JPS6328811A - Smelting and reducing method - Google Patents

Smelting and reducing method

Info

Publication number
JPS6328811A
JPS6328811A JP16990086A JP16990086A JPS6328811A JP S6328811 A JPS6328811 A JP S6328811A JP 16990086 A JP16990086 A JP 16990086A JP 16990086 A JP16990086 A JP 16990086A JP S6328811 A JPS6328811 A JP S6328811A
Authority
JP
Japan
Prior art keywords
smelting
gas
furnace
powder
reduction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16990086A
Other languages
Japanese (ja)
Inventor
Kenzo Yamada
健三 山田
Tsutomu Usui
碓井 務
Katsuhiro Iwasaki
克博 岩崎
Shigeru Inoue
茂 井上
Haruyoshi Tanabe
治良 田辺
Masahiro Kawakami
川上 正弘
Junichi Fukumi
純一 福味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16990086A priority Critical patent/JPS6328811A/en
Publication of JPS6328811A publication Critical patent/JPS6328811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the thermal efficiency of a smelting and reducing furnace by blowing gas, powder, etc., into a molten slag layer and swiveling the same to cause secondary combustion at the time of using iron ore, reducing agent and auxiliary materials and producing a molten iron in a smelting and reducing reaction furnace. CONSTITUTION:The iron ore, carbonaceous material, slag forming agent, etc., are charged into the reaction furnace of an air furnace type and gases such as oxygen and propane are blown from bottom tuyeres 5 into the furnace and are burned to melt and reduce the iron ore by the heat thereof. The molten iron 2 and molten salt 3 are thereby formed in the furnace. Gases such as O2, N2, CO, CO2 and Ar or powders of CaO, MgO, iron ore, etc., having <=1mm grain size are simultaneously blown into the molten slag layer 3 from nozzles 4 provided at 10-45 deg. angle at the plane cut perpendicularly to the central longitudinal axis of the reaction furnace to swivel the molten slag 3. Oxygen is blown from upper nozzles 6 into the furnace to cause the secondary combustion and the heat thereof is applied to the molten iron, by which the thermal efficiency of the reaction furnace 1 is remarkably improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、溶融還元を行う炉における2次燃焼熱を、
効率よく利月することに関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to the use of secondary combustion heat in a furnace for melting and reduction.
It is about making profits efficiently.

〔従来の技術〕[Conventional technology]

炭材を用いた溶融還元法は、すでに各所で実施されてい
る技術であり、またその技術のうちでも一酸化炭素を炭
酸ガスに二次燃焼させ、その際に発生する熱を鉄浴に伝
えて炭材の使用量を減少させようとする試みがあること
は知られている。
The smelting reduction method using carbonaceous materials is a technology that is already being implemented in various places, and among these technologies, carbon monoxide is secondary combusted into carbon dioxide gas, and the heat generated at that time is transferred to an iron bath. It is known that there are attempts to reduce the amount of carbonaceous materials used.

さらに、このときの熱媒体としてスラグ層へ窒素、炭酸
ガス、アルゴンなどのガスを吹き込んで発生したスラグ
液滴を用いることもすでに知られている。
Furthermore, it is already known to use slag droplets generated by blowing a gas such as nitrogen, carbon dioxide, or argon into the slag layer as a heat medium at this time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このような従来の方法では、系内のOD比が
増加するに伴い、二次燃焼後の鉄浴への着熱効果が著し
く低下する(第3図における黒点による挙動参照)とい
う傾向が認められ、好ましいものではない。
However, in such conventional methods, as the OD ratio in the system increases, the heat transfer effect to the iron bath after secondary combustion tends to decrease significantly (see behavior by black dots in Figure 3). It is acceptable and not desirable.

このような挙動の原因としては、種々の要因を挙げるこ
とができるが、その最大の要因として、極めて粘性の高
いスラグに対して、通常のガス吹き込み方法では、スラ
グ液滴を多量に発生させることが困難であることが挙げ
られる。
Various factors can be cited as causes of this behavior, but the biggest one is that the normal gas blowing method generates a large amount of slag droplets when dealing with extremely viscous slag. One example is that it is difficult.

