WO2023210874A1 - 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템 - Google Patents

제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템 Download PDF

Info

Publication number
WO2023210874A1
WO2023210874A1 PCT/KR2022/009524 KR2022009524W WO2023210874A1 WO 2023210874 A1 WO2023210874 A1 WO 2023210874A1 KR 2022009524 W KR2022009524 W KR 2022009524W WO 2023210874 A1 WO2023210874 A1 WO 2023210874A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
carbon
hydrogen
hydrogen production
production system
Prior art date
Application number
PCT/KR2022/009524
Other languages
English (en)
French (fr)
Inventor
이철
Original Assignee
(주)로우카본
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)로우카본 filed Critical (주)로우카본
Publication of WO2023210874A1 publication Critical patent/WO2023210874A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • B01D47/063Spray cleaning with two or more jets impinging against each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1412Controlling the absorption process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/16Rotary, reciprocated or vibrated modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/10Centrifuges combined with other apparatus, e.g. electrostatic separators; Sets or systems of several centrifuges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/081Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants

Definitions

  • the present invention relates to carbon dioxide capture and carbon resources for steel mills, and hydrogen production systems. More specifically, the present invention relates to a system for capturing and converting carbon dioxide from exhaust gas generated from steel mills into carbon resources and producing hydrogen gas using a basic alkali mixture. By doing so, it relates to a carbon dioxide capture and carbon resource and hydrogen production system for steel mills that can remove harmful carbon dioxide from exhaust gases emitted from steel mills and at the same time convert them into other useful materials.
  • the steel industry is an industry that inevitably produces a lot of carbon dioxide emissions due to the nature of using fossil fuels as its main raw material, and accounts for 7-9% of carbon dioxide emitted from fossil fuels.
  • CCU carbon dioxide capture and utilization
  • a blast furnace method in which molten iron was produced by putting iron ore that had gone through a sintering process and coke made from bituminous coal as raw materials into a blast furnace and then blowing in oxygen. According to the blast furnace method, bituminous coal was converted into coke. Auxiliary facilities such as coke manufacturing equipment for manufacturing iron ore and sintering equipment for the sintering process of iron ore must be provided.
  • Figure 1 is a diagram schematically showing a conventional molten iron manufacturing apparatus for an iron making process using a blast furnace.
  • a conventional molten iron manufacturing apparatus 100 includes a melting gasification furnace 10, a reduction furnace 22, a blast furnace 50, and a carbon dioxide remover 60, and iron ore is charged into the reduction furnace 22. and is returned.
  • the iron ore charged into the reduction furnace 22 is pre-dried and then produced into reduced iron while passing through the reduction furnace 22, and the reduction furnace 22 is a fluidized bed reduction reactor, which contains powdered iron ore and a melting gasifier (10). ) and forms a fluidized layer inside it.
  • the reduction furnace 22 may be formed in multiple stages for reduction efficiency, and the maximum temperature of the reduction furnace 22 is 1000° C. or less, and the prior reduction rate is about 60 to 80%.
  • iron ore or powdered iron ore may be charged into the reduction furnace 22, and when powdered iron ore is charged, a reduced iron molding machine 40 is installed between the reduction furnace 22 and the melting and gasification furnace 10.
  • the reduced iron molding machine 40 molds the reduced iron in powder form discharged from the reduction furnace 22 to produce lumpy reduced iron, and the lumpy reduced iron thus produced is provided to the melter and gasification furnace 10.
  • the molten gasifier 10 is charged with reduced iron and lumpy carbon material to produce molten iron.
  • the lumpy carbon material charged into the melter gasifier 10 moves to the lower part of the melter gasifier 10 and moves to the tuyere 30. It reacts exothermically with the oxygen supplied through it.
  • the present invention was created to solve the above-mentioned problems, and the purpose of the present invention is to provide a system for reducing carbon dioxide in the exhaust gas generated during the iron making process of a steel mill and at the same time reusing oxygen and hydrogen gas in the exhaust gas. .
  • another object of the present invention is to capture and convert carbon dioxide in exhaust gas using a basic alkali mixture into carbon resources, so that carbon dioxide can be removed and converted into other useful materials at the same time, and a hydrogen production system for steel mills.
  • the purpose is to provide.
  • another object of the present invention is to provide a carbon dioxide capture, carbon resource conversion, and hydrogen production system for steel mills that can capture carbon dioxide from exhaust gases generated during the iron making process of a steel mill, convert it into carbon resources, and then store and transport it. There is a purpose.
  • the carbon dioxide capture and carbon resource conversion and hydrogen production system for a steel mill of the present invention includes a melting gasification furnace in which reduced iron and lumpy carbon materials are charged to produce molten iron; a reduction furnace connected to the melter-gasifier, producing iron ore into reduced iron using reduction gas discharged from the melter-gasifier, and providing the reduced iron to the melter-gasifier; A blast furnace where iron ore and coke are charged to produce molten iron; A reactor provided between the reduction furnace and the blast furnace to remove carbon dioxide and generate a reactant by spraying a basic alkali mixture from the reduction gas, which is the exhaust gas of the reduction furnace, and then blowing the exhaust gas from which the carbon dioxide has been removed into the blast furnace; And a hydrogen generator that generates hydrogen and oxygen gas using carbon dioxide reactant among the reactants generated from the reactor, wherein the reactor separates the carbon dioxide reactant and the waste solution from the reactant and converts the separated carbon dioxide reactant into resources. Save it for
  • the hydrogen gas generated in the hydrogen generator is supplied as fuel to the blast furnace or stored in a hydrogen storage tank, and the generated oxygen gas is supplied to the melter gasifier.
  • the basic alkali mixed solution is a group consisting of SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , MgO, MnO, CaO, Na 2 O, K 2 O and P 2 O 3 At least one oxide selected from; At least one metal selected from the group consisting of Li, Cr, Co, Ni, Cu, Zn, Ga, Sr, Cd and Pb; Crystallized synthetic zeolite made from alumina-based raw materials, silica-based raw materials, and sodium hydroxide; and, from the group consisting of sodium tetraborate (Na 2 B 4 O 7 .10H 2 O), sodium hydroxide (NaOH), sodium silicate (Na 2 SiO 3 ), potassium hydroxide (KOH) and hydrogen peroxide (H 2 O 2 ). It includes one or more selected liquid compositions.
  • the reactor includes a mixer for supplying the basic-alkaline mixed solution;
  • An absorption tower that collects carbon dioxide in the exhaust gas by reacting the basic alkali mixture supplied from the mixer with the exhaust gas in which fine droplets are formed by passing through a bubbler installed at the bottom;
  • a separator that collects reactants containing carbon dioxide captured in the absorption tower and separates carbon dioxide reactants and waste solutions from the reactants; and
  • a carbon resource storage for storing the separated carbon dioxide reactant to be recycled.
  • the mixer mixes the basic alkaline solution supplied from the basic alkaline solution storage tank and the water supplied from the water supply source to generate a basic alkaline mixed solution.
  • the basic alkaline solution and water are mixed at a ratio of 1:1 to 1:5.
  • the average pH of the basic alkali mixed solution ranges from pH12 to pH13.5.
  • the basic alkali mixed solution in the absorption tower when the level of the basic alkali mixed solution in the absorption tower is lowered to less than 90%, the basic alkali mixed solution is adjusted through a valve in the mixer, and when the level of the basic alkali mixed solution reaches 100%, the basic alkali mixed solution is added. This is stopped, and at the same time, the basic alkali solution and water are mixed until the pH of the basic alkali mixed solution reaches 12 to 13.5.
  • the absorption tower supplies a basic alkali mixed solution from the mixer through a plurality of nozzles installed at the top.
  • the bubbler forms exhaust gas microbubbles using the exhaust gas.
  • the absorption tower is atomized into fine droplets as carbon dioxide delivered from the hydrocarbon reformer passes through a mesh net installed at the bottom of the absorption tower, and is transferred from the mixer to the absorption tower through a pipe installed across the upper part of the absorption tower.
  • the basic alkali mixture supplied inside is sprayed upward in the form of a fountain through a plurality of nozzles installed at regular intervals on one side of the pipe, is atomized into fine droplets, and then reacts with the atomized carbon dioxide to collect carbon dioxide.
  • a stirrer is further provided between the mesh network and the pipe to promote the reaction by increasing the fluidity of the atomized carbon dioxide and basic alkali mixture.
  • a fine droplet screen is further provided between the mesh network and the pipe to selectively pass only fine droplets of a certain size or less among the atomized basic alkali mixed solution.
  • the carbon dioxide reactant includes sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ).
  • the separator includes a centrifuge that separates a carbon dioxide reactant containing sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ) from the reactant and a waste solution; and a vibration separator formed to correspond to the inner circumference of the discharge pipe for discharging only sodium bicarbonate among the carbon dioxide reactants to the outside, and having micropores formed on the surface of a size to allow penetration of the sodium bicarbonate.
  • a centrifuge that separates a carbon dioxide reactant containing sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ) from the reactant and a waste solution
  • a vibration separator formed to correspond to the inner circumference of the discharge pipe for discharging only sodium bicarbonate among the carbon dioxide reactants to the outside, and having micropores formed on the surface of a size to allow penetration of the sodium bicarbonate.
  • the reactor includes a monitoring unit that monitors the water level and pH of the basic-alkali mixed solution in the absorption tower; And a control unit that adjusts the supply amount of the basic alkali mixed solution by the monitoring unit.
  • Embodiments of the disclosed technology can have effects including the following advantages. However, since this does not mean that the embodiments of the disclosed technology must include all of them, the scope of rights of the disclosed technology should not be understood as being limited thereby.
  • carbon dioxide can be reduced by capturing carbon dioxide in exhaust gas discharged from a conventional iron making process, and sodium carbonate or sodium bicarbonate, which is a useful resource, can be manufactured using the captured carbon dioxide.
  • the efficiency of coal use for carbon dioxide reduction can be improved by extracting oxygen and hydrogen gases from exhaust gas generated in a conventional iron making process and reusing them as fuel for a blast furnace.
  • carbon dioxide is captured using a basic alkali mixture in a conventional iron making process, and the captured carbon dioxide reactant is utilized in various industrial fields such as food additives, detergents, soap raw materials, high-tech medical industry, and wastewater treatment. Since it is possible to generate profits, it can secure economic feasibility compared to existing technologies.
