WO2023210904A1 - Powder spraying system and electric furnace including same - Google Patents

Powder spraying system and electric furnace including same Download PDF

Info

Publication number
WO2023210904A1
WO2023210904A1 PCT/KR2022/018981 KR2022018981W WO2023210904A1 WO 2023210904 A1 WO2023210904 A1 WO 2023210904A1 KR 2022018981 W KR2022018981 W KR 2022018981W WO 2023210904 A1 WO2023210904 A1 WO 2023210904A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
injection
nozzle
electric furnace
fluid
Prior art date
Application number
PCT/KR2022/018981
Other languages
French (fr)
Korean (ko)
Inventor
송우석
김균태
박영주
신대훈
신명철
엄준용
이재랑
이재민
조종오
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Publication of WO2023210904A1 publication Critical patent/WO2023210904A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat

Definitions

  • the present invention relates to a powder injection system and an electric furnace including the same, and more specifically, to a powder injection system capable of foaming slag during electric furnace operation and an electric furnace including the same.
  • An electric furnace refers to a furnace that heats and melts metals or alloys using electrical energy. It is a device that melts scrap by charging scrap into the furnace and then generating arc-shaped current between the electrode and the scrap to heat it.
  • impurities in the scrap are dissolved and slag is formed on the top of the molten steel in the form of oxides. This slag floats on the surface of the molten steel, prevents the surface of the molten steel from being oxidized by air, and can play a role in preserving the surface.
  • the slag layer thickness is kept large by forming the slag, thereby protecting the arc generated from the electrode from being exposed to the atmosphere, improving the heat transfer efficiency of the arc to the molten steel, and also preventing the intake of nitrogen from the atmosphere. It can be prevented.
  • slag forming technology can be used to form slag by blowing powdered carbon and oxygen from the wall of the electric furnace body into the slag and molten steel in the inner space of the electric furnace body during operation of the electric furnace and generating CO gas.
  • the formed slag can reduce the heat dissipation of the arc by immersing the arc electrode into the molten steel and slag, and improve the power source unit of the electric furnace by suppressing the heat dissipation of the molten steel.
  • the present invention is intended to solve various problems including the problems described above, by forming a structure that prevents the powder carbon flowing inside the pipe-shaped powder carbon injection nozzle by the transport fluid from colliding with the inner wall,
  • the purpose is to provide a powder injection system that can solve the above-mentioned problems and an electric furnace including the same.
  • these tasks are illustrative and do not limit the scope of the present invention.
  • a powder injection system is provided.
  • the powder injection system is inserted into one side of the electric furnace main body where an internal space capable of producing molten steel is formed by melting the iron source, and blows powdered carbon into the slag and the molten steel in the internal space during operation to form the slag.
  • the powder carbon is formed in the shape of a pipe with both ends open, and sprays a transport fluid containing the powder carbon into the internal space of the electric furnace main body through a first injection passage inside.
  • the powder carbon injection nozzle has an outer wall surface of the powder carbon injection nozzle so as to connect the first injection passage inside and the second injection passage of the film cooling fluid nozzle.
  • a plurality of protective hole portions may be formed to penetrate between inner wall surfaces.
  • the plurality of protection holes are configured to prevent the powder carbon passing through the first injection passage of the powder carbon injection nozzle by the transport fluid from colliding with the inner wall surface of the powder carbon injection nozzle.
  • a plurality of powder carbon injection nozzles are formed at equal intervals along the circumferential direction and the longitudinal direction of the inner wall surface of the powder carbon injection nozzle, and are directed from the inner wall surface toward the central axis of the first injection passage.
  • the membrane cooling fluid may be sprayed.
  • the plurality of protection hole portions are configured such that the transfer fluid flowing through the first injection passage of the powder carbon injection nozzle increases from the outer wall surface of the powder carbon injection nozzle to the inner wall surface. It may be formed to be inclined toward the flow direction.
  • the supersonic fluid is formed in the shape of a pipe open at both ends to surround the membrane cooling fluid nozzle, and is formed to have a circular cross-section on the inside, thereby sending supersonic fluid to the electric furnace main body. It may further include a supersonic fluid nozzle spraying into the internal space of the.
  • the supersonic fluid nozzle may be formed as a Laval nozzle to increase the flow speed of the supersonic fluid passing through the third injection passage to more than the speed of sound.
  • the supersonic fluid nozzle is formed so that its cross-sectional area gradually decreases along the flow direction of the supersonic fluid from the inlet into which the supersonic fluid flows, so that the supersonic fluid flowing therein is
  • a compression unit that compresses; a neck portion formed with a minimum cross-sectional area to maximize compression of the supersonic fluid compressed in the process of flowing the compression portion; and an expansion part that is formed to gradually increase its cross-sectional area along the flow direction of the supersonic fluid from the neck to the injection part where the supersonic fluid is sprayed, and expands the supersonic fluid flowing therein.
  • the compression section and the expansion section are formed along the central axis of the third injection passage so that the cross-sectional area of the annular cross-section changes to gradually become smaller or larger in a non-linear manner, thereby forming an overall streamlined shape. It may be formed by a combination of at least two or more curves, including a convex curve formed in a convex curve shape based on a reference and a concave curve formed in a concave curve shape based on the central axis of the third injection passage.
  • an electric furnace includes an electric furnace main body in which an internal space is formed into which an iron source can be charged and dissolved; an electrode that is at least partially inserted into the interior space through the small ceiling of the loop portion on the upper side of the electric furnace main body to melt the iron source by arc heat so as to produce molten steel; and a powder injection system inserted into one side of the electric furnace main body, capable of promoting foaming of the slag by blowing powder carbon into the slag and the molten steel in the internal space during operation, wherein the powder injection system includes, a powder carbon injection nozzle that is formed in the shape of a pipe with both ends open, and sprays the transfer fluid containing the powder carbon into the internal space of the electric furnace body through a first injection passage therein; And a film cooling fluid flowing through a second injection passage formed in the shape of a pipe with a closed end side through which the transfer fluid is sprayed to surround the powder carbon injection nozzle and having a circular cross-section
  • the powder injection system is formed in the shape of a pipe with both ends open to surround the membrane cooling fluid nozzle, and is provided with a supersonic speed through a third injection passage formed to have an annular cross section inside. It may further include a supersonic fluid nozzle that sprays fluid into the internal space of the electric furnace main body.
  • the electric furnace main body includes a lower cell forming a lower side of the internal space; and an upper cell that is combined with the lower cell to form an upper side of the interior space and whose upper side is closed by the loop portion.
  • the powder injection system may be formed to penetrate the wall of the upper cell or the lower cell.
  • the powder injection system may be formed to be inclined downward at a predetermined angle toward the lower side of the electric furnace main body.
  • the film cooling fluid flows through a film cooling fluid nozzle formed to surround the powder carbon injection nozzle that sprays the transport fluid containing powder carbon into the internal space of the electric furnace main body. Then, the flowing film cooling fluid is sprayed as a high-speed jet through the inner wall of the powder carbon injection nozzle to form a cooling protective film on the inner wall, so that the powder carbon flowing inside the powder carbon injection nozzle by the transport fluid is sprayed onto the inner wall.
  • the carbon powder is formed by the momentum of the film cooling fluid injected from the inner wall. As acceleration occurs, the injection speed of the powder carbon injected into the injection nozzle can be increased, thereby smoothly inducing slag forming.
  • FIG. 1 is a cross-sectional view schematically showing an electric furnace according to an embodiment of the present invention.
  • Figures 2 and 3 are perspective and cross-sectional views schematically showing the powder injection system installed in the electric furnace of Figure 1.
  • Figure 4 is an enlarged view showing part “A” of Figure 3.
  • Figure 1 is a cross-sectional view schematically showing an electric furnace 1000 according to an embodiment of the present invention
  • Figures 2 and 3 are perspective views schematically showing the powder injection system 100 installed in the electric furnace 1000 of Figure 1. and a cross-sectional view
  • FIG. 4 is an enlarged view showing part “A” of FIG. 3.
  • the electric furnace 1000 largely includes a powder injection system 100, an electric furnace main body 200, and an electrode 300. You can.
  • the electric furnace main body 200 may be a type of furnace in which an internal space is formed in which an iron source such as scrap or directly reduced iron can be charged and dissolved.
  • the electric furnace main body 200 is coupled to the lower cell 210 and the upper side of the lower cell 210 forming the lower side of the inner space, forming the upper side of the inner space, and the upper side is closed by the loop portion 230. It may be composed of an upper cell 220.
  • a fire-resistant wall constructed with fire-resistant glazing is formed on the inner wall of the lower cell 210 to protect the outer wall, and cooling water is circulated inside the inner wall of the upper cell 220 to protect the outer wall.
  • Panel members may be mounted.
  • a raw material supply port for continuously supplying the iron source is formed on one side of the electric furnace main body 200, and a molten steel tapping port for continuously tapping the produced molten steel 1 is formed on the other side. You can.
  • the upper cell 220 may have a slag discharge door 221 formed at the lower end adjacent to the lower cell 210 to selectively allow the slag 2 formed on the upper side of the molten steel 1 to flow.
  • the loop portion 230 is seated on the top of the upper cell 220 and covers the open upper part of the upper cell 220, and a small ceiling is formed in the center to form an electrode 300 to be described later that generates arc heat. Can be installed penetratingly. Additionally, although not shown, the loop portion 230 may be connected to an exhaust pipe that discharges a large amount of waste gas and dust generated during the dissolution process of the iron source.
  • the electrode 300 is formed of a plurality of electrode bundles, and at least a portion is inserted into the internal space through the small ceiling of the loop portion 230 on the upper side of the electric furnace main body 200. , the iron source can be melted by arc heat to produce molten steel (1).
  • the powder injection system 100 is inserted into one side of the electric furnace main body 200, and powder carbon (C) and By blowing in oxygen, the forming of the slag 2 can be promoted.
  • the powder injection system 100 is formed to penetrate the wall of the upper cell 220 and is inclined downward at a predetermined angle toward the lower side of the electric furnace main body 200, so that the electric furnace main body 200 during operation. Powdered carbon and oxygen are blown into the molten steel 1 and slag 2 in the internal space to generate CO gas, thereby forming the slag 2.
  • the powder injection system 100 is formed to penetrate the wall of the upper cell 220 as an example, but it is not necessarily limited to FIG. 1 and may be formed to penetrate the wall of the lower cell 210. Additionally, a plurality of powder injection systems 100 may be installed as needed during the process.
  • the powder injection system 100 injects the molten steel 1 in the internal space of the electric furnace main body 200. It is a type of nozzle structure that can inject powdery carbon (C) and oxygen into the slag (2) as a supersonic fluid (F3), and is largely comprised of a powdery carbon injection nozzle 110, a film cooling fluid nozzle 120, and a supersonic fluid nozzle 110. It may include a fluid nozzle 130.
  • the powder carbon injection nozzle 110 is formed in the shape of a pipe with both ends open, and transfers the transfer fluid (F1) containing powder carbon (C) through the first injection passage therein. ) can be sprayed into the internal space of the electric furnace main body 200.
  • the film cooling fluid nozzle 120 is formed in the shape of a pipe with an end side closed at which the transport fluid F1 is sprayed so as to surround the powder carbon injection nozzle 110, and has a circular cross-section on the inside.
  • the film cooling fluid F2 flowing through the formed second injection passage may be injected toward the first injection passage of the powder carbon injection nozzle 110.
  • the powdery carbon injection nozzle 110 has an outer wall surface and an inner wall surface of the powdery carbon injection nozzle 110 so as to connect the internal first injection passageway and the second injection passageway of the film cooling fluid nozzle 120.
  • a plurality of protective hole portions 111 may be formed to pass through the space.
  • the plurality of protection hole portions 111 are formed at equal intervals along the circumferential direction and the longitudinal direction of the inner wall surface of the powder carbon injection nozzle 111, and are formed at equal intervals from the inner wall surface.
  • the film cooling fluid (F2) may be injected toward the central axis of the first injection passage.
  • the film cooling fluid F2 flowing through the second injection passage of the film cooling fluid nozzle 120 flows through the plurality of protection hole portions 111 to the powder carbon injection nozzle ( It is sprayed as a high-speed jet onto the inner wall of the powder carbon injection nozzle 110, thereby forming a cooling protective film along the inner wall of the powder carbon injection nozzle 110, so that the first injection passage of the powder carbon injection nozzle 110 is supplied with a transport fluid ( It is possible to prevent the body carbon (C) passing through F1) from colliding with the inner wall surface of the powder carbon injection nozzle 110.
  • the cooling protective film may also serve to cool the powder injection system 100 including the powder carbon injection nozzle 110 to prevent it from overheating.
  • the plurality of protection hole portions 111 provide transport fluid F1 flowing through the first injection passage of the powder carbon injection nozzle 110 as it moves from the outer wall surface of the powder carbon injection nozzle 110 to the inner wall surface. It may be formed inclined toward the direction of flow.
  • the film cooling fluid is injected from the inner wall surface of the powder carbon injection nozzle 110 into a plurality of protection hole portions 111 formed inclined toward the flow direction of the transfer fluid F1.
  • the speed of the carbon powder (C) is further increased by the moment of the film cooling fluid (F2). It can be accelerated.
  • the supersonic fluid nozzle 130 is formed in the shape of a pipe with both ends open to surround the membrane cooling fluid nozzle 120, and is formed to have a circular cross-section on the inside.
  • Supersonic fluid F3 oxygen
  • This supersonic fluid nozzle 130 is formed as a Laval nozzle to increase the flow speed of the supersonic fluid (F3) passing through the third injection passage to more than the speed of sound, thereby generating the supersonic fluid (F3) by the shroud effect. ) can further accelerate the flow speed beyond the speed of sound.
  • the supersonic fluid nozzle 130 is formed so that its cross-sectional area gradually decreases along the flow direction of the supersonic fluid F3 from the inlet into which the supersonic fluid F3 flows so that it can be formed as the Laval nozzle,
  • a compression part 131 that compresses the supersonic fluid (F3) flowing inside, and a minimum cross-sectional area are formed to maximize the compression of the supersonic fluid (F3) compressed in the process of flowing through the compression part 131.
  • the cross-sectional area is formed to gradually increase along the flow direction of the supersonic fluid F3 from the neck portion 132 to the injection portion where the supersonic fluid F3 is sprayed, and the supersonic fluid F3 flowing inside ) may be configured to include an expansion portion 133 that expands.
  • the compression portion 131 and the expansion portion 133 of the supersonic fluid nozzle 130 change the cross-sectional area of the annular cross-section to gradually become smaller or larger in a non-linear manner, so that the third injection can be formed into an overall streamlined shape. It may be desirable to form a combination of at least two or more curves, including a convex curve formed in a convex curve shape based on the central axis of the flow path and a concave curve formed in a concave curve shape based on the central axis of the third injection flow path. there is.
  • the inner wall angle at which the inclination changes rapidly inside the nozzle This is formed, and a shock wave is generated during the compression/expansion flow of the supersonic fluid (F3).
  • the shock wave causes the flow of the supersonic fluid (F3) to become unstable, adversely affecting the flow, and ultimately, the supersonic fluid nozzle ( A problem may occur in which the supersonic fluid (F3) injected through 130) is not sufficiently accelerated and straightness and momentum are deteriorated.
  • the supersonic fluid nozzle 130 when the supersonic fluid nozzle 130 is formed in a streamlined shape with a combination of a convex curve and a concave curve, the generation of the shock wave due to the inner wall angle is suppressed and the supersonic fluid nozzle 130 is formed according to the principle of supersonic gas flow.
  • the fluid F3 By inducing the fluid F3 to accelerate stably, the straightness and momentum of the supersonic fluid F3 sprayed at a supersonic speed of Mach 1.0 or higher through the supersonic fluid nozzle 130 can be improved.
  • the transport fluid F1 containing powder carbon (C) is injected into the electric furnace main body 200.
  • the film cooling fluid (F2) flows through the film cooling fluid nozzle 120 formed to surround the powdery carbon injection nozzle 110 spraying into the internal space, and the flowed film cooling fluid (F2) is injected into the powdery carbon injection nozzle 110.
  • ) is sprayed with a high-speed jet through a plurality of protective hole portions 111 formed on the inner wall of the inner wall to form a cooling protective film on the inner wall, thereby allowing the powder carbon injection nozzle 110 to flow inside the roll by the transport fluid F1.
  • acceleration of the carbon powder (C) occurs due to the momentum of the film cooling fluid (F2) injected from the inner wall surface, thereby increasing the injection speed of the powdered carbon (C) injected into the injection hole, thereby increasing the injection speed of the slag (2).
  • Foaming can be induced smoothly.

