WO2023210733A1 - Paddy methane reduction support device, paddy methane reduction support system, paddy methane reduction support method, information processing device, agriculture support system, and agriculture support method - Google Patents

Paddy methane reduction support device, paddy methane reduction support system, paddy methane reduction support method, information processing device, agriculture support system, and agriculture support method Download PDF

Info

Publication number
WO2023210733A1
WO2023210733A1 PCT/JP2023/016601 JP2023016601W WO2023210733A1 WO 2023210733 A1 WO2023210733 A1 WO 2023210733A1 JP 2023016601 W JP2023016601 W JP 2023016601W WO 2023210733 A1 WO2023210733 A1 WO 2023210733A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
rice field
water management
methane
rice
Prior art date
Application number
PCT/JP2023/016601
Other languages
French (fr)
Japanese (ja)
Inventor
知世 安達
敏晴 楠本
美貴子 古城
直人 谷
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023037689A external-priority patent/JP2024048329A/en
Priority claimed from JP2023071925A external-priority patent/JP2023164357A/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2023210733A1 publication Critical patent/WO2023210733A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Definitions

  • the present invention relates to technology that supports the reduction of methane emitted from rice fields.
  • Greenhouse gases that contribute to global warming include methane.
  • Methane is known to be emitted from paddy fields where crops such as rice are grown.
  • Non-Patent Documents 1 to 5 in order to reduce methane emissions from rice fields, it is effective to change agricultural practices such as water management in rice fields and application of organic matter; There are also negative effects such as a decrease in yield.
  • Non-Patent Documents 2 to 5 describe a model (DNDC-Rice model) and calculation formulas for calculating the amount of methane emitted from rice fields.
  • a processing unit or the like uses a plurality of observation images observed by synthetic aperture radar during the rice planting period, field preparation period, and paddy rice growth period, respectively.
  • the paddy field is identified based on the backscatter intensity represented by the pixel value of .
  • the present invention aims to improve convenience by evaluating the reduction of methane from rice fields by farmers.
  • the present invention aims to objectively detect the state and period of water management for reducing the amount of methane discharged from rice fields.
  • flooding may occur in and around rice fields due to heavy rainfall during the rainy season. It is dangerous for farmers and others to approach rice fields when flooding occurs.
  • water management work such as drying is carried out to reduce methane emissions from rice fields
  • a drainage abnormality occurs in which water cannot drain from the rice fields due to blockages in the drains
  • the methane No reduction effect can be obtained.
  • Yield will decrease.
  • the present invention aims to detect the occurrence of water management abnormality in rice fields.
  • the technical means of the present invention for solving the above technical problem is characterized by the following points.
  • a rice field methane reduction support device includes a storage unit that stores model data for calculating methane emissions from rice fields, and a control unit that calculates methane emissions from rice fields based on the model data. and, the control unit acquires farmer information regarding the farmer and work information regarding agricultural work for cultivating crops in a paddy field corresponding to the farmer information, and the control unit acquires farmer information regarding the farmer and work information regarding agricultural work for cultivating crops in the paddy field corresponding to the farmer information, and A methane reduction amount is calculated from a predetermined basic methane emission amount of the rice field based on the implementation state of agricultural work.
  • the control unit may calculate the methane reduction amount of the rice field based on water management information included in the work information and indicating a water management state of the rice field.
  • the control unit identifies a semi-dry state during crop cultivation in the paddy field based on the water management information indicating flooding, irrigation, and falling water in the paddy field, and determines the dry state of the paddy field based on the semi-dry state.
  • the amount of methane reduction may also be calculated.
  • the control unit may notify the farmer of evaluation information indicating the amount of methane reduction in the rice field based on the farmer information.
  • the control unit acquires rice field information regarding the rice field, sets a calculation formula for calculating the methane emission amount of the rice field based on the rice field information, the work information, and the model data, and
  • the basic dry state of the rice field may be set based on the water management information, and the basic methane emission amount of the rice field may be calculated based on the calculation formula and the basic dry state.
  • the control unit stores the calculation formula, the basic dry state, and the basic methane emission amount in the storage unit in association with the rice field information, and stores the calculation formula, the basic dry state, and the basic methane emission amount in the storage unit, based on the changed water management information of the rice field.
  • the amount of methane reduced in the rice field may be calculated by subtracting the amount of emissions.
  • the control unit stores the calculation formula, the basic semi-dry state, and the basic methane emission amount in the storage unit in association with the paddy field information, and includes the calculation formula, the basic semi-dry state, and the basic methane emission amount in the basic semi-dry state of the paddy field in the simulation.
  • the basic mid-dry period is extended at predetermined intervals before and after, the methane reduction amount is calculated based on the extended mid-dry period, the calculation formula for the paddy field, the basic mid-dry period, and the basic methane emissions.
  • a correlation between the dry period of the rice field and the methane reduction amount is derived, first correlation data indicating the correlation is stored in the storage unit, and the changed water management of the rice field is performed.
  • a mid-dry period of the rice field may be specified, and a methane reduction amount of the paddy field may be calculated based on the mid-dry period and the first correlation data.
  • the control unit may update the calculation formula for the rice field in accordance with a change in at least one of the rice field information and the work information for the rice field.
  • the rice field methane reduction support device includes a communication unit that communicates with an external device, and the control unit includes an agricultural management device in which a database storing information regarding a plurality of rice fields and a plurality of farmers is constructed, and a communication unit that communicates with an external device.
  • the communication unit acquires the farmer information and the paddy field information and work information of the paddy field corresponding to the farmer information from at least one of the farmer terminal devices to be used, and determines the water management state of the paddy field.
  • the communication unit may acquire the water management information of the paddy field corresponding to the farmer information from at least one of the detection device that detects the water, the agricultural management device, and the farmer terminal device.
  • the detection device detects the water management state during crop cultivation in the paddy field from the detection result of a water level sensor that detects the water level in the paddy field, and the control unit detects the water management state in the paddy field detected by the detection device.
  • the water management information indicating the management state may be acquired periodically or at a predetermined timing, and the dry state of the rice field may be specified based on the plurality of acquired water management information.
  • the detection device detects the water management state during crop cultivation in the paddy field from the observation results of the paddy field by a flying object or an observation device mounted on the flying object, and the control unit detects the water management state during crop cultivation in the paddy field.
  • the water management information indicating the water management state of the rice field is acquired periodically or at a predetermined timing, and the dry state of the rice field is identified based on the plurality of acquired water management information.
  • the observation device may include a synthetic aperture radar.
  • the control unit calculates the calculation formula and the basic drying period of the paddy field after the extension. calculating the methane reduction amount based on the mid-dry period and the basic methane emission amount, deriving a correlation between the mid-dry period of the rice field and the methane reduction amount, and first correlation data showing the correlation; is stored in the storage unit, and based on the first correlation data, determines a recommended mid-drought period for the rice field during which the methane reduction amount is equal to or greater than a predetermined value, and provides work proposal information including the recommended mid-dry period, The farmer may be notified based on the farmer information.
  • the control unit estimates the basic yield of the crop in the paddy field based on the basic mid-dry period of the paddy field, the rice field information, and the work information, and calculates the basic mid-dry period of the paddy field before and after the basic mid-dry period in the simulation. Each time the period is extended at a predetermined interval, the yield of the crop in the paddy field is estimated based on the mid-dry period after the extension, the paddy field information and the work information of the paddy field, and the yield and the basic yield are calculated.
  • the control unit transmits report information including the methane reduction amount of the rice field and the farmer information corresponding to the rice field to the credit management device through the communication unit, and controls the credit management according to the methane reduction amount.
  • Credit information indicating electronic credit issued from the device may be acquired by the communication unit, and the credit information may be notified to the farmer based on the farmer information.
  • the control unit adds up the methane reduction amounts of the plurality of rice fields, transmits report information indicating the combined methane reduction amount to the credit management device through the communication unit, and transmits report information indicating the combined methane reduction amount to the credit management device according to the combined methane reduction amount.
  • the communication unit acquires credit information indicating credits issued from the credit management device, distributes the credits indicated by the credit information according to the amount of methane reduction in the plurality of rice fields, and distributes the distributed credits.
  • the credit information shown may be notified to the farmers corresponding to each of the plurality of rice fields based on the farmer information.
  • the control unit sets the settings based on the rice field information regarding the rice field, the conventional work information in the rice field, the target work information indicating the agricultural work changed to reduce methane from the rice field, and the model data.
  • the reporting information may include at least one of a calculation formula for calculating the methane emission amount of the rice field and a variable included in the calculation formula, and may be transmitted to the credit management device by the communication unit. .
  • the control unit estimates the credit according to the amount of methane reduction in the rice field, includes temporary credit information indicating the estimated credit in the report information, and transmits the report information to the credit management device through the communication unit, or Credit information may be notified to the farmer based on the farmer information.
  • the rice field methane reduction support device includes an input/output interface for inputting and outputting information, and the control unit allows the farmer to use sale wish information indicating that the farmer wants to sell the credit owned by the farmer.
  • the input/output interface When received by the communication unit from the farmer terminal device, the input/output interface outputs payment instruction information indicating an instruction to make a predetermined trader pay the price of the credit indicated by the sale request information, and When payment completion information indicating that the farmer has paid the price to the farmer is input through the input/output interface, the owner of the credit may be changed from the farmer to the trader.
  • the control unit transfers the price of the credit indicated by the purchase request information to the customer. transmitting a payment instruction to the customer terminal device to cause the customer to pay the price, and receiving payment completion information from the customer terminal device by the communication unit indicating that the customer has paid the price to the transaction person; The owner of the credit may be changed from the transaction person to the consumer.
  • a rice field methane reduction support system includes the rice field methane reduction support device, and an agricultural management device in which a database storing information regarding a plurality of rice fields and a plurality of farmers is constructed, and the rice field methane reduction support system includes:
  • the control unit of the methane reduction support device receives farmer information regarding the farmer and a paddy field corresponding to the farmer information from at least one of the agricultural management device and a farmer terminal device used by the farmer. and work information related to agricultural work for cultivating crops, and calculate the amount of methane reduction reduced from a predetermined basic methane emission amount of the rice field based on the implementation status of the agricultural work included in the work information. .
  • the control unit of the rice field methane reduction support device may transmit evaluation information indicating the amount of methane reduction in the rice field to the farmer terminal device based on the farmer information using the communication unit.
  • the farmer terminal device may be configured to be able to input at least one of the farmer information, the work information, and rice field information regarding the rice fields.
  • the rice field methane reduction support system includes a detection device that detects the water management state of the rice field, and the detection device detects the detection result of a water level sensor that detects the water level of the rice field, or a flying object or an observation device mounted on the aircraft.
  • the water management state of the rice field is detected based on the observation results of the rice field, and the water management information including the water management state is transmitted to at least one of the agricultural management device and the rice field methane reduction support device.
  • the control unit of the rice field methane reduction support device transmits the farmer information and the information of the rice field corresponding to the farmer information from at least one of the agricultural management device and the farmer terminal device.
  • the paddy field information and the work information are acquired by the communication unit, and the water management information during crop cultivation in the paddy field is acquired from at least one of the detection device, the agricultural management device, and the farmer terminal device.
  • the information is acquired periodically or at a predetermined timing by the communication unit, and based on the acquired plurality of pieces of water management information, the dry state of the rice field is identified, and the methane of the rice field is determined based on the dry state.
  • the amount of reduction may also be calculated.
  • the control unit of the rice field methane reduction support device transmits report information including the methane reduction amount of the rice field and the farmer information corresponding to the rice field to the credit management device through the communication unit, and
  • the communication unit may acquire credit information indicating electronic credits issued from the credit management device according to the amount, and the communication unit may transmit the credit information to the farmer terminal device.
  • a rice field methane reduction support method is a rice field methane reduction support method that supports the reduction of methane emissions from rice fields where crops are cultivated, and includes a model for calculating methane emissions from rice fields.
  • a rice field methane reduction support device includes rice field information regarding rice fields, work information regarding agricultural work for cultivating crops in the rice fields, and observation images of the area including the rice fields observed by an observation device.
  • an acquisition unit that acquires data; and water management of the rice field to reduce methane emitted from the rice field during cultivation of the crops, based on the rice field information, the work information, and the observation image data.
  • a control unit that identifies the state and the period during which the state continued and generates specific water management information indicating the state and period of the water management; and a storage unit that stores the specific water management information.
  • the work information includes input water management information indicating the state and period of the water management of the rice field that has been input in advance, and the control unit controls the data of the plurality of observation images based on the input water management information.
  • the input water management information may be stored in the storage unit as the specific water management information if the state and period of the water management indicated by the input water management information are valid.
  • the control unit may acquire data of the observation image observed by the observation device during the water management period indicated by the input water management information.
  • the control unit determines the water management state from data of the plurality of observation images, and determines whether the determined water management state corresponds to the water management state indicated by the input water management information. If the input water management information is valid, the verification information may include information indicating that the input water management information is valid, and the input water management information may be stored in the storage unit as the specific water management information.
  • the control unit acquires farmer information regarding a farmer corresponding to the rice field using the acquisition unit, determines the state of the water management from data of the plurality of observation images, and determines the determined state of the water management. and the state of water management indicated by the input water management information, the verification information may be notified to the farmer based on the farmer information.
  • the control unit causes the acquisition unit to acquire data of the plurality of observation images observed by the observation device in a predetermined period based on the rice field information and the work information,
  • the state and period of the water management of the rice field may be specified from the above.
  • the control unit determines the period from the tillering stage to the panicle formation stage of the crop planted in the rice field based on the rice field information and the work information, and the controller determines the period from the tillering stage to the panicle formation stage of the crop planted in the rice field, and uses the observation device during the determined period.
  • the acquisition unit may acquire data of the plurality of observed images.
  • the control unit causes the acquisition unit to acquire data of the plurality of observation images observed by a synthetic aperture radar of the flying object or the observation device mounted on the flying object, and the control unit acquires data of the plurality of observation images observed by the synthetic aperture radar of the flying object or the observation device mounted on the flying object, and One or more pixels indicating a rice field are extracted, a backscatter coefficient associated with the pixel value of the pixel is detected, and the state and period of the water management of the rice field are determined based on the detected backscatter coefficient. May be specified.
  • One or more preset threshold values are stored in the storage unit, and the control unit is configured to perform a backscattering coefficient based on the result of comparing the backscattering coefficient detected from the data of the plurality of observed images with the threshold value. , it may be determined at least one of whether the rice field is in a dry state or not, and whether or not the rice field is in a flooded state. Further, the control unit calculates the threshold based on a backscattering coefficient detected from data of an observed image of the rice field and water level information obtained from the water level sensor installed in the rice field, and It may be stored in the storage unit.
  • the control unit specifies water level change information indicating a time-series change in the actual water level of the rice field from the information indicating the actual water level of the rice field acquired by the acquisition unit, and Detecting backscattering coefficients corresponding to the rice fields from observation image data, detecting a correlation between the actual water level of the rice fields indicated by the water level change information and the backscattering coefficients corresponding to the rice fields,
  • the threshold value may be set based on the backscattering coefficient corresponding to the paddy field and the correlation and stored in the storage unit. Further, the control unit may apply the threshold value stored in the storage unit to determine at least one of a dry state and a flooded state of another rice field.
  • the storage unit stores model data for calculating methane emissions from the rice fields, and the control unit stores the rice field information, the work information, the specific water management information, and the model data. Based on this, a methane reduction amount reduced from a predetermined basic methane emission amount of the rice field may be calculated, and the methane reduction amount may be stored in the storage unit.
  • the control unit sets a calculation formula for calculating methane emissions of the rice field based on the rice field information, the work information, and the model data, and indicates the state and period of the conventional water management of the rice field.
  • Conventional water management information is acquired by the acquisition unit, the basic methane emission amount of the rice field is calculated based on the conventional water management information and the calculation formula, and the specific water management information of the rice field and the calculation formula are calculated.
  • the methane emission amount of the rice field may be calculated based on the above, and the methane emission amount may be subtracted from the basic methane emission amount of the rice field to calculate the methane reduction amount of the rice field.
  • the acquisition unit includes a communication interface, and the control unit acquires farmer information regarding the farmer corresponding to the rice field through the communication interface, and combines the methane reduction amount of the rice field and the farmer information. transmitting report information including the above to the credit management device through the communication interface, acquiring credit information indicating an electronic credit issued from the credit management device according to the methane reduction amount through the communication interface, The credit information may be notified to the farmer based on farmer information. Further, the control unit may include the verification information in the report information and transmit it to the credit management device by the acquisition unit.
  • a rice field methane reduction support system includes the rice field methane reduction support device that supports the reduction of methane emissions from rice fields in which crops are cultivated, and information regarding the rice fields and the agriculture performed in the rice fields.
  • an agricultural management device in which a database storing the information has been constructed; , from an observation management device that acquires paddy field information regarding the paddy field and work information regarding agricultural work for cultivating the crops in the paddy field, and stores observation data of an observation device that observes the ground; the acquisition unit that acquires observation image data of an area including the rice fields; and methane emitted from the rice fields during cultivation of the crops based on the rice field information, the work information, and the observation image data.
  • the control unit that identifies a state of water management in the paddy field for reduction and a period during which the state continues, and generates specific water management information indicating the state and period of the water management; and the specific water management information. and the storage section for storing.
  • control unit may acquire data of the plurality of observation images from the observation management device by the acquisition unit based on the input water management information included in the work information. .
  • control unit transmits data of the plurality of observation images observed by the observation device in a predetermined period from the observation management device based on the rice field information and the work information. It may be acquired by an acquisition unit.
  • the storage unit stores model data for calculating methane emissions from the rice fields
  • the acquisition unit includes a communication interface
  • the control unit includes: , based on the rice field information, the work information, the specific water management information, and the model data, calculate the methane reduction amount reduced from the predetermined basic methane emission amount of the rice field, and calculate the methane reduction amount from the It may be stored in the storage unit.
  • the control unit acquires the farmer information from at least one of the agricultural management device and the farmer terminal device through the communication interface, and calculates the amount of methane reduction in the rice field. and the farmer information to the credit management device through the communication interface, and credit information indicating an electronic credit issued by the credit management device according to the methane reduction amount is transmitted to the communication interface.
  • the credit information may be acquired through an interface, and the credit information may be notified to the farmer terminal device through the communication interface based on the farmer information.
  • the control unit may include the verification information in the report information and transmit it to the credit management device via the communication interface.
  • a rice field methane reduction support method is a rice field methane reduction support method that supports the reduction of methane emissions from rice fields in which crops are cultivated, and includes a control unit provided in a rice field methane reduction support device.
  • the rice field methane reduction support device is equipped to acquire rice field information regarding the rice field, work information regarding agricultural work for cultivating the crop in the rice field, and observation image data of the area including the rice field observed by an observation device.
  • the control unit acquires information about the paddy field for reducing methane emitted from the paddy field during cultivation of the crops, based on the paddy field information, the work information, and the observation image data. a step of identifying a water management state and a period during which the state continued; and the control unit generates specific water management information indicating the identified water management state and period, and stores the specific water management information. and a step of storing the information in the section.
  • An information processing device includes an acquisition unit that acquires work information related to agricultural work for cultivating crops in a rice field and detected water management information indicating a water management state of the rice field detected by a detection device. , a control unit that determines whether a water management abnormality has occurred in the rice field based on a difference between target water management information indicating a water management state of the rice field identified from the work information and the detected water management information; and an output unit that outputs water management abnormality information indicating that the water management abnormality has occurred.
  • An agricultural support system includes the detection device that detects a water management state of a rice field, and the information processing device.
  • the detected water management information includes a detection result of a water level sensor that detects the water level of the rice field, and the control unit specifies the target water level of the rice field from the target water management information and controls the water level sensor of the water level sensor.
  • the actual water level of the rice field may be specified from the detection result, and if the actual water level is higher than the target water level by a predetermined value or more, it may be determined that the water management abnormality has occurred.
  • the detected water management information includes observation results of an observation device that observes the area where the rice field is located, and the control unit specifies the target water management state of the rice field from the target water management information, and From the observation results of the observation device, it is determined whether the surface of the rice field is a water surface or not. If it is determined that the surface of the rice field is a water surface, it may be determined that the water management abnormality has occurred.
  • the detected water management information includes observation results of an observation device that observes an area where at least one of the rice fields is located, and the control unit acquires rice field information regarding the rice fields by the acquisition unit, and The position of the rice field is specified from the rice field information, the target water surface area of the rice field where the surface becomes the water surface is calculated from the target water management information, and the area of the rice field and the land around the rice field is calculated from the observation results of the observation device.
  • Determine whether the surface is a water surface calculate an actual water surface area that is the sum of the areas of the rice field and the land whose surfaces are water surfaces, and the actual water surface area is larger than the target water surface area by a predetermined value or more. In this case, it may be determined that the water management abnormality has occurred.
  • the control unit acquires farmer information regarding the farmer corresponding to the rice field using the acquisition unit, and when it is determined that the water management abnormality has occurred, the control unit informs the farmer of the water management abnormality based on the farmer information. The information may be notified by the output unit.
  • the control unit acquires land management information including information indicating a manager of land around the rice field using the acquisition unit, and when it is determined that the water management abnormality has occurred, the control unit acquires land management information including information indicating a manager of land around the rice field, and when it is determined that the water management abnormality has occurred, The water management abnormality information may be notified to the administrator by the output unit.
  • An agricultural support method includes a step in which a detection device detects a water management state of a paddy field, and an information processing device detects work information regarding agricultural work for cultivating crops in the paddy field, and a step of acquiring detected water management information indicating a water management state of the detected rice field; and a step of acquiring target water management information indicating a water management state of the rice field identified from the work information and the detected water management by the information processing device. a step of determining whether or not a water management abnormality has occurred in the rice field based on a difference from the information; and a step of causing the information processing device to output water management abnormality information indicating that the water management abnormality has occurred. and.
  • the present invention it is possible to quantitatively evaluate the reduction status of methane from rice fields by farmers, thereby improving convenience. Further, according to the present invention, it is possible to objectively detect the state and period of water management for reducing the amount of methane discharged from rice fields. Further, according to the present invention, it is possible to detect the occurrence of a flood from water management information of rice fields.
  • FIG. 2 is a diagram showing an example of a reflection state of X-band microwaves irradiated from a synthetic aperture radar onto a flooded rice field.
  • FIG. 2 is a diagram showing an example of a reflection state of X-band microwaves irradiated from a synthetic aperture radar onto a paddy field in a flooded state. It is a figure showing an example of the SAR image before the mid-dry period of the area including a plurality of rice fields. It is a figure showing an example of the SAR image during the mid-dry period of the area including a plurality of rice fields.
  • FIG. 1 is a configuration diagram of an example of an agricultural support system. It is a flowchart which shows an example of water management abnormality detection operation of an information processing device.
  • FIG. 1 is a configuration diagram of an example of a rice field methane reduction support system 100.
  • the rice field methane reduction support device 1 and the agricultural management device 2 are configured of, for example, at least one of a computer and a server installed in a management center.
  • the rice field methane reduction support device 1 is a device that supports the reduction of methane emitted from rice fields, and includes a control section 1a, a storage section 1b, a communication section 1c, and an input/output interface 1d.
  • the control unit 1a is a controller, and is composed of a CPU (or microcomputer), memory, and the like.
  • the storage unit 1b is a storage, and is composed of a volatile memory, a nonvolatile memory, a hard disk, or the like.
  • the storage unit 1b stores a software program executed by the control unit 1a, and stores various control data used by the control unit 1a in a readable and writable manner. Furthermore, the storage unit 1b stores model data for calculating the amount of methane emitted from the rice fields.
  • the control unit 1a calculates the methane emission amount, methane reduction amount, etc. of the rice field based on the model data stored in the storage unit 1b.
  • the communication unit 1c is a communication interface for communicating with external devices via a public communication network, the Internet, etc. Further, the communication unit 1c is an acquisition unit that acquires information from an external device.
  • the input/output interface 1d includes an input interface such as a mouse, keyboard, or touch panel, and an output interface such as a display, speaker, or touch panel.
  • the agricultural management device 2 is a device that manages various information related to agriculture. Although one agricultural management device 2 is illustrated in FIG. 1, there may be two or more agricultural management devices 2.
  • the agricultural management device 2 also includes a control section, a storage section, a communication section, and an input/output interface (not shown).
  • the agricultural management device 2 is constructed with a database 2d that stores various information regarding a plurality of rice fields and a plurality of farmers who cultivate crops in the rice fields.
  • the database 2d stores a plurality of pieces of farmer information regarding farmers, paddy field information regarding paddy fields, and work information regarding agricultural work performed to cultivate crops in paddy fields.
  • the farmer information, paddy field information, and work information are stored in the database 2d in association with each farmer or each paddy field.
  • the farmer information includes information such as the farmer's personal information, identification information such as the farmer's account, and the IP address of the farmer terminal device 3 used by the farmer.
  • Paddy field information includes identification information of the paddy field, area where the paddy field is located, location of the paddy field (latitude, longitude, etc.), area, contour shape, soil condition, drainage, cultivated crops, and sensors installed in the paddy field. Contains information such as equipment.
  • the work information includes a farm work plan for cultivating crops in paddy fields, the content of the farm work, and the implementation status of the farm work.
  • the agricultural work included in the work information includes, for example, water management work such as flooding, irrigation, and falling water in rice fields, and the relevant water management work and its implementation status (water management status, such as the water intake or drainage of the rice field).
  • the work information includes water management information indicating the opening/closing status of the exit, the opening/closing date and time, etc.
  • the work information may include the implementation status of agricultural work such as plowing in rice straw in a paddy field, taking out rice straw, and applying compost.
  • the work information may include weather information on the day of agricultural work in the rice field and information on the growth of crops in the rice field.
  • the work information may include, for example, the heading date, tillering stage, and panicle formation stage of paddy rice.
  • the work information may be an electronic agricultural diary in a rice field.
  • the control unit 1a of the rice field methane reduction support device 1 communicates with the agricultural management device 2 through the communication unit 1c, and acquires (receives) farmer information, rice field information, and work information from the database 2d. Further, the control unit 1a transmits information regarding the reduction of methane from rice fields to the agricultural management device 2 through the communication unit 1c, and causes the information to be stored in the database 2d.
  • the farmer terminal device 3 is composed of a personal computer, a tablet terminal device, a smartphone, etc. used by the farmer. In FIG. 1, two farmer terminal devices 3 are illustrated, but there may be three or more farmer terminal devices 3.
  • the farmer terminal device 3 also includes a control section, a storage section, a communication section, and an input/output interface (not shown).
  • the farmer inputs various information such as farmer information, paddy field information, and work information into the farmer terminal device 3.
  • the farmer terminal device 3 transmits input farmer information, rice field information, work information, etc. to the agricultural management device 2 or the rice field methane reduction support device 1.
  • the agricultural management device 2 When the agricultural management device 2 receives farmer information, paddy field information, work information, etc. transmitted from the farmer terminal device 3, it stores each piece of information in the database 2d.
  • the rice field methane reduction support device 1 (control unit 1a) receives farmer information, rice field information, work information, etc. transmitted from the farmer terminal device 3 through the communication unit 1c, the rice field methane reduction support device 1 (control unit 1a) stores each information in the storage unit 1b.
  • the water management device 4 is installed on the edge of or within the rice field, and the water level sensor 5 is installed within the rice field.
  • the water management device 4 and the water level sensor 5 are electrically connected by wire or wirelessly.
  • FIG. 1 one water management device 4 and one water level sensor 5 are illustrated, but one or more water management devices 4 and one or more water level sensors 5 are installed in each paddy field.
  • the water management device 4 also includes a control section, a storage section, and a communication section (not shown). Further, the water management device 4 is equipped with an operation switch, an actuator, a storage battery, a solar power generation device, and the like.
  • the water management device 4 opens and closes the water gate of the rice field using an actuator such as a motor to supply or drain water to the rice field.
  • the water management device 4 may be provided with another actuator such as a pump that facilitates water supply and drainage to the rice fields. In this case, the operating state of an actuator such as a pump may be included in the work information.
  • the water level sensor 5 detects the water level in the rice field and transmits the detection result to the water management device 4.
  • the water management device 4 detects a water management state such as flooding, irrigation, or falling water in the rice field based on the detection result of the water level sensor 5. Then, the water management device 4 controls the operation of the actuator according to the detection result of the water level sensor 5 and the water management state of the paddy field, supplies or drains water to the paddy field, and performs flooding of the paddy field, intermittent irrigation, and Perform a falling water.
  • the water management device 4 transmits water management information indicating the detection results of the water level sensor 5 and the water management status of the rice fields to the agricultural management device 2 or the rice field methane reduction support device 1.
  • the agricultural management device 2 receives the water management information transmitted from the water management device 4, the agricultural management device 2 stores the water management information in the database 2d so that it is included (associated) with the work information of the corresponding rice field.
  • the rice field methane reduction support device 1 (control unit 1a) receives water management information transmitted from the water management device 4, it stores the water management information in the storage unit 1b.
  • the earth observation satellite 7 is an example of a flying object and an observation device, and observes the earth's surface.
  • the earth observation satellite 7 is composed of a SAR (Synthetic Aperture Radar) satellite, and observes the rice fields using a synthetic aperture radar.
  • the monitoring device 6 acquires observation results of the earth observation satellite 7.
  • the monitoring device 6 also includes a control section, a storage section, a communication section, and an input/output interface (not shown). In FIG. 1, one monitoring device 6 and one earth observation satellite 7 are illustrated, but there may be two or more monitoring devices 6 and two or more earth observation satellites 7.
  • the monitoring device 6 detects water management conditions such as flooding, irrigation, and falling water in the rice fields from the observation results of the earth observation satellite 7. Specifically, the monitoring device 6 acquires a SAR image (observation image) of a rice field observed by a synthetic aperture radar mounted on an earth observation satellite 7, and detects uneven parts of the rice field based on the SAR image. Detect. Then, the monitoring device 6 calculates, for example, the ratio of the area of the uneven portion to the surface area of the paddy field, and if the ratio is less than a predetermined value, determines that the surface of the paddy field is a water surface and that the paddy field is in a flooded state. do.
  • water management conditions such as flooding, irrigation, and falling water in the rice fields from the observation results of the earth observation satellite 7. Specifically, the monitoring device 6 acquires a SAR image (observation image) of a rice field observed by a synthetic aperture radar mounted on an earth observation satellite 7, and detects uneven parts of the rice field based on the SAR image. Detect. The
  • the monitoring device 6 determines that the surface of the paddy field is not the water surface (the water level of the paddy field is zero) and that the paddy field is in a flooded state when the ratio of the area of the uneven portion to the surface area of the paddy field is greater than or equal to a predetermined value. do. Further, the monitoring device 6 may determine that the paddy field is in an irrigated state based on a change in the ratio of the area of the uneven portion to the surface area of the paddy field.
  • Judgment of water management conditions such as flooding, irrigation, and overflow of rice fields based on SAR images of synthetic aperture radar is not limited to the above method, and may be determined using other methods.
  • the rice field methane reduction support device 1 may be equipped with AI (Artificial Intelligence), and the water management state of the rice field may be detected from the SAR image of the synthetic aperture radar using machine learning using the AI.
  • AI Artificial Intelligence
  • typical SAR images of paddy fields such as flooding, irrigation, falling water, before drying, during drying, and after drying, or SAR images obtained from the water level sensor 5 when the SAR images are acquired.
  • the monitoring device 6 transmits water management information indicating the water management status of the rice fields to the agricultural management device 2 or the rice field methane reduction support device 1.
  • the agricultural management device 2 receives the water management information transmitted from the monitoring device 6, the agricultural management device 2 stores the water management information in the database 2d so as to include (associate) the water management information with the work information of the corresponding rice field.
  • the rice field methane reduction support device 1 (control unit 1a) receives water management information transmitted from the monitoring device 6, it stores the water management information in the storage unit 1b.
  • a first detection configuration including a water level sensor 5 and a water management device 4 and a second detection configuration including an earth observation satellite 7 and a monitoring device 6 is used.
  • the detection configuration may be applied to the rice field methane reduction support system 100.
  • the farmer may input the water management state of the rice field using the farmer terminal device 3.
  • observation devices such as synthetic aperture radar, three-dimensional laser surveying instruments, or imaging devices can be mounted on flying objects other than Earth Observation Satellite 7, or flying objects such as drones or UAVs (Unmanned Aerial Vehicles) to survey rice fields. May be observed.
  • the credit management device 8 is a device that manages electronic credits according to the amount of greenhouse gas reduction, and is used by a credit management company.
  • the credit management device 8 also includes a control section, a storage section, a communication section, and an input/output interface (not shown). Although one credit management device 8 is illustrated in FIG. 1, there may be two or more credit management devices 8. Further, there may be a plurality of credit management companies.
  • the rice field methane reduction support device 1 (control unit 1a) transmits report information including the amount of methane reduction in the rice field and farmer information corresponding to the rice field to the credit management device 8.
  • the credit management device 8 issues a credit according to the amount of methane reduction in the rice field included in the report information received from the rice field methane reduction support device 1, and transmits credit information indicating the credit to the rice field methane reduction support device 1.
  • the rice field methane reduction support device 1 transmits (transfers) the credit information to the farmer terminal device 3 used by the corresponding farmer.
  • the rice field methane reduction support device 1 (control unit 1a) executes processing for purchasing credits from farmers.
  • the consumer terminal device 9 is a terminal device used by a consumer such as a company, organization, or individual who buys and sells credits.
  • the customer terminal device 9 also includes a control section, a storage section, a communication section, and an input/output interface (not shown). In FIG. 1, one customer terminal device 9 is illustrated, but there may be two or more customer terminal devices 9. Moreover, there may be multiple consumers.
  • the rice field methane reduction support device 1 (control unit 1a) executes processing for trading (buying and selling) credits with the consumer terminal device 9.
  • FIG. 2 is a diagram showing an example of the timing and water level WL when paddy rice R is cultivated in paddy field H.
  • the paddy field H is watered from the puddling period, and the paddy field H is brought into a deep water state during the rice planting period and the rooting period. Then, for a while after the tillering period, the paddy field H is watered intermittently to bring it into a shallow water state, and then the water is allowed to fall from the paddy field H, and the paddy field H is left to dry for a while (the water level in the paddy field is zero). state).
  • the rice fields H are irrigated intermittently or dried during drying to bring oxygen into the soil, thereby changing the soil from a reduced state to an oxidized state. Furthermore, by extending the drying period of the rice fields H, methane emissions from the rice fields H can be further reduced.
  • Mid-drying of paddy H is either not carried out in normal farming methods, or is carried out for the purpose of suppressing the occurrence of wasteful tillering, preventing overgrowth, promoting root development, and preventing lodging. In addition, mid-drying leaves the rice in a state of falling water to the extent that slight cracks appear on the rice field, and this state continues for approximately 5 to 7 days.
  • the drying period of the paddy H is extended by 7 days or more.
  • intermittent irrigation intermittent irrigation
  • paddy field H it is necessary to It is more effective to extend the period earlier (toward the tillering stage) than to extend it later (toward the panicle formation stage).
  • the paddy field H Before and after the heading period, the paddy field H is flooded to bring it into a deep water state. Thereafter, during the ripening stage of rice R, the rice field H is intermittent watered, and at the ripening stage, water falls from the rice field H to bring the water level in the rice field to zero and dry the soil of the rice field. By plowing rice straw into the soil after harvesting paddy rice R, methane emissions from paddy field H can also be reduced. Furthermore, by applying compost during plowing (autumn plowing), the amount of methane emitted from the rice fields H is further reduced.
  • FIG. 3 is a flowchart showing an example of a schematic operation of the rice field methane reduction support device 1. Each process is executed by the control unit 1a. (The control unit 1a also executes each process (each step) in other flowcharts to be described later.)
  • the control unit 1a of the rice field methane reduction support device 1 first registers the farmer and rice field whose methane emissions are to be reduced (S1 in FIG. 3). Next, the control unit 1a performs settings for evaluating the reduction of methane from rice fields (S2). Then, the control unit 1a evaluates the reduction status of methane from the rice fields based on the implementation status of agricultural work in the rice fields by farmers (S3). At the time of the evaluation, the control unit 1a calculates the amount of methane reduction in the rice fields. Thereafter, the control unit 1a converts the amount of methane reduction in the rice fields into credits using the credit management device 8 (S4), and trades the credits with farmers via the farmer terminal device 3 or via the consumer terminal device 9. and transact with the consumer (S5).
  • FIG. 4 is a flowchart showing an example of the initial setting operation (operation at the time of initial setting) of the rice field methane reduction support device 1.
  • the initial setting operation in FIG. 4 shows details of the processes S1 and S2 in FIG.
  • a farmer connects to the rice field methane reduction support device 1 using the farmer terminal device 3 and inputs identification information of the rice field whose methane is to be reduced. Then, the farmer terminal device 3 generates registration information including the identification information of the rice field and the identification information of the farmer, and transmits the registration information to the rice field methane reduction support device 1.
  • the control unit 1a of the rice field methane reduction support device 1 receives registration information from the farmer terminal device 3 through the communication unit 1c (S11 in FIG. 4). Then, the control unit 1a causes the communication unit 1c to send an information request signal requesting transmission of farmer information, paddy field information, and work information corresponding to the farmer identification information and rice field identification information included in the registered information. The information is transmitted to the agricultural management device 2 (S12).
  • the agricultural management device 2 receives the information request signal from the rice field methane reduction support device 1 and searches the database 2d. If farmer information, rice field information, and work information corresponding to the requested farmer identification information and rice field identification information are stored in the database 2d, the agricultural management device 2 stores the farmer information and rice field information. and work information to the rice field methane reduction support device 1.
  • the control unit 1a of the rice field methane reduction support device 1 receives (acquires) the farmer information, rice field information, and work information from the farmer terminal device 3 through the communication unit 1c (S13: YES)
  • the control unit 1a receives the farmer information, the rice field information, and the work information from the farmer terminal device 3 (S13: YES).
  • the paddy field information and work information are stored in the storage unit 1b (S18). At this time, the farmer information, paddy field information, and work information acquired by the control unit 1a correspond to each other.
  • the agricultural management device 2 stores farmer information corresponding to the farmer identification information and rice field identification information requested by the rice field methane reduction support device 1, past rice field information, and work information in a database 2d. If it is not stored, the rice field methane reduction support device 1 is notified that there is no corresponding information.
  • the control unit 1a of the rice field methane reduction support device 1 receives a notification from the communication unit 1c indicating that there is no corresponding information (S14)
  • the control unit 1a sends the farmer information to the farmer terminal device 3 corresponding to the farmer's identification information.
  • An information request signal requesting rice field information and work information is transmitted by the communication unit 1c (S15).
  • the farmer terminal device 3 When the farmer terminal device 3 receives the information request signal from the rice field methane reduction support device 1, it displays a screen for inputting farmer information, rice field information, and work information on the display of the input/output interface. That is, the farmer terminal device 3 is configured to be able to input farmer information, work information, rice field information, and the like. When the farmer information, paddy field information, and work information are inputted using the keyboard of the input/output interface, the farmer terminal device 3 transmits the farmer information, paddy field information, and work information to the paddy field methane reduction support device 1. Send.
  • control unit 1a of the rice field methane reduction support device 1 receives farmer information, rice field information, and work information from the farmer terminal device 3 through the communication unit 1c (S16), the control unit 1a receives the farmer information, rice field information, and work information from the farmer terminal device 3 (S16). is transmitted to the agricultural management device 2 and stored in the database 2d (S17). Also. The control unit 1a stores the farmer information, paddy field information, and work information in the storage unit 1b (S18). At this time, the farmer information, paddy field information, and work information acquired by the control unit 1a also correspond to each other.
  • the control unit 1a calculates the amount of methane emissions from the rice fields based on the rice field information and work information received (acquired) from the agricultural management device 2 or the farmer terminal device 3, and the model data stored in the storage unit 1b.