  • Figure 1 is a diagram schematically showing a conventional molten iron manufacturing apparatus for an iron making process using a blast furnace.
  • Figure 2 is a configuration diagram of a carbon dioxide capture and carbon resource conversion and hydrogen production system for a steel mill according to an embodiment of the present invention.
  • Figure 3 is a diagram schematically showing a molten iron manufacturing apparatus according to an embodiment of the present invention.
  • Figure 4 is a diagram showing a reactor according to an embodiment of the present invention.
  • Figure 5 is a conceptual diagram of a hydrogen generator according to an embodiment of the present invention.
  • Figure 6 is an enlarged view of portion B shown in Figure 5.
  • Figure 7 is an enlarged view of portion A shown in Figure 5.
  • Figure 8 is a diagram schematically showing the internal configuration of an absorption tower for improving the carbon dioxide capture performance of a reactor according to another embodiment of the present invention.
  • Figure 2 is a configuration diagram of a carbon dioxide capture, carbon resource recovery, and hydrogen production system for a steel mill according to an embodiment of the present invention
  • Figure 3 is a diagram schematically showing a molten iron manufacturing apparatus according to an embodiment of the present invention.
  • the carbon dioxide capture, carbon resource conversion, and hydrogen production system for a steel mill is equipped with a melting gasification furnace 100 in which reduced iron and lumpy carbon materials are charged to produce molten iron. .
  • a reduction furnace connected to the melter-gasifier 100, manufactures iron ore into reduced iron using the reduction gas discharged from the melter-gasifier 100, and provides the reduced iron to the melter-gasifier 100 ( 200) is provided.
  • a blast furnace 400 is provided in which iron ore and coke are charged to produce molten iron. At this time, carbon dioxide is removed from the exhaust gas of the reduction furnace 200 between the reduction furnace 200 and the blast furnace 400, and carbon dioxide reactants are produced.
  • a reactor 300 is provided for blowing the exhaust gas from which carbon dioxide has been removed after generating into the blast furnace 400.
  • hydrogen and oxygen gas are generated using the carbon dioxide reactant generated from the reactor 300, and the generated hydrogen gas is supplied as fuel to the blast furnace 400 and the generated oxygen gas is supplied to the melting gasification furnace 100.
  • a hydrogen generator 500 is provided to supply hydrogen.
  • the reactor 300 collects carbon dioxide in the exhaust gas by receiving the reducing gas from the reduction furnace 200 and reacting it with the basic alkali mixture, and collecting the reactants containing the captured carbon dioxide.
  • the carbon dioxide reactant and the waste solution are separated from the reactant, the carbon dioxide reactant is recovered and stored, and finally, the remaining exhaust gas from which the captured carbon dioxide has been removed can be discharged to the outside.
  • the carbon dioxide reactant includes sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ), and the remaining exhaust gas is a reduction gas from which the carbon dioxide introduced into the blast furnace 400 has been removed.
  • iron ore is charged to the reduction furnace 200 and reduced, and at this time, the iron ore charged to the reduction furnace 200 is pre-dried and then passes through the reduction furnace 200. While doing so, reduced iron is produced.
  • the reduction furnace 200 may be a fluidized bed reduction furnace, and receives powdered iron ore and reduction gas from the molten gasification furnace 100 to form a fluidized bed therein.
  • the reactor 300 reduces the carbon dioxide content in the exhaust gas, that is, the reduction gas, delivered from the reduction furnace 200, and delivers the reduction gas in which the carbon dioxide has been reduced to the blast furnace 400.
  • the configuration of the reactor 300 will be examined in more detail in FIG. 4, which will be described later.
  • Figure 4 is a diagram showing a reactor 300 according to an embodiment of the present invention.
  • the reactor 300 can reduce carbon dioxide by collecting carbon dioxide in the exhaust gas, that is, the reduction gas, emitted during the iron making process, which is one of the steel manufacturing processes, and the collected It has a structure that can convert carbon dioxide into sodium carbonate or sodium hydrogen carbonate.
  • the reactor 300 is a reactor that collects carbon dioxide in the exhaust gas discharged from the reduction furnace 200, that is, the reduction gas, using a basic alkali solution, and includes an absorption tower 310, It includes a carbon dioxide collection unit 311, a mixer 330, a separator 340, a carbon resource storage unit 341, and a discharge unit 350.
  • the absorption tower 310 may refer to a facility, building, or equipment that captures carbon dioxide. Additionally, the carbon dioxide collection unit 311 located at the bottom of the absorption tower 310 is a part of the absorption tower 310 and may refer to a part that collects carbon dioxide by bubbling exhaust gas.
  • the absorption tower 310 includes a carbon dioxide collecting part 311 at the bottom where carbon dioxide is collected, and reacts the basic alkali mixture with the exhaust gas (exhaust gas microbubbles) to collect only carbon dioxide from the exhaust gas discharged during the iron making process of the steel mill. After carbon dioxide in the exhaust gas is captured, the exhaust gas from which the carbon dioxide has been removed may remain in a gaseous state in the absorption tower 310.
  • the absorption tower 310 has a nozzle installed at the top, and the basic-alkaline mixed liquid is sprayed into the absorption tower 310 from the mixer 330 through the nozzle, and is collected in the carbon dioxide collection unit 311 at the bottom.
  • the exhaust gas supplied from the reduction furnace 200 that is, the reduction gas
  • the generated exhaust gas is supplied, and the basic alkali mixture and exhaust gas microbubbles react within the carbon dioxide collection unit 311 to collect carbon dioxide.
  • the microbubbles are formed as they pass through the bubbler 313, which has a fine hole formed at the outlet of the reduction furnace 200, when the exhaust gas reacts with the basic alkali mixture.
  • the bubbler 313 can form microbubbles in the exhaust gas by passing the exhaust gas supplied from the reduction furnace 200, and the smaller the size of the microbubbles, the larger the reaction area of the exhaust gas and the alkaline solution, so that the carbon dioxide This may increase the capture capacity.
  • the microbubble may refer to a bubble existing in an aqueous solution having a size of about 50 ⁇ m or less.
  • a baffle 508 with a plurality of slits or holes may be added to allow the exhaust gas to flow into the absorption tower at a uniform velocity distribution.
  • the absorption tower 310 may include a level indicator 312 therein to detect the level of the solution within the absorption tower 310.
  • the nozzle 318 may include multiple nozzles and may be formed in one or more stages.
  • the nozzle 318 is connected to the mixer 330 and can supply a basic-alkaline mixed solution from the mixer 330.
  • the absorption tower 310 may be configured in series, parallel, or a combination of series and parallel.
  • the absorption towers 310 may be arranged in series when the flow rate of exhaust gas is high. If the flow rate is high and unreacted carbon dioxide is discharged from the absorption tower, the absorption towers can be installed in series to collect the unreacted carbon dioxide.
  • the absorption towers 310 may be arranged in parallel when the flow rate of exhaust gas is large. If the flow rate of exhaust gas exceeds the amount that can be captured by the absorption tower, the amount of carbon dioxide that can be captured can be increased by installing the absorption towers in parallel.
  • the reactor 300 can utilize any exhaust gas containing carbon dioxide, and according to an embodiment of the present invention, it may be a reducing gas generated in the reduction furnace 200 in the iron making process of a steel mill or a mixed gas with other gases. .
  • the mixer 330 mixes the basic alkaline solution supplied from the basic alkaline solution storage tank 331 and the water supplied from the water supply source 332, and supplies the mixture to the nozzle 318 of the absorption tower 310 (see FIG. 8). do.
  • the basic alkaline mixed solution which is a mixture of the basic alkaline solution and water, can be supplied using a separately connected by-pass line 336 when the supply or required amount increases.
  • the basic alkaline solution and water may be mixed in a ratio of 1:1 to 1:5.
  • the basic alkaline solution and water are 1:1 to 1:4, 1:1 to 1:3, 1:1 to 1:2, 1:2 to 1:5, 1:2 to 1:3.
  • it may be mixed at a ratio of 1:3 to 1:5.
  • the carbon dioxide capture rate may increase as the mixing ratio of the basic alkaline solution and water increases, but the mixing ratio of water may be adjusted considering cost aspects.
  • the basic alkali mixture includes one or more oxides selected from the group consisting of SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , MgO, MnO, CaO, Na 2 O, K 2 O and P 2 O 3 ; At least one metal selected from the group consisting of Li, Cr, Co, Ni, Cu, Zn, Ga, Sr, Cd and Pb; Crystallized synthetic zeolite made from alumina-based raw materials, silica-based raw materials, and sodium hydroxide; and, from the group consisting of sodium tetraborate (Na 2 B 4 O 7 .10H 2 O), sodium hydroxide (NaOH), sodium silicate (Na 2 SiO 3 ), potassium hydroxide (KOH) and hydrogen peroxide (H 2 O 2 ). It is characterized in that it contains one or more selected liquid compositions.
  • the water source 332 may include any water readily available at the system installation location, and may be, for example, seawater.
  • the average pH of the basic alkaline mixed solution may be pH 12 or higher.
  • the pH may be pH12 to pH13.5, pH12, pH12.1, pH12.2, or pH12.3.
  • the pH of the basic alkaline mixed solution can be measured with a pH meter in the absorption tower 310. When the pH of the basic alkali mixed solution in the absorption tower 110 is less than 10.5, carbon dioxide can no longer be captured.
  • the amounts of the basic alkaline solution and water can be adjusted from 0 to 100% at each valve 333 and 334 and supplied to the mixer 330.
  • the mixer 330 is adjusted through the valve 335 to add the basic alkali mixed solution and the water level of the solution is 100%. If it reaches %, input may be stopped. At the same time, the basic alkali solution and water may be mixed until the pH of the basic alkali mixed solution reaches 12 to 13.5.
  • the carbon dioxide capture system can be continuously maintained only when the amount of the basic-alkali mixed solution supplied to the absorption tower 310 and the amount of the solution leaving the separator 140 are the same, the carbon dioxide collection system can be continuously maintained from the absorption tower 310 to the separator 340.
  • the net flow may be set to 0 by adjusting the valve 335 (including a by-pass valve, if necessary) so that an amount of basic-alkali mixture equal to the value of the flow meter installed in the thin line is supplied to the absorption tower 310.
  • a reactant containing carbon dioxide captured by reacting the basic alkali mixture with the exhaust gas discharged from the reduction furnace 200 is collected, and the carbon dioxide reactant and the waste solution are collected from the reactant. It moves to the separator 340 through the valve 314 to separate the carbon dioxide reactant and waste solution from the reactant.
  • the separator 340 includes a centrifuge that separates a waste solution from a carbon dioxide reactant containing sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ) from the reactant, and a centrifuge that separates sodium bicarbonate from the carbon dioxide reactant separated from the centrifuge. It may include a vibration separator formed to correspond to the inner circumference of the discharge pipe for discharging water to the outside and having fine holes formed on the surface of a size to allow the penetration of the sodium bicarbonate. Through this, you can obtain high-purity sodium bicarbonate and sell it immediately, making a profit.
