WO2023140439A1 - 제철소용 이산화탄소 포집 및 탄소자원화 시스템 - Google Patents

제철소용 이산화탄소 포집 및 탄소자원화 시스템 Download PDF

Info

Publication number
WO2023140439A1
WO2023140439A1 PCT/KR2022/008627 KR2022008627W WO2023140439A1 WO 2023140439 A1 WO2023140439 A1 WO 2023140439A1 KR 2022008627 W KR2022008627 W KR 2022008627W WO 2023140439 A1 WO2023140439 A1 WO 2023140439A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
basic alkali
reactant
carbon
exhaust gas
Prior art date
Application number
PCT/KR2022/008627
Other languages
English (en)
French (fr)
Inventor
이철
Original Assignee
(주)로우카본
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)로우카본 filed Critical (주)로우카본
Publication of WO2023140439A1 publication Critical patent/WO2023140439A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • B01D47/063Spray cleaning with two or more jets impinging against each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1412Controlling the absorption process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/16Rotary, reciprocated or vibrated modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/10Centrifuges combined with other apparatus, e.g. electrostatic separators; Sets or systems of several centrifuges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2

Definitions

  • the present invention relates to a carbon dioxide capture and carbon resource recovery system for a steelworks, and more particularly, to a carbon dioxide capture and carbon resource recovery system for a steelworks that can remove carbon dioxide in a steelworks and at the same time convert it into other useful materials by capturing and converting carbon dioxide in flue gas using a basic alkali mixed solution into carbon resources.
  • the steel industry is an industry that inevitably emits a lot of carbon dioxide due to the nature of using fossil fuels as its main raw material, accounting for 7-9% of carbon dioxide emitted from fossil fuels.
  • CCU carbon capture and utilization
  • the melting reduction method is also referred to as the FINEX method.
  • the conventional FINEX process consists of a fluidized bed for reducing fine iron ore, a melting (gasification) furnace for producing molten iron by melting reduced fine iron ore and steam coal and producing gas, and CO 2 PSA (Pressure Swing Adsorption) to reduce carbon dioxide in FOG (FINEX Off Gas).
  • PSA refers to a technology of separating a gas using an adsorbent that adsorbs a specific gas and using a difference in adsorption amount according to a pressure difference.
  • the CO 2 PSA technology has difficulties in selecting an adsorbent having high CO 2 adsorption performance at a process problem in which the typical adsorption conditions, such as a temperature of 15 to 40 ° C and a pressure of 4 to 6 bar, must be met.
  • a method of reducing carbon dioxide using CO 2 PSA technology in a conventional steel manufacturing process has a problem in that adsorption conditions and adsorbent performance conditions for applying the CO 2 PSA technology must be satisfied.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide a system for reducing carbon dioxide in exhaust gas generated in the iron making process of a steel mill.
  • another object of the present invention is to provide a carbon dioxide capture and carbon resource recovery system for a steelworks that can remove carbon dioxide and at the same time convert it into other useful materials by capturing and converting carbon dioxide in flue gas using a basic alkali mixture into a carbon resource.
  • another object of the present invention is to provide a carbon dioxide capture and carbon resource recovery system for a steelworks capable of capturing and converting carbon dioxide from exhaust gas generated in the steelmaking process of a steelworks into carbon resources, and then storing and transporting the converted carbon resources to offshore structures.
  • another object of the present invention is to reduce the oxidation level of the injected reducing gas by reducing carbon dioxide before the reducing gas is injected into the fluidized-bed reactor to improve the reduction rate of DRI (Direct Reduced Iron).
  • the purpose is to provide a carbon dioxide capture and carbon resource recovery system for steelworks.
  • Carbon dioxide capture and carbon resource recovery system for steelworks includes one or more fluidized-flow reduction furnaces for reducing iron to reduced iron by reacting iron ore with a reducing gas; First discharge means for discharging exhaust gas generated in the at least one fluidized-bed reduction reactor; a melting furnace that is connected to the fluidized-bed reduction furnace and melts the reduced iron produced in the fluidized-bed reduction furnace to produce molten iron; a second discharge means for discharging exhaust gas generated in the melting furnace; And a reactor connected to the first discharge means and the second discharge means, respectively, to receive the exhaust gas discharged from the fluidized-bed reactor and the melting furnace as a reducing gas, react with the basic alkali mixed solution to collect carbon dioxide in the reducing gas, and then collect a reactant including the captured carbon dioxide, and inputting the carbon dioxide-removed reducing gas into the fluidized-bed reduction reactor; wherein the reactor separates the carbon dioxide reactant and the waste solution from the reactant, and stores the separated carbon
  • the reducing gas is characterized in that the mixed gas of FINEX OFF GAS (FOG, FINEX OFF GAS), which is an exhaust gas generated in the fluidized-bed reactor, and a melting furnace exhaust gas, which is an exhaust gas generated in the melting furnace.
  • FINEX OFF GAS FINEX OFF GAS
  • a melting furnace exhaust gas which is an exhaust gas generated in the melting furnace.
  • the basic alkali mixture may include at least one oxide selected from the group consisting of SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , MgO, MnO, CaO, Na 2 O, K 2 O and P 2 O 3 ; At least one metal selected from the group consisting of Li, Cr, Co, Ni, Cu, Zn, Ga, Sr, Cd, and Pb; and at least one liquid composition selected from the group consisting of sodium tetraborate (Na 2 B 4 O 7 .10H 2 O), sodium hydroxide (NaOH), sodium silicate (Na 2 SiO 3 ), potassium hydroxide (KOH) and hydrogen peroxide (H 2 O 2 ).
  • oxide selected from the group consisting of SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , MgO, MnO, CaO, Na 2 O, K 2 O and P 2 O 3 ;
  • the reactor may include a mixer for supplying the basic alkali mixture; an absorption tower for collecting carbon dioxide in the exhaust gas by reacting the basic alkali mixed solution supplied from the mixer with the exhaust gas in which fine droplets are formed passing through a bubbler installed at the bottom; a separator for collecting the reactant containing carbon dioxide collected in the absorption tower and separating the reactant carbon dioxide and the waste solution from the reactant; and a carbon resource storage for storing the separated carbon dioxide reactant for recycling.
  • a mixer for supplying the basic alkali mixture
  • an absorption tower for collecting carbon dioxide in the exhaust gas by reacting the basic alkali mixed solution supplied from the mixer with the exhaust gas in which fine droplets are formed passing through a bubbler installed at the bottom
  • a separator for collecting the reactant containing carbon dioxide collected in the absorption tower and separating the reactant carbon dioxide and the waste solution from the reactant
  • a carbon resource storage for storing the separated carbon dioxide reactant for recycling.
  • the mixer is characterized in that the basic alkali solution supplied from the basic alkali solution storage tank and the water supplied from the water supply source are mixed to generate a basic alkali mixed solution.
  • the average pH of the basic alkali mixture is characterized in that pH 12 to pH 13.5.
  • the mixer is controlled through a valve to introduce the basic alkali mixture, and when the water level of the basic alkali mixture reaches 100%, the introduction is stopped, and at the same time, the basic alkali solution and water are mixed until the pH of the basic alkali mixture is 12 to 13.5.
  • the bubbler is characterized by forming exhaust gas microbubbles using the exhaust gas.
  • the absorption tower includes a spraying chamber connected to the mixer, passing through a region in the absorption tower, and inserted into the absorption tower to receive the basic alkali mixture, and a spraying device including a plurality of spraying pipes having a plurality of spraying holes for spraying the basic alkali mixed liquid and connected at an angle to the spraying chamber; a micro-droplet member that forms minute droplets by contacting the air gap when the basic alkali mixed solution sprayed from the injection device falls downward; and a baffle formed with a plurality of slits or holes so that the exhaust gas flows into the absorption tower with a uniform velocity distribution.
  • the plurality of spray holes formed in any one of the plurality of spray pipes are characterized in that the plurality of spray holes formed in the neighboring spray pipes are formed at positions alternately staggered.
  • the carbon dioxide reactant is characterized in that it includes sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ).
  • the separator a centrifugal separator for separating the carbon dioxide reactant and waste solution containing sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ) in the reactant; and a vibration isolation membrane formed to correspond to the inner circumference of the discharge pipe for discharging only sodium hydrogen carbonate from the carbon dioxide reactant to the outside, and having fine pores formed on the surface thereof to allow the sodium hydrogen carbonate to permeate.
  • the reactor may include a monitoring unit for monitoring the water level and pH of the basic alkali mixture in the absorption tower; and a controller controlling the supply amount of the basic alkali mixture by the monitoring unit.
  • the carbon resource storage may include an offshore structure accommodating the carbon dioxide reactant; an inlet unit for loading the carbon dioxide reactant into the offshore structure; a discharge unit connected to the offshore structure to unload the carbon dioxide reactant in the offshore structure; and a control unit controlling the intake unit and the discharge unit when loading/unloading the carbon dioxide reactant accommodated in the offshore structure.
  • the offshore structure is characterized in that any one selected from LNG FPSO, LNG FSRU, LNG carrier and LNG RV.
  • Embodiments of the disclosed technology may have effects including the following advantages. However, this does not mean that the embodiments of the disclosed technology must include all of them, so the scope of rights of the disclosed technology should not be understood as being limited thereby.
  • carbon dioxide can be reduced by capturing carbon dioxide from exhaust gas discharged from an iron making process, which is one of the steel manufacturing processes, and sodium carbonate or sodium bicarbonate, which is a useful resource, can be produced using the collected carbon dioxide.
  • carbon dioxide is captured using a basic alkali mixed solution that solves the disadvantages of the CO 2 PSA technology used in the conventional steel manufacturing process, and the captured carbon dioxide reactant is used in various industrial fields such as food additives, detergents, soap raw materials, high-tech medical industry, wastewater treatment, etc.
  • the DRI reduction rate in the FINEX process can be improved by reducing the content of carbon dioxide in the reducing gas introduced into the FINEX fluidized-bed reactor.
  • FIG. 1 is a diagram illustrating a conventional FINEX process.
  • FIG. 2 is a block diagram of a carbon dioxide capture and carbon resource recovery system for steel mills according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a FINEX process according to an embodiment of the present invention.
  • FIG. 4 is a view showing a reactor according to an embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing the internal configuration of an absorption tower for improving carbon dioxide capture performance of a reactor according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a conventional FINEX process.
  • Iron ore 1 having a particle size of about 8 mm or less is reduced through the fluidized - bed reactor 20 to obtain reduced iron.
  • a plurality of the fluidized-bed reduction reactors 20 may be provided.
  • the reducing gas is injected into the R1 fluidized-bed reduction reactor, the R2 fluidized-bed reduction reactor, the R3 fluidized-bed reduction reactor, and the R4 Flows sequentially, and iron ore is charged into the R4 fluidized-bed reduction reactor and flows in reverse order to the R1 reduction reactor. Thereafter, the reduced iron passes through the melting furnace 10.
  • DRI Direct Reduced Iron
  • ore is generally reduced using a mixed gas including CO, CO 2 , H 2 , N 2 , steam, and the like.
  • Some of the reducing gas used in the conventional FINEX process is supplied to the power plant, and the other part is reduced in carbon dioxide by the CO 2 PSA 40 and is injected back into the fluidized-bed reduction reactor 20 together with the reducing gas generated in the melting furnace 10.
  • the carbon dioxide concentration at this time is about 10%, and the DRI reduction rate in the process is about 60 to 70%.
  • the present invention can reduce carbon dioxide by capturing carbon dioxide while omitting the CO 2 PSA facility required in the existing FINEX process, and can produce sodium carbonate or sodium bicarbonate, which is a useful resource, using the captured carbon dioxide. It relates to a carbon dioxide capture and carbon resource recovery system for steel mills.
  • FIG. 2 is a block diagram of a carbon dioxide capture and carbon resource recovery system for steel mills according to an embodiment of the present invention.
  • a carbon dioxide capture and carbon resource recovery system for a steelworks includes one or more fluidized reduction reactors 20 for reducing iron ore by reacting iron ore 1 with a reducing gas; A first discharge means (25) for discharging the exhaust gas generated in the one or more fluidized-bed reactors (20); a melting furnace (10) connected to the fluidized-bed reduction furnace (20) to produce molten iron by melting the reduced iron produced in the fluidized-bed reduction furnace (20); A second discharge means (15) for discharging exhaust gas generated in the melting furnace (10); And a reactor 100 connected to the first discharge means 25 and the second discharge means 15, respectively, to receive the flue gas discharged from the fluidized-bed reactor 20 and the melting furnace 10 as a reducing gas, react with a basic alkali mixed solution to capture carbon dioxide in the reducing gas, collect a reactant containing the captured carbon dioxide, and inject the reduced gas from which the carbon dioxide has been removed into the fluidized-bed reduction reactor 20.
  • the DRI reduction rate the DRI reduction rate
  • the reducing gas injected into the fluidized-bed reactor 20 may be at least one gas selected from the group consisting of FINEX exhaust gas (FOG, FINEX OFF GAS), blast furnace exhaust gas (BFG), coke oven gas (COG), WGSR (Water Gas Shift Reactor) gas, and melting furnace exhaust gas, that is, one gas selected from the group or a mixture of two or more gases.
  • FINEX exhaust gas FINEX OFF GAS
  • BFG blast furnace exhaust gas
  • COG coke oven gas
  • WGSR Water Gas Shift Reactor
  • the reducing gas is a mixed gas of FINEX OFF GAS (FOG), which is an exhaust gas generated from the fluidized-bed reduction reactor 20, and melting furnace exhaust gas, which is an exhaust gas generated from the melting furnace 10.
  • FOG FINEX OFF GAS
  • the reducing gas is delivered to the reactor 100 by the first discharge means 25 and the second discharge means 15, and the reactor 100 reacts the reducing gas with a basic alkali mixture to collect carbon dioxide in the reducing gas. After collecting the reactant containing the captured carbon dioxide, the reduced gas from which the carbon dioxide has been removed may be introduced into the fluidized-bed reactor 20.
  • the reactor 100 receives the reducing gas and reacts with the basic alkali mixture to capture carbon dioxide in the exhaust gas, collects a reactant containing the captured carbon dioxide, and separates the carbon dioxide reactant from the waste solution, recovers and stores the carbon dioxide reactant, and discharges the remaining exhaust gas from which the captured carbon dioxide is removed.
  • the carbon dioxide reactant includes sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ), and the residual off-gas is a reducing gas from which the carbon dioxide is removed, which is introduced into the fluidized-bed reactor 20 .
  • FIG. 3 is a diagram illustrating a FINEX process according to an embodiment of the present invention.
  • iron ore 1 is reduced through a fluidized-bed reactor 20 to obtain reduced iron 5, and in this process, FOG 2 is delivered to the fluidized-bed reactor 20 together with the melting furnace gas 3 discharged from the melting furnace 10 via the scrubber 30 and the reactor 100.
  • the reactor 100 reduces the content of carbon dioxide in the reducing gas introduced into the FINEX fluidized-bed reduction reactor, and transfers the reduced carbon dioxide-reduced reducing gas to the FINEX fluidized-bed reduction reactor 20.