  • a calculation formula to be calculated is set (S19a).
  • the model data includes known model equations (1) and (2) as shown in FIG. 5, and variables A, fd, fw, fo, EF, ⁇ in the model equations (1) and (2) , a, X, b, table data (not shown), etc. are included.
  • Model formula (1) is a formula for calculating the methane emission amount E of rice fields.
  • Model formula (2) is a formula for calculating the emission coefficient included in model formula (1).
  • the control unit 1a sets the variables A, fd, fw, fo, ⁇ , EF, (A: paddy rice cultivation area by region, fd: drainage ratio, fw: water management ratio, fo: organic matter ratio, ⁇ : correction factor, EF: emission factor, X: organic matter application amount by region and applied organic matter, a: By setting the slope by region, drainage gender, and water management, and b: the intercept by region, drainage gender, and water management, the formula for calculating methane emissions from rice fields (formula (1) after the variables are determined, (2)) is confirmed.
  • the variables fw, EF, a, and b in model formula (2) are values determined by the water management state of the rice field.
  • the correction coefficient ⁇ in model formula (1) may be determined based on, for example, a global warming coefficient published by a predetermined organization.
  • the variables fd and EF in model formulas (1) and (2) are determined based on the drainage performance of the rice field, and the drainage performance is determined based on the results of measuring the daily water depth of the rice field under predetermined conditions. You can. Further, the daily water depth of the rice field may be included in the work information.
  • the control unit 1a sets the basic drying state of the paddy field based on the conventional water management information included in the paddy field work information received (acquired) from the agricultural management device 2 or the farmer terminal device 3 (see FIG. 4). S19b).
  • Conventional water management information indicates, for example, the state of rice field water management that is customary in a region where there is a rice field.
  • the control unit 1a may set the basic semi-dry state of the rice fields, for example, based on water management information from the current fiscal year to the past several years.
  • the basic mid-dry state includes whether or not mid-dry is implemented and the mid-dry period (for example, the duration of the state in which the water level in the rice field is zero or substantially zero (including a certain degree of error)). There is.
  • the control unit 1a identifies whether or not mid-drying is to be implemented and the mid-drying period based on, for example, the water supply date and draining date for the rice fields, or the mid-drying start date and mid-drying end date, which are indicated in the conventional water management information. Good too.
  • control unit 1a sets the variable a based on the basic mid-dry state and a predetermined slope calculation formula included in the model data. Further, the control unit 1a sets the variable b based on the basic mid-dry state and a predetermined intercept calculation formula included in the model data. Further, the control unit 1a sets the variable fw based on the basic mid-dry state and predetermined table data included in the model data. Then, the control unit 1a applies the set variables a, b, and fw to the model formulas (1) and (2), finalizes the calculation formulas (1) and (2), and applies the determined calculation formulas (1) to the model formulas (1) and (2). , (2) to calculate the basic methane emission amount of the rice field (S19c).
  • control unit 1a calculates the basic methane emission amount of the rice field based on the determined calculation formulas (1) and (2) and the basic semi-dry state. Further, the control unit 1a stores the determined calculation formulas (1) and (2), the basic dry condition, and the basic methane emission amount in the storage unit 1b (S19d).
  • the model data and calculation formula for calculating the amount of methane emissions from rice fields are not limited to the above, and may be formulas or data other than formulas (1) and (2) in FIG. 5. Furthermore, the amount of methane emissions from the rice fields may be calculated using model data and calculation formulas that take into consideration information other than the rice field information and work information of the rice fields, such as weather information. Furthermore, a formula for calculating methane emissions from rice fields may be set or the methane emissions from rice fields may be calculated using AI and machine learning.
  • FIG. 6 is a flowchart showing an example of the methane evaluation operation (operation during methane evaluation) of the rice field methane reduction support device 1.
  • the methane evaluation operation in FIG. 6 is an operation for evaluating the state of reduction of methane from rice fields, and shows details of the process S3 in FIG. 3.
  • farmers change their farming practices, such as water management in rice fields, and then harvest the crops (paddy rice) in the rice fields, completing their farming work for the current fiscal year.
  • the farmer terminal device 3 sends a methane evaluation command to the rice field methane reduction support device 1. do.
  • the control unit 1a of the rice field methane reduction support device 1 receives the methane evaluation command from the farmer terminal device 3 through the communication unit 1c (S21 in FIG. 6). Then, the control unit 1a acquires farmer information, paddy field information, and work information corresponding to the farmer identification information and rice field identification information included in the methane evaluation command from the agricultural management device 2 or the farmer terminal device 3. (S22).
  • the process S22 for acquiring this information is executed in the same procedure as the processes S12 to S18 in FIG. 4. (The information acquisition process in process S31 in FIG. 8 and process S41 in FIG. 9, which will be described later, is also similar.)
  • the control unit 1a reads the implementation state of the agricultural work included in the acquired work information, and identifies the dry state of the rice field in which the agricultural work was performed based on the water management information included in the work information (S23).
  • the mid-drying state identified at this time includes whether or not mid-drying is implemented in the rice fields and the mid-drying period.
  • the control unit 1a determines whether or not mid-drying is to be carried out and the mid-drying based on the water supply date and draining date for the paddy field, or the mid-drying start date and mid-drying end date indicated by the water management information included in the acquired work information. The period may also be specified.
  • control unit 1a may check whether at least the start date of the specified start date and end date of the mid-dry period is before the heading of paddy rice cultivated in the paddy field. Then, the control unit 1a determines the specified mid-dry period if the start date of the mid-dry period is before the heading of paddy rice, and determines the specified mid-dry period if the start date of the mid-dry period is the heading date of paddy rice or after the heading of rice. It is also possible to invalidate the mid-season period and determine that the mid-season period was not implemented.
  • the heading date of paddy rice in a paddy field can be determined by, for example, inputting the date on which the farmer visually confirmed the paddy rice heading into the farmer terminal device 3, and then using the farmer terminal device 3 directly or through the agricultural management device 2 to reduce rice methane. It is sent to the support device 1.
  • the control unit 1a reads the calculation formula (the above-described determined formulas (1) and (2)) corresponding to the rice field from the storage unit 1b, and specifies the calculation formula, the read implementation state of the agricultural work, and The amount of methane emitted from the rice field is calculated based on the dry state of the rice field (S24).
  • the control unit 1a reads the basic methane emissions corresponding to the rice fields from the storage unit 1b, and calculates the methane reduction amount of the rice fields by subtracting the methane emissions of the rice fields from the basic methane emissions (S25 ). That is, the control unit 1a calculates the amount of methane reduction in the paddy field that is reduced due to a change in agricultural work in the paddy field or a change in the specified mid-dry state to the basic mid-dry state.
  • control unit 1a generates evaluation information including the calculated amount of methane reduction in the rice fields, and transmits the evaluation information to the farmer terminal device 3 using the communication unit 1c based on the farmer information (S26).
  • the evaluation information may include not only the amount of methane reduction in the rice fields, but also the specified mid-dry period or the calculated amount of methane emissions.
  • the methane evaluation operation shown in Figure 6 shows an example in which methane emissions are calculated using a calculation formula corresponding to rice fields, and the methane reduction amount is calculated by subtracting the methane emissions from the basic methane emissions.
  • the correlation between the dry period of rice fields and the amount of methane reduction can be derived in advance based on a calculation formula, and the amount of methane reduction can be calculated based on the correlation and the specified dry period. Good too.
  • control unit 1a may extend the basic mid-drying period included in the basic mid-drying state of paddy fields at predetermined intervals forward or backward (forward or backward) in the initial setting operation or the like in advance in the simulation. Methane emissions will be calculated based on the extended mid-dry period and the calculation formula corresponding to the rice fields. Further, the control unit 1a subtracts the methane emission amount from the basic methane emission amount to calculate the methane reduction amount of the rice field. Then, the control unit 1a derives a correlation between the dry period of the rice fields and the amount of methane reduction, and causes the storage unit 1b to store first correlation data indicating the correlation.
  • FIG. 7 is a diagram showing an example of first correlation data showing the correlation between the dry period of rice fields and the amount of methane reduction.
  • the first correlation data shown in FIG. 7 shows the correlation between the dry period of rice fields and the amount of methane reduction in a table format.
  • the first correlation data shows the amount of methane reduction in the case of the basic drying period (5 days) of rice fields, the amount of methane reduction in the case of extending the basic drying period by 7 days and 14 days, respectively, and the basic drying period.
  • Methane reduction amount when the basic dry period is extended by 7 days and 14 days respectively, Methane reduction amount when the basic dry period is extended by 7 days earlier and 7 days later, Methane reduction amount when the basic dry period is extended by 7 days and 7 days later, respectively
  • the figure shows the amount of methane reduced when the period is extended for 14 days.
  • the control unit 1a identifies the dry state of the rice field, and calculates the methane emission amount of the rice field based on the dry period included in the dry state and the first correlation data. Calculate methane reduction amount without Specifically, for example, when the mid-drying period of rice fields is extended by 10 days earlier than the basic mid-drying period, the control unit 1a calculates the methane reduction amount Ya in the case of 7 days in advance of the first correlation data and Based on the methane reduction amount Yc for 14 days, the methane reduction amount for the mid-dry period of 10 days ahead of schedule is calculated.
  • the method for calculating the amount of methane reduction in rice fields is not limited to the calculation method described above, and the amount of methane reduction in rice fields may be calculated based on other calculation formulas or data.
  • the amount of methane reduction (and methane emissions) in rice fields at least one of the amount of methane reduction (and methane emissions) in the entire rice field and the amount of methane reduction (and methane emissions) per unit area of the rice field. It may be calculated.
  • the methane reduction rate (%) of the rice fields may be calculated as the methane reduction amount.
  • the amount of methane reduction in the rice fields may be calculated using model data and calculation formulas that take into consideration information other than the rice field information and work information of the rice fields, such as weather information. Furthermore, the amount of methane reduction in rice fields may be calculated using AI machine learning.
  • FIG. 8 is a flowchart showing an example of the drying proposal operation of the rice field methane reduction support device 1.
  • the drying proposal operation in FIG. 8 is an operation that proposes a recommended drying period that effectively and beneficially reduces methane from rice fields.
  • the control unit 1a of the rice field methane reduction support device 1 transmits farmer information, rice field information, and work information corresponding to the rice field to the agricultural management device 2 or the farmer terminal. It is acquired from the device 3 (S31 in FIG. 8). This information acquisition process S31 is executed in the same procedure as the processes S12 to S18 in FIG. 4.
  • control unit 1a calculates the amount of methane reduction in the paddy fields each time the basic dry period included in the basic dry state of the paddy fields is extended at predetermined intervals before and after the simulation, and The correlation between the middle dry period and the amount of methane reduction is derived, and first correlation data indicating the correlation is stored in the storage unit 1b (S32 in FIG. 8).
  • control unit 1a calculates the yield loss of crops in the paddy field each time the basic dry period of the paddy field is extended at predetermined intervals before and after the basic dry period of the paddy field, and calculates the correlation between the mid-dry period of the paddy field and the yield loss of the crops. is derived, and second correlation data indicating the correlation is stored in the storage unit 1b (S33).
  • the control unit 1a estimates the basic yield of crops in the paddy field based on the basic mid-dry period of the paddy field, the paddy field information, and the work information.
  • the control unit 1a controls the production of crops in the paddy field based on the extended mid-dry period, paddy field information, and work information of the paddy field.
  • Estimate yield The longer the dry period in rice fields, the lower the crop yield. Therefore, the control unit 1a calculates the reduced crop yield by subtracting the crop yield calculated for each extended mid-dry period from the basic yield, and correlates the mid-dry period of the paddy field with the reduced crop yield. A relationship is derived, and second correlation data indicating the correlation is generated.
  • the second correlation data may be data in a table format or may be an arithmetic expression.
  • the control unit 1a determines, based on the first correlation data and the second correlation data, recommended mid-drying for paddy fields in which the amount of methane reduction is greater than or equal to a first predetermined value and the amount of crop yield reduction is less than or equal to a second predetermined value.
  • the period is determined (S34).
  • the control unit 1a transmits work proposal information including the determined recommended mid-drying period to the farmer terminal device 3 corresponding to the paddy field through the communication unit 1c (S35). If the basic mid-drying period is 0 days, that is, if mid-drying has not been carried out in the paddy fields in the past, the control unit 1a includes information to recommend implementation of mid-drying in the work proposal information in step S35. Good too.
  • control unit 1a includes the extension date and time of the conventional mid-drying period in the work proposal information in step S35. Good too. Further, the control unit 1a may determine at least one of the start date and end date of the recommended mid-dry period, and include at least one of the start date and end date in the work proposal information.
  • the farmer terminal device 3 receives the work proposal information from the rice field methane reduction support device 1, and displays the recommended mid-drought period for the rice fields indicated by the work proposal information on the display of the input/output interface.
  • control unit 1a derives either the first correlation data or the second correlation data, and determines the optimal You may also determine the recommended mid-drying period.
  • the control unit 1a may perform water management operations such as intermittent irrigation of paddy fields, and perform crop maintenance in addition to or in place of drying the paddy fields and extending the drying period. It may be suggested to carry out agricultural activities such as plowing rice straw or applying compost after harvesting.
  • AI and machine learning may be used to derive suggestions such as a recommended mid-drying period for rice fields, recommended water management work, plowing in rice straw, or application of compost.
  • FIG. 9 is a flowchart showing an example of the calculation formula updating operation of the rice field methane reduction support device 1.
  • the calculation formula updating operation in FIG. 9 is an operation for updating the calculation formula for the amount of methane emissions from rice fields. For example, when the administrator of the rice field methane reduction support device 1 inputs an instruction to update the calculation formula corresponding to a certain rice field through the input/output interface 1d (S41 in FIG. 9), the control unit 1a updates the rice field information corresponding to the rice field. and work information from the agricultural management device 2 or farmer terminal device 3 (S42).
  • control unit 1a responds to the change in the information.
  • the formula for calculating the amount of methane emissions from the rice fields is updated (S44).
  • control unit 1a changes the formula for calculating the amount of methane emissions from the paddy field in accordance with the change.
  • the calculation formula is updated by changing the variables fd, fo, EF, a, and b in (FIG. 5) (S44).
  • control unit 1a may also update the basic methane emission amount.
  • the operator operates the input/output interface 1d (mouse, keyboard, etc.) of the rice field methane reduction support device 1, and the storage section
  • the model data stored in 1b may be updated.
  • FIG. 10 is a flowchart showing an example of the crediting operation of the rice field methane reduction support device 1.
  • the credit conversion operation shown in FIG. 10 is an operation when converting the amount of methane reduction in rice fields into electronic credits, and shows the details of the process S4 in FIG. 3.
  • the control unit 1a of the rice field methane reduction support device 1 After calculating the methane reduction amount in the rice field, the control unit 1a of the rice field methane reduction support device 1 generates report information including the methane reduction amount in the rice field and farmer information corresponding to the rice field, and transmits the report information to the communication unit. 1c to the credit management device 8 (S51 in FIG. 10).
  • control unit 1a includes paddy field information regarding the paddy fields, conventional work information in the paddy fields (for example, work information from the past several years), and target work information (for example, work information for the past several years) indicating agricultural work that has been changed to reduce methane from the paddy fields. current year's work information), a fixed calculation formula for calculating methane emissions of rice fields set based on model data (formula with fixed variables of model formulas (1) and (2) in Figure 5), and at least one of the variables included in the calculation formula may be included in the report information and transmitted to the credit management device 8 by the communication unit 1c.
  • control unit 1a when including the variables included in the above calculation formula in the report information, the control unit 1a also includes the data used to determine the variables (for example, the measured values such as daily water depth, and the rainfall at the time of measuring the measured values). weather information indicating that there was no such event) may also be included in the report information.
  • the conventional work information and target work information that the control unit 1a includes in the report information may include water management information such as the heading date of paddy rice grown in the paddy field and the mid-dry period of the paddy field.
  • the credit management device 8 When the credit management device 8 receives the report information from the rice field methane reduction support device 1, it issues a credit according to the amount of methane reduction in the rice field included in the report information, and transfers the credit information indicating the credit to the rice field methane reduction support device. Send to 1.
  • the report information may be confirmed (verified), for example, by the credit management device 8 or the credit management company.
  • the report information includes only the water management information of the rice fields entered (declared) by the farmer. For example, more credits will be issued in the latter case than in the above case, depending on the case where the detected objective rice field water management information (corroboration of water management status) is included in the report information. A difference may be made in the amount of credits to be issued.
  • the credit information from the credit management device 8 includes information such as the credit value, identification information (management number), and the credit owner.
  • the control unit 1a Upon receiving the credit information from the credit management device 8 (S52), the control unit 1a identifies the farmer who is the owner of the credit indicated by the credit information, and transmits the received information to the farmer terminal device 3 used by the farmer. The received credit information is transmitted (S53).
  • the methane reduction amount is credited for each rice field, but in addition to this, the methane reduction amount of multiple rice fields may be credited all at once, as shown in FIG. 11, for example.
  • FIG. 11 is a flowchart showing another example of the crediting operation of the rice field methane reduction support device 1.
  • the control unit 1a of the rice field methane reduction support device 1 adds up the methane reduction amount of a plurality of rice fields (S54 in FIG. 11), generates report information including the combined methane reduction amount, and sends the report information to the communication unit. 1c to the credit management device 8 (S51a).
  • control unit 1a receives (obtains) credit information indicating credits issued from the credit management device 8 according to the total methane reduction amount through the communication unit 1c (S52a)
  • the control unit 1a receives the credit indicated by the credit information. , and distribute it according to the amount of methane reduction in a plurality of rice fields (S55). Further, the control unit 1a newly generates credit information indicating the distributed credits, and transmits the credit information to the farmer terminal device 3 of the farmer corresponding to the plurality of rice fields through the communication unit 1c (S53a). .
  • control unit 1a estimates credits corresponding to the amount of methane reduction in the rice fields based on a predetermined calculation formula or predetermined table data, and includes provisional credit information indicating the estimated credits in the report information, and the communication unit 1c It may also be transmitted to the credit management device 8 by.
  • the predetermined calculation formula or predetermined table data may be stored in advance in the storage unit 1b or the database 2d of the agricultural management device 2 (FIG. 1), for example. When a predetermined calculation formula or predetermined table data is stored in the database 2d, the control unit 1a may acquire (receive) the predetermined calculation formula or predetermined table data from the agricultural management device 2 through the communication unit 1c. .
  • control unit 1a may notify the farmer of the temporary credit information based on the farmer information. Specifically, the control unit 1a transmits temporary credit information to the farmer terminal device 3 used by the farmer, for example, through the communication unit 1c. The farmer terminal device 3 that has received the provisional credit information outputs the provisional credit information on a display or the like. This allows farmers to recognize temporary credit information.
  • the control unit 1a also includes, as the conventional work information and target work information to be included in the report information, the heading date of paddy rice grown in the paddy field and water management information such as the mid-drying period of the paddy field. There may also be information indicating the implementation date and implementation status of rice straw plowing and compost application. That is, in addition to water management operations such as drying rice fields, other operations that affect the amount of methane produced, such as controlling the amount or timing of plowing rice straw and applying organic fertilizers, were carried out. In this case, this will be reflected in the increase or decrease in the amount of credits issued due to the implementation of the work, and may be eligible for credit issuance.
  • control unit 1a or the like controls the amount and timing of at least one of plowing rice straw in the paddy field and applying organic fertilizer to the paddy field.
  • the amount of credits issued for the amount of methane generated reduced by drying may be increased or decreased.
  • the amount or timing of at least one of rice straw plowing and organic fertilizer application is expected to be reduced by changing the amount or timing of at least one of rice straw plowing and organic fertilizer application, the amount of reduction will be Credits may be issued.
  • FIG. 12 is a flowchart showing an example of the credit purchasing operation of the rice field methane reduction support device 1.
  • the credit purchasing operation in FIG. 12 is an operation when purchasing credits from a farmer, and shows an example of the process S7 in FIG. 3.
  • the farmer terminal device 3 When information indicating that a farmer wants to sell the credits he/she owns is inputted into the farmer terminal device 3, the farmer terminal device 3 generates sales wish information indicating that the farmer wants to sell the credits, and sells the credits.
  • the desired information is transmitted to the rice field methane reduction support device 1.
  • the information on the desire to sell includes not only the fact that the user wants to sell the credit, but also credit information indicating the value of the credit, the identification number, and the like.
  • the controller 1a of the rice field methane reduction support device 1 receives the sales information from the farmer terminal device 3 through the communication unit 1c (S61), the controller 1a determines the price of the credit indicated by the sales information.
  • the credit shown in is issued based only on the water management information of rice fields entered by the farmer, and the credit is issued based on objective information such as water level sensor 5, water management device 4, earth observation satellite 7, and monitoring device 6. There may be a difference in the amount of consideration, such as when the credit is issued based on water management information of rice fields, and the amount of credit is greater in the case described below than in the above case.
  • the control unit 1a outputs payment instruction information indicating an instruction to make a predetermined trader pay the determined price through the input/output interface 1d (S62). At this time, for example, the control unit 1a displays payment instruction information on a display included in the input/output interface 1d. Alternatively, the payment instruction information may be transferred to a transactor terminal device (not shown) used by a predetermined transactor.
  • the control unit 1a The person is changed from the farmer to the trader and the credit is managed on behalf of the trader (S64). Further, the control unit 1a generates change report information including credit information indicating the corresponding credit and information indicating that the owner of the credit has been changed from a farmer to a trader, and transmits the change report information.
  • the communication unit 1c transmits it to the credit management device 8 (S65).
  • the credit management device 8 Upon receiving the change report information from the rice field methane reduction support device 1, the credit management device 8 accepts a change in the owner of the credit indicated by the change report information, and updates the management information of the credit.
  • FIG. 13 is a flowchart showing an example of the credit transaction operation of the rice field methane reduction support device 1.
  • the credit transaction operation in FIG. 13 is an operation when selling credit to a consumer, and shows an example of the process S7 in FIG. 3.
  • the control unit 1a of the rice field methane reduction support device 1 receives purchase request information indicating that the credit to be managed is to be purchased from the customer terminal device 9 used by the customer through the communication unit 1c (S71), A price for the credit indicated by the purchase request information is determined, and a payment instruction for making the consumer pay the price is transmitted to the consumer terminal device 9 (S72).
  • the control unit 1a transfers the owner of the corresponding credit to the transactor.
  • the credit is changed from the credit to the consumer (S74), and the credit is removed from the management target.
  • the control unit 1a generates change report information including credit information indicating the credit and information indicating that the owner of the credit has been changed from the transactor to the consumer, and communicates the change report information.
  • the unit 1c transmits it to the credit management device 8 (S75).
  • the agricultural management device 2 and the farmer terminal device 3 are external devices to the rice field methane reduction support device 1, but the present invention is not limited to this.
  • the rice field methane reduction support device 1 and the agricultural management device 2 may be configured with the same computer or server, or the rice field methane reduction support device 1 and the farmer terminal device 3 may be configured with the same computer or terminal device.
  • the rice field methane reduction support device 1, the agricultural management device 2, and the farmer terminal device 3 may be provided on the cloud so that they can input and output information to each other on the cloud.
  • evaluation information indicating the amount of methane reduction in rice fields, work proposal information including the recommended drying period for rice fields, and credit information indicating credits according to the amount of methane reduction can be input and output on the same computer or on the cloud. You may.
  • the water management device 4 detects the water management status of the rice field in order to reduce methane emitted from the rice field during the cultivation of crops in the rice field based on the detection results of the water level sensor 5, etc. Examples are shown in which the monitoring device 6 detects the information based on the observation results obtained by the synthetic aperture radar of the earth observation satellite 7, or the farmer inputs the information using the farmer terminal device 3.
  • the water management device 4 or the water level sensor 5 is not installed in the rice field and the rice field is not monitored by the monitoring device 6, the water management state of the rice field cannot be detected. Furthermore, the information (record) on the water management status of rice fields inputted by the farmer using the farmer terminal device 3 has insufficient objectivity and evidence, and there is a risk that it may be wrong or falsified.
  • the rice field methane reduction support device 1 uses the data of SAR images (observation images) obtained by the synthetic aperture radar of the earth observation satellite 7 to determine the state of water management for reducing methane in the rice fields and the relevant state. is configured to specify the period during which the period lasted. An embodiment in this case will be described in detail below.
  • FIG. 14A is a diagram showing an example of a reflection state of microwaves irradiated from the synthetic aperture radar of the earth observation satellite 7 to a flooded rice field H.
  • a flooded rice field H is irradiated with microwave Wa from the synthetic aperture radar of the earth observation satellite 7, the microwave Wa is reflected by the smooth water surface Hw of the rice field H. Therefore, in the flooded rice field H, the intensity of the forward scattered wave Wf of the microwave Wa becomes high and the intensity of the back scattered wave becomes low, that is, the backscattering coefficient ⁇ becomes small.
  • FIG. 14B is a diagram showing an example of the reflection state of microwaves irradiated from the synthetic aperture radar of the earth observation satellite 7 to a paddy field H in a flooded state.
  • the microwave Wa is applied to the paddy field H which is uneven (not smooth with unevenness) or cracked. Reflected by Hg on the ground surface. Therefore, in the paddy field H in the flooded state, the intensity of the forward scattered wave Wf of the microwave Wa is lower than in the case of the paddy field H in the flooded state (FIG. 14A), and the intensity of the backscattered wave Wb of the microwave Wa ( (backscattering coefficient) increases, that is, the backscattering coefficient ⁇ increases.
  • FIG. 15A to 15C are diagrams showing examples of SAR images obtained by observing an area including a plurality of rice fields H where crops (paddy rice) are being cultivated using the synthetic aperture radar of the earth observation satellite 7.
  • FIG. 15A shows a SAR image before the mid-drought period (observation date: June 21, 2021) of an area including multiple rice fields H.
  • FIG. 15B shows SAR images of multiple rice fields H during the mid-dry period (observation date: July 3, 2021).
  • FIG. 15C shows a SAR image of multiple rice fields H after the mid-dry period (observation date: July 15, 2021).
  • Each SAR image shown in FIGS. 15A to 15C shows the intensity of backscattered waves when X-band microwaves are irradiated from a synthetic aperture radar.
  • a plurality of rice fields H are included in the hatched portion, and the visible rice fields H are shown separated by broken lines.
  • a pixel value representing at least one of the color shading and brightness of each pixel of the SAR image is detected, and each pixel value is stored in a predetermined LUT (Look Up Table) or an arithmetic expression stored in advance in the storage unit 1b.
  • LUT Look Up Table
  • an arithmetic expression stored in advance in the storage unit 1b.
  • the paddy field H is displayed dark because it is in a flooded state.
  • the rice field H is displayed as whitish because it is in a state of overflowing.
  • FIGS. 16A and 16B are graphs showing histograms of backscattering coefficients for one rice field H1 included in the SAR images shown in FIGS. 15A to 15C.
  • FIG. 16A shows a histogram Gb of backscattering coefficients corresponding to a plurality of pixels representing the paddy field H1 in the SAR image before the mid-dry period, and a histogram Gb of backscattering coefficients corresponding to a plurality of pixels representing the paddy field H1 in the SAR image during the mid-dry period.
  • 3 is a graph showing a histogram Gc of corresponding backscattering coefficients.
  • FIG. 16B is a graph showing a histogram Gc and a histogram Ga of backscattering coefficients corresponding to a plurality of pixels representing the rice field H1 after the mid-dry period.
  • the horizontal axis shows the range of backscattering coefficients
  • the vertical axis shows the ratio of the number of pixels associated with each backscattering coefficient to the total number of pixels representing the rice field H1.
  • a histogram Gb of the backscattering coefficient of the paddy field H1 before the mid-dry period a histogram Gc of the backscattering coefficient of the paddy field H1 during the mid-dry period
  • a back scattering coefficient of the paddy field H1 before the mid-dry period The scattering coefficient histogram Ga each shows a normal distribution.
  • the histogram Gb of the backscattering coefficient of the paddy field H1 before the mid-dry period is wider than the histogram Gc of the backscattering coefficient of the paddy field H1 during the mid-dry period, where the backscattering coefficient is smaller.
  • the distribution range has also increased.
  • the mode Gbm of the histogram Gb before the mid-dry period is smaller than the mode Gcm of the histogram Gc during the mid-dry period.
  • the average value and median value of the histogram Gb before the mid-dry period are also smaller than the average value of the histogram Gc during the mid-dry period (symbols not shown).
  • the backscattering coefficient histogram Ga of the SAR image of paddy field H1 after the mid-dry period is lower than the histogram Gc of the backscattering coefficient of the SAR image of paddy field H1 during the mid-dry period. spread over a small area.
  • the mode Gam of the histogram Ga after the mid-dry period is smaller than the mode Gcm of the histogram Gc during the mid-dry period.
  • the average value and median value of the histogram Ga after the mid-dry period are also smaller than the average value of the histogram Gc during the mid-dry period (symbols not shown).
  • a threshold value for determining the water management state of the rice field H1 is set. For example, as shown in FIG. 16A, the backscattering coefficient of the vertex P1 of the portion where the histogram Gb before the mid-dry period and the histogram Gc during the mid-dry period overlap is detected. Moreover, as shown in FIG. 16B, the backscattering coefficient of the vertex P2 of the portion where the histogram Ga after the mid-dry period and the histogram Gc during the mid-dry period overlap is detected.
  • a first threshold value ⁇ 1 for determining that the rice field H1 is in a semi-dry state is set.
  • one of the mode, average, median, maximum, and minimum of the backscattering coefficient of the vertex P1 and the backscattering coefficient of the vertex P2 may be set as the first threshold ⁇ 1.
  • the first threshold value ⁇ 1 it is possible to determine whether or not the paddy field H1 is in a flooded state and whether or not it is in a flooded state.
  • a normal distribution curve corresponding to each of the histograms Ga to Gc may be calculated, and the first threshold value ⁇ 1 may be set based on the normal distribution curve.
  • the backscattering coefficient at the intersection of the normal distribution curve of the histogram Gb before the mid-dry period and the normal distribution curve of the histogram Gc during the mid-dry period is detected.
  • the backscattering coefficient at the intersection of the normal distribution curve of the histogram Ga after the mid-dry period and the normal distribution curve of the histogram Gc during the mid-dry period is detected.
  • any one of the mode, average, median, maximum, and minimum of the backscattering coefficients at the two intersection points may be set as the first threshold ⁇ 1.
  • the rice field H1 is in a flooded state.
  • a second threshold value ⁇ 2 is set for determining that ⁇ 2 is present.
  • the second threshold value ⁇ 2 may be set to the minimum value of the histogram Gc, or a value smaller than the minimum value by a predetermined margin value.
  • the setting of the first threshold value ⁇ 1 and the second threshold value ⁇ 2 as described above may be performed, for example, by an operator operating a computer, or the control unit 1a of the rice field methane reduction support device 1 may set the first threshold value ⁇ 1 and the second threshold value ⁇ 2 according to a software program. May be executed. Further, the first threshold value ⁇ 1 and the second threshold value ⁇ 2 may be set by machine learning using AI (artificial intelligence). However, the first threshold value ⁇ 1 and the second threshold value ⁇ 2 are stored in the storage unit 1b (FIG. 1) of the rice field methane reduction support device 1.
  • AI artificial intelligence
  • the method of setting the first threshold value ⁇ 1 and the second threshold value ⁇ 2 is not limited to the above.
  • at least one of the operator, the rice field methane reduction support device 1, another computer, and the AI can display the SAR image of the rice field and the actual flooding, falling water, drying out, etc. of the rice field visually recognized by the operator, etc.
  • the first threshold value ⁇ 1 and the second threshold value ⁇ 2 may be set with reference to information indicating the state and period of water management.
  • the control unit 1a of the rice field methane reduction support device 1 uses the backscattering coefficient detected from the data of the SAR image (observation image) of the rice field and the water level information obtained from the detection result of the water level sensor 5 installed in the rice field. Based on this, the first threshold value ⁇ 1 and the second threshold value ⁇ 2 may be set (calculated) and stored in the storage unit 1b.
  • first threshold value ⁇ 1 and the second threshold value ⁇ 2 may be set for each rice field, or the first threshold value ⁇ 1 and the second threshold value ⁇ 2 may be set for a plurality of rice fields.
  • first threshold value ⁇ 1 and the second threshold value ⁇ 2 may be set based on the scattering coefficient.
  • the first threshold value ⁇ 1 and the second threshold value ⁇ 2 may be set statistically or typologically based on the SAR image of the rice field and the empirical data. Further, the first threshold value ⁇ 1 and the second threshold value ⁇ 2 may be set based on SAR images and empirical data of different rice fields, or may be set using different algorithms. Further, the first threshold value ⁇ 1 and the second threshold value ⁇ 2 may be set to different values, or may be set to the same value. Furthermore, at least one of the first threshold value ⁇ 1 and the second threshold value ⁇ 2 may be set. Furthermore, the first threshold value ⁇ 1 and the second threshold value ⁇ 2 may be updated every predetermined number of years based on SAR images of rice fields and verification data collected so far.
  • FIG. 17 is a graph showing changes in the ratio of backscattering coefficients corresponding to paddy field H1 in SAR images before and after the mid-dry period.
  • Figure 17 shows rice fields observed by the synthetic aperture radar of Earth Observation Satellite 7 on June 9, June 21, July 3, July 15, and July 27, 2021.
  • the backscattering coefficient corresponding to each pixel of the H1 SAR image is divided into three stages, the ratio of each division is shown.
  • June 9th and 21st are the observation days before the mid-drying period of paddy field H1
  • July 3rd is the observation day during the mid-drying period of paddy field H1
  • July 15th and 27th are the observation days of paddy field H1. This is the observation date after the mid-dry period.
  • the horizontal axis of FIG. 17 shows the date, and the vertical axis shows the percentage.
  • the SAR images of June 9th and July 27th are omitted from illustration. However, in the SAR image taken on June 9th, as in the SAR image taken on June 21st shown in FIG. 15A, the flooded paddy field H appears dark. Furthermore, in the SAR image taken on July 27th, as in the SAR image taken on July 15th shown in FIG. 15C, the paddy field H in a state of overflowing appears whitish.
  • the stage where the backscattering coefficient ⁇ is larger than the first threshold value ⁇ 1 is set as the middle dry zone Cm.
  • the stage where the backscattering coefficient ⁇ is smaller than the second threshold value ⁇ 2 is set as the flooded area Cf.
  • a stage where the backscattering coefficient ⁇ is equal to or greater than the second threshold value ⁇ 2 and equal to or less than the first threshold value ⁇ 1 is set as a partially flooded area Cp.
  • the first threshold value ⁇ 1 is set to "-14 [db]" and the second threshold value ⁇ 2 is set to "-20 [db]".
  • the solid line indicates the ratio of backscattering coefficients in the dry zone Cm
  • the double-dot chain line indicates the ratio of the backscattering coefficients in the partially flooded zone Cp
  • the ratio of the backscattering coefficient in the flooded zone Cf. is shown by a dashed line.
  • the proportion (88.5%) of the backscattering coefficient ⁇ belonging to the mid-dry area Cm was different for the flooded area Cf and the partially flooded area Cp. This is significantly higher than the proportion of the backscattering coefficient ⁇ (0.72% for the flooded area Cf and 10.78% for the partially flooded area Cp).
  • the proportion of backscattering coefficient ⁇ belonging to mid-dry area Cm is the ratio of backscattering coefficient ⁇ that belongs to flooded area Cf and partially flooded area Cp (55.24% on July 15th and 81.68% on July 27th in flooded area Cf, partially flooded area Cf). It is lower than Mizu Ward Cp (41.59% on July 15th and 17.57% on the 27th). Further, after the dry period of the rice field H1, the proportion of the backscattering coefficient ⁇ belonging to the flooded area Cf is higher than the proportion of the backscattering coefficient ⁇ belonging to the partially flooded area Cp.
  • the ratio of the backscattering coefficient ⁇ belonging to the mid-dry zone Cm and the flooded zone Cf changes significantly depending on whether or not it is the actual mid-drought period of the paddy field H1. It can be said that it has been demonstrated that the first threshold value ⁇ 1 that determines Cm and the second threshold value ⁇ 2 that determines the flooded area Cf are appropriate as threshold values for determining the dry state of the paddy field H1.
  • FIG. 18 is a flowchart showing an example of the water management specific operation of the rice field methane reduction support device 1.
  • the water management specifying operation shown in FIG. 18 is an operation for specifying the state of water management for reducing methane in rice fields and the period during which the state has continued, and is performed in step S23 after the above-described step S22 in FIG. Instead, it is executed by the control unit 1a (FIG. 1) of the rice field methane reduction support device 1.
  • the control unit 1a of the rice field methane reduction support device 1 receives a methane evaluation command from the farmer terminal device 3 through the communication unit 1c (communication interface) as described above ( S21 in FIG. 6). Then, the control unit 1a transmits farmer information, paddy field information, and work information corresponding to the farmer identification information and rice field identification information included in the methane evaluation command from the agricultural management device 2 or the farmer terminal device 3. The information is acquired (received) by the communication unit 1c (S22).
  • the communication unit 1c is an example of an acquisition unit that acquires information.
  • the acquisition unit may be configured with an input interface that can input information and data to the rice field methane reduction support device 1 via a storage medium.
  • the control unit 1a executes the water management specifying operation in FIG. First, the control unit 1a reads the acquired rice field information and work information (S81 in FIG. 18), and checks whether the work information includes water management information of the target rice field indicated by the rice field information. For example, if the water management device 4 or the like (which may include the water level sensor 5 in FIG. 1) is installed in the target paddy field, the control unit 1a controls the flooding and irrigation of the target paddy field detected by the water management device 4. It is confirmed that the work information includes water management information (hereinafter referred to as "detected water management information"), which is information indicating the water management state such as , falling water, etc. (S82 in FIG. 18: YES).
  • water management information hereinafter referred to as "detected water management information”
  • the control unit 1a provides water management information (hereinafter referred to as "detected water management information") of the target rice field detected by the monitoring device 6. It is confirmed that the work information (hereinafter referred to as "information”) is included in the work information (S82 in FIG. 18: YES).
  • control unit 1a identifies the state (presence or absence) and period of water management implemented to reduce methane in the target rice field based on the detected water management information, and indicates the state and period of the drying.
  • the specific water management information is stored in the storage unit 1b (S83).
  • the control unit 1a causes the storage unit 1b to store the detected water management information based on which the specific water management information is specified, in association with the specific water management information as basis information (S84).
  • the control unit 1a first identifies the tillering stage and panicle formation stage of the crop (paddy rice) planted in the target paddy field based on the paddy field information and work information. Next, the control unit 1a reads the detected water management information and determines whether the target paddy field has remained unflooded for a predetermined number of days (for example, 5 days) or more between the tillering stage and the panicle formation stage. Check whether or not.
  • control unit 1a determines whether the target paddy field has been in a non-flooded state (flooded state) for a predetermined number of days (for example, 5 days) or more. If the control unit 1a confirms from the detected water management information that the target paddy field has been in a non-flooded state (flooded state) for a predetermined number of days (for example, 5 days) or more, the control unit 1a implements drying in the target paddy field. It is determined that there was. Then, the control unit 1a specifies the start date and last day of the target paddy field not being flooded as the mid-drying start date and mid-drying end date, respectively, and the period from the mid-drying start date to the mid-drying end date. Identify the period as a mid-dry period. Further, the control unit 1a generates specific water management information indicating that the target rice field has been dryed and the drying period, and stores the specific water management information in the storage unit 1b (S84).
  • control unit 1a if drying is not performed in the target paddy field, the control unit 1a cannot specify the drying state of the target paddy field based on the detected water management information in step S83. In this case, in process S84, the control unit 1a generates specific water management information indicating that there was no implementation in the target rice field, and stores the specific water management information in the storage unit 1b.