  • the size of the fine hole formed in the vibration separator may be 10 to 20 ⁇ m, and may further include a vibration generator to cause vibration of the vibration separator.
  • the vibration generator may be disposed to prevent the micropores from being clogged by sodium bicarbonate.
  • the separated carbon dioxide reactant can be moved to the carbon resource storage 341 and recycled for other purposes.
  • the carbon dioxide reactant may include sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ).
  • the carbon dioxide reactant may be produced by reacting a basic alkali mixture with carbon dioxide, as shown in ⁇ Reaction Scheme 1> below.
  • the waste solution excluding the carbon dioxide reactant from the reactant is moved to the wastewater treatment tank 342 and disposed of.
  • the waste solution may include illite mineral and water contained in the basic alkali mixed solution that has completed its role as a catalyst.
  • the carbon resource storage 341 is a carbon dioxide reactive material storage that takes into account the fact that the steel mill is located on the seaside for raw material procurement. It stores carbon resources, which are carbon dioxide capture reactants, more efficiently than conventional carbon dioxide storage devices, while reducing storage and accommodation costs. can do.
  • the carbon resource storage 341 is an offshore structure that accommodates a carbon dioxide reactant generated by the reaction of a basic alkali mixture and carbon dioxide generated in a steel mill; An inlet unit for loading the carbon dioxide reactant into the offshore structure; A discharge unit connected to the offshore structure to unload the carbon dioxide reactant within the offshore structure; and a control unit that controls the inlet unit and the discharge unit when loading/unloading the carbon dioxide reactant contained in the offshore structure.
  • the offshore structure is a floating offshore structure including a liquid transport carrier, but is not limited thereto and may include any structure that can perform various tasks such as floating or moving on the sea.
  • a floating offshore structure including a liquid transport carrier
  • the remaining exhaust gas from which carbon dioxide is removed after carbon dioxide is collected in the carbon dioxide collection unit 311 is discharged through the discharge unit 350.
  • the remaining exhaust gas discharged through the discharge unit 350 is introduced into the blast furnace 400 as a reduced gas from which carbon dioxide has been removed.
  • the concentration of carbon dioxide in the atmosphere where the remaining exhaust gas will be discharged is based on the standard (a standard set by the manager after measuring the carbon dioxide concentration in the atmosphere in advance). It is possible to emit residual exhaust gas that does not exceed the standard.
  • the reactor 300 includes a monitoring unit 360 that monitors the water level and pH of the basic-alkali mixed solution in the absorption tower 310; And it may further include a control unit 361 that adjusts the supply amount of the basic-alkaline mixed solution by the monitoring unit 360.
  • the values of the gas meter, pH meter, and flow meter measured in all processes of the reactor 300 are managed by the monitoring unit 360, and the control unit 361 is adjusted based on the values indicated by the monitoring unit 360.
  • the valves 314, 333, 334, and 335 may be adjusted in percentage with respect to the value input from the control unit 361.
  • the carbon dioxide capture, carbon resource recovery, and hydrogen production system for steel mills can reduce carbon dioxide by capturing carbon dioxide in exhaust gases generated during the iron making process of a steel mill, and use the captured carbon dioxide to convert it into sodium carbonate or sodium bicarbonate. By converting it, it is possible to turn it into another useful material.
  • a valve 343 is further provided between the carbon resource storage 341 and the separator 340, and the flow path switching and opening/closing operation of the valve 343 generates the energy in the absorption tower 310 as described above.
  • the carbon dioxide reactant can be sent to the carbon resource storage (341) or selectively sent to the hydrogen generator (500).
  • the carbon dioxide reactant sent to the hydrogen generator is subjected to electrolysis to extract hydrogen and oxygen gas. A detailed description of this will be provided in detail in FIGS. 5 to 7 described later.
  • FIG. 5 is a conceptual diagram of a hydrogen generator 500 according to an embodiment of the present invention
  • FIG. 6 is an enlarged view of part B shown in FIG. 5
  • FIG. 7 is an enlarged view of part A shown in FIG. 5.
  • the hydrogen generator 500 is a carbon dioxide reactant supply tank for supplying sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ), which is a carbon dioxide reactant separated from the reactor 300. (531) and sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ) supplied from the carbon dioxide reactant supply tank 531 as an electrolyte for electrolysis to form hydrogen gas and oxygen gas through electrolysis. It may be provided with a water electrolysis cell 540, a power supply unit 510 and an inverter 520 for applying current to the water electrolysis cell 540.
  • the carbon dioxide reactant supply tank 531 receives sodium carbonate (Na2CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ), which is a carbon dioxide reactant separated from the reactor 300, through the carbon dioxide reactant inlet flow path 522 and stores it as an electrolyte, and stores the carbon dioxide reactant.
  • a carbon dioxide reactant inlet 524 connected to an electrolyte supply passage 532 that supplies the carbon dioxide reactant stored in the supply tank 531 to the water electrolysis cell 540 may be provided.
  • the carbon dioxide reactant supply tank 531 may be provided with a pump for pumping sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ), which is an electrolyte for electrolysis of the hydrogen generator 500.
  • the water electrolysis cell 540 includes a cathode (-) electrode plate and an anode (+) electrode plate, a diaphragm 542, which is an electrolyte membrane disposed between these electrode plates, and the A pair of separate electrolyzers 530 that receive the carbon dioxide reactant supplied from the carbon dioxide reactant supply tank 531 and are connected to the hydrogen storage tank 585 and the oxygen storage tank 590, and the carbon dioxide reactant of the electrolyzer 530 is electrically converted to electricity. It may be provided with a gas outlet for discharging hydrogen gas and oxygen gas generated by decomposition, and a drain 550 for discharging ionic substances that have not reacted by electrolysis.
  • the carbon dioxide reactant is selectively introduced by the packing 545 formed of a non-conductive material and the power of the power supply unit 510.
  • a control unit capable of controlling whether the flow path 522 is opened or closed may be further provided.
  • this water electrolysis cell 540 is operated by the power supply unit 510 with both electrode plates supplied with sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ), which is the electrolyte of the present invention. And as electricity is applied through the DC bus bar 521 by the inverter 520, hydrogen (H 2 ) gas and oxygen (O 2 ) gas are generated.
  • the electrolyte solution supplied to the water electrolysis cell 540, sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ), dissociates from the surface of the cathode electrode plate to emit hydrogen gas, and oxygen ions are formed in the diaphragm as the electrolyte membrane. As it moves through and emits electrons, oxygen gas is discharged from the anode electrode plate.
  • the ionic material that did not react in Scheme 2 may be transferred to the sludge recovery unit 600 of the hydrogen generator 500 through the drain 550.
  • hydrogen gas discharged from the water electrolysis cell 540 is discharged through the hydrogen discharge flow path 570, passes through a filter and compressor, and high-purity hydrogen gas is stored in the hydrogen storage tank 585, and the stored hydrogen Gas is supplied to the blast furnace 400 as a fuel that replaces coal, thereby reducing the generation of greenhouse gases and improving coal use efficiency.
  • the oxygen gas discharged from the water electrolysis cell 540 is discharged through the oxygen discharge flow path 575 and passes through a filter and compressor so that high-purity oxygen gas can be stored in the oxygen storage tank 590.
  • the oxygen gas stored in the oxygen storage tank 590 can be used to produce reducing gas by being supplied to the tuyere (130, see FIG. 3) of the melter gasifier 100.
  • OH - radicals are generated as reactants during the reduction process, and the OH - radicals are oxygen (O 2 ) generated through oxidation at the anode and reduction at the cathode. Since it is easy to recombine with hydrogen (H 2 ) generated through water (H 2 O), there is a problem in that the efficiency of generating hydrogen (H 2 ) is reduced as a result.
  • the present invention uses sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ), which is a carbon dioxide reactant, as a water electrolyte for electrolysis, thereby decomposing OH-radicals and hydrogen (H 2 ) in the reaction of conventional water electrolysis technology. ) and oxygen (O 2 ) can be prevented by the carbon dioxide reactant, sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ), thereby increasing the efficiency of generating hydrogen (H 2 ).
  • Na + ions are dissociated through a water electrolysis reaction, the amount of hydrogen (H 2 ) gas produced can be increased due to increased electrical conductivity, which has the effect of solving the problems of the prior art.
  • Figure 8 is a diagram schematically showing the internal configuration of the absorption tower 310 to improve the carbon dioxide capture performance of the reactor according to another embodiment of the present invention.
  • the absorption tower configuration of the reactor according to another embodiment of the present invention may have additional details to promote the reaction of the carbon dioxide and basic alkali mixed solution in addition to the configuration of the embodiment of FIG. 4.
  • carbon dioxide transferred from the reduction furnace 200 is atomized into microbubbles as it passes through the mesh net 315 installed at the bottom of the absorption tower 310.
  • the basic alkali mixed solution supplied into the absorption tower 310 from the mixer 330 (see FIG. 4) through the pipe 317 installed across the upper part of the absorption tower 310 is on one side of the pipe 317. It is atomized into fine droplets as it is ejected in a fountain shape upward through a plurality of nozzles 318 installed at regular intervals.
  • a fine droplet screen 319 may be further provided between the mesh network 315 and the pipe 317 to selectively pass only fine droplets of a certain size or less among the atomized basic alkali mixture.
  • the smaller the size of the microbubbles and fine droplets generated by the mesh net 315 and the fine droplet screen 319 the larger the reaction area between carbon dioxide and the alkaline solution, thereby increasing the carbon dioxide.
  • the collection ability can be increased.
  • the microbubbles and fine droplets may have a size of about 50 ⁇ m or less.
  • the basic alkali mixture atomized into fine droplets as described above contacts with the carbon dioxide previously atomized by the mesh net 315 to promote reaction and actively collects carbon dioxide.
  • a stirrer 316 may be further provided between the mesh network 315 and the pipe 317 to promote the reaction by increasing the fluidity of the atomized carbon dioxide and basic alkali mixture.
  • the stirrer 316 rotates in the form of a propeller and increases the residence time and contact time of the atomized basic alkali mixture and carbon dioxide, thereby further promoting the reaction between the two substances.
  • the present invention can be widely used in the fields of carbon dioxide capture and carbon resources for steel mills, and hydrogen production systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명인 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템은 환원로 및 고로의 사이에 구비되어 환원로의 배가스인 환원가스로부터 염기성 알칼리 혼합액을 분사하여 이산화탄소를 제거 및 반응물을 생성한 후 이산화탄소가 제거된 배가스를 고로에 취입하는 반응기; 및 반응기로부터 생성된 반응물 중에서 이산화탄소 반응물을 이용하여 수소와 산소 가스를 생성하고, 생성된 수소 가스를 고로에 연료로서 공급함과 함께 생성된 산소 가스를 용융가스화로에 공급하는 수소생성기를 포함하고, 반응기는 반응물에서 이산화탄소 반응물과 폐용액을 분리하고, 분리된 이산화탄소 반응물을 자원화하기 위해 저장하는 것을 특징으로 한다.