  • the configuration of the reactor 100 will be described in detail in FIGS. 4 and 5 .
  • FIG 4 is a view showing a reactor 100 according to an embodiment of the present invention.
  • the reactor 100 has a structure capable of reducing carbon dioxide by collecting carbon dioxide from exhaust gas discharged from an iron making process, that is, reducing gas input to a FINEX fluidized-bed reactor, and using the captured carbon dioxide to convert carbon into sodium carbonate or sodium bicarbonate.
  • the reactor 100 is a reactor for capturing carbon dioxide in the exhaust gas discharged from the fluidized-bed reactor 20 and the melting furnace 10, respectively, by the first discharge means 25 and the second discharge means 15, that is, carbon dioxide in the mixed gas, by using a basic alkali solution, and includes an absorption tower 110, a carbon dioxide capture unit 111, an exhaust gas discharge source 120, a mixer 130, and a separator 140 , A carbon resource storage tank 141 and a discharge unit 150 are included.
  • the absorption tower 110 may mean a facility, building, or facility for capturing carbon dioxide.
  • the carbon dioxide collecting unit 111 located at the lower end of the absorption tower 110 is a part of the absorption tower 110, and may mean a part that collects carbon dioxide by bubbling exhaust gas.
  • the absorption tower 110 includes a carbon dioxide collecting unit 111 at the lower end to collect carbon dioxide, and reacts the basic alkali mixture with the exhaust gas (exhaust gas microbubbles) to capture only carbon dioxide from the exhaust gas discharged from the iron making process of the steelworks. After capturing carbon dioxide from the exhaust gas, exhaust gas from which carbon dioxide has been removed may remain in a gaseous state in the absorption tower 110 .
  • a nozzle is installed at the top of the absorption tower 110, and the basic alkali mixture is sprayed from the mixer 130 through the nozzle into the absorption tower 110, and is collected in the carbon dioxide collecting unit 111 at the bottom.
  • the exhaust gas supplied from the exhaust gas discharge source 120 passes through the bubbler 113 in the carbon dioxide collecting unit 111 at the bottom of the absorption tower 110, and microbubbles are generated.
  • the microbubbles are formed while passing through the bubbler 113 having fine holes formed at the outlet of the exhaust gas discharge source 120 when the exhaust gas reacts with the basic alkali mixture.
  • the bubbler 113 may form microbubbles in the exhaust gas by passing the exhaust gas supplied from the exhaust gas discharge source 120, and the microbubbles may have a larger reaction area between the exhaust gas and the alkali solution as the bubble size decreases, thereby increasing the carbon dioxide capture capacity.
  • the microbubbles may refer to bubbles present in an aqueous solution having a size of about 50 ⁇ m or less.
  • a baffle 508 having a plurality of slits or holes may be provided so that exhaust gas flows into the absorption tower with a uniform velocity distribution.
  • the absorption tower 110 may include a level indicator 112 therein to detect the level of the solution in the absorption tower 110.
  • the nozzle may include a plurality of nozzles and may be formed in one or more stages.
  • the nozzle may be connected to the mixer 130 to supply a basic alkali mixture solution from the mixer 130.
  • the absorption towers 110 may be configured in series, parallel, or a combination of series and parallel arrangements.
  • the absorption towers 110 may be arranged in series when the flow rate of the exhaust gas is high.
  • the absorption towers can be installed in series to capture the unreacted carbon dioxide.
  • the absorption towers 110 may be arranged in parallel when the flow rate of exhaust gas is high.
  • the flow rate of the exhaust gas exceeds the amount that can be captured by the absorption tower, the amount of carbon dioxide that can be captured can be increased by paralleling the absorption tower.
  • the exhaust gas emission source 120 may utilize all gases that emit carbon dioxide, and according to an embodiment of the present invention, it may be a mixture of FINEX OFF GAS (FOG, FINEX OFF GAS), which is exhaust gas generated in the fluidized-bed reduction reactor 20 in the FINEX iron making process of the steel mill, and a melting furnace exhaust gas, which is the exhaust gas generated in the melting furnace 10.
  • FINEX OFF GAS FINEX OFF GAS
  • the mixer 130 mixes the basic alkali solution supplied from the basic alkali solution storage tank 131 and the water supplied from the water supply source 132 and supplies them to the nozzle of the absorption tower 110.
  • the basic alkali mixed solution in which the basic alkali solution and water are mixed may be supplied using a separately connected by-pass line 136 when the amount supplied or required increases.
  • the basic alkali solution and water may be mixed in a ratio of 1:1 to 1:5.
  • the basic alkali solution and water may be mixed in a ratio of 1:1 to 1:4, 1:1 to 1:3, 1:1 to 1:2, 1:2 to 1:5, 1:2 to 1:3, or 1:3 to 1:5.
  • the carbon dioxide capture rate of the basic alkali solution and water may increase as the mixing ratio of the basic alkali solution increases, but the mixing ratio of water may be adjusted in consideration of cost.
  • the basic alkali mixture may include at least one oxide selected from the group consisting of SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , MgO, MnO, CaO, Na 2 O, K 2 O and P 2 O 3 ; At least one metal selected from the group consisting of Li, Cr, Co, Ni, Cu, Zn, Ga, Sr, Cd, and Pb; and at least one liquid composition selected from the group consisting of sodium tetraborate (Na 2 B 4 O 7 .10H 2 O), sodium hydroxide (NaOH), sodium silicate (Na 2 SiO 3 ), potassium hydroxide (KOH) and hydrogen peroxide (H 2 O 2 ).
  • oxide selected from the group consisting of SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , MgO, MnO, CaO, Na 2 O, K 2 O and P 2 O 3 ;
  • the water supply source 132 may include all water that can be easily obtained at the system installation site, and may be, for example, sea water.
  • the average pH of the basic alkali mixture may be pH 12 or higher.
  • the pH may be pH12 to pH13.5, pH12, pH12,1, pH12,2 or pH12.3.
  • the pH of the basic alkali mixture can be measured with a pH meter in the absorption tower 110, and when the pH of the basic alkali mixture in the absorption tower 110 is less than 10.5, carbon dioxide can no longer be captured.
  • the amount of the basic alkali solution and water may be adjusted from 0 to 100% at the valves 133 and 134 and supplied to the mixer 130.
  • the mixer 130 When the water level of the basic alkali mixture in the absorption tower 110 is lowered to less than 90% (measured by a level indicator), the mixer 130 is controlled through the valve 135, and the basic alkali mixture is introduced. If the level of the solution reaches 100%, the input may be stopped. At the same time, the basic alkali solution and water may be mixed until the pH of the basic alkali mixture is 12 to 13.5.
  • the net flow may be set to 0 by adjusting the valve 135 (including a by-pass valve if necessary) so that the same amount of the basic alkali mixture as the value of the flow meter installed in the line from the absorption tower 110 to the separator 140 is supplied to the absorption tower 110.
  • the basic alkali mixture and the flue gas which is a mixed gas discharged from the fluidized-bed reduction reactor 20 and the melting furnace 10, react and collect reactants including carbon dioxide, and the carbon dioxide reactant and the waste solution in the reactant move to the separator 140 through the valve 114, and the carbon dioxide reactant and the waste solution are separated from the reactant.
  • the separator 140 may include a centrifugal separator for separating a waste solution from a carbon dioxide reactant containing sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ) in the reactant, and a vibration separator formed to correspond to the inner circumference of a discharge pipe for discharging only sodium bicarbonate out of the carbon dioxide reactant separated from the centrifuge to the outside and having fine pores formed on the surface to allow the permeation of the sodium bicarbonate.
  • a centrifugal separator for separating a waste solution from a carbon dioxide reactant containing sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ) in the reactant
  • a vibration separator formed to correspond to the inner circumference of a discharge pipe for discharging only sodium bicarbonate out of the carbon dioxide reactant separated from the centrifuge to the outside and having fine pores formed on the surface to allow the permeation of the sodium bicarbonate.
  • the micropores formed in the vibration isolation membrane may have a size of 10 to 20 ⁇ m, and may further include a vibration generator to induce vibration of the vibration isolation membrane.
  • the vibration generating unit may be disposed to prevent the micropores from being blocked by sodium bicarbonate.
  • the separated carbon dioxide reactant may be moved to the carbon resource storage 141 to be recycled for other purposes.
  • the carbon dioxide reactant may include sodium carbonate (Na 2 CO 3 ) or sodium hydrogen carbonate (NaHCO 3 ).
  • the carbon dioxide reactant may be produced by reacting a basic alkali mixture with carbon dioxide.
  • the waste solution excluding the carbon dioxide reactant from the reactants is moved to the wastewater treatment tank 142 and discarded.
  • the waste solution may include illite minerals and water contained in the basic alkali mixed solution that has completed the catalytic role.
  • the carbon resource storage 141 is a carbon dioxide reactant storage that takes into account the fact that the steelworks are located on the seashore for raw material procurement.
  • the carbon resource storage 141 includes a marine structure for accommodating a carbon dioxide reactant generated by reacting a basic alkali mixed solution with carbon dioxide generated in a steel mill; an inlet unit for loading the carbon dioxide reactant into the offshore structure; a discharge unit connected to the offshore structure to unload the carbon dioxide reactant in the offshore structure; and a control unit controlling the intake unit and the discharge unit when loading/unloading the carbon dioxide reactant accommodated in the offshore structure.
  • the offshore structure is a floating offshore structure including a liquid transport carrier, but is not limited thereto and may include any structure capable of performing various tasks such as floating or moving on the sea.
  • a floating offshore structure including a liquid transport carrier
  • the remaining exhaust gas from which carbon dioxide is removed is discharged through the discharge unit 150 .
  • the remaining exhaust gas discharged through the discharge unit 150 is input to the fluidized-bed reactor 20 as a reducing gas from which carbon dioxide is removed, and the reducing gas has a low oxidation degree.
  • the reduction rate of DRI Direct Reduced Iron
  • the concentration of carbon dioxide cannot exceed the regulatory standard when the residual exhaust gas is discharged, the residual exhaust gas that does not exceed the standard can be discharged based on the concentration of carbon dioxide in the atmosphere where the residual exhaust gas will be discharged (a standard set by the manager after measuring the carbon dioxide concentration in the atmosphere in advance).
  • the reactor 100 includes a monitoring unit 160 for monitoring the water level and pH of the basic alkali mixture in the absorption tower 110; and a control unit 161 controlling the supply amount of the basic alkali mixture solution by the monitoring unit 160.
  • the values of the gas meter, pH meter, and flow meter measured in all processes of the reactor 100 are managed by the monitoring unit 160, and the control unit 161 adjusts based on the values indicated by the monitoring unit 160.
  • the valves 114, 133, 134, and 135 may be adjusted in percentage with respect to the value input from the controller 161.
  • the carbon dioxide capture and carbon resource recovery system for steelworks can reduce carbon dioxide by capturing carbon dioxide from exhaust gas generated in the steelmaking process of a steelworks, and converting the captured carbon dioxide into sodium carbonate or sodium bicarbonate, thereby recycling it into other useful materials.
  • FIG. 5 is a view schematically showing the internal configuration of the absorption tower 110 for improving the carbon dioxide capture performance of the reactor 100 according to an embodiment of the present invention.
  • the absorption tower 110 is connected to the mixer 130, passes through a region in the absorption tower, and is inserted into the absorption tower to further improve carbon dioxide capture performance.
  • a spraying device including a spraying chamber 202 receiving the basic alkali mixture solution, and a plurality of spraying pipes 205 having a plurality of spraying holes for spraying the basic alkali liquid mixture and connected to the spraying chamber 202 at an angle; a micro-droplet member 207 that touches the air gap 206 to form fine droplets when the basic alkali mixed solution sprayed from the injection device falls downward; and a baffle 208 formed with a plurality of slits or holes so that the flue gas flows into the absorption tower with a uniform velocity distribution.
  • the spray chamber 202 may pass through one area of the absorption tower body and be inserted into the absorption tower. At this time, the spray chamber 202 may be installed in a direction crossing the absorption tower from the central axis of the absorption tower body.
  • the spray chamber 202 may be a manifold for evenly distributing the basic alkali mixed solution supplied from the mixer 130 to a plurality of spray pipes 205 to be described later.
  • the spray pipe 205 is equipped with a plurality, and has a plurality of spray holes for spraying the basic alkali mixed solution supplied to the spray chamber 202 and is connected to the spray chamber 202 .
  • a plurality of spray pipes 205 are connected to the spray chamber 202 at an angle. That is, the angle ⁇ between the spray chamber 202 and the plurality of spray pipes 205 may be an acute angle.
  • the same reducing agent spraying area can be secured with fewer spraying pipes 205 or a larger spraying area of the basic alkali mixture can be secured with the same number of spraying pipes 205.
  • the plurality of spray pipes 205 may extend in both directions around the spray chamber 202 . Also, the plurality of ejection pipes 205 may be arranged at equal intervals. Accordingly, the basic alkali mixed solution supplied to the spray chamber 202 can be evenly sprayed to the entire area inside the absorption tower body through the plurality of spray pipes 202 .
  • a plurality of spray holes formed in any one of the plurality of spray pipes 205 may be formed at positions alternately staggered from the plurality of spray holes formed in the adjacent spray pipes 205 .
  • the spray hole sprays the basic alkali mixture at a predetermined pressure.
  • the spray holes spray the basic alkali mixture in opposite directions, the sprayed basic alkali mixture may collide with each other and interfere with air flow.
  • the spraying device including the spraying chamber 202 and the plurality of spraying pipes 205 can more effectively mix a large amount of the basic alkali mixed liquid with the flue gas discharged from the steelworks evenly, and the sprayed basic alkali mixed liquid collides and interferes with the air flow.
  • the basic alkali mixed solution falls inside the absorption tower body from the top to the bottom by the injection device, it touches the pores 206 of the micro droplet member 207 and is formed into fine droplets.
  • the basic alkali mixed solution formed of the fine droplets passes through the baffle 208 having a plurality of slits or holes, and the exhaust gas formed of fine particles can come into contact. Through this, the carbon dioxide capture performance of the reactor 100 may be improved.
  • the present invention can provide a carbon dioxide capture and carbon resource recovery system for steel mills that can efficiently reduce carbon dioxide emitted from an iron making process, one of steel manufacturing processes, and at the same time convert it into other useful materials.
  • the carbon dioxide capture and carbon resource recovery system for steelworks according to the present invention can be easily applied to steelworks that have introduced the conventional FINEX process, thereby providing a system for reducing carbon dioxide, a representative harmful substance affecting global warming, among exhaust gases generated in the FINEX process of steelworks.
  • carbon dioxide collected through carbon dioxide capture facilities can be used in food additives, detergents, soap raw materials, high-tech medical industry, and wastewater treatment.
  • the carbon dioxide reactant generated in the carbon dioxide capture and carbon resource recovery system for steelworks according to the present invention can be efficiently stored and transported in offshore structures, manufacturing and transportation costs can be reduced compared to conventional carbon dioxide storage devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