  • the control unit 1a calculates the methane reduction amount of the target rice field as described above (S25), stores the methane reduction amount in the storage unit 1b, and stores the evaluation information including the methane reduction amount in the farmer information. is transmitted to the farmer terminal device 3 based on (S26).
  • the water level sensor 5 and the water management device 4 may not be installed in the target paddy field, and the target paddy field may not be included in the monitoring target of the monitoring device 6.
  • a farmer inputs water management information, which is information indicating the water management status of the target rice field, such as flooding, irrigation, falling water, and drying, using the farmer terminal device 3.
  • control unit 1a determines that the detected water management information is not included in the work information (S82 in FIG. 18: NO), and that the water management information (hereinafter referred to as "input water It is confirmed that "management information" is included in the work information (S85: YES). Then, the control unit 1a verifies the input water management information of the target rice field, and the state and period of water management implemented to reduce methane, based on the data of the SAR image obtained by the synthetic aperture radar of the earth observation satellite 7. (S86).
  • FIGS. 19A and 19B are flowcharts illustrating an example of the verification specific operation of the rice field methane reduction support device 1.
  • the verification specifying operation shown in FIGS. 19A and 19B shows details of the process S86 in FIG. 18.
  • the control unit 1a acquires data of a plurality of SAR images observed by the synthetic aperture radar of the earth observation satellite 7 based on the input water management information, and based on the data of the plurality of SAR images. Based on the determined water management status and period, verify the water management status and period of the target paddy field indicated by the input water management information, and Identify water management conditions and time frames to reduce methane. This verification specific operation will be described in detail below.
  • the input water management information included in the work information of the target rice field includes a mid-dry state and a mid-dry period as the state and period of water management for reducing methane in the target rice field. For this reason, the control unit 1a of the rice field methane reduction support device 1 first determines the mid-drying start date and the mid-drying final day of the mid-drying period of the target paddy field indicated by the input water management information (S91 in FIG. 19A). ).
  • the mid-drying start date is the day when the target paddy field changes from a flooded state to a submerged state due to being mid-dryed.
  • the last day of mid-drying is the day before the target paddy field undergoing mid-drying changes from a flooded state to a flooded state.
  • control unit 1a communicates with the monitoring device 6, which stores data observed by the synthetic aperture radar of the earth observation satellite 7, through the communication unit 1c, to determine the start date of mid-drying of the target paddy field and the end date of mid-drying of the target paddy field.
  • SAR image data of the area including the target rice field observed by the synthetic aperture radar on each day is acquired (received) (S92).
  • observation data of the synthetic aperture radar is stored in, for example, an observation data server (not shown) instead of the monitoring device 6, the control unit 1a can control the data on the start date of mid-drying and the last day of mid-drying of the target paddy field.
  • the communication unit 1c acquires SAR image data of the area including the target paddy field observed by the synthetic aperture radar from the observation data server.
  • the monitoring device 6 and the observation data server are an example of an observation management device.
  • the control unit 1a determines the position of the area including the target rice field based on the rice field information, and acquires the SAR image of the synthetic aperture radar that observed the position from the monitoring device 6 or the observation data server.
  • control unit 1a extracts one or more pixels indicating the target paddy field from the SAR image observed on the first day of drying of the target paddy field, and detects the backscattering coefficient corresponding to the pixel value of the pixel ( S93). At this time, the control unit 1a counts the number of detected backscattering coefficients, that is, the total number Na of backscattering coefficients of the target paddy field.
  • the number of pixels indicating the target rice field in the SAR image changes depending on the resolution (observation width) of the SAR image. For this reason, a SAR image with an appropriate resolution is acquired from the monitoring device 6 or the like to the paddy field methane reduction support device 1, taking into account the area of the target paddy field, the number of backscattering coefficients to be extracted, and the like.
  • the control unit 1a On the start date, it is determined that the target paddy field is in a flooded and semi-dry state, and the determination result is recorded in the storage unit 1b (S96).
  • Rt for example, 80%
  • the control unit 1a determines that the target paddy field is not in a flooded state and is in a mid-dry state on the mid-drought start date indicated by the input water management information. The determination result is recorded in the storage unit 1b (S97).
  • the third threshold value Rt is set based on the empirical data of the backscattering coefficient of rice fields, as shown in FIG. 17, for example.
  • control unit 1a extracts a pixel indicating the target paddy field from the SAR image on the last day of drying, and detects a backscattering coefficient corresponding to the pixel value of the pixel (S98 in FIG. 19B). Further, the control unit 1a calculates the ratio Re of the corresponding number Nb of backscattering coefficients larger than the first threshold value ⁇ 1 to the total number Na of backscattering coefficients of the target rice fields extracted as described above (S99).
  • the control unit 1a determines that the target paddy field is in a flooded state and in a mid-dry state on the last day of the mid-dry period indicated by the input water management information. The determination result is recorded in the storage unit 1b (S101).
  • the control unit 1a determines that the target paddy field is not in a flooded state on the last day of the mid-dry period indicated by the input water management information, and is in a mid-dry state. It is determined that there is no error, and the determination result is recorded in the storage unit 1b (S102).
  • control unit 1a determines in process S96 of FIG. 19A and process S101 of FIG. It is determined that the determined drying state and period of the target paddy field correspond to the drying state and period of the target paddy field indicated by the input water management information (S103 in FIG. 19B: YES). Then, the control unit 1a determines that the state and period of water management indicated by the input water management information are valid (S104), and stores the input water management information in the storage unit 1b as specific water management information (S105). ).
  • the control unit 1a determines that the drying state and period of the target paddy field determined from the SAR image data match the drying state and period of the target paddy field indicated by the input water management information.
  • the present invention is not limited to this example. For example, if the input water management information indicates the date of flooding and the date of flooding of the target rice field, and the number of days from the date of flooding to the date of flooding is more than a predetermined number of days (for example, 5 days), the control unit 1a , the input dry period of the target paddy field may be estimated from the date of flooding to the date of flooding.
  • the control unit 1a can confirm from the SAR image data that the target rice field is in a flooded state on the flood date and is in a flooded state on the flood day, the control unit 1a makes a judgment from the SAR image data. It may be determined that the drying state and period of the target paddy field correspond to the drying state and period of the target paddy field indicated by the input water management information.
  • the implementation date of the work to lower the water level of the target paddy field the implementation date of the drainage work to reduce the water level of the target paddy field to approximately 0, and the implementation date of the water supply work to raise the water level of the target paddy field are input.
  • the control unit 1a estimates a reasonable time required for the water level to drop to approximately 0 based on the drainage performance of the target paddy field, and calculates the water level based on the water supply performance of the target paddy field. It is also possible to estimate a reasonable amount of time required for water to rise and become flooded.
  • the control unit 1a determines that the water level of the target paddy field has decreased to approximately 0 after the elapse of the required flooding time from the implementation date of the water supply work, and that the water level of the target paddy field has decreased to approximately 0 after the elapse of the required flooding time from the implementation date of the water supply work.
  • the condition and period of mid-drought (or intermittent irrigation) of the target rice field determined from the SAR image data.
  • the control unit 1a determines that the water management status and period indicated by the input water management information are valid (S104 in FIG. 19B), and stores the input water management information as specific water management information in the storage unit 1b. (S105), the specific water management information, the input water management information, information indicating that the specific water management information and the input water management information correspond to each other, and information indicating that the input water management information is valid. Verification information including information indicating this is generated, and the verification information is stored in the storage unit 1b (S106). At this time, the control unit 1a displays display data of SAR images as shown in FIGS.
  • the verification information may include an explanation or legend of the SAR image or the image of the target paddy field.
  • the input water management information is verified and the target paddy field is dry.
  • the state and the mid-dry period are specified by the control unit 1a.
  • the control unit 1a then calculates the methane emissions of the rice field based on the calculation formula corresponding to the target rice field, the implementation status of agricultural work in the target rice field included in the work information, and the specific water management information. (S24 in FIG. 6).
  • control unit 1a calculates the methane reduction amount of the target paddy field as described above (S25), stores the methane reduction amount in the storage unit 1b, and stores the evaluation information including the methane reduction amount of the target paddy field.
  • the information is transmitted to the farmer terminal device 3 based on the farmer information (S26).
  • control unit 1a determines in process S97 of FIG. 19 that the target paddy field is not in a semi-drying state on the mid-drying start date, or in process S102 of FIG. If it is determined that there has not been, it is not possible to determine the mid-drought period of rice fields from the SAR image data. Therefore, the control unit 1a determines that the water management state of the target paddy field determined from the SAR image data does not correspond to the water management state of the target paddy field indicated by the input water management information (see FIG. 19B). S103: NO).
  • control unit 1a also performs SAR It may be determined that the water management state of the target paddy field determined from the image data and the water management state of the target paddy field indicated by the input water management information do not correspond (S103: NO).
  • control unit 1a determines that the water management status and period indicated by the input water management information are inappropriate, and generates image water management information indicating the water management status of the target rice field determined from the SAR image data. Then, the image water management information is stored in the storage unit 1b (S107). At this time, the image water management information indicates that the target paddy field was not in a submerged state or a semi-drying state on at least one of the mid-drying start date and the mid-drying final day.
  • control unit 1a outputs information indicating that the image water management information of the target rice field, the input water management information, the image water management information and the input water management information do not correspond, and that the input water management information is incorrect. Verification information including information indicating that the same is true is generated, and the verification information is stored in the storage unit 1b (S108). At this time as well, the control unit 1a selects display data of SAR images such as those shown in FIGS. 15A to 15C or extracted from the SAR images from among the SAR image data of the start date and final day of mid-drying of the target rice fields. The display data of the image of the target paddy field may be included in the verification information and stored in the storage unit 1b.
  • control unit 1a transmits verification information to the farmer terminal device 3 used by the farmer using the communication unit 1c based on the farmer information, and notifies the farmer of the verification information via the farmer terminal device 3. (S109 in FIG. 19B). Specifically, the farmer terminal device 3 that has received the verification information displays the verification information on the display, thereby notifying the farmer of the contents of the verification information. Further, the control unit 1a transmits request information for re-inputting the input water management information of the target paddy field to the farmer terminal device 3 together with the verification information, so that the request information is displayed on the display of the farmer terminal device 3. Good too. Thereby, the requested information is also notified to the farmer via the farmer terminal device 3.
  • the control unit 1a does not execute the process S24 (calculating the amount of methane emissions) in FIG. 6, but re-executes the processes starting from the process S81 in FIG. 18.
  • a farmer who has viewed the verification information notified in step S109 of FIG. 19B operates the farmer terminal device 3 to re-enter (change) the input water management information of the target rice field.
  • the control unit 1a confirms that the input water management information is included in the work information in step S85 of FIG. 18 (S85: YES), and repeats the verification specific operation of FIG. Execute.
  • the control unit 1a does not calculate the methane emissions and methane reduction amount of the target paddy field and transmits the evaluation information to the farmer's terminal device while it is not possible to specify the mid-dry state and mid-dry period of the target paddy field. There is no need to send it to 3.
  • the control unit 1a confirms that the work information does not include detected water management information and input water management information of the target rice field (S82: NO, S85: NO in FIG. 18). Then, the control unit 1a identifies the state and period of water management implemented to reduce methane in the target rice field based on the SAR image data obtained by the synthetic aperture radar of the earth observation satellite 7 (S87). .
  • FIGS. 20A and 20B are flowcharts illustrating an example of the image specifying operation of the rice field methane reduction support device 1.
  • the image specifying operation shown in FIGS. 20A and 20B shows details of the process S87 in FIG. 18.
  • the control unit 1a acquires data of a plurality of SAR images observed by the synthetic aperture radar of the earth observation satellite 7 during a predetermined period based on the rice field information and the work information, and Based on the SAR image data, the water management status and period for reducing methane in the target rice field will be identified.
  • the main image specifying operation will be described in detail below.
  • the control unit 1a of the rice field methane reduction support device 1 determines the tillering stage and panicle formation stage of the crop (paddy rice) planted in the target rice field based on the rice field information and work information (S111 in FIG. 20A). ). Next, the control unit 1a sends data of a plurality of SAR images of the area including the target rice field, which were observed by the synthetic aperture radar of the earth observation satellite 7 during the period from the tillering stage to the panicle formation stage, to the communication unit 1c. Obtained from the monitoring device 6 or observation data server (S112).
  • control unit 1a collects all SAR image data of the area including the target paddy field observed multiple times by the synthetic aperture radar of the earth observation satellite 7 during the period from the tillering stage to the panicle formation stage. You may obtain it. In this case, a number of SAR image data corresponding to the number of return days of the earth observation satellite 7 is acquired by the rice field methane reduction support device 1.
  • the control unit 1a sends data of a plurality of SAR images of the area including the target rice field observed by the synthetic aperture radar of the earth observation satellite 7 during the specific period indicated by the work information to the communication unit 1c. It may also be acquired from the monitoring device 6 or the like. Further, the specific period may be, for example, a period during which the farmer plans to dry rice fields inputted by the farmer using the farmer terminal device 3, or a predetermined number of days before the period when rice fields are partially dried, which is common in the region. It may be a period from the date to the day a predetermined number of days after the mid-dry period.
  • the control unit 1a reads the data of the SAR image with the oldest observation date among the data of the plurality of SAR images acquired from the monitoring device 6 etc. (S113), and indicates the target paddy field from the data of the read SAR image. A pixel is extracted, and a backscattering coefficient corresponding to the pixel value of the pixel is detected (S114). At this time, the control unit 1a counts the total number Na of backscattering coefficients of the extracted target paddy fields. Next, the control unit 1a counts the number Nb of backscattering coefficients larger than the first threshold ⁇ 1 among the backscattering coefficients of the target paddy field extracted from the read SAR image data, and counts the total number of backscatter coefficients of the target paddy field. The ratio Rs of the corresponding number Nb to Na is calculated (S115).
  • the control unit 1a determines that the target rice field is in a flooded and semi-dry state on the observation date of the read SAR image data. Then, the determination result is recorded in the storage unit 1b (S117). On the other hand, if the ratio Rs is less than the third threshold Rt (S116: NO), the control unit 1a determines that the target paddy field is not in a flooded state or in a semi-dry state on the observation date of the read SAR image data. The determination result is recorded in the storage unit 1b (S118).
  • control unit 1a if the control unit 1a has not yet read the data of all the acquired SAR images (S119 in FIG. 20B: NO), the control unit 1a reads the data of the SAR image with the next oldest observation date (S120). Then, the control unit 1a extracts a pixel indicating the target paddy field from the read SAR image, detects a backscattering coefficient corresponding to the pixel value of the pixel (S114 in FIG. 20A), and processes S115 as described above. - Execute S118.
  • control unit 1a repeatedly executes the processes S114 to S120 as described above until all acquired SAR image data is read (S119 in FIG. 20B: NO). Thereby, the control unit 1a determines whether or not the target rice field was in a semi-dry state and whether it was in a flooded state on the observation date of the plurality of SAR image data acquired from the monitoring device 6, etc., and The determination result can be stored in the storage unit 1b.
  • control unit 1a determines whether or not there is a dry state and a submerged state of the target rice field on each observation date stored in the storage unit 1b. With reference to information indicating the target paddy field, the mid-drying state (whether mid-drying has been carried out or not) and the mid-drying period are identified (S121).
  • the control unit 1a refers to the information stored in the storage unit 1b indicating the presence or absence of a dry state and a submerged state of the target rice field for each observation date in order from the oldest observation date. Then, if the number of days from the earliest observation date to the latest observation date is equal to or more than a predetermined number of days (for example, 5 days) among a plurality of observation days in which the dry state and the falling state are continuous, the control unit 1a controls the Mid-drying of rice fields is carried out, and the period from the earliest observation date to the latest observation date is identified as the mid-drying period.
  • a predetermined number of days for example, 5 days
  • control unit 1a generates specific water management information indicating the drying state and period of the specified target paddy field, and stores the specific water management information in the storage unit 1b (S122). Further, the control unit 1a generates basis information including display data of a SAR image based on which specific water management information is specified, and stores the basis information in the storage unit 1b in association with the specific water management information ( S123). At this time, the control unit 1a may include display data of an image of the target rice field extracted from the SAR image based on which the specific water management information is specified, in the basis information. Furthermore, explanations or legends of the SAR image or the image of the target paddy field may be included in the basis information.
  • the control unit 1a When processes S121 and S122 are executed as described above and the image specifying operation of FIGS. 20A and 20B is completed, the mid-dry state and mid-dry period of the target paddy field are identified by the control unit 1a. . In this case as well, the control unit 1a next calculates the methane emissions of the target paddy field based on the calculation formula corresponding to the target paddy field, the implementation status of agricultural work, and the specific water management information (S24 in FIG. 6). . Then, the control unit 1a calculates the methane reduction amount of the target rice field (S25), stores the methane reduction amount in the storage unit 1b, and transmits evaluation information including the methane reduction amount to the farmer terminal device 3. (S26).
  • control unit 1a executes the crediting operation in FIG. 10 after executing the process S123 in FIG. 20B or the process S84 in FIG. 18 and the methane evaluation operation in FIG. 6.
  • the control unit 1a stores the farmer information corresponding to the target paddy field, the methane reduction amount of the target paddy field, and the basis information stored in process S123 of FIG. 20 or process S84 of FIG. , and transmits the report information to the credit management device 8.
  • control unit 1a executes the crediting operation in FIG. 10 even after executing the process S106 in FIG. 19 and the methane evaluation operation in FIG. 6.
  • the control unit 1a sends report information including farmer information corresponding to the target paddy field, methane reduction amount of the target paddy field, and verification information stored in step S106 of FIG. and transmits the report information to the credit management device 8.
  • a mid-dry state (whether mid-drying is implemented) and a mid-dry period are specified as the state and period of water management to reduce methane in rice fields.
  • the control unit 1a of the rice field methane reduction support device 1 controls not only drying of the rice fields, but also the presence or absence and implementation period of other water management to reduce methane in the rice fields, such as intermittent watering.
  • the identification may be based on radar SAR image data.
  • control unit 1a uses the backscattering coefficient of the target paddy field extracted from SAR image data as well as the first threshold value ⁇ 1 for determining whether the target paddy field is in a flooded state. It may be compared with a second threshold value ⁇ 2 for determining whether the water is in a flooded state.
  • a third threshold value for example, 80%
  • the threshold value (for example, 50%) Ru it may be determined that the target rice field was in a flooded state on the observation date of the SAR image data.
  • the fourth threshold value Ru may also be set based on the empirical data of rice fields as shown in FIG. 17 and stored in the storage unit 1b.
  • control unit 1a of the rice field methane reduction support device 1 receives the detection results of the water level sensor 5 installed in a certain first rice field, the image of the first rice field taken by a surveillance camera (such as an optical camera), and the information recorded or recorded by a farmer or the like.
  • the acquisition unit 1c acquires any information of the inputted actual water level of the first paddy field, and uses the acquired information to obtain water level change information indicating a time-series change in the actual water level during rice cultivation in the first paddy field. (i.e., empirical data). Then, the control unit 1a may store (save) the water level change information in the storage unit 1b in association with SAR image data observed multiple times during rice cultivation in the first paddy field.
  • control unit 1a determines the correlation between the water level information of the first rice field and the SAR image data (that is, the correlation between the water level indicated by the water level information and the backscattering coefficient indicated by the data of the plurality of SAR images). ), the first threshold ⁇ 1, the third threshold Rt, etc. (the second threshold ⁇ 2 and the fourth threshold Rg may be included) are set from the correlation and the SAR image data, and the first The suitability of the threshold value ⁇ 1, the third threshold value Rt, etc. may be verified (demonstrated).
  • control unit 1a associates the first threshold value ⁇ 1, the third threshold value Rt, etc. verified (proved) as described above with the water level information of the first paddy field and the data of the plurality of SAR images, and stores them in the storage unit 1b. It may be stored (stored). Furthermore, after that, the control unit 1a applies the correlation between the water level information of the first paddy field and the SAR image data, the first threshold value ⁇ 1, the third threshold value Rt, etc., and cannot obtain the actual water level information.
  • the water management state (including water level, dry state, intermittent irrigation, etc.) of the second rice field may be specified.
  • the operator may use at least one of a computer and AI. You can go.
  • control unit 1a may detect that the observation dates of the SAR image data for which it is determined that the target rice field is in a flooded state are consecutive, and the period from the earliest observation date to the latest observation date is equal to or more than a predetermined number of days.
  • the target paddy field may be in a semi-dry state, and the period from the earliest observation date to the latest observation date may be specified as the semi-dry period.
  • the control unit 1a determines that the target paddy field is in a flooded state based on data of a certain SAR image, and determines that the target paddy field is in a flooded state based on data of a newer SAR image. If this is repeated a number of times, it may be determined that the target paddy field is in an intermittent irrigation state.
  • the control unit 1a controls the methane emission in the case of intermittent irrigation based on the model formulas (1) and (2) shown in FIG. 5, for example. Set the calculation formula to calculate the amount. Then, the control unit 1a calculates the methane emission amount of the target rice field using the calculation formula for the case of intermittent irrigation, and calculates the methane reduction amount by subtracting the methane emission amount from the preset basic methane emission amount.
  • the SAR image acquired by the rice field methane reduction support device 1 is based on the number of return days of the earth observation satellite 7 equipped with a synthetic aperture radar that observes the SAR image, or the wavelength of microwaves emitted from the synthetic aperture radar. , may be selected as appropriate.
  • the microwave Wa when an X-band microwave Wa is irradiated from a synthetic aperture radar, the microwave Wa is transmitted to the leaves of a crop (paddy rice) R grown in a paddy field H. reflected by etc. Further, when the C-band microwave Wa is irradiated from the synthetic aperture radar, the microwave Wa is reflected by the stems of crops R that have grown to some extent in the paddy field. Therefore, as the growth of the crop R progresses, the intensity of the backscattered wave Wb of the X-band or C-band microwave Wa, that is, the backscattering coefficient, increases. Growth progress can be detected.
  • the microwave Wa transmits through the leaves of the crop R in the rice field H. Then, it is reflected on the water surface Hw. Therefore, the intensity of the backscattered wave Wb, that is, the backscattering coefficient, becomes small, and it becomes easier to detect that the rice field H is in a flooded state based on the backscattered wave Wb.
  • the microwave Wa transmits through the leaves of the crops R in the rice field H and is reflected on the ground surface Hg.
  • the intensity of the backscattered wave Wb that is, the backscattering coefficient becomes large, and it becomes easier to detect that the paddy field H is in the overflowing state based on the backscattered wave Wb.
  • the wavelength of the microwave may be appropriately selected, and the SAR image of the synthetic aperture radar that irradiates the microwave of the selected wavelength may be acquired by the rice field methane reduction support device 1.
  • rice fields may be observed using synthetic aperture radar to which interferometric SAR technology is applied.
  • synthetic aperture radar to which interferometric SAR technology is applied.
  • changes in the ground surface are observed by the synthetic aperture radar at a level of several centimeters, so the rice field methane reduction support device 1 determines the state of partial flooding in the rice fields based on the SAR images observed by the synthetic aperture radar. It is also possible to detect in detail the state of partial drowning.
  • the method of identifying the state and period of water management in a paddy field based on the SAR image of the synthetic aperture radar described in the above embodiment is an example, and is not limited to the method.
  • the rice field methane reduction support device 1 may use another method to identify the state and period of water management, such as drying of rice fields or intermittent irrigation, based on synthetic aperture radar.
  • the synthetic aperture radar may be mounted not on the earth observation satellite 7 but on another aircraft, a flying object such as a drone, or another flying object to observe rice fields.
  • the state and period of water management in rice fields may be identified based on optical image data observed (captured) by a flying object or an imaging device mounted on a flying object. .
  • FIGS. 18 to 19B an example was shown in which water management information of a rice field input by a farmer using the farmer terminal device 3 was verified based on SAR image data.
  • the information indicating the water management status of the paddy field, etc. detected by the water management device 4 using the water level sensor 5 or the like and inputted (sent) to the agricultural management device 2 may be verified based on SAR image data. That is, the detected water management information of rice fields that is detected by a detection device or sensor used by a farmer and input into the agricultural management device 2 etc. is also considered as input water management information and verified based on the SAR image data. It's okay.
  • the rice field methane reduction support device 1 in addition to using the specific water management information of the rice field to calculate the amount of methane emission and reduction, for example, the growth status of crops cultivated in the rice field, the water Specific water management information can also be used for other purposes, such as the implementation status of management work or the water supply and drainage status of rice fields. Further, in order to calculate the amount of emissions and reductions of greenhouse gases other than methane (carbon dioxide, etc.) emitted from agricultural fields such as rice fields, a computer or the like constituting the rice field methane reduction support device 1 may be used. . In this case, model data for calculating greenhouse gas emissions and reduction amounts may be used.
  • FIG. 14 is a configuration diagram of an example of the agricultural support system 100.
  • This agricultural support system 100 has the same configuration as the rice field methane reduction support system 100 shown in FIG. 1 except for the land management terminal device 10. That is, the agricultural support system 100 constitutes a rice field methane reduction support system 100.
  • the rice field methane reduction support device 1 is composed of an information processing device such as a computer.
  • the rice field methane reduction support device 1 is an information processing device that detects the occurrence of water management abnormalities in rice fields.
  • the rice field methane reduction support device 1 may be referred to as the information processing device 1.
  • the land management terminal device 10 is composed of a computer, a tablet terminal device, a smartphone, etc. used by an administrator who manages land around rice fields.
  • the land manager may be an individual, a farming organization, a corporation, a local government in the area where the rice fields are located, or the like.
  • one land management terminal device 10 is illustrated, but there may be two or more land management terminal devices 10.
  • the land management terminal device 10 includes a control unit (CPU), a storage unit (memory), a communication unit (communication interface), and an input/output interface (not shown).
  • the land management terminal device 10 receives information regarding the land around the rice fields through the Internet or the like through the communication unit, and outputs (displays) the received information through the input/output interface.
  • FIG. 15 is a flowchart illustrating an example of the water management abnormality detection operation of the information processing device 1.
  • the control unit 1a of the information processing device 1 executes the main water management abnormality detection operation at a predetermined period at a predetermined time such as the rainy season, for example.
  • the control unit 1a uses the communication unit 1c to acquire rice field information and work information corresponding to the target rice field from the agricultural management device 2 or the farmer terminal device 3 used by the farmer corresponding to the rice field (S121).
  • the communication unit 1c is an example of an acquisition unit and an output unit.
  • control unit 1a acquires detected water management information indicating the water management state of the rice field detected by the water management device 4 or the monitoring device 6 from the agricultural management device 2 through the communication unit 1c (S122).
  • the detected water management information includes at least one of the detection results of the water level sensor 5 that detects the water level of the rice fields and the observation results (radar images) of the earth observation satellite 7 that observes the area where the rice fields are located. .
  • the control unit 1a identifies target water management information indicating the target water management state of the rice field from the acquired work information (S123).
  • the control unit 1a reads, for example, the implementation status (water management status) of water management work such as flooding, irrigation, and falling water in the rice field from the implementation status of agricultural work included in the work information, and uses the implementation status to set the goal for the rice field. It is determined whether the surface condition is a water surface or not, and the determination result is specified as target water management information.
  • the control unit 1a may specify, as the target water management information, for example, the target water level of the rice field, or the area of the area where the surface of the rice field is the water surface.
  • the control unit 1a determines whether there is a water management abnormality based on the difference between the target water management information and the detected water management information (S124). At this time, the control unit 1a specifies, for example, the target water level of the rice field from the target water management information, and specifies the actual water level (actual value of the water level) of the rice field from the detection result of the water level sensor 5 included in the detected water management information. Then, when the actual water level in the rice field is higher than the target water level by a first predetermined value or more, the control unit 1a determines that a water management abnormality (abnormal water increase) has occurred in the rice field.
  • a water management abnormality abnormal water increase
  • the control unit 1a determines that a flood has occurred in and around the paddy field. It's okay. On the other hand, if the actual water level in the rice field is not higher than the target water level by the first predetermined value or more, the control unit 1a determines that no water management abnormality has occurred in the rice field.
  • control unit 1a identifies the target water management state of the rice field from the target water management information, and determines whether the surface of the rice field is a water surface from the observation results of the earth observation satellite 7 included in the detected water management information. Specify whether or not.
  • the control unit 1a determines that the target water management state of the paddy field is a falling water state in which no water is filled in the paddy field (a state in which the water level is substantially zero), and based on the observation results of the earth observation satellite 7, the surface of the paddy field is If it is determined that the water is on the water surface, it is determined that a water management abnormality (abnormal water drainage such as drainage abnormality in the paddy field or abnormal increase in water such as flooding around the paddy field) has occurred in the paddy field.
  • a water management abnormality abnormal water drainage such as drainage abnormality in the paddy field or abnormal increase in water such as flooding around the paddy field
  • the control unit 1a determines that there is a water management abnormality in the rice field. It is determined that this has not occurred.
  • control unit 1a identifies the position of the rice field from the rice field information, and calculates the target water surface area of the rice field whose surface becomes the water surface from the target water management information. In addition, the control unit 1a determines whether the surface of the paddy field and the land around the paddy field is a water surface based on the observation results of the earth observation satellite 7, and calculates the area of the paddy field and land whose surface is a water surface. Calculate the actual water surface area.
  • the control unit 1a will cause a water management abnormality ( It is determined that an abnormal water rise (such as a flood) has occurred. Furthermore, if the actual water surface area is not larger than the target water surface area by a predetermined value or more, the control unit 1a determines that no water management abnormality has occurred in or around the rice fields.
  • the control unit 1a determines a water supply abnormality in a rice field from the difference between the target water management information and the detected water management information. You can also do it. For example, the control unit 1a determines that a water supply abnormality (water management abnormality) has occurred in the rice field when the actual water level of the rice field is lower than the target water level by a third predetermined value or more.
  • the third predetermined value is set smaller than the first predetermined value.
  • the target water management state of the paddy field is a flooded state, but the surface of the paddy field is determined to be not a water surface based on the observation results of the earth observation satellite 7, a water supply abnormality occurs in the paddy field. I judge that I did.
  • the communication unit 1c When the control unit 1a determines that a water management abnormality has occurred as described above (S125: YES), the communication unit 1c outputs water management abnormality information indicating that a water management abnormality has occurred in and around the rice fields ( S126). At this time, the control unit 1a may include the details of the water management abnormality, target water management information, detected water management information, etc. in the water management abnormality information.
  • control unit 1a acquires farmer information regarding a farmer corresponding to a rice field, for example, from the agricultural management device 2 or the farmer terminal device 3 using the communication unit 1c, and communicates water management abnormality information based on the farmer information.
  • the information may be transmitted (output) to the farmer terminal device 3 by the unit 1c.
  • the farmer terminal device 3 upon receiving the water management abnormality information, displays the water management abnormality information on the input/output interface, thereby informing the farmer that a water management abnormality has occurred in the rice field (and around the rice field). Notify the person.
  • the farmer terminal device 3 sends a warning (message, etc.) to the farmer indicating that he should not go near the rice field due to a flood. may be notified.
  • the control unit 1a may acquire farmer information through the communication unit 1c before determining that a water management abnormality has occurred.
  • the control unit 1a determines that a flood has occurred as a water management abnormality in the rice field
  • the control unit 1a transmits land management information including information indicating the manager of the land around the rice field from the agricultural management device 2 or the land management terminal device 10.
  • the water management abnormality information may be acquired by the communication unit 1c and transmitted (output) to the land management terminal device 10 by the communication unit 1c based on the land management information.
  • the land management terminal device 10 receives the water management abnormality information, it displays the water management abnormality information through an input/output interface, thereby informing the management of the land surrounding the rice fields that a flood has occurred in or around the rice fields. Notify the person.
  • the farmer terminal device 3 may notify the farmer of a warning (such as a message) indicating that the farmer should not go near the rice field because of a flood.
  • a warning such as a message
  • the control unit 1a may acquire land management information from the communication unit 1c before determining that a flood has occurred.
  • control unit 1a may output water management abnormality information indicating that a flood has occurred to the agricultural management device 2 through the communication unit 1c. Further, the information processing device 1, agricultural management device 2, and land management terminal device 10 access a predetermined provider and display water management abnormality information indicating that a flood has occurred on a predetermined homepage on the Internet. Good too.
  • control unit 1a directly or instructs the agricultural management device 2 to issue a water supply and drainage command to the water management device 5 corresponding to the rice field in which the water management abnormality has occurred, instructing it to execute a water supply and drainage operation to eliminate the water management abnormality. It may also be sent via.
  • the water management device 5 receives the water supply and drainage command, it operates an actuator based on the water supply and drainage command to drain water or supply water to the rice field.
  • the above-described water management abnormality detection operation may be executed by the control unit 1a for one paddy field, or may be executed for a plurality of paddy fields.
  • the control unit 1a determines that an abnormal water increase (water management abnormality) has occurred in a plurality of rice fields within a predetermined range, it is determined that a flood has occurred in the area where the rice fields are located, and the control unit 1a determines that a flood has occurred in the area where the rice fields are located. If it is determined that an abnormal increase in water has occurred in one of the rice fields, and it is determined that an abnormal increase in water has not occurred in the other rice field, it may be determined that no flooding has occurred in the area where the rice fields are located.
  • the communication unit 1c communicates with the agricultural management device 2 or the water management device 4 corresponding to the paddy field, and Alternatively, it may be confirmed whether a drainage error has occurred in the drainage sluice gate that prevents normal drainage. For example, the control unit 1a transmits a request signal requesting transmission of error information corresponding to a rice field to the agricultural management device 2 or the water management device 4 through the communication unit 1c.
  • the communication unit 1c receives error information indicating that a drainage error has occurred from the agricultural management device 2 or the water management device 4, it is determined that an abnormal water increase has occurred in the rice field due to a drainage error.
  • control unit 1a determines that the abnormal increase in water in the rice fields is not due to a discharge error but is a flood caused by heavy rain or the like. That is, after confirming that the abnormal increase in water in the rice field is not due to a drainage error, the control unit 1a determines that the abnormal increase in water is due to flooding around the rice field.
  • control unit 1a determines whether there is an abnormal increase in water in a rice field using the observation results of the earth observation satellite 7, that is, a radar image (SAR satellite image), a radar image when the surface of the rice field is a water surface
  • a threshold value for determining whether the surface of the rice field is a water surface may be set based on a radar image when the surface of the rice field is not a water surface.
  • the threshold value may be used to determine whether the surface of land other than rice fields, such as other fields (fields), roads, residential areas, industrial parks, riverbeds, etc., is a water surface. .
  • control unit 1a detects the presence or absence of abnormal water rise (or flooding) in various target locations by detecting the actual water level and water surface condition of the target locations, for example, from the observation results of the earth observation satellite 7. Moreover, the presence or absence of abnormal water rise (or flooding) can be detected over a wide range without installing a water level sensor 5 or the like in the target area.
  • the information processing device constituting the rice field methane reduction support device 1 executed the water management abnormality detection operation, but instead of this, the information processing device constituting the agricultural management device 2 A water management abnormality detection operation may also be performed.
  • an information processing device different from the rice field methane reduction support device 1 and the agricultural management device 2 may perform the water management abnormality detection operation.
  • the rice field methane reduction support device 1 and the rice field methane reduction support system 100 of this embodiment described above have the following configurations and are effective.
  • the rice field methane reduction support device 1 of this embodiment includes a storage unit 1b that stores model data (FIG. 5) for calculating the amount of methane emissions from the rice fields, and calculates the amount of methane emissions from the rice fields based on the model data.
  • the control unit 1a acquires farmer information regarding a farmer and work information regarding agricultural work for cultivating crops in a paddy field corresponding to the farmer information, and acquires the work information. Calculate the amount of methane reduced from the predetermined basic methane emissions of rice fields based on the implementation status of agricultural operations included in.
  • the rice field methane reduction support system 100 of the present embodiment includes a rice field methane reduction support device 1 that supports the reduction of methane emissions from rice fields, and a database 2d that stores information regarding a plurality of rice fields and a plurality of farmers. and an agricultural management device 2.
  • the amount of methane reduction in the rice field is quantitatively evaluated by the rice field methane reduction support device 1 when the farmer changes the implementation status of agricultural work in the rice field, so convenience can be improved. can. This will also encourage farmers to take steps to reduce methane from rice fields, making it possible to activate methane reduction in the agricultural sector.
  • control unit 1a calculates the amount of methane reduction in the rice field based on water management information included in the work information and indicating the water management state of the rice field.
  • farmers can quantitatively evaluate the amount of methane reduction in rice fields by the rice field methane reduction support device 1 by changing the implementation status of water management work such as intermittent irrigation or mid-drying of rice fields, improving convenience. can be done.
  • control unit 1a identifies a dry state during crop cultivation in the paddy field based on water management information indicating flooding, irrigation, and overwatering of the paddy field, and identifies a dry state during crop cultivation in the paddy field. Calculate the amount of methane reduction in rice fields. As a result, when farmers carry out mid-drying of rice fields or extend the mid-drying period, the rice field methane reduction support device 1 quantitatively evaluates the amount of methane reduction in the rice fields, improving convenience. be able to.
  • control unit 1a notifies the farmer of evaluation information indicating the amount of methane reduction in the rice field based on the farmer information. Further, in one embodiment, the control unit 1a transmits evaluation information indicating the amount of methane reduction in the rice field to the farmer terminal device 3 based on the farmer information using the communication unit 1c. As a result, farmers can easily grasp the methane reduction effect caused by changing the implementation status of agricultural work in rice fields, and can improve convenience.
  • the control unit 1a acquires rice field information regarding the rice fields, sets a calculation formula for calculating the methane emissions of the rice fields based on the rice field information, work information, and model data, and Based on the conventional water management information of The basic methane emission amount is stored in the storage unit 1b in association with the rice field information, the dry state of the rice field is specified based on the changed water management information of the rice field, and the dry state of the rice field is combined with the calculation formula. Based on this, the methane emissions from the rice fields are calculated, and the methane emissions are subtracted from the basic methane emissions from the rice fields to calculate the amount of methane reduction from the rice fields. This will reduce the amount of methane emissions from rice fields compared to the basic methane emissions by changing the actual drying period, such as extending the actual drying period compared to the basic drying state of rice fields. The amount can be calculated.
  • the control unit 1a calculates the calculation formula for the medium drying period after the extension and the paddy field.
  • the amount of methane reduction is calculated based on the basic dry period and the basic methane emission amount, the correlation between the dry period of rice fields and the amount of methane reduction is derived, and the first correlation data indicating the correlation is stored in the storage unit.
  • a mid-dry period of the paddy field is specified based on the changed water management information of the paddy field, and a methane reduction amount of the paddy field is calculated based on the mid-dry period and the first correlation data.
  • control unit 1a updates the calculation formula for the paddy field in response to a change in at least one of the paddy field information and work information of the paddy field.
  • the first correlation data indicating the correlation between the basic methane emissions of the rice fields or the dry period and the amount of methane reduction can also be updated, making it possible to improve the accuracy of the amount of methane reduction in the rice fields.
  • the rice field methane reduction support device 1 includes a communication unit 1c that communicates with an external device, and the control unit 1a has a database 2d that stores information regarding a plurality of rice fields and a plurality of farmers.
  • the communication unit 1c acquires farmer information and paddy field information and work information of the paddy field corresponding to the farmer information from at least one of the agricultural management device 2 and the farmer terminal device 3 used by the farmer. , the detection devices 4 and 6 (water management device 4, monitoring device 6), agricultural management device 2, and farmer terminal device 3 corresponding to farmer information.
  • the water management information of the rice fields is acquired by the communication unit 1c.
  • the rice field methane reduction support device 1 can accurately determine the mid-dry state based on the water management information indicating the water management state of the rice field acquired from the detection devices 4 and 6, the agricultural management device 2, or the farmer terminal device 3. can be specified.