なお、OD比とは、次の式、 OD = (CO□+H20) / (GO+CO,+
)[、+H,0)で表されるものである。
The OD ratio is the following formula: OD = (CO + H20) / (GO + CO, +
) [, +H, 0).

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、従来に見られたこのような改良を迫られてい
る問題に対して種々検討を加丸な結果、鉱石と炭材およ
びその他の副材料を用いて鉱石を直接還元する溶融還元
法において、鉱石と炭材およびその他の副材料を用いて
鉱石を直接還元する溶融還元法において、溶融還元反応
炉中に生成しているスラグ層へガスまたはガスと粉体を
高速で吹き込んでスラグ層を溶融還元反応炉の中央縦軸
を中心として旋回させ、ここで2次燃焼させると共にそ
の発生熱を金属溶湯に伝えることを特徴とする溶融還元
法、に到達したのである。
The present invention has been developed as a result of various studies to address the conventional problems that require improvements, and has developed a smelting reduction method in which ore is directly reduced using ore, carbonaceous material, and other auxiliary materials. In the smelting reduction method, which directly reduces ore using ore, carbonaceous materials, and other auxiliary materials, gas or gas and powder are blown at high speed into the slag layer generated in the smelting reduction reactor to reduce the slag layer. They have arrived at a smelting reduction method that is characterized by rotating the molten metal around the central vertical axis of the smelting reduction reactor, where secondary combustion occurs and the generated heat is transferred to the molten metal.

〔作 用〕[For production]

本発明は、高粘性のスラグを溶融還元炉中で旋回させる
ことについて検討して完成したものであり、スラグに対
して直接ガスの噴出力を利廟゛することによりスラグを
旋回させるのであるが、さらに、より効果的にはガスの
噴出力のみに頼るのではなく、ガスと粉体とを一緒にス
ラグに対して噴出させガスに駆動された粉体によりスラ
グを旋回させることことができる。
The present invention was completed after studying the idea of swirling highly viscous slag in a smelting reduction furnace, and the slag is swirled by applying the jetting force of gas directly to the slag. Furthermore, more effectively, instead of relying only on the gas jetting force, gas and powder can be jetted together against the slag, and the slag can be swirled by the powder driven by the gas.

このような目的を達成するには、およそ1ffIIl以
下の粒径の粉体を使用すればよい。
To achieve this purpose, a powder having a particle size of approximately 1 ffIIl or less may be used.

スラグ層へガスまたはガスと粉体を高速で吹き込むあた
っては、溶融還元反応炉の中央縦軸に直角に切って得た
平面において、前記中央縦軸に対して10〜45°ずつ
噴出口をずらせた位置にもうけたノズルから行う。
When blowing gas or gas and powder into the slag layer at high speed, in a plane cut perpendicularly to the central vertical axis of the smelting-reduction reactor, blow out the jet nozzles at an angle of 10 to 45 degrees with respect to the central vertical axis. Do this from the nozzle placed in a shifted position.

以上のような本発明の思想は、第1図および第2図に示
したような構成からなる溶融還元反応炉に具体化するこ
とができる。
The idea of the present invention as described above can be embodied in a smelting reduction reactor having the configuration shown in FIGS. 1 and 2.

例えば、基本的には通常の場合と同じような溶融還元反
応炉(以下、単に反応炉)1において鉱石の溶融還元反
応を行わせるが、この場合、その溶融鉄2の上に存在す
るスラグ層3に対して、反応炉1の炉壁から2本ないし
それ以上のガスまたはガスと粉体を吹き込むためのノズ
ル4を炉内スラグが旋回するように設けている。
For example, a smelting-reduction reaction of ore is carried out in a smelting-reduction reactor (hereinafter simply referred to as a reactor) 1, which is basically the same as in a normal case, but in this case, the slag layer existing on the molten iron 2 3, two or more nozzles 4 for blowing gas or gas and powder from the furnace wall of the reactor 1 are provided so that the slag in the furnace swirls.