본 발명은 제철소용 이산화탄소 포집 및 탄소자원화 시스템에 관한 것으로, 본 발명의 일 실시예에 따른 제철소용 이산화탄소 포집 및 탄소자원화 시스템은, 분철광을 환원 가스와 반응시켜 환원철로 환원시키는 1개 이상의 유동환원로; 상기 1개 이상의 유동환원로에서 발생된 배가스를 배출하는 제1 배출수단; 상기 유동환원로와 연결되어 상기 유동환원로에서 제조된 환원철을 용융시켜 용선을 제조하는 용융로; 상기 용융로에서 발생된 배가스를 배출하는 제2 배출수단; 및 상기 제1 배출수단 및 상기 제2 배출수단과 각각 연결되어 유동환원로 및 용융로 각각에서 배출된 배가스를 환원 가스로서 전달받으면 염기성 알칼리 혼합액과 반응시켜 상기 환원 가스 중 이산화탄소를 포집한 후에 상기 포집된 이산화탄소를 포함하는 반응물을 수집하고, 상기 이산화탄소가 제거된 환원 가스를 상기 유동환원로에 투입하는 반응기;를 포함하고, 상기 반응기는 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리하고, 상기 분리된 이산화탄소 반응물을 자원화하기 위해 저장하는 것을 특징으로 한다.

