsilyl)phenyl) pyrimidine (PM11 )의 합성
Figure PCTKR2023005798-appb-img-000118
준비예 46에서 합성된 PM06 (30.0g, 99.6mmol), triphenyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)silane (46.1g, 99.6mmol), Pd(PPh3)4 (3.5g, 3.0mmol), K2CO3 (41.3g, 298.8mmol)를 Toluene 360ml, DIW 60ml , EtOH 60ml 에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4-([1,1'-biphenyl]-4-yl)-2-chloro-6-(3-(triphenylsilyl) phenyl)pyrimidine (40.2g, 66.9mmol, 수율67%)을 얻었다.
Mass : [(M+H)+] : 602
[준비예 52] 4-([1,1'-biphenyl]-4-yl)-2-chloro-6-(naphthalen-1-yl)pyrimidine (PM12 )의 합성
Figure PCTKR2023005798-appb-img-000119
준비예 46에서 합성된 PM06 (30.0g, 99.6mmol), 4,4,5,5-tetramethyl-2-(naphthalen-1-yl)-1,3,2-dioxaborolane (25.3g, 99.6mmol), Pd(PPh3)4 (3.5g, 3.0mmol), K2CO3 (41.3g, 298.8mmol)를 Toluene 360ml, DIW 60ml , EtOH 60ml 에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4-([1,1'-biphenyl]-4-yl)-2-chloro-6-(naphthalen-1-yl)pyrimidine (29.7g, 75.6mmol, 수율76%)을 얻었다.
Mass : [(M+H)+] : 394
[준비예 53] 7-(6-chloropyridin-3-yl)dibenzo[b,d]furan-3-carbonitrile (Py37)의 합성
Figure PCTKR2023005798-appb-img-000120
7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzo[b,d]furan-3-carbonitrile (30.0g, 94.0mmol) 및 5-bromo-2-chloropyridine (27.1g , 141.0mmol), Pd(PPh3)4 (3.3g, 2.8mmol), K2CO3 (39.0g, 282.0mmol)를 THF 300ml, DIW 100ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 7-(6-chloropyridin-3-yl)dibenzo[b,d]furan-3-carbonitrile (21.3g, 69.9mmol, 수율 74%)을 얻었다.
Mass : [(M+H)+] : 306
[준비예 54] 7-(6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl) dibenzo[b,d]furan-3-carbonitrile (Py38 )의 합성
Figure PCTKR2023005798-appb-img-000121
준비예 53에서 합성된 Py37 (21.0g, 68.9mmol), bis(pinacolato)diboron (22.7g, 89.6mmol), Pd(dppf)Cl2 (1.5g, 2.1mmol ), X-Phos (2.0g, 4.1mmol), KOAc (13.5g, 137.8mmol)를 1,4-Dioxane 210ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 7-(6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)dibenzo[b,d]furan-3-carbonitrile (23.4g, 59.1mmol, 수율 86%)을 얻었다.
Mass : [(M+H)+] : 397
[준비예 55] 7-(6-chloropyridin-3-yl)-9,9-dimethyl-9H-fluorene-2-carbonitrile (Py39 )의 합성
Figure PCTKR2023005798-appb-img-000122
9,9-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene-2-carbonitrile (30.0g, 86.9mmol) 및 5-bromo-2-chloropyridine (25.1g , 130.3mmol), Pd(PPh3)4 (3.0g, 2.6mmol), K2CO3 ( 36.0g, 260.7mmol)를 THF 300ml, DIW 100ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 7-(6-chloropyridin-3-yl)-9,9-dimethyl-9H-fluorene-2-carbonitrile (22.5g, 68.0mmol, 수율 78%)을 얻었다.
Mass : [(M+H)+] : 332
[준비예 56] 9,9-dimethyl-7-(6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyridin-3-yl)-9H-fluorene-2-carbonitrile (Py40 )의 합성
Figure PCTKR2023005798-appb-img-000123
준비예 55에서 합성된 Py39 (22.0g, 66.5mmol), bis(pinacolato)diboron (22.0g, 86.5mmol), Pd(dppf)Cl2 (1.5g, 2.0mmol ), X-Phos (1.9g, 4.0mmol), KOAc (13.1g, 133.0mmol)를 1,4-Dioxane 220ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 9,9-dimethyl-7-(6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluorene-2-carbonitrile (18.6g, 44.0mmol, 수율 66%)을 얻었다.
Mass : [(M+H)+] : 423
[준비예 57] 2-chloro-4-(dibenzo[b,d]furan-2-yl)pyridine (Py41 )의 합성
Figure PCTKR2023005798-appb-img-000124
2-(dibenzo[b,d]furan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (30.0g, 102.0mmol) 및 4-bromo-2-chloropyridine (29.4g , 153.0mmol), Pd(PPh3)4 (3.5g, 3.1mmol), K2CO3 ( 42.3g, 306.0mmol)를 THF 300ml, DIW 100ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-chloro-4-(dibenzo[b,d]furan-2-yl)pyridine (21.5g, 76.9mmol, 수율 75%)을 얻었다.
Mass : [(M+H)+] : 281
[준비예 58] 4-(dibenzo[b,d]furan-2-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (Py42 )의 합성
Figure PCTKR2023005798-appb-img-000125
준비예 57에서 합성된 Py41 (21.0g, 75.1mmol), bis(pinacolato)diboron (24.8g, 97.6mmol), Pd(dppf)Cl2 (1.6g, 2.3mmol ), X-Phos (2.1g, 4.5mmol), KOAc (14.7g, 150.2mmol)를 1,4-Dioxane 210ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4-(dibenzo[b,d]furan-2-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (24.5g, 66.0mmol, 수율 88%)을 얻었다.
Mass : [(M+H)+] : 372
[준비예 59] (6-(2-chloropyridin-3-yl)-9,9-dimethyl-9H-fluoren-2-yl)dimethyl phosphine oxide (Py43 )의 합성
Figure PCTKR2023005798-appb-img-000126
(9,9-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (30.0g, 75.7mmol) 및 3-bromo-2-chloropyridine (21.9g , 113.6mmol), Pd(PPh3)4 (2.6g, 2.3mmol), K2CO3 ( 31.4g, 227.1mmol)를 THF 300ml, DIW 100ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 (6-(2-chloropyridin-3-yl)-9,9-dimethyl-9H-fluoren-2-yl)dimethylphosphine oxide (24.5g, 64.2mmol, 수율 85%)을 얻었다.