Abstract

The present invention relates to a powder spraying system capable of foaming slag during an electric furnace operation, and an electric furnace including same. The present invention may include: a powdered carbon spray nozzle which has a pipe shape open at both ends and sprays a transport fluid containing powdered carbon into the inner space of a main body of the electric furnace through a first spray flow path formed therein; and a film cooling fluid nozzle which is formed in a pipe shape, closed toward an end part through which the transport fluid is sprayed, so as to surround the powdered carbon spray nozzle, and sprays a flowing film cooling fluid toward the first spray flow path through a second spray flow path formed so as to have an annular cross-section therein.

Description

분체 분사 시스템 및 이를 포함하는 전기로Powder injection system and electric furnace including the same
본 발명은 분체 분사 시스템 및 이를 포함하는 전기로에 관한 것으로서, 더 상세하게는 전기로 조업 중 슬래그를 포밍 시킬 수 있는 분체 분사 시스템 및 이를 포함하는 전기로에 관한 것이다.The present invention relates to a powder injection system and an electric furnace including the same, and more specifically, to a powder injection system capable of foaming slag during electric furnace operation and an electric furnace including the same.
전기로는 전기에너지를 이용하여 금속이나 합금을 가열, 용해하는 노를 말하는 것으로, 노 내부로 스크랩을 장입한 후 전극과 스크랩 사이로 아크 형태의 전류를 발생시켜 가열함으로써, 스크랩을 용해시키는 장치이다. 이와 같은, 전기로의 제강 공정 중에는 스크랩 내의 불순물이 용해되어 산화물 형태로 용강의 상부에 슬래그(Slag)가 형성된다. 이러한, 슬래그는, 용강의 표면 위에 떠서 용강 표면이 공기에 의해 산화되는 것을 방지하고, 그 표면을 보존하는 역할을 할 수 있다.An electric furnace refers to a furnace that heats and melts metals or alloys using electrical energy. It is a device that melts scrap by charging scrap into the furnace and then generating arc-shaped current between the electrode and the scrap to heat it. During the steelmaking process using an electric furnace, impurities in the scrap are dissolved and slag is formed on the top of the molten steel in the form of oxides. This slag floats on the surface of the molten steel, prevents the surface of the molten steel from being oxidized by air, and can play a role in preserving the surface.
이때, 전기로 조업에서는 슬래그를 포밍시켜 슬래그 층 두께를 크게 유지함으로써, 전극봉에서 발생된 아크가 대기에 노출되지 않도록 아크를 보호하여 용강에 대한 아크의 열전달 효율을 향상시키고 또한 대기로부터의 질소 흡입을 방지할 수 있다.At this time, in electric furnace operation, the slag layer thickness is kept large by forming the slag, thereby protecting the arc generated from the electrode from being exposed to the atmosphere, improving the heat transfer efficiency of the arc to the molten steel, and also preventing the intake of nitrogen from the atmosphere. It can be prevented.
일반적으로, 슬래그 포밍 기술은, 전기로의 조업 중, 전기로 본체의 벽면에서 전기로 본체 내부 공간의 슬래그와 용강으로 분체 카본 및 산소를 취입하여, CO 기체를 발생시킴으로써 슬래그를 포밍시키는 공정을 이용할 수 있다. 이와 같이, 포밍된 슬래그는, 아크 전극을 용강 및 슬래그 내로 침적시켜 아크의 방열을 절감하고, 용강의 방산열을 억제하여 전기로의 전력원 단위를 개선하는 효과를 발생시킬 수 있다.In general, slag forming technology can be used to form slag by blowing powdered carbon and oxygen from the wall of the electric furnace body into the slag and molten steel in the inner space of the electric furnace body during operation of the electric furnace and generating CO gas. there is. In this way, the formed slag can reduce the heat dissipation of the arc by immersing the arc electrode into the molten steel and slag, and improve the power source unit of the electric furnace by suppressing the heat dissipation of the molten steel.
그러나, 종래의 슬래그 포밍을 위한 분체 분사 시스템은, 관 형태의 파이프를 통해 분체 카본이 취입되고, 파이프를 둘러싸도록 형성되어 환형의 횡단면을 가지는 이중 파이프에서 초음속 산소가 취입되는 형태로서, 파이프 내부를 유동하는 과정에서 내벽면에 충돌이 발생하는 분체 카본에 의해, 파이프 내벽면에 침식 현상이 발생되는 문제점이 있었다. 이와 같은, 파이프 내벽면의 침식에 따라 분체 카본을 분사하는 노즐의 파손이 빈번하게 일어남으로써, 노즐의 수명 저하로 교체 주기가 매우 짧아지는 문제점이 있었다.However, in the conventional powder injection system for slag forming, powder carbon is blown in through a tube-shaped pipe, and supersonic oxygen is blown in from a double pipe formed to surround the pipe and having a circular cross-section, and the inside of the pipe is blown in. There was a problem in that erosion occurred on the inner wall of the pipe due to powder carbon colliding with the inner wall during the flow. As such, damage to the nozzle that sprays powdered carbon frequently occurs due to erosion of the inner wall of the pipe, resulting in a shortened replacement cycle due to a decrease in the lifespan of the nozzle.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 이송 유체에 의해 파이프 형상의 분체 카본 분사 노즐의 내부를 유동하는 분체 카본이 내벽면에 충돌하는 것을 방지하는 구조를 형성함으로써, 상술한 문제점들을 해소할 수 있는 분체 분사 시스템 및 이를 포함하는 전기로를 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention is intended to solve various problems including the problems described above, by forming a structure that prevents the powder carbon flowing inside the pipe-shaped powder carbon injection nozzle by the transport fluid from colliding with the inner wall, The purpose is to provide a powder injection system that can solve the above-mentioned problems and an electric furnace including the same. However, these tasks are illustrative and do not limit the scope of the present invention.
본 발명의 일 실시예에 따르면, 분체 분사 시스템이 제공된다. 상기 분체 분사 시스템은, 철원을 용해하여 용강을 생산할 수 있는 내부 공간이 형성되는 전기로 본체의 일측에 삽입되어, 조업 중인 상기 내부 공간의 슬래그와 상기 용강에 분체 카본을 취입하여 상기 슬래그의 포밍을 촉진시킬 수 있는 분체 분사 시스템에 있어서, 양단이 개방된 파이프 형상으로 형성되어, 내부의 제 1 분사 유로를 통해 상기 분체 카본이 함유된 이송 유체를 상기 전기로 본체의 상기 내부 공간으로 분사하는 분체 카본 분사 노즐; 및 상기 분체 카본 분사 노즐을 둘러싸도록 상기 이송 유체가 분사되는 단부측이 폐쇄된 형태의 파이프 형상으로 형성되고, 내부에 환형의 횡단면을 가지도록 형성되는 제 2 분사 유로를 통해 유동되는 막냉각 유체를 상기 제 1 분사 유로측으로 분사하는 막냉각 유체 노즐;을 포함할 수 있다.According to one embodiment of the present invention, a powder injection system is provided. The powder injection system is inserted into one side of the electric furnace main body where an internal space capable of producing molten steel is formed by melting the iron source, and blows powdered carbon into the slag and the molten steel in the internal space during operation to form the slag. In a powder injection system capable of promoting powder carbon, the powder carbon is formed in the shape of a pipe with both ends open, and sprays a transport fluid containing the powder carbon into the internal space of the electric furnace main body through a first injection passage inside. spray nozzle; And a film cooling fluid flowing through a second injection passage formed in the shape of a pipe with a closed end side through which the transfer fluid is sprayed to surround the powder carbon injection nozzle and having a circular cross-section on the inside. It may include a film cooling fluid nozzle that sprays toward the first injection passage.
본 발명의 일 실시예에 의하면, 상기 분체 카본 분사 노즐은, 내부의 상기 제 1 분사 유로와 상기 막냉각 유체 노즐의 상기 제 2 분사 유로 사이를 연결할 수 있도록, 상기 분체 카본 분사 노즐의 외벽면과 내벽면 사이를 관통하도록 형성되는 복수의 보호홀부가 형성될 수 있다.According to one embodiment of the present invention, the powder carbon injection nozzle has an outer wall surface of the powder carbon injection nozzle so as to connect the first injection passage inside and the second injection passage of the film cooling fluid nozzle. A plurality of protective hole portions may be formed to penetrate between inner wall surfaces.
본 발명의 일 실시예에 의하면, 상기 복수의 보호홀부는, 상기 분체 카본 분사 노즐의 상기 제 1 분사 유로를 상기 이송 유체에 의해 통과하는 상기 분체 카본이 상기 분체 카본 분사 노즐의 상기 내벽면에 충돌하는 것을 방지할 수 있도록, 상기 분체 카본 분사 노즐의 상기 내벽면의 둘레 방향 및 상기 내벽면의 길이 방향을 따라 복수개가 균등한 간격으로 형성되어, 상기 내벽면으로부터 상기 제 1 분사 유로의 중심축 향해서 상기 막냉각 유체를 분사할 수 있다.According to one embodiment of the present invention, the plurality of protection holes are configured to prevent the powder carbon passing through the first injection passage of the powder carbon injection nozzle by the transport fluid from colliding with the inner wall surface of the powder carbon injection nozzle. In order to prevent this, a plurality of powder carbon injection nozzles are formed at equal intervals along the circumferential direction and the longitudinal direction of the inner wall surface of the powder carbon injection nozzle, and are directed from the inner wall surface toward the central axis of the first injection passage. The membrane cooling fluid may be sprayed.