Description

제철소용 이산화탄소 포집 및 탄소자원화 시스템
본 발명은 제철소용 이산화탄소 포집 및 탄소자원화 시스템에 관한 것으로, 보다 상세하게는 염기성 알칼리 혼합액을 이용한 배가스 중 이산화탄소를 포집 및 탄소자원으로 변환함으로써, 제철소에 있어서 이산화탄소를 제거하는 동시에 다른 유용한 물질로 자원화할 수 있는 제철소용 이산화탄소 포집 및 탄소자원화 시스템에 관한 것이다.
철강산업은 화석연료를 주원료로 쓰는 특성상 이산화탄소 배출량이 많을 수밖에 없는 산업으로, 화석연료로부터 배출되는 이산화탄소의 7~9%를 차지하고 있다.
세계철강협회에 따르면, 철강 1톤을 생산하는데 평균 이산화탄소 1.83톤이 배출이 되며, 전체 산업의 이산화탄소 배출에서 철강산업이 차지하는 비중이 24%로 가장 많다고 밝혔다.
최근 전세계적으로 탈산소 사회로의 전환을 가속화하기 위한 전방위적인 노력을 펼치고 있으며, 이에 따라 철강업계에서도 이산화탄소 포집 및 활용(CCU, Carbon Capture and Utilization) 기술에 대한 연구개발을 진행하고 있다.
한편, 종래 철강의 제조는 제선 공정, 제강 공정, 연주 공정 및 압연 공정의 순으로 진행되며, 특히 철광석을 환원시켜 선철을 생산하는 제선로에서 환원제로서 다량의 탄소를 사용하고 있으므로 상기 제선 공정이 곧바로 이산화탄소의 발생과 직결된다. 이로 인해 상기 제선 공정에서 발생되는 이산화탄소는 제철소 전체에서 발생하는 이산화탄소의 양의 80%를 차지하고 있는 것으로 나타났다.
또한, 종래의 제선 공정에서는 소결 과정을 거친 철광석과, 유연탄을 원료로 하여 제조된 코크스를 고로에 투입한 후 산소를 불어넣어 용선을 제조하는 고로법을 이용하였는데, 상기 고로법에 의하면 유연탄을 코크스로 제조하기 위한 코크스 제조 설비, 철광석의 소결 과정을 위한 소결 설비 등의 부대 설비가 마련되어야 한다. 또한, 상기 부대 설비로부터는 환경오염 물질이 배출되므로 상기 부대 설비들과 함께 환경오염 물질을 정화시키기 위한 복잡한 정화 설비가 마련해야 하는 문제점이 있다.
이에, 현재 철강업계에서는 고로법을 용융환원법으로 대체하고 있다. 상기 용융환원법은 파이넥스(FINEX) 공법이라고도 칭해진다. 종래 파이넥스 공정은 도 1에 도시된 바와 같이, 분철광을 환원시키는 유동환원로(Fluidized Bed), 환원된 분철광과 일반탄을 용융시켜 용선을 제조하고 가스 생산을 목적으로 용융(가스화)로, 및 FOG(FINEX Off Gas) 중의 이산화탄소를 저감시키는 CO2 PSA(압력순환흡착, Pressure swing adsorption)로 구성된다. 여기서, PSA는 특정 기체를 흡착하는 흡착제를 이용하여 압력 차이에 따른 흡착량의 차이를 이용해 가스를 분리해 내는 기술을 의미한다.
그런데, CO2 PSA 기술은 전형적인 흡착조건인 15~40 ℃의 온도와 4~6 bar의 압력을 필수적으로 충족시켜야 하는 공정상의 문제점과 CO2 흡착압력에서 높은 CO2 흡착성능을 가지는 흡착제를 선택하는 데 어려움이 있다.
이처럼, 종래 철강 제조 공정에서 CO2 PSA 기술을 이용하여 이산화탄소를 저감시키는 방식은, CO2 PSA 기술을 적용하기 위한 흡착 조건 및 흡착제 성능 조건을 만족시켜야만 하는 문제점이 있다.
따라서, 종래 기술 대비 간단한 방식으로 제철소에서 배출된 이산화탄소를 효율적으로 포집하는 방안이 절실하다.
또한, 최근 이산화탄소 포집 기술이 개발됨에 따라 CO2포집물이 발생되고 있으나, 발생된 CO2포집물을 활용 또는 저장할 수 있는 기술 개발이 아직 미비한 상태이므로 이에 대한 기술개발이 요구되고 있다.
본 발명은 상술한 문제점을 해결하기 위해 창안된 것으로서, 본 발명은 제철소의 제선공정 상에서 발생하는 배기 가스 중 이산화탄소를 줄이기 위한 시스템을 제공하는데 그 목적이 있다.
또한, 본 발명의 다른 목적은 염기성 알칼리 혼합액을 이용한 배가스 중 이산화탄소를 포집 및 탄소자원으로 변환함으로써, 이산화탄소를 제거하는 동시에 다른 유용한 물질로 자원화할 수 있는 제철소용 이산화탄소 포집 및 탄소자원화 시스템을 제공하는데 그 목적이 있다.
또한, 본 발명의 다른 목적은 제철소의 제선 공정 상에서 발생하는 배기 가스 중 이산화탄소를 포집하여 탄소 자원으로 변환시킨 후에, 상기 변환된 탄소 자원을 해상 구조물에 저장 및 수송할 수 있는 제철소용 이산화탄소 포집 및 탄소자원화 시스템을 제공하는데 그 목적이 있다.
또한, 본 발명의 또 다른 목적은 유동환원로로 환원 가스가 주입되기 전에 이산화탄소를 저감함으로써 주입되는 환원 가스의 산화도 수치를 낮추어 DRI(Direct Reduced Iron, 직접환원철)의 환원율을 향상시킬 수 있는 제철소용 이산화탄소 포집 및 탄소자원화 시스템을 제공하는데 그 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위한 본 발명의 일 실시예에 따른 제철소용 이산화탄소 포집 및 탄소자원화 시스템은, 분철광을 환원 가스와 반응시켜 환원철로 환원시키는 1개 이상의 유동환원로; 상기 1개 이상의 유동환원로에서 발생된 배가스를 배출하는 제1 배출수단; 상기 유동환원로와 연결되어 상기 유동환원로에서 제조된 환원철을 용융시켜 용선을 제조하는 용융로; 상기 용융로에서 발생된 배가스를 배출하는 제2 배출수단; 및 상기 제1 배출수단 및 상기 제2 배출수단과 각각 연결되어 유동환원로 및 용융로 각각에서 배출된 배가스를 환원 가스로서 전달받으면 염기성 알칼리 혼합액과 반응시켜 상기 환원 가스 중 이산화탄소를 포집한 후에 상기 포집된 이산화탄소를 포함하는 반응물을 수집하고, 상기 이산화탄소가 제거된 환원 가스를 상기 유동환원로에 투입하는 반응기;를 포함하고, 상기 반응기는 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리하고, 상기 분리된 이산화탄소 반응물을 자원화하기 위해 저장하는 것을 특징으로 한다.
또한, 상기 환원 가스는 상기 유동환원로에서 발생된 배가스인 FINEX 배가스(FOG, FINEX OFF GAS) 및 상기 용융로에서 발생된 배가스인 용융로 배가스의 혼합 가스인 것을 특징으로 한다.
또한, 상기 염기성 알칼리 혼합액은, SiO2, Al2O3, Fe2O3, TiO2, MgO, MnO, CaO, Na2O, K2O 및 P2O3로 이루어진 군으로부터 선택된 1종 이상의 산화물; Li, Cr, Co, Ni, Cu, Zn, Ga, Sr, Cd 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 금속; 및, 사붕산나트륨(Na2B4O7·10H2O), 수산화나트륨(NaOH), 규산나트륨(Na2SiO3), 수산화칼륨(KOH) 및 과산화수소(H2O2)로 이루어진 군으로부터 선택된 1 종 이상의 액상 조성물;을 포함하는 것을 특징으로 한다.
또한, 상기 반응기는, 상기 염기성 알칼리 혼합액을 공급하는 믹서; 상기 믹서로부터 공급된 염기성 알칼리 혼합액과 하부에 설치된 버블러를 통과하여 미세 방울이 형성된 배가스를 반응시켜 상기 배가스 중 이산화탄소를 포집하는 흡수탑; 상기 흡수탑에서 포집된 이산화탄소를 포함하는 반응물을 수집하고, 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리하는 분리기; 및 상기 분리된 이산화탄소 반응물을 자원화하기 위해 저장하는 탄소자원 저장소를 포함한다.
또한, 상기 믹서는 염기성 알칼리 용액 저장조에서 공급된 염기성 알칼리 용액과 급수원에서 공급된 물을 혼합시켜 염기성 알칼리 혼합액을 생성하는 것을 특징으로 한다.
또한, 상기 염기성 알칼리 용액과 물은 1:1 내지 1:5의 비율로 혼합되는 것을 특징으로 한다.
또한, 상기 염기성 알칼리 혼합액의 평균 pH는 pH12 내지 pH13.5인 것을 특징으로 한다.
또한, 상기 흡수탑 내의 염기성 알칼리 혼합액의 수위가 90% 미만으로 낮아지면 상기 믹서에서 밸브를 통해 조절되어 염기성 알칼리 혼합액이 투입되고 상기 염기성 알칼리 혼합액의 수위가 100%가 될 경우 투입이 중단되고, 그와 동시에 염기성 알칼리 혼합액의 pH가 12 내지 13.5가 될 때까지 염기성 알칼리 용액과 물을 혼합하는 것을 특징으로 한다.
또한, 상기 버블러는 상기 배가스를 이용하여 배가스 마이크로버블을 형성하는 것을 특징으로 한다.
또한, 상기 흡수탑은, 상기 믹서와 연결되어 상기 흡수탑 내의 일 영역을 관통하여 상기 흡수탑 내부로 삽입되며 상기 염기성 알칼리 혼합액을 공급받는 분사 챔버와, 상기 염기성 알칼리 혼합액을 분사하기 위한 복수의 분사홀을 가지고 상기 분사 챔버에 경사지게 연결된 복수의 분사 파이프를 포함하는 분사장치; 상기 분사장치로부터 분사된 염기성 알칼리 혼합액이 하부로 향해 낙하할 때 공극에 닿아 미세하게 액적을 형성하는 미세액적부재; 및 상기 흡수탑 내에 상기 배가스가 균일한 속도분포로 유입되도록 슬릿(Slit) 또는 구멍(Hole)이 다수 형성된 배플;을 더 포함할 수 있다.
또한, 상기 복수의 분사 파이프 중 어느 하나의 분사 파이프에 형성된 상기 복수의 분사홀은 이웃한 상기 분사 파이프에 형성된 상기 복수의 분사홀과 교호적으로 엇갈린 위치에 형성되는 것을 특징으로 한다.
또한, 상기 이산화탄소 반응물은 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하는 것을 특징으로 한다.
또한, 상기 분리기는, 상기 반응물에서 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하는 이산화탄소 반응물과, 폐용액을 분리하는 원심분리기; 및 상기 이산화탄소 반응물 중에서 탄산수소나트륨만을 외부로 배출시키기 위한 배출관의 내측 둘레에 대응되게 형성되고, 표면에 상기 탄산수소나트륨의 투과를 허용하는 크기로 미세 구멍이 형성된 진동분리막;을 포함하는 것을 특징으로 한다.
또한, 상기 반응기는, 상기 흡수탑 내의 염기성 알칼리 혼합액의 수위 및 pH를 모니터링하는 모니터링부; 및 상기 모니터링부에 의해 염기성 알칼리 혼합액의 공급량을 조절하는 제어부;를 더 포함할 수 있다.
또한, 상기 탄소자원 저장소는, 상기 이산화탄소 반응물을 수용하는 해상구조물; 상기 이산화탄소 반응물을 상기 해상구조물로 로딩(loading)하는 인입 유닛; 상기 해상구조물과 연결되어 상기 해상구조물 내의 상기 이산화탄소 반응물을 언로딩(unloading)하는 배출 유닛; 및 상기 해상구조물에 수용된 상기 이산화탄소 반응물을 로딩/언로딩시에 상기 인입 유닛 및 상기 배출 유닛을 제어하는 제어 유닛;을 포함할 수 있다.
또한, 상기 해상구조물은 LNG FPSO, LNG FSRU, LNG 수송선 및 LNG RV 중 선택된 어느 하나인 것을 특징으로 한다.
개시된 기술의 실시 예들은 다음의 장점들을 포함하는 효과를 가질 수 있다. 다만, 개시된 기술의 실시 예들이 이를 전부 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
본 발명의 실시 예에 따르면, 철강 제조 공정 중 하나인 제선 공정 상에서 배출되는 배기 가스 중 이산화탄소를 포집함으로써 이산화탄소를 저감시킬 수 있고, 상기 포집된 이산화탄소를 이용하여 유용한 자원인 탄산나트륨 또는 탄산수소나트륨을 제조할 수 있다.
또한, 본 발명의 실시 예에 따르면, 종래 철강 제조 공정에서 사용되었던 CO2 PSA 기술의 단점을 해소하는 염기성 알칼리 혼합액을 사용하여 이산화탄소를 포집하고, 포집된 이산화탄소 반응물을 식품 첨가제, 세제, 비누 원료, 첨단 의료산업, 폐수처리 등 다양한 산업 분야에서 활용할 수 있어 수익 창출까지 가능하므로 기존 기술 대비 경제성을 확보할 수 있다.
또한, 본 발명의 실시 예에 따르면, 일반적으로 제철소가 원료조달을 위해서 바닷가에 위치한 점을 착안하여 이산화탄소 포집에 따른 이산화탄소 반응물을 해상구조물에 저장 및 수송함으로써 저장비용 및 수송비용을 절감할 수 있음은 물론, 상기 저장된 탄소자원의 필요시 추후에 이용할 수 있다.
또한, 본 발명의 실시 예에 따르면, 파이넥스(FINEX) 유동환원로에 유입되는 환원 가스 중 이산화탄소의 함량을 저감시킴으로써 파이넥스(FINEX) 공정에서의 DRI 환원율을 향상시킬 수 있다.
도 1은 종래 파이넥스(FINEX) 공정을 도시적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 제철소용 이산화탄소 포집 및 탄소자원화 시스템의 구성도이다.
도 3은 본 발명의 일 실시예에 따른 파이넥스(FINEX) 공정을 도시적으로 나타낸 도면이다.
도 4는 본 발명의 일 실시예에 따른 반응기를 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른 반응기의 이산화탄소 포집 성능을 향상시키기 위한 흡수탑의 내부 구성을 개략적으로 도시한 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 종래 파이넥스(FINEX) 공정을 도시적으로 나타낸 도면이다.