Mass : [(M+H)+] : 383
[준비예 60] (9,9-dimethyl-6-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (Py44 )의 합성
Figure PCTKR2023005798-appb-img-000127
준비예 59에서 합성된 Py43 (24.0g, 62.9mmol), bis(pinacolato)diboron (20.7g, 81.7mmol), Pd(dppf)Cl2 (1.4g, 1.9mmol ), X-Phos (1.8g, 3.8mmol), KOAc (12.3g, 125.7mmol)를 1,4-Dioxane 240ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 (9,9-dimethyl-6-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (25.0g, 52.8mmol, 수율 84%)을 얻었다.
Mass : [(M+H)+] : 474
[준비예 61] 3-chloro-2-(9,9-dimethyl-9H-fluoren-3-yl)pyridine (Py45 )의 합성
Figure PCTKR2023005798-appb-img-000128
2-(9,9-dimethyl-9H-fluoren-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (30.0g, 90.8mmol) 및 2,3-dichloropyridine (20.2g , 136.3mmol), Pd(PPh3)4 (3.1g, 2.7mmol), K2CO3 ( 37.7g, 272.5mmol)를 THF 300ml, DIW 100ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-chloro-2-(9,9-dimethyl-9H-fluoren-3-yl)pyridine (23.4g, 76.5mmol, 수율 84%)을 얻었다.
Mass : [(M+H)+] : 307
[준비예 62] 2-(9,9-dimethyl-9H-fluoren-3-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (Py46 )의 합성
Figure PCTKR2023005798-appb-img-000129
준비예 61에서 합성된 Py45 (23.0g, 75.2mmol), bis(pinacolato)diboron (24.8g, 97.8mmol), Pd(dppf)Cl2 (1.7g, 2.3mmol ), X-Phos (2.2g, 4.5mmol), KOAc (14.8g, 150.4mmol)를 1,4-Dioxane 230ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-(9,9-dimethyl-9H-fluoren-3-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (26.5g, 66.7mmol, 수율 89%)을 얻었다.
Mass : [(M+H)+] : 398
[준비예 63] 6-(5-chloropyridin-3-yl)-9,9-dimethyl-9H-fluorene-2-carbonitrile (Py47 )의 합성
Figure PCTKR2023005798-appb-img-000130
9,9-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene-2-carbonitrile (30.0g, 86.9mmol) 및 3-bromo-5-chloropyridine (25.1g , 130.3mmol), Pd(PPh3)4 (3.0g, 2.6mmol), K2CO3 ( 36.0g, 260.7mmol)를 THF 300ml, DIW 100ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 6-(5-chloropyridin-3-yl)-9,9-dimethyl-9H-fluorene-2-carbonitrile (23.8g, 71.9mmol, 수율 83%)을 얻었다.
Mass : [(M+H)+] : 332
[준비예 64] 9,9-dimethyl-6-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluorene-2-carbonitrile (Py48 )의 합성
Figure PCTKR2023005798-appb-img-000131
준비예 63에서 합성된 Py47 (23.0g, 69.5mmol), bis(pinacolato)diboron (23.0g, 90.4mmol), Pd(dppf)Cl2 (1.5g, 2.1mmol ), X-Phos (2.0g, 4.2mmol), KOAc (13.6g, 139.1mmol)를 1,4-Dioxane 230ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 9,9-dimethyl-6-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluorene-2-carbonitrile (21.5g, 50.9mmol, 수율 73%)을 얻었다.
Mass : [(M+H)+] : 423
[준비예 65] 4-chloro-2-(9,9-dimethyl-9H-fluoren-3-yl)pyridine (Py49 )의 합성
Figure PCTKR2023005798-appb-img-000132
2-(9,9-dimethyl-9H-fluoren-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (30.0g, 93.7mmol) 및 2,4-dichloropyridine (21.0g , 140.5mmol), Pd(PPh3)4 (3.2g, 2.8mmol), K2CO3 ( 38.8g, 281.0mmol)를 THF 300ml, DIW 100ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4-chloro-2-(9,9-dimethyl-9H-fluoren-3-yl)pyridine (23.6g, 77.2mmol, 수율 82%)을 얻었다.
Mass : [(M+H)+] : 307
[준비예 66] 2-(9,9-dimethyl-9H-fluoren-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (Py50 )의 합성
Figure PCTKR2023005798-appb-img-000133
준비예 65에서 합성된 Py49 (23.0g, 75.2mmol), bis(pinacolato)diboron (24.8g, 97.8mmol), Pd(dppf)Cl2 (1.7g, 2.3mmol ), X-Phos (2.2g, 4.5mmol), KOAc (14.8g, 150.4mmol)를 1,4-Dioxane 230ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 2-(9,9-dimethyl-9H-fluoren-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (23.5g, 59.1mmol, 수율 79%)을 얻었다.
Mass : [(M+H)+] : 398
[준비예 67] (7-(4-chloropyridin-3-yl)-9,9-dimethyl-9H-fluoren-2-yl)dimethyl phosphine oxide (Py51 )의 합성
Figure PCTKR2023005798-appb-img-000134
(9,9-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (30.0g, 75.7mmol) 및 3-bromo-4-chloropyridine (21.9g , 113.6mmol), Pd(PPh3)4 (2.6g, 2.3mmol), K2CO3 ( 31.4g, 227.1mmol)를 THF 300ml, DIW 100ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 (7-(4-chloropyridin-3-yl)-9,9-dimethyl-9H-fluoren-2-yl)dimethylphosphine oxide (23.5g, 61.5mmol, 수율 81%)을 얻었다.
Mass : [(M+H)+] : 383
[준비예 68] (9,9-dimethyl-7-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (Py52 )의 합성
Figure PCTKR2023005798-appb-img-000135
준비예 67에서 합성된 Py51 (23.0g, 60.2mmol), bis(pinacolato)diboron (19.9g, 78.3mmol), Pd(dppf)Cl2 (1.3g, 1.8mmol ), X-Phos (1.7g, 3.6mmol), KOAc (11.8g, 120.5mmol)를 1,4-Dioxane 230ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 (9,9-dimethyl-7-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluoren-2-yl)dimethylphosphine oxide (21.5g, 45.4mmol, 수율 75%)을 얻었다.