  • the farmer terminal device 3 is configured to be able to input at least one of farmer information, work information, and rice field information. Therefore, even if there is a change in farmer information, work information, or rice field information, the farmer can immediately input the changed farmer information, work information, or rice field information. Further, the farmer can input, using the farmer terminal device 3, work information including water management information indicating the water management state of the rice fields that cannot be detected by the detection devices 4 and 6. Then, the rice field methane reduction support device 1 can identify the dry state based on the water management information of the rice field.
  • the detection device 4 detects the water management state during crop cultivation in the paddy field from the detection result of the water level sensor 5 that detects the water level in the paddy field, and the control unit 1a
  • the water management information indicating the water management state of the rice field detected by the detection device 4 is acquired periodically or at a predetermined timing, and the dry state of the rice field is identified based on the plurality of acquired water management information. .
  • the water management status of the rice field including flooding, irrigation, and falling water is accurately detected, and based on the water management information indicating the water management status, the rice field is It is possible to more accurately identify the mid-dry state of
  • the detection device 6 detects the water management status during crop cultivation in the paddy field based on the observation results of the paddy field by the flying object or the observation device (earth observation satellite) 7 mounted on the flying object.
  • the control unit 1a periodically or at a predetermined timing acquires water management information indicating the water management state of the paddy field detected by the detection device 6, and based on the acquired plurality of water management information. , to identify the dry state of rice fields.
  • the water management status of flooding, irrigation, and falling water in the rice field can be accurately detected based on the observation results of the rice field by the observation device 7, and the water management status of the rice field can be accurately detected based on the water management information indicating the water management status.
  • the dry state can be identified more accurately.
  • the cost for installing the device can be reduced.
  • the observation device 7 has a synthetic aperture radar.
  • rice fields can be observed using synthetic aperture radar without being affected by weather or clouds, and based on the observation results, the water management status of rice fields such as flooding, irrigation, or falling water can be accurately detected. Based on the water management information indicating the water management state, it is possible to more accurately identify the dry state of the rice field.
  • control unit 1a determines a recommended dry period for rice fields in which the amount of methane reduction is equal to or greater than a predetermined value, based on first correlation data indicating the correlation between the dry period of rice fields and the amount of methane reduction. Based on the farmer's information, the farmer is notified of work proposal information including the recommended mid-drying period. This will notify farmers of the recommended mid-drying period suitable for reducing methane from paddy fields, so farmers can easily reduce methane from paddy fields by carrying out mid-drying of paddy fields based on the recommended mid-drying period. In addition, it is possible to effectively reduce the amount, and it becomes possible to further improve convenience.
  • control unit 1a estimates the basic yield of crops in the paddy field based on the basic dry period of the paddy field, the paddy field information and work information corresponding to the paddy field, and performs the simulation to estimate the basic yield of crops in the paddy field.
  • the yield of crops in the paddy field is estimated based on the mid-dry period after the extension, the paddy field information and the work information of the paddy field, and the yield is estimated based on the yield and the basic yield.
  • the yield loss of the crop is calculated, the correlation between the dry period of the paddy field and the yield loss of the previous crop is derived, second correlation data indicating the correlation is stored in the storage unit 1b, and the first correlation data and the second correlation data are stored.
  • a recommended mid-drying period for rice fields in which the amount of methane reduction is greater than or equal to a first predetermined value and the amount of crop yield reduction is less than or equal to a second predetermined value is determined.
  • farmers will be notified of the recommended drying period that balances the amount of methane reduction in rice fields with crop yield, making it easier for farmers to carry out drying of rice fields based on the recommended drying period.
  • control unit 1a transmits report information including the amount of methane reduction in the rice fields and farmer information corresponding to the rice fields to the credit management device 8 through the communication unit 1c, and reports the amount of methane reduction in the rice fields.
  • the communication unit 1c acquires credit information indicating the electronic credit issued from the credit management device 8, and notifies the farmer of the credit information based on the farmer information.
  • the control unit 1a adds up the methane reduction amount of a plurality of rice fields, transmits report information indicating the combined methane reduction amount to the credit management device 8 through the communication unit 1c, and
  • the communication unit 1c acquires credit information indicating credits issued from the credit management device 8 according to the amount of methane reduction that has been made, and distributes the credits indicated by the credit information according to the amount of methane reduction of a plurality of rice fields, Credit information indicating the distributed credits is notified to farmers corresponding to each of the plurality of rice fields based on the farmer information.
  • the control unit 1a makes settings based on rice field information regarding rice fields, conventional work information in the rice fields, target work information indicating agricultural work that has been changed to reduce methane from the rice fields, and model data. At least one of the calculation formula for calculating the amount of methane emissions from the rice fields and the variables included in the calculation formula is included in the report information and transmitted to the credit management device 8 by the communication unit 1c. As a result, the credit management company can verify the amount of methane reduction included in the report information, using the rice field information, work information, calculation formula, or variable included in the report information received by the credit management device 8, and It is possible to judge the validity of the amount and issue credits legitimately.
  • control unit 1a estimates credits according to the amount of methane reduction in rice fields, includes provisional credit information indicating the estimated credits in report information, and transmits the report information to the credit management device 8 through the communication unit 1c. , or notify the farmer of the provisional credit information based on the farmer information. This allows the rice field methane reduction support device 1 to manage the credit estimate according to the amount of methane reduction in the rice field, or allows the farmer to grasp the estimate.
  • the rice field methane reduction support device 1 includes an input/output interface 1d for inputting and outputting information, and the control unit 1a sends sale wish information indicating that the farmer wants to sell credits owned by the farmer.
  • the input/output interface 1d When received by the communication unit 1c from the farmer terminal device 3, the input/output interface 1d outputs payment instruction information indicating an instruction to make a predetermined trader pay the price of the credit indicated by the relevant sale information, and the trader When payment completion information indicating that the price has been paid to the farmer is input through the input/output interface 1d, the owner of the credit is changed from the farmer to the trader. This allows farmers to easily obtain compensation for the credits they own without having to deal with credits directly with consumers through complicated procedures, further improving convenience and profitability for farmers. becomes.
  • the control unit 1a receives the purchase request information indicated by the purchase request information.
  • a payment instruction to make the consumer pay the price is sent to the consumer terminal device 9, and payment completion information indicating that the consumer has paid the price to the transaction person is received by the communication unit 1c from the consumer terminal device 9.
  • the owner of the credit is changed from the transactor to the consumer.
  • the rice field methane reduction support device 1 of this embodiment provides rice field information regarding rice fields, work information regarding agricultural work for cultivating crops in the rice fields, and observation images of the area including the rice fields observed by the observation device (earth observation device) 7.
  • An acquisition unit (communication unit, communication interface) 1c that acquires data on paddy fields to reduce methane emitted from the paddy fields during crop cultivation based on the paddy field information, work information, and observation image data.
  • a control unit 1a that identifies the state of water management and the period during which the state continued and generates specific water management information indicating the state and period of water management; and a storage unit 1b that stores the specific water management information. , is equipped with.
  • the rice field methane reduction support system 100 of this embodiment includes a rice field methane reduction support device 1 that supports the reduction of methane emissions from rice fields where crops are cultivated, and a database 2d that stores information about rice fields and agriculture performed in the rice fields.
  • the constructed agricultural management device 2, and the rice field methane reduction support device 1 includes the above-mentioned control section 1a, storage section 1b, and acquisition section 1c, and is used by the agricultural management device 2 and the farmer corresponding to the paddy field.
  • Observation management device (monitoring device 6 or observation data
  • the acquisition unit 1c acquires observation image data of the area including the rice fields observed by the observation device 7 from the server (server).
  • the work information includes input water management information indicating the state and period of water management of the paddy field inputted in advance, and the control unit 1a selects a plurality of observation images based on the input water management information.
  • data is acquired by the acquisition unit 1c, the state and period of water management indicated by the input water management information is verified based on the data of the plurality of observation images, and verification information indicating the verification result is stored in the storage unit 1b. If the state and period of water management indicated by the input water management information are valid, the input water management information is stored in the storage unit 1b as specific water management information.
  • control unit 1a acquires data of observation images observed by the observation device 7 during the water management period indicated by the input water management information. Therefore, the number of observation image data of the observation device 7 that is acquired in order to verify the input water management information can be reduced to a limited extent, and the cost required for acquiring the data can be reduced.
  • control unit 1a determines the water management state from data of a plurality of observation images, and the determined water management state and the water management state indicated by the input water management information are different from each other. If the input water management information is compatible, information indicating that the input water management information is valid is included in the verification information, and the input water management information is stored in the storage unit 1b as specific water management information. Thereby, high evidentiality and validity of the input water management information and specific water management information can be further ensured.
  • the control unit 1a uses the acquisition unit 1c to acquire farmer information regarding a farmer corresponding to a rice field, that is, a farmer who performs agricultural work in a rice field, or a farmer who has input the input water management information. If the water management status is determined from the observation image data, and the determined water management status does not correspond to the water management status indicated by the input water management information, verification will be performed to show the verification result. Notify farmers of information based on farmer information. At this time, the control unit 1a transmits verification information to the farmer terminal device 3 used by the farmer through the communication interface (communication unit 1c) based on the farmer information, and sends the verification information via the farmer terminal device 3. Notify farmers of verification information. Thereby, the farmer can be made aware that the state and period of water management of the rice field indicated by the input water management information are inappropriate, and can be prompted to re-enter the input water management information.
  • the control unit 1a causes the acquisition unit to acquire data of a plurality of observation images observed by the observation device in a predetermined period based on the rice field information and the work information, and Identify the status and period of water management in rice fields from the data.
  • the state and period of time can be specified.
  • the state and period of water management in a paddy field can be determined without installing a detection device such as the water management device 4 or water level sensor 5 in the paddy field, which reduces the cost of installing the detection device. be able to.
  • the control unit 1a determines the period from the tillering stage to the panicle formation stage of crops planted in the rice field based on the rice field information and the work information, and performs observation during the determined period.
  • the acquisition unit acquires data of a plurality of observation images observed by the device.
  • data from multiple observation images of rice fields observed by the observation device 7 can be collected during the period from the tillering stage to the panicle formation stage, when effective water management work to reduce methane from rice fields is carried out. can be obtained.
  • the number of observation image data to be acquired can be more limited, the cost required for acquiring the data can be further reduced, and the state and period of water management in rice fields can be identified more efficiently.
  • control unit 1a causes the acquisition unit 1c to acquire data of a plurality of observation images observed by the synthetic aperture radar of the flying object or the observation device 7 mounted on the flying object, and One or more pixels indicating a rice field are extracted from each observed image, and a backscattering coefficient associated with a pixel value representing at least one of the color shading and brightness of the pixel is detected, and the detected backscattering coefficient is Identify the water management status and period of rice fields based on the scattering coefficient.
  • the state and duration of water management such as dry or intermittent irrigation can be specified.
  • the storage unit 1b stores one or more preset thresholds (first threshold ⁇ 1, second threshold ⁇ 2, third threshold Rt, fourth threshold Ru), and controls Part 1a determines whether the paddy field is in a dry state or not, or whether the paddy field is in a flooded state, based on the results of comparing the backscattering coefficient detected from data of a plurality of observation images with a threshold value. Determine at least one of the following. Thereby, the state and period of water management such as drying of rice fields or intermittent irrigation can be specified.
  • control unit 1a specifies water level change information indicating a time-series change in the actual water level of the rice field from the information indicating the actual water level of the rice field acquired by the acquisition unit 1c, and the acquisition unit 1c Detect the backscattering coefficients corresponding to the rice fields from the data of the multiple observation images acquired, and detect the correlation between the actual water level of the rice fields indicated by the water level change information and the backscattering coefficients corresponding to the rice fields, A threshold value is set based on the backscattering coefficient and the correlation corresponding to the paddy field, and is stored in the storage unit 1b. As a result, it is possible to improve the suitability of the threshold value for specifying the state and period of water management such as drying of rice fields or intermittent irrigation.
  • control unit 1a applies the threshold value stored in the storage unit 1b to determine at least one of the dry state and the flooded state of other rice fields.
  • the state and period of water management such as drying or intermittent irrigation of the paddy field can be adjusted. can be identified, and convenience can be improved.
  • the storage unit 1b stores model data for calculating methane emissions from rice fields
  • the control unit 1a stores rice field information, work information, specific water management information, and model data. Based on the data, a methane reduction amount reduced from a predetermined basic methane emission amount of the paddy field is calculated, and the methane reduction amount is stored in the storage unit 1b.
  • the reduction amount of methane from the rice fields is calculated based on the highly reliable water management status and period identified from the rice field information, work information, and observation image data of the observation device 7, and model data. This makes it possible to increase the reliability of the methane reduction amount.
  • the control unit 1a sets a calculation formula for calculating the amount of methane emissions from the rice field based on the rice field information, work information, and model data, and calculates the state and period of conventional water management for the rice field.
  • the acquisition unit 1c acquires the conventional water management information shown in FIG. Calculate the methane emissions of the rice fields, and subtract the methane emissions from the basic methane emissions of the rice fields to calculate the amount of methane reduction in the rice fields.
  • the conventional methane emissions from rice fields (basic methane emissions) and the methane emissions after efforts according to specific water management information indicating the status and period of water management implemented to reduce methane from rice fields. It is possible to calculate the amount of reduction in methane emissions after the initiative compared to conventional methane emissions.
  • the acquisition unit 1c includes a communication interface (communication unit 1c), and the control unit 1a transmits farmer information regarding a farmer corresponding to a paddy field to the agricultural management device 2 and the farmer terminal device. 3 through the communication interface 1c, and transmits report information including the amount of methane reduction in the rice fields and farmer information to the credit management device 8 through the communication interface 1c, and according to the amount of methane reduction.
  • Credit information indicating electronic credit issued from the credit management device 8 is acquired by the communication interface 1c, and the credit information is notified to the farmer based on the farmer information.
  • control unit 1a transmits credit information to the farmer terminal device 3 via the communication interface 1c based on the farmer information, and notifies the farmer of the credit information via the farmer terminal device 3.
  • the control unit 1a when the control unit 1a verifies the state and period of water management of the paddy field indicated by the input water management information as described above, the control unit 1a includes the paddy field in the report information transmitted to the credit management device 8. Include verification information in addition to methane reduction amount and farmer information.
  • specific water management information indicating the status and period of water management implemented to reduce methane emissions from rice fields and the amount of methane reduction calculated based on the specific water management information are highly valid and valid.
  • the evidence can be proved to the credit management company via the credit management device 8.
  • the information processing device 1 of the present embodiment shows work information related to agricultural work for cultivating crops in a paddy field and the water management status of the paddy field detected by the detection devices 4 and 6 (water management device 4 and monitoring device 6).
  • the acquisition unit (communication unit) 1c that acquires the detected water management information detects a water management abnormality in the rice field based on the difference between the target water management information indicating the water management status of the rice field identified from the work information and the detected water management information.
  • the system includes a control unit 1a that determines whether or not a water management abnormality has occurred, and an output unit (communication unit) 1c that outputs water management abnormality information indicating that a water management abnormality has occurred.
  • the agricultural support system 100 of this embodiment includes detection devices 4 and 6 and an information processing device 1.
  • the detected water management information includes the detection result of the water level sensor 5 that detects the water level of the rice field
  • the control unit 1a specifies the target water level of the rice field from the target water management information
  • the actual water level of the rice field is determined from the detection result of the water level sensor, and if the actual water level is higher than the target water level by a predetermined value or more, it is determined that a water management abnormality has occurred in the rice field.
  • a water management abnormality such as a flood has occurred.
  • the detected water management information includes the observation results of the observation device (earth observation satellite) 7 that observes the area where the rice fields are located, and the control unit 1a controls the detection of the rice fields from the target water management information.
  • the target water management state is specified, and from the observation results of the observation device 7 it is determined whether or not the surface of the rice field is a water surface.
  • a water management abnormality has occurred in the rice field. For example, if a farmer unintentionally causes a flood in which water accumulates in a rice field due to heavy rainfall and then the water overflows around the rice field, it can be confirmed reliably and quickly that the flood has occurred. can be detected.
  • the detected water management information includes the observation results of the observation device 7 that observes an area where at least one rice field is located, and the control unit 1a uses the acquisition unit 1c to obtain rice field information regarding the rice field.
  • the position of the rice field is determined from the rice field information
  • the target water surface area of the rice field where the surface becomes the water surface is calculated from the target water management information
  • the area of the rice field and the land around the rice field is determined from the observation results of the observation device 7. It is determined whether the surface is a water surface or not, and the actual water surface area is calculated by combining the areas of paddy fields and land whose surfaces are water surfaces.
  • the paddy field It is determined that a water management abnormality has occurred. As a result, for example, when water overflows from a paddy field into surrounding land due to heavy rainfall and a water management abnormality such as a flood occurs in that land, it is possible to reliably and quickly detect that the water management abnormality has occurred. can.
  • the control unit 1a acquires farmer information regarding the farmer corresponding to the rice field using the acquisition unit 1c, and when it is determined that a water management abnormality has occurred, the control unit 1a sends water to the farmer based on the farmer information.
  • the management abnormality information is notified by the output unit 1c.
  • the control unit 1a acquires land management information including information indicating the manager of the land around the rice field using the acquisition unit 1c, and when it is determined that a water management abnormality has occurred, the control unit 1a changes the land management information to the land management information. Based on this, the water management abnormality information is notified to the administrator by the output unit 1c.
  • the manager of the land around the rice field can reliably recognize that a water management abnormality has occurred in or around the rice field, and can appropriately deal with the water management abnormality.
  • the water management abnormality is an abnormal increase in water such as a flood, land managers etc. can inform the local people that the abnormal increase in water has occurred, so that the local people can be prevented from approaching.

Abstract

The present invention evaluates the status of reduction of methane from a paddy (H) accomplished by a farmer and improves convenience. A paddy methane reduction support device (1) comprises: a storage unit (1b) in which model data for calculating a methane emission amount from a paddy are stored; and a control unit (1a) for calculating the methane emission amount from the paddy on the basis of the model data. The control unit (1a) acquires farmer information pertaining to a farmer and work information pertaining to agricultural work for culturing a crop in a paddy (H) corresponding to the farmer information and calculates the amount of methane reduced from a predetermined basic methane emission amount for the paddy (H) on the basis of an agricultural work implementation status included in the work information.

Description

水田メタン削減支援装置、水田メタン削減支援システム、水田メタン削減支援方法、情報処理装置、農業支援システム、農業支援方法Rice field methane reduction support device, rice field methane reduction support system, rice field methane reduction support method, information processing device, agricultural support system, agricultural support method
 本発明は、水田から排出されるメタンの削減を支援する技術に関する。 The present invention relates to technology that supports the reduction of methane emitted from rice fields.
 地球温暖化の一因となっている温室効果ガスには、メタンが含まれている。メタンは、水稲などの作物を栽培する水田から排出されることが知られている。例えば非特許文献1~5に開示されているように、水田からのメタンの排出を削減するには、水田の水管理及び有機物施用などの農作業を変更することが有効であるが、それにより作物の収量が減少するなどの弊害もある。また、非特許文献2~5などには、稲作水田からのメタンの排出量を算出するモデル(DNDC-Riceモデル)と算出式などが記載されている。 Greenhouse gases that contribute to global warming include methane. Methane is known to be emitted from paddy fields where crops such as rice are grown. For example, as disclosed in Non-Patent Documents 1 to 5, in order to reduce methane emissions from rice fields, it is effective to change agricultural practices such as water management in rice fields and application of organic matter; There are also negative effects such as a decrease in yield. Additionally, Non-Patent Documents 2 to 5 describe a model (DNDC-Rice model) and calculation formulas for calculating the amount of methane emitted from rice fields.
 一方、人工衛星又は航空機などに搭載された観測装置により地上を観測したリモートセンシングデータに基づいて、地域レベルで水稲が作付けされた圃場を把握する技術が開発されている。例えば特許文献1及び非特許文献6に開示されているように、合成開口レーダを用いて圃場を含む地域を観測した場合、合成開口レーダから照射されたマイクロ波が湛水状態の圃場の水面で反射すると、後方散乱波の強度(後方散乱係数)が低くなり、マイクロ波が地表面又は生長した水稲の葉で反射すると、後方散乱波の強度が高くなる。特許文献1及び非特許文献6に開示された技術では、当該特性に着目し、演算処理装置などが、田植え期と圃場準備期と水稲成長期に合成開口レーダによりそれぞれ観測された複数の観測画像の画素値が表す後方散乱強度に基づいて、水稲圃場を特定する。 On the other hand, technology has been developed to identify fields where paddy rice has been planted at a regional level based on remote sensing data observed on the ground using observation devices mounted on artificial satellites or aircraft. For example, as disclosed in Patent Document 1 and Non-Patent Document 6, when an area including a farm field is observed using a synthetic aperture radar, the microwaves irradiated from the synthetic aperture radar reach the water surface of a flooded farm field. When microwaves are reflected, the intensity of the backscattered waves (backscattering coefficient) decreases, and when microwaves are reflected from the ground surface or the leaves of grown paddy rice, the intensity of the backscattered waves increases. In the technologies disclosed in Patent Document 1 and Non-Patent Document 6, focusing on this characteristic, a processing unit or the like uses a plurality of observation images observed by synthetic aperture radar during the rice planting period, field preparation period, and paddy rice growth period, respectively. The paddy field is identified based on the backscatter intensity represented by the pixel value of .
日本国特許公報「特許第4810604号」Japanese Patent Publication “Patent No. 4810604”
 現状、農業者が水田からのメタンの排出量を削減するため、水田で実施する農作業を変更しても、メタンの削減状況を評価する方法がないので、農業者にとって利便性が低いのが実情である。このため、水田からのメタンを削減する取り組みが、農業者によって推進され難いおそれがある。本発明はこの問題点に鑑み、農業者による水田からのメタンの削減状況を評価して、利便性を向上させることを目的とする。 Currently, even if farmers change their farming practices in rice fields in order to reduce methane emissions from rice fields, there is no way to evaluate the methane reduction status, so it is not very convenient for farmers. It is. For this reason, it may be difficult for farmers to promote efforts to reduce methane from rice fields. In view of this problem, the present invention aims to improve convenience by evaluating the reduction of methane from rice fields by farmers.
 また、例えば、メタンの排出量を削減するために行われた水田の水管理の状態と当該状態が継続した期間を、農業者の申告又は作業日誌の記録から検出する場合、当該記録の客観性と証拠性が不十分で、間違っていたり改ざんされたりするおそれがある。本発明はこの問題点に鑑み、水田のメタンの排出量を削減するための水管理の状態及び期間を客観的に検出することを目的とする。 In addition, for example, when detecting the state of water management in paddy fields carried out to reduce methane emissions and the period during which this state continued from farmers' declarations or work diary records, the objectivity of the records There is insufficient evidence and there is a risk that the information may be incorrect or falsified. In view of this problem, the present invention aims to objectively detect the state and period of water management for reducing the amount of methane discharged from rice fields.
 また、雨期に多雨により水田及び水田の周辺で洪水が発生することがある。水田の周辺で洪水が発生したときに、農業者などが水田の周辺に近づくと危険である。また、例えば水田からのメタンの排出を削減するために、中干などの水管理作業を実施したときに、排水口の閉塞などにより、水田から水が抜けない排水異常が発生した場合、当該メタンの削減効果が得られない。さらに、例えば水田の中干を終了するために、水田に対して給水作業を実施しても、給水口の閉塞又は水不足などにより、水田が湛水されない給水異常が発生した場合、水田における水稲の収量が減少してしまう。本発明はこの問題点に鑑み、水田の水管理異常が発生したことを検出することを目的とする。 In addition, flooding may occur in and around rice fields due to heavy rainfall during the rainy season. It is dangerous for farmers and others to approach rice fields when flooding occurs. For example, when water management work such as drying is carried out to reduce methane emissions from rice fields, if a drainage abnormality occurs in which water cannot drain from the rice fields due to blockages in the drains, the methane No reduction effect can be obtained. Furthermore, even if water supply work is carried out to the rice fields to complete drying of the rice fields, if a water supply abnormality occurs in which the rice fields are not flooded due to blockage of the water supply ports or water shortage, Yield will decrease. In view of this problem, the present invention aims to detect the occurrence of water management abnormality in rice fields.
 上記技術的課題を解決するための本発明の技術的手段は、以下に示す点を特徴とする。 The technical means of the present invention for solving the above technical problem is characterized by the following points.
 本発明の一態様に係る水田メタン削減支援装置は、水田のメタン排出量を算出するためのモデルデータが記憶された記憶部と、前記モデルデータに基づいて水田のメタン排出量を算出する制御部と、を備え、前記制御部は、農業者に関する農業者情報と、当該農業者情報に対応する水田で作物を栽培するための農作業に関する作業情報とを取得して、当該作業情報に含まれる前記農作業の実施状態に基づいて前記水田の所定の基本メタン排出量から削減されたメタン削減量を算出する。 A rice field methane reduction support device according to one aspect of the present invention includes a storage unit that stores model data for calculating methane emissions from rice fields, and a control unit that calculates methane emissions from rice fields based on the model data. and, the control unit acquires farmer information regarding the farmer and work information regarding agricultural work for cultivating crops in a paddy field corresponding to the farmer information, and the control unit acquires farmer information regarding the farmer and work information regarding agricultural work for cultivating crops in the paddy field corresponding to the farmer information, and A methane reduction amount is calculated from a predetermined basic methane emission amount of the rice field based on the implementation state of agricultural work.
 前記制御部は、前記作業情報に含まれ且つ前記水田の水管理状態を示す水管理情報に基づいて、前記水田の前記メタン削減量を算出してもよい。 The control unit may calculate the methane reduction amount of the rice field based on water management information included in the work information and indicating a water management state of the rice field.
 前記制御部は、前記水田の湛水、灌水、及び落水を示す前記水管理情報に基づいて、前記水田における作物栽培中の中干状態を特定し、当該中干状態に基づいて前記水田の前記メタン削減量を算出してもよい。 The control unit identifies a semi-dry state during crop cultivation in the paddy field based on the water management information indicating flooding, irrigation, and falling water in the paddy field, and determines the dry state of the paddy field based on the semi-dry state. The amount of methane reduction may also be calculated.
 前記制御部は、前記水田の前記メタン削減量を示す評価情報を、前記農業者情報に基づいて前記農業者に通知してもよい。 The control unit may notify the farmer of evaluation information indicating the amount of methane reduction in the rice field based on the farmer information.
 前記制御部は、前記水田に関する水田情報を取得して、当該水田情報と前記作業情報と前記モデルデータとに基づいて、前記水田のメタン排出量を算出する算出式を設定し、前記水田の従来の前記水管理情報に基づいて、前記水田の基本中干状態を設定し、前記算出式と前記基本中干状態とに基づいて、前記水田の前記基本メタン排出量を算出してもよい。そして、前記制御部は、前記算出式と前記基本中干状態と前記基本メタン排出量とを、前記水田情報と関連付けて前記記憶部に記憶させ、前記水田の変更された前記水管理情報に基づいて、前記水田の前記中干状態を特定し、前記水田の前記中干状態と前記算出式とに基づいて、前記水田のメタン排出量を算出し、前記水田の前記基本メタン排出量から前記メタン排出量を減算して、前記水田のメタン削減量を算出してもよい。 The control unit acquires rice field information regarding the rice field, sets a calculation formula for calculating the methane emission amount of the rice field based on the rice field information, the work information, and the model data, and The basic dry state of the rice field may be set based on the water management information, and the basic methane emission amount of the rice field may be calculated based on the calculation formula and the basic dry state. The control unit stores the calculation formula, the basic dry state, and the basic methane emission amount in the storage unit in association with the rice field information, and stores the calculation formula, the basic dry state, and the basic methane emission amount in the storage unit, based on the changed water management information of the rice field. specify the dry state of the rice field, calculate the methane emissions of the rice field based on the dry state of the rice fields and the calculation formula, and calculate the methane emissions from the basic methane emissions of the rice field. The amount of methane reduced in the rice field may be calculated by subtracting the amount of emissions.
 又は、前記制御部は、前記算出式と前記基本中干状態と前記基本メタン排出量とを、前記水田情報と関連付けて前記記憶部に記憶させ、シミュレーションで前記水田の前記基本中干状態に含まれる基本中干期間を前後に所定間隔で延長する毎に、当該延長後の中干期間と前記水田の前記算出式と前記基本中干期間と前記基本メタン排出量とに基づいて前記メタン削減量を算出して、前記水田の前記中干期間と前記メタン削減量の相関関係を導出し、当該相関関係を示す第1相関データを前記記憶部に記憶させ、前記水田の変更された前記水管理情報に基づいて、前記水田の中干期間を特定し、当該中干期間と前記第1相関データとに基づいて、前記水田のメタン削減量を算出してもよい。 Alternatively, the control unit stores the calculation formula, the basic semi-dry state, and the basic methane emission amount in the storage unit in association with the paddy field information, and includes the calculation formula, the basic semi-dry state, and the basic methane emission amount in the basic semi-dry state of the paddy field in the simulation. Each time the basic mid-dry period is extended at predetermined intervals before and after, the methane reduction amount is calculated based on the extended mid-dry period, the calculation formula for the paddy field, the basic mid-dry period, and the basic methane emissions. is calculated, a correlation between the dry period of the rice field and the methane reduction amount is derived, first correlation data indicating the correlation is stored in the storage unit, and the changed water management of the rice field is performed. Based on the information, a mid-dry period of the rice field may be specified, and a methane reduction amount of the paddy field may be calculated based on the mid-dry period and the first correlation data.
 前記制御部は、前記水田の前記水田情報及び前記作業情報のうちの少なくともいずれかの変更に伴って、前記水田の前記算出式を更新してもよい。 The control unit may update the calculation formula for the rice field in accordance with a change in at least one of the rice field information and the work information for the rice field.
 前記水田メタン削減支援装置は、外部装置と通信する通信部を備え、前記制御部は、複数の水田と複数の農業者に関する情報を格納したデータベースが構築された農業管理装置と、前記農業者が利用する農業者端末装置とのうちの少なくともいずれかから、前記農業者情報と当該農業者情報に対応する水田の前記水田情報及び前記作業情報を前記通信部により取得し、水田の前記水管理状態を検出する検出装置、前記農業管理装置、及び前記農業者端末装置のうちの少なくともいずれかから、前記農業者情報に対応する水田の前記水管理情報を前記通信部により取得してもよい。 The rice field methane reduction support device includes a communication unit that communicates with an external device, and the control unit includes an agricultural management device in which a database storing information regarding a plurality of rice fields and a plurality of farmers is constructed, and a communication unit that communicates with an external device. The communication unit acquires the farmer information and the paddy field information and work information of the paddy field corresponding to the farmer information from at least one of the farmer terminal devices to be used, and determines the water management state of the paddy field. The communication unit may acquire the water management information of the paddy field corresponding to the farmer information from at least one of the detection device that detects the water, the agricultural management device, and the farmer terminal device.
 前記検出装置は、水田の水位を検出する水位センサの検出結果から、前記水田における作物栽培中の前記水管理状態を検出し、前記制御部は、前記検出装置により検出された前記水田の前記水管理状態を示す前記水管理情報を周期的に又は所定のタイミングで取得して、当該取得した複数の前記水管理情報に基づいて、前記水田の前記中干状態を特定してもよい。 The detection device detects the water management state during crop cultivation in the paddy field from the detection result of a water level sensor that detects the water level in the paddy field, and the control unit detects the water management state in the paddy field detected by the detection device. The water management information indicating the management state may be acquired periodically or at a predetermined timing, and the dry state of the rice field may be specified based on the plurality of acquired water management information.
 前記検出装置は、飛翔体又は飛行体に搭載された観測装置による水田の観測結果から、前記水田における作物栽培中の前記水管理状態を検出し、前記制御部は、前記検出装置により検出された前記水田の前記水管理状態を示す前記水管理情報を周期的に又は所定のタイミングで取得して、当該取得した複数の前記水管理情報に基づいて、前記水田の前記中干状態を特定してもよい。また、前記観測装置は合成開口レーダを有していてもよい。 The detection device detects the water management state during crop cultivation in the paddy field from the observation results of the paddy field by a flying object or an observation device mounted on the flying object, and the control unit detects the water management state during crop cultivation in the paddy field. The water management information indicating the water management state of the rice field is acquired periodically or at a predetermined timing, and the dry state of the rice field is identified based on the plurality of acquired water management information. Good too. Furthermore, the observation device may include a synthetic aperture radar.
 前記制御部は、シミュレーションで前記水田の前記基本中干状態に含まれる基本中干期間を前後に所定間隔で延長する毎に、当該延長後の中干期間と前記水田の前記算出式と前記基本中干期間と前記基本メタン排出量とに基づいて前記メタン削減量を算出して、前記水田の前記中干期間と前記メタン削減量の相関関係を導出し、当該相関関係を示す第1相関データを前記記憶部に記憶させ、前記第1相関データに基づいて、前記メタン削減量が所定値以上になる前記水田の推奨中干期間を判断し、前記推奨中干期間を含む作業提案情報を、前記農業者情報に基づいて前記農業者に通知してもよい。 Each time the basic drying period included in the basic drying state of the paddy field is extended at predetermined intervals before and after in the simulation, the control unit calculates the calculation formula and the basic drying period of the paddy field after the extension. calculating the methane reduction amount based on the mid-dry period and the basic methane emission amount, deriving a correlation between the mid-dry period of the rice field and the methane reduction amount, and first correlation data showing the correlation; is stored in the storage unit, and based on the first correlation data, determines a recommended mid-drought period for the rice field during which the methane reduction amount is equal to or greater than a predetermined value, and provides work proposal information including the recommended mid-dry period, The farmer may be notified based on the farmer information.
 前記制御部は、前記水田の前記基本中干期間と前記水田情報と前記作業情報とに基づいて、前記水田の前記作物の基本収量を推定し、シミュレーションで前記水田の前記基本中干期間を前後に所定間隔で延長する毎に、当該延長後の中干期間と前記水田の前記水田情報と前記作業情報とに基づいて、前記水田の前記作物の収量を推定し、当該収量と前記基本収量とに基づいて前記作物の減収量を算出して、前記水田の前記中干期間と前記作物の減収量の相関関係を導出し、当該相関関係を示す第2相関データを前記記憶部に記憶させ、前記第1相関データと前記第2相関データとに基づいて、前記メタン削減量が第1所定値以上で且つ前記作物の減収量が第2所定値以下になる前記水田の前記推奨中干期間を判断してもよい。 The control unit estimates the basic yield of the crop in the paddy field based on the basic mid-dry period of the paddy field, the rice field information, and the work information, and calculates the basic mid-dry period of the paddy field before and after the basic mid-dry period in the simulation. Each time the period is extended at a predetermined interval, the yield of the crop in the paddy field is estimated based on the mid-dry period after the extension, the paddy field information and the work information of the paddy field, and the yield and the basic yield are calculated. Calculating the yield loss of the crop based on, deriving a correlation between the mid-dry period of the paddy field and the yield loss of the crop, and storing second correlation data indicating the correlation in the storage unit; Based on the first correlation data and the second correlation data, determine the recommended mid-drought period for the paddy field during which the methane reduction amount is at least a first predetermined value and the yield loss of the crops is at most a second predetermined value. You can judge.
 前記制御部は、前記水田の前記メタン削減量と前記水田に対応する前記農業者情報とを含む報告情報を、前記通信部によりクレジット管理装置に送信し、前記メタン削減量に応じて前記クレジット管理装置から発行された電子的なクレジットを示すクレジット情報を前記通信部により取得し、前記クレジット情報を前記農業者情報に基づいて前記農業者に通知してもよい。 The control unit transmits report information including the methane reduction amount of the rice field and the farmer information corresponding to the rice field to the credit management device through the communication unit, and controls the credit management according to the methane reduction amount. Credit information indicating electronic credit issued from the device may be acquired by the communication unit, and the credit information may be notified to the farmer based on the farmer information.
 前記制御部は、複数の前記水田のメタン削減量を合算して、当該合算したメタン削減量を示す報告情報を、前記通信部によりクレジット管理装置に送信し、前記合算したメタン削減量に応じて前記クレジット管理装置から発行されたクレジットを示すクレジット情報を前記通信部により取得し、前記クレジット情報で示される前記クレジットを複数の前記水田のメタンの削減量に応じて分配し、分配した前記クレジットを示すクレジット情報を前記農業者情報に基づいて、複数の前記水田にそれぞれ対応する前記農業者に通知してもよい。 The control unit adds up the methane reduction amounts of the plurality of rice fields, transmits report information indicating the combined methane reduction amount to the credit management device through the communication unit, and transmits report information indicating the combined methane reduction amount to the credit management device according to the combined methane reduction amount. The communication unit acquires credit information indicating credits issued from the credit management device, distributes the credits indicated by the credit information according to the amount of methane reduction in the plurality of rice fields, and distributes the distributed credits. The credit information shown may be notified to the farmers corresponding to each of the plurality of rice fields based on the farmer information.
 前記制御部は、前記水田に関する水田情報、前記水田における従来の前記作業情報、前記水田からのメタンを削減するために変更された前記農作業を示す対象の前記作業情報、前記モデルデータに基づいて設定した前記水田の前記メタン排出量を算出する算出式、及び当該算出式に含まれる変数のうちの少なくともいずれかを、前記報告情報に含めて前記通信部により前記クレジット管理装置に送信してもよい。 The control unit sets the settings based on the rice field information regarding the rice field, the conventional work information in the rice field, the target work information indicating the agricultural work changed to reduce methane from the rice field, and the model data. The reporting information may include at least one of a calculation formula for calculating the methane emission amount of the rice field and a variable included in the calculation formula, and may be transmitted to the credit management device by the communication unit. .
 前記制御部は、前記水田のメタン削減量に応じた前記クレジットを見積もり、当該見積もったクレジットを示す仮クレジット情報を前記報告情報に含めて前記通信部により前記クレジット管理装置に送信し、又は前記仮クレジット情報を前記農業者情報に基づいて前記農業者に通知してもよい。 The control unit estimates the credit according to the amount of methane reduction in the rice field, includes temporary credit information indicating the estimated credit in the report information, and transmits the report information to the credit management device through the communication unit, or Credit information may be notified to the farmer based on the farmer information.
 前記水田メタン削減支援装置は、情報を入出力する入出力インタフェイスを備え、前記制御部は、前記農業者が所有する前記クレジットを売却したい旨を示す売却希望情報を、前記農業者が利用する農業者端末装置から前記通信部により受信すると、当該売却希望情報で示される前記クレジットの代価を所定の取引者に支払わせる指示を示す支払指示情報を前記入出力インタフェイスにより出力し、前記取引者が前記代価を前記農業者に支払ったことを示す支払完了情報が、前記入出力インタフェイスにより入力されると、前記クレジットの所有者を前記農業者から前記取引者に変更してもよい。 The rice field methane reduction support device includes an input/output interface for inputting and outputting information, and the control unit allows the farmer to use sale wish information indicating that the farmer wants to sell the credit owned by the farmer. When received by the communication unit from the farmer terminal device, the input/output interface outputs payment instruction information indicating an instruction to make a predetermined trader pay the price of the credit indicated by the sale request information, and When payment completion information indicating that the farmer has paid the price to the farmer is input through the input/output interface, the owner of the credit may be changed from the farmer to the trader.
 前記制御部は、前記クレジットを買い取りたい旨を示す買取希望情報を、需要者が利用する需要者端末装置から前記通信部により受信すると、当該買取希望情報で示される前記クレジットの代価を前記需要者に支払わせる支払指令を、前記需要者端末装置に送信し、前記需要者が前記代価を前記取引者に支払ったことを示す支払完了情報を、前記需要者端末装置から前記通信部により受信すると、前記クレジットの所有者を前記取引者から前記需要者に変更してもよい。 When the communication unit receives purchase request information indicating that the customer wants to purchase the credit from a customer terminal device used by the customer, the control unit transfers the price of the credit indicated by the purchase request information to the customer. transmitting a payment instruction to the customer terminal device to cause the customer to pay the price, and receiving payment completion information from the customer terminal device by the communication unit indicating that the customer has paid the price to the transaction person; The owner of the credit may be changed from the transaction person to the consumer.