입경 약 8mm 이하의 분철광(1)이 유동환원로(20)를 통해 환원되어 환원된 철이 획득되고, 이러한 과정에서 FOG(2)가 스크러버(30) 및 CO2 PSA(40)를 거처 용융로 가스(3)와 함께 유동환원로(20)로 투입된다.
상기 유동환원로(20)는 복수 개가 구비될 수 있으며, 예를 들어 4개의 유동환원로가 구비되는 경우 환원 가스는 R1 유동환원로로 주입되어, R2 유동환원로, R3 유동환원로, 그리고 R4 유동환원로로 순차적으로 흐르고, 분철광은 반대로 R4 유동환원로로 장입되어 R1 환원유동로까지 역순서로 흐르는 형태를 가질 수 있다. 이후 환원된 철은 용융로(10)를 거치게 된다. 유동환원로(20)를 활용하여 광석을 DRI(Direct Reduced Iron, 직접환원철)로 제조하는 공정에서는 일반적으로 CO, CO2, H2, N2, 스팀(steam) 등을 포함하는 혼합 가스를 이용하여 광석을 환원시키고 있다.
이와 같은 종래 파이넥스 공정에서 사용되는 환원 가스 중 일부는 발전소로 공급되며, 다른 일부는 CO2 PSA(40)에 의해 이산화탄소가 저감되어 용융로(10)에서 발생된 환원 가스와 함께 유동환원로(20)로 다시 주입되고 있으며, 이때의 이산화탄소 농도는 약 10%이고, 이때 상기 공정에서의 DRI 환원율은 약 60~70%이다.
본 발명은 기존의 파이넥스(FINEX) 공정에서 요구되었던 CO2 PSA 설비를 생략하면서 이산화탄소를 포집함으로써 이산화탄소를 저감시킬 수 있고, 상기 포집된 이산화탄소를 이용하여 유용한 자원인 탄산나트륨 또는 탄산수소나트륨을 제조할 수 있는 제철소용 이산화탄소 포집 및 탄소자원화 시스템에 관한 것이다.
이하 도면을 참조하여 본 발명의 일 실시예에 따른 제철소용 이산화탄소 포집 및 탄소자원화 시스템을 보다 상세하게 설명하도록 한다.
도 2는 본 발명의 일 실시예에 따른 제철소용 이산화탄소 포집 및 탄소자원화 시스템의 구성도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 제철소용 이산화탄소 포집 및 탄소자원화 시스템은, 분철광(1)을 환원 가스와 반응시켜 환원철로 환원시키는 1개 이상의 유동환원로(20); 상기 1개 이상의 유동환원로(20)에서 발생된 배가스를 배출하는 제1 배출수단(25); 상기 유동환원로(20)와 연결되어 상기 유동환원로(20)에서 제조된 환원철을 용융시켜 용선을 제조하는 용융로(10); 상기 용융로(10)에서 발생된 배가스를 배출하는 제2 배출수단(15); 및 상기 제1 배출수단(25) 및 상기 제2 배출수단(15)과 각각 연결되어 유동환원로(20) 및 용융로(10) 각각에서 배출된 배가스를 환원 가스로서 전달받으면 염기성 알칼리 혼합액과 반응시켜 상기 환원 가스 중 이산화탄소를 포집한 후에 상기 포집된 이산화탄소를 포함하는 반응물을 수집하고, 상기 이산화탄소가 제거된 환원 가스를 상기 유동환원로(20)에 투입하는 반응기(100);를 포함할 수 있다. 이를 통해, 파이넥스(FINEX) 공정을 통해 DRI(Direct Reduced Iron, 직접환원철) 제조 시 주입되는 환원 가스의 조성 중 이산화탄소 저감을 통해 장입 광석을 환원시키는 환원 가스의 산화도를 개선함으로써 DRI 환원율을 향상시킬 수 있다.
상기 유동환원로(20)에 투입되는 상기 환원 가스는 파이넥스(FINEX) 배가스(FOG, FINEX OFF GAS), 고로 배가스(BFG), 코크스오븐 가스(COG), WGSR(Water Gas Shift Reactor) 가스 및 용융로 배가스로 이루어지는 그룹으로부터 선택되는 적어도 1종의 가스일 수 있으며, 즉 상기 그룹으로부터 선택된 1종의 가스 또는 2종 이상의 가스의 혼합일 수 있다. 바람직하게는 CO2 PSA를 거치지 않은 파이넥스(FINEX) 배가스(FOG, FINEX OFF GAS) 및 용융로 배가스의 혼합 가스인 것이다.
상기 환원 가스는 상기 유동환원로(20)에서 발생된 배가스인 FINEX 배가스(FOG, FINEX OFF GAS) 및 상기 용융로(10)에서 발생된 배가스인 용융로 배가스의 혼합 가스이다.
이러한 환원 가스는 제1 배출수단(25) 및 제2 배출수단(15)에 의해 반응기(100)에 전달되며, 상기 반응기(100)는 상기 환원 가스를 염기성 알칼리 혼합액과 반응시켜 상기 환원 가스 중 이산화탄소를 포집한 후에 상기 포집된 이산화탄소를 포함하는 반응물을 수집하고, 상기 이산화탄소가 제거된 환원 가스를 상기 유동환원로(20)에 투입시킬 수 있다.
구체적으로, 상기 반응기(100)는 상기 환원 가스를 전달받아 염기성 알칼리 혼합액과 반응시켜 배가스 중 이산화탄소를 포집하고, 포집된 이산화탄소를 포함하는 반응물을 수집하며, 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리하고, 상기 이산화탄소 반응물을 회수하여 저장하며, 상기 포집된 이산화탄소가 제거된 잔여 배가스를 배출할 수 있다. 여기서, 이산화탄소 반응물은 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하며, 상기 잔여 배가스는 상기 유동환원로(20)에 투입되는 상기 이산화탄소가 제거된 환원가스이다.
도 3은 본 발명의 일 실시예에 따른 파이넥스(FINEX) 공정을 도시적으로 나타낸 도면이다.
도 3을 참조하면, 본 발명의 일 실시예에 따른 파이넥스(FINEX) 공정에서는 분철광(1)이 유동환원로(20)를 통해 환원되어 환원된 철(5)이 획득되고, 이러한 과정에서 FOG(2)가 스크러버(30) 및 반응기(100)를 거쳐 용융로(10)에서 배출되는 용융로 가스(3)와 함께 유동환원로(20)로 전달된다.
여기서, 상기 반응기(100)는 파이넥스(FINEX) 유동환원로에 투입되는 환원 가스 중의 이산화탄소의 함량을 저감하고, 상기 이산화 탄소가 저감된 환원 가스를 파이넥스(FINEX) 유동환원로(20)에 전달한다. 이러한 상기 반응기(100)의 구성에 대해서는 도 4 및 도 5에서 자세히 설명하고자 한다.
도 4는 본 발명의 일 실시예에 따른 반응기(100)를 나타낸 도면이다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 반응기(100)는 철강 제조 공정 중 하나인 제선 공정상에서 배출되는 배가스, 즉 파이넥스(FINEX) 유동환원로에 투입되는 환원 가스 중 이산화탄소를 포집함으로써 이산화탄소를 저감시킬 수 있고, 상기 포집된 이산화탄소를 이용하여 탄산나트륨 또는 탄산수소나트륨으로 탄소자원화시킬 수 있는 구조를 갖는다.
구체적으로, 본 발명의 일 실시예에 따른 반응기(100)는 염기성 알칼리 용액을 이용하여 상기 제1 배출수단(25) 및 상기 제2 배출수단(15)에 의해 유동환원로(20) 및 용융로(10) 각각에서 배출된 배가스, 즉 혼합 가스 중 이산화탄소를 포집하는 반응기로서, 흡수탑(110), 이산화탄소 포집부(111), 배가스 배출원(120), 믹서(130), 분리기(140), 탄소자원 저장조(141) 및 배출부(150)를 포함한다.
상기 흡수탑(110)은 이산화탄소를 포집하는 시설, 건물, 설비 등을 의미하는 것일 수 있다. 또한, 상기 흡수탑(110)의 하단에 위치하는 이산화탄소 포집부(111)는 흡수탑(110)의 일부분이며, 배가스를 버블링하여 이산화탄소를 포집하는 부분을 의미하는 것일 수 있다.
상기 흡수탑(110)은 이산화탄소가 포집되는 이산화탄소 포집부(111)를 하단에 포함하여, 염기성 알칼리 혼합액과 배가스(배가스 마이크로버블)를 반응시켜 제철소의 제선 공정상에서 배출되는 배가스 중 이산화탄소만을 포집한다. 상기 배가스 중 이산화탄소를 포집한 후, 상기 흡수탑(110)에는 이산화탄소가 제거된 배가스가 기체 상태로 남아있는 것일 수 있다.
상기 흡수탑(110)은 상부에 노즐이 설치되어 믹서(130)로부터 상기 노즐을 통해 염기성 알칼리 혼합액이 흡수탑(110) 내에 분사되고, 하단의 이산화탄소 포집부(111)에 모인다. 상기 염기성 알칼리 혼합액이 분사되는 동시에 배가스 배출원(120)으로부터 공급된 배가스가 흡수탑(110) 하부의 이산화탄소 포집부(111) 내의 버블러(113)를 통과하여 마이크로버블(microbubble)이 생성된 배가스가 공급되며, 상기 이산화탄소 포집부(111) 내에서 염기성 알칼리 혼합액과 배가스 마이크로버블이 반응하여 이산화탄소를 포집한다. 상기 마이크로버블은 염기성 알칼리 혼합액에 배기 가스를 반응시킬 때 배가스 배출원(120)의 출구에 미세한 구멍이 형성된 버블러(113)를 통과하면서 버블이 형성된다.
상기 버블러(113)는 배가스 배출원(120)으로부터 공급된 배가스를 통과시킴으로써 배가스에 마이크로버블을 형성할 수 있고, 상기 마이크로버블은 버블의 크기가 작을수록 배가스와 알칼리 용액의 반응면적이 넓어져 이산화탄소의 포집 능력이 증가하는 것일 수 있다. 예를 들어, 상기 마이크로버블은 약 50 ㎛ 이하의 크기를 가지는 수용액 상에 존재하는 기포를 의미하는 것일 수 있다.
상기 버블러(113) 이외에도 후술하는 도 5에 도시된 바와 같이, 흡수탑 내에 배가스가 균일한 속도분포로 유입되도록 슬릿(Slit) 또는 구멍(Hole)이 다수 형성된 배플(508)을 구비할 수 있다.
또한, 상기 흡수탑(110)은 내부에 레벨 인디케이터(level indicator)(112)를 포함하여 흡수탑(110) 내의 용액의 수위를 감지할 수 있다.
상기 노즐은 다수의 노즐을 포함할 수 있고, 1단 이상의 단으로 형성될 수 있다. 상기 노즐은 믹서(130)와 연결되어 믹서(130)로부터 염기성 알칼리 혼합액을 공급할 수 있다.
상기 흡수탑(110)은 직렬, 병렬, 또는 직렬과 병렬 복합 배열로 구성될 수 있다.
예를 들어, 상기 흡수탑(110)은 배기 가스의 유속이 빠른 경우 직렬로 배열하는 것일 수 있다. 유속이 빨라 반응이 안된 이산화탄소가 흡수탑에서 배출되는 경우 흡수탑을 직렬로 설치하여 미반응 이산화탄소를 포집할 수 있다.
또한, 예를 들어, 상기 흡수탑(110)은 배기 가스의 유량이 많은 경우 병렬로 배열하는 것일 수 있다. 배기 가스의 유량이 흡수탑이 포집할 수 있는 양을 초과하는 경우 흡수탑을 병렬로 하여 포집 가능한 이산화탄소의 양을 늘릴 수 있다.
상기 배가스 배출원(120)은 이산화탄소를 배출하는 모든 가스를 활용할 수 있고, 본 발명의 일 실시예에 따르면 제철소의 파이넥스(FINEX) 제선 공정상의 유동환원로(20)에서 발생된 배가스인 FINEX 배가스(FOG, FINEX OFF GAS) 및 상기 용융로(10)에서 발생된 배가스인 용융로 배가스의 혼합 가스일 수 있다.
상기 믹서(130)은 염기성 알칼리 용액 저장조(131)에서 공급된 염기성 알칼리 용액과 급수원(132)에서 공급된 물을 혼합하여, 상기 흡수탑(110)의 노즐로 공급한다.
상기 염기성 알칼리 용액과 물이 혼합된 염기성 알칼리 혼합액은 공급량 또는 필요량이 많아질 경우 별도로 연결된 바이패스(by-pass)(136) 라인을 이용하여 공급할 수 있다.
상기 염기성 알칼리 용액과 물은 1:1 내지 1:5의 비율로 혼합하는 것일 수 있다. 예를 들어, 상기 염기성 알칼리 용액과 물은 1:1 내지 1:4, 1:1 내지 1:3, 1:1 내지 1:2, 1:2 내지 1:5, 1:2 내지 1:3 또는 1:3 내지 1:5의 비율로 혼합하는 것일 수 있다.
상기 염기성 알칼리 용액과 물은 염기성 알칼리 용액의 혼합비가 증가할수록 이산화탄소 포집률이 증가할 수 있으나, 비용적인 측면을 고려하여 물의 혼합비를 조절할 수 있다.
상기 염기성 알칼리 혼합액은, SiO2, Al2O3, Fe2O3, TiO2, MgO, MnO, CaO, Na2O, K2O 및 P2O3로 이루어진 군으로부터 선택된 1종 이상의 산화물; Li, Cr, Co, Ni, Cu, Zn, Ga, Sr, Cd 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 금속; 및, 사붕산나트륨(Na2B4O7·10H2O), 수산화나트륨(NaOH), 규산나트륨(Na2SiO3), 수산화칼륨(KOH) 및 과산화수소(H2O2)로 이루어진 군으로부터 선택된 1 종 이상의 액상 조성물;을 포함하는 것을 특징으로 한다.
상기 급수원(132)은 시스템 설치 장소에서 용이하게 구할 수 있는 모든 용수를 포함할 수 있고, 예를 들어, 해수일 수 있다.
상기 염기성 알칼리 혼합액의 평균 pH는 pH12 이상인 것일 수 있다. 예를 들어, 상기 pH는 pH12 내지 pH13.5, pH12, pH12,1, pH12,2 또는 pH12.3일 수 있다. 상기 염기성 알칼리 혼합액의 pH는 상기 흡수탑(110) 내의 pH meter로 측정될 수 있으며, 상기 흡수탑(110) 내의 염기성 알칼리 혼합액의 pH가 10.5 미만이 되면 더 이상 이산화탄소 포집을 하지 못하기 때문에, 상기 염기성 알칼리 혼합액의 pH를 맞추기 위해, 상기 염기성 알칼리 용액과 물의 양은 각각의 밸브(133, 134)에서 0 내지 100%까지 조절하여 믹서(130)로 공급될 수 있다.