Mass : [(M+H)+] : 474
[준비예 69] 4-chloro-3-(dibenzo[b,d]furan-2-yl)pyridine (Py53 )의 합성
Figure PCTKR2023005798-appb-img-000136
2-(dibenzo[b,d]furan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (30.0g, 102.0mmol) 및 3-bromo-4-chloropyridine (29.4g , 153.0mmol), Pd(PPh3)4 (3.5g, 3.1mmol), K2CO3 ( 42.5g, 306.0mmol)를 THF 300ml, DIW 100ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 4-chloro-3-(dibenzo[b,d]furan-2-yl)pyridine (23.6g, 84.4mmol, 수율 83%)을 얻었다.
Mass : [(M+H)+] : 281
[준비예 70] 3-(dibenzo[b,d]furan-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxa borolan-2-yl)pyridine (Py54 )의 합성
Figure PCTKR2023005798-appb-img-000137
준비예 69에서 합성된 Py53 (23.0g, 82.2mmol), bis(pinacolato)diboron (27.1g, 106.9mmol), Pd(dppf)Cl2 (1.8g, 2.5mmol ), X-Phos (2.4g, 4.9mmol), KOAc (16.1g, 164.5mmol)를 1,4-Dioxane 230ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 3-(dibenzo[b,d]furan-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (25.8g, 69.5mmol, 수율 85%)을 얻었다.
Mass : [(M+H)+] : 372
[준비예 71] 6-(4-chloropyridin-3-yl)-9,9-dimethyl-9H-fluorene-2-carbonitrile (Py55 )의 합성
Figure PCTKR2023005798-appb-img-000138
9,9-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene-2-carbonitrile (30.0g, 86.9mmol) 및 3-bromo-4-chloropyridine (25.1g , 130.3mmol), Pd(PPh3)4 (3.0g, 2.6mmol), K2CO3 ( 36.0g, 260.7mmol)를 THF 300ml, DIW 100ml에 넣고 2시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 6-(4-chloropyridin-3-yl)-9,9-dimethyl-9H-fluorene-2-carbonitrile (21.5g, 65.0mmol, 수율 75%)을 얻었다.
Mass : [(M+H)+] : 332
[준비예 72] 9,9-dimethyl-6-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluorene-2-carbonitrile (Py56 )의 합성
Figure PCTKR2023005798-appb-img-000139
준비예 71에서 합성된 Py55 (21.0g, 63.5mmol), bis(pinacolato)diboron (21.0g, 82.5mmol), Pd(dppf)Cl2 (1.4g, 1.9mmol ), X-Phos (1.8g, 3.8mmol), KOAc (12.5g, 127.0mmol)를 1,4-Dioxane 210ml에 넣고 6시간 가열 환류 교반하였다. 반응 종결 후 Methylene Chloride 로 추출하고, 추출된 유기층을 황산마그네슘으로 건조시킨 후 농축하고, 컬럼 크로마토그래피로 정제하여 9,9-dimethyl-6-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-9H-fluorene-2-carbonitrile (18.9g, 44.8mmol, 수율 70%)을 얻었다.
Mass : [(M+H)+] : 423
[합성예 1] 화합물 A010의 합성
Figure PCTKR2023005798-appb-img-000140
준비예 2에서 합성된 Pm02 (15.0g, 35.8mmol), 준비예 7에서 합성된 Py02 (21.3g, 53.7mmol) 및 Cs2CO3 (35.0g, 107.4mmol)를 섞고 Toluene 300ml와 EtOH 60ml, DIW 60ml를 첨가한 뒤, Pd(OAc)2 (0.2g, 1.1mmol)와 X-Phos (1.0g, 2.1mmol)를 넣고 4시간 동안 가열, 교반하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하였다. 여과액을 물에 붓고 메틸렌클로아이드로 추출하고, 추출된 유기층을 MgSO4 로 건조하였다. 건조한 유기층을 감압 농축 시킨 뒤 THF:Hex = 1:3 으로 컬럼하여 화합물 A010 (16.0g, 24.5mmol, 수율 68%) 를 제조하였다.
Mass : [(M+H)+] : 655
[합성예 2] 화합물 A022의 합성
Figure PCTKR2023005798-appb-img-000141
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 A022 (17.5g, 26.8mmol, 수율 75%)를 제조하였다.
Mass : [(M+H)+] : 655
[합성예 3] 화합물 A024의 합성
Figure PCTKR2023005798-appb-img-000142
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 9에서 합성된 Py04를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 A024 (19.2g, 28.3mmol, 수율 79%)를 제조하였다.
Mass : [(M+H)+] : 680
[합성예 4] 화합물 A046의 합성
Figure PCTKR2023005798-appb-img-000143
상기 합성예 1에서 사용된 Pm02 대신 준비예 5에서 합성된 Pm05를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 A046 (18.7g , 28.0mmol, 수율 81%)를 제조하였다.
Mass : [(M+H)+] : 669
[합성예 5] 화합물 A047의 합성
Figure PCTKR2023005798-appb-img-000144
상기 합성예 1에서 사용된 Pm02 대신 준비예 5에서 합성된 Pm05를 사용하고, Py02 대신 준비예 11에서 합성된 Py06을 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 A047 (21.0g, 28.2mmol, 수율 81%)를 제조하였다.
Mass : [(M+H)+] : 745
[합성예 6] 화합물 B004의 합성
Figure PCTKR2023005798-appb-img-000145
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 13에서 합성된 Py08을 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 B004 (17.8g, 27.2mmol, 수율 76%)를 제조하였다.
Mass : [(M+H)+] : 655
[합성예 7] 화합물 B005의 합성
Figure PCTKR2023005798-appb-img-000146
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 15에서 합성된 Py10를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 B005 (22.3g, 30.6mmol, 수율 85%)를 제조하였다.
Mass : [(M+H)+] : 731
[합성예 8] 화합물 B025의 합성
Figure PCTKR2023005798-appb-img-000147
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 17에서 합성된 Py12를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 B025 (18.2g, 27.8mmol, 수율 78%)를 제조하였다.
Mass : [(M+H)+] : 655
[합성예 9] 화합물 B046의 합성
Figure PCTKR2023005798-appb-img-000148
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 19에서 합성된 Py14를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 B046 (16.5g, 25.2mmol, 수율 70%)를 제조하였다.