본 발명의 일 실시예에 의하면, 상기 복수의 보호홀부는, 상기 분체 카본 분사 노즐의 상기 외벽면에서 상기 내벽면으로 갈수록, 상기 분체 카본 분사 노즐의 상기 제 1 분사 유로를 유동하는 상기 이송 유체의 유동 방향을 향해서 경사지게 형성될 수 있다.According to one embodiment of the present invention, the plurality of protection hole portions are configured such that the transfer fluid flowing through the first injection passage of the powder carbon injection nozzle increases from the outer wall surface of the powder carbon injection nozzle to the inner wall surface. It may be formed to be inclined toward the flow direction.
본 발명의 일 실시예에 의하면, 상기 막냉각 유체 노즐을 둘러싸도록 양단이 개방된 파이프 형상으로 형성되어, 내부에 환형의 횡단면을 가지도록 형성되는 제 3 분사 유로를 통해 초음속 유체를 상기 전기로 본체의 상기 내부 공간으로 분사하는 초음속 유체 노즐;을 더 포함할 수 있다.According to one embodiment of the present invention, the supersonic fluid is formed in the shape of a pipe open at both ends to surround the membrane cooling fluid nozzle, and is formed to have a circular cross-section on the inside, thereby sending supersonic fluid to the electric furnace main body. It may further include a supersonic fluid nozzle spraying into the internal space of the.
본 발명의 일 실시예에 의하면, 상기 초음속 유체 노즐은, 상기 제 3 분사 유로를 통과하는 상기 초음속 유체의 유속을 음속 이상으로 증가시킬 수 있도록 라발(Laval) 노즐로 형성될 수 있다.According to one embodiment of the present invention, the supersonic fluid nozzle may be formed as a Laval nozzle to increase the flow speed of the supersonic fluid passing through the third injection passage to more than the speed of sound.
본 발명의 일 실시예에 의하면, 상기 초음속 유체 노즐은, 상기 초음속 유체가 유입되는 유입부로부터 상기 초음속 유체의 유동 방향을 따라 그 단면적이 점차적으로 작아지도록 형성되어, 내부를 유동하는 상기 초음속 유체를 압축시키는 압축부; 상기 압축부를 유동하는 과정에서 압축이 이루어진 상기 초음속 유체의 압축이 최대로 이루어질 수 있도록, 최소 단면적으로 형성되는 목부; 및 상기 목부로부터 상기 초음속 유체가 분사되는 분사부까지 상기 초음속 유체의 유동 방향을 따라 그 단면적이 점차적으로 커지도록 형성되어, 내부를 유동하는 상기 초음속 유체를 팽창시키는 팽창부;를 포함할 수 있다.According to one embodiment of the present invention, the supersonic fluid nozzle is formed so that its cross-sectional area gradually decreases along the flow direction of the supersonic fluid from the inlet into which the supersonic fluid flows, so that the supersonic fluid flowing therein is A compression unit that compresses; a neck portion formed with a minimum cross-sectional area to maximize compression of the supersonic fluid compressed in the process of flowing the compression portion; and an expansion part that is formed to gradually increase its cross-sectional area along the flow direction of the supersonic fluid from the neck to the injection part where the supersonic fluid is sprayed, and expands the supersonic fluid flowing therein.
본 발명의 일 실시예에 의하면, 상기 압축부와 및 상기 팽창부는, 환형의 횡단면의 단면적이 비선형으로 점점 작아지거나 점점 커지도록 변화하여 전체적으로 유선형으로 형성될 수 있도록, 상기 제 3 분사 유로의 중심축을 기준으로 볼록한 곡선 형상으로 형성되는 볼록 곡선 및 상기 제 3 분사 유로의 중심축을 기준으로 오목한 곡선 형상으로 형성되는 오목 곡선을 포함하는 적어도 2개 이상의 곡선의 조합으로 형성될 수 있다.According to one embodiment of the present invention, the compression section and the expansion section are formed along the central axis of the third injection passage so that the cross-sectional area of the annular cross-section changes to gradually become smaller or larger in a non-linear manner, thereby forming an overall streamlined shape. It may be formed by a combination of at least two or more curves, including a convex curve formed in a convex curve shape based on a reference and a concave curve formed in a concave curve shape based on the central axis of the third injection passage.
본 발명의 다른 실시예에 따르면, 전기로가 제공된다. 상기 전기로는, 철원이 장입되어 용해될 수 있는 내부 공간이 형성되는 전기로 본체; 상기 전기로 본체 상측의 루프부의 소천정을 통해 적어도 일부분이 상기 내부 공간으로 삽입되어, 용강을 생산할 수 있도록 아크열에 의해 상기 철원을 용해시키는 전극봉; 및 상기 전기로 본체의 일측에 삽입되어, 조업 중인 상기 내부 공간의 슬래그와 상기 용강에 분체 카본을 취입하여 상기 슬래그의 포밍을 촉진시킬 수 있는 분체 분사 시스템;을 포함하고, 상기 분체 분사 시스템은, 양단이 개방된 파이프 형상으로 형성되어, 내부의 제 1 분사 유로를 통해 상기 분체 카본이 함유된 이송 유체를 상기 전기로 본체의 상기 내부 공간으로 분사하는 분체 카본 분사 노즐; 및 상기 분체 카본 분사 노즐을 둘러싸도록 상기 이송 유체가 분사되는 단부측이 폐쇄된 형태의 파이프 형상으로 형성되고, 내부에 환형의 횡단면을 가지도록 형성되는 제 2 분사 유로를 통해 유동되는 막냉각 유체를 상기 제 1 분사 유로측으로 분사하는 막냉각 유체 노즐;을 포함할 수 있다.According to another embodiment of the present invention, an electric furnace is provided. The electric furnace includes an electric furnace main body in which an internal space is formed into which an iron source can be charged and dissolved; an electrode that is at least partially inserted into the interior space through the small ceiling of the loop portion on the upper side of the electric furnace main body to melt the iron source by arc heat so as to produce molten steel; and a powder injection system inserted into one side of the electric furnace main body, capable of promoting foaming of the slag by blowing powder carbon into the slag and the molten steel in the internal space during operation, wherein the powder injection system includes, a powder carbon injection nozzle that is formed in the shape of a pipe with both ends open, and sprays the transfer fluid containing the powder carbon into the internal space of the electric furnace body through a first injection passage therein; And a film cooling fluid flowing through a second injection passage formed in the shape of a pipe with a closed end side through which the transfer fluid is sprayed to surround the powder carbon injection nozzle and having a circular cross-section on the inside. It may include a film cooling fluid nozzle that sprays toward the first injection passage.
본 발명의 다른 실시예에 의하면, 상기 분체 분사 시스템은, 상기 막냉각 유체 노즐을 둘러싸도록 양단이 개방된 파이프 형상으로 형성되어, 내부에 환형의 횡단면을 가지도록 형성되는 제 3 분사 유로를 통해 초음속 유체를 상기 전기로 본체의 상기 내부 공간으로 분사하는 초음속 유체 노즐;을 더 포함할 수 있다.According to another embodiment of the present invention, the powder injection system is formed in the shape of a pipe with both ends open to surround the membrane cooling fluid nozzle, and is provided with a supersonic speed through a third injection passage formed to have an annular cross section inside. It may further include a supersonic fluid nozzle that sprays fluid into the internal space of the electric furnace main body.
본 발명의 다른 실시예에 의하면, 상기 전기로 본체는, 상기 내부 공간의 하측을 이루는 하부 셀; 및 상기 하부 셀과 결합되어 상기 내부 공간의 상측을 이루고 상기 루프부에 의해 상방이 폐쇄되는 상부 셀;을 포함할 수 있다.According to another embodiment of the present invention, the electric furnace main body includes a lower cell forming a lower side of the internal space; and an upper cell that is combined with the lower cell to form an upper side of the interior space and whose upper side is closed by the loop portion.
본 발명의 다른 실시예에 의하면, 상기 분체 분사 시스템은, 상기 상부 셀 또는 상기 하부 셀의 벽면을 관통하도록 형성될 수 있다.According to another embodiment of the present invention, the powder injection system may be formed to penetrate the wall of the upper cell or the lower cell.
본 발명의 다른 실시예에 의하면, 상기 분체 분사 시스템은, 상기 전기로 본체의 하측을 향해서 소정의 각도로 하향 경사지게 형성될 수 있다.According to another embodiment of the present invention, the powder injection system may be formed to be inclined downward at a predetermined angle toward the lower side of the electric furnace main body.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 분체 카본이 함유된 이송 유체를 전기로 본체의 내부 공간으로 분사하는 분체 카본 분사 노즐을 둘러싸도록 형성된 막냉각 유체 노즐을 통해 막냉각 유체를 유동시키고, 유동된 막냉각 유체를 분체 카본 분사 노즐의 내벽면을 통해 고속의 제트로 분사시켜 내벽면 상에 냉각 보호막을 형성함으로써, 이송 유체에 의해 분체 카본 분사 노즐 내부롤 유동하는 분체 카본이 내벽면에 충돌하는 것을 방지하여, 내벽면의 침식을 예방하여 노즐의 파손을 방지하며, 노즐의 교체 주기 및 수명을 증대시킬 수 있다.According to one embodiment of the present invention made as described above, the film cooling fluid flows through a film cooling fluid nozzle formed to surround the powder carbon injection nozzle that sprays the transport fluid containing powder carbon into the internal space of the electric furnace main body. Then, the flowing film cooling fluid is sprayed as a high-speed jet through the inner wall of the powder carbon injection nozzle to form a cooling protective film on the inner wall, so that the powder carbon flowing inside the powder carbon injection nozzle by the transport fluid is sprayed onto the inner wall. By preventing collision with the inner wall, erosion of the inner wall is prevented, damage to the nozzle is prevented, and the replacement cycle and lifespan of the nozzle can be increased.