상기 흡수탑(110) 내의 염기성 알칼리 혼합액의 수위가 90% 미만(level indicator로 측정)으로 낮아지면 상기 믹서(130)에서 밸브(135)를 통해 조절되어 염기성 알칼리 혼합액이 투입되고 용액의 수위가 100%가 될 경우 투입이 중단될 수 있다. 그와 동시에 염기성 알칼리 혼합액의 pH가 12 내지 13.5가 될 때까지 염기성 알칼리 용액과 물을 혼합하는 것일 수 있다.
상기 흡수탑(110)으로 공급되는 염기성 알칼리 혼합액의 양과 상기 분리기(140)에서 나가는 용액의 양이 동일해야 지속적으로 이산화탄소 포집 시스템을 유지할 수 있기 때문에, 상기 흡수탑(110)에서 분리기(140)로 가는 라인에 설치된 flow meter 값과 동일한 양의 염기성 알칼리 혼합액이 흡수탑(110)에 공급되도록 밸브(135)(필요시 by-pass 밸브 포함)를 조절하여 net flow를 0로 만드는 것일 수 있다.
상기 흡수탑(100)의 이산화탄소 포집부(111)에서 염기성 알칼리 혼합액과, 유동환원로(20) 및 용융로(10) 각각에서 배출되어 혼합된 혼합 가스인 배가스가 반응하여 포집된 이산화탄소를 포함하는 반응물을 수집하고, 상기 반응물에서 이산화탄소 반응물과 폐용액은 밸브(114)를 통해 분리기(140)로 이동하여, 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리한다.
상기 분리기(140)는 반응물에서 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하는 이산화탄소 반응물과 폐용액을 분리하는 원심분리기와, 상기 원심분리기로부터 분리된 이산화탄소 반응물 중에서 탄산수소나트륨만을 외부로 배출시키기 위한 배출관의 내측 둘레에 대응되게 형성되고 표면에 상기 탄산수소나트륨의 투과를 허용하는 크기로 미세 구멍이 형성된 진동분리막을 포함할 수 있다. 이를 통해 고순도의 탄산수소나트륨을 획득하여 바로 판매할 수 있어 수익을 얻을 수 있다.
상기 진동분리막에 형성된 미세 구멍의 크기는 10~20㎛일 수 있으며, 진동분리막의 진동을 유발시키기 위해서 진동발생부를 더 포함할 수 있다. 상기 진동발생부는 탄산수소나트륨에 의해 상기 미세 구멍이 막히는 것을 방지하기 위해 배치될 수 있다.
상기 분리된 이산화탄소 반응물은 탄소자원 저장소(141)로 이동하여 다른 용도로 자원화하여 재활용할 수 있다. 예를 들어, 상기 이산화탄소 반응물은 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하는 것일 수 있다.
상기 이산화탄소 반응물은 하기 <반응식 1>에서와 같이, 염기성 알칼리 혼합물과 이산화탄소가 반응하여 생성될 수 있다.
<반응식 1>
2NaOH + CO2 → Na2CO3 + H2O
Na2CO3 + H2O + CO2 → 2NaHCO3
상기 반응물에서 이산화탄소 반응물을 제외한 폐용액은 폐수 처리조(142)로 이동되어 폐기된다. 예를 들어, 상기 폐용액은 촉매 역할을 끝낸 염기성 알칼리 혼합액에 함유되어 있던 일라이트 광물 및 물 등을 포함할 수 있다.
상기 탄소자원 저장소(141)는 제철소가 원료조달을 위해서 바닷가에 있는 점이 고려된 이산화탄소 반응물 저장소로서, 종래의 이산화탄소 저장장치보다 더 효율적으로 이산화탄소 포집 반응물인 탄소 자원를 저장하는 동시에 저장비용 및 수용비용을 절감할 수 있다.
구체적으로, 상기 탄소자원 저장소(141)는 염기성 알칼리 혼합액과 제철소에서 발생된 이산화탄소가 반응하여 발생된 이산화탄소 반응물을 수용하는 해상구조물; 상기 이산화탄소 반응물을 상기 해상구조물로 로딩(loading)하는 인입 유닛; 상기 해상구조물과 연결되어 상기 해상구조물 내의 상기 이산화탄소 반응물을 언로딩(unloading)하는 배출 유닛; 및 상기 해상구조물에 수용된 상기 이산화탄소 반응물을 로딩/언로딩시에 상기 인입 유닛 및 상기 배출 유닛을 제어하는 제어 유닛;을 포함할 수 있다. 이를 통하여 더 효율적으로 탄소자원을 해상구조물에 저장하고, 저장된 탄소자원이 필요한 경우에 해상구조물로부터 인출하여 활용할 수 있다.
바람직하게, 상기 해상구조물은 액체 수송 운반선을 포함하는 부유식 해상구조물로서, 이에 한정되는 것은 아니며 해상에서 떠 있거나 이동하는 등 각종 다양한 작업을 수행할 수 있는 구조물이라면 어떤 것이든 포함될 수 있다. 구체적으로는, LNG FPSO, LNG FSRU, LNG 수송선 및 LNG RV 중 선택된 어느 하나인 것이 가능하다.
한편, 상기 이산화탄소 포집부(111)에서 이산화탄소 포집 후 이산화탄소가 제거된 잔여 배가스는 배출부(150)를 통해 배출된다. 본 발명의 일 실시예에 따르면 상기 배출부(150)를 통해 배출되는 잔여 배가스는 이산화탄소가 제거된 환원 가스로 상기 유동환원로(20)에 투입되며, 상기 환원 가스는 산화도 수치가 낮아 DRI(Direct Reduced Iron, 직접환원철)의 환원율을 향상시킬 수 있다.
또한, 상기 잔여 배가스는 배출 시 이산화탄소의 농도가 규제 기준치를 초과할 수 없으므로, 상기 잔여 배가스가 배출될 대기 속 이산화탄소의 농도를 기준으로 하여(관리자가 미리 대기의 이산화탄소 농도의 측정 후 설정한 기준) 기준을 초과하지 않는 잔여 배가스를 배출할 수 있다.
상기 반응기(100)는, 상기 흡수탑(110) 내의 염기성 알칼리 혼합액의 수위 및 pH를 모니터링하는 모니터링부(160); 및 상기 모니터링부(160)에 의해 염기성 알칼리 혼합액의 공급량을 조절하는 제어부(161);를 더 포함할 수 있다.
상기 반응기(100)의 모든 과정에서 측정되는 gas meter, pH meter, flow meter의 값을 모니터링부(160)에서 관리하며, 모니터링부(160)에서 나타내는 값을 기반으로 제어부(161)를 조절한다. 상기 제어부(161)에서 입력되는 값에 대하여 밸브들(114, 133, 134, 135)이 퍼센테이지로 조절될 수 있다.
본 발명에 따른 제철소용 이산화탄소 포집 및 탄소자원화 시스템은 제철소의 제선공정 상에서 발생하는 배기가스 중 이산화탄소를 포집함으로써 이산화탄소를 저감시킬 수 있고, 상기 포집된 이산화탄소를 이용하여 탄산나트륨 또는 탄산수소나트륨으로 변환시킴으로써 다른 유용한 물질로의 자원화가 가능하다.
한편, 도 5는 본 발명의 일 실시예에 따른 반응기(100)의 이산화탄소 포집 성능을 향상시키기 위한 흡수탑(110)의 내부 구성을 개략적으로 도시한 도면이다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 흡수탑(110)은 이산화탄소 포집 성능을 더욱 향상시키기 위해서, 상기 믹서(130)와 연결되어 상기 흡수탑 내의 일 영역을 관통하여 상기 흡수탑 내부로 삽입되며 상기 염기성 알칼리 혼합액을 공급받는 분사 챔버(202)와, 상기 염기성 알칼리 혼합액을 분사하기 위한 복수의 분사홀을 가지고 상기 분사 챔버(202)에 경사지게 연결된 복수의 분사 파이프(205)를 포함하는 분사장치; 상기 분사장치로부터 분사된 염기성 알칼리 혼합액이 하부로 향해 낙하할 때 공극(206)에 닿아 미세하게 액적을 형성하는 미세액적부재(207); 및 상기 흡수탑 내에 상기 배가스가 균일한 속도분포로 유입되도록 슬릿(Slit) 또는 구멍(Hole)이 다수 형성된 배플(208);을 더 포함할 수 있다.
상기 분사 챔버(202)는 흡수탑 본체의 일 영역을 관통하여 흡수탑 내부로 삽입될 수 있으며, 이때, 분사 챔버(202)는 흡수탑 본체의 중심축에서 흡수탑을 가로지르는 방향으로 설치될 수 있다. 분사 챔버(202)는 믹서(130)와 연결되어 공급받은 염기성 알칼리 혼합액을 후술할 복수의 분사 파이프(205)에 고르게 분배하기 위한 매니폴드(manifold)가 될 수 있다.
상기 분사 파이프(205)는 도 5에 도시된 바와 같이 복수 개 갖춰지며, 분사 챔버(202)가 공급받은 염기성 알칼리 혼합액을 분사하기 위한 복수의 분사홀을 가지고 분사 챔버(202)에 연결된다. 그리고 본 발명의 일 실시예에 따르면, 복수의 분사 파이프(205)는 분사 챔버(202)에 경사지게 연결된다. 즉 분사 챔버(202)와 복수의 분사 파이프(205) 간의 사잇각(θ)은 예각일 수 있다.
이와 같이, 복수의 분사 파이프(205)가 분사 챔버(202)로부터 경사지게 연장되면, 흡수탑 본체 내에서 동일한 수의 분사 파이프(205)를 가지고 더 넓은 환원제 분사 면적을 확보할 수 있다.
즉, 복수의 분사 파이프(205)가 분사 챔버(202)의 길이 방향에 교차하는 방향으로 수직하게 연장된 경우보다, 본 발명의 일 실시예와 같이, 복수의 분사 파이프(205)가 분사 챔버(202)로부터 경사지게 연장된 경우 더 적은 수의 분사 파이프(205)를 가지고 동일한 환원제 분사 면적을 확보하거나 동일한 수의 분사 파이프(205)를 가지고 더 넓은 염기성 알칼리 혼합액의 분사 면적을 확보할 수 있다.
상기 복수의 분사 파이프(205)는 분사 챔버(202)를 중심으로 양 방향으로 연장될 수도 있다. 또한, 복수의 분사 파이프(205)는 등간격으로 배열될 수 있다. 이에, 분사 챔버(202)가 공급받은 염기성 알칼리 혼합액을 복수의 분사 파이프(202)를 통해 흡수탑 본체 내부의 전 영역에 고르게 분사할 수 있다.
또한, 상기 복수의 분사 파이프(205) 중 어느 하나의 분사 파이프에 형성된 복수의 분사홀은 이웃한 상기 분사 파이프(205)에 형성된 상기 복수의 분사홀과 교호적으로 엇갈린 위치에 형성될 수 있다.
상기 분사홀은 염기성 알칼리 혼합액을 소정의 압력으로 분사하는데, 분사홀이 서로 대향하는 방향으로 염기성 알칼리 혼합액을 분사하게 되면 분사된 염기성 알칼리 혼합액이 서로 충돌하면서 기류에 간섭이 발생될 수 있다. 그러나 본 발명의 일 실시예에 따르면, 복수의 분사홀을 엇갈리도록 배치하여 복수의 분사홀에서 분사된 염기성 알칼리 혼합액 간의 충돌 또는 간섭이 일어나는 것을 방지할 수 있다.
즉, 분사 챔버(202)와 복수의 분사 파이프(205)를 포함하는 분사장치는 대량의 염기성 알칼리 혼합액을 더욱 효과적으로 제철소에서 배출되는 배가스와 균일하게 혼합시킬 수 있을 뿐만 아니라 분사된 염기성 알칼리 혼합액이 충돌하면서 기류에 간섭을 일으키는 것을 억제할 수 있다.
상술한 흡수탑(110)의 일 실시예에 의하면, 상기 분사장치에 의해 흡수탑 본체 내부에 염기성 알칼리 혼합액이 상부에서 하부로 떨어진 후에 미세액적부재(207)의 공극(206)에 닿아 미세한 액적으로 형성되고, 상기 미세한 액적으로 형성된 염기성 알칼리 혼합액과, 슬릿(Slit) 또는 구멍(Hole)이 다수 형성된 배플(208)을 통과하여 미세 입자로 형성된 배가스가 접촉할 수 있다. 이를 통해, 반응기(100)의 이산화탄소 포집 성능이 향상될 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시 예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 명세서의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 명세서의 범위에 포함되는 것으로 해석되어야 한다.
한편, 본 명세서와 도면에는 본 명세서의 바람직한 실시 예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 명세서의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 명세서의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예 외에도 본 명세서의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
본 발명은 철강 제조 공정 중 하나인 제선 공정 상에서 배출되는 이산화탄소를 효율적으로 저감시킴과 동시에 다른 유용한 물질로 자원화할 수 있는 제철소용 이산화탄소 포집 및 탄소자원화 시스템을 제공할 수 있다.
또한, 본 발명인 제철소용 이산화탄소 포집 및 탄소자원화 시스템은 종래의 파이넥스(FINEX) 공정을 도입한 제철소에 쉽게 적용 가능함으로써, 제철소 공정의 파이넥스 공정에서 발생하는 배기 가스 중 지구 온난화에 영향을 미치는 대표적인 유해 물질인 이산화탄소를 줄이기 위한 시스템을 제공할 수 있다.
또한, 본 발명에 따른 제철소용 이산화탄소 포집 및 탄소자원화 시스템에서는, 종래 제철소에서 배출되는 이산화탄소 저감을 위해 널리 이용되었던 CO2 PSA 기술의 문제점을 해소하면서 이산화탄소 포집 설비를 통해 포집된 이산화탄소로부터 식품 첨가제, 세제, 비누 원료, 첨단 의료산업, 폐수처리 등 다양한 산업 분야에 활용되는 탄소자원을 제조함으로 인한 수익 창출 효과도 기대할 수 있다.
뿐만 아니라, 본 발명에 따른 제철소용 이산화탄소 포집 및 탄소자원화 시스템에서 발생된 이산화탄소 반응물을 해상구조물에 효울적으로 저장 및 수송시킬 수 있어 종래 이산화탄소 저장장치 대비 제작비용 및 수송비용을 절감할 수 있다.
이는 온실가스 물질의 주 배출원이라고 인식되는 철강업계의 제철소들을 상대로 이산화탄소 포집 및 탄소자원화 시스템의 시판 또는 영업의 가능성이 충분할 뿐만 아니라 현실적으로 명백하게 실시할 수 있는 정도이므로 산업상 이용가능성이 있다.