Mass : [(M+H)+] : 655
[합성예 10] 화합물 B047의 합성
Figure PCTKR2023005798-appb-img-000149
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 21에서 합성된 Py16을 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 B047 (21.3g, 29.2mmol, 수율 82%)를 제조하였다.
Mass : [(M+H)+] : 731
[합성예 11] 화합물 B061의 합성
Figure PCTKR2023005798-appb-img-000150
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 23에서 합성된 Py18를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 B061 (14.7g, 23.4mmol, 수율 65%)를 제조하였다.
Mass : [(M+H)+] : 629
[합성예 12] 화합물 B088의 합성
Figure PCTKR2023005798-appb-img-000151
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 25에서 합성된 Py20를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 B088 (16.4g, 25.1mmol, 수율 70%)를 제조하였다.
Mass : [(M+H)+] : 655
[합성예 13] 화합물 C001의 합성
Figure PCTKR2023005798-appb-img-000152
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 27에서 합성된 Py22를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 C001 (16.2g, 25.8mmol, 수율 72%)를 제조하였다.
Mass : [(M+H)+] : 629
[합성예 14] 화합물 C013의 합성
Figure PCTKR2023005798-appb-img-000153
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 29에서 합성된 Py24를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 C013 (23.1g, 29.7mmol, 수율 83%)를 제조하였다.
Mass : [(M+H)+] : 779
[합성예 15] 화합물 C018의 합성
Figure PCTKR2023005798-appb-img-000154
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 31에서 합성된 Py26를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 C018 (21.8g, 27.1mmol, 수율 76%)를 제조하였다.
Mass : [(M+H)+] : 805
[합성예 16] 화합물 C046의 합성
Figure PCTKR2023005798-appb-img-000155
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 33에서 합성된 Py28를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 C046 (17.8g, 27.6mmol, 수율 77%)를 제조하였다.
Mass : [(M+H)+] : 645
[합성예 17] 화합물 C082의 합성
Figure PCTKR2023005798-appb-img-000156
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 에서 35합성된 Py30를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 C082 (25.8g, 32.5mmol, 수율 91%)를 제조하였다.
Mass : [(M+H)+] : 795
[합성예 18] 화합물 D047의 합성
Figure PCTKR2023005798-appb-img-000157
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 39에서 합성된 Py32를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 D047 (23.1g, 29.1mmol, 수율 81%)를 제조하였다.
Mass : [(M+H)+] : 796
[합성예 19] 화합물 D066의 합성
Figure PCTKR2023005798-appb-img-000158
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 41에서 합성된 Py34를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 D066 (20.9g, 29.9mmol, 수율 84%)를 제조하였다.
Mass : [(M+H)+] : 700
[합성예 20] 화합물 D120의 합성
Figure PCTKR2023005798-appb-img-000159
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 Pm04를 사용하고, Py02 대신 준비예 45에서 합성된 Py36를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 D120 (19.7g, 27.0mmol, 수율 75%)를 제조하였다.
Mass : [(M+H)+] : 732
[합성예 21] 화합물 E003의 합성
Figure PCTKR2023005798-appb-img-000160
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 PM07을 사용하고, Py02 대신 준비예 45에서 합성된 Py38을 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 E003 (16.1g, 24.7mmol, 수율 69%)를 제조하였다.
Mass : [(M+H)+] : 654
[합성예 22] 화합물 E006의 합성
Figure PCTKR2023005798-appb-img-000161
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 PM08을 사용하고, Py02 대신 준비예 45에서 합성된 Py40을 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 E006 (17.0g, 23.3mmol, 수율 73%)를 제조하였다.
Mass : [(M+H)+] : 730
[합성예 23] 화합물 E019의 합성
Figure PCTKR2023005798-appb-img-000162
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 PM09를 사용하고, Py02 대신 준비예 45에서 합성된 Py42를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 E019 (23.1g, 32.8mmol, 수율 86%)를 제조하였다.
Mass : [(M+H)+] : 669
[합성예 24] 화합물 E035의 합성
Figure PCTKR2023005798-appb-img-000163
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 PM10을 사용하고, Py02 대신 준비예 45에서 합성된 Py44를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 E035 (23.1g, 32.8mmol, 수율 86%)를 제조하였다.
Mass : [(M+H)+] : 705
[합성예 25] 화합물 E040의 합성
Figure PCTKR2023005798-appb-img-000164
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 PM11을 사용하고, Py02 대신 준비예 45에서 합성된 Py46을 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 E040 (14.7g, 17.6mmol, 수율 70%)를 제조하였다.
Mass : [(M+H)+] :837
[합성예 26] 화합물 E054의 합성
Figure PCTKR2023005798-appb-img-000165
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 PM12를 사용하고, Py02 대신 준비예 45에서 합성된 Py48을 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 E054 (17.8g, 27.3mmol, 수율 71%)를 제조하였다.
Mass : [(M+H)+] :654
[합성예 27] 화합물 E076의 합성
Figure PCTKR2023005798-appb-img-000166
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 PM08을 사용하고, Py02 대신 준비예 45에서 합성된 Py50을 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 E076 (13.6g, 19.3mmol, 수율 60%)를 제조하였다.
Mass : [(M+H)+] :705
[합성예 28] 화합물 E083의 합성
Figure PCTKR2023005798-appb-img-000167
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 PM07을 사용하고, Py02 대신 준비예 45에서 합성된 Py52를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 E083 (23.1g, 31.6mmol, 수율 88%)를 제조하였다.
Mass : [(M+H)+] :731
[합성예 29] 화합물 E085의 합성
Figure PCTKR2023005798-appb-img-000168
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 PM10을 사용하고, Py02 대신 준비예 45에서 합성된 Py54를 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 E085 (16.9g, 28.1mmol, 수율 74%)를 제조하였다.
Mass : [(M+H)+] :603
[합성예 30] 화합물 E090의 합성
Figure PCTKR2023005798-appb-img-000169
상기 합성예 1에서 사용된 Pm02 대신 준비예 4에서 합성된 PM11을 사용하고, Py02 대신 준비예 45에서 합성된 Py56을 사용한 것을 제외하고는, 합성예 1과 동일한 방법으로 화합물 E090 (17.3g, 20.1mmol, 수율 81%)를 제조하였다.