なお、溶融鉄2領域中での燃焼に寄与させるために、反
応炉1の下部には、通常の場合と同じように酸素ないし
はプロパンガスを導入するための吹き込みノズル5を設
け、また、反応炉1の上部炉壁から炉内に対しては、二
次燃焼を行わせるための酸素導入用ノズル6を備えたも
のとする。
In addition, in order to contribute to the combustion in the molten iron region 2, a blowing nozzle 5 for introducing oxygen or propane gas is provided at the lower part of the reactor 1, as in the normal case. An oxygen introduction nozzle 6 for performing secondary combustion is provided from the upper furnace wall of No. 1 into the furnace.

このような構成からなる反応炉1では、通常の溶融還元
操作と同様に上部解放部から投入した鉱石、炭材等が反
応炉1の下部から吹き上げている燃焼性ガスによ給燃焼
して生成した溶融金属2とスラグ3が反応炉1下部に溜
っているが、このとき炉壁に設けたノズル4からガスま
たは鉱石粉体をキャリアガスで吹き込むと、その噴出流
の効果によセスラグ3が旋回を行うが、一方、反応炉1
の上部壁面に設けたノズル6からスラグ層表面に向って
吹付けている酸素により二次燃焼を起こさせ、その際に
発生する熱量を新たに供給される鉱石の溶融還元に利用
するのである。・ スラグの旋回動力を発生させるために使用する粉体とし
ては、酸化カルシウム、酸化マグネシウム、鉱石等があ
る。
In the reactor 1 having such a configuration, ore, carbonaceous material, etc. introduced from the open upper part are fed and combusted by the combustible gas blowing up from the lower part of the reactor 1 in the same way as in normal melting and reduction operations. The molten metal 2 and slag 3 collected at the bottom of the reactor 1 are slag 3. At this time, when gas or ore powder is blown into the carrier gas from the nozzle 4 provided on the furnace wall, the slag 3 is caused by the effect of the jet stream. While the reactor 1
Secondary combustion is caused by oxygen sprayed toward the surface of the slag layer from a nozzle 6 provided on the upper wall of the slag, and the heat generated at this time is used to melt and reduce the newly supplied ore. - Powders used to generate slag turning power include calcium oxide, magnesium oxide, ore, etc.

また、この粉体を吹き込ませるためのキャリヤガスとし
ては、酸素、窒素、一酸化炭素、炭酸ガス、アルゴンが
ある。
Further, carrier gases for blowing the powder include oxygen, nitrogen, carbon monoxide, carbon dioxide, and argon.

このように、反応炉1中でスラグを旋回させながら二次
燃焼を起こさせることにより、燃焼熱の伝達を有効に行
いOD比が増加しても発熱効果が低下しない、という効
果を発揮させることができる。
In this way, by causing secondary combustion while swirling the slag in the reactor 1, combustion heat is effectively transferred and the heat generation effect does not decrease even if the OD ratio increases. Can be done.

〔実施例〕〔Example〕

第1図および第2図に示したような形態の50を規模の
溶融還元炉を使用して、下記に示した条件で鉱石の溶融
還元を行った。
Using a smelting and reducing furnace having a size of 50 mm as shown in FIGS. 1 and 2, ore was smelted and reduced under the conditions shown below.