 本発明の一態様に係る水田メタン削減支援システムは、前記水田メタン削減支援装置と、複数の水田と複数の農業者に関する情報を格納したデータベースが構築された農業管理装置と、を含み、前記水田メタン削減支援装置の前記制御部は、前記農業管理装置と前記農業者が利用する農業者端末装置のうちの少なくともいずれかから、前記農業者に関する農業者情報と、当該農業者情報に対応する水田で作物を栽培するための農作業に関する作業情報とを取得して、当該作業情報に含まれる前記農作業の実施状態に基づいて前記水田の所定の基本メタン排出量から削減されたメタン削減量を算出する。 A rice field methane reduction support system according to one aspect of the present invention includes the rice field methane reduction support device, and an agricultural management device in which a database storing information regarding a plurality of rice fields and a plurality of farmers is constructed, and the rice field methane reduction support system includes: The control unit of the methane reduction support device receives farmer information regarding the farmer and a paddy field corresponding to the farmer information from at least one of the agricultural management device and a farmer terminal device used by the farmer. and work information related to agricultural work for cultivating crops, and calculate the amount of methane reduction reduced from a predetermined basic methane emission amount of the rice field based on the implementation status of the agricultural work included in the work information. .
 前記水田メタン削減支援装置の前記制御部は、前記農業者情報に基づいて前記農業者端末装置に、前記水田の前記メタン削減量を示す評価情報を前記通信部により送信してもよい。前記農業者端末装置は、前記農業者情報、前記作業情報、及び前記水田に関する水田情報のうちの少なくともいずれかを入力可能に構成されてもよい。 The control unit of the rice field methane reduction support device may transmit evaluation information indicating the amount of methane reduction in the rice field to the farmer terminal device based on the farmer information using the communication unit. The farmer terminal device may be configured to be able to input at least one of the farmer information, the work information, and rice field information regarding the rice fields.
 前記水田メタン削減支援システムは、水田の水管理状態を検出する検出装置を含み、前記検出装置は、水田の水位を検出する水位センサの検出結果、又は飛翔体若しくは飛行体に搭載された観測装置による水田の観測結果に基づいて、前記水田の前記水管理状態を検出して、当該水管理状態を含む前記水管理情報を、前記農業管理装置と前記水田メタン削減支援装置のうちの少なくともいずれかに送信し、前記水田メタン削減支援装置の前記制御部は、前記農業管理装置と前記農業者端末装置のうちの少なくともいずれかから、前記農業者情報と当該農業者情報に対応する前記水田の前記水田情報及び前記作業情報とを前記通信部により取得し、前記検出装置と前記農業管理装置と前記農業者端末装置のうちの少なくともいずれかから、前記水田における作物栽培中の前記水管理情報を前記通信部により周期的に又は所定のタイミングで取得し、当該取得した複数の前記水管理情報に基づいて、前記水田の前記中干状態を特定し、当該中干状態に基づいて前記水田の前記メタン削減量を算出してもよい。 The rice field methane reduction support system includes a detection device that detects the water management state of the rice field, and the detection device detects the detection result of a water level sensor that detects the water level of the rice field, or a flying object or an observation device mounted on the aircraft. The water management state of the rice field is detected based on the observation results of the rice field, and the water management information including the water management state is transmitted to at least one of the agricultural management device and the rice field methane reduction support device. and the control unit of the rice field methane reduction support device transmits the farmer information and the information of the rice field corresponding to the farmer information from at least one of the agricultural management device and the farmer terminal device. The paddy field information and the work information are acquired by the communication unit, and the water management information during crop cultivation in the paddy field is acquired from at least one of the detection device, the agricultural management device, and the farmer terminal device. The information is acquired periodically or at a predetermined timing by the communication unit, and based on the acquired plurality of pieces of water management information, the dry state of the rice field is identified, and the methane of the rice field is determined based on the dry state. The amount of reduction may also be calculated.
 前記水田メタン削減支援装置の前記制御部は、前記水田の前記メタン削減量と前記水田に対応する前記農業者情報とを含む報告情報を、前記通信部によりクレジット管理装置に送信し、前記メタン削減量に応じて前記クレジット管理装置から発行された電子的なクレジットを示すクレジット情報を前記通信部により取得し、前記クレジット情報を前記通信部により前記農業者端末装置に送信してもよい。 The control unit of the rice field methane reduction support device transmits report information including the methane reduction amount of the rice field and the farmer information corresponding to the rice field to the credit management device through the communication unit, and The communication unit may acquire credit information indicating electronic credits issued from the credit management device according to the amount, and the communication unit may transmit the credit information to the farmer terminal device.
 本発明の一態様に係る水田メタン削減支援方法は、作物を栽培する水田からのメタンの排出量の削減を支援する水田メタン削減支援方法であって、水田のメタン排出量を算出するためのモデルデータが記憶された記憶部と、前記モデルデータに基づいて前記水田のメタン排出量を算出する制御部と、を水田メタン削減支援装置に備えるステップと、前記制御部が、農業者に関する農業者情報と、当該農業者情報に対応する水田で作物を栽培するための農作業に関する作業情報とを取得するステップと、前記制御部が、前記作業情報に含まれる前記農作業の実施状態に基づいて、前記農業者情報に対応する前記水田の所定の基本メタン排出量から削減されたメタン削減量を算出するステップと、を含む。 A rice field methane reduction support method according to one aspect of the present invention is a rice field methane reduction support method that supports the reduction of methane emissions from rice fields where crops are cultivated, and includes a model for calculating methane emissions from rice fields. a step of providing a paddy field methane reduction support device with a storage section in which data is stored, and a control section that calculates methane emissions of the rice field based on the model data; and work information regarding agricultural work for cultivating crops in the paddy field corresponding to the farmer information, and the control unit acquires work information regarding the agricultural work for cultivating crops in the rice field corresponding to the farmer information, calculating a methane reduction amount from a predetermined basic methane emission amount of the rice field corresponding to the rice field information.
 本発明の別の一態様に係る水田メタン削減支援装置は、水田に関する水田情報、前記水田で作物を栽培するための農作業に関する作業情報、及び観測装置により観測された前記水田を含む地域の観測画像のデータを取得する取得部と、前記水田情報と前記作業情報と前記観測画像のデータとに基づいて、前記作物の栽培中に前記水田から排出されるメタンを削減するための前記水田の水管理の状態と当該状態が継続した期間とを特定して、当該水管理の状態及び期間を示す特定水管理情報を生成する制御部と、前記特定水管理情報を記憶する記憶部と、を備えている。 A rice field methane reduction support device according to another aspect of the present invention includes rice field information regarding rice fields, work information regarding agricultural work for cultivating crops in the rice fields, and observation images of the area including the rice fields observed by an observation device. an acquisition unit that acquires data; and water management of the rice field to reduce methane emitted from the rice field during cultivation of the crops, based on the rice field information, the work information, and the observation image data. a control unit that identifies the state and the period during which the state continued and generates specific water management information indicating the state and period of the water management; and a storage unit that stores the specific water management information. There is.
 前記作業情報には、予め入力された前記水田の前記水管理の状態及び期間を示す入力水管理情報が含まれ、前記制御部は、前記入力水管理情報に基づいて複数の前記観測画像のデータを前記取得部により取得し、前記複数の観測画像のデータに基づいて前記入力水管理情報で示される前記水管理の状態及び期間を検証して、当該検証結果を示す検証情報を前記記憶部に記憶させ、前記入力水管理情報で示される前記水管理の状態及び期間が正当である場合に、前記入力水管理情報を前記特定水管理情報として前記記憶部に記憶させてもよい。 The work information includes input water management information indicating the state and period of the water management of the rice field that has been input in advance, and the control unit controls the data of the plurality of observation images based on the input water management information. is acquired by the acquisition unit, the state and period of the water management indicated by the input water management information are verified based on the data of the plurality of observation images, and verification information indicating the verification result is stored in the storage unit. The input water management information may be stored in the storage unit as the specific water management information if the state and period of the water management indicated by the input water management information are valid.
 前記制御部は、前記入力水管理情報で示される前記水管理の期間に前記観測装置により観測された前記観測画像のデータを取得してもよい。 The control unit may acquire data of the observation image observed by the observation device during the water management period indicated by the input water management information.
 前記制御部は、前記複数の観測画像のデータから前記水管理の状態を判断して、当該判断した前記水管理の状態と、前記入力水管理情報で示される前記水管理の状態とが対応している場合、前記入力水管理情報が正当であることを示す情報を前記検証情報に含め、且つ前記入力水管理情報を前記特定水管理情報として前記記憶部に記憶させてもよい。 The control unit determines the water management state from data of the plurality of observation images, and determines whether the determined water management state corresponds to the water management state indicated by the input water management information. If the input water management information is valid, the verification information may include information indicating that the input water management information is valid, and the input water management information may be stored in the storage unit as the specific water management information.
 前記制御部は、前記水田に対応する農業者に関する農業者情報を前記取得部により取得し、前記複数の観測画像のデータから前記水管理の状態を判断して、当該判断した前記水管理の状態と、前記入力水管理情報で示される前記水管理の状態とが対応していなかった場合、前記検証情報を前記農業者情報に基づいて前記農業者に通知してもよい。 The control unit acquires farmer information regarding a farmer corresponding to the rice field using the acquisition unit, determines the state of the water management from data of the plurality of observation images, and determines the determined state of the water management. and the state of water management indicated by the input water management information, the verification information may be notified to the farmer based on the farmer information.
 前記制御部は、前記水田情報と前記作業情報とに基づいて、所定の期間に前記観測装置により観測された複数の前記観測画像のデータを前記取得部により取得し、前記複数の観測画像のデータから前記水田の前記水管理の状態及び期間を特定してもよい。 The control unit causes the acquisition unit to acquire data of the plurality of observation images observed by the observation device in a predetermined period based on the rice field information and the work information, The state and period of the water management of the rice field may be specified from the above.
 前記制御部は、前記水田情報と前記作業情報とに基づいて、前記水田に作付けされた前記作物の分げつ期から幼穂形成期までの期間を判断し、当該判断した期間に前記観測装置により観測された複数の前記観測画像のデータを前記取得部により取得してもよい。 The control unit determines the period from the tillering stage to the panicle formation stage of the crop planted in the rice field based on the rice field information and the work information, and the controller determines the period from the tillering stage to the panicle formation stage of the crop planted in the rice field, and uses the observation device during the determined period. The acquisition unit may acquire data of the plurality of observed images.
 前記制御部は、飛翔体又は飛行体に搭載された前記観測装置が有する合成開口レーダにより観測された複数の前記観測画像のデータを前記取得部により取得し、前記複数の観測画像のそれぞれから前記水田を示す1つ以上の画素を抽出して、当該画素の画素値に対応付けられた後方散乱係数を検出し、前記検出した後方散乱係数に基づいて前記水田の前記水管理の状態及び期間を特定してもよい。 The control unit causes the acquisition unit to acquire data of the plurality of observation images observed by a synthetic aperture radar of the flying object or the observation device mounted on the flying object, and the control unit acquires data of the plurality of observation images observed by the synthetic aperture radar of the flying object or the observation device mounted on the flying object, and One or more pixels indicating a rice field are extracted, a backscatter coefficient associated with the pixel value of the pixel is detected, and the state and period of the water management of the rice field are determined based on the detected backscatter coefficient. May be specified.
 前記記憶部には、予め設定された1つ以上の閾値が記憶されており、前記制御部は、前記複数の観測画像のデータにより検出した後方散乱係数と前記閾値とを比較した結果に基づいて、前記水田が中干状態であるか否かと、前記水田が湛水状態であるか否かのうちの、少なくともいずれかを判断してもよい。また、前記制御部が、前記水田の観測画像のデータから検出した後方散乱係数と、前記水田に設置された前記水位センサから得た水位情報とに基づいて前記閾値を算出し、当該閾値を前記記憶部に記憶させてもよい。 One or more preset threshold values are stored in the storage unit, and the control unit is configured to perform a backscattering coefficient based on the result of comparing the backscattering coefficient detected from the data of the plurality of observed images with the threshold value. , it may be determined at least one of whether the rice field is in a dry state or not, and whether or not the rice field is in a flooded state. Further, the control unit calculates the threshold based on a backscattering coefficient detected from data of an observed image of the rice field and water level information obtained from the water level sensor installed in the rice field, and It may be stored in the storage unit.
 前記制御部は、前記取得部により取得した前記水田の実際の水位を示す情報から、前記水田の実際の水位の時系列変化を示す水位変化情報を特定し、前記取得部により取得した複数の前記観測画像のデータから前記水田に対応する後方散乱係数をそれぞれ検出し、前記水位変化情報で示される前記水田の実際の水位と、前記水田に対応する後方散乱係数との相関関係を検出し、前記水田に対応する後方散乱係数と前記相関関係とから前記閾値を設定して前記記憶部に記憶させてもよい。また、前記制御部は、前記記憶部に記憶された前記閾値を、他の水田の中干状態及び湛水状態の少なくともいずれかを判断するために適用してもよい。 The control unit specifies water level change information indicating a time-series change in the actual water level of the rice field from the information indicating the actual water level of the rice field acquired by the acquisition unit, and Detecting backscattering coefficients corresponding to the rice fields from observation image data, detecting a correlation between the actual water level of the rice fields indicated by the water level change information and the backscattering coefficients corresponding to the rice fields, The threshold value may be set based on the backscattering coefficient corresponding to the paddy field and the correlation and stored in the storage unit. Further, the control unit may apply the threshold value stored in the storage unit to determine at least one of a dry state and a flooded state of another rice field.
 前記記憶部には、前記水田からのメタン排出量を算出するためのモデルデータが記憶されており、前記制御部は、前記水田情報、前記作業情報、前記特定水管理情報、及び前記モデルデータに基づいて、前記水田の所定の基本メタン排出量から削減されたメタン削減量を算出して、当該メタン削減量を前記記憶部に記憶させてもよい。 The storage unit stores model data for calculating methane emissions from the rice fields, and the control unit stores the rice field information, the work information, the specific water management information, and the model data. Based on this, a methane reduction amount reduced from a predetermined basic methane emission amount of the rice field may be calculated, and the methane reduction amount may be stored in the storage unit.
 前記制御部は、前記水田情報と前記作業情報と前記モデルデータとに基づいて、前記水田のメタン排出量を算出する算出式を設定し、前記水田の従来の前記水管理の状態及び期間を示す従来水管理情報を前記取得部により取得し、前記従来水管理情報と前記算出式とに基づいて、前記水田の前記基本メタン排出量を算出し、前記水田の前記特定水管理情報と前記算出式とに基づいて、前記水田のメタン排出量を算出し、前記水田の前記基本メタン排出量から前記メタン排出量を減算して、前記水田のメタン削減量を算出してもよい。 The control unit sets a calculation formula for calculating methane emissions of the rice field based on the rice field information, the work information, and the model data, and indicates the state and period of the conventional water management of the rice field. Conventional water management information is acquired by the acquisition unit, the basic methane emission amount of the rice field is calculated based on the conventional water management information and the calculation formula, and the specific water management information of the rice field and the calculation formula are calculated. The methane emission amount of the rice field may be calculated based on the above, and the methane emission amount may be subtracted from the basic methane emission amount of the rice field to calculate the methane reduction amount of the rice field.
 前記取得部は、通信インタフェイスから構成され、前記制御部は、前記水田に対応する農業者に関する農業者情報を前記通信インタフェイスにより取得し、前記水田の前記メタン削減量と前記農業者情報とを含む報告情報を前記通信インタフェイスによりクレジット管理装置に送信し、前記メタン削減量に応じて前記クレジット管理装置から発行された電子的なクレジットを示すクレジット情報を前記通信インタフェイスにより取得し、前記農業者情報に基づいて前記クレジット情報を前記農業者に通知してもよい。また、前記制御部は、前記検証情報も前記報告情報に含めて、前記取得部によりクレジット管理装置に送信してもよい。 The acquisition unit includes a communication interface, and the control unit acquires farmer information regarding the farmer corresponding to the rice field through the communication interface, and combines the methane reduction amount of the rice field and the farmer information. transmitting report information including the above to the credit management device through the communication interface, acquiring credit information indicating an electronic credit issued from the credit management device according to the methane reduction amount through the communication interface, The credit information may be notified to the farmer based on farmer information. Further, the control unit may include the verification information in the report information and transmit it to the credit management device by the acquisition unit.
 本発明の別の一態様に係る水田メタン削減支援システムは、作物を栽培する水田からのメタンの排出量の削減を支援する前記水田メタン削減支援装置と、前記水田と前記水田で行う農業に関する情報を格納したデータベースが構築された農業管理装置と、を含み、前記水田メタン削減支援装置は、前記農業管理装置及び前記水田に対応する農業者が利用する農業者端末装置のうちの少なくともいずれかから、前記水田に関する水田情報及び前記水田で前記作物を栽培するための農作業に関する作業情報を取得し、且つ地上を観測する観測装置の観測データを記憶する観測管理装置から、前記観測装置により観測された前記水田を含む地域の観測画像のデータを取得する前記取得部と、前記水田情報と前記作業情報と前記観測画像のデータとに基づいて、前記作物の栽培中に前記水田から排出されるメタンを削減するための前記水田の水管理の状態と当該状態が継続した期間とを特定して、当該水管理の状態及び期間を示す特定水管理情報を生成する前記制御部と、前記特定水管理情報を記憶する前記記憶部と、を備えている。 A rice field methane reduction support system according to another aspect of the present invention includes the rice field methane reduction support device that supports the reduction of methane emissions from rice fields in which crops are cultivated, and information regarding the rice fields and the agriculture performed in the rice fields. an agricultural management device in which a database storing the information has been constructed; , from an observation management device that acquires paddy field information regarding the paddy field and work information regarding agricultural work for cultivating the crops in the paddy field, and stores observation data of an observation device that observes the ground; the acquisition unit that acquires observation image data of an area including the rice fields; and methane emitted from the rice fields during cultivation of the crops based on the rice field information, the work information, and the observation image data. the control unit that identifies a state of water management in the paddy field for reduction and a period during which the state continues, and generates specific water management information indicating the state and period of the water management; and the specific water management information. and the storage section for storing.
 前記水田メタン削減支援システムにおいて、前記制御部は、前記作業情報に含まれる前記入力水管理情報に基づいて、複数の前記観測画像のデータを前記観測管理装置から前記取得部により取得してもよい。 In the rice field methane reduction support system, the control unit may acquire data of the plurality of observation images from the observation management device by the acquisition unit based on the input water management information included in the work information. .
 前記水田メタン削減支援システムにおいて、前記制御部は、前記水田情報と前記作業情報とに基づいて、所定の期間に前記観測装置により観測された複数の前記観測画像のデータを前記観測管理装置から前記取得部により取得してもよい。 In the rice field methane reduction support system, the control unit transmits data of the plurality of observation images observed by the observation device in a predetermined period from the observation management device based on the rice field information and the work information. It may be acquired by an acquisition unit.
 前記水田メタン削減支援システムにおいて、前記記憶部には、前記水田からのメタン排出量を算出するためのモデルデータが記憶されており、前記取得部は、通信インタフェイスから構成され、前記制御部は、前記水田情報、前記作業情報、前記特定水管理情報、及び前記モデルデータに基づいて、前記水田の所定の基本メタン排出量から削減されたメタン削減量を算出して、当該メタン削減量を前記記憶部に記憶させてもよい。 In the rice field methane reduction support system, the storage unit stores model data for calculating methane emissions from the rice fields, the acquisition unit includes a communication interface, and the control unit includes: , based on the rice field information, the work information, the specific water management information, and the model data, calculate the methane reduction amount reduced from the predetermined basic methane emission amount of the rice field, and calculate the methane reduction amount from the It may be stored in the storage unit.
 前記水田メタン削減支援システムにおいて、前記制御部は、前記農業者情報を前記農業管理装置及び前記農業者端末装置のうちの少なくともいずれかから前記通信インタフェイスにより取得し、前記水田の前記メタン削減量と前記農業者情報とを含む報告情報を、前記通信インタフェイスによりクレジット管理装置に送信し、前記メタン削減量に応じて前記クレジット管理装置から発行された電子的なクレジットを示すクレジット情報を前記通信インタフェイスにより取得し、前記農業者情報に基づいて前記クレジット情報を前記通信インタフェイスにより前記農業者端末装置に通知してもよい。また、前記制御部は、前記検証情報も前記報告情報に含めて、前記通信インタフェイスによりクレジット管理装置に送信してもよい。 In the rice field methane reduction support system, the control unit acquires the farmer information from at least one of the agricultural management device and the farmer terminal device through the communication interface, and calculates the amount of methane reduction in the rice field. and the farmer information to the credit management device through the communication interface, and credit information indicating an electronic credit issued by the credit management device according to the methane reduction amount is transmitted to the communication interface. The credit information may be acquired through an interface, and the credit information may be notified to the farmer terminal device through the communication interface based on the farmer information. Further, the control unit may include the verification information in the report information and transmit it to the credit management device via the communication interface.
 本発明の別の一態様に係る水田メタン削減支援方法は、作物を栽培する水田からのメタンの排出量の削減を支援する水田メタン削減支援方法であって、水田メタン削減支援装置に備わる制御部が、前記水田に関する水田情報、前記水田で前記作物を栽培するための農作業に関する作業情報、及び観測装置により観測された前記水田を含む地域の観測画像のデータを、水田メタン削減支援装置に備わる取得部により取得するステップと、前記制御部が、前記水田情報と前記作業情報と前記観測画像のデータとに基づいて、前記作物の栽培中に前記水田から排出されるメタンを削減するための前記水田の水管理の状態と当該状態が継続した期間とを特定するステップと、前記制御部が、特定した水管理の状態及び期間を示す特定水管理情報を生成して、当該特定水管理情報を記憶部に記憶させるステップと、を含んでいる。 A rice field methane reduction support method according to another aspect of the present invention is a rice field methane reduction support method that supports the reduction of methane emissions from rice fields in which crops are cultivated, and includes a control unit provided in a rice field methane reduction support device. The rice field methane reduction support device is equipped to acquire rice field information regarding the rice field, work information regarding agricultural work for cultivating the crop in the rice field, and observation image data of the area including the rice field observed by an observation device. and the control unit acquires information about the paddy field for reducing methane emitted from the paddy field during cultivation of the crops, based on the paddy field information, the work information, and the observation image data. a step of identifying a water management state and a period during which the state continued; and the control unit generates specific water management information indicating the identified water management state and period, and stores the specific water management information. and a step of storing the information in the section.
 本発明の一態様に係る情報処理装置は、水田で作物を栽培するための農作業に関する作業情報及び、検出装置により検出された前記水田の水管理状態を示す検出水管理情報を取得する取得部と、前記作業情報から特定した前記水田の水管理状態を示す目標水管理情報と前記検出水管理情報との差異に基づいて、前記水田で水管理異常が発生したか否かを判断する制御部と、前記水管理異常が発生したことを示す水管理異常情報を出力する出力部と、を備える。
 本発明の一態様に係る農業支援システムは、水田の水管理状態を検出する前記検出装置と、前記情報処理装置と、を含んでいる。
An information processing device according to one aspect of the present invention includes an acquisition unit that acquires work information related to agricultural work for cultivating crops in a rice field and detected water management information indicating a water management state of the rice field detected by a detection device. , a control unit that determines whether a water management abnormality has occurred in the rice field based on a difference between target water management information indicating a water management state of the rice field identified from the work information and the detected water management information; and an output unit that outputs water management abnormality information indicating that the water management abnormality has occurred.
An agricultural support system according to one aspect of the present invention includes the detection device that detects a water management state of a rice field, and the information processing device.
 前記検出水管理情報には、前記水田の水位を検出する水位センサの検出結果が含まれていて、前記制御部は、前記目標水管理情報から前記水田の目標水位を特定し、前記水位センサの検出結果から前記水田の実水位を特定し、前記実水位が前記目標水位より所定値以上高い場合に、前記水管理異常が発生したと判断してもよい。 The detected water management information includes a detection result of a water level sensor that detects the water level of the rice field, and the control unit specifies the target water level of the rice field from the target water management information and controls the water level sensor of the water level sensor. The actual water level of the rice field may be specified from the detection result, and if the actual water level is higher than the target water level by a predetermined value or more, it may be determined that the water management abnormality has occurred.
 前記検出水管理情報には、前記水田がある地域を観測する観測装置の観測結果が含まれていて、前記制御部は、前記目標水管理情報から前記水田の目標水管理状態を特定し、前記観測装置の観測結果から前記水田の表面が水面であるか否かを特定し、前記目標水管理状態が水田に水を張らない落水状態であるのに対して、前記観測装置の観測結果から前記水田の表面が水面であると特定した場合に、前記水管理異常が発生したと判断してもよい。 The detected water management information includes observation results of an observation device that observes the area where the rice field is located, and the control unit specifies the target water management state of the rice field from the target water management information, and From the observation results of the observation device, it is determined whether the surface of the rice field is a water surface or not. If it is determined that the surface of the rice field is a water surface, it may be determined that the water management abnormality has occurred.
 前記検出水管理情報には、少なくとも1つの前記水田がある地域を観測する観測装置の観測結果が含まれていて、前記制御部は、前記取得部により前記水田に関する水田情報を取得して、当該水田情報から前記水田の位置を特定し、前記目標水管理情報から表面が水面になる前記水田の目標水面面積を算出し、前記観測装置の観測結果から前記水田及び前記水田の周辺にある土地の表面が水面であるか否かを判断して、表面が水面である前記水田及び前記土地の面積を合わせた実水面面積を算出し、前記実水面面積が前記目標水面面積よりも所定値以上大きい場合に、前記水管理異常が発生したと判断してもよい。 The detected water management information includes observation results of an observation device that observes an area where at least one of the rice fields is located, and the control unit acquires rice field information regarding the rice fields by the acquisition unit, and The position of the rice field is specified from the rice field information, the target water surface area of the rice field where the surface becomes the water surface is calculated from the target water management information, and the area of the rice field and the land around the rice field is calculated from the observation results of the observation device. Determine whether the surface is a water surface, calculate an actual water surface area that is the sum of the areas of the rice field and the land whose surfaces are water surfaces, and the actual water surface area is larger than the target water surface area by a predetermined value or more. In this case, it may be determined that the water management abnormality has occurred.
 前記制御部は、前記水田に対応する農業者に関する農業者情報を前記取得部により取得し、前記水管理異常が発生したと判断すると、前記農業者情報に基づいて前記農業者に前記水管理異常情報を前記出力部により通知してもよい。又は、前記制御部は、前記水田の周辺の土地の管理者を示す情報を含む土地管理情報を前記取得部により取得し、前記水管理異常が発生したと判断すると、前記土地管理情報に基づいて前記管理者に前記水管理異常情報を前記出力部により通知してもよい。 The control unit acquires farmer information regarding the farmer corresponding to the rice field using the acquisition unit, and when it is determined that the water management abnormality has occurred, the control unit informs the farmer of the water management abnormality based on the farmer information. The information may be notified by the output unit. Alternatively, the control unit acquires land management information including information indicating a manager of land around the rice field using the acquisition unit, and when it is determined that the water management abnormality has occurred, the control unit acquires land management information including information indicating a manager of land around the rice field, and when it is determined that the water management abnormality has occurred, The water management abnormality information may be notified to the administrator by the output unit.
 本発明の一態様に係る農業支援方法は、検出装置が水田の水管理状態を検出するステップと、情報処理装置が、前記水田で作物を栽培するための農作業に関する作業情報及び、前記検出装置により検出された前記水田の水管理状態を示す検出水管理情報を取得するステップと、前記情報処理装置が、前記作業情報から特定した前記水田の水管理状態を示す目標水管理情報と前記検出水管理情報との差異に基づいて、前記水田で水管理異常が発生したか否かを判断するステップと、前記情報処理装置が、前記水管理異常が発生したことを示す水管理異常情報を出力するステップと、を備える。 An agricultural support method according to one aspect of the present invention includes a step in which a detection device detects a water management state of a paddy field, and an information processing device detects work information regarding agricultural work for cultivating crops in the paddy field, and a step of acquiring detected water management information indicating a water management state of the detected rice field; and a step of acquiring target water management information indicating a water management state of the rice field identified from the work information and the detected water management by the information processing device. a step of determining whether or not a water management abnormality has occurred in the rice field based on a difference from the information; and a step of causing the information processing device to output water management abnormality information indicating that the water management abnormality has occurred. and.
 本発明によれば、農業者による水田からのメタンの削減状況を定量的に評価して、利便性を向上させることができる。
 また、本発明によれば、水田のメタンの排出量を削減するための水管理の状態及び期間を客観的に検出することができる。
 また、本発明によれば、水田の水管理情報から洪水が発生したことを検出することができる。
According to the present invention, it is possible to quantitatively evaluate the reduction status of methane from rice fields by farmers, thereby improving convenience.
Further, according to the present invention, it is possible to objectively detect the state and period of water management for reducing the amount of methane discharged from rice fields.
Further, according to the present invention, it is possible to detect the occurrence of a flood from water management information of rice fields.
水田メタン削減支援システムの一例の構成図である。It is a block diagram of an example of a rice field methane reduction support system. 水田で水稲を栽培する場合の時期と水位の一例を示す図である。It is a diagram showing an example of the timing and water level when cultivating rice in a paddy field. 水田メタン削減支援装置の概略動作の一例を示すフローチャートである。It is a flowchart which shows an example of the outline operation of a rice field methane reduction support device. 水田メタン削減支援装置の初期設定動作の一例を示すフローチャートである。It is a flowchart which shows an example of initial setting operation of a rice field methane reduction support device. 水田メタン削減支援装置のモデル式の一例を示した図である。It is a figure showing an example of a model formula of a rice field methane reduction support device. 水田メタン削減支援装置のメタン評価動作の一例を示すフローチャートである。It is a flowchart which shows an example of methane evaluation operation of a rice field methane reduction support device. 水田の中干期間とメタン削減量の相関関係を示す第1相関データの一例を示す図である。It is a figure which shows an example of the 1st correlation data which shows the correlation between the drying period of a rice field, and the amount of methane reduction. 水田メタン削減支援装置の中干提案動作の一例を示すフローチャートである。It is a flowchart which shows an example of the drying proposal operation of the rice field methane reduction support device. 水田メタン削減支援装置の算出式更新動作の一例を示すフローチャートである。It is a flowchart which shows an example of calculation formula update operation of a rice field methane reduction support device. 水田メタン削減支援装置のクレジット化動作の一例を示すフローチャートである。It is a flowchart which shows an example of credit conversion operation of a rice field methane reduction support device. 水田メタン削減支援装置のクレジット化動作の他例を示すフローチャートである。It is a flowchart which shows another example of the credit conversion operation of the rice field methane reduction support device. 水田メタン削減支援装置のクレジット買取動作の一例を示すフローチャートである。It is a flowchart which shows an example of credit purchase operation of a rice field methane reduction support device. 水田メタン削減支援装置のクレジット取引動作の一例を示すフローチャートである。It is a flowchart which shows an example of credit transaction operation of a rice field methane reduction support device. 合成開口レーダから湛水状態の水田に照射したXバンドのマイクロ波の反射状態の一例を示す図である。FIG. 2 is a diagram showing an example of a reflection state of X-band microwaves irradiated from a synthetic aperture radar onto a flooded rice field. 合成開口レーダから落水状態の水田に照射したXバンドのマイクロ波の反射状態の一例を示す図である。FIG. 2 is a diagram showing an example of a reflection state of X-band microwaves irradiated from a synthetic aperture radar onto a paddy field in a flooded state. 複数の水田を含む地域の中干期間前のSAR画像の一例を示す図である。It is a figure showing an example of the SAR image before the mid-dry period of the area including a plurality of rice fields. 複数の水田を含む地域の中干期間中のSAR画像の一例を示す図である。It is a figure showing an example of the SAR image during the mid-dry period of the area including a plurality of rice fields. 複数の水田を含む地域の中干期間後のSAR画像の一例を示す図である。It is a figure showing an example of the SAR image after the mid-dry period of the area including a plurality of rice fields. 中干期間前と中干期間中のSAR画像における水田に対応する後方散乱係数のヒストグラムを示すグラフである。It is a graph which shows the histogram of the backscattering coefficient corresponding to the rice field in the SAR image before the mid-dry period and during the mid-dry period. 中干期間後と中干期間中のSAR画像における水田に対応する後方散乱係数のヒストグラムを示すグラフである。It is a graph which shows the histogram of the backscattering coefficient corresponding to the rice field in the SAR image after the mid-dry period and during the mid-dry period. 中干期間前後のSAR画像における水田に対応する後方散乱係数の割合の推移を示すグラフである。It is a graph showing changes in the ratio of backscattering coefficients corresponding to rice fields in SAR images before and after the mid-dry period. 水田メタン削減支援装置の水管理特定動作の一例を示すフローチャートである。It is a flowchart which shows an example of water management specific operation of a rice field methane reduction support device. 水田メタン削減支援装置の検証特定動作の一例を示すフローチャートである。It is a flowchart which shows an example of the verification specific operation of a rice field methane reduction support device. 図19Aの続きのフローチャートである。19B is a flowchart continuing from FIG. 19A. 水田メタン削減支援装置の画像特定動作の一例を示すフローチャートである。It is a flowchart which shows an example of image identification operation of a rice field methane reduction support device. 図20Aの続きのフローチャートである。20A is a flowchart continuing from FIG. 20A. 合成開口レーダから湛水状態の水田に照射したLバンドのマイクロ波の反射状態の一例を示す図である。FIG. 2 is a diagram showing an example of a reflection state of L-band microwaves irradiated from a synthetic aperture radar onto a flooded rice field. 合成開口レーダから落水状態の水田に照射したLバンドのマイクロ波の反射状態の一例を示す図である。FIG. 2 is a diagram showing an example of a reflection state of L-band microwaves irradiated from a synthetic aperture radar onto a paddy field in a flooded state. 農業支援システムの一例の構成図である。FIG. 1 is a configuration diagram of an example of an agricultural support system. 情報処理装置の水管理異常検出動作の一例を示すフローチャートである。It is a flowchart which shows an example of water management abnormality detection operation of an information processing device.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、水田メタン削減支援システム100の一例の構成図である。水田メタン削減支援システム100において、水田メタン削減支援装置1及び農業管理装置2は、例えば、管理センタに設置されたコンピュータ及びサーバなどの少なくともいずれかで構成されている。 FIG. 1 is a configuration diagram of an example of a rice field methane reduction support system 100. In the rice field methane reduction support system 100, the rice field methane reduction support device 1 and the agricultural management device 2 are configured of, for example, at least one of a computer and a server installed in a management center.
 水田メタン削減支援装置1は、水田から排出されるメタンの削減を支援する装置であって、制御部1a、記憶部1b、通信部1c、及び入出力インタフェイス1dを備えている。制御部1aはコントローラであり、CPU(又はマイクロコンピュータ)とメモリなどから構成されている。 The rice field methane reduction support device 1 is a device that supports the reduction of methane emitted from rice fields, and includes a control section 1a, a storage section 1b, a communication section 1c, and an input/output interface 1d. The control unit 1a is a controller, and is composed of a CPU (or microcomputer), memory, and the like.
 記憶部1bはストレージであり、揮発性メモリ、不揮発性メモリ、又はハードディスクなどから構成されている。記憶部1bには、制御部1aが実行するソフトウェアプログラムが記憶され、制御部1aが利用する各種の制御データが読み書き可能に記憶されている。また、記憶部1bには、水田から排出されるメタンの排出量を算出するためのモデルデータが記憶されている。制御部1aは、記憶部1bに記憶されたモデルデータに基づいて、水田のメタン排出量及びメタン削減量などを算出する。 The storage unit 1b is a storage, and is composed of a volatile memory, a nonvolatile memory, a hard disk, or the like. The storage unit 1b stores a software program executed by the control unit 1a, and stores various control data used by the control unit 1a in a readable and writable manner. Furthermore, the storage unit 1b stores model data for calculating the amount of methane emitted from the rice fields. The control unit 1a calculates the methane emission amount, methane reduction amount, etc. of the rice field based on the model data stored in the storage unit 1b.
 通信部1cは、公衆通信網とインターネットなどを介して外部装置と通信するための通信インタフェイスである。また、通信部1cは、外部装置から情報を取得する取得部である。入出力インタフェイス1dは、マウス、キーボード、又はタッチパネルなどの入力インタフェイスと、ディスプレイ、スピーカ、又はタッチパネルなどの出力インタフェイスなどから構成されている。 The communication unit 1c is a communication interface for communicating with external devices via a public communication network, the Internet, etc. Further, the communication unit 1c is an acquisition unit that acquires information from an external device. The input/output interface 1d includes an input interface such as a mouse, keyboard, or touch panel, and an output interface such as a display, speaker, or touch panel.
 農業管理装置2は、農業に関する種々の情報を管理する装置である。図1では、農業管理装置2を1台例示しているが、農業管理装置2は2台以上あってもよい。農業管理装置2にも、制御部、記憶部、通信部、及び入出力インタフェイスが備わっている(図示省略)。また、農業管理装置2には、複数の水田と、水田で作物を栽培する複数の農業者に関する各種情報を格納したデータベース2dが構築されている。詳しくは、データベース2dには、農業者に関する農業者情報、水田に関する水田情報、及び水田で作物を栽培するために実施された農作業に関する作業情報などが複数格納されている。また、農業者情報と水田情報と作業情報とは、農業者毎又は水田毎に対応付けられて、データベース2dに格納されている。 The agricultural management device 2 is a device that manages various information related to agriculture. Although one agricultural management device 2 is illustrated in FIG. 1, there may be two or more agricultural management devices 2. The agricultural management device 2 also includes a control section, a storage section, a communication section, and an input/output interface (not shown). Further, the agricultural management device 2 is constructed with a database 2d that stores various information regarding a plurality of rice fields and a plurality of farmers who cultivate crops in the rice fields. Specifically, the database 2d stores a plurality of pieces of farmer information regarding farmers, paddy field information regarding paddy fields, and work information regarding agricultural work performed to cultivate crops in paddy fields. Furthermore, the farmer information, paddy field information, and work information are stored in the database 2d in association with each farmer or each paddy field.
 農業者情報には、農業者の個人情報、農業者のアカウントなどの識別情報、農業者が利用する農業者端末装置3のIPアドレスなどの情報が含まれている。水田情報には、水田の識別情報、水田がある地域、水田の位置(緯度、経度など)、面積、輪郭形状、土壌状態、排水性、栽培されている作物、及び水田に設置されたセンサと装置などの情報が含まれている。 The farmer information includes information such as the farmer's personal information, identification information such as the farmer's account, and the IP address of the farmer terminal device 3 used by the farmer. Paddy field information includes identification information of the paddy field, area where the paddy field is located, location of the paddy field (latitude, longitude, etc.), area, contour shape, soil condition, drainage, cultivated crops, and sensors installed in the paddy field. Contains information such as equipment.