Description

제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템
본 발명은 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템에 관한 것으로, 보다 상세하게는 염기성 알칼리 혼합액을 이용하여 제철소에서 발생되는 배가스 중 이산화탄소를 포집 및 탄소자원으로 변환함과 아울러 수소 가스를 생산함으로써, 제철소에서 배출되는 배가스에서 유해한 이산화탄소를 제거하는 동시에 다른 유용한 물질로 자원화할 수 있는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템에 관한 것이다.
철강산업은 화석연료를 주원료로 쓰는 특성상 이산화탄소 배출량이 많을 수밖에 없는 산업으로, 화석연료로부터 배출되는 이산화탄소의 7~9%를 차지하고 있다.
세계철강협회에 따르면, 철강 1톤을 생산하는데 평균 이산화탄소 1.83톤이 배출이 되며, 전체 산업의 이산화탄소 배출에서 철강산업이 차지하는 비중이 24%로 가장 많다고 밝혔다.
최근 전세계적으로 탈산소 사회로의 전환을 가속화하기 위한 전방위적인 노력을 펼치고 있으며, 이에 따라 철강업계에서도 이산화탄소 포집 및 활용(CCU, Carbon Capture and Utilization) 기술에 대한 연구개발을 진행하고 있다.
한편, 종래 철강의 제조는 제선 공정, 제강 공정, 연주 공정 및 압연 공정의 순으로 진행되며, 특히 철광석을 환원시켜 선철을 생산하는 제선로에서 환원제로서 다량의 탄소를 사용하고 있으므로 상기 제선 공정이 곧바로 이산화탄소의 발생과 직결된다. 이로 인해 상기 제선 공정에서 발생되는 이산화탄소는 제철소 전체에서 발생하는 이산화탄소의 양의 80%를 차지하고 있는 것으로 나타났다.
또한, 종래의 제선 공정에서는 소결 과정을 거친 철광석과, 유연탄을 원료로 하여 제조된 코크스를 고로에 투입한 후 산소를 불어 넣어 용선을 제조하는 고로법을 이용하였는데, 상기 고로법에 의하면 유연탄을 코크스로 제조하기 위한 코크스 제조 설비, 철광석의 소결 과정을 위한 소결 설비 등의 부대 설비가 마련되어야 한다.
도 1은 고로를 이용하는 제선 공정의 종래 용철 제조 장치를 개략적으로 나타낸 도면이다.
도 1을 참조하면, 종래 용철 제조 장치(100)는 용융가스화로(10), 환원로(22), 고로(50) 및 이산화탄소 제거기(60)를 포함하고, 환원로(22)에는 철광석이 장입되어 환원된다.
이때, 상기 환원로(22)에 장입되는 철광석은 사전 건조된 후에 환원로(22)를 통과하면서 환원철로 제조되고, 환원로(22)는 유동층형 환원로로서, 분철광석 및 용융가스화로(10)로부터 환원가스를 공급받아 그 내부에 유동층을 형성한다. 상기 환원로(22)는 환원 효율을 위해 다단으로 형성될 수 있으며, 환원로(22)의 최대 온도는 1000℃ 이하로서 그 사전 환원율은 약 60 내지 80%가 된다.
또한, 상기 환원로(22)에는 철광석 또는 분철광석이 장입될 수 있으며, 분철광석이 장입되는 경우, 환원로(22) 및 용융가스화로(10) 사이에 환원철 성형기(40)가 설치된다. 상기 환원철 성형기(40)는 환원로(22)로부터 배출되는 분말 형태의 환원철을 성형하여 괴상의 환원철로 제조하며, 이렇게 제조된 괴상의 환원철은 용융가스화로(10)에 제공된다.
이때, 상기 용융가스화로(10)는 환원철 및 괴상 탄재가 장입되어 용철을 제조하는데, 용융가스화로(10)에 장입된 괴상 탄재는 용융가스화로(10)의 하부로 이동하여 풍구(30)를 통해 공급되는 산소와 발열 반응한다.
상술한 구성의 기존의 용철 제조 공정에서 발생되는 CO2 저감을 위해 석탄 이용 효율을 증대가 필요로 하며, 이를 위해서는 공정에서 발생되는 배가스의 재사용 또는 석탄을 대체한 수소 함유 가스 사용이 중요하다.
하지만, 공기를 사용하여 용선을 제조하는 고로 공정에서는 질소에 의해 배가스 재사용의 어려움이 있으며, 고로가 아닌 유동층 또는 고정층에서 사전 환원 후 용선을 제조하는 공정에서는 배가스 중의 CO 및 H2가 상대적으로 고로 대비 높아 공정내 에너지 사용 효율이 고로 대비 상대적으로 낮은 단점이 있었다.
따라서, 종래 기술 대비 간단한 방식으로 제철소에서 배출된 이산화탄소를 효율적으로 포집하고, 동시에 배가스 중의 산소와 수소를 추출하여 석탄을 대체하는 연료로서 재사용하는 방안이 절실한 상황이다.
또한, 최근 이산화탄소 포집 기술이 개발됨에 따라 CO2 포집물이 발생되고 있으나, 발생된 CO2포집물을 활용 또는 저장할 수 있는 기술 개발이 아직 미비한 상태이므로 이에 대한 기술개발이 요구되고 있다.
본 발명은 상술한 문제점을 해결하기 위해 창안된 것으로서, 본 발명은 제철소의 제선공정 상에서 발생하는 배가스 중 이산화탄소를 줄이는 동시에 상기 배가스 중의 산소 및 수소 가스를 재사용하기 위한 시스템을 제공하는 데 그 목적이 있다.
또한, 본 발명의 다른 목적은 염기성 알칼리 혼합액을 이용한 배가스 중 이산화탄소를 포집 및 탄소자원으로 변환함으로써, 이산화탄소를 제거하는 동시에 다른 유용한 물질로 자원화할 수 있는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템을 제공하는 데 그 목적이 있다.
또한, 본 발명의 다른 목적은 제철소의 제선공정 상에서 발생하는 배가스 중 이산화탄소를 포집하여 탄소 자원으로 변환한 뒤, 이를 저장 및 수송할 수 있는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템을 제공하는 데 그 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위한 본 발명의 일 실시예에 따르면, 본 발명의 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템은 환원철 및 괴상 탄재가 장입되어 용철을 제조하는 용융가스화로; 상기 용융가스화로에 연결되고, 상기 용융가스화로에서 배출되는 환원가스를 이용하여 철광석을 환원철로 제조하고, 상기 환원철을 용융가스화로에 제공하는 환원로; 철광석과 코크스가 장입되어 용철을 제조하는 고로; 상기 환원로 및 고로의 사이에 구비되어 상기 환원로의 배가스인 환원가스로부터 염기성 알칼리 혼합액을 분사하여 이산화탄소를 제거 및 반응물을 생성한 후 이산화탄소가 제거된 배가스를 고로에 취입하는 반응기; 및 상기 반응기로부터 생성된 반응물 중에서 이산화탄소 반응물을 이용하여 수소와 산소 가스를 생성하는 수소생성기;를 포함하고, 상기 반응기는 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리하고, 상기 분리된 이산화탄소 반응물을 자원화하기 위해 저장한다.
또한 일 실시예에 따라, 상기 수소생성기에서 생성된 수소 가스는 고로에 연료로서 공급하거나 수소 저장탱크에 저장하고, 생성된 산소 가스는 용융가스화로에 공급한다.
또한 일 실시예에 따라, 상기 염기성 알칼리 혼합액은, SiO2, Al2O3, Fe2O3, TiO2, MgO, MnO, CaO, Na2O, K2O 및 P2O3로 이루어진 군으로부터 선택된 1종 이상의 산화물; Li, Cr, Co, Ni, Cu, Zn, Ga, Sr, Cd 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 금속; 알루미나계 원료, 실리카계 원료 및 수산화나트륨으로 제조된 결정화된 합성제올라이트; 및, 사붕산나트륨(Na2B4O7.10H2O), 수산화나트륨(NaOH), 규산나트륨(Na2SiO3), 수산화칼륨(KOH) 및 과산화수소(H2O2)로 이루어진 군으로부터 선택된 1 종 이상의 액상 조성물;을 포함한다.
또한 일 실시예에 따라, 상기 반응기는, 상기 염기성 알칼리 혼합액을 공급하는 믹서; 상기 믹서로부터 공급된 염기성 알칼리 혼합액과 하부에 설치된 버블러를 통과하여 미세 방울이 형성된 배가스를 반응시켜 상기 배가스 중 이산화탄소를 포집하는 흡수탑; 상기 흡수탑에서 포집된 이산화탄소를 포함하는 반응물을 수집하고, 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리하는 분리기; 및 상기 분리된 이산화탄소 반응물을 자원화하기 위해 저장하는 탄소자원 저장소를 포함한다.
또한 일 실시예에 따라, 상기 믹서는 염기성 알칼리 용액 저장조에서 공급된 염기성 알칼리 용액과 급수원에서 공급된 물을 혼합시켜 염기성 알칼리 혼합액을 생성한다.
또한 일 실시예에 따라, 상기 염기성 알칼리 용액과 물은 1:1 내지 1:5의 비율로 혼합된다.
또한 일 실시예에 따라, 상기 염기성 알칼리 혼합액의 평균 pH는 pH12 내지 pH13.5의 범위를 갖는다.
또한 일 실시예에 따라, 상기 흡수탑 내의 염기성 알칼리 혼합액의 수위가 90% 미만으로 낮아지면 상기 믹서에서 밸브를 통해 조절되어 염기성 알칼리 혼합액이 투입되고 상기 염기성 알칼리 혼합액의 수위가 100%가 될 경우 투입이 중단되고, 그와 동시에 염기성 알칼리 혼합액의 pH가 12 내지 13.5가 될 때까지 염기성 알칼리 용액과 물을 혼합한다.
또한 일 실시예에 따라, 상기 흡수탑은 상부에 설치된 다수의 노즐을 통해 상기 믹서로부터 염기성 알칼리 혼합액을 공급한다.
또한 일 실시예에 따라, 상기 버블러는 상기 배가스를 이용하여 배가스 마이크로버블을 형성한다.
또한 일 실시예에 따라, 상기 흡수탑은 상기 탄화수소 개질기로부터 전달된 이산화탄소가 흡수탑 하부에 설치된 메쉬망을 통과하면서 미세 방울로 미립화되고, 흡수탑 상부를 가로지르도록 설치된 배관을 통해 믹서로부터 흡수탑 내부로 공급된 염기성 알칼리 혼합액은 상기 배관의 일측에 일정 간격마다 설치된 다수의 노즐을 통해 상방을 향해 분수 형상으로 분출되면서 미세 액적으로 미립화된 후 미립화된 이산화탄소와 반응됨에 의해 이산화탄소를 포집한다.
또한 일 실시예에 따라, 상기 메쉬망과 배관 사이에는 미립화된 이산화탄소와 염기성 알칼리 혼합액의 유동성을 증가시켜 반응을 촉진하기 위한 교반기가 더 구비된다.
또한 일 실시예에 따라, 상기 메쉬망과 배관 사이에는 미립화된 염기성 알칼리 혼합액 중 일정 크기 이하의 미세 액적만 선택적으로 통과시키기 위한 미세 액적 스크린이 더 구비된다.
또한 일 실시예에 따라, 상기 이산화탄소 반응물은 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함한다.
또한 일 실시예에 따라, 상기 분리기는 반응물에서 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하는 이산화탄소 반응물과, 폐용액을 분리하는 원심분리기; 및 상기 이산화탄소 반응물 중에서 탄산수소나트륨만을 외부로 배출시키기 위한 배출관의 내측 둘레에 대응되게 형성되고, 표면에 상기 탄산수소나트륨의 투과를 허용하는 크기로 미세 구멍이 형성된 진동분리막;을 포함한다.
또한 일 실시예에 따라, 상기 반응기는 상기 흡수탑 내의 염기성 알칼리 혼합액의 수위 및 pH를 모니터링하는 모니터링부; 및 상기 모니터링부에 의해 염기성 알칼리 혼합액의 공급량을 조절하는 제어부;를 더 포함한다.
개시된 기술의 실시예들은 다음의 장점들을 포함하는 효과를 가질 수 있다. 다만, 개시된 기술의 실시예들이 이를 전부 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
본 발명의 실시예에 따르면, 종래 제선공정 상에서 배출되는 배가스 중 이산화탄소를 포집함으로써 이산화탄소를 저감시킬 수 있고, 상기 포집된 이산화탄소를 이용하여 유용한 자원인 탄산나트륨 또는 탄산수소나트륨을 제조할 수 있다.
또한, 본 발명의 실시예에 따르면, 종래 제선공정에서 발생되는 배가스 중의 산소 및 수소 가스를 추출하여 이를 고로의 연료로 재사용함으로써 이산화탄소 저감을 위한 석탄 이용 효율을 향상시킬 수 있다.
또한, 본 발명의 실시예에 따르면, 종래 제선공정에서 염기성 알칼리 혼합액을 사용하여 이산화탄소를 포집하고, 포집된 이산화탄소 반응물을 식품 첨가제, 세제, 비누 원료, 첨단 의료산업, 폐수처리 등 다양한 산업 분야에서 활용할 수 있어 수익 창출까지 가능하므로 기존 기술 대비 경제성을 확보할 수 있다.
도 1은 고로를 이용하는 제선 공정의 종래 용철 제조 장치를 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템의 구성도이다.
도 3은 본 발명의 일 실시에에 따른 용철 제조 장치를 개략적으로 나타낸 도면이다.
도 4는 본 발명의 일 실시예에 따른 반응기를 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른 수소생성기의 개념도이다.
도 6은 도 5에 도시된 B 부분의 확대도이다.
도 7은 도 5에 도시된 A 부분의 확대도이다.