Mass : [(M+H)+] :862
[실시예 1] 청색 유기 전계 발광 소자의 제작
합성예 1에서 합성된 화합물 A010을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 하기와 같이 청색 유기 전계 발광 소자를 제작하였다.
먼저. ITO (Indium tin oxide)가 1200 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후, UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, 화합물 1과 화합물 2 를 중량비 98 : 2 로 공증착하여 100 Å 두께의 정공 주입층을 형성한 후, 상기 정공 주입층 상부에 화합물 1을 증착하여 1400 Å 두께의 정공 수송층을 형성하였다. 이후, 상기 정공 수송층 상부에 화합물 3을 50 Å의 두께로 증착하여 정공수송보조층을 형성하고, 화합물 4 및 화합물 5를 98 : 2의 중량비로 공증착하여 200 Å 두께의 발광층을 형성하였다. 이후, 상기 발광층 상부에 화합물 6을 증착하여 50 Å 두께의 전자수송 보조층을 형성한 다음, 화합물 A010 및 화합물 7을 1 : 1의 중량비로 공증착하여 300 Å 두께의 전자 수송층을 형성하였다. 이후, 상기 전자 수송층 상부에 LiF를 증착하여 10 Å 두께의 전자 주입층을 형성한 후, 상기 전자 주입층 상부에 Al을 증착하여, 1000 Å 두께의 캐소드를 형성함으로써, 유기 발광 소자를 제작하였다.
이때 사용된 화합물 1 내지 7의 구조는 각각 다음과 같다.
Figure PCTKR2023005798-appb-img-000170
Figure PCTKR2023005798-appb-img-000171
[실시예 2 내지 30] 청색 유기 전계 발광 소자의 제작
실시예 1에서 전자 수송층 물질로 사용된 화합물 A010 대신 하기 표 1에 기재된 화합물을 각각 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다.
[비교예 1 내지 9] 청색 유기 전계 발광 소자의 제작
전자 수송층 물질로 화합물 A010 대신 화합물 A 내지 I를 각각 사용하는 것을 제외하고는, 실시예 1 과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다. 이때, 상기 화합물 A 내지 I의 구조는 각각 하기와 같다.
Figure PCTKR2023005798-appb-img-000172
Figure PCTKR2023005798-appb-img-000173
[평가예 1]
실시예 1 내지 30 및 비교예 1 내지 9에서 각각 제작한 청색 유기 전계 발광 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압, 전류효율, 발광파장을 측정하였고, 그 결과를 하기 표 1에 나타내었다.
샘플 전자 수송층 구동전압(V) 발광피크(nm) 전류효율(cd/A)
실시예 1 화합물 A010 3.8 453 8.2
실시예 2 화합물 A022 3.5 457 9.0
실시예 3 화합물 A024 3.7 456 8.4
실시예 4 화합물 A046 4.1 451 8.8
실시예 5 화합물A047 3.5 455 8.6
실시예 6 화합물 B004 3.7 453 8.5
실시예 7 화합물 B005 3.4 456 9.0
실시예 8 화합물 B025 3.8 454 8.7
실시예 9 화합물 B046 4.0 454 8.2
실시예 10 화합물 B047 4.1 458 7.9
실시예 11 화합물 B061 3.7 451 8.8
실시예 12 화합물 B088 3.6 451 7.9
실시예 13 화합물 C001 3.5 453 8.1
실시예 14 화합물 C013 3.8 456 8.5
실시예 15 화합물 C018 4.0 452 8.7
실시예 16 화합물 C046 4.1 451 8.9
실시예 17 화합물 C082 3.9 452 8.3
실시예 18 화합물 D047 4.0 451 8.4
실시예 19 화합물 D066 3.7 453 8.8
실시예 20 화합물 D120 4.1 452 8.7
실시예 21 화합물 E003 4.1 451 8.8
실시예 22 화합물 E006 3.5 455 8.6
실시예 23 화합물 E019 3.7 453 8.5
실시예 24 화합물 E035 3.4 456 9.0
실시예 25 화합물 E040 3.8 453 8.2
실시예 26 화합물 E054 3.5 457 9.0
실시예 27 화합물 E076 3.7 456 8.4
실시예 28 화합물 E083 4.1 451 8.8
실시예 29 화합물 E085 3.5 455 8.6
실시예 30 화합물 E090 3.8 455 8.7
비교예 1 화합물 A 5.1 458 4.8
비교예 2 화합물 B 5.2 459 4.9
비교예 3 화합물 C 5.1 458 5.1
비교예 4 화합물 D 5.0 456 6.0
비교예 5 화합물 E 5.4 459 5.9
비교예 6 화합물 F 5.4 458 5.8
비교예 7 화합물 G 5.1 489 6.2
비교예 8 화합물 H 5.1 459 4.9
비교예 9 화합물 I 5.0 458 5.3
상기 표 1에 나타낸 바와 같이, 본 발명의 화합물(A010~E090)을 전자 수송층에 사용한 실시예 1 내지 30의 청색 유기 전계 발광 소자는 화합물 A 내지 I 를 전자 수송층에 사용한 비교예 1 내지 9의 청색 유기 전계 발광 소자에 비해 구동전압, 발광피크 및 전류효율 면에서 우수한 성능을 나타내는 것을 알 수 있었다.또한, 실시예 1 내지 30의 청색 유기 전계 발광 소자는 피리미딘 모이어티와 디벤조계 모이어티가 링커기인 2가의 피리딘기를 통해 결합된 화합물로, 피리미딘 모이어티와 카바졸 모이어티가 링커기인 2가의 피리딘기를 통해 결합된 화합물(예: 화합물 A 내지 D, H, I)를 전자수송층에 사용한 비교예 1 내지 4, 8, 9의 청색 유기 전계 발광 소자; 비(非)-디벤조 모이어티가 링커기(2가의 피리딘기-페닐렌기)를 통해 피리미딘 모이어티에 결합된 화합물(예: 화합물 E, F)를 전자수송층에 사용한 비교예 5, 6의 청색 유기 전계 발광 소자; 및 링커기로 [2가의 피리딘기-페닐렌기]를 함유하는 화합물(예: 화합물 E, F, G)을 전자수송층에 사용한 비교예 5~7의 청색 유기 전계 발광 소자에 비해 구동전압, 발광피크 및 전류효율 면에서 우수한 성능을 나타내는 것을 알 수 있었다.