反応炉1上部からの炭材投入量 25t/hr/、  
   鉄鉱石投入量・52t/hr下部吹き込み口5か
らの酸素導入量・・560ONrrI″ハrll   
   プロパン導入量 220 Nrn’/hrノズル
4からの酸素導入量 120ONm /hr/ 1本〃
 酸化カルシウム導入量・2t/hr / 1本ノズル
6からの酸素導入量・・・520ONm /hr/ 1
本この場合では、第3図の白丸で描いたグラフのごとき
挙動となり、OD比が0.55の時においても蓄熱効率
はぼ75%息上の値が得られた。
Amount of carbon material input from the upper part of reactor 1: 25t/hr/,
Iron ore input amount: 52t/hr Oxygen introduction amount from lower blowing port 5: 560ONrrI''harll
Amount of propane introduced: 220 Nrn'/hr Amount of oxygen introduced from nozzle 4: 120ONm/hr/1
Amount of calcium oxide introduced: 2t/hr / Amount of oxygen introduced from one nozzle 6: 520ONm/hr/1
In this case, the behavior was as shown in the graph drawn by the white circles in FIG. 3, and even when the OD ratio was 0.55, the heat storage efficiency increased by about 75%.

なお、第3図中黒丸で表した挙動は、従来法による代表
的な挙動を示したものである。
Note that the behavior represented by the black circle in FIG. 3 is a typical behavior according to the conventional method.

また、この実施例の説明では、上置き法により反応炉1
上部からの原料投入について説明したが、この方法に限
ることはなく、原料をインジェクションにより導入して
もよい。
In addition, in the explanation of this example, the reactor 1 is
Although the introduction of raw materials from above has been described, the method is not limited to this method, and raw materials may be introduced by injection.

〔発明の効果〕〔Effect of the invention〕

この発明のを実施することにより、OD比の上昇があっ
ても従来法のように蓄熱効果は低下することがなく、二
次燃焼の効果を充分に享受することができる。
By carrying out the method of the present invention, even if the OD ratio increases, unlike the conventional method, the heat storage effect does not decrease, and the effect of secondary combustion can be fully enjoyed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従い構成した溶融還元反応炉の側面図
、第2図は第1図に示した反応炉の断面図、第3図は蓄
熱効果を示したグラ、フであろ↓1 ・反応炉、2 溶
融鉄、3 スラグ、4・旋回流用ノズル、5・・主反応
用燃料ノズル、6 酸素導入用ノズル。
Figure 1 is a side view of the smelting reduction reactor constructed according to the present invention, Figure 2 is a cross-sectional view of the reactor shown in Figure 1, and Figure 3 is a graph showing the heat storage effect↓1. Reactor, 2. Molten iron, 3. Slag, 4. Nozzle for swirling flow, 5. Fuel nozzle for main reaction, 6. Nozzle for introducing oxygen.

Claims (5)

【特許請求の範囲】[Claims] (1)鉱石と炭材およびその他の副材料を用いて鉱石を
直接還元する溶融還元法において、溶融還元反応炉中に
生成しているスラグ層へガスまたはガスと粉体を高速で
吹き込んでスラグ層を溶融還元反応炉の中央縦軸を中心
として旋回させ、2次燃焼させると共にその発生熱を金
属溶湯に伝えることを特徴とする溶融還元法。
(1) In the smelting reduction method in which ore is directly reduced using carbonaceous materials and other auxiliary materials, gas or gas and powder is injected at high speed into the slag layer that is generated in the smelting reduction reactor. A smelting reduction method characterized by rotating the layer around the central vertical axis of a smelting reduction reactor to cause secondary combustion and transmitting the generated heat to the molten metal.
(2)スラグ層へのガスまたはガスと粉体の高速吹き込
みを溶融還元反応炉々壁から溶融還元反応炉の中央縦軸
に対して直角に切つてできた面において10〜45°の
角度で設けたノズルにより行う特許請求の範囲第1項に
記載の溶融還元法。
(2) High-speed injection of gas or gas and powder into the slag layer from the walls of the smelting-reduction reactor at an angle of 10 to 45° on a plane cut perpendicular to the central vertical axis of the smelting-reduction reactor. The melt reduction method according to claim 1, which is carried out using a nozzle provided.
(3)スラグ層へのガスまたはガスと粉体の高速吹き込
みを等距離的に設けた複数のノズルにより行う特許請求
の範囲第1または2項に記載の溶融還元法。
(3) The smelting reduction method according to claim 1 or 2, in which gas or gas and powder are injected at high speed into the slag layer using a plurality of nozzles equidistantly provided.
(4)酸化カルシウム、酸化マグネシウム、鉱石から選
ばれた粉体を使用する特許請求の範囲第1項に記載の溶
融還元法。
(4) The smelting reduction method according to claim 1, which uses powder selected from calcium oxide, magnesium oxide, and ore.
(5)粉体の粒径がおよそ1mm以下のものを使用する
特許請求の範囲第1〜4項のいずれか1項に記載の溶融
還元法。 (5)酸素、窒素、炭酸ガス、一酸化炭素、アルゴンの
うちから選ばれたガスを使用する特許請求の範囲第1項
に記載の溶融還元法。
(5) The melt reduction method according to any one of claims 1 to 4, wherein powder having a particle size of about 1 mm or less is used. (5) The smelting reduction method according to claim 1, which uses a gas selected from oxygen, nitrogen, carbon dioxide, carbon monoxide, and argon.
JP16990086A 1986-07-21 1986-07-21 Smelting and reducing method Pending JPS6328811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16990086A JPS6328811A (en) 1986-07-21 1986-07-21 Smelting and reducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16990086A JPS6328811A (en) 1986-07-21 1986-07-21 Smelting and reducing method