도 8은 본 발명의 다른 실시예에 따른 반응기의 이산화탄소 포집 성능을 향상시키기 위한 흡수탑의 내부 구성을 개략적으로 도시한 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하 도면을 참조하여 본 발명의 일 실시예에 따른 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템을 보다 상세하게 설명하도록 한다.
도 2는 본 발명의 일 실시예에 따른 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템의 구성도이고, 도 3은 본 발명의 일 실시에에 따른 용철 제조 장치를 개략적으로 나타낸 도면이다.
먼저, 도 2를 참조하면, 본 발명의 일 실시예에 따른 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템은, 환원철 및 괴상 탄재가 장입되어 용철을 제조하는 용융가스화로(100)가 구비된다.
또한, 상기 용융가스화로(100)에 연결되고, 상기 용융가스화로(100)에서 배출되는 환원가스를 이용하여 철광석을 환원철로 제조하고, 상기 환원철을 용융가스화로(100)에 제공하는 환원로(200)가 구비된다.
또한, 철광석과 코크스가 장입되어 용철을 제조하는 고로(400)가 구비되는데, 이때 상기 환원로(200) 및 고로(400)의 사이에는 상기 환원로(200)의 배가스로부터 이산화탄소를 제거 및 이산화탄소 반응물을 생성한 후 이산화탄소가 제거된 배가스를 고로(400)에 취입하는 반응기(300)가 구비된다.
또한, 상기 반응기(300)로부터 생성된 이산화탄소 반응물을 이용하여 수소와 산소 가스를 생성하고, 생성된 수소 가스를 고로(400)에 연료로서 공급함과 함께 생성된 산소 가스를 용융가스화로(100)에 공급하는 수소생성기(500)가 구비된다.
구체적으로, 도 3을 참조하면 상기 반응기(300)는 환원로(200)로부터 환원가스를 전달받아 염기성 알칼리 혼합액과 반응시킴으로써 배가스 중의 이산화탄소를 포집하고, 포집된 이산화탄소를 포함하는 반응물을 수집하며, 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리하고, 상기 이산화탄소 반응물을 회수하여 저장하며, 최종적으로 상기 포집된 이산화탄소가 제거된 잔여 배가스를 외부로 배출할 수 있다.
여기서, 이산화탄소 반응물은 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하며, 상기 잔여 배가스는 상기 고로(400)에 투입되는 상기 이산화탄소가 제거된 환원가스이다.
따라서, 본 발명의 일 실시예에 따른 용철 제조 공정에서는 환원로(200)에 철광석이 장입되어 환원되고, 이때 상기 환원로(200)에 장입되는 철광석은 사전 건조된 후에 환원로(200)를 통과하면서 환원철이 제조되어진다.
이때, 상기 환원로(200)는 유동층형 환원로일 수 있으며, 분철광석 및 용융가스화로(100)로부터 환원가스를 공급받아 그 내부에 유동층을 형성한다.
또한, 상기 반응기(300)는 환원로(200)로부터 전달되는 배가스, 즉 환원가스 중의 이산화탄소의 함량을 저감하고, 상기 이산화탄소가 저감된 환원가스를 고로(400)에 전달한다. 이러한 상기 반응기(300)의 구성에 대해서는 후술하는 도 4에서 보다 자세히 살펴보기로 한다.
도 4는 본 발명의 일 실시예에 따른 반응기(300)를 나타낸 도면이다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 반응기(300)는 철강 제조 공정 중 하나인 제선 공정상에서 배출되는 배가스, 즉 환원가스 중의 이산화탄소를 포집함으로써 이산화탄소를 저감시킬 수 있고, 상기 포집된 이산화탄소를 이용하여 탄산나트륨 또는 탄산수소나트륨으로 탄소자원화시킬 수 있는 구조를 갖는다.
구체적으로, 본 발명의 일 실시예에 따른 반응기(300)는 염기성 알칼리 용액을 이용하여 상기 환원로(200)에서 배출된 배가스, 즉 환원가스 중의 이산화탄소를 포집하는 반응기로서, 흡수탑(310), 이산화탄소 포집부(311), 믹서(330), 분리기(340), 탄소자원 저장소(341) 및 배출부(350)를 포함한다.
상기 흡수탑(310)은 이산화탄소를 포집하는 시설, 건물, 설비 등을 의미하는 것일 수 있다. 또한, 상기 흡수탑(310)의 하단에 위치하는 이산화탄소 포집부(311)는 흡수탑(310)의 일부분이며, 배가스를 버블링하여 이산화탄소를 포집하는 부분을 의미하는 것일 수 있다.
상기 흡수탑(310)은 이산화탄소가 포집되는 이산화탄소 포집부(311)를 하단에 포함하여, 염기성 알칼리 혼합액과 배가스(배가스 마이크로버블)를 반응시켜 제철소의 제선 공정상에서 배출되는 배가스 중 이산화탄소만을 포집한다. 상기 배가스 중 이산화탄소를 포집한 후, 상기 흡수탑(310)에는 이산화탄소가 제거된 배가스가 기체 상태로 남아있는 것일 수 있다.
상기 흡수탑(310)은 상부에 노즐이 설치되어 믹서(330)로부터 상기 노즐을 통해 염기성 알칼리 혼합액이 흡수탑(310) 내에 분사되고, 하단의 이산화탄소 포집부(311)에 모인다. 상기 염기성 알칼리 혼합액이 분사되는 동시에 환원로(200)으로부터 공급된 배가스, 즉 환원가스가 흡수탑(310) 하부의 이산화탄소 포집부(311) 내의 버블러(313)를 통과하여 마이크로버블(microbubble)이 생성된 배가스가 공급되며, 상기 이산화탄소 포집부(311) 내에서 염기성 알칼리 혼합액과 배가스 마이크로버블이 반응하여 이산화탄소를 포집한다. 상기 마이크로버블은 염기성 알칼리 혼합액에 배기 가스를 반응시킬 때 환원로(200)의 출구에 미세한 구멍이 형성된 버블러(313)를 통과하면서 버블이 형성된다.
상기 버블러(313)는 환원로(200)으로부터 공급된 배가스를 통과시킴으로써 배가스에 마이크로버블을 형성할 수 있고, 상기 마이크로버블은 버블의 크기가 작을수록 배가스와 알칼리 용액의 반응면적이 넓어져 이산화탄소의 포집 능력이 증가하는 것일 수 있다. 예를 들어, 상기 마이크로버블은 약 50 ㎛ 이하의 크기를 가지는 수용액 상에 존재하는 기포를 의미하는 것일 수 있다.
상기 버블러(313) 이외에도 흡수탑 내에 배가스가 균일한 속도분포로 유입되도록 슬릿(Slit) 또는 구멍(Hole)이 다수 형성된 배플(508)이 더 추가될 수 있다.
또한, 상기 흡수탑(310)은 내부에 레벨 인디케이터(level indicator)(312)를 포함하여 흡수탑(310) 내의 용액의 수위를 감지할 수 있다.
상기 노즐(318, 도 8 참조)은 다수의 노즐을 포함할 수 있고, 1단 이상의 단으로 형성될 수 있다. 상기 노즐(318, 도 8 참조)은 믹서(330)와 연결되어 믹서(330)로부터 염기성 알칼리 혼합액을 공급할 수 있다.
상기 흡수탑(310)은 직렬, 병렬, 또는 직렬과 병렬 복합 배열로 구성될 수 있다.
예를 들어, 상기 흡수탑(310)은 배기 가스의 유속이 빠른 경우 직렬로 배열하는 것일 수 있다. 유속이 빨라 반응이 안된 이산화탄소가 흡수탑에서 배출되는 경우 흡수탑을 직렬로 설치하여 미반응 이산화탄소를 포집할 수 있다.
또한, 예를 들어, 상기 흡수탑(310)은 배기 가스의 유량이 많은 경우 병렬로 배열하는 것일 수 있다. 배기 가스의 유량이 흡수탑이 포집할 수 있는 양을 초과하는 경우 흡수탑을 병렬로 하여 포집 가능한 이산화탄소의 양을 늘릴 수 있다.
상기 반응기(300)는 이산화탄소를 포함하는 모든 배가스를 활용할 수 있고, 본 발명의 일 실시예에 따르면 제철소의 제선 공정상의 환원로(200)에서 발생된 환원가스 또는 다른 기체와의 혼합 가스일 수 있다.
상기 믹서(330)은 염기성 알칼리 용액 저장조(331)에서 공급된 염기성 알칼리 용액과 급수원(332)에서 공급된 물을 혼합하여, 상기 흡수탑(310)의 노즐(318, 도 8 참조)로 공급한다.
상기 염기성 알칼리 용액과 물이 혼합된 염기성 알칼리 혼합액은 공급량 또는 필요량이 많아질 경우 별도로 연결된 바이패스(by-pass)(336) 라인을 이용하여 공급할 수 있다.
상기 염기성 알칼리 용액과 물은 1:1 내지 1:5의 비율로 혼합하는 것일 수 있다. 예를 들어, 상기 염기성 알칼리 용액과 물은 1:1 내지 1:4, 1:1 내지 1:3, 1:1 내지 1:2, 1:2 내지 1:5, 1:2 내지 1:3 또는 1:3 내지 1:5의 비율로 혼합하는 것일 수 있다.
상기 염기성 알칼리 용액과 물은 염기성 알칼리 용액의 혼합비가 증가할수록 이산화탄소 포집률이 증가할 수 있으나, 비용적인 측면을 고려하여 물의 혼합비를 조절할 수 있다.
상기 염기성 알칼리 혼합액은, SiO2, Al2O3, Fe2O3, TiO2, MgO, MnO, CaO, Na2O, K2O 및 P2O3로 이루어진 군으로부터 선택된 1종 이상의 산화물; Li, Cr, Co, Ni, Cu, Zn, Ga, Sr, Cd 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 금속; 알루미나계 원료, 실리카계 원료 및 수산화나트륨으로 제조된 결정화된 합성제올라이트; 및, 사붕산나트륨(Na2B4O7.10H2O), 수산화나트륨(NaOH), 규산나트륨(Na2SiO3), 수산화칼륨(KOH) 및 과산화수소(H2O2)로 이루어진 군으로부터 선택된 1 종 이상의 액상 조성물;을 포함하는 것을 특징으로 한다.
상기 급수원(332)은 시스템 설치 장소에서 용이하게 구할 수 있는 모든 용수를 포함할 수 있고, 예를 들어, 해수일 수 있다.
상기 염기성 알칼리 혼합액의 평균 pH는 pH12 이상인 것일 수 있다. 예를 들어, 상기 pH는 pH12 내지 pH13.5, pH12, pH12.1, pH12.2 또는 pH12.3일 수 있다. 상기 염기성 알칼리 혼합액의 pH는 상기 흡수탑(310) 내의 pH meter로 측정될 수 있으며, 상기 흡수탑(110) 내의 염기성 알칼리 혼합액의 pH가 10.5 미만이 되면 더 이상 이산화탄소 포집을 하지 못하기 때문에, 상기 염기성 알칼리 혼합액의 pH를 맞추기 위해, 상기 염기성 알칼리 용액과 물의 양은 각각의 밸브(333, 334)에서 0 내지 100%까지 조절하여 믹서(330)로 공급될 수 있다.
상기 흡수탑(310) 내의 염기성 알칼리 혼합액의 수위가 90% 미만(level indicator로 측정)으로 낮아지면 상기 믹서(330)에서 밸브(335)를 통해 조절되어 염기성 알칼리 혼합액이 투입되고 용액의 수위가 100%가 될 경우 투입이 중단될 수 있다. 그와 동시에 염기성 알칼리 혼합액의 pH가 12 내지 13.5가 될 때까지 염기성 알칼리 용액과 물을 혼합하는 것일 수 있다.
상기 흡수탑(310)으로 공급되는 염기성 알칼리 혼합액의 양과 상기 분리기(140)에서 나가는 용액의 양이 동일해야 지속적으로 이산화탄소 포집 시스템을 유지할 수 있기 때문에, 상기 흡수탑(310)에서 분리기(340)로 가는 라인에 설치된 flow meter 값과 동일한 양의 염기성 알칼리 혼합액이 흡수탑(310)에 공급되도록 밸브(335)(필요시 by-pass 밸브 포함)를 조절하여 net flow를 0로 만드는 것일 수 있다.
상기 흡수탑(310)의 이산화탄소 포집부(311)에서 염기성 알칼리 혼합액과, 환원로(200)에서 배출되는 배가스가 반응하여 포집된 이산화탄소를 포함하는 반응물을 수집하고, 상기 반응물에서 이산화탄소 반응물과 폐용액은 밸브(314)를 통해 분리기(340)로 이동하여, 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리한다.
상기 분리기(340)는 반응물에서 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하는 이산화탄소 반응물과 폐용액을 분리하는 원심분리기와, 상기 원심분리기로부터 분리된 이산화탄소 반응물 중에서 탄산수소나트륨만을 외부로 배출시키기 위한 배출관의 내측 둘레에 대응되게 형성되고 표면에 상기 탄산수소나트륨의 투과를 허용하는 크기로 미세 구멍이 형성된 진동분리막을 포함할 수 있다. 이를 통해 고순도의 탄산수소나트륨을 획득하여 바로 판매할 수 있어 수익을 얻을 수 있다.
상기 진동분리막에 형성된 미세 구멍의 크기는 10~20㎛일 수 있으며, 진동분리막의 진동을 유발시키기 위해서 진동발생부를 더 포함할 수 있다. 상기 진동발생부는 탄산수소나트륨에 의해 상기 미세 구멍이 막히는 것을 방지하기 위해 배치될 수 있다.
상기 분리된 이산화탄소 반응물은 탄소자원 저장소(341)로 이동하여 다른 용도로 자원화하여 재활용할 수 있다. 예를 들어, 상기 이산화탄소 반응물은 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하는 것일 수 있다.
상기 이산화탄소 반응물은 하기 <반응식 1>에서와 같이, 염기성 알칼리 혼합물과 이산화탄소가 반응하여 생성될 수 있다.
<반응식 1>
2NaOH + CO2 → Na2CO3 + H2O
Na2CO3 + H2O + CO2 → 2NaHCO3