Claims (16)

  1. 분철광을 환원 가스와 반응시켜 환원철로 환원시키는 1개 이상의 유동환원로;
    상기 1개 이상의 유동환원로에서 발생된 배가스를 배출하는 제1 배출수단;
    상기 유동환원로와 연결되어 상기 유동환원로에서 제조된 환원철을 용융시켜 용선을 제조하는 용융로;
    상기 용융로에서 발생된 배가스를 배출하는 제2 배출수단; 및
    상기 제1 배출수단 및 상기 제2 배출수단과 각각 연결되어 유동환원로 및 용융로 각각에서 배출된 배가스를 환원 가스로서 전달받으면 염기성 알칼리 혼합액과 반응시켜 상기 환원 가스 중 이산화탄소를 포집한 후에 상기 포집된 이산화탄소를 포함하는 반응물을 수집하고, 상기 이산화탄소가 제거된 환원 가스를 상기 유동환원로에 투입하는 반응기;를 포함하고,
    상기 반응기는 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리하고, 상기 분리된 이산화탄소 반응물을 자원화하기 위해 저장하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  2. 제 1 항에 있어서,
    상기 환원 가스는 상기 유동환원로에서 발생된 배가스인 FINEX 배가스(FOG, FINEX OFF GAS) 및 상기 용융로에서 발생된 배가스인 용융로 배가스의 혼합 가스인 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  3. 제 1 항에 있어서,
    상기 염기성 알칼리 혼합액은,
    SiO2, Al2O3, Fe2O3, TiO2, MgO, MnO, CaO, Na2O, K2O 및 P2O3로 이루어진 군으로부터 선택된 1종 이상의 산화물;
    Li, Cr, Co, Ni, Cu, Zn, Ga, Sr, Cd 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 금속; 및,
    사붕산나트륨(Na2B4O7·10H2O), 수산화나트륨(NaOH), 규산나트륨(Na2SiO3), 수산화칼륨(KOH) 및 과산화수소(H2O2)로 이루어진 군으로부터 선택된 1 종 이상의 액상 조성물;을 포함하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  4. 제 1 항에 있어서, 상기 반응기는,
    상기 염기성 알칼리 혼합액을 공급하는 믹서;
    상기 믹서로부터 공급된 염기성 알칼리 혼합액과 하부에 설치된 버블러를 통과하여 미세 방울이 형성된 배가스를 반응시켜 상기 배가스 중 이산화탄소를 포집하는 흡수탑;
    상기 흡수탑에서 포집된 이산화탄소를 포함하는 반응물을 수집하고, 상기 반응물에서 이산화탄소 반응물과 폐용액을 분리하는 분리기; 및
    상기 분리된 이산화탄소 반응물을 자원화하기 위해 저장하는 탄소자원 저장소를 포함하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  5. 제 4 항에 있어서,
    상기 믹서는 염기성 알칼리 용액 저장조에서 공급된 염기성 알칼리 용액과 급수원에서 공급된 물을 혼합시켜 염기성 알칼리 혼합액을 생성하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  6. 제 5 항에 있어서,
    상기 염기성 알칼리 용액과 물은 1:1 내지 1:5의 비율로 혼합되는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  7. 제 4 항에 있어서,
    상기 염기성 알칼리 혼합액의 평균 pH는 pH12 내지 pH13.5인 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  8. 제 4 항에 있어서,
    상기 흡수탑 내의 염기성 알칼리 혼합액의 수위가 90% 미만으로 낮아지면 상기 믹서에서 밸브를 통해 조절되어 염기성 알칼리 혼합액이 투입되고 상기 염기성 알칼리 혼합액의 수위가 100%가 될 경우 투입이 중단되고, 그와 동시에 염기성 알칼리 혼합액의 pH가 12 내지 13.5가 될 때까지 염기성 알칼리 용액과 물을 혼합하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  9. 제 4 항에 있어서,
    상기 버블러는 상기 배가스를 이용하여 배가스 마이크로버블을 형성하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  10. 제 4 항에 있어서, 상기 흡수탑은,
    상기 믹서와 연결되어 상기 흡수탑 내의 일 영역을 관통하여 상기 흡수탑 내부로 삽입되며 상기 염기성 알칼리 혼합액을 공급받는 분사 챔버와, 상기 염기성 알칼리 혼합액을 분사하기 위한 복수의 분사홀을 가지고 상기 분사 챔버에 경사지게 연결된 복수의 분사 파이프를 포함하는 분사장치;
    상기 분사장치로부터 분사된 염기성 알칼리 혼합액이 하부로 향해 낙하할 때 공극에 닿아 미세하게 액적을 형성하는 미세액적부재; 및
    상기 흡수탑 내에 상기 배가스가 균일한 속도분포로 유입되도록 슬릿(Slit) 또는 구멍(Hole)이 다수 형성된 배플;을 더 포함하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  11. 제 10 항에 있어서,
    상기 복수의 분사 파이프 중 어느 하나의 분사 파이프에 형성된 상기 복수의 분사홀은 이웃한 상기 분사 파이프에 형성된 상기 복수의 분사홀과 교호적으로 엇갈린 위치에 형성되는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  12. 제 1 항에 있어서,
    상기 이산화탄소 반응물은 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  13. 제 4 항에 있어서, 상기 분리기는,
    상기 반응물에서 탄산나트륨(Na2CO3) 또는 탄산수소나트륨(NaHCO3)을 포함하는 이산화탄소 반응물과, 폐용액을 분리하는 원심분리기; 및
    상기 이산화탄소 반응물 중에서 탄산수소나트륨만을 외부로 배출시키기 위한 배출관의 내측 둘레에 대응되게 형성되고, 표면에 상기 탄산수소나트륨의 투과를 허용하는 크기로 미세 구멍이 형성된 진동분리막;을 포함하는 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  14. 제 4 항에 있어서, 상기 반응기는,
    상기 흡수탑 내의 염기성 알칼리 혼합액의 수위 및 pH를 모니터링하는 모니터링부; 및
    상기 모니터링부에 의해 염기성 알칼리 혼합액의 공급량을 조절하는 제어부;를 더 포함하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  15. 제 4 항에 있어서, 상기 탄소자원 저장소는,
    상기 이산화탄소 반응물을 수용하는 해상구조물;
    상기 이산화탄소 반응물을 상기 해상구조물로 로딩(loading)하는 인입 유닛;
    상기 해상구조물과 연결되어 상기 해상구조물 내의 상기 이산화탄소 반응물을 언로딩(unloading)하는 배출 유닛; 및
    상기 해상구조물에 수용된 상기 이산화탄소 반응물을 로딩/언로딩시에 상기 인입 유닛 및 상기 배출 유닛을 제어하는 제어 유닛;을 포함하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
  16. 제 15 항에 있어서,
    상기 해상구조물은 LNG FPSO, LNG FSRU, LNG 수송선 및 LNG RV 중 선택된 어느 하나인 것을 특징으로 하는 제철소용 이산화탄소 포집 및 탄소자원화 시스템.
PCT/KR2022/008627 2022-01-21 2022-06-17 제철소용 이산화탄소 포집 및 탄소자원화 시스템 WO2023140439A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0009529 2022-01-21
KR1020220009529A KR20230113469A (ko) 2022-01-21 2022-01-21 제철소용 이산화탄소 포집 및 탄소자원화 시스템