 作業情報には、水田で作物を栽培するための農作業計画、農作業の内容、及び農作業の実施状態などが含まれている。また、作業情報に含まれる農作業には、例えば、水田における湛水、灌水、及び落水といった水管理作業があり、当該水管理作業とこれの実施状態(水管理状態、例えば水田の取水口又は排出口の開閉状態と開閉日時など)とを示す水管理情報が、作業情報に含まれている。また、水田における稲わらのすき込み、稲わらの持ち出し、及び堆肥施用などの農作業の実施状態が、作業情報に含まれていてもよい。さらに、水田で農作業を行った日の気象情報と、水田における作物の生育情報が、作業情報に含まれていてもよい。水田における作物の生育情報として、例えば水稲の出穂日、分げつ期、及び幼穂形成期などが作業情報に含まれていてもよい。例えば作業情報は、水田における電子的な農業日誌であってもよい。 The work information includes a farm work plan for cultivating crops in paddy fields, the content of the farm work, and the implementation status of the farm work. In addition, the agricultural work included in the work information includes, for example, water management work such as flooding, irrigation, and falling water in rice fields, and the relevant water management work and its implementation status (water management status, such as the water intake or drainage of the rice field). The work information includes water management information indicating the opening/closing status of the exit, the opening/closing date and time, etc. Further, the work information may include the implementation status of agricultural work such as plowing in rice straw in a paddy field, taking out rice straw, and applying compost. Further, the work information may include weather information on the day of agricultural work in the rice field and information on the growth of crops in the rice field. As the growth information of crops in the paddy field, the work information may include, for example, the heading date, tillering stage, and panicle formation stage of paddy rice. For example, the work information may be an electronic agricultural diary in a rice field.
 水田メタン削減支援装置1の制御部1aは、通信部1cにより農業管理装置2と通信して、データベース2dから農業者情報と水田情報と作業情報とをそれぞれ取得(受信)する。また、制御部1aは、水田からのメタンの削減に関する情報を、通信部1cにより農業管理装置2へ送信して、データベース2dに格納させる。 The control unit 1a of the rice field methane reduction support device 1 communicates with the agricultural management device 2 through the communication unit 1c, and acquires (receives) farmer information, rice field information, and work information from the database 2d. Further, the control unit 1a transmits information regarding the reduction of methane from rice fields to the agricultural management device 2 through the communication unit 1c, and causes the information to be stored in the database 2d.
 農業者端末装置3は、農業者が利用するパーソナルコンピュータ、タブレット端末装置、又はスマートフォンなどから構成されている。図1では、農業者端末装置3を2台例示しているが、農業者端末装置3は3台以上あってもよい。農業者端末装置3にも、制御部、記憶部、通信部、及び入出力インタフェイスが備わっている(図示省略)。農業者は、農業者端末装置3に農業者情報と水田情報と作業情報などの各種情報を入力する。農業者端末装置3は、入力された農業者情報と水田情報と作業情報などを、農業管理装置2又は水田メタン削減支援装置1に送信する。 The farmer terminal device 3 is composed of a personal computer, a tablet terminal device, a smartphone, etc. used by the farmer. In FIG. 1, two farmer terminal devices 3 are illustrated, but there may be three or more farmer terminal devices 3. The farmer terminal device 3 also includes a control section, a storage section, a communication section, and an input/output interface (not shown). The farmer inputs various information such as farmer information, paddy field information, and work information into the farmer terminal device 3. The farmer terminal device 3 transmits input farmer information, rice field information, work information, etc. to the agricultural management device 2 or the rice field methane reduction support device 1.
 農業管理装置2は、農業者端末装置3から送信された農業者情報と水田情報と作業情報などを受信した場合、当該各情報をデータベース2dに格納する。水田メタン削減支援装置1(制御部1a)は、農業者端末装置3から送信された農業者情報と水田情報と作業情報などを通信部1cにより受信した場合、当該各情報を記憶部1bに記憶させる。 When the agricultural management device 2 receives farmer information, paddy field information, work information, etc. transmitted from the farmer terminal device 3, it stores each piece of information in the database 2d. When the rice field methane reduction support device 1 (control unit 1a) receives farmer information, rice field information, work information, etc. transmitted from the farmer terminal device 3 through the communication unit 1c, the rice field methane reduction support device 1 (control unit 1a) stores each information in the storage unit 1b. let
 水管理装置4は、水田の畔又は水田内に設置されている、水位センサ5は、水田内に設置されている。水管理装置4と水位センサ5とは、有線又は無線で電気的に接続されている。図1では、水管理装置4と水位センサ5とを1台ずつ例示しているが、水管理装置4と水位センサ5とは、水田毎にそれぞれ1台以上設置されている。水管理装置4にも、制御部、記憶部、及び通信部が備わっている(図示省略)。また、水管理装置4には、操作スイッチ、アクチュエータ、蓄電池、及び太陽光発電デバイスなどが備わっている。水管理装置4は、モータなどのアクチュエータにより水田の水門を開閉して、水田に対して給水又は排水する。また、水田に対する給排水を促進するポンプなどの別のアクチュエータが、水管理装置4に設けられていてもよい。この場合、ポンプなどのアクチュエータの作動状態が作業情報に含まれてもよい。 The water management device 4 is installed on the edge of or within the rice field, and the water level sensor 5 is installed within the rice field. The water management device 4 and the water level sensor 5 are electrically connected by wire or wirelessly. In FIG. 1, one water management device 4 and one water level sensor 5 are illustrated, but one or more water management devices 4 and one or more water level sensors 5 are installed in each paddy field. The water management device 4 also includes a control section, a storage section, and a communication section (not shown). Further, the water management device 4 is equipped with an operation switch, an actuator, a storage battery, a solar power generation device, and the like. The water management device 4 opens and closes the water gate of the rice field using an actuator such as a motor to supply or drain water to the rice field. Furthermore, the water management device 4 may be provided with another actuator such as a pump that facilitates water supply and drainage to the rice fields. In this case, the operating state of an actuator such as a pump may be included in the work information.
 水位センサ5は水田の水位を検出して、当該検出結果を水管理装置4に送信する。水管理装置4は、水位センサ5の検出結果に基づいて、水田における湛水、灌水、又は落水などの水管理状態を検出する。そして、水管理装置4は、水位センサ5の検出結果及び水田の水管理状態に応じて、アクチュエータの作動を制御し、水田に対して給水又は排水して、水田の湛水、間断灌漑、及び落水を行う。 The water level sensor 5 detects the water level in the rice field and transmits the detection result to the water management device 4. The water management device 4 detects a water management state such as flooding, irrigation, or falling water in the rice field based on the detection result of the water level sensor 5. Then, the water management device 4 controls the operation of the actuator according to the detection result of the water level sensor 5 and the water management state of the paddy field, supplies or drains water to the paddy field, and performs flooding of the paddy field, intermittent irrigation, and Perform a falling water.
 また、水管理装置4は、水位センサ5の検出結果と水田の水管理状態とを示す水管理情報を、農業管理装置2又は水田メタン削減支援装置1に送信する。農業管理装置2は、水管理装置4から送信された水管理情報を受信した場合、当該水管理情報を対応する水田の作業情報に含めるように(関連付けて)、データベース2dに格納する。水田メタン削減支援装置1(制御部1a)は、水管理装置4から送信された水管理情報を受信した場合、当該水管理情報を記憶部1bに記憶させる。 Additionally, the water management device 4 transmits water management information indicating the detection results of the water level sensor 5 and the water management status of the rice fields to the agricultural management device 2 or the rice field methane reduction support device 1. When the agricultural management device 2 receives the water management information transmitted from the water management device 4, the agricultural management device 2 stores the water management information in the database 2d so that it is included (associated) with the work information of the corresponding rice field. When the rice field methane reduction support device 1 (control unit 1a) receives water management information transmitted from the water management device 4, it stores the water management information in the storage unit 1b.
 地球観測衛星7は飛翔体及び観測装置の一例であり、地表面を観測する。水田メタン削減支援システム100では、地球観測衛星7は、SAR(Synthetic Aperture Radar)衛星から構成され、合成開口レーダにより水田を観測する。モニタリング装置6は、地球観測衛星7の観測結果を取得する。モニタリング装置6にも、制御部、記憶部、通信部、及び入出力インタフェイスが備わっている(図示省略)。図1では、モニタリング装置6と地球観測衛星7とを1台ずつ例示しているが、モニタリング装置6と地球観測衛星7はそれぞれ2台以上あってもよい。 The earth observation satellite 7 is an example of a flying object and an observation device, and observes the earth's surface. In the rice field methane reduction support system 100, the earth observation satellite 7 is composed of a SAR (Synthetic Aperture Radar) satellite, and observes the rice fields using a synthetic aperture radar. The monitoring device 6 acquires observation results of the earth observation satellite 7. The monitoring device 6 also includes a control section, a storage section, a communication section, and an input/output interface (not shown). In FIG. 1, one monitoring device 6 and one earth observation satellite 7 are illustrated, but there may be two or more monitoring devices 6 and two or more earth observation satellites 7.
 モニタリング装置6は、地球観測衛星7の観測結果から、水田における湛水、灌水、落水などの水管理状態を検出する。具体的には、モニタリング装置6は、地球観測衛星7に搭載された合成開口レーダにより観測された水田のSAR画像(観測画像)を取得し、当該SAR画像に基づいて水田の凹凸(でこぼこ)部分を検出する。そして、モニタリング装置6は、例えば水田の表面積に対する凹凸部分の面積の割合を算出して、当該割合が所定値未満の場合に、水田の表面が水面であり、水田が湛水状態であると判断する。また、モニタリング装置6は、水田の表面積に対する凹凸部分の面積の割合が所定値以上の場合に、水田の表面が水面ではなく(水田の水位がゼロの状態)、水田が落水状態であると判断する。さらに、モニタリング装置6は、水田の表面積に対する凹凸部分の面積の割合の変化から、水田が灌水状態であると判断してもよい。 The monitoring device 6 detects water management conditions such as flooding, irrigation, and falling water in the rice fields from the observation results of the earth observation satellite 7. Specifically, the monitoring device 6 acquires a SAR image (observation image) of a rice field observed by a synthetic aperture radar mounted on an earth observation satellite 7, and detects uneven parts of the rice field based on the SAR image. Detect. Then, the monitoring device 6 calculates, for example, the ratio of the area of the uneven portion to the surface area of the paddy field, and if the ratio is less than a predetermined value, determines that the surface of the paddy field is a water surface and that the paddy field is in a flooded state. do. In addition, the monitoring device 6 determines that the surface of the paddy field is not the water surface (the water level of the paddy field is zero) and that the paddy field is in a flooded state when the ratio of the area of the uneven portion to the surface area of the paddy field is greater than or equal to a predetermined value. do. Further, the monitoring device 6 may determine that the paddy field is in an irrigated state based on a change in the ratio of the area of the uneven portion to the surface area of the paddy field.
 合成開口レーダのSAR画像による水田の湛水、灌水、落水などの水管理状態の判断は、上記に限定されず、その他の方法で判断されてもよい。また、水田メタン削減支援装置1にAI(Artificial Intelligence)を備えて、当該AIで機械学習により、合成開口レーダのSAR画像から水田の水管理状態を検出してもよい。この場合、水田の湛水、灌水、落水、中干前、中干中、及び中干後の典型的なSAR画像、又はSAR画像とそのSAR画像を取得したときに水位センサ5から得られた水位の測定値とを教師データとして与えることにより、水田の湛水、灌水、落水、中干前、中干中、及び中干後の判定をより容易に行うことができる。 Judgment of water management conditions such as flooding, irrigation, and overflow of rice fields based on SAR images of synthetic aperture radar is not limited to the above method, and may be determined using other methods. Furthermore, the rice field methane reduction support device 1 may be equipped with AI (Artificial Intelligence), and the water management state of the rice field may be detected from the SAR image of the synthetic aperture radar using machine learning using the AI. In this case, typical SAR images of paddy fields such as flooding, irrigation, falling water, before drying, during drying, and after drying, or SAR images obtained from the water level sensor 5 when the SAR images are acquired. By providing the measured value of the water level as training data, it is possible to more easily determine whether the rice field is flooded, irrigated, submerged, before drying, during drying, and after drying.
 モニタリング装置6は、水田の水管理状態を示す水管理情報を、農業管理装置2又は水田メタン削減支援装置1に送信する。農業管理装置2は、モニタリング装置6から送信された水管理情報を受信した場合、当該水管理情報を対応する水田の作業情報に含めるように(関連付けて)、データベース2dに格納する。水田メタン削減支援装置1(制御部1a)は、モニタリング装置6から送信された水管理情報を受信した場合、当該水管理情報を記憶部1bに記憶させる。 The monitoring device 6 transmits water management information indicating the water management status of the rice fields to the agricultural management device 2 or the rice field methane reduction support device 1. When the agricultural management device 2 receives the water management information transmitted from the monitoring device 6, the agricultural management device 2 stores the water management information in the database 2d so as to include (associate) the water management information with the work information of the corresponding rice field. When the rice field methane reduction support device 1 (control unit 1a) receives water management information transmitted from the monitoring device 6, it stores the water management information in the storage unit 1b.
 水田の水管理状態を検出するため、水位センサ5と水管理装置4とを含む第1検出構成と、地球観測衛星7とモニタリング装置6とを含む第2検出構成とのうち、少なくともいずれかの検出構成を、水田メタン削減支援システム100に適用すればよい。また、上記第1検出構成と第2検出構成のうちの少なくともいずれかに加えて又は代えて、農業者が農業者端末装置3により水田の水管理状態を入力してもよい。また、地球観測衛星7以外の飛翔体、又はドローン若しくはUAV(Unmanned Aerial Vehicles)などの飛行体に、合成開口レーダ、3次元レーザ測量器、或いは撮像装置などの観測装置を搭載して、水田を観測してもよい。 In order to detect the water management state of the rice fields, at least one of a first detection configuration including a water level sensor 5 and a water management device 4 and a second detection configuration including an earth observation satellite 7 and a monitoring device 6 is used. The detection configuration may be applied to the rice field methane reduction support system 100. Further, in addition to or in place of at least one of the first detection configuration and the second detection configuration, the farmer may input the water management state of the rice field using the farmer terminal device 3. In addition, observation devices such as synthetic aperture radar, three-dimensional laser surveying instruments, or imaging devices can be mounted on flying objects other than Earth Observation Satellite 7, or flying objects such as drones or UAVs (Unmanned Aerial Vehicles) to survey rice fields. May be observed.
 クレジット管理装置8は、温室効果ガスの削減量に応じた電子的なクレジットを管理する装置であり、クレジット管理業者により利用される。クレジット管理装置8にも、制御部、記憶部、通信部、及び入出力インタフェイスが備わっている(図示省略)。図1では、クレジット管理装置8を1台例示しているが、クレジット管理装置8は2台以上あってもよい。また、クレジット管理業者は、複数あってもよい。 The credit management device 8 is a device that manages electronic credits according to the amount of greenhouse gas reduction, and is used by a credit management company. The credit management device 8 also includes a control section, a storage section, a communication section, and an input/output interface (not shown). Although one credit management device 8 is illustrated in FIG. 1, there may be two or more credit management devices 8. Further, there may be a plurality of credit management companies.
 水田メタン削減支援装置1(制御部1a)は、水田のメタン削減量と当該水田に対応する農業者情報とを含む報告情報を、クレジット管理装置8に送信する。クレジット管理装置8は、水田メタン削減支援装置1から受信した報告情報に含まれる水田のメタン削減量に応じてクレジットを発行し、当該クレジットを示すクレジット情報を水田メタン削減支援装置1に送信する。水田メタン削減支援装置1(制御部1a)は、クレジット管理装置8からクレジット情報を受信すると、当該クレジット情報を対応する農業者が利用する農業者端末装置3に送信(転送)する。また、水田メタン削減支援装置1(制御部1a)は、農業者からクレジットを買い取るための処理を実行する。 The rice field methane reduction support device 1 (control unit 1a) transmits report information including the amount of methane reduction in the rice field and farmer information corresponding to the rice field to the credit management device 8. The credit management device 8 issues a credit according to the amount of methane reduction in the rice field included in the report information received from the rice field methane reduction support device 1, and transmits credit information indicating the credit to the rice field methane reduction support device 1. Upon receiving the credit information from the credit management device 8, the rice field methane reduction support device 1 (control unit 1a) transmits (transfers) the credit information to the farmer terminal device 3 used by the corresponding farmer. Furthermore, the rice field methane reduction support device 1 (control unit 1a) executes processing for purchasing credits from farmers.
 需要者端末装置9は、クレジットを売買する企業、団体、又は個人などの需要者が利用する端末装置である。需要者端末装置9にも、制御部、記憶部、通信部、及び入出力インタフェイスが備わっている(図示省略)。図1では、需要者端末装置9を1台例示しているが、需要者端末装置9は2台以上あってもよい。また、需要者は複数いてもよい。水田メタン削減支援装置1(制御部1a)は、需要者端末装置9との間で、クレジットの取引(売買)するための処理を実行する。 The consumer terminal device 9 is a terminal device used by a consumer such as a company, organization, or individual who buys and sells credits. The customer terminal device 9 also includes a control section, a storage section, a communication section, and an input/output interface (not shown). In FIG. 1, one customer terminal device 9 is illustrated, but there may be two or more customer terminal devices 9. Moreover, there may be multiple consumers. The rice field methane reduction support device 1 (control unit 1a) executes processing for trading (buying and selling) credits with the consumer terminal device 9.
 図2は、水田Hで水稲Rを栽培する場合の時期と水位WLの一例を示す図である。水田Hで作物として水稲Rを栽培する場合、代掻き期から水田Hに灌水して、田植え期と活着期には、水田Hを深水状態にする。そして、分げつ期からしばらくの間、水田Hに間断灌水をして、水田Hを浅水状態にした後、水田Hから落水させて、水田Hをしばらくの間中干し(水田の水位がゼロの状態)する。この中干期間に、ヒビが入るまで水田Hの土壌を乾かすことで、土壌に酸素が補給され、水稲Rの根が土壌に強く張る。また、気温の高い分げつ期に、水田Hの湛水状態が続くと、土壌の還元が進み、土壌中のメタン生成菌の活動が活発になり、稲わらなどの有機物を基質として、メタン(温室効果ガス)が生成される。生成されたメタンは、水稲Rの器官を通じて大気中に排出される。 FIG. 2 is a diagram showing an example of the timing and water level WL when paddy rice R is cultivated in paddy field H. When paddy rice R is cultivated as a crop in a paddy field H, the paddy field H is watered from the puddling period, and the paddy field H is brought into a deep water state during the rice planting period and the rooting period. Then, for a while after the tillering period, the paddy field H is watered intermittently to bring it into a shallow water state, and then the water is allowed to fall from the paddy field H, and the paddy field H is left to dry for a while (the water level in the paddy field is zero). state). During this mid-dry period, by drying the soil of rice field H until cracks appear, oxygen is supplied to the soil and the roots of rice field R are firmly planted in the soil. Additionally, if rice fields H remain flooded during the tillering period when temperatures are high, soil reduction will progress and the activity of methane-producing bacteria in the soil will become active, using organic matter such as rice straw as a substrate to produce methane. (greenhouse gas) is generated. The generated methane is discharged into the atmosphere through the organs of rice R.
 このような水田Hからのメタンの排出量を削減するため、例えば水田Hを間断灌漑したり中干ししたりして、酸素を土壌に取り込むことで、土壌を還元状態から酸化状態に変化させる。また、水田Hの中干期間を延長することで、水田Hからのメタンの排出量がより削減される。水田Hの中干しは、通常の慣行農法では、実施しないか、又は無駄な分げつの発生を抑制し、過繁茂を防ぎ、根の発達を促し、倒伏を防ぐ目的で実施される。また、中干しは、田面に軽く亀裂が生じる程度の落水状態とし、概ね5~7日間この状態を継続する。また、水田Hの中干期間は、7日以上延長されるのが好ましい。然るに、水稲Rの幼穂形成期の前後は、水田Hに間断灌漑(間断灌水)する。水田Hの分げつ期から幼穂形成期(より好ましくは水稲Rの出穂前)までの間に、水稲Rの幼穂形成に悪影響を与えることなく、メタンの排出量を削減するには、中干期間を後倒し(幼穂形成期側)で延長するよりも、前倒し(分げつ期側で)延長する方が有効である。 In order to reduce the amount of methane emitted from the rice fields H, for example, the rice fields H are irrigated intermittently or dried during drying to bring oxygen into the soil, thereby changing the soil from a reduced state to an oxidized state. Furthermore, by extending the drying period of the rice fields H, methane emissions from the rice fields H can be further reduced. Mid-drying of paddy H is either not carried out in normal farming methods, or is carried out for the purpose of suppressing the occurrence of wasteful tillering, preventing overgrowth, promoting root development, and preventing lodging. In addition, mid-drying leaves the rice in a state of falling water to the extent that slight cracks appear on the rice field, and this state continues for approximately 5 to 7 days. Moreover, it is preferable that the drying period of the paddy H is extended by 7 days or more. However, before and after the panicle formation stage of paddy rice R, intermittent irrigation (intermittent irrigation) is applied to paddy field H. In order to reduce methane emissions between the tillering stage of paddy field H and the panicle formation stage (more preferably before heading of rice field R) without adversely affecting the panicle formation of rice field R, it is necessary to It is more effective to extend the period earlier (toward the tillering stage) than to extend it later (toward the panicle formation stage).
 出穂期の前後は、水田Hに湛水して、水田Hを深水状態にする。その後、水稲Rの登熟期には、水田Hに間断灌水し、成熟期には、水田Hから落水して、水田の水位をゼロにして、水田の土壌を乾かす。水稲Rの収穫後に、稲わらを土壌にすき込むことでも、水田Hからのメタンの排出量が削減される。また、そのすき込み(秋すき込み)の際に、堆肥を施用することで、水田Hからのメタンの排出量が一層削減される。 Before and after the heading period, the paddy field H is flooded to bring it into a deep water state. Thereafter, during the ripening stage of rice R, the rice field H is intermittent watered, and at the ripening stage, water falls from the rice field H to bring the water level in the rice field to zero and dry the soil of the rice field. By plowing rice straw into the soil after harvesting paddy rice R, methane emissions from paddy field H can also be reduced. Furthermore, by applying compost during plowing (autumn plowing), the amount of methane emitted from the rice fields H is further reduced.
 図3は、水田メタン削減支援装置1の概略動作の一例を示すフローチャートである。各処理は、制御部1aが実行する。(後述する他のフローチャートの各処理(各ステップ)も、制御部1aが実行する。) FIG. 3 is a flowchart showing an example of a schematic operation of the rice field methane reduction support device 1. Each process is executed by the control unit 1a. (The control unit 1a also executes each process (each step) in other flowcharts to be described later.)
 水田メタン削減支援装置1の制御部1aは、まずメタンの排出量を削減する農業者と水田を登録する(図3のS1)。次に、制御部1aは、水田からのメタンの削減を評価するための設定を行う(S2)。そして、制御部1aは、農業者による水田での農作業の実施状態に基づいて、水田からのメタンの削減状況を評価する(S3)。当該評価時に、制御部1aは、水田のメタン削減量を算出する。その後、制御部1aは、水田のメタン削減量をクレジット管理装置8によりクレジット化し(S4)、当該クレジットを、農業者端末装置3を介して農業者と取引したり、需要者端末装置9を介して需要者と取引したりする(S5)。 The control unit 1a of the rice field methane reduction support device 1 first registers the farmer and rice field whose methane emissions are to be reduced (S1 in FIG. 3). Next, the control unit 1a performs settings for evaluating the reduction of methane from rice fields (S2). Then, the control unit 1a evaluates the reduction status of methane from the rice fields based on the implementation status of agricultural work in the rice fields by farmers (S3). At the time of the evaluation, the control unit 1a calculates the amount of methane reduction in the rice fields. Thereafter, the control unit 1a converts the amount of methane reduction in the rice fields into credits using the credit management device 8 (S4), and trades the credits with farmers via the farmer terminal device 3 or via the consumer terminal device 9. and transact with the consumer (S5).
 図4は、水田メタン削減支援装置1の初期設定動作(初期設定時の動作)の一例を示すフローチャートである。図4の初期設定動作は、図3の処理S1、S2の詳細を示している。例えば、農業者が農業者端末装置3により水田メタン削減支援装置1に接続して、メタンを削減する水田の識別情報などを入力する。すると、農業者端末装置3が、当該水田の識別情報と農業者の識別情報とを含む登録情報を生成して、当該登録情報を水田メタン削減支援装置1に送信する。 FIG. 4 is a flowchart showing an example of the initial setting operation (operation at the time of initial setting) of the rice field methane reduction support device 1. The initial setting operation in FIG. 4 shows details of the processes S1 and S2 in FIG. For example, a farmer connects to the rice field methane reduction support device 1 using the farmer terminal device 3 and inputs identification information of the rice field whose methane is to be reduced. Then, the farmer terminal device 3 generates registration information including the identification information of the rice field and the identification information of the farmer, and transmits the registration information to the rice field methane reduction support device 1.
 水田メタン削減支援装置1の制御部1aは、農業者端末装置3からの登録情報を通信部1cにより受信する(図4のS11)。すると、制御部1aは、当該登録情報に含まれる農業者の識別情報と水田の識別情報とに対応する農業者情報と水田情報と作業情報の送信を要求する情報要求信号を、通信部1cにより農業管理装置2に送信する(S12)。 The control unit 1a of the rice field methane reduction support device 1 receives registration information from the farmer terminal device 3 through the communication unit 1c (S11 in FIG. 4). Then, the control unit 1a causes the communication unit 1c to send an information request signal requesting transmission of farmer information, paddy field information, and work information corresponding to the farmer identification information and rice field identification information included in the registered information. The information is transmitted to the agricultural management device 2 (S12).
 農業管理装置2は、水田メタン削減支援装置1からの情報要求信号を受信して、データベース2dを検索する。要求された農業者の識別情報と水田の識別情報とに対応する農業者情報と水田情報と作業情報とがデータベース2dに格納されていれば、農業管理装置2は、当該農業者情報と水田情報と作業情報とを水田メタン削減支援装置1に送信する。水田メタン削減支援装置1の制御部1aは、農業者端末装置3からの農業者情報と水田情報と作業情報とを通信部1cにより受信(取得)すると(S13:YES)、当該農業者情報と水田情報と作業情報とを記憶部1bに記憶させる(S18)。このとき、制御部1aが取得した農業者情報と水田情報と作業情報とは対応している。 The agricultural management device 2 receives the information request signal from the rice field methane reduction support device 1 and searches the database 2d. If farmer information, rice field information, and work information corresponding to the requested farmer identification information and rice field identification information are stored in the database 2d, the agricultural management device 2 stores the farmer information and rice field information. and work information to the rice field methane reduction support device 1. When the control unit 1a of the rice field methane reduction support device 1 receives (acquires) the farmer information, rice field information, and work information from the farmer terminal device 3 through the communication unit 1c (S13: YES), the control unit 1a receives the farmer information, the rice field information, and the work information from the farmer terminal device 3 (S13: YES). The paddy field information and work information are stored in the storage unit 1b (S18). At this time, the farmer information, paddy field information, and work information acquired by the control unit 1a correspond to each other.
 一方、農業管理装置2は、水田メタン削減支援装置1から要求された農業者の識別情報と水田の識別情報とに対応する農業者情報と、過去の水田情報と、作業情報とがデータベース2dに格納されていなければ、対応する情報が無いことを水田メタン削減支援装置1に通知する。水田メタン削減支援装置1の制御部1aは、対応する情報が無いことを示す通知を通信部1cによる受信すると(S14)、農業者の識別情報に対応する農業者端末装置3に農業者情報と水田情報と作業情報とを要求する情報要求信号を通信部1cにより送信する(S15)。 On the other hand, the agricultural management device 2 stores farmer information corresponding to the farmer identification information and rice field identification information requested by the rice field methane reduction support device 1, past rice field information, and work information in a database 2d. If it is not stored, the rice field methane reduction support device 1 is notified that there is no corresponding information. When the control unit 1a of the rice field methane reduction support device 1 receives a notification from the communication unit 1c indicating that there is no corresponding information (S14), the control unit 1a sends the farmer information to the farmer terminal device 3 corresponding to the farmer's identification information. An information request signal requesting rice field information and work information is transmitted by the communication unit 1c (S15).
 農業者端末装置3は、水田メタン削減支援装置1からの情報要求信号を受信すると、農業者情報と水田情報と作業情報とを入力する画面を入出力インタフェイスのディスプレイに表示させる。即ち、農業者端末装置3は、農業者情報、作業情報、及び水田情報などを入力可能に構成されている。農業者端末装置3は、入出力インタフェイスのキーボードなどにより農業者情報と水田情報と作業情報とが入力されると、当該農業者情報と水田情報と作業情報とを水田メタン削減支援装置1に送信する。 When the farmer terminal device 3 receives the information request signal from the rice field methane reduction support device 1, it displays a screen for inputting farmer information, rice field information, and work information on the display of the input/output interface. That is, the farmer terminal device 3 is configured to be able to input farmer information, work information, rice field information, and the like. When the farmer information, paddy field information, and work information are inputted using the keyboard of the input/output interface, the farmer terminal device 3 transmits the farmer information, paddy field information, and work information to the paddy field methane reduction support device 1. Send.
 水田メタン削減支援装置1の制御部1aは、農業者端末装置3からの農業者情報と水田情報と作業情報とを通信部1cにより受信すると(S16)、当該農業者情報と水田情報と作業情報とを農業管理装置2に送信してデータベース2dに格納させる(S17)。また。制御部1aは、当該農業者情報と水田情報と作業情報とを記憶部1bに記憶させる(S18)。このとき、制御部1aが取得した農業者情報と水田情報と作業情報も対応している。 When the control unit 1a of the rice field methane reduction support device 1 receives farmer information, rice field information, and work information from the farmer terminal device 3 through the communication unit 1c (S16), the control unit 1a receives the farmer information, rice field information, and work information from the farmer terminal device 3 (S16). is transmitted to the agricultural management device 2 and stored in the database 2d (S17). Also. The control unit 1a stores the farmer information, paddy field information, and work information in the storage unit 1b (S18). At this time, the farmer information, paddy field information, and work information acquired by the control unit 1a also correspond to each other.
 次に、制御部1aは、農業管理装置2又は農業者端末装置3から受信(取得)した水田情報と作業情報、並びに記憶部1bに記憶されたモデルデータに基づいて、水田のメタン排出量を算出する算出式を設定する(S19a)。モデルデータには、例えば図5に示すような、公知のモデル式(1)、(2)と、当該モデル式(1)、(2)中の変数A、fd、fw、fo、EF、α、a、X、bを設定するためのテーブルデータ(図示省略)などが含まれている。モデル式(1)は、水田のメタン排出量Eを算出するための式である。モデル式(2)は、モデル式(1)に含まれる排出係数を算出するための式である。 Next, the control unit 1a calculates the amount of methane emissions from the rice fields based on the rice field information and work information received (acquired) from the agricultural management device 2 or the farmer terminal device 3, and the model data stored in the storage unit 1b. A calculation formula to be calculated is set (S19a). The model data includes known model equations (1) and (2) as shown in FIG. 5, and variables A, fd, fw, fo, EF, α in the model equations (1) and (2) , a, X, b, table data (not shown), etc. are included. Model formula (1) is a formula for calculating the methane emission amount E of rice fields. Model formula (2) is a formula for calculating the emission coefficient included in model formula (1).
 制御部1aは、水田の水田情報と作業情報と対応するテーブルデータとに基づいて、モデル式(1)、(2)の変数A、fd、fw、fo、α、EF、X、a、b(A;地域別水稲作付面積、fd;排水性割合、fw:水管理割合、fo:有機物割合、α:補正係数、EF:排出係数、X:地域別・施用有機物別有機物施用量、a:地域別・排水性別・水管理別傾き、b:地域別・排水性別・水管理別切片)を設定することにより、水田のメタン排出量を算出する算出式(変数確定後の式(1)、(2))を確定する。 The control unit 1a sets the variables A, fd, fw, fo, α, EF, (A: paddy rice cultivation area by region, fd: drainage ratio, fw: water management ratio, fo: organic matter ratio, α: correction factor, EF: emission factor, X: organic matter application amount by region and applied organic matter, a: By setting the slope by region, drainage gender, and water management, and b: the intercept by region, drainage gender, and water management, the formula for calculating methane emissions from rice fields (formula (1) after the variables are determined, (2)) is confirmed.
 モデル式(2)の変数fw、EF、a、bは、水田の水管理状態によって定まる値である。モデル式(1)の補正係数αは、例えば所定の機関から発行される地球温暖化係数に基づいて定められてもよい。モデル式(1)、(2)の変数fd、EFは、水田の排水性に基づいて定められるが、当該排水性は、水田の日減水深を所定の条件で測定した結果に基づいて定められてもよい。また、水田の日減水深は、作業情報に含まれていてもよい。 The variables fw, EF, a, and b in model formula (2) are values determined by the water management state of the rice field. The correction coefficient α in model formula (1) may be determined based on, for example, a global warming coefficient published by a predetermined organization. The variables fd and EF in model formulas (1) and (2) are determined based on the drainage performance of the rice field, and the drainage performance is determined based on the results of measuring the daily water depth of the rice field under predetermined conditions. You can. Further, the daily water depth of the rice field may be included in the work information.
 制御部1aは、農業管理装置2又は農業者端末装置3から受信(取得)した水田の作業情報に含まれる従来の水管理情報に基づいて、水田の基本中干状態を設定する(図4のS19b)。従来の水管理情報は、例えば水田のある地域で慣習的に行われていた水田の水管理状態を示している。制御部1aは、例えば今年度から過去数年度の水管理情報に基づいて、水田の基本中干状態を設定してもよい。基本中干状態には、中干の実施の有無と、中干期間(例えば水田の水位がゼロ又は実質的にゼロ(ある程度の誤差を含む。)である状態の継続期間)とが含まれている。制御部1aは、例えば従来の水管理情報で示された水田に対する給水日及び排水日、又は中干開始日及び中干終了日から、中干の実施の有無と中干期間とを特定してもよい。 The control unit 1a sets the basic drying state of the paddy field based on the conventional water management information included in the paddy field work information received (acquired) from the agricultural management device 2 or the farmer terminal device 3 (see FIG. 4). S19b). Conventional water management information indicates, for example, the state of rice field water management that is customary in a region where there is a rice field. The control unit 1a may set the basic semi-dry state of the rice fields, for example, based on water management information from the current fiscal year to the past several years. The basic mid-dry state includes whether or not mid-dry is implemented and the mid-dry period (for example, the duration of the state in which the water level in the rice field is zero or substantially zero (including a certain degree of error)). There is. The control unit 1a identifies whether or not mid-drying is to be implemented and the mid-drying period based on, for example, the water supply date and draining date for the rice fields, or the mid-drying start date and mid-drying end date, which are indicated in the conventional water management information. Good too.
 また、制御部1aは、基本中干状態とモデルデータに含まれる所定の傾き算出式に基づいて変数aを設定する。また、制御部1aは、基本中干状態とモデルデータに含まれる所定の切片算出式に基づいて変数bを設定する。また、制御部1aは、基本中干状態とモデルデータに含まれる所定のテーブルデータに基づいて変数fwを設定する。そして、制御部1aは、設定した変数a、b、fwをモデル式(1)、(2)に当てはめて、算出式(1)、(2)を確定し、当該確定した算出式(1)、(2)により水田の基本メタン排出量を算出する(S19c)。即ち、制御部1aは、確定した算出式(1)、(2)と基本中干状態とに基づいて、水田の基本メタン排出量を算出する。さらに、制御部1aは、確定した算出式(1)、(2)と基本中干状態と基本メタン排出量とを記憶部1bに記憶させる(S19d)。 Furthermore, the control unit 1a sets the variable a based on the basic mid-dry state and a predetermined slope calculation formula included in the model data. Further, the control unit 1a sets the variable b based on the basic mid-dry state and a predetermined intercept calculation formula included in the model data. Further, the control unit 1a sets the variable fw based on the basic mid-dry state and predetermined table data included in the model data. Then, the control unit 1a applies the set variables a, b, and fw to the model formulas (1) and (2), finalizes the calculation formulas (1) and (2), and applies the determined calculation formulas (1) to the model formulas (1) and (2). , (2) to calculate the basic methane emission amount of the rice field (S19c). That is, the control unit 1a calculates the basic methane emission amount of the rice field based on the determined calculation formulas (1) and (2) and the basic semi-dry state. Further, the control unit 1a stores the determined calculation formulas (1) and (2), the basic dry condition, and the basic methane emission amount in the storage unit 1b (S19d).
 水田のメタン排出量を算出するためのモデルデータ及び算出式は、上記に限定されず、図5の式(1)、(2)以外の式又はデータであってもよい。また、気象情報のような、水田の水田情報と作業情報以外の情報も考慮したモデルデータ及び算出式により、水田のメタン排出量を算出してもよい。さらに、AIで機械学習により、水田のメタン排出量の算出式を設定したり、水田のメタン排出量を算出したりしてもよい。 The model data and calculation formula for calculating the amount of methane emissions from rice fields are not limited to the above, and may be formulas or data other than formulas (1) and (2) in FIG. 5. Furthermore, the amount of methane emissions from the rice fields may be calculated using model data and calculation formulas that take into consideration information other than the rice field information and work information of the rice fields, such as weather information. Furthermore, a formula for calculating methane emissions from rice fields may be set or the methane emissions from rice fields may be calculated using AI and machine learning.
 図6は、水田メタン削減支援装置1のメタン評価動作(メタン評価時の動作)の一例を示すフローチャートである。図6のメタン評価動作は、水田からのメタンの削減状況を評価する動作であって、図3の処理S3の詳細を示している。例えば、農業者が水田からのメタンを削減するため、水田における水管理作業などの農作業を変更し、その後水田の作物(水稲)を収穫して、今年度の農作業を終える。そして、農業者が農業者端末装置3により水田メタン削減支援装置1に接続して、水田のメタン評価の実行を指示すると、農業者端末装置3がメタン評価指令を水田メタン削減支援装置1に送信する。 FIG. 6 is a flowchart showing an example of the methane evaluation operation (operation during methane evaluation) of the rice field methane reduction support device 1. The methane evaluation operation in FIG. 6 is an operation for evaluating the state of reduction of methane from rice fields, and shows details of the process S3 in FIG. 3. For example, in order to reduce methane from rice fields, farmers change their farming practices, such as water management in rice fields, and then harvest the crops (paddy rice) in the rice fields, completing their farming work for the current fiscal year. Then, when the farmer connects to the rice field methane reduction support device 1 using the farmer terminal device 3 and instructs the execution of methane evaluation of the rice field, the farmer terminal device 3 sends a methane evaluation command to the rice field methane reduction support device 1. do.
 水田メタン削減支援装置1の制御部1aは、農業者端末装置3からのメタン評価指令を通信部1cにより受信する(図6のS21)。すると、制御部1aは、当該メタン評価指令に含まれる農業者の識別情報と水田の識別情報とに対応する農業者情報と水田情報と作業情報を農業管理装置2又は農業者端末装置3から取得する(S22)。この情報を取得する処理S22は、図4の処理S12~S18と同様の手順で実行される。(後述する図8の処理S31と図9の処理S41の情報取得処理も同様である。) The control unit 1a of the rice field methane reduction support device 1 receives the methane evaluation command from the farmer terminal device 3 through the communication unit 1c (S21 in FIG. 6). Then, the control unit 1a acquires farmer information, paddy field information, and work information corresponding to the farmer identification information and rice field identification information included in the methane evaluation command from the agricultural management device 2 or the farmer terminal device 3. (S22). The process S22 for acquiring this information is executed in the same procedure as the processes S12 to S18 in FIG. 4. (The information acquisition process in process S31 in FIG. 8 and process S41 in FIG. 9, which will be described later, is also similar.)