상기 반응물에서 이산화탄소 반응물을 제외한 폐용액은 폐수 처리조(342)로 이동되어 폐기된다. 예를 들어, 상기 폐용액은 촉매 역할을 끝낸 염기성 알칼리 혼합액에 함유되어 있던 일라이트 광물 및 물 등을 포함할 수 있다.
상기 탄소자원 저장소(341)는 제철소가 원료조달을 위해서 바닷가에 있는 점이 고려된 이산화탄소 반응물 저장소로서, 종래의 이산화탄소 저장장치보다 더 효율적으로 이산화탄소 포집 반응물인 탄소 자원를 저장하는 동시에 저장비용 및 수용비용을 절감할 수 있다.
구체적으로, 상기 탄소자원 저장소(341)는 염기성 알칼리 혼합액과 제철소에서 발생된 이산화탄소가 반응하여 발생된 이산화탄소 반응물을 수용하는 해상구조물; 상기 이산화탄소 반응물을 상기 해상구조물로 로딩(loading)하는 인입 유닛; 상기 해상구조물과 연결되어 상기 해상구조물 내의 상기 이산화탄소 반응물을 언로딩(unloading)하는 배출 유닛; 및 상기 해상구조물에 수용된 상기 이산화탄소 반응물을 로딩/언로딩시에 상기 인입 유닛 및 상기 배출 유닛을 제어하는 제어 유닛;을 포함할 수 있다. 이를 통하여 더 효율적으로 탄소자원을 해상구조물에 저장하고, 저장된 탄소자원이 필요한 경우에 해상구조물로부터 인출하여 활용할 수 있다.
바람직하게, 상기 해상구조물은 액체 수송 운반선을 포함하는 부유식 해상구조물로서, 이에 한정되는 것은 아니며 해상에서 떠 있거나 이동하는 등 각종 다양한 작업을 수행할 수 있는 구조물이라면 어떤 것이든 포함될 수 있다. 구체적으로는, LNG FPSO, LNG FSRU, LNG 수송선 및 LNG RV 중 선택된 어느 하나인 것이 가능하다.
한편, 상기 이산화탄소 포집부(311)에서 이산화탄소 포집 후 이산화탄소가 제거된 잔여 배가스는 배출부(350)를 통해 배출된다. 본 발명의 일 실시예에 따르면 상기 배출부(350)를 통해 배출되는 잔여 배가스는 이산화탄소가 제거된 환원가스로 상기 고로(400)에 투입된다.
또한, 상기 잔여 배가스는 배출 시 이산화탄소의 농도가 규제 기준치를 초과할 수 없으므로, 상기 잔여 배가스가 배출될 대기 속 이산화탄소의 농도를 기준으로 하여(관리자가 미리 대기의 이산화탄소 농도의 측정 후 설정한 기준) 기준을 초과하지 않는 잔여 배가스를 배출할 수 있다.
상기 반응기(300)는, 상기 흡수탑(310) 내의 염기성 알칼리 혼합액의 수위 및 pH를 모니터링하는 모니터링부(360); 및 상기 모니터링부(360)에 의해 염기성 알칼리 혼합액의 공급량을 조절하는 제어부(361);를 더 포함할 수 있다.
상기 반응기(300)의 모든 과정에서 측정되는 gas meter, pH meter, flow meter의 값을 모니터링부(360)에서 관리하며, 모니터링부(360)에서 나타내는 값을 기반으로 제어부(361)를 조절한다. 상기 제어부(361)에서 입력되는 값에 대하여 밸브들(314, 333, 334, 335)이 퍼센테이지로 조절될 수 있다.
본 발명에 따른 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템은 제철소의 제선공정 상에서 발생하는 배가스 중 이산화탄소를 포집함으로써 이산화탄소를 저감시킬 수 있고, 상기 포집된 이산화탄소를 이용하여 탄산나트륨 또는 탄산수소나트륨으로 변환시킴으로써 다른 유용한 물질로의 자원화가 가능하다.
한편, 상기 탄소자원 저장소(341)와 분리기(340) 사이에는 밸브(343)가 더 구비되고, 상기 밸브(343)의 유로전환 및 개폐동작에 의해 상술한 바와 같이 흡수탑(310)에서 생성된 이산화탄소 반응물을 탄소자원 저장소(341)로 보내거나 수소생성기(500)로 선택적으로 보낼 수 있다.
수소생성기로 보내진 이산화탄소 반응물은 전기분해를 통해 수소와 산소 가스가 추출된다. 이에 대한 자세한 설명은 후술하는 도 5 내지 도 7에서 상세히 살펴보기로 한다.
도 5는 본 발명의 일 실시예에 따른 수소생성기(500)의 개념도이고, 도 6은 도 5에 도시된 B 부분의 확대도이며, 도 7은 도 5에 도시된 A 부분의 확대도이다.
도 5 내지 도 7에 도시된 바와 같이, 수소생성기(500)는 반응기(300)로부터 분리된 이산화탄소 반응물인 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 공급하기 위한 이산화탄소 반응물 공급 탱크(531)와, 이산화탄소 반응물 공급 탱크(531)로부터 공급된 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 전기 분해의 전해액으로 사용하여 전기 분해를 통해 수소 가스와 산소 가스를 형성하는 수전해셀(540)과, 수전해셀(540)에 전류를 인가하기 위한 전원 인가부(510) 및 인버터(520)를 구비할 수 있다.
이산화탄소 반응물 공급 탱크(531)는 반응기(300)로부터 분리된 이산화탄소 반응물인 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 이산화탄소 반응물 유입 유로(522)를 통해 공급받아 전해액으로서 저장하며, 이산화탄소 반응물 공급 탱크(531)에 저장된 이산화탄소 반응물을 수전해셀(540)로 공급하는 전해액 공급 유로(532)와 연결된 이산화탄소 반응물 유입구(524)를 구비할 수 있다.
이산화탄소 반응물 공급 탱크(531)에는 수소생성기(500)의 전기 분해의 전해액인 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)의 펌핑을 위한 펌프 등이 마련될 수 있다.
수전해셀(540)은 도 6 및 도 7에 도시된 바와 같이, 음극(-) 전극판 및 양극(+) 전극판과, 이들 전극판 사이에 배치되는 전해질막인 격막(542)과, 상기 이산화탄소 반응물 공급 탱크(531)로부터 공급받은 이산화탄소 반응물을 수용하고 수소 저장 탱크(585) 및 산소 저장 탱크(590)과 연결되는 한쌍의 분리된 전해조(530)와, 전해조(530)의 이산화탄소 반응물을 전기분해하여 생성된 수소 가스 및 산소 가스를 배출하는 기체 배출부와, 전기분해에 의해 반응이 일어나지 않은 이온 물질을 배출하기 위한 드레인(550)을 구비할 수 있다.
바람직하게는, 이산화탄소 반응물 공급 탱크(531)에 저장된 이산화탄소 반응물이 전극판과 접촉되는 것을 방지하기 위해 비전도체로 형성된 패킹(545)과, 전원 인가부(510)의 전력에 의하여 선택적으로 이산화탄소 반응물 유입 유로(522)의 개폐 여부를 제어할 수 있는 제어부(미도시)를 더 구비할 수 있다.
이러한 수전해셀(540)은 하기 반응식 2에서와 같이, 양쪽의 전극판이 본 발명의 전해액인 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 공급받은 상태에서 전원 인가부(510) 및 인버터(520)에 의해 전력 인가에 의해 DC 모선(521)을 통해서 통전됨에 따라 수소(H2) 가스와 산소(O2) 가스를 발생시키게 된다.
<반응식 2>
·환원전극(음극) 반응 :
Na2CO3+ CO2+ 2H2O + 2e- → 2NaOH+ 2CO2+ 2OH- + H2
2NaHCO3 + 2e- → 2NaOH+ 2CO2+ 2OH- + H2
·산화전극(양극) 반응 :
Na2CO3 + CO2 + H2O - 2e- → 2NaOH + 2CO2 + 2H+ + O2
2NaHCO3 - 2e- → 2NaOH + 2CO2 + 2H+ + O2
즉, 이때 수전해셀(540)에 공급된 전해액인 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)은 음극 전극판 표면에서 해리되면서 수소 가스를 배출하고, 산소 이온이 전해질막인 격막을 통해 이동하여 전자를 방출하면서 양극 전극판 상에서는 산소 가스가 배출되는 것이다. 여기서, 상기 반응식 2에서 반응이 일어나지 않은 이온 물질은 드레인(550)을 통해 수소생성기(500)의 슬러지 회수부(600)로 이송될 수 있다.
상술한 과정을 통해서 수전해셀(540)로부터 배출되는 수소 가스는 수소 배출 유로(570)를 통해서 배출되어 필터 및 압축기를 거치면서 고순도의 수소 가스가 수소 저장 탱크(585)로 저장되고, 저장된 수소 가스는 고로(400)에 석탄을 대체하는 연료로서 공급됨으로써 온실가스의 발생을 저감함과 동시에 석탄 사용 효율을 향상시킬 수 있다.
마찬가지로 수전해셀(540)로부터 배출되는 산소 가스는 산소 배출 유로(575)를 통해서 배출되어 필터 및 압축기를 거치면서 고순도의 산소 가스가 산소 저장 탱크(590)에 저장될 수 있다. 상기 산소 저장 탱크(590)에 저장된 산소 가스는 용융가스화로(100)의 풍구(130, 도 3 참조)에 공급됨으로써 환원가스의 생산에 이용될 수 있다.
한편, 물을 수전해액으로 사용하는 종래 수전해 기술의 캐소드에서는 환원 과정 중에 반응물로서 OH-라디칼이 생성되며, 상기 OH-라디칼은 애노드에서 산화를 통해 발생되는 산소(O2) 그리고 캐소드에서 환원을 통해 발생되는 수소(H2)와 재결합하기 쉬워 물(H2O)이 생성되기 때문에 결과적으로 수소(H2)의 발생 효율이 저하되는 문제점이 있었다.
그러나, 본 발명은 이산화탄소 반응물인 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 전기 분해의 수전해액으로 사용함으로써, 종래 수전해 기술의 반응에서 분해된 OH-라디칼과 수소(H2) 및 산소(O2)의 재결합을 상기 이산화탄소 반응물인 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)이 방지하여 결과적으로 수소(H2)의 발생 효율을 증가시킬 수 있다. 또한, 본 발명에서는 수전해 반응을 통해서 Na+ 이온이 해리되어 있으므로 전기전도도 증가로 인한 수소(H2) 가스의 생성량도 증가될 수 있어 종래 기술의 문제점을 해소할 수 있는 효과를 가진다.
도 8은 본 발명의 다른 실시예에 따른 반응기의 이산화탄소 포집 성능을 향상시키기 위한 흡수탑(310)의 내부 구성을 개략적으로 도시한 도면이다.
상기 도 8을 참조하면, 본 발명의 다른 실시예에 따른 반응기의 흡수탑 구성은 도 4의 일 실시예 구성에 더해 이산화탄소와 염기성 알칼리 혼합액의 반응을 촉진하기 위한 세부 구성이 추가될 수 있다.
상기 다른 실시예에 따른 흡수탑(310)은, 상기 환원로(200)로부터 전달된 이산화탄소가 흡수탑(310) 하부에 설치된 메쉬망(315)을 통과하면서 마이크로버블로 미립화된다.
또한, 상기 흡수탑(310) 상부를 가로지르도록 설치된 배관(317)을 통해 믹서(330, 도 4 참조)로부터 흡수탑(310) 내부로 공급된 염기성 알칼리 혼합액은 상기 배관(317)의 일측에 일정 간격마다 설치된 다수의 노즐(318)을 통해 상방을 향해 분수 형상으로 분출되면서 미세 액적으로 미립화된다.
또한, 상기 메쉬망(315)과 배관(317) 사이에는 미립화된 염기성 알칼리 혼합액 중 일정 크기 이하의 미세 액적만 선택적으로 통과시키기 위한 미세 액적 스크린(319)이 더 구비될 수 있다.
앞서 도 4의 일 실시예에서 살펴본 바와 같이 상기 메쉬망(315)과 미세 액적 스크린(319)에 의해 생성된 마이크로버블 및 미세 액적은 그 크기가 작을수록 이산화탄소와 알칼리 용액의 반응면적이 넓어져 이산화탄소의 포집 능력이 증가될 수 있다. 예를 들어, 상기 마이크로버블 및 미세 액적은 약 50 ㎛ 이하의 크기를 갖는 것일 수 있다.
이후, 상기와 같이 미세 액적으로 미립화된 염기성 알칼리 혼합액은 앞서 메쉬망(315)에 의해 미립화된 이산화탄소와 접촉에 의해 반응이 촉진되면서 이산화탄소를 활발히 포집한다.
또한, 상기 메쉬망(315)과 배관(317) 사이에는 미립화된 이산화탄소와 염기성 알칼리 혼합액의 유동성을 증가시켜 반응을 촉진하기 위한 교반기(316)가 더 구비될 수 있다.
상기 교반기(316)는 프로펠러 형태로 회전하면서 미립화된 염기성 알칼리 혼합액과 이산화탄소의 체류 시간과 접촉 시간을 증가시킴으로써 두 물질 간의 반응이 더욱 촉진될 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 명세서의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 명세서의 범위에 포함되는 것으로 해석되어야 한다.
한편, 본 명세서와 도면에는 본 명세서의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 명세서의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 명세서의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 명세서의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
본 발명은 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템 분야에 광범위하게 사용될 수 있다.