또한, 분체 카본 분사 노즐의 내벽면의 복수의 보호홀부로 분사되는 막냉각 유체가 분체 카본을 분체 카본 분사 노즐의 중심부로 밀어내는 과정에서, 내벽면에서 분사되는 막냉각 유체의 모멘텀에 의해 카본 분체의 가속이 일어남으로써, 분사구로 분사되는 분체 카본의 분사 속도를 증가시켜, 슬래그 포밍 유도를 원활하게 할 수 있다.In addition, in the process where the film cooling fluid injected into the plurality of protective holes on the inner wall of the powder carbon injection nozzle pushes the powder carbon toward the center of the powder carbon injection nozzle, the carbon powder is formed by the momentum of the film cooling fluid injected from the inner wall. As acceleration occurs, the injection speed of the powder carbon injected into the injection nozzle can be increased, thereby smoothly inducing slag forming.
또한, 초음속 특성 곡선이 적용된 유선형의 슈라우드 환형 초음속 유체 노즐을 이용하여, 높은 직진도와 모멘텀을 가지는 초음속 유체를 분사함으로써, 중앙에 형성된 분체 카본 분사 노즐을 통해 취입된 분체 카본이 초음속 제트 기류에 혼합되어 용강의 상부까지 주변 환경에 의해 방해 받지 않고, 용이하게 슬래그의 상면에 근접하도록 유도하여, 슬래그의 포밍을 더욱 원활하게 할 수 있는 분체 분사 시스템 및 이를 포함하는 전기로를 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.In addition, by using a streamlined shrouded annular supersonic fluid nozzle with a supersonic characteristic curve applied, supersonic fluid with high straightness and momentum is injected, so that the powder carbon blown in through the powder carbon injection nozzle formed in the center is mixed with the supersonic jet stream. It is possible to implement a powder injection system and an electric furnace including the same that can facilitate the forming of the slag by easily guiding the upper part of the molten steel to approach the upper surface of the slag without being disturbed by the surrounding environment. Of course, the scope of the present invention is not limited by this effect.
도 1은 본 발명의 일 실시예에 따른 전기로를 개략적으로 나타내는 단면도이다.1 is a cross-sectional view schematically showing an electric furnace according to an embodiment of the present invention.
도 2 및 도 3은 도 1의 전기로에 설치된 분체 분사 시스템을 개략적으로 나타내는 사시도 및 단면도이다.Figures 2 and 3 are perspective and cross-sectional views schematically showing the powder injection system installed in the electric furnace of Figure 1.
도 4는 도 3의 “A”부분을 나타내는 확대도이다.Figure 4 is an enlarged view showing part “A” of Figure 3.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 여러 실시예들을 상세히 설명하기로 한다.Hereinafter, various preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이다.The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art, and the following examples may be modified into various other forms, and the scope of the present invention is as follows. It is not limited to examples. Rather, these embodiments are provided to make the present disclosure more faithful and complete and to fully convey the spirit of the present invention to those skilled in the art. Additionally, the thickness and size of each layer in the drawings are exaggerated for convenience and clarity of explanation.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차(tolerance)에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명 사상의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will now be described with reference to drawings that schematically show ideal embodiments of the present invention. In the drawings, variations of the depicted shape may be expected, for example, depending on manufacturing technology and/or tolerances. Accordingly, embodiments of the present invention should not be construed as being limited to the specific shape of the area shown in this specification, but should include, for example, changes in shape resulting from manufacturing.
도 1은 본 발명의 일 실시예에 따른 전기로(1000)를 개략적으로 나타내는 단면도이고, 도 2 및 도 3은 도 1의 전기로(1000)에 설치된 분체 분사 시스템(100)을 개략적으로 나타내는 사시도 및 단면도이며, 도 4는 도 3의 “A”부분을 나타내는 확대도이다.Figure 1 is a cross-sectional view schematically showing an electric furnace 1000 according to an embodiment of the present invention, and Figures 2 and 3 are perspective views schematically showing the powder injection system 100 installed in the electric furnace 1000 of Figure 1. and a cross-sectional view, and FIG. 4 is an enlarged view showing part “A” of FIG. 3.
먼저, 도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른, 전기로(1000)는, 크게, 분체 분사 시스템(100)과, 전기로 본체(200) 및 전극봉(300)을 포함할 수 있다.First, as shown in FIG. 1, the electric furnace 1000 according to an embodiment of the present invention largely includes a powder injection system 100, an electric furnace main body 200, and an electrode 300. You can.
도 1에 도시된 바와 같이, 전기로 본체(200)는, 스크랩이나, 직접 환원철 등과 같은 철원이 장입되어 용해될 수 있는 내부 공간이 형성되는, 일종의 로(Furnace)일 수 있다.As shown in FIG. 1, the electric furnace main body 200 may be a type of furnace in which an internal space is formed in which an iron source such as scrap or directly reduced iron can be charged and dissolved.
예컨대, 전기로 본체(200)는, 상기 내부 공간의 하측을 이루는 하부 셀(210) 및 하부 셀(210)의 상측에 결합되어 상기 내부 공간의 상측을 이루고 루프부(230)에 의해 상방이 폐쇄되는 상부 셀(220)로 구성될 수 있다. 이때, 도시되진 않았지만, 하부 셀(210)의 내측벽에는 외측벽을 보호하도록 내화 연와로 축조된 내화 벽체가 형성되고, 상부 셀(220)의 내측벽에는 내부로 냉각수가 순환되어 외측벽을 보호하는 냉각 패널 부재가 장착될 수 있다. 또한, 도시되진 않았지만, 전기로 본체(200)의 일측에는 상기 철원을 연속적으로 공급하기 위한 원료 공급구가 형성되고, 타측에는 생산된 용강(1)을 연속적으로 출강하기 위한 용강 출탕구가 형성될 수 있다.For example, the electric furnace main body 200 is coupled to the lower cell 210 and the upper side of the lower cell 210 forming the lower side of the inner space, forming the upper side of the inner space, and the upper side is closed by the loop portion 230. It may be composed of an upper cell 220. At this time, although not shown, a fire-resistant wall constructed with fire-resistant glazing is formed on the inner wall of the lower cell 210 to protect the outer wall, and cooling water is circulated inside the inner wall of the upper cell 220 to protect the outer wall. Panel members may be mounted. In addition, although not shown, a raw material supply port for continuously supplying the iron source is formed on one side of the electric furnace main body 200, and a molten steel tapping port for continuously tapping the produced molten steel 1 is formed on the other side. You can.
또한, 상부 셀(220)은, 용강(1)의 상측에 형성된 슬래그(2)를 선택적으로 유재할 수 있도록, 하부 셀(210)과 인접한 하단부에 슬래그 배출 도어(221)가 형성될 수 있다.In addition, the upper cell 220 may have a slag discharge door 221 formed at the lower end adjacent to the lower cell 210 to selectively allow the slag 2 formed on the upper side of the molten steel 1 to flow.
루프부(230)는, 상부 셀(220)의 상단에 안착되어, 상부 셀(220)의 개방된 상부를 커버하며, 중심부에 소천정이 형성되어, 아크열을 발생시키는 후술될 전극봉(300)이 관통되게 설치될 수 있다. 또한, 도시되진 않았지만, 루프부(230)는, 상기 철원의 용해 과정에서 발생되는 다량의 폐가스와 먼지 등을 배출하는 배기관이 연결될 수 있다.The loop portion 230 is seated on the top of the upper cell 220 and covers the open upper part of the upper cell 220, and a small ceiling is formed in the center to form an electrode 300 to be described later that generates arc heat. Can be installed penetratingly. Additionally, although not shown, the loop portion 230 may be connected to an exhaust pipe that discharges a large amount of waste gas and dust generated during the dissolution process of the iron source.