[실시예 31] 유기 전계 발광 소자의 제작
합성예 6에서 합성된 B004를 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 아래의 과정에 따라 청색 유기 전계 발광 소자를 제작하였다.
먼저. ITO (Indium tin oxide)가 1200 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후, UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, 화합물 1과 화합물 2를 중량비 98 : 2 로 공증착하여 100 Å 두께의 정공 주입층을 형성한 후, 상기 정공 주입층 상부에 화합물 1을 증착하여 200 Å 두께의 정공 수송층을 형성하였다. 이어서, 상기 정공 수송층 상부에 화합물 3을 50 Å의 두께로 증착하여 정공수송보조층을 형성하고, 화합물 4 및 화합물 5를 98 : 2의 중량비로 공증착하여 200 Å 두께의 발광층을 형성하였다. 이후, 발광층 상에 화합물 7을 150 Å의 두께로 증착하여 전자수송층을 형성하고, 상기 전자수송층 상에 화합물 B004 를 80 Å의 두께로 증착하여 전하생성층을 형성하였다. 전하생성층 상에 화합물 1과 화합물 2를 중량비 98 : 2 로 공증착하여 100 Å 두께의 정공 주입층을 형성한 후, 정공 주입층 상에 화합물 1을 증착하여 350 Å 두께의 정공 수송층을 형성하였다. 이후, 상기 정공 수송층 상부에 화합물 3을 50 Å의 두께로 증착하여 정공수송 보조층을 형성한 다음, 화합물 4 및 화합물 5를 98 : 2의 중량비로 공증착하여 200 Å 두께의 발광층을 형성하였다. 상기 발광층 상부에 화합물 6을 증착하여 50 Å 두께의 전자수송 보조층을 형성한 다음, 화합물 7과 화합물 8을 1 : 1 의 중량비로 공증착하여 300 Å의 두께로 전자수송층을 형성하고, 상기 전자 수송층 상부에 LiF를 증착하여 10Å 두께의 전자 주입층을 형성한 후, 상기 전자 주입층 상부에 Al을 증착하여, 1000 Å 두께의 캐소드를 형성함으로써, 유기 발광 소자를 제작하였다.
이때 사용된 화합물 1 내지 7의 구조는 각각 실시예 1에 기재된 바와 동일하고, 화합물 8의 구조는 하기와 같다.
Figure PCTKR2023005798-appb-img-000174
[실시예 32 내지 40] 유기 전계 발광 소자의 제작
실시예 31에서 전하생성층 재료로 사용된 화합물 B004 대신 하기 표 2에 기재된 화합물을 각각 사용하는 것을 제외하고는, 실시예 31과 동일하게 수행하여 유기 전계 발광 소자를 제작하였다.
[비교예 10 내지 18] 유기 전계 발광 소자의 제작
실시예 31에서 전하생성층 재료로 사용된 화합물 B004를 사용하지 않고, 화합물 A 내지 I를 각각 사용하는 것을 제외하고는, 상기 실시예 31 과 동일하게 수행하여 유기 전계 발광 소자를 제작하였다. 이때, 화합물 A 내지 I의 구조는 비교예 1 내지 9에 기재된 바와 같다.
[평가예 2]
실시예 31 내지 40 및 비교예 10 내지 18에서 각각 제조된 유기 전계 발광 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압, 발광파장, 전류효율을 측정하였고, 그 결과를 하기 표 2에 나타내었다.
샘플 전하 생성층 구동 전압 (V) 전류 효율(cd/A) 수명(h)
실시예 31 B004 8.2 15.3 358
실시예 32 B005 8.3 15.9 321
실시예 33 B025 8.3 15.7 316
실시예 34 C001 8.2 15.5 319
실시예 35 C013 8.3 15.6 318
실시예 36 C018 8.1 15.3 326
실시예 37 E003 8.3 15.3 325
실시예 38 E006 8.2 15.7 329
실시예 39 E019 8.2 15.2 333
실시예 40 E035 8.2 15.5 312
비교예 10 화합물 A 8.9 14.5 98
비교예 11 화합물 B 8.7 14.8 97
비교예 12 화합물 C 8.6 14.6 89
비교예 13 화합물 D 8.8 14.8 87
비교예 14 화합물 E 9.5 12.2 84
비교예 15 화합물 F 9.8 13.6 105
비교예 16 화합물 G 9.7 13.5 68
비교예 17 화합물 H 9.9 14.0 90
비교예 18 화합물 I 9.8 12.0 85
상기 표 2에 나타낸 바와 같이, 본 발명의 화합물(B004~E035)을 전하생성층에 사용한 실시예 31 내지 40의 유기 전계 발광 소자는 피리미딘 모이어티와 디벤조계 모이어티가 링커기인 2가의 피리딘기를 통해 결합된 화합물로, 피리미딘 모이어티와 카바졸 모이어티가 링커기인 2가의 피리딘기를 통해 결합된 화합물(예: 화합물 A 내지 D, H, I)를 전해생성층에 사용한 비교예 10 내지 13, 17, 18의 유기 전계 발광 소자; 비(非)-디벤조 모이어티가 링커기(2가의 피리딘기-페닐렌기)를 통해 피리미딘 모이어티에 결합된 화합물(예: 화합물 E, F)를 전하생성층에 사용한 비교예 14, 15의 유기 전계 발광 소자; 및 링커기로 [2가의 피리딘기-페닐렌기]를 함유하는 화합물(예: 화합물 E, F, G)을 전하생성층에 사용한 비교예 14~16의 유기 전계 발광 소자에 비해 구동전압, 전류효율 및 수명면에서 우수한 성능을 나타내는 것을 알 수 있었다.