Claims (16)

  1. 환원철 및 괴상 탄재가 장입되어 용철을 제조하는 용융가스화로;
    상기 용융가스화로에 연결되고, 상기 용융가스화로에서 배출되는 환원가스를 이용하여 철광석을 환원철로 제조하고, 상기 환원철을 용융가스화로에 제공하는 환원로;
    철광석과 코크스가 장입되어 용철을 제조하는 고로;
    상기 환원로 및 고로의 사이에 구비되어 상기 환원로의 배가스인 환원가스로부터 염기성 알칼리 혼합액을 분사하여 이산화탄소를 제거 및 반응물을 생성한 후 이산화탄소가 제거된 배가스를 고로에 취입하는 반응기; 및
    상기 반응기로부터 생성된 반응물 중에서 이산화탄소 반응물을 이용하여 수소와 산소 가스를 생성하는 수소생성기;를 포함하고,
    상기 반응기는 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리하고, 상기 분리된 이산화탄소 반응물을 자원화하기 위해 저장하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  2. 제 1 항에 있어서,
    상기 수소생성기에서 생성된 수소 가스는 고로에 연료로서 공급하거나 수소 저장탱크에 저장하고, 생성된 산소 가스는 용융가스화로에 공급하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  3. 제 1 항에 있어서,
    상기 염기성 알칼리 혼합액은,
    SiO2, Al2O3, Fe2O3, TiO2, MgO, MnO, CaO, Na2O, K2O 및 P2O3로 이루어진 군으로부터 선택된 1종 이상의 산화물;
    Li, Cr, Co, Ni, Cu, Zn, Ga, Sr, Cd 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 금속;
    알루미나계 원료, 실리카계 원료 및 수산화나트륨으로 제조된 결정화된 합성제올라이트; 및,
    사붕산나트륨(Na2B4O7.10H2O), 수산화나트륨(NaOH), 규산나트륨(Na2SiO3), 수산화칼륨(KOH) 및 과산화수소(H2O2)로 이루어진 군으로부터 선택된 1 종 이상의 액상 조성물;을 포함하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  4. 제 1 항에 있어서,
    상기 반응기는,
    상기 염기성 알칼리 혼합액을 공급하는 믹서;
    상기 믹서로부터 공급된 염기성 알칼리 혼합액과 하부에 설치된 버블러를 통과하여 미세 방울이 형성된 배가스를 반응시켜 상기 배가스 중 이산화탄소를 포집하는 흡수탑;
    상기 흡수탑에서 포집된 이산화탄소를 포함하는 반응물을 수집하고, 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리하는 분리기; 및
    상기 분리된 이산화탄소 반응물을 자원화하기 위해 저장하는 탄소자원 저장소를 포함하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  5. 제 4 항에 있어서,
    상기 믹서는 염기성 알칼리 용액 저장조에서 공급된 염기성 알칼리 용액과 급수원에서 공급된 물을 혼합시켜 염기성 알칼리 혼합액을 생성하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  6. 제 5 항에 있어서,
    상기 염기성 알칼리 용액과 물은 1:1 내지 1:5의 비율로 혼합되는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  7. 제 3 항에 있어서,
    상기 염기성 알칼리 혼합액의 평균 pH는 pH12 내지 pH13.5인 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  8. 제 4 항에 있어서,
    상기 흡수탑 내의 염기성 알칼리 혼합액의 수위가 90% 미만으로 낮아지면 상기 믹서에서 밸브를 통해 조절되어 염기성 알칼리 혼합액이 투입되고 상기 염기성 알칼리 혼합액의 수위가 100%가 될 경우 투입이 중단되고, 그와 동시에 염기성 알칼리 혼합액의 pH가 12 내지 13.5가 될 때까지 염기성 알칼리 용액과 물을 혼합하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  9. 제 4 항에 있어서,
    상기 흡수탑은 상부에 설치된 다수의 노즐을 통해 상기 믹서로부터 염기성 알칼리 혼합액을 공급하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  10. 제 4 항에 있어서,
    상기 버블러는 상기 배가스를 이용하여 배가스 마이크로버블을 형성하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  11. 제 4 항에 있어서,
    상기 흡수탑은 상기 탄화수소 개질기로부터 전달된 이산화탄소가 흡수탑 하부에 설치된 메쉬망을 통과하면서 미세 방울로 미립화되고, 흡수탑 상부를 가로지르도록 설치된 배관을 통해 믹서로부터 흡수탑 내부로 공급된 염기성 알칼리 혼합액은 상기 배관의 일측에 일정 간격마다 설치된 다수의 노즐을 통해 상방을 향해 분수 형상으로 분출되면서 미세 액적으로 미립화된 후 미립화된 이산화탄소와 반응됨에 의해 이산화탄소를 포집하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  12. 제 11 항에 있어서,
    상기 메쉬망과 배관 사이에는 미립화된 이산화탄소와 염기성 알칼리 혼합액의 유동성을 증가시켜 반응을 촉진하기 위한 교반기가 더 구비되는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  13. 제 11 항에 있어서,
    상기 메쉬망과 배관 사이에는 미립화된 염기성 알칼리 혼합액 중 일정 크기 이하의 미세 액적만 선택적으로 통과시키기 위한 미세 액적 스크린이 더 구비되는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  14. 제 1 항에 있어서,
    상기 이산화탄소 반응물은 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  15. 제 4 항에 있어서,
    상기 분리기는 반응물에서 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하는 이산화탄소 반응물과, 폐용액을 분리하는 원심분리기; 및
    상기 이산화탄소 반응물 중에서 탄산수소나트륨만을 외부로 배출시키기 위한 배출관의 내측 둘레에 대응되게 형성되고, 표면에 상기 탄산수소나트륨의 투과를 허용하는 크기로 미세 구멍이 형성된 진동분리막;을 포함하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
  16. 제 4 항에 있어서,
    상기 반응기는 상기 흡수탑 내의 염기성 알칼리 혼합액의 수위 및 pH를 모니터링하는 모니터링부; 및
    상기 모니터링부에 의해 염기성 알칼리 혼합액의 공급량을 조절하는 제어부;를 더 포함하는 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템.
PCT/KR2022/009524 2022-04-27 2022-07-01 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템 WO2023210874A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0051953 2022-04-27
KR1020220051953A KR20230152871A (ko) 2022-04-27 2022-04-27 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템