도 1에 도시된 바와 같이, 전극봉(300)은, 복수의 전극 다발로 형성되어, 전기로 본체(200) 상측의 루프부(230)의 상기 소천정을 통해 적어도 일부분이 상기 내부 공간으로 삽입되어, 용강(1)을 생산할 수 있도록 아크열에 의해 상기 철원을 용해시킬 수 있다.As shown in FIG. 1, the electrode 300 is formed of a plurality of electrode bundles, and at least a portion is inserted into the internal space through the small ceiling of the loop portion 230 on the upper side of the electric furnace main body 200. , the iron source can be melted by arc heat to produce molten steel (1).
도 1에 도시된 바와 같이, 분체 분사 시스템(100)은, 전기로 본체(200)의 일측에 삽입되어, 조업 중인 상기 내부 공간의 슬래그(2)와 용강(1)에 분체 카본(C) 및 산소를 취입하여, 슬래그(2)의 포밍을 촉진시킬 수 있다.As shown in FIG. 1, the powder injection system 100 is inserted into one side of the electric furnace main body 200, and powder carbon (C) and By blowing in oxygen, the forming of the slag 2 can be promoted.
예컨대, 분체 분사 시스템(100)은, 상부 셀(220)의 벽면을 관통하도록 형성되고, 전기로 본체(200)의 하측을 향해서 소정의 각도로 하향 경사지게 형성되어, 조업 중 전기로 본체(200)의 상기 내부 공간의 용강(1)과 슬래그(2)에 분체 카본과 산소를 취입하여 CO 기체를 발생시켜, 슬래그(2)를 포밍시킬 수 있다.For example, the powder injection system 100 is formed to penetrate the wall of the upper cell 220 and is inclined downward at a predetermined angle toward the lower side of the electric furnace main body 200, so that the electric furnace main body 200 during operation. Powdered carbon and oxygen are blown into the molten steel 1 and slag 2 in the internal space to generate CO gas, thereby forming the slag 2.
여기서, 분체 분사 시스템(100)은, 상부 셀(220)의 벽면을 관통하여 형성되는 것을 예로 들었지만, 반드시 도 1에 국한되지 않고, 하부 셀(210)의 벽면을 관통하도록 형성될 수도 있다. 또한, 분체 분사 시스템(100)은, 공정 상 필요에 따라 복수개가 설치될 수도 있다.Here, the powder injection system 100 is formed to penetrate the wall of the upper cell 220 as an example, but it is not necessarily limited to FIG. 1 and may be formed to penetrate the wall of the lower cell 210. Additionally, a plurality of powder injection systems 100 may be installed as needed during the process.
이러한, 분체 분사 시스템(100)에 대해 더욱 구체적으로 설명하면, 도 2 및 도 3에 도시된 바와 같이, 분체 분사 시스템(100)은, 전기로 본체(200)의 상기 내부 공간의 용강(1)과 슬래그(2)에, 분체 카본(C)과 산소를 초음속 유체(F3)로 취입할 수 있는 일종의 노즐 구조체로서, 크게, 분체 카본 분사 노즐(110)과, 막냉각 유체 노즐(120) 및 초음속 유체 노즐(130)을 포함할 수 있다.To describe the powder injection system 100 in more detail, as shown in FIGS. 2 and 3, the powder injection system 100 injects the molten steel 1 in the internal space of the electric furnace main body 200. It is a type of nozzle structure that can inject powdery carbon (C) and oxygen into the slag (2) as a supersonic fluid (F3), and is largely comprised of a powdery carbon injection nozzle 110, a film cooling fluid nozzle 120, and a supersonic fluid nozzle 110. It may include a fluid nozzle 130.
도 2 및 도 3에 도시된 바와 같이, 분체 카본 분사 노즐(110)은, 양단이 개방된 파이프 형상으로 형성되어, 내부의 제 1 분사 유로를 통해 분체 카본(C)이 함유된 이송 유체(F1)를 전기로 본체(200)의 상기 내부 공간으로 분사할 수 있다.As shown in FIGS. 2 and 3, the powder carbon injection nozzle 110 is formed in the shape of a pipe with both ends open, and transfers the transfer fluid (F1) containing powder carbon (C) through the first injection passage therein. ) can be sprayed into the internal space of the electric furnace main body 200.
또한, 막냉각 유체 노즐(120)은, 분체 카본 분사 노즐(110)을 둘러싸도록 이송 유체(F1)가 분사되는 단부측이 폐쇄된 형태의 파이프 형상으로 형성되고, 내부에 환형의 횡단면을 가지도록 형성되는 제 2 분사 유로를 통해 유동되는 막냉각 유체(F2)를 분체 카본 분사 노즐(110)의 상기 제 1 분사 유로측으로 분사할 수 있다.In addition, the film cooling fluid nozzle 120 is formed in the shape of a pipe with an end side closed at which the transport fluid F1 is sprayed so as to surround the powder carbon injection nozzle 110, and has a circular cross-section on the inside. The film cooling fluid F2 flowing through the formed second injection passage may be injected toward the first injection passage of the powder carbon injection nozzle 110.
예컨대, 분체 카본 분사 노즐(110)은, 내부의 상기 제 1 분사 유로와 막냉각 유체 노즐(120)의 제 2 분사 유로 사이를 연결할 수 있도록, 분체 카본 분사 노즐(110)의 외벽면과 내벽면 사이를 관통하도록 형성되는 복수의 보호홀부(111)가 형성될 수 있다.For example, the powdery carbon injection nozzle 110 has an outer wall surface and an inner wall surface of the powdery carbon injection nozzle 110 so as to connect the internal first injection passageway and the second injection passageway of the film cooling fluid nozzle 120. A plurality of protective hole portions 111 may be formed to pass through the space.
더욱 구체적으로, 복수의 보호홀부(111)는, 분체 카본 분사 노즐(111)의 상기 내벽면의 둘레 방향 및 상기 내벽면의 길이 방향을 따라 복수개가 균등한 간격으로 형성되어, 상기 내벽면으로부터 상기 제 1 분사 유로의 중심축을 향해서 막냉각 유체(F2)를 분사할 수 있다.More specifically, the plurality of protection hole portions 111 are formed at equal intervals along the circumferential direction and the longitudinal direction of the inner wall surface of the powder carbon injection nozzle 111, and are formed at equal intervals from the inner wall surface. The film cooling fluid (F2) may be injected toward the central axis of the first injection passage.
이에 따라, 도 4에 도시된 바와 같이, 막냉각 유체 노즐(120)의 상기 제 2 분사 유로를 통해 유동한 막냉각 유체(F2)가, 복수의 보호홀부(111)를 통해 분체 카본 분사 노즐(110)의 상기 내벽면상으로 고속의 제트로 분사되어, 분체 카본 분사 노즐(110)의 상기 내벽면을 따라 냉각 보호막을 형성함으로써, 분체 카본 분사 노즐(110)의 상기 제 1 분사 유로를 이송 유체(F1)에 의해 통과하는 본체 카본(C)이 분체 카본 분사 노즐(110)의 상기 내벽면에 충돌하는 것을 방지할 수 있다. 이때, 상기 냉각 보호막은, 분체 카본 분사 노즐(110)을 포함하는 분체 분사 시스템(100)이 과열되지 않도록 냉각시키는 역할도 병행할 수 있다.Accordingly, as shown in FIG. 4, the film cooling fluid F2 flowing through the second injection passage of the film cooling fluid nozzle 120 flows through the plurality of protection hole portions 111 to the powder carbon injection nozzle ( It is sprayed as a high-speed jet onto the inner wall of the powder carbon injection nozzle 110, thereby forming a cooling protective film along the inner wall of the powder carbon injection nozzle 110, so that the first injection passage of the powder carbon injection nozzle 110 is supplied with a transport fluid ( It is possible to prevent the body carbon (C) passing through F1) from colliding with the inner wall surface of the powder carbon injection nozzle 110. At this time, the cooling protective film may also serve to cool the powder injection system 100 including the powder carbon injection nozzle 110 to prevent it from overheating.
또한, 복수의 보호홀부(111)는, 분체 카본 분사 노즐(110)의 상기 외벽면에서 상기 내벽면으로 갈수록, 분체 카본 분사 노즐(110)의 상기 제 1 분사 유로를 유동하는 이송 유체(F1)의 유동 방향을 향해서 경사지게 형성될 수 있다.In addition, the plurality of protection hole portions 111 provide transport fluid F1 flowing through the first injection passage of the powder carbon injection nozzle 110 as it moves from the outer wall surface of the powder carbon injection nozzle 110 to the inner wall surface. It may be formed inclined toward the direction of flow.
이에 따라, 도 4에 도시된 바와 같이, 분체 카본 분사 노즐(110)의 상기 내벽면에서, 이송 유체(F1)의 유동 방향을 향해서 경사지게 형성되는 복수의 보호홀부(111)로 분사되는 막냉각 유체(F2)가, 분체 카본(C)을 분체 카본 분사 노즐(110)의 중심부로 경사진 방향으로 밀어내는 과정에서, 막냉각 유체(F2)의 모멘템에 의해 카본 분체(C)의 속도를 더욱 가속시킬 수 있다.Accordingly, as shown in FIG. 4, the film cooling fluid is injected from the inner wall surface of the powder carbon injection nozzle 110 into a plurality of protection hole portions 111 formed inclined toward the flow direction of the transfer fluid F1. In the process of (F2) pushing the powder carbon (C) in an inclined direction toward the center of the powder carbon injection nozzle 110, the speed of the carbon powder (C) is further increased by the moment of the film cooling fluid (F2). It can be accelerated.
또한, 도 2 및 도 3에 도시된 바와 같이, 초음속 유체 노즐(130)은, 막냉각 유체 노즐(120)을 둘러싸도록 양단이 개방된 파이프 형상으로 형성되어, 내부에 환형의 횡단면을 가지도록 형성되는 제 3 분사 유로를 통해 초음속 유체(F3)(산소)를 전기로 본체(200)의 상기 내부 공간으로 마하수 1.0 이상으로 분사할 수 있다.In addition, as shown in FIGS. 2 and 3, the supersonic fluid nozzle 130 is formed in the shape of a pipe with both ends open to surround the membrane cooling fluid nozzle 120, and is formed to have a circular cross-section on the inside. Supersonic fluid F3 (oxygen) can be injected into the internal space of the electric furnace main body 200 at a Mach number of 1.0 or more through the third injection passage.