Claims (12)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2023005798-appb-img-000175
    (상기 화학식 1에서,
    Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
    다만, 상기 Ar1 내지 Ar3 중 어느 하나는 하기 화학식 2로 표시되는 치환체이고,
    [화학식 2]
    Figure PCTKR2023005798-appb-img-000176
    상기 화학식 2에서,
    X1 내지 X5는 서로 동일하거나 또는 상이하고, 각각 독립적으로 N 또는 CR1이고,
    다만, 상기 X1 내지 X5 중 하나는 N이고, 나머지는 CR1이며, 이때 복수의 CR1은 서로 동일하거나 상이하고,
    복수의 R1은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, 포스핀옥사이드기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40 의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되며,
    다만, 복수의 R1 중 어느 하나는 하기 화학식 3으로 표시되는 치환체이고,
    [화학식 3]
    Figure PCTKR2023005798-appb-img-000177
    상기 화학식 3에서,
    Y1는 O, S, C(R3)(R4), Si(R5)(R6), P(R7)로 이루어진 군에서 선택되고,
    a는 0 내지 4의 정수이고,
    R2 내지 R7은 서로 동일하거나 상이하며, 각각 독립적인 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접하는 기와 축합하여 축합고리를 형성할 수 있고,
    상기 Ar1 내지 Ar3, 및 R1 내지 R7의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 포스핀옥사이드기, 알킬포스핀옥사이드기, 아릴포스핀기, 아릴포스핀옥사이드기, 아릴아민기 및 축합 고리는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이함).
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 4 또는 5로 표시되는, 화합물:
    [화학식 4]
    Figure PCTKR2023005798-appb-img-000178
    [화학식 5]
    Figure PCTKR2023005798-appb-img-000179
    (상기 화학식 4에서,
    Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
    상기 화학식 5에서,
    Ar2 및 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
    상기 Ar1 내지 Ar3의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 포스핀옥사이드기, 알킬포스핀옥사이드기, 아릴포스핀기, 아릴포스핀옥사이드기, 아릴아민기 및 축합 고리는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이하고,
    상기 화학식 4 및 5에서,
    X1 내지 X5는 각각 제1항에 정의된 바와 같음).
  3. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 6 내지 11 중 어느 하나로 표시되는, 화합물:
    [화학식 6]
    Figure PCTKR2023005798-appb-img-000180
    [화학식 7]
    Figure PCTKR2023005798-appb-img-000181
    [화학식 8]
    Figure PCTKR2023005798-appb-img-000182
    [화학식 9]
    Figure PCTKR2023005798-appb-img-000183
    [화학식 10]
    Figure PCTKR2023005798-appb-img-000184
    [화학식 11]
    Figure PCTKR2023005798-appb-img-000185
    (상기 화학식 6 내지 8에서,
    Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
    상기 화학식 9 내지 11에서,
    Ar2 및 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
    상기 Ar1 내지 Ar3의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 포스핀옥사이드기, 알킬포스핀옥사이드기, 아릴포스핀기, 아릴포스핀옥사이드기, 아릴아민기 및 축합 고리는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이하고,
    상기 화학식 6 내지 11에서,
    R1은 제1항에 정의된 바와 같음).
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 12 내지 25 중 어느 하나로 표시되는, 화합물:
    [화학식 12]
    Figure PCTKR2023005798-appb-img-000186
    [화학식 13]
    Figure PCTKR2023005798-appb-img-000187
    [화학식 14]
    Figure PCTKR2023005798-appb-img-000188
    [화학식 15]
    Figure PCTKR2023005798-appb-img-000189
    [화학식 16]
    Figure PCTKR2023005798-appb-img-000190
    [화학식 17]
    Figure PCTKR2023005798-appb-img-000191
    [화학식 18]
    Figure PCTKR2023005798-appb-img-000192
    [화학식 19]
    Figure PCTKR2023005798-appb-img-000193
    [화학식 20]
    Figure PCTKR2023005798-appb-img-000194
    [화학식 21]
    Figure PCTKR2023005798-appb-img-000195
    [화학식 22]
    Figure PCTKR2023005798-appb-img-000196
    [화학식 23]
    Figure PCTKR2023005798-appb-img-000197
    [화학식 24]
    Figure PCTKR2023005798-appb-img-000198
    [화학식 25]
    Figure PCTKR2023005798-appb-img-000199
    (상기 화학식 12 내지 18에서,
    Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
    상기 화학식 19 내지 25에서,
    Ar2 및 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있고,
    상기 Ar1 내지 Ar3의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 포스핀옥사이드기, 알킬포스핀옥사이드기, 아릴포스핀기, 아릴포스핀옥사이드기, 아릴아민기 및 축합 고리는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이하고,
    Y1, R2 및 a는 각각 제1항에 정의된 바와 같음).
  5. 제1항에 있어서,
    상기 Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 하기 치환체 S-a1 내지 S-a17로 이루어진 군에서 선택되고,
    다만, 상기 Ar1 내지 Ar3 중 어느 하나는 상기 화학식 2로 표시되는 치환체인, 화합물:
    Figure PCTKR2023005798-appb-img-000200
    (상기 치환체 S-a1 내지 S-a17에서,
    *은 상기 화학식 1과 연결되는 부위이고,
    b는 0 내지 5의 정수이고,
    c는 0 내지 7의 정수이며,
    d는 0 내지 4의 정수이고,
    e는 0 내지 9의 정수이며,
    f는 0 내지 3의 정수이고,
    g는 0 내지 6의 정수이며,
    h는 0 내지 8의 정수이고,
    Rs, Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기(예: R1-R1, R2-R2, R2-R3, R3-R3, R4-R5 등)와 결합하여 축합 고리를 형성하고, 구체적으로 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 및 핵원자수 5 내지 60개의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 고리를 형성할 수 있음).
  6. 제1항에 있어서,
    상기 Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 하기 치환체 S-b1 내지 S-b28로 이루어진 군에서 선택되고,
    다만, 상기 Ar1 내지 Ar3 중 어느 하나는 상기 화학식 2로 표시되는 치환체인, 화합물:
    Figure PCTKR2023005798-appb-img-000201
    (상기 치환체 S-b1 내지 S-b28에서,
    *은 상기 화학식 1과 연결되는 부위임).