Publications (1)

Publication Number Publication Date
WO2023140439A1 true WO2023140439A1 (ko) 2023-07-27

Family

ID=87348479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008627 WO2023140439A1 (ko) 2022-01-21 2022-06-17 제철소용 이산화탄소 포집 및 탄소자원화 시스템

Country Status (2)

Country Link
KR (1) KR20230113469A (ko)
WO (1) WO2023140439A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318036A (ja) * 1994-05-26 1995-12-08 Hitachi Ltd 廃ガス浄化方法
KR100935997B1 (ko) * 2009-05-18 2010-01-08 이정무 균일한 기포발생을 위한 산기장치
KR101219789B1 (ko) * 2012-10-05 2013-01-09 (주)대우건설 다단 수직형 연속 이산화탄소 제거 장치 및 방법
KR20150048473A (ko) * 2013-10-28 2015-05-07 주식회사 포스코 파이넥스 공정에서의 dri 환원율 향상 방법
KR101773813B1 (ko) * 2017-03-29 2017-09-01 한국지질자원연구원 이산화탄소를 이용한 탄산염의 선택적 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101303526B1 (ko) 2006-12-20 2013-09-03 재단법인 포항산업과학연구원 제철소에서 발생되는 부생가스의 발열량 향상 방법
KR102513315B1 (ko) 2015-12-24 2023-03-22 주식회사 포스코 용철 제조 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318036A (ja) * 1994-05-26 1995-12-08 Hitachi Ltd 廃ガス浄化方法
KR100935997B1 (ko) * 2009-05-18 2010-01-08 이정무 균일한 기포발생을 위한 산기장치
KR101219789B1 (ko) * 2012-10-05 2013-01-09 (주)대우건설 다단 수직형 연속 이산화탄소 제거 장치 및 방법
KR20150048473A (ko) * 2013-10-28 2015-05-07 주식회사 포스코 파이넥스 공정에서의 dri 환원율 향상 방법
KR101773813B1 (ko) * 2017-03-29 2017-09-01 한국지질자원연구원 이산화탄소를 이용한 탄산염의 선택적 제조방법

Also Published As

Publication number Publication date
KR20230113469A (ko) 2023-07-31

Similar Documents

Publication Publication Date Title
US7005115B2 (en) Gas combustion treatment method and apparatus therefor
CN103596664B (zh) 利用熔渣的二氧化碳减少装置
HU188685B (en) Process for production of combustible gas in iron-bath reactor containing carbon monoxid and hydrogen
WO2020091392A1 (ko) 금속 필터를 이용한 일체형 배가스 처리 장치
WO2023140439A1 (ko) 제철소용 이산화탄소 포집 및 탄소자원화 시스템
CN108517387A (zh) 一种转炉煤气净化及余热回收利用系统
US20130095018A1 (en) Up-flow fluidized bed dry scrubber and method of operating same
US11365882B2 (en) Gas combustion treatment device, combustion treatment method, and gas purification system including gas combustion treatment device
WO2014030811A1 (ko) 이산화탄소 고정방법 및 장치
WO2023210874A1 (ko) 제철소용 이산화탄소 포집 및 탄소자원화, 및 수소 생산 시스템
CN112680256B (zh) 一种高炉煤气湿法脱氯脱硫的装置和方法
WO2023210873A1 (ko) 석탄가스화 복합발전용 이산화탄소 및 황산화물 포집, 및 탄소자원화 시스템
WO2023234462A1 (ko) 황산나트륨을 이용한 중조 및 석고의 제조방법
WO2023140441A1 (ko) 석탄화력발전용 이산화탄소 및 황산화물 포집, 및 탄소자원화 시스템
CN1154263A (zh) 烟气循环流化法脱硫工艺方法及装置
WO2022085895A1 (ko) 촉매에 침지하여 석탄의 황함유량을 저감시키는 전처리 탈황 시스템
WO2023140438A1 (ko) 선박용 이산화탄소 포집 및 탄소자원화 시스템 및 그 방법
WO2023210875A1 (ko) 해수 및 배가스를 이용한 선박용 이산화탄소 포집 및 탄소자원화 시스템
CN110368799B (zh) 一种半干法脱硫装置及方法
KR101149601B1 (ko) 용융 슬래그를 이용한 이산화탄소 저감 장치
WO2018080235A1 (ko) 배기가스 배출장치
EP1058051A1 (en) Fluidized bed gasification furnace
WO2022255590A1 (ko) 선박용 이산화탄소 및 황산화물 포집, 및 탄소자원화 시스템
WO2023140440A1 (ko) 시멘트 제조 설비용 이산화탄소 포집 및 탄소자원화 시스템
CN110726142A (zh) 环保节能急冷器及烟气急速降温方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922298

Country of ref document: EP

Kind code of ref document: A1