Publications (1)

Publication Number Publication Date
JPS6328811A true JPS6328811A (en) 1988-02-06

Family

ID=15895050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16990086A Pending JPS6328811A (en) 1986-07-21 1986-07-21 Smelting and reducing method

Country Status (1)

Country Link
JP (1) JPS6328811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212225A (en) * 1992-10-16 1994-08-02 Technological Resources Pty Ltd Method of enhancing reaction in metallurgical reacting container
US5498277A (en) * 1991-09-20 1996-03-12 Ausmelt Limited Process for production of iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498277A (en) * 1991-09-20 1996-03-12 Ausmelt Limited Process for production of iron
JPH06212225A (en) * 1992-10-16 1994-08-02 Technological Resources Pty Ltd Method of enhancing reaction in metallurgical reacting container

Similar Documents

Publication Publication Date Title
CN1024566C (en) Manufacture of ferro alloy by molten bath reactor
KR100207154B1 (en) A pocess for producing metals and metal alloy in a smelt reduction vessel
JPH0219166B2 (en)
CN1086545A (en) Strengthen the method for reacting in the metallurgical reaction
WO2013094634A1 (en) Converter steelmaking method
CN109790590B (en) Dephosphorization apparatus and dephosphorization method of molten iron using the same
JPS6328811A (en) Smelting and reducing method
CA1318134C (en) Method for transferring heat to molten metal, and apparatus therefor
CN105441624A (en) Lance head structure and method for double-oxygen-flow adjustment of top blowing oxygen flow rate of converter
US4565551A (en) Coal gasification apparatus
JP5884197B2 (en) Converter refining method
AU702459B2 (en) Process for melting a charge in an electrical arc furnace
JPH07216430A (en) Top blowing lance for molten steel manufacturing and refining molten metal
JPS6328813A (en) Smelting and reducing method
JP2017020072A (en) Converter melting method of iron-containing raw materials
JP2001059111A (en) Gas blowing lance and method of operating top and bottom blowing converter using the same
JPS6333511A (en) Melting reduction method
JP2594594B2 (en) Method of carburizing molten iron
JPS62247014A (en) Carburization melting smelting method
JPH11293314A (en) Smelting reduction method of iron raw material and smelting reduction furnace
JP2001131629A (en) Top blow lance for hot metal dephosphorization and hot metal dephosphorization method
JPS6328810A (en) Smelting and reducing method
JP2019090078A (en) Immersion lance for blowing and refining method of molten iron
JPS6365008A (en) Iron ore melting reduction method
JPH0196314A (en) Smelting reduction method