 次に、制御部1aは、取得した作業情報に含まれる農作業の実施状態を読み込み、当該作業情報に含まれる水管理情報に基づいて、実施された水田の中干状態を特定する(S23)。このとき特定される中干状態には、水田における中干の実施の有無と中干期間とが含まれる。制御部1aは、例えば上記取得した作業情報に含まれる水管理情報で示された水田に対する給水日及び排水日、又は中干開始日及び中干終了日から、中干の実施の有無と中干期間とを特定してもよい。また、このとき制御部1aは、特定した中干期間の開始日と終了日のうち、少なくとも開始日が水田で栽培している水稲の出穂前であるか否を確認してもよい。そして、制御部1aは、中干期間の開始日が水稲の出穂前であれば、特定した中干期間を確定し、中干期間の開始日が水稲の出穂日又は出穂後であれば、特定した中干期間を無効にして、中干が実施されなかったと判断してもよい。水田における水稲の出穂日は、例えば農業者が水稲の出穂を目視で確認した日を農業者端末装置3に入力した後、農業者端末装置3から直接又は農業管理装置2を介して水田メタン削減支援装置1に送信される。 Next, the control unit 1a reads the implementation state of the agricultural work included in the acquired work information, and identifies the dry state of the rice field in which the agricultural work was performed based on the water management information included in the work information (S23). The mid-drying state identified at this time includes whether or not mid-drying is implemented in the rice fields and the mid-drying period. For example, the control unit 1a determines whether or not mid-drying is to be carried out and the mid-drying based on the water supply date and draining date for the paddy field, or the mid-drying start date and mid-drying end date indicated by the water management information included in the acquired work information. The period may also be specified. Further, at this time, the control unit 1a may check whether at least the start date of the specified start date and end date of the mid-dry period is before the heading of paddy rice cultivated in the paddy field. Then, the control unit 1a determines the specified mid-dry period if the start date of the mid-dry period is before the heading of paddy rice, and determines the specified mid-dry period if the start date of the mid-dry period is the heading date of paddy rice or after the heading of rice. It is also possible to invalidate the mid-season period and determine that the mid-season period was not implemented. The heading date of paddy rice in a paddy field can be determined by, for example, inputting the date on which the farmer visually confirmed the paddy rice heading into the farmer terminal device 3, and then using the farmer terminal device 3 directly or through the agricultural management device 2 to reduce rice methane. It is sent to the support device 1.
 次に、制御部1aは、水田に対応する算出式(前述の確定した式(1)、(2))を記憶部1bから読み出し、当該算出式と、読み込んだ農作業の実施状態と、特定した水田の中干状態とに基づいて、水田のメタン排出量を算出する(S24)。次に、制御部1aは、水田に対応する基本メタン排出量を記憶部1bから読み出し、当該基本メタン排出量から水田のメタン排出量を減算することにより、水田のメタン削減量を算出する(S25)。即ち、制御部1aは、水田での農作業が変更されたこと、又は特定した中干状態の基本中干状態に対する変更により削減された水田のメタン削減量を算出する。 Next, the control unit 1a reads the calculation formula (the above-described determined formulas (1) and (2)) corresponding to the rice field from the storage unit 1b, and specifies the calculation formula, the read implementation state of the agricultural work, and The amount of methane emitted from the rice field is calculated based on the dry state of the rice field (S24). Next, the control unit 1a reads the basic methane emissions corresponding to the rice fields from the storage unit 1b, and calculates the methane reduction amount of the rice fields by subtracting the methane emissions of the rice fields from the basic methane emissions (S25 ). That is, the control unit 1a calculates the amount of methane reduction in the paddy field that is reduced due to a change in agricultural work in the paddy field or a change in the specified mid-dry state to the basic mid-dry state.
 そして、制御部1aは、算出した水田のメタン削減量を含む評価情報を生成し、農業者情報に基づいて農業者端末装置3に対して、当該評価情報を通信部1cにより送信する(S26)。評価情報には、水田のメタン削減量だけでなく、特定した中干期間又は算出したメタン排出量などが含まれていてもよい。 Then, the control unit 1a generates evaluation information including the calculated amount of methane reduction in the rice fields, and transmits the evaluation information to the farmer terminal device 3 using the communication unit 1c based on the farmer information (S26). . The evaluation information may include not only the amount of methane reduction in the rice fields, but also the specified mid-dry period or the calculated amount of methane emissions.
 図6に示したメタン評価動作では、水田に対応する算出式によりメタン排出量を算出して、当該メタン排出量を基本メタン排出量から減算することにより、メタン削減量を算出する例を示した。然るに、それ以外に、例えば予め算出式に基づいて水田の中干期間とメタン削減量の相関関係を導出し、当該相関関係と特定した中干期間とに基づいて、メタン削減量を算出してもよい。 The methane evaluation operation shown in Figure 6 shows an example in which methane emissions are calculated using a calculation formula corresponding to rice fields, and the methane reduction amount is calculated by subtracting the methane emissions from the basic methane emissions. . However, in addition to that, for example, the correlation between the dry period of rice fields and the amount of methane reduction can be derived in advance based on a calculation formula, and the amount of methane reduction can be calculated based on the correlation and the specified dry period. Good too.
 具体的には、例えば制御部1aは、予め初期設定動作などにおいて、シミュレーションで水田の基本中干状態に含まれる基本中干期間を前後(前倒し又は後倒し)に所定間隔で延長する毎に、当該延長後の中干期間と水田に対応する算出式とに基づいてメタン排出量を算出する。また、制御部1aは、当該メタン排出量を前記基本メタン排出量から減算して、水田のメタン削減量を算出する。そして、制御部1aは、水田の中干期間とメタン削減量の相関関係を導出し、当該相関関係を示す第1相関データを記憶部1bに記憶させる。 Specifically, for example, the control unit 1a may extend the basic mid-drying period included in the basic mid-drying state of paddy fields at predetermined intervals forward or backward (forward or backward) in the initial setting operation or the like in advance in the simulation. Methane emissions will be calculated based on the extended mid-dry period and the calculation formula corresponding to the rice fields. Further, the control unit 1a subtracts the methane emission amount from the basic methane emission amount to calculate the methane reduction amount of the rice field. Then, the control unit 1a derives a correlation between the dry period of the rice fields and the amount of methane reduction, and causes the storage unit 1b to store first correlation data indicating the correlation.
 図7は、水田の中干期間とメタン削減量の相関関係を示す第1相関データの一例を示す図である。図7に示す第1相関データでは、水田の中干期間とメタン削減量の相関関係とをテーブル形式で示している。また、第1相関データでは、水田の基本中干期間(5日間)の場合のメタン削減量、基本中干期間を前倒しで7日間及び14日間それぞれ延長した場合のメタン削減量、基本中干期間を後倒しで7日間及び14日間それぞれ延長した場合のメタン削減量、基本中干期間を前倒し7日間及び後倒し7日間それぞれ延長した場合のメタン削減量、基本中干期間を前倒し14日間及び後倒し14日間それぞれ延長した場合のメタン削減量を示している。 FIG. 7 is a diagram showing an example of first correlation data showing the correlation between the dry period of rice fields and the amount of methane reduction. The first correlation data shown in FIG. 7 shows the correlation between the dry period of rice fields and the amount of methane reduction in a table format. In addition, the first correlation data shows the amount of methane reduction in the case of the basic drying period (5 days) of rice fields, the amount of methane reduction in the case of extending the basic drying period by 7 days and 14 days, respectively, and the basic drying period. Methane reduction amount when the basic dry period is extended by 7 days and 14 days, respectively, Methane reduction amount when the basic dry period is extended by 7 days earlier and 7 days later, Methane reduction amount when the basic dry period is extended by 7 days and 7 days later, respectively The figure shows the amount of methane reduced when the period is extended for 14 days.
 この場合、制御部1aは、メタン評価動作において、水田の中干状態を特定し、当該中干状態に含まれる中干期間と第1相関データとに基づいて、水田のメタン排出量を算出することなく、メタン削減量を算出する。具体的には、例えば、水田の中干期間を基本中干期間よりも前倒しで10日間延長した場合、制御部1aは、第1相関データの前倒し7日間の場合のメタン削減量Yaと、前倒し14日間の場合のメタン削減量Ycとに基づいて、前倒し10日間の中干期間のメタン削減量を算出する。 In this case, in the methane evaluation operation, the control unit 1a identifies the dry state of the rice field, and calculates the methane emission amount of the rice field based on the dry period included in the dry state and the first correlation data. Calculate methane reduction amount without Specifically, for example, when the mid-drying period of rice fields is extended by 10 days earlier than the basic mid-drying period, the control unit 1a calculates the methane reduction amount Ya in the case of 7 days in advance of the first correlation data and Based on the methane reduction amount Yc for 14 days, the methane reduction amount for the mid-dry period of 10 days ahead of schedule is calculated.
 水田のメタン削減量の算出方法は、上述した算出方法に限定されず、他の演算式又はデータに基づいて、水田のメタン削減量を算出してもよい。また、水田のメタン削減量(及びメタン排出量)として、水田全体のメタン削減量(及びメタン排出量)及び水田の単位面積当たりのメタン削減量(及びメタン排出量)のうちの少なくともいずれかを算出してもよい。或いは、水田のメタン削減率(%)を、メタン削減量として算出してもよい。また、気象情報のような、水田の水田情報と作業情報以外の情報も考慮したモデルデータ及び算出式により、水田のメタン削減量を算出してもよい。さらに、AIの機械学習により、水田のメタン削減量を算出してもよい。 The method for calculating the amount of methane reduction in rice fields is not limited to the calculation method described above, and the amount of methane reduction in rice fields may be calculated based on other calculation formulas or data. In addition, as the amount of methane reduction (and methane emissions) in rice fields, at least one of the amount of methane reduction (and methane emissions) in the entire rice field and the amount of methane reduction (and methane emissions) per unit area of the rice field. It may be calculated. Alternatively, the methane reduction rate (%) of the rice fields may be calculated as the methane reduction amount. Furthermore, the amount of methane reduction in the rice fields may be calculated using model data and calculation formulas that take into consideration information other than the rice field information and work information of the rice fields, such as weather information. Furthermore, the amount of methane reduction in rice fields may be calculated using AI machine learning.
 図8は、水田メタン削減支援装置1の中干提案動作の一例を示すフローチャートである。図8の中干提案動作は、水田からのメタンを有効且つ有益に削減する推奨中干期間を提案する動作である。例えば、農業者が水田の中干作業を開始する前に、水田メタン削減支援装置1の制御部1aは、水田に対応する農業者情報と水田情報と作業情報を農業管理装置2又は農業者端末装置3から取得する(図8のS31)。この情報取得の処理S31は、図4の処理S12~S18と同様の手順で実行される。 FIG. 8 is a flowchart showing an example of the drying proposal operation of the rice field methane reduction support device 1. The drying proposal operation in FIG. 8 is an operation that proposes a recommended drying period that effectively and beneficially reduces methane from rice fields. For example, before a farmer starts drying work in a rice field, the control unit 1a of the rice field methane reduction support device 1 transmits farmer information, rice field information, and work information corresponding to the rice field to the agricultural management device 2 or the farmer terminal. It is acquired from the device 3 (S31 in FIG. 8). This information acquisition process S31 is executed in the same procedure as the processes S12 to S18 in FIG. 4.
 次に、制御部1aは、前述したように、シミュレーションで水田の基本中干状態に含まれる基本中干期間を前後に所定間隔で延長する毎に、水田のメタン削減量を算出して、水田の中干期間とメタン削減量の相関関係を導出し、当該相関関係を示す第1相関データを記憶部1bに記憶させる(図8のS32)。 Next, as described above, the control unit 1a calculates the amount of methane reduction in the paddy fields each time the basic dry period included in the basic dry state of the paddy fields is extended at predetermined intervals before and after the simulation, and The correlation between the middle dry period and the amount of methane reduction is derived, and first correlation data indicating the correlation is stored in the storage unit 1b (S32 in FIG. 8).
 また、制御部1aは、シミュレーションで水田の基本中干期間を前後に所定間隔で延長する毎に、水田の作物の減収量を算出して、水田の中干期間と作物の減収量の相関関係を導出し、当該相関関係を示す第2相関データを記憶部1bに記憶させる(S33)。 In addition, the control unit 1a calculates the yield loss of crops in the paddy field each time the basic dry period of the paddy field is extended at predetermined intervals before and after the basic dry period of the paddy field, and calculates the correlation between the mid-dry period of the paddy field and the yield loss of the crops. is derived, and second correlation data indicating the correlation is stored in the storage unit 1b (S33).
 具体的には、例えば制御部1aは、水田の基本中干期間と水田情報と作業情報とに基づいて、水田の作物の基本収量を推定する。また、制御部1aは、シミュレーションで水田の基本中干期間を前後に所定間隔で延長する毎に、当該延長後の中干期間と水田の水田情報と作業情報とに基づいて、水田の作物の収量を推定する。水田の中干期間が長くなるほど、作物の収量は減少する。このため、制御部1aは、延長した中干期間毎に算出した作物の収量を基本収量から減算することにより、作物の減収量を算出して、水田の中干期間と作物の減収量の相関関係を導出し、当該相関関係を示す第2相関データを生成する。第2相関データは、テーブル形式のデータであってもよいし、或いは演算式であってもよい。 Specifically, for example, the control unit 1a estimates the basic yield of crops in the paddy field based on the basic mid-dry period of the paddy field, the paddy field information, and the work information. In addition, each time the basic mid-dry period of the paddy field is extended at predetermined intervals in the simulation, the control unit 1a controls the production of crops in the paddy field based on the extended mid-dry period, paddy field information, and work information of the paddy field. Estimate yield. The longer the dry period in rice fields, the lower the crop yield. Therefore, the control unit 1a calculates the reduced crop yield by subtracting the crop yield calculated for each extended mid-dry period from the basic yield, and correlates the mid-dry period of the paddy field with the reduced crop yield. A relationship is derived, and second correlation data indicating the correlation is generated. The second correlation data may be data in a table format or may be an arithmetic expression.
 次に、制御部1aは、第1相関データと第2相関データとに基づいて、メタン削減量が第1所定値以上で且つ作物の減収量が第2所定値以下である水田の推奨中干期間を判断する(S34)。そして、制御部1aは、判断した推奨中干期間を含む作業提案情報を、通信部1cにより水田に対応する農業者端末装置3に送信する(S35)。基本中干期間が0日であった場合、即ち従来水田で中干が実施されていなかった場合、制御部1aは、処理S35で中干の実施を勧める旨の情報を作業提案情報に含めてもよい。基本中干期間が1日以上であった場合、即ち従来水田で中干が実施されていた場合、制御部1aは、処理S35で従来からの中干期間の延長日時を作業提案情報に含めてもよい。また、制御部1aが、推奨する中干期間の開始日と終了日の少なくともいずれかを判断して、当該開始日と終了日の少なくともいずれかを作業提案情報に含めてもよい。 Next, the control unit 1a determines, based on the first correlation data and the second correlation data, recommended mid-drying for paddy fields in which the amount of methane reduction is greater than or equal to a first predetermined value and the amount of crop yield reduction is less than or equal to a second predetermined value. The period is determined (S34). Then, the control unit 1a transmits work proposal information including the determined recommended mid-drying period to the farmer terminal device 3 corresponding to the paddy field through the communication unit 1c (S35). If the basic mid-drying period is 0 days, that is, if mid-drying has not been carried out in the paddy fields in the past, the control unit 1a includes information to recommend implementation of mid-drying in the work proposal information in step S35. Good too. If the basic mid-drying period is one day or more, that is, if mid-drying has traditionally been carried out in paddy fields, the control unit 1a includes the extension date and time of the conventional mid-drying period in the work proposal information in step S35. Good too. Further, the control unit 1a may determine at least one of the start date and end date of the recommended mid-dry period, and include at least one of the start date and end date in the work proposal information.
 農業者端末装置3は、水田メタン削減支援装置1からの作業提案情報を受信して、当該作業提案情報で示される水田の推奨中干期間を、入出力インタフェイスのディスプレイなどに表示する。 The farmer terminal device 3 receives the work proposal information from the rice field methane reduction support device 1, and displays the recommended mid-drought period for the rice fields indicated by the work proposal information on the display of the input/output interface.
 他の例として、制御部1aが、第1相関データと第2相関データのうちのいずれかを導出して、当該導出した相関データと、特定した水田の中干期間とに基づいて、最適な推奨中干期間を判断してもよい。また、他の例として、水田のメタンを削減するため、制御部1aが、水田の中干の実施と中干期間の延長に加えて或いは代えて、水田の間断灌漑などの水管理作業、作物の収穫後の稲わらのすき込み又は堆肥施用などの農作業の実施を提案してもよい。また、さらに、AIで機械学習により、水田の推奨中干期間、推奨水管理作業、稲わらのすき込み、又は堆肥施用などの提案を導出してもよい。 As another example, the control unit 1a derives either the first correlation data or the second correlation data, and determines the optimal You may also determine the recommended mid-drying period. As another example, in order to reduce methane in paddy fields, the control unit 1a may perform water management operations such as intermittent irrigation of paddy fields, and perform crop maintenance in addition to or in place of drying the paddy fields and extending the drying period. It may be suggested to carry out agricultural activities such as plowing rice straw or applying compost after harvesting. Furthermore, AI and machine learning may be used to derive suggestions such as a recommended mid-drying period for rice fields, recommended water management work, plowing in rice straw, or application of compost.
 図9は、水田メタン削減支援装置1の算出式更新動作の一例を示すフローチャートである。図9の算出式更新動作は、水田のメタン排出量の算出式を更新する動作である。例えば、水田メタン削減支援装置1の管理者が入出力インタフェイス1dにより、ある水田に対応する算出式の更新指示を入力すると(図9のS41)、制御部1aは、水田に対応する水田情報と作業情報を農業管理装置2又は農業者端末装置3から取得する(S42)。そして、制御部1aは、取得した水田情報及び作業情報に含まれる情報のうち、水田のメタン排出量の算出に関係する情報に変更があった場合(S43:YES)、当該情報の変更に応じて水田のメタン排出量の算出式を更新する(S44)。 FIG. 9 is a flowchart showing an example of the calculation formula updating operation of the rice field methane reduction support device 1. The calculation formula updating operation in FIG. 9 is an operation for updating the calculation formula for the amount of methane emissions from rice fields. For example, when the administrator of the rice field methane reduction support device 1 inputs an instruction to update the calculation formula corresponding to a certain rice field through the input/output interface 1d (S41 in FIG. 9), the control unit 1a updates the rice field information corresponding to the rice field. and work information from the agricultural management device 2 or farmer terminal device 3 (S42). Then, when there is a change in the information related to the calculation of methane emissions of the rice field among the information included in the acquired rice field information and work information (S43: YES), the control unit 1a responds to the change in the information. The formula for calculating the amount of methane emissions from the rice fields is updated (S44).
 具体的には、例えば、水田情報に含まれる水田の排水性又は作業情報に含まれる施用有機物に変更があった場合、制御部1aは、当該変更に応じて、水田のメタン排出量の算出式(図5)の変数fd、fo、EF、a、bを変更することにより、算出式を更新する(S44)。 Specifically, for example, if there is a change in the drainage performance of the paddy field included in the paddy field information or the applied organic matter included in the work information, the control unit 1a changes the formula for calculating the amount of methane emissions from the paddy field in accordance with the change. The calculation formula is updated by changing the variables fd, fo, EF, a, and b in (FIG. 5) (S44).
 また、上記算出式の更新に伴って、制御部1aが、基本メタン排出量も更新してもよい。また、オペレータが水田メタン削減支援装置1の入出力インタフェイス1d(マウス、キーボードなど)を操作し、メタン測定器により測定された水田のメタンの濃度又は排出量の実測値に基づいて、記憶部1bに記憶されたモデルデータを更新してもよい。 Furthermore, in conjunction with updating the above calculation formula, the control unit 1a may also update the basic methane emission amount. In addition, the operator operates the input/output interface 1d (mouse, keyboard, etc.) of the rice field methane reduction support device 1, and the storage section The model data stored in 1b may be updated.
 図10は、水田メタン削減支援装置1のクレジット化動作の一例を示すフローチャートである。図10のクレジット化動作は、水田のメタン削減量を電子的なクレジットに変えるときの動作であり、図3の処理S4の詳細を示している。水田メタン削減支援装置1の制御部1aは、水田のメタン削減量の算出後に、水田のメタン削減量と、水田に対応する農業者情報とを含む報告情報を生成し、当該報告情報を通信部1cによりクレジット管理装置8に送信する(図10のS51)。 FIG. 10 is a flowchart showing an example of the crediting operation of the rice field methane reduction support device 1. The credit conversion operation shown in FIG. 10 is an operation when converting the amount of methane reduction in rice fields into electronic credits, and shows the details of the process S4 in FIG. 3. After calculating the methane reduction amount in the rice field, the control unit 1a of the rice field methane reduction support device 1 generates report information including the methane reduction amount in the rice field and farmer information corresponding to the rice field, and transmits the report information to the communication unit. 1c to the credit management device 8 (S51 in FIG. 10).
 このとき、制御部1aは、水田に関する水田情報、水田における従来の作業情報(例えば、過去数年度の作業情報)、水田からのメタンを削減するために変更された農作業を示す対象の作業情報(今年度の作業情報)、モデルデータに基づいて設定した水田のメタン排出量を算出するための確定した算出式(図5のモデル式(1)、(2)の各変数を確定した式)、及び当該算出式に含まれる変数のうちの少なくともいずれかを、報告情報に含めて通信部1cによりクレジット管理装置8に送信してもよい。また、制御部1aは、上記算出式に含まれる変数を報告情報に含める場合は、当該変数を確定するために用いたデータ(例えば日減水深などの測定値と、当該測定値の測定時に降雨が無かったことを示す気象情報など)も報告情報に含めてもよい。さらに、制御部1aが報告情報に含める従来作業情報及び対象の作業情報として、水田で栽培した水稲の出穂日と、水田の中干期間などの水管理情報とがあってもよい。 At this time, the control unit 1a includes paddy field information regarding the paddy fields, conventional work information in the paddy fields (for example, work information from the past several years), and target work information (for example, work information for the past several years) indicating agricultural work that has been changed to reduce methane from the paddy fields. current year's work information), a fixed calculation formula for calculating methane emissions of rice fields set based on model data (formula with fixed variables of model formulas (1) and (2) in Figure 5), and at least one of the variables included in the calculation formula may be included in the report information and transmitted to the credit management device 8 by the communication unit 1c. In addition, when including the variables included in the above calculation formula in the report information, the control unit 1a also includes the data used to determine the variables (for example, the measured values such as daily water depth, and the rainfall at the time of measuring the measured values). weather information indicating that there was no such event) may also be included in the report information. Furthermore, the conventional work information and target work information that the control unit 1a includes in the report information may include water management information such as the heading date of paddy rice grown in the paddy field and the mid-dry period of the paddy field.
 クレジット管理装置8は、水田メタン削減支援装置1から報告情報を受信すると、当該報告情報に含まれる水田のメタン削減量に応じてクレジットを発行し、当該クレジットを示すクレジット情報を水田メタン削減支援装置1に送信する。このとき、例えばクレジット管理装置8或いはクレジット管理業者において、報告情報の確認(検証)が行われることがある。そしてその際、農業者により入力(申告)された水田の水管理情報だけが報告情報に含まれている場合と、水位センサ5、水管理装置4、地球観測衛星7、及びモニタリング装置6などにより検出された客観的な水田の水管理情報(水管理状態の裏付け)が報告情報に含まれている場合とで、前記場合よりも後記場合の方がクレジットが多く発行されるなどのように、発行するクレジットの多寡に差が設けられてもよい。 When the credit management device 8 receives the report information from the rice field methane reduction support device 1, it issues a credit according to the amount of methane reduction in the rice field included in the report information, and transfers the credit information indicating the credit to the rice field methane reduction support device. Send to 1. At this time, the report information may be confirmed (verified), for example, by the credit management device 8 or the credit management company. At that time, there are cases where only the water management information of rice fields entered (declared) by the farmer is included in the report information, and cases where the report information includes only the water management information of the rice fields entered (declared) by the farmer. For example, more credits will be issued in the latter case than in the above case, depending on the case where the detected objective rice field water management information (corroboration of water management status) is included in the report information. A difference may be made in the amount of credits to be issued.
 クレジット管理装置8からのクレジット情報には、クレジットの値、識別情報(管理番号)、及びクレジットの所有者などの情報が含まれている。制御部1aは、クレジット管理装置8からクレジット情報を受信すると(S52)、当該クレジット情報で示されるクレジットの所有者である農業者を特定し、当該農業者が利用する農業者端末装置3に受信したクレジット情報を送信する(S53)。 The credit information from the credit management device 8 includes information such as the credit value, identification information (management number), and the credit owner. Upon receiving the credit information from the credit management device 8 (S52), the control unit 1a identifies the farmer who is the owner of the credit indicated by the credit information, and transmits the received information to the farmer terminal device 3 used by the farmer. The received credit information is transmitted (S53).
 図10のクレジット化動作では、水田毎にメタン削減量をクレジット化したが、これ以外に、例えば図11に示すように、複数の水田のメタン削減量を一括してクレジット化してもよい。 In the crediting operation shown in FIG. 10, the methane reduction amount is credited for each rice field, but in addition to this, the methane reduction amount of multiple rice fields may be credited all at once, as shown in FIG. 11, for example.
 図11は、水田メタン削減支援装置1のクレジット化動作の他例を示すフローチャートである。水田メタン削減支援装置1の制御部1aは、複数の水田のメタン削減量を合算して(図11のS54)、当該合算したメタン削減量を含む報告情報を生成し、当該報告情報を通信部1cによりクレジット管理装置8に送信する(S51a)。 FIG. 11 is a flowchart showing another example of the crediting operation of the rice field methane reduction support device 1. The control unit 1a of the rice field methane reduction support device 1 adds up the methane reduction amount of a plurality of rice fields (S54 in FIG. 11), generates report information including the combined methane reduction amount, and sends the report information to the communication unit. 1c to the credit management device 8 (S51a).
 そして、制御部1aは、合算したメタン削減量に応じてクレジット管理装置8から発行されたクレジットを示すクレジット情報を通信部1cにより受信(取得)すると(S52a)、当該クレジット情報で示されるクレジットを、複数の水田のメタン削減量に応じて分配する(S55)。また、制御部1aは、分配したクレジットを示すクレジット情報を新たに生成して、当該クレジット情報を通信部1cにより、複数の水田に対応する農業者の農業者端末装置3に送信する(S53a)。 Then, when the control unit 1a receives (obtains) credit information indicating credits issued from the credit management device 8 according to the total methane reduction amount through the communication unit 1c (S52a), the control unit 1a receives the credit indicated by the credit information. , and distribute it according to the amount of methane reduction in a plurality of rice fields (S55). Further, the control unit 1a newly generates credit information indicating the distributed credits, and transmits the credit information to the farmer terminal device 3 of the farmer corresponding to the plurality of rice fields through the communication unit 1c (S53a). .
 また、制御部1aは、水田のメタン削減量に応じたクレジットを、所定の計算式又は所定のテーブルデータに基づいて見積もり、当該見積もったクレジットを示す仮クレジット情報を報告情報に含めて通信部1cによりクレジット管理装置8に送信してもよい。所定の計算式又は所定のテーブルデータは、例えば記憶部1b或いは農業管理装置2(図1)のデータベース2dに予め記憶されていてもよい。所定の計算式又は所定のテーブルデータがデータベース2dに記憶されている場合、制御部1aは、通信部1cにより農業管理装置2から所定の計算式又は所定のテーブルデータを取得(受信)すればよい。 Further, the control unit 1a estimates credits corresponding to the amount of methane reduction in the rice fields based on a predetermined calculation formula or predetermined table data, and includes provisional credit information indicating the estimated credits in the report information, and the communication unit 1c It may also be transmitted to the credit management device 8 by. The predetermined calculation formula or predetermined table data may be stored in advance in the storage unit 1b or the database 2d of the agricultural management device 2 (FIG. 1), for example. When a predetermined calculation formula or predetermined table data is stored in the database 2d, the control unit 1a may acquire (receive) the predetermined calculation formula or predetermined table data from the agricultural management device 2 through the communication unit 1c. .
 また、制御部1aは、仮クレジット情報を農業者情報に基づいて農業者に通知してもよい。具体的には、制御部1aは、例えば農業者が利用する農業者端末装置3に仮クレジット情報を通信部1cにより送信する。仮クレジット情報を受信した農業者端末装置3は、当該仮クレジット情報をディスプレイなどにより出力する。これにより、農業者は、仮クレジット情報を認識可能になる。 Additionally, the control unit 1a may notify the farmer of the temporary credit information based on the farmer information. Specifically, the control unit 1a transmits temporary credit information to the farmer terminal device 3 used by the farmer, for example, through the communication unit 1c. The farmer terminal device 3 that has received the provisional credit information outputs the provisional credit information on a display or the like. This allows farmers to recognize temporary credit information.
 また、制御部1aは、報告情報に含める従来作業情報及び対象の作業情報として、水田で栽培した水稲の出穂日と、水田の中干期間などの水管理情報とに加えて又は代えて、水田における稲わらのすき込みと堆肥施用の実施日と実施状況などを示す情報があってもよい。即ち、水田の中干などの水管理作業だけでなく、稲わらのすき込みと有機性肥料施用の量又は時期の管理などのような、メタン発生量の増減に影響する他の作業を実施した場合も、当該作業の実施によるクレジットの発行量の増減に反映され、クレジットの発行対象となり得る。 The control unit 1a also includes, as the conventional work information and target work information to be included in the report information, the heading date of paddy rice grown in the paddy field and water management information such as the mid-drying period of the paddy field. There may also be information indicating the implementation date and implementation status of rice straw plowing and compost application. That is, in addition to water management operations such as drying rice fields, other operations that affect the amount of methane produced, such as controlling the amount or timing of plowing rice straw and applying organic fertilizers, were carried out. In this case, this will be reflected in the increase or decrease in the amount of credits issued due to the implementation of the work, and may be eligible for credit issuance.
 より具体的には、制御部1aなど(クレジット管理装置8でもよい。)が、水田における稲わらのすき込み及び有機性肥料施用のうちの少なくともいずれかの量又は時期に応じて、水田の中干により削減されたメタン発生量に対して与えるクレジットの発行量を増減させても良い。また、稲わらのすき込み及び有機性肥料施用のうちの少なくともいずれかの量若しくは時期が変更されることにより、灌水状態におけるメタン発生量の削減が見込まれる場合には、当該削減量が単独でクレジットの発行対象となってもよい。例えば水田において、稲わらのすき込み又は有機性肥料の施用時期が水稲の作付け直前から前年の収穫後に変更されると、灌水前に落水状態を維持して、有機物の酸化的な分解を促進し、嫌気的な分解の対象となる有機物の割合を減じることができる。 More specifically, the control unit 1a or the like (or the credit management device 8 may be used) controls the amount and timing of at least one of plowing rice straw in the paddy field and applying organic fertilizer to the paddy field. The amount of credits issued for the amount of methane generated reduced by drying may be increased or decreased. In addition, if the amount or timing of at least one of rice straw plowing and organic fertilizer application is expected to be reduced by changing the amount or timing of at least one of rice straw plowing and organic fertilizer application, the amount of reduction will be Credits may be issued. For example, in paddy fields, if the timing of plowing in rice straw or applying organic fertilizer is changed from just before paddy rice planting to after the previous year's harvest, a falling water condition is maintained before irrigation to promote oxidative decomposition of organic matter. , the proportion of organic matter subject to anaerobic decomposition can be reduced.
 図12は、水田メタン削減支援装置1のクレジット買取動作の一例を示すフローチャートである。図12のクレジット買取動作は、農業者からクレジットを買い取るときの動作であり、図3の処理S7の一例を示している。例えば、農業者が所有するクレジットを売却したい旨を示す情報を農業者端末装置3に入力すると、農業者端末装置3は、当該クレジットを売却したい旨を示す売却希望情報を生成して、当該売却希望情報を水田メタン削減支援装置1に送信する。売却希望情報には、クレジットを売却したい旨だけでなく、クレジットの値と識別番号などを示すクレジット情報も含まれている。 FIG. 12 is a flowchart showing an example of the credit purchasing operation of the rice field methane reduction support device 1. The credit purchasing operation in FIG. 12 is an operation when purchasing credits from a farmer, and shows an example of the process S7 in FIG. 3. For example, when information indicating that a farmer wants to sell the credits he/she owns is inputted into the farmer terminal device 3, the farmer terminal device 3 generates sales wish information indicating that the farmer wants to sell the credits, and sells the credits. The desired information is transmitted to the rice field methane reduction support device 1. The information on the desire to sell includes not only the fact that the user wants to sell the credit, but also credit information indicating the value of the credit, the identification number, and the like.
 水田メタン削減支援装置1の制御部1aは、農業者端末装置3からの売却希望情報を通信部1cにより受信すると(S61)、当該売却希望情報で示されるクレジットの代価を決定このとき、クレジット情報で示されるクレジットが、農業者により入力された水田の水管理情報だけに基づいて発行された場合と、水位センサ5、水管理装置4、地球観測衛星7、及びモニタリング装置6などによる客観的な水田の水管理情報に基づいて発行された場合とで、前記場合よりも後記場合の方がクレジットの対価が多くなるなどのように、対価の多寡に差が設けられてもよい。 When the control unit 1a of the rice field methane reduction support device 1 receives the sales information from the farmer terminal device 3 through the communication unit 1c (S61), the controller 1a determines the price of the credit indicated by the sales information. The credit shown in is issued based only on the water management information of rice fields entered by the farmer, and the credit is issued based on objective information such as water level sensor 5, water management device 4, earth observation satellite 7, and monitoring device 6. There may be a difference in the amount of consideration, such as when the credit is issued based on water management information of rice fields, and the amount of credit is greater in the case described below than in the above case.
 そして、制御部1aは、決定した代価を所定の取引者に支払わせる指示を示す支払指示情報を、入出力インタフェイス1dにより出力する(S62)。このとき、例えば制御部1aは、入出力インタフェイス1dに含まれるディスプレイに、支払指示情報を表示させる。又は、所定の取引者が利用する取引者端末装置(図示省略)に、支払指示情報を転送してもよい。 Then, the control unit 1a outputs payment instruction information indicating an instruction to make a predetermined trader pay the determined price through the input/output interface 1d (S62). At this time, for example, the control unit 1a displays payment instruction information on a display included in the input/output interface 1d. Alternatively, the payment instruction information may be transferred to a transactor terminal device (not shown) used by a predetermined transactor.
 その後、取引者が代価を農業者に支払ったことを示す支払完了情報が、入出力インタフェイス1d(マウス、キーボードなど)により入力されると(S63)、制御部1aは、対応するクレジットの所有者を農業者から取引者に変更して、取引者に代わってクレジットを管理する(S64)。また、制御部1aは、対応するクレジットを示すクレジット情報と、当該クレジットの所有者が農業者から取引者に変更されたことを示す情報とを含む変更報告情報を生成し、当該変更報告情報を通信部1cによりクレジット管理装置8に送信する(S65)。 Thereafter, when payment completion information indicating that the trader has paid the price to the farmer is input through the input/output interface 1d (mouse, keyboard, etc.) (S63), the control unit 1a The person is changed from the farmer to the trader and the credit is managed on behalf of the trader (S64). Further, the control unit 1a generates change report information including credit information indicating the corresponding credit and information indicating that the owner of the credit has been changed from a farmer to a trader, and transmits the change report information. The communication unit 1c transmits it to the credit management device 8 (S65).
 クレジット管理装置8は、水田メタン削減支援装置1からの変更報告情報を受信すると、当該変更報告情報で示されるクレジットの所有者の変更を受け付けて、当該クレジットの管理情報を更新する。 Upon receiving the change report information from the rice field methane reduction support device 1, the credit management device 8 accepts a change in the owner of the credit indicated by the change report information, and updates the management information of the credit.
 図13は、水田メタン削減支援装置1のクレジット取引動作の一例を示すフローチャートである。図13のクレジット取引動作は、需要者にクレジットを売却するときの動作であり、図3の処理S7の一例を示している。例えば、水田メタン削減支援装置1の制御部1aは、管理するクレジットを買い取りたい旨を示す買取希望情報を、需要者が利用する需要者端末装置9から通信部1cにより受信すると(S71)、当該買取希望情報で示されるクレジットの代価を決定し、当該代価を需要者に支払わせる支払指令を、需要者端末装置9に送信する(S72)。 FIG. 13 is a flowchart showing an example of the credit transaction operation of the rice field methane reduction support device 1. The credit transaction operation in FIG. 13 is an operation when selling credit to a consumer, and shows an example of the process S7 in FIG. 3. For example, when the control unit 1a of the rice field methane reduction support device 1 receives purchase request information indicating that the credit to be managed is to be purchased from the customer terminal device 9 used by the customer through the communication unit 1c (S71), A price for the credit indicated by the purchase request information is determined, and a payment instruction for making the consumer pay the price is transmitted to the consumer terminal device 9 (S72).
 その後、制御部1aは、需要者が代価を取引者に支払ったことを示す支払完了情報を、需要者端末装置9から通信部1cにより受信すると(S73)、対応するクレジットの所有者を取引者から需要者に変更して(S74)、当該クレジットを管理対象から外す。また、制御部1aは、そのクレジットを示すクレジット情報と、当該クレジットの所有者が取引者から需要者に変更されたことを示す情報とを含む変更報告情報を生成し、当該変更報告情報を通信部1cによりクレジット管理装置8に送信する(S75)。 Thereafter, when the communication unit 1c receives payment completion information indicating that the consumer has paid the price to the transactor from the consumer terminal device 9 (S73), the control unit 1a transfers the owner of the corresponding credit to the transactor. The credit is changed from the credit to the consumer (S74), and the credit is removed from the management target. In addition, the control unit 1a generates change report information including credit information indicating the credit and information indicating that the owner of the credit has been changed from the transactor to the consumer, and communicates the change report information. The unit 1c transmits it to the credit management device 8 (S75).
 以上の実施形態では、農業管理装置2及び農業者端末装置3が、水田メタン削減支援装置1に対して外部装置である例を示したが、これに限定しない。例えば、水田メタン削減支援装置1と農業管理装置2とを同一のコンピュータ又はサーバなどで構成したり、水田メタン削減支援装置1と農業者端末装置3とを、同一のコンピュータ又は端末装置で構成したりしてもよい。また、水田メタン削減支援装置1、農業管理装置2、及び農業者端末装置3をクラウド上に設けて、クラウド上で互いに情報を入出力するようにしてもよい。またこの場合、水田のメタン削減量を示す評価情報、水田の推奨中干期間を含む作業提案情報、及びメタン削減量に応じたクレジットを示すクレジット情報を、同一のコンピュータなど或いはクラウド上で入出力してもよい。 In the above embodiment, an example was shown in which the agricultural management device 2 and the farmer terminal device 3 are external devices to the rice field methane reduction support device 1, but the present invention is not limited to this. For example, the rice field methane reduction support device 1 and the agricultural management device 2 may be configured with the same computer or server, or the rice field methane reduction support device 1 and the farmer terminal device 3 may be configured with the same computer or terminal device. You can also Furthermore, the rice field methane reduction support device 1, the agricultural management device 2, and the farmer terminal device 3 may be provided on the cloud so that they can input and output information to each other on the cloud. In this case, evaluation information indicating the amount of methane reduction in rice fields, work proposal information including the recommended drying period for rice fields, and credit information indicating credits according to the amount of methane reduction can be input and output on the same computer or on the cloud. You may.
 以上の実施形態では、水田での作物の栽培中に、水田から排出されるメタンを削減するための水田の水管理状態を、水管理装置4が水位センサ5の検出結果などに基づいて検出したり、モニタリング装置6が地球観測衛星7の合成開口レーダによる観測結果に基づいて検出したり、農業者が農業者端末装置3により入力したりするなどの例を示した。 In the above embodiment, the water management device 4 detects the water management status of the rice field in order to reduce methane emitted from the rice field during the cultivation of crops in the rice field based on the detection results of the water level sensor 5, etc. Examples are shown in which the monitoring device 6 detects the information based on the observation results obtained by the synthetic aperture radar of the earth observation satellite 7, or the farmer inputs the information using the farmer terminal device 3.