이러한, 초음속 유체 노즐(130)은, 상기 제 3 분사 유로를 통과하는 초음속 유체(F3)의 유속을 음속 이상으로 증가시킬 수 있도록 라발(Laval) 노즐로 형성됨으로써, 슈라우드 효과에 의해 초음속 유체(F3)의 유속을 음속 이상으로 더욱 가속시킬 수 있다.This supersonic fluid nozzle 130 is formed as a Laval nozzle to increase the flow speed of the supersonic fluid (F3) passing through the third injection passage to more than the speed of sound, thereby generating the supersonic fluid (F3) by the shroud effect. ) can further accelerate the flow speed beyond the speed of sound.
예컨대, 초음속 유체 노즐(130)은, 상기 라발 노즐로 형성될 수 있도록, 초음속 유체(F3)가 유입되는 유입부로부터 초음속 유체(F3)의 유동 방향을 따라 그 단면적이 점차적으로 작아지도록 형성되어, 내부를 유동하는 초음속 유체(F3)를 압축시키는 압축부(131)와, 압축부(131)를 유동하는 과정에서 압축이 이루어진 초음속 유체(F3)의 압축이 최대로 이루어질 수 있도록, 최소 단면적으로 형성되는 목부(132) 및 목부(132)로부터 초음속 유체(F3)가 분사되는 분사부까지 초음속 유체(F3)의 유동 방향을 따라 그 단면적이 점차적으로 커지도록 형성되어, 내부를 유동하는 초음속 유체(F3)를 팽창시키는 팽창부(133)를 포함하도록 구성될 수 있다.For example, the supersonic fluid nozzle 130 is formed so that its cross-sectional area gradually decreases along the flow direction of the supersonic fluid F3 from the inlet into which the supersonic fluid F3 flows so that it can be formed as the Laval nozzle, A compression part 131 that compresses the supersonic fluid (F3) flowing inside, and a minimum cross-sectional area are formed to maximize the compression of the supersonic fluid (F3) compressed in the process of flowing through the compression part 131. The cross-sectional area is formed to gradually increase along the flow direction of the supersonic fluid F3 from the neck portion 132 to the injection portion where the supersonic fluid F3 is sprayed, and the supersonic fluid F3 flowing inside ) may be configured to include an expansion portion 133 that expands.
이때, 초음속 유체 노즐(130)의 압축부(131)와 팽창부(133)는, 환형의 횡단면의 단면적이 비선형으로 점점 작아지거나 점점 커지도록 변화하여 전체적으로 유선형으로 형성될 수 있도록, 상기 제 3 분사 유로의 중심축을 기준으로 볼록한 곡선 형상으로 형성되는 볼록 곡선 및 상기 제 3 분사 유로의 중심축을 기준으로 오목한 곡선 형상으로 형성되는 오목 곡선을 포함하는 적어도 2개 이상의 곡선의 조합으로 형성되는 것이 바람직할 수 있다.At this time, the compression portion 131 and the expansion portion 133 of the supersonic fluid nozzle 130 change the cross-sectional area of the annular cross-section to gradually become smaller or larger in a non-linear manner, so that the third injection can be formed into an overall streamlined shape. It may be desirable to form a combination of at least two or more curves, including a convex curve formed in a convex curve shape based on the central axis of the flow path and a concave curve formed in a concave curve shape based on the central axis of the third injection flow path. there is.
예컨대, 초음속 유체 노즐(130)의 압축부(131)와 목부(132) 및 팽창부(133) 각각의 지점이 선형으로 연결되어 직선형으로 형성될 경우, 노즐 내부에 기울기가 급격하게 변동되는 내벽 각이 형성되어, 초음속 유체(F3)의 압축/팽창 유동 시 충격파(Shock Wave)가 발생됨으로써, 상기 충격파에 의해 초음속 유체(F3)의 유동이 불안정해져 유동에 악영향을 미쳐, 최종적으로 초음속 유체 노즐(130)을 통해 분사되는 초음속 유체(F3)가 충분히 가속되지 못하고, 직진도 및 모멘텀이 저하되는 문제가 발생될 수 있다.For example, when each point of the compression part 131, the neck part 132, and the expansion part 133 of the supersonic fluid nozzle 130 are linearly connected to form a straight line, the inner wall angle at which the inclination changes rapidly inside the nozzle This is formed, and a shock wave is generated during the compression/expansion flow of the supersonic fluid (F3). As a result, the shock wave causes the flow of the supersonic fluid (F3) to become unstable, adversely affecting the flow, and ultimately, the supersonic fluid nozzle ( A problem may occur in which the supersonic fluid (F3) injected through 130) is not sufficiently accelerated and straightness and momentum are deteriorated.
그러나, 본 발명과 같이, 초음속 유체 노즐(130)이 볼록 곡선 및 오목 곡선의 조합으로 유선형으로 형성될 경우, 상기 내벽 각에 의한 상기 충격파의 발생을 억제하여, 초음속 기체의 유동의 원리에 따라 초음속 유체(F3)가 안정적으로 가속되도록 유도함으로써, 초음속 유체 노즐(130)을 통해 마하 1.0 이상의 초음속으로 분사되는 초음속 유체(F3)의 직진도 및 모멘텀을 향상시킬 수 있다.However, as in the present invention, when the supersonic fluid nozzle 130 is formed in a streamlined shape with a combination of a convex curve and a concave curve, the generation of the shock wave due to the inner wall angle is suppressed and the supersonic fluid nozzle 130 is formed according to the principle of supersonic gas flow. By inducing the fluid F3 to accelerate stably, the straightness and momentum of the supersonic fluid F3 sprayed at a supersonic speed of Mach 1.0 or higher through the supersonic fluid nozzle 130 can be improved.
따라서, 본 발명의 여러 실시예에 따른 분체 분사 시스템(100) 및 이를 포함하는 전기로(1000)에 따르면, 분체 카본(C)이 함유된 이송 유체(F1)를 전기로 본체(200)의 상기 내부 공간으로 분사하는 분체 카본 분사 노즐(110)을 둘러싸도록 형성된 막냉각 유체 노즐(120)을 통해 막냉각 유체(F2)를 유동시키고, 유동된 막냉각 유체(F2)를 분체 카본 분사 노즐(110)의 상기 내벽면에 형성된 복수의 보호홀부(111)를 통해 고속의 제트로 분사시켜 상기 내벽면 상에 냉각 보호막을 형성함으로써, 이송 유체(F1)에 의해 분체 카본 분사 노즐(110) 내부롤 유동하는 분체 카본(C)이 상기 내벽면에 충돌하는 것을 방지하여, 상기 내벽면의 침식을 예방하여 노즐의 파손을 방지하며, 노즐의 교체 주기 및 수명을 증대시킬 수 있다.Therefore, according to the powder injection system 100 and the electric furnace 1000 including the same according to various embodiments of the present invention, the transport fluid F1 containing powder carbon (C) is injected into the electric furnace main body 200. The film cooling fluid (F2) flows through the film cooling fluid nozzle 120 formed to surround the powdery carbon injection nozzle 110 spraying into the internal space, and the flowed film cooling fluid (F2) is injected into the powdery carbon injection nozzle 110. ) is sprayed with a high-speed jet through a plurality of protective hole portions 111 formed on the inner wall of the inner wall to form a cooling protective film on the inner wall, thereby allowing the powder carbon injection nozzle 110 to flow inside the roll by the transport fluid F1. By preventing the powder carbon (C) from colliding with the inner wall surface, erosion of the inner wall surface is prevented, damage to the nozzle is prevented, and the replacement cycle and lifespan of the nozzle can be increased.
또한, 분체 카본 분사 노즐(110)의 상기 내벽면의 복수의 보호홀부(111)로 분사되는 막냉각 유체(F2)가 분체 카본(C)을 분체 카본 분사 노즐(110)의 중심부로 밀어내는 과정에서, 상기 내벽면으로부터 분사되는 막냉각 유체(F2)의 모멘텀에 의해 카본 분체(C)의 가속이 일어남으로써, 분사구로 분사되는 분체 카본(C)의 분사 속도를 증가시켜, 슬래그(2)의 포밍 유도를 원활하게 할 수 있다.In addition, the process in which the film cooling fluid (F2) injected into the plurality of protective hole portions 111 on the inner wall of the powdery carbon injection nozzle 110 pushes the powdery carbon (C) to the center of the powdery carbon injection nozzle 110. In this case, acceleration of the carbon powder (C) occurs due to the momentum of the film cooling fluid (F2) injected from the inner wall surface, thereby increasing the injection speed of the powdered carbon (C) injected into the injection hole, thereby increasing the injection speed of the slag (2). Foaming can be induced smoothly.
또한, 초음속 특성 곡선이 적용된 유선형의 슈라우드 환형 초음속 유체 노즐(130)을 이용하여, 높은 직진도와 모멘텀을 가지는 초음속 유체(F3)를 분사함으로써, 중앙에 형성된 분체 카본 분사 노즐(110)을 통해 취입된 분체 카본(C)이 초음속 제트 기류에 혼합되어 용강(1)의 상부까지 주변 환경에 의해 방해 받지 않고, 용이하게 슬래그(2)의 상면에 근접하도록 유도하여, 슬래그(2)의 포밍을 더욱 원활하게 할 수 있는 효과를 가질 수 있다.In addition, by using a streamlined shroud annular supersonic fluid nozzle 130 to which a supersonic characteristic curve is applied, supersonic fluid (F3) with high straightness and momentum is injected through the powder carbon injection nozzle 110 formed in the center. The powdered carbon (C) is mixed with the supersonic jet stream and is easily guided to the top of the molten steel (1) without being disturbed by the surrounding environment, and approaches the upper surface of the slag (2), making the forming of the slag (2) more smooth. It can have the effect of doing so.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.The present invention has been described with reference to the embodiments shown in the drawings, but these are merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true scope of technical protection of the present invention should be determined by the technical spirit of the attached patent claims.