Publications (1)

Publication Number Publication Date
WO2023210874A1 true WO2023210874A1 (ko) 2023-11-02

Family

ID=88519040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009524 WO2023210874A1 (ko) 2022-04-27 2022-07-01 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템

Country Status (2)

Country Link
KR (1) KR20230152871A (ko)
WO (1) WO2023210874A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117626294A (zh) * 2024-01-26 2024-03-01 江苏中科能源动力研究中心 一种耦合绿电的熔融床制备合成气的系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060023208A (ko) * 2004-09-09 2006-03-14 주식회사 포스코 코크오븐가스에 함유된 이산화탄소 제거장치와 이를이용한 제거방법
JP2006122862A (ja) * 2004-11-01 2006-05-18 Mitsubishi Heavy Ind Ltd 排ガス処理装置
KR20070083770A (ko) * 2004-09-23 2007-08-24 조 데이비드 존스 탄산염 및/또는 중탄산염 광물의 동시 생성을 통한 폐기물스트림으로부터의 이산화탄소의 제거
KR101219789B1 (ko) * 2012-10-05 2013-01-09 (주)대우건설 다단 수직형 연속 이산화탄소 제거 장치 및 방법
KR20190040553A (ko) * 2017-10-11 2019-04-19 한국에너지기술연구원 Lta 제올라이트 흡착제 및 그의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180001860A (ko) 2016-06-28 2018-01-05 주식회사 포스코 용철 제조장치 및 이를 이용한 용철 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060023208A (ko) * 2004-09-09 2006-03-14 주식회사 포스코 코크오븐가스에 함유된 이산화탄소 제거장치와 이를이용한 제거방법
KR20070083770A (ko) * 2004-09-23 2007-08-24 조 데이비드 존스 탄산염 및/또는 중탄산염 광물의 동시 생성을 통한 폐기물스트림으로부터의 이산화탄소의 제거
JP2006122862A (ja) * 2004-11-01 2006-05-18 Mitsubishi Heavy Ind Ltd 排ガス処理装置
KR101219789B1 (ko) * 2012-10-05 2013-01-09 (주)대우건설 다단 수직형 연속 이산화탄소 제거 장치 및 방법
KR20190040553A (ko) * 2017-10-11 2019-04-19 한국에너지기술연구원 Lta 제올라이트 흡착제 및 그의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117626294A (zh) * 2024-01-26 2024-03-01 江苏中科能源动力研究中心 一种耦合绿电的熔融床制备合成气的系统和方法
CN117626294B (zh) * 2024-01-26 2024-04-05 江苏中科能源动力研究中心 一种耦合绿电的熔融床制备合成气的系统和方法

Also Published As

Publication number Publication date
KR20230152871A (ko) 2023-11-06

Similar Documents

Publication Publication Date Title
US9257731B2 (en) Method for implementing full cycle regeneration of waste lead acid batteries
WO2023210874A1 (ko) 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템
CN101608264A (zh) 一种铅酸蓄电池废铅回收方法
WO2011087199A1 (ko) 이산화탄소 발생량을 저감하는 용철 제조 장치
WO2020101089A1 (ko) 니켈 및 코발트 회수 방법
CN111471817A (zh) 一种改善钢渣安定性同时回收熔融钢渣物理热的气淬方法
WO2019190244A1 (ko) 가역적 산화-환원 변환제를 사용하여 이산화탄소 및 물로부터 일산화탄소와 수소를 생산하는 시스템 및 그 방법
CN114485144B (zh) 一种飞灰与废钢协同回收系统及装置
WO2019182284A1 (ko) 이산화탄소 활용 시스템 및 이를 포함하는 복합 발전 시스템
WO2011081276A1 (ko) 용철 제조 장치
CN112195343A (zh) 锂电池回收方法及系统
WO2014030811A1 (ko) 이산화탄소 고정방법 및 장치
US20230138875A1 (en) Plasma process to convert spent pot lining (spl) to inert slag, aluminum fluoride and energy
WO2023210872A1 (ko) 액화천연가스로부터 발생된 증발가스를 이용한 연료전지용 이산화탄소 포집 및 탄소자원화 시스템
WO2023210871A1 (ko) 연료전지용 이산화탄소 포집 및 탄소자원화 시스템 및 그 방법
WO2024014593A1 (ko) 천연가스 개질을 통한 블루수소 생산, 이산화탄소 포집, 탄소자원화 및 반응물 저장 시스템, 및 그 방법
WO2024014594A1 (ko) 블루수소 생산, 이산화탄소 및 황산화물 포집, 탄소자원화 및 반응물 저장, 연료전지 발전, 및 인공숲 조성 시스템, 및 그 방법
WO2024106766A1 (ko) 블루 및 그린수소를 이용한 클린에너지 융복합 센터
WO2023210876A1 (ko) 시멘트 제조 설비용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템
WO2020138668A1 (ko) 이산화탄소를 이용하여 수소를 생산하는 이차전지 및 이를 구비하는 복합 발전 시스템
WO2023140439A1 (ko) 제철소용 이산화탄소 포집 및 탄소자원화 시스템
CN204824145U (zh) 一种联合燃料氢电池的等离子气化有害废物的系统
WO2023140438A1 (ko) 선박용 이산화탄소 포집 및 탄소자원화 시스템 및 그 방법
WO2019156415A1 (ko) 이산화탄소를 이용한 수계 이차전지 및 이를 구비하는 복합 시스템
WO2023210873A1 (ko) 석탄가스화 복합발전용 이산화탄소 및 황산화물 포집, 및 탄소자원화 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940368

Country of ref document: EP

Kind code of ref document: A1