  7. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화합물 A001 내지 E090으로 이루어진 군에서 선택된, 화합물:
    Figure PCTKR2023005798-appb-img-000202
    Figure PCTKR2023005798-appb-img-000203
    Figure PCTKR2023005798-appb-img-000204
    Figure PCTKR2023005798-appb-img-000205
    Figure PCTKR2023005798-appb-img-000206
    Figure PCTKR2023005798-appb-img-000207
    Figure PCTKR2023005798-appb-img-000208
    Figure PCTKR2023005798-appb-img-000209
    Figure PCTKR2023005798-appb-img-000210
    Figure PCTKR2023005798-appb-img-000211
    Figure PCTKR2023005798-appb-img-000212
    Figure PCTKR2023005798-appb-img-000213
    Figure PCTKR2023005798-appb-img-000214
    Figure PCTKR2023005798-appb-img-000215
    Figure PCTKR2023005798-appb-img-000216
    Figure PCTKR2023005798-appb-img-000217
    Figure PCTKR2023005798-appb-img-000218
    Figure PCTKR2023005798-appb-img-000219
    Figure PCTKR2023005798-appb-img-000220
    Figure PCTKR2023005798-appb-img-000221
    Figure PCTKR2023005798-appb-img-000222
    Figure PCTKR2023005798-appb-img-000223
    Figure PCTKR2023005798-appb-img-000224
    Figure PCTKR2023005798-appb-img-000225
    Figure PCTKR2023005798-appb-img-000226
    Figure PCTKR2023005798-appb-img-000227
    Figure PCTKR2023005798-appb-img-000228
    Figure PCTKR2023005798-appb-img-000229
    Figure PCTKR2023005798-appb-img-000230
    Figure PCTKR2023005798-appb-img-000231
    Figure PCTKR2023005798-appb-img-000232
    Figure PCTKR2023005798-appb-img-000233
    Figure PCTKR2023005798-appb-img-000234
    Figure PCTKR2023005798-appb-img-000235
    Figure PCTKR2023005798-appb-img-000236
    Figure PCTKR2023005798-appb-img-000237
    Figure PCTKR2023005798-appb-img-000238
    Figure PCTKR2023005798-appb-img-000239
    Figure PCTKR2023005798-appb-img-000240
    .
  8. 애노드; 캐소드; 상기 애노드와 캐소드 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며,
    상기 1층 이상의 유기물층 중 적어도 하나는 제1항 내지 제7항 중 어느 한 항에 기재된 화합물을 포함하는 유기 전계 발광 소자.
  9. 제8항에 있어서,
    상기 유기 화합물을 포함하는 유기물층은 전자 수송층, 전자수송 보조층 및 발광층 중 어느 하나인 것인, 유기 전계 발광 소자.
  10. 서로 이격 배향된 애노드와 캐소드;
    상기 애노드와 캐소드 사이에 개재된 복수의 발광 유닛; 및
    서로 인접한 발광 유닛 사이에 개재된 전하 생성층
    을 포함하고,
    상기 각 발광 유닛은 정공 수송층, 발광층 및 전자 수송층을 포함하고,
    상기 전하 생성층은 제1항 내지 제7항 중 어느 한 항에 기재된 화합물을 포함하는 것인, 유기 전계 발광 소자.
  11. 제10항에 있어서,
    상기 전하 생성층은 N형 전하 생성층 및 P형 전하 생성층을 함유하고,
    상기 N형 전하 생성층은 제1항 내지 제7항 중 어느 한 항에 기재된 화합물을 포함하는 것인, 유기 전계 발광 소자.
  12. 제11항에 있어서,
    상기 N형 전하 생성층은 N형 도펀트를 더 포함하는 것인, 유기 전계 발광 소자.
PCT/KR2023/005798 2022-04-29 2023-04-27 유기 화합물 및 이를 이용한 유기 전계 발광 소자 WO2023211213A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220053590A KR20230154356A (ko) 2022-04-29 2022-04-29 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR10-2022-0053590 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023211213A1 true WO2023211213A1 (ko) 2023-11-02

Family

ID=88519997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005798 WO2023211213A1 (ko) 2022-04-29 2023-04-27 유기 화합물 및 이를 이용한 유기 전계 발광 소자

Country Status (2)

Country Link
KR (1) KR20230154356A (ko)
WO (1) WO2023211213A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120029751A (ko) * 2010-09-17 2012-03-27 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20150136027A (ko) * 2014-05-26 2015-12-04 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20170058618A (ko) * 2015-11-19 2017-05-29 주식회사 랩토 피리딜기가 결합된 피리미딘 유도체 및 이를 이용한 유기 전계 발광 소자
KR20200037654A (ko) * 2018-10-01 2020-04-09 엘지디스플레이 주식회사 유기전계발광소자
CN111253319A (zh) * 2020-02-18 2020-06-09 武汉天马微电子有限公司 氮杂环化合物、显示面板以及显示装置
WO2023033583A1 (ko) * 2021-09-02 2023-03-09 에스케이머티리얼즈제이엔씨 주식회사 화합물, 유기 전계 발광 소자 및 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120029751A (ko) * 2010-09-17 2012-03-27 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20150136027A (ko) * 2014-05-26 2015-12-04 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20170058618A (ko) * 2015-11-19 2017-05-29 주식회사 랩토 피리딜기가 결합된 피리미딘 유도체 및 이를 이용한 유기 전계 발광 소자
KR20200037654A (ko) * 2018-10-01 2020-04-09 엘지디스플레이 주식회사 유기전계발광소자
CN111253319A (zh) * 2020-02-18 2020-06-09 武汉天马微电子有限公司 氮杂环化合物、显示面板以及显示装置
WO2023033583A1 (ko) * 2021-09-02 2023-03-09 에스케이머티리얼즈제이엔씨 주식회사 화합물, 유기 전계 발광 소자 및 표시 장치

Also Published As

Publication number Publication date
KR20230154356A (ko) 2023-11-08

Similar Documents

Publication Publication Date Title
WO2019004599A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2016195441A1 (ko) 함질소 축합고리 화합물 및 이를 이용한 유기 발광 소자
WO2018080066A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017179809A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2019017616A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2018110958A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2016140549A9 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022015084A1 (ko) 유기 발광 소자
WO2018216921A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019017741A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2018080067A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014065498A1 (ko) 유기 전계 발광 소자
WO2022025714A1 (ko) 유기 발광 소자
WO2021029616A1 (ko) 유기 발광 소자
WO2017023125A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2014046392A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020027463A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2014027822A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020141949A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2016105054A2 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2013133575A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017105041A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2021132956A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2018212463A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020130555A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796855

Country of ref document: EP

Kind code of ref document: A1