Claims (13)

  1. 철원을 용해하여 용강을 생산할 수 있는 내부 공간이 형성되는 전기로 본체의 일측에 삽입되어, 조업 중인 상기 내부 공간의 슬래그와 상기 용강에 분체 카본을 취입하여 상기 슬래그의 포밍을 촉진시킬 수 있는 분체 분사 시스템에 있어서,Powder injection is inserted into one side of the electric furnace main body in which an internal space for producing molten steel is formed by dissolving the iron source, and can promote forming of the slag by blowing powdered carbon into the slag and the molten steel in the internal space during operation. In the system,
    양단이 개방된 파이프 형상으로 형성되어, 내부의 제 1 분사 유로를 통해 상기 분체 카본이 함유된 이송 유체를 상기 전기로 본체의 상기 내부 공간으로 분사하는 분체 카본 분사 노즐; 및a powder carbon injection nozzle that is formed in the shape of a pipe with both ends open, and sprays the transfer fluid containing the powder carbon into the internal space of the electric furnace body through a first injection passage therein; and
    상기 분체 카본 분사 노즐을 둘러싸도록 상기 이송 유체가 분사되는 단부측이 폐쇄된 형태의 파이프 형상으로 형성되고, 내부에 환형의 횡단면을 가지도록 형성되는 제 2 분사 유로를 통해 유동되는 막냉각 유체를 상기 제 1 분사 유로측으로 분사하는 막냉각 유체 노즐;The film cooling fluid flowing through a second injection passage is formed in the shape of a pipe with a closed end at an end side through which the transfer fluid is sprayed to surround the powder carbon injection nozzle, and is formed to have a circular cross-section on the inside. a film cooling fluid nozzle that sprays toward the first injection passage;
    을 포함하는, 분체 분사 시스템.Including, powder injection system.
  2. 제 1 항에 있어서,According to claim 1,
    상기 분체 카본 분사 노즐은,The powder carbon injection nozzle is,
    내부의 상기 제 1 분사 유로와 상기 막냉각 유체 노즐의 상기 제 2 분사 유로 사이를 연결할 수 있도록, 상기 분체 카본 분사 노즐의 외벽면과 내벽면 사이를 관통하도록 형성되는 복수의 보호홀부가 형성되는, 분체 분사 시스템.A plurality of protection holes are formed to penetrate between the outer wall surface and the inner wall surface of the powder carbon injection nozzle so as to connect the first injection flow path inside and the second injection flow path of the film cooling fluid nozzle, Powder injection system.
  3. 제 2 항에 있어서,According to claim 2,
    상기 복수의 보호홀부는,The plurality of protective holes,
    상기 분체 카본 분사 노즐의 상기 제 1 분사 유로를 상기 이송 유체에 의해 통과하는 상기 분체 카본이 상기 분체 카본 분사 노즐의 상기 내벽면에 충돌하는 것을 방지할 수 있도록, 상기 분체 카본 분사 노즐의 상기 내벽면의 둘레 방향 및 상기 내벽면의 길이 방향을 따라 복수개가 균등한 간격으로 형성되어, 상기 내벽면으로부터 상기 제 1 분사 유로의 중심축 향해서 상기 막냉각 유체를 분사하는, 분체 분사 시스템.The inner wall surface of the powder carbon injection nozzle to prevent the powder carbon passing through the first injection passage of the powder carbon injection nozzle by the transfer fluid from colliding with the inner wall surface of the powder carbon injection nozzle. A powder injection system is formed at equal intervals along the circumferential direction and the longitudinal direction of the inner wall surface, and sprays the film cooling fluid from the inner wall surface toward the central axis of the first injection passage.
  4. 제 3 항에 있어서,According to claim 3,
    상기 복수의 보호홀부는,The plurality of protective holes,
    상기 분체 카본 분사 노즐의 상기 외벽면에서 상기 내벽면으로 갈수록, 상기 분체 카본 분사 노즐의 상기 제 1 분사 유로를 유동하는 상기 이송 유체의 유동 방향을 향해서 경사지게 형성되는, 분체 분사 시스템.The powder injection system is formed to be inclined toward the flow direction of the transfer fluid flowing through the first injection passage of the powder carbon injection nozzle as it goes from the outer wall surface of the powder carbon injection nozzle to the inner wall surface.
  5. 제 1 항에 있어서,According to claim 1,
    상기 막냉각 유체 노즐을 둘러싸도록 양단이 개방된 파이프 형상으로 형성되어, 내부에 환형의 횡단면을 가지도록 형성되는 제 3 분사 유로를 통해 초음속 유체를 상기 전기로 본체의 상기 내부 공간으로 분사하는 초음속 유체 노즐;A supersonic fluid that is formed in the shape of a pipe with both ends open to surround the membrane cooling fluid nozzle, and injects the supersonic fluid into the internal space of the electric furnace body through a third injection passage formed to have an annular cross section on the inside. Nozzle;
    을 더 포함하는, 분체 분사 시스템.A powder injection system further comprising:
  6. 제 5 항에 있어서,According to claim 5,
    상기 초음속 유체 노즐은,The supersonic fluid nozzle is,
    상기 제 3 분사 유로를 통과하는 상기 초음속 유체의 유속을 음속 이상으로 증가시킬 수 있도록 라발(Laval) 노즐로 형성되는, 분체 분사 시스템.A powder injection system formed with a Laval nozzle to increase the flow speed of the supersonic fluid passing through the third injection passage to more than the speed of sound.
  7. 제 6 항에 있어서,According to claim 6,
    상기 초음속 유체 노즐은,The supersonic fluid nozzle is,
    상기 초음속 유체가 유입되는 유입부로부터 상기 초음속 유체의 유동 방향을 따라 그 단면적이 점차적으로 작아지도록 형성되어, 내부를 유동하는 상기 초음속 유체를 압축시키는 압축부;A compression portion formed from an inlet into which the supersonic fluid flows so that its cross-sectional area gradually decreases along the flow direction of the supersonic fluid, and compresses the supersonic fluid flowing therein;
    상기 압축부를 유동하는 과정에서 압축이 이루어진 상기 초음속 유체의 압축이 최대로 이루어질 수 있도록, 최소 단면적으로 형성되는 목부; 및a neck portion formed with a minimum cross-sectional area to maximize compression of the supersonic fluid compressed in the process of flowing the compression portion; and
    상기 목부로부터 상기 초음속 유체가 분사되는 분사부까지 상기 초음속 유체의 유동 방향을 따라 그 단면적이 점차적으로 커지도록 형성되어, 내부를 유동하는 상기 초음속 유체를 팽창시키는 팽창부;An expansion part formed so that its cross-sectional area gradually increases along the flow direction of the supersonic fluid from the neck to the injection part where the supersonic fluid is sprayed, and expands the supersonic fluid flowing therein;
    를 포함하는, 분체 분사 시스템.Including, powder injection system.
  8. 제 7 항에 있어서,According to claim 7,
    상기 압축부와 및 상기 팽창부는,The compression portion and the expansion portion,
    환형의 횡단면의 단면적이 비선형으로 점점 작아지거나 점점 커지도록 변화하여 전체적으로 유선형으로 형성될 수 있도록, 상기 제 3 분사 유로의 중심축을 기준으로 볼록한 곡선 형상으로 형성되는 볼록 곡선 및 상기 제 3 분사 유로의 중심축을 기준으로 오목한 곡선 형상으로 형성되는 오목 곡선을 포함하는 적어도 2개 이상의 곡선의 조합으로 형성되는, 분체 분사 시스템.A convex curve formed in a convex curve shape with respect to the central axis of the third injection passage so that the cross-sectional area of the annular cross-section can be non-linearly changed to gradually become smaller or larger to form an overall streamlined shape, and the center of the third injection passage. A powder injection system formed by a combination of at least two curves including a concave curve formed in a concave curve shape with respect to an axis.
  9. 철원이 장입되어 용해될 수 있는 내부 공간이 형성되는 전기로 본체;An electric furnace main body in which an internal space is formed into which the iron source can be charged and dissolved;
    상기 전기로 본체 상측의 루프부의 소천정을 통해 적어도 일부분이 상기 내부 공간으로 삽입되어, 용강을 생산할 수 있도록 아크열에 의해 상기 철원을 용해시키는 전극봉; 및an electrode that is at least partially inserted into the interior space through the small ceiling of the loop portion on the upper side of the electric furnace main body to melt the iron source by arc heat so as to produce molten steel; and
    상기 전기로 본체의 일측에 삽입되어, 조업 중인 상기 내부 공간의 슬래그와 상기 용강에 분체 카본을 취입하여 상기 슬래그의 포밍을 촉진시킬 수 있는 분체 분사 시스템;을 포함하고,A powder injection system is inserted into one side of the electric furnace main body and is capable of promoting foaming of the slag by blowing powder carbon into the slag and the molten steel in the internal space during operation,
    상기 분체 분사 시스템은,The powder injection system is,
    양단이 개방된 파이프 형상으로 형성되어, 내부의 제 1 분사 유로를 통해 상기 분체 카본이 함유된 이송 유체를 상기 전기로 본체의 상기 내부 공간으로 분사하는 분체 카본 분사 노즐; 및a powder carbon injection nozzle formed in a pipe shape with both ends open, and spraying a transport fluid containing the powder carbon into the internal space of the electric furnace main body through a first injection passage therein; and
    상기 분체 카본 분사 노즐을 둘러싸도록 상기 이송 유체가 분사되는 단부측이 폐쇄된 형태의 파이프 형상으로 형성되고, 내부에 환형의 횡단면을 가지도록 형성되는 제 2 분사 유로를 통해 유동되는 막냉각 유체를 상기 제 1 분사 유로측으로 분사하는 막냉각 유체 노즐;The film cooling fluid flowing through a second injection passage is formed in the shape of a pipe with a closed end at an end side through which the transfer fluid is sprayed to surround the powder carbon injection nozzle, and is formed to have a circular cross-section on the inside. a film cooling fluid nozzle that sprays toward the first injection passage;
    을 포함하는, 전기로.Including, electric furnace.
  10. 제 9 항에 있어서,According to clause 9,
    상기 분체 분사 시스템은,The powder injection system is,
    상기 막냉각 유체 노즐을 둘러싸도록 양단이 개방된 파이프 형상으로 형성되어, 내부에 환형의 횡단면을 가지도록 형성되는 제 3 분사 유로를 통해 초음속 유체를 상기 전기로 본체의 상기 내부 공간으로 분사하는 초음속 유체 노즐;A supersonic fluid that is formed in the shape of a pipe open at both ends to surround the membrane cooling fluid nozzle and injects the supersonic fluid into the internal space of the electric furnace body through a third injection passage formed to have a circular cross-section on the inside. Nozzle;
    을 더 포함하는, 전기로.Further comprising, an electric furnace.
  11. 제 9 항에 있어서,According to clause 9,
    상기 전기로 본체는,The electric furnace main body,
    상기 내부 공간의 하측을 이루는 하부 셀; 및a lower cell forming the lower side of the interior space; and
    상기 하부 셀과 결합되어 상기 내부 공간의 상측을 이루고 상기 루프부에 의해 상방이 폐쇄되는 상부 셀;an upper cell that is coupled to the lower cell to form an upper side of the interior space and whose upper side is closed by the loop portion;
    을 포함하는, 전기로.Including, electric furnace.
  12. 제 11 항에 있어서,According to claim 11,
    상기 분체 분사 시스템은,The powder injection system is,
    상기 상부 셀 또는 상기 하부 셀의 벽면을 관통하도록 형성되는, 전기로.An electric furnace formed to penetrate the wall of the upper cell or the lower cell.
  13. 제 12 항에 있어서,According to claim 12,
    상기 분체 분사 시스템은,The powder injection system is,
    상기 전기로 본체의 하측을 향해서 소정의 각도로 하향 경사지게 형성되는, 전기로.An electric furnace formed to be inclined downward at a predetermined angle toward the lower side of the electric furnace main body.
PCT/KR2022/018981 2022-04-29 2022-11-28 Powder spraying system and electric furnace including same WO2023210904A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0053564 2022-04-29
KR1020220053564A KR20230153751A (en) 2022-04-29 2022-04-29 Powder injection system and electric furnace including same

Publications (1)

Publication Number Publication Date
WO2023210904A1 true WO2023210904A1 (en) 2023-11-02

Family

ID=88519145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018981 WO2023210904A1 (en) 2022-04-29 2022-11-28 Powder spraying system and electric furnace including same

Country Status (2)

Country Link
KR (1) KR20230153751A (en)
WO (1) WO2023210904A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030092910A (en) * 2002-05-31 2003-12-06 주식회사 포스코 Device for removing attached slag on Gas port ring of electro furnace
KR20040068621A (en) * 2002-01-15 2004-07-31 에스엠에스 데마그 악티엔게젤샤프트 Method for the pyrometallurgical treatment of metals, metal melts and/or slags and injection device
KR20160003805A (en) * 2013-06-20 2016-01-11 가부시키가이샤 무라타 세이사쿠쇼 Gas supply tube and heat processing device
JP2019002045A (en) * 2017-06-15 2019-01-10 Jfeスチール株式会社 Top blown lance for refining and method for refining molten iron
CN113604627A (en) * 2021-08-16 2021-11-05 马鞍山钢铁股份有限公司 Converter oxygen lance structure and carbon-spraying heat supplementing method for converter oxygen lance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040068621A (en) * 2002-01-15 2004-07-31 에스엠에스 데마그 악티엔게젤샤프트 Method for the pyrometallurgical treatment of metals, metal melts and/or slags and injection device
KR20030092910A (en) * 2002-05-31 2003-12-06 주식회사 포스코 Device for removing attached slag on Gas port ring of electro furnace
KR20160003805A (en) * 2013-06-20 2016-01-11 가부시키가이샤 무라타 세이사쿠쇼 Gas supply tube and heat processing device
JP2019002045A (en) * 2017-06-15 2019-01-10 Jfeスチール株式会社 Top blown lance for refining and method for refining molten iron
CN113604627A (en) * 2021-08-16 2021-11-05 马鞍山钢铁股份有限公司 Converter oxygen lance structure and carbon-spraying heat supplementing method for converter oxygen lance

Also Published As

Publication number Publication date
KR20230153751A (en) 2023-11-07

Similar Documents

Publication Publication Date Title
CN109628689B (en) Oxygen supply method for electric furnace with high molten iron ratio
CA1298146C (en) Multiple torch type plasma spray coating method and apparatus therefor
US7384594B2 (en) Method for the pyrometallurgical treatment of metals, metal melts and/or slags and injection device
US6202939B1 (en) Sequential feedback injector for thermal spray torches
JPH0220304B2 (en)
WO2023210904A1 (en) Powder spraying system and electric furnace including same
EP0440634B1 (en) Electric arc reactor
CN212451593U (en) Plasma spray gun
WO2023234498A1 (en) Injection system of electric furnace and electric furnace including same
WO2024075910A1 (en) Torch head for gas welding
CN218612157U (en) Can cool off gouging cut of outer protective sheath
KR20040018442A (en) Mounting arrangement for auxiliary burner or lance
ITTO20010509A1 (en) PROCEDURE FOR MELTING METAL SPONGE AND ELECTRIC ARC OVEN FOR THE IMPLEMENTATION OF THE PROCEDURE.
KR100660220B1 (en) Arc spraying gun having second gas spraying nozzle
KR101511178B1 (en) Method for the pyrometallurigical treatment of metals, molten metals, and/or slags
WO2019117554A1 (en) Lance
EP1178121B1 (en) Fluid cooled coherent jet lance
CN1820174A (en) A burner and gas-injection device
CN2362087Y (en) Composite sray gun for electric stove
JPH11315310A (en) Method for blowing pulverized coal into blast furnace
CN210230311U (en) Cluster jet flow nozzle structure
KR100323494B1 (en) A plasma gun device for the injection of strengthening-powder
JPS6328811A (en) Smelting and reducing method
JP4804854B2 (en) Composite torch type plasma spraying equipment
CN210533064U (en) Improved oxygen combustion gun for horizontal charging electric furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940398

Country of ref document: EP

Kind code of ref document: A1