 然るに、水管理装置4又は水位センサ5が水田に設置されておらず、当該水田がモニタリング装置6のモニタリング対象になっていない場合、当該水田の水管理状態を検出することができない。また、農業者が農業者端末装置3により入力した水田の水管理状態の情報(記録)は、客観性と証拠性が不十分で、間違っていたり改ざんされたりするおそれがある。 However, if the water management device 4 or the water level sensor 5 is not installed in the rice field and the rice field is not monitored by the monitoring device 6, the water management state of the rice field cannot be detected. Furthermore, the information (record) on the water management status of rice fields inputted by the farmer using the farmer terminal device 3 has insufficient objectivity and evidence, and there is a risk that it may be wrong or falsified.
 上記問題の対策として、水田メタン削減支援装置1が、地球観測衛星7の合成開口レーダによるSAR画像(観測画像)のデータに基づいて、水田のメタンを削減するための水管理の状態及び当該状態が継続した期間を特定するように構成する。この場合の実施形態を以降詳述する。 As a countermeasure to the above problem, the rice field methane reduction support device 1 uses the data of SAR images (observation images) obtained by the synthetic aperture radar of the earth observation satellite 7 to determine the state of water management for reducing methane in the rice fields and the relevant state. is configured to specify the period during which the period lasted. An embodiment in this case will be described in detail below.
 図14Aは、地球観測衛星7の合成開口レーダから湛水状態の水田Hに照射したマイクロ波の反射状態の一例を示す図である。図14Aに示すように、湛水状態の水田Hに地球観測衛星7の合成開口レーダからマイクロ波Waが照射された場合、マイクロ波Waが水田Hの平滑な水面Hwで反射する。このため、湛水状態の水田Hでは、マイクロ波Waの前方散乱波Wfの強度が高くなり、後方散乱波の強度が低くなる、即ち後方散乱係数σが小さくなる。 FIG. 14A is a diagram showing an example of a reflection state of microwaves irradiated from the synthetic aperture radar of the earth observation satellite 7 to a flooded rice field H. As shown in FIG. 14A, when a flooded rice field H is irradiated with microwave Wa from the synthetic aperture radar of the earth observation satellite 7, the microwave Wa is reflected by the smooth water surface Hw of the rice field H. Therefore, in the flooded rice field H, the intensity of the forward scattered wave Wf of the microwave Wa becomes high and the intensity of the back scattered wave becomes low, that is, the backscattering coefficient σ becomes small.
 図14Bは、地球観測衛星7の合成開口レーダから落水状態の水田Hに照射したマイクロ波の反射状態の一例を示す図である。図14Bに示すように、落水状態の水田Hに地球観測衛星7の合成開口レーダからマイクロ波Waが照射された場合、マイクロ波Waが水田Hのでこぼこした(凹凸がある平滑でない)或いはひび割れた地表面Hgで反射する。このため、落水状態の水田Hでは、湛水状態の水田Hの場合(図14A)よりも、マイクロ波Waの前方散乱波Wfの強度が低くなり、マイクロ波Waの後方散乱波Wbの強度(後方散乱係数)が高くなる、即ち後方散乱係数σが大きくなる。 FIG. 14B is a diagram showing an example of the reflection state of microwaves irradiated from the synthetic aperture radar of the earth observation satellite 7 to a paddy field H in a flooded state. As shown in FIG. 14B, when the microwave Wa is irradiated from the synthetic aperture radar of the earth observation satellite 7 to the paddy field H which is in a flooded state, the microwave Wa is applied to the paddy field H which is uneven (not smooth with unevenness) or cracked. Reflected by Hg on the ground surface. Therefore, in the paddy field H in the flooded state, the intensity of the forward scattered wave Wf of the microwave Wa is lower than in the case of the paddy field H in the flooded state (FIG. 14A), and the intensity of the backscattered wave Wb of the microwave Wa ( (backscattering coefficient) increases, that is, the backscattering coefficient σ increases.
 また、水田Hで作物(水稲)Rが栽培されている場合、地球観測衛星7の合成開口レーダからXバンドのマイクロ波Waが水田Hに照射されると、図14A及び図14Bに示すように、Xバンドのマイクロ波Waは、水田Hの水面Hw或いは地表面Hgで反射するだけでなく、作物Rの生長した葉などでも反射する。このように、Xバンドのマイクロ波Waが作物Rで反射すると、当該マイクロ波Waの前方散乱波Wfの強度が低くなり、マイクロ波Waの後方散乱波Wbの強度が高くなるので、後方散乱係数が大きくなる。 Furthermore, when a crop (paddy rice) R is grown in a paddy field H, when the X-band microwave Wa is irradiated onto the paddy field H from the synthetic aperture radar of the earth observation satellite 7, as shown in FIGS. 14A and 14B, , the X-band microwave Wa is not only reflected by the water surface Hw of the rice field H or the ground surface Hg, but also by the leaves of the crops R. In this way, when the X-band microwave Wa is reflected by the crop R, the intensity of the forward scattered wave Wf of the microwave Wa becomes low, and the intensity of the back scattered wave Wb of the microwave Wa becomes high, so the backscattering coefficient becomes larger.
 図15A~図15Cは、地球観測衛星7の合成開口レーダにより作物(水稲)栽培中の複数の水田Hを含む地域を観測したSAR画像の一例を示す図である。特に、図15Aは、複数の水田Hを含む地域の中干期間前(観測日:2021年6月21日)のSAR画像を示している。図15Bは、複数の水田Hの中干期間中(観測日:2021年7月3日)のSAR画像を示している。図15Cは、複数の水田Hの中干期間後(観測日:2021年7月15日)のSAR画像を示している。 15A to 15C are diagrams showing examples of SAR images obtained by observing an area including a plurality of rice fields H where crops (paddy rice) are being cultivated using the synthetic aperture radar of the earth observation satellite 7. In particular, FIG. 15A shows a SAR image before the mid-drought period (observation date: June 21, 2021) of an area including multiple rice fields H. FIG. 15B shows SAR images of multiple rice fields H during the mid-dry period (observation date: July 3, 2021). FIG. 15C shows a SAR image of multiple rice fields H after the mid-dry period (observation date: July 15, 2021).
 図15A~図15Cに示す各SAR画像は、合成開口レーダからXバンドのマイクロ波を照射した場合の後方散乱波の強度を示している。図示の便宜上、各SAR画像において、ハッチングを付した部分に複数の水田Hが含まれていて、視認可能な水田Hを破線で区切って示している。 Each SAR image shown in FIGS. 15A to 15C shows the intensity of backscattered waves when X-band microwaves are irradiated from a synthetic aperture radar. For convenience of illustration, in each SAR image, a plurality of rice fields H are included in the hatched portion, and the visible rice fields H are shown separated by broken lines.
 SAR画像の各画素の色の濃淡及び明るさの少なくともいずれかを表す画素値を検出し、当該各画素値を予め記憶部1bに記憶された所定のLUT(Look Up Table)又は演算式などの変換データにより変換することで、各画素が示す水田Hなどの実際の箇所における後方散乱波の強度、即ち後方散乱係数を求めることができる。 A pixel value representing at least one of the color shading and brightness of each pixel of the SAR image is detected, and each pixel value is stored in a predetermined LUT (Look Up Table) or an arithmetic expression stored in advance in the storage unit 1b. By converting using the conversion data, it is possible to obtain the intensity of the backscattered waves at an actual location such as the rice field H indicated by each pixel, that is, the backscattering coefficient.
 SAR画像では、後方散乱係数が小さい箇所ほど、黒色が濃く映し出される。即ち、各SAR画像では、後方散乱係数が小さい湛水状態の水田Hは、黒っぽく表示され、後方散乱係数が大きい落水状態の水田Hは、白っぽく表示される。図15A~図15Cでは、ハッチングの間隔が狭いほど、黒色が濃いことを示している。 In the SAR image, the smaller the backscattering coefficient is, the darker the black appears. That is, in each SAR image, a paddy field H in a flooded state with a small backscattering coefficient is displayed blackish, and a paddy field H in a flooded state with a large backscattering coefficient is displayed whitish. 15A to 15C show that the narrower the hatching interval, the darker the black.
 図15Aに示す水田Hの中干期間前のSAR画像と、図15Cに示す水田Hの中干期間後のSAR画像では、水田Hが湛水状態にあるので黒っぽく表示されている。対して、図15Bに示す水田Hの中干期間中のSAR画像では、水田Hが落水状態にあるので白っぽく表示されている。 In the SAR image of the rice field H before the mid-dry period shown in FIG. 15A and the SAR image after the mid-dry period of the paddy field H shown in FIG. 15C, the paddy field H is displayed dark because it is in a flooded state. On the other hand, in the SAR image of the rice field H during the mid-dry period shown in FIG. 15B, the rice field H is displayed as whitish because it is in a state of overflowing.
 図16A及び図16Bは、図15A~図15Cに示したSAR画像に含まれる、ある1つの水田H1の後方散乱係数のヒストグラムを示すグラフである。詳しくは、図16Aは、中干期間前のSAR画像の水田H1を示す複数の画素にそれぞれ対応する後方散乱係数のヒストグラムGbと、中干期間中のSAR画像の水田H1を示す複数の画素にそれぞれ対応する後方散乱係数のヒストグラムGcとを示すグラフである。図16Bは、ヒストグラムGcと、中干期間後の水田H1を示す複数の画素にそれぞれ対応する後方散乱係数のヒストグラムGaとを示すグラフである。 FIGS. 16A and 16B are graphs showing histograms of backscattering coefficients for one rice field H1 included in the SAR images shown in FIGS. 15A to 15C. In detail, FIG. 16A shows a histogram Gb of backscattering coefficients corresponding to a plurality of pixels representing the paddy field H1 in the SAR image before the mid-dry period, and a histogram Gb of backscattering coefficients corresponding to a plurality of pixels representing the paddy field H1 in the SAR image during the mid-dry period. 3 is a graph showing a histogram Gc of corresponding backscattering coefficients. FIG. 16B is a graph showing a histogram Gc and a histogram Ga of backscattering coefficients corresponding to a plurality of pixels representing the rice field H1 after the mid-dry period.
 図16A及び図16Bでは、横軸に後方散乱係数の範囲を示し、縦軸に水田H1を示す全画素数に対する各後方散乱係数が対応付けられた画素数の割合を示している。図16A及び図16Bに示すように、中干期間前の水田H1の後方散乱係数のヒストグラムGb、中干期間中の水田H1の後方散乱係数のヒストグラムGc、及び中干期間前の水田H1の後方散乱係数のヒストグラムGaは、それぞれ正規分布を示している。 In FIGS. 16A and 16B, the horizontal axis shows the range of backscattering coefficients, and the vertical axis shows the ratio of the number of pixels associated with each backscattering coefficient to the total number of pixels representing the rice field H1. As shown in FIGS. 16A and 16B, a histogram Gb of the backscattering coefficient of the paddy field H1 before the mid-dry period, a histogram Gc of the backscattering coefficient of the paddy field H1 during the mid-dry period, and a back scattering coefficient of the paddy field H1 before the mid-dry period. The scattering coefficient histogram Ga each shows a normal distribution.
 図16Aに示すように、中干期間前の水田H1の後方散乱係数のヒストグラムGbは、中干期間中の水田H1の後方散乱係数のヒストグラムGcよりも、後方散乱係数が小さい範囲に広がっていて、分布範囲も大きくなっている。また、中干期間前のヒストグラムGbの最頻値Gbmは、中干期間中のヒストグラムGcの最頻値Gcmよりも小さくなっている。中干期間前のヒストグラムGbの平均値及び中央値も、中干期間中のヒストグラムGcの平均値よりも小さくなっている(符号図示省略)。 As shown in FIG. 16A, the histogram Gb of the backscattering coefficient of the paddy field H1 before the mid-dry period is wider than the histogram Gc of the backscattering coefficient of the paddy field H1 during the mid-dry period, where the backscattering coefficient is smaller. , the distribution range has also increased. Moreover, the mode Gbm of the histogram Gb before the mid-dry period is smaller than the mode Gcm of the histogram Gc during the mid-dry period. The average value and median value of the histogram Gb before the mid-dry period are also smaller than the average value of the histogram Gc during the mid-dry period (symbols not shown).
 図16Bに示すように、中干期間後の水田H1のSAR画像の後方散乱係数のヒストグラムGaは、中干期間中の水田H1のSAR画像の後方散乱係数のヒストグラムGcよりも、後方散乱係数が小さい範囲に広がっている。また、中干期間後のヒストグラムGaの最頻値Gamは、中干期間中のヒストグラムGcの最頻値Gcmよりも小さくなっている。中干期間後のヒストグラムGaの平均値及び中央値も、中干期間中のヒストグラムGcの平均値よりも小さくなっている(符号図示省略)。 As shown in FIG. 16B, the backscattering coefficient histogram Ga of the SAR image of paddy field H1 after the mid-dry period is lower than the histogram Gc of the backscattering coefficient of the SAR image of paddy field H1 during the mid-dry period. spread over a small area. Moreover, the mode Gam of the histogram Ga after the mid-dry period is smaller than the mode Gcm of the histogram Gc during the mid-dry period. The average value and median value of the histogram Ga after the mid-dry period are also smaller than the average value of the histogram Gc during the mid-dry period (symbols not shown).
 上記のような各ヒストグラムGa~Gcに基づいて、水田H1の水管理状態を判断するための閾値を設定する。例えば図16Aに示すように、中干期間前のヒストグラムGbと中干期間中のヒストグラムGcとが重複する部分の頂点P1の後方散乱係数を検出する。また、図16Bに示すように、中干期間後のヒストグラムGaと中干期間中のヒストグラムGcとが重複する部分の頂点P2の後方散乱係数を検出する。そして、頂点P1の後方散乱係数と頂点P2の後方散乱係数とに基づいて、水田H1が中干状態にあることを判断するための第1閾値σ1を設定する。このとき、例えば頂点P1の後方散乱係数と頂点P2の後方散乱係数との最頻値、平均値、中央値、最大値、及び最小値のいずれかを、第1閾値σ1として設定してもよい。第1閾値σ1により、水田H1の落水状態の有無及び湛水状態の有無を判断することができる。 Based on each histogram Ga to Gc as described above, a threshold value for determining the water management state of the rice field H1 is set. For example, as shown in FIG. 16A, the backscattering coefficient of the vertex P1 of the portion where the histogram Gb before the mid-dry period and the histogram Gc during the mid-dry period overlap is detected. Moreover, as shown in FIG. 16B, the backscattering coefficient of the vertex P2 of the portion where the histogram Ga after the mid-dry period and the histogram Gc during the mid-dry period overlap is detected. Then, based on the backscattering coefficient of the vertex P1 and the backscattering coefficient of the vertex P2, a first threshold value σ1 for determining that the rice field H1 is in a semi-dry state is set. At this time, for example, one of the mode, average, median, maximum, and minimum of the backscattering coefficient of the vertex P1 and the backscattering coefficient of the vertex P2 may be set as the first threshold σ1. . Based on the first threshold value σ1, it is possible to determine whether or not the paddy field H1 is in a flooded state and whether or not it is in a flooded state.
 また他の例として、各ヒストグラムGa~Gcに対応する正規分布カーブをそれぞれ算出して、当該正規分布カーブに基づいて第1閾値σ1を設定してもよい。具体的には、中干期間前のヒストグラムGbの正規分布カーブと、中干期間中のヒストグラムGcの正規分布カーブとの交点の後方散乱係数を検出する。また、中干期間後のヒストグラムGaの正規分布カーブと、中干期間中のヒストグラムGcの正規分布カーブとの交点の後方散乱係数を検出する。そして、それら2つの交点の後方散乱係数の最頻値、平均値、中央値、最大値、及び最小値のいずれかを、第1閾値σ1として設定してもよい。 As another example, a normal distribution curve corresponding to each of the histograms Ga to Gc may be calculated, and the first threshold value σ1 may be set based on the normal distribution curve. Specifically, the backscattering coefficient at the intersection of the normal distribution curve of the histogram Gb before the mid-dry period and the normal distribution curve of the histogram Gc during the mid-dry period is detected. Further, the backscattering coefficient at the intersection of the normal distribution curve of the histogram Ga after the mid-dry period and the normal distribution curve of the histogram Gc during the mid-dry period is detected. Then, any one of the mode, average, median, maximum, and minimum of the backscattering coefficients at the two intersection points may be set as the first threshold σ1.
 また、図16A及び図16Bに示す中干期間中のヒストグラムGcが示す後方散乱係数の最小値(図16A及び図16Bの最左点P3の後方散乱係数)に基づいて、水田H1が湛水状態にあることを判断するための第2閾値σ2を設定する。このとき、例えばヒストグラムGcの最小値、又は最小値よりも所定の余裕値だけ小さい値を、第2閾値σ2に設定してもよい。第2閾値σ2により、水田H1が落水状態にないことと、中干状態にないことも判断することができる。 Furthermore, based on the minimum value of the backscattering coefficient (the backscattering coefficient at the leftmost point P3 in FIGS. 16A and 16B) shown in the histogram Gc during the mid-dry period shown in FIGS. 16A and 16B, the rice field H1 is in a flooded state. A second threshold value σ2 is set for determining that σ2 is present. At this time, for example, the second threshold value σ2 may be set to the minimum value of the histogram Gc, or a value smaller than the minimum value by a predetermined margin value. Using the second threshold value σ2, it can also be determined that the rice field H1 is not in a flooded state and is not in a semi-dry state.
 上記のような第1閾値σ1と第2閾値σ2の設定は、例えばオペレータがコンピュータを操作することによって実行してもよいし、又は、水田メタン削減支援装置1の制御部1aが、ソフトウェアプログラムに従って実行してもよい。また、AI(人工知能)による機械学習によって、第1閾値σ1と第2閾値σ2を設定してもよい。但し、第1閾値σ1及び第2閾値σ2は、水田メタン削減支援装置1の記憶部1b(図1)に記憶される。 The setting of the first threshold value σ1 and the second threshold value σ2 as described above may be performed, for example, by an operator operating a computer, or the control unit 1a of the rice field methane reduction support device 1 may set the first threshold value σ1 and the second threshold value σ2 according to a software program. May be executed. Further, the first threshold value σ1 and the second threshold value σ2 may be set by machine learning using AI (artificial intelligence). However, the first threshold value σ1 and the second threshold value σ2 are stored in the storage unit 1b (FIG. 1) of the rice field methane reduction support device 1.
 第1閾値σ1及び第2閾値σ2の設定手法は、上記に限定するものではない。例えば、オペレータ、水田メタン削減支援装置1、他のコンピュータ、及びAIのうち、少なくとも1つ以上が、水田のSAR画像と、作業者などが視認した実際の水田の湛水、落水、中干などの水管理の状態及び期間を示す情報とを参照して、第1閾値σ1及び第2閾値σ2を設定してもよい。また、水田メタン削減支援装置1の制御部1aが、水田のSAR画像(観測画像)のデータから検出した後方散乱係数と、当該水田に設置された水位センサ5の検出結果から得た水位情報とに基づいて、第1閾値σ1及び第2閾値σ2を設定(算出)し、記憶部1bに記憶させてもよい。 The method of setting the first threshold value σ1 and the second threshold value σ2 is not limited to the above. For example, at least one of the operator, the rice field methane reduction support device 1, another computer, and the AI can display the SAR image of the rice field and the actual flooding, falling water, drying out, etc. of the rice field visually recognized by the operator, etc. The first threshold value σ1 and the second threshold value σ2 may be set with reference to information indicating the state and period of water management. In addition, the control unit 1a of the rice field methane reduction support device 1 uses the backscattering coefficient detected from the data of the SAR image (observation image) of the rice field and the water level information obtained from the detection result of the water level sensor 5 installed in the rice field. Based on this, the first threshold value σ1 and the second threshold value σ2 may be set (calculated) and stored in the storage unit 1b.
 また、水田毎に第1閾値σ1及び第2閾値σ2を設定してもよいし、又は複数の水田に対して共用の第1閾値σ1及び第2閾値σ2を設定してもよい。また、合成開口レーダにより複数の地域をそれぞれ観測して得た複数のSAR画像から、当該各地域に含まれる複数の水田をそれぞれ示す画素を抽出し、当該複数の画素の画素値に対応する後方散乱係数に基づいて、第1閾値σ1及び第2閾値σ2を設定してもよい。 Furthermore, the first threshold value σ1 and the second threshold value σ2 may be set for each rice field, or the first threshold value σ1 and the second threshold value σ2 may be set for a plurality of rice fields. In addition, from multiple SAR images obtained by observing multiple areas using synthetic aperture radar, pixels representing multiple rice fields included in each area are extracted, and the rearward image corresponding to the pixel values of the multiple pixels is extracted. The first threshold value σ1 and the second threshold value σ2 may be set based on the scattering coefficient.
 さらに言えば、第1閾値σ1及び第2閾値σ2は、水田のSAR画像と実証データとに基づいて、統計的又は類型的に設定されてもよい。また、第1閾値σ1と第2閾値σ2とを、異なる水田のSAR画像及び実証データに基づいて設定してもよいし、異なるアルゴリズムで設定してもよい。また、第1閾値σ1と第2閾値σ2とを異なる値に設定してもよいし、又は同一値に設定してもよい。また、第1閾値σ1と第2閾値σ2の少なくともいずれかを設定してもよい。また、所定の年数毎に、それまでに収集した水田のSAR画像と実証データとに基づいて、第1閾値σ1及び第2閾値σ2を更新してもよい。 Furthermore, the first threshold value σ1 and the second threshold value σ2 may be set statistically or typologically based on the SAR image of the rice field and the empirical data. Further, the first threshold value σ1 and the second threshold value σ2 may be set based on SAR images and empirical data of different rice fields, or may be set using different algorithms. Further, the first threshold value σ1 and the second threshold value σ2 may be set to different values, or may be set to the same value. Furthermore, at least one of the first threshold value σ1 and the second threshold value σ2 may be set. Furthermore, the first threshold value σ1 and the second threshold value σ2 may be updated every predetermined number of years based on SAR images of rice fields and verification data collected so far.
 図17は、中干期間前後のSAR画像の水田H1に対応する後方散乱係数の割合の推移を示すグラフである。詳しくは、図17は、2021年の6月9日、6月21日、7月3日、7月15日、及び7月27日に、地球観測衛星7の合成開口レーダにより観測された水田H1のSAR画像の各画素に対応する後方散乱係数を3段階に区分けした場合の、各区の割合をそれぞれ示している。6月9日と21日は水田H1の中干期間前の観測日であり、7月3日は水田H1の中干期間中の観測日であり、7月15日と27日は水田H1の中干期間後の観測日である。図17の横軸は日付を示し、縦軸は割合を示している。 FIG. 17 is a graph showing changes in the ratio of backscattering coefficients corresponding to paddy field H1 in SAR images before and after the mid-dry period. In detail, Figure 17 shows rice fields observed by the synthetic aperture radar of Earth Observation Satellite 7 on June 9, June 21, July 3, July 15, and July 27, 2021. When the backscattering coefficient corresponding to each pixel of the H1 SAR image is divided into three stages, the ratio of each division is shown. June 9th and 21st are the observation days before the mid-drying period of paddy field H1, July 3rd is the observation day during the mid-drying period of paddy field H1, and July 15th and 27th are the observation days of paddy field H1. This is the observation date after the mid-dry period. The horizontal axis of FIG. 17 shows the date, and the vertical axis shows the percentage.
 6月9日と7月27日のSAR画像については、図示を省略されている。然るに、6月9日のSAR画像では、図15Aに示した6月21日のSAR画像のように、湛水状態にある水田Hが黒っぽく表示されている。また、7月27日のSAR画像では、図15Cに示した7月15日のSAR画像のように、落水状態にある水田Hが白っぽく表示されている。 The SAR images of June 9th and July 27th are omitted from illustration. However, in the SAR image taken on June 9th, as in the SAR image taken on June 21st shown in FIG. 15A, the flooded paddy field H appears dark. Furthermore, in the SAR image taken on July 27th, as in the SAR image taken on July 15th shown in FIG. 15C, the paddy field H in a state of overflowing appears whitish.
 図17では、第1閾値σ1より大きい後方散乱係数σの段階を、中干区Cmと設定している。第2閾値σ2より小さい後方散乱係数σの段階を、湛水区Cfと設定している。第2閾値σ2以上で且つ第1閾値σ1以下の後方散乱係数σの段階を、一部湛水区Cpと設定している。また、第1閾値σ1を「-14[db]」に設定し、第2閾値σ2を「-20[db]」に設定している。図17のグラフでは、中干区Cmの後方散乱係数の割合を実線で示し、一部湛水区Cpの後方散乱係数の割合を2点鎖線で示し、湛水区Cfの後方散乱係数の割合を1点鎖線で示している。 In FIG. 17, the stage where the backscattering coefficient σ is larger than the first threshold value σ1 is set as the middle dry zone Cm. The stage where the backscattering coefficient σ is smaller than the second threshold value σ2 is set as the flooded area Cf. A stage where the backscattering coefficient σ is equal to or greater than the second threshold value σ2 and equal to or less than the first threshold value σ1 is set as a partially flooded area Cp. Further, the first threshold value σ1 is set to "-14 [db]" and the second threshold value σ2 is set to "-20 [db]". In the graph of FIG. 17, the solid line indicates the ratio of backscattering coefficients in the dry zone Cm, the double-dot chain line indicates the ratio of the backscattering coefficients in the partially flooded zone Cp, and the ratio of the backscattering coefficient in the flooded zone Cf. is shown by a dashed line.
 図17に示すように、水田H1の中干期間前(6月9日と21日)には、湛水区Cfに属する後方散乱係数σの割合(6月9日は99.36%、21日は61.37%)が、中干区Cmと一部湛水区Cpとにそれぞれ属する後方散乱係数σの割合(中干区Cmの6月9日は0.02%で21日は10.09%、一部湛水区Cpの6月9日は0.03%で21日は28.54%)より高くなっている。また、水田H1の作物Rがある程度生長した中干期間の約1週間前(6月21日)には、中干区Cmに属する後方散乱係数σの割合が、一部湛水区Cpに属する後方散乱係数σの割合より低くなっている。 As shown in Figure 17, before the mid-dry period of rice field H1 (June 9th and 21st), the proportion of backscattering coefficient σ belonging to flooded area Cf (99.36% on June 9th, 21% on June 9th), (61.37% on June 9th) is the proportion of backscattering coefficient σ that belongs to the semi-dry area Cm and partially flooded area Cp (0.02% on June 9th and 10% on June 21st in the semi-dry area Cm). 0.09% on June 9th and 28.54% on June 21st in Cp, a partially flooded district. In addition, about one week before the dry period (June 21) when crop R in paddy field H1 had grown to a certain extent, the proportion of the backscattering coefficient σ belonging to the semi-dry area Cm was lower than that belonging to the partially flooded area Cp. It is lower than the ratio of backscattering coefficient σ.
 水田H1の中干期間中(7月3日)には、中干区Cmに属する後方散乱係数σの割合(88.5%)が、湛水区Cfと一部湛水区Cpとにそれぞれ属する後方散乱係数σの割合(湛水区Cfは0.72%、一部湛水区Cpは10.78%)より著しく高くなっている。 During the mid-dry period (July 3rd) of paddy field H1, the proportion (88.5%) of the backscattering coefficient σ belonging to the mid-dry area Cm was different for the flooded area Cf and the partially flooded area Cp. This is significantly higher than the proportion of the backscattering coefficient σ (0.72% for the flooded area Cf and 10.78% for the partially flooded area Cp).
 水田H1の中干期間後(7月15日と27日)には、中干区Cmに属する後方散乱係数σの割合(7月15日は3.17%、27日は0.75%)が、湛水区Cfと一部湛水区Cpとにそれぞれ属する後方散乱係数σの割合(湛水区Cfの7月15日は55.24%で27日は81.68%、一部湛水区Cpの7月15日は41.59%で27日は17.57%)より低くなっている。また、水田H1の中干期間後には、湛水区Cfに属する後方散乱係数σの割合が、一部湛水区Cpに属する後方散乱係数σの割合より高くなっている。 After the mid-dry period of paddy field H1 (July 15th and 27th), the proportion of backscattering coefficient σ belonging to mid-dry area Cm (3.17% on July 15th and 0.75% on 27th) is the ratio of backscattering coefficient σ that belongs to flooded area Cf and partially flooded area Cp (55.24% on July 15th and 81.68% on July 27th in flooded area Cf, partially flooded area Cf). It is lower than Mizu Ward Cp (41.59% on July 15th and 17.57% on the 27th). Further, after the dry period of the rice field H1, the proportion of the backscattering coefficient σ belonging to the flooded area Cf is higher than the proportion of the backscattering coefficient σ belonging to the partially flooded area Cp.
 上記のように、中干区Cm及び湛水区Cfにそれぞれ属する後方散乱係数σの割合が、水田H1の実際の中干期間であるか否かに応じて顕著に変動するので、中干区Cmを定める第1閾値σ1と湛水区Cfを定める第2閾値σ2とが水田H1の中干状態を判断する閾値として適切であることが実証されたと言える。 As mentioned above, the ratio of the backscattering coefficient σ belonging to the mid-dry zone Cm and the flooded zone Cf changes significantly depending on whether or not it is the actual mid-drought period of the paddy field H1. It can be said that it has been demonstrated that the first threshold value σ1 that determines Cm and the second threshold value σ2 that determines the flooded area Cf are appropriate as threshold values for determining the dry state of the paddy field H1.
 図18は、水田メタン削減支援装置1の水管理特定動作の一例を示すフローチャートである。図18の水管理特定動作は、水田のメタンを削減するための水管理の状態と当該状態が継続した期間とを特定する動作であって、前述した図6の処理S22の後に、処理S23に代えて水田メタン削減支援装置1の制御部1a(図1)により実行される。 FIG. 18 is a flowchart showing an example of the water management specific operation of the rice field methane reduction support device 1. The water management specifying operation shown in FIG. 18 is an operation for specifying the state of water management for reducing methane in rice fields and the period during which the state has continued, and is performed in step S23 after the above-described step S22 in FIG. Instead, it is executed by the control unit 1a (FIG. 1) of the rice field methane reduction support device 1.
 図6に示したメタン評価動作において、水田メタン削減支援装置1の制御部1aは、前述したように通信部1c(通信インタフェイス)により、農業者端末装置3からのメタン評価指令を受信する(図6のS21)。そして、制御部1aは、メタン評価指令に含まれる農業者の識別情報と水田の識別情報とに対応する農業者情報と水田情報と作業情報とを、農業管理装置2又は農業者端末装置3から通信部1cにより取得(受信)する(S22)。通信部1cは、情報を取得する取得部の一例である。これ以外に、記憶媒体を介して情報及びデータを水田メタン削減支援装置1に入力可能な入力インタフェイスにより取得部を構成してもよい。 In the methane evaluation operation shown in FIG. 6, the control unit 1a of the rice field methane reduction support device 1 receives a methane evaluation command from the farmer terminal device 3 through the communication unit 1c (communication interface) as described above ( S21 in FIG. 6). Then, the control unit 1a transmits farmer information, paddy field information, and work information corresponding to the farmer identification information and rice field identification information included in the methane evaluation command from the agricultural management device 2 or the farmer terminal device 3. The information is acquired (received) by the communication unit 1c (S22). The communication unit 1c is an example of an acquisition unit that acquires information. In addition to this, the acquisition unit may be configured with an input interface that can input information and data to the rice field methane reduction support device 1 via a storage medium.
 図6の処理S22の後、制御部1aは、図18の水管理特定動作を実行する。まず制御う1aは、取得した水田情報と作業情報とを読み込んで(図18のS81)、水田情報で示された対象水田の水管理情報が作業情報に含まれているか否かを確認する。例えば、水管理装置4など(図1の水位センサ5を含んでもよい。)が対象水田に設置されている場合、制御部1aは、水管理装置4により検出された対象水田の湛水、灌水、又は落水などの水管理状態を示す情報である水管理情報(以下、「検出水管理情報」という。)が作業情報に含まれていることを確認する(図18のS82:YES)。 After the process S22 in FIG. 6, the control unit 1a executes the water management specifying operation in FIG. First, the control unit 1a reads the acquired rice field information and work information (S81 in FIG. 18), and checks whether the work information includes water management information of the target rice field indicated by the rice field information. For example, if the water management device 4 or the like (which may include the water level sensor 5 in FIG. 1) is installed in the target paddy field, the control unit 1a controls the flooding and irrigation of the target paddy field detected by the water management device 4. It is confirmed that the work information includes water management information (hereinafter referred to as "detected water management information"), which is information indicating the water management state such as , falling water, etc. (S82 in FIG. 18: YES).
 また、対象水田がモニタリング装置6(図1)に登録されたモニタリング対象に含まれている場合、制御部1aは、モニタリング装置6により検出された対象水田の水管理情報(以下、「検出水管理情報」という。)が作業情報に含まれていることを確認する(図18のS82:YES)。 In addition, if the target rice field is included in the monitoring targets registered in the monitoring device 6 (FIG. 1), the control unit 1a provides water management information (hereinafter referred to as "detected water management information") of the target rice field detected by the monitoring device 6. It is confirmed that the work information (hereinafter referred to as "information") is included in the work information (S82 in FIG. 18: YES).
 次に、制御部1aは、検出水管理情報に基づいて、対象水田のメタンを削減するために実施された水管理の状態(有無)及び期間を特定し、当該中干の状態及び期間を示す特定水管理情報を記憶部1bに記憶させる(S83)。そして、制御部1aは、特定水管理情報を特定するために基づいた検出水管理情報を、根拠情報として特定水管理情報と関連付けて記憶部1bに記憶させる(S84)。 Next, the control unit 1a identifies the state (presence or absence) and period of water management implemented to reduce methane in the target rice field based on the detected water management information, and indicates the state and period of the drying. The specific water management information is stored in the storage unit 1b (S83). Then, the control unit 1a causes the storage unit 1b to store the detected water management information based on which the specific water management information is specified, in association with the specific water management information as basis information (S84).
 具体的には、処理S83において、例えば制御部1aは、まず水田情報と作業情報とに基づいて、対象水田に作付けされた作物(水稲)の分げつ期と幼穂形成期とを特定する。次に、制御部1aは、検出水管理情報を読み込んで、分げつ期から幼穂形成期までの間に、対象水田の湛水されていない状態が所定日数(例えば5日)以上継続されたか否かを確認する。 Specifically, in process S83, for example, the control unit 1a first identifies the tillering stage and panicle formation stage of the crop (paddy rice) planted in the target paddy field based on the paddy field information and work information. Next, the control unit 1a reads the detected water management information and determines whether the target paddy field has remained unflooded for a predetermined number of days (for example, 5 days) or more between the tillering stage and the panicle formation stage. Check whether or not.
 例えば制御部1aは、対象水田の湛水されていない状態(落水状態)が所定日数(例えば5日)以上継続されたことを、検出水管理情報から確認した場合、対象水田で中干の実施があったと判断する。そして、制御部1aは、対象水田が湛水されていない状態の開始日と最終日とをそれぞれ中干開始日と中干終了日として特定し、当該中干開始日から中干終了日までの期間を中干期間として特定する。さらに、制御部1aは、対象水田の中干が実施されたことと中干期間とを示す特定水管理情報を生成して、当該特定水管理情報を記憶部1bに記憶させる(S84)。 For example, if the control unit 1a confirms from the detected water management information that the target paddy field has been in a non-flooded state (flooded state) for a predetermined number of days (for example, 5 days) or more, the control unit 1a implements drying in the target paddy field. It is determined that there was. Then, the control unit 1a specifies the start date and last day of the target paddy field not being flooded as the mid-drying start date and mid-drying end date, respectively, and the period from the mid-drying start date to the mid-drying end date. Identify the period as a mid-dry period. Further, the control unit 1a generates specific water management information indicating that the target rice field has been dryed and the drying period, and stores the specific water management information in the storage unit 1b (S84).
 なお、対象水田で中干が実施されなかった場合、制御部1aは、処理S83で検出水管理情報に基づいて対象水田の中干状態を特定することができない。この場合、制御部1aは、処理S84において、対象水田での実施が無かったことを示す特定水管理情報を生成して、当該特定水管理情報を記憶部1bに記憶させる。 Note that if drying is not performed in the target paddy field, the control unit 1a cannot specify the drying state of the target paddy field based on the detected water management information in step S83. In this case, in process S84, the control unit 1a generates specific water management information indicating that there was no implementation in the target rice field, and stores the specific water management information in the storage unit 1b.
 上記のように処理S84が実行されて、図18の水管理特定動作が終了した場合、次に制御部1aは、対象水田に対応する算出式と、作業情報に含まれる対象水田での農作業の実施状態と、記憶部1bに記憶された特定水管理情報とに基づいて、水田のメタン排出量を算出する(図6のS24)。そして、制御部1aは、前述したように対象水田のメタン削減量を算出して(S25)、当該メタン削減量を記憶部1bに記憶させ、当該メタン削減量を含む評価情報を、農業者情報に基づいて農業者端末装置3に送信する(S26)。 When the process S84 is executed as described above and the water management specifying operation shown in FIG. Based on the implementation state and the specific water management information stored in the storage unit 1b, the amount of methane discharged from the rice field is calculated (S24 in FIG. 6). Then, the control unit 1a calculates the methane reduction amount of the target rice field as described above (S25), stores the methane reduction amount in the storage unit 1b, and stores the evaluation information including the methane reduction amount in the farmer information. is transmitted to the farmer terminal device 3 based on (S26).
 一方、水位センサ5と水管理装置4とが対象水田に設置されておらず、対象水田がモニタリング装置6のモニタリング対象に含まれていないことがある。この状況において、例えば農業者が、対象水田の湛水、灌水、落水、及び中干などの水管理状態を示す情報である水管理情報を、農業者端末装置3により入力する。 On the other hand, the water level sensor 5 and the water management device 4 may not be installed in the target paddy field, and the target paddy field may not be included in the monitoring target of the monitoring device 6. In this situation, for example, a farmer inputs water management information, which is information indicating the water management status of the target rice field, such as flooding, irrigation, falling water, and drying, using the farmer terminal device 3.
 その場合、制御部1aは、作業情報に検出水管理情報が含まれておらず(図18のS82:NO)、農業者が農業者端末装置3により入力した水管理情報(以下、「入力水管理情報」という。)が作業情報に含まれていることを確認する(S85:YES)。そして、制御部1aは、地球観測衛星7の合成開口レーダによるSAR画像のデータに基づいて、対象水田の入力水管理情報の検証と、メタンを削減するために実施された水管理の状態及び期間の特定とを実行する(S86)。 In that case, the control unit 1a determines that the detected water management information is not included in the work information (S82 in FIG. 18: NO), and that the water management information (hereinafter referred to as "input water It is confirmed that "management information") is included in the work information (S85: YES). Then, the control unit 1a verifies the input water management information of the target rice field, and the state and period of water management implemented to reduce methane, based on the data of the SAR image obtained by the synthetic aperture radar of the earth observation satellite 7. (S86).
 図19A及び図19Bは、水田メタン削減支援装置1の検証特定動作の一例を示すフローチャートである。図19A及び図19Bに示す検証特定動作は、図18の処理S86の詳細を示している。本検証特定動作において、制御部1aは、入力水管理情報に基づいて、地球観測衛星7の合成開口レーダにより観測された複数のSAR画像のデータを取得し、当該複数のSAR画像のデータに基づいて対象水田の水管理の状態及び期間を判断し、当該判断した水管理の状態及び期間に基づいて、入力水管理情報で示された対象水田の水管理の状態及び期間を検証し、対象水田のメタンを削減するための水管理の状態及び期間を特定する。本検証特定動作について、以下詳述する。 19A and 19B are flowcharts illustrating an example of the verification specific operation of the rice field methane reduction support device 1. The verification specifying operation shown in FIGS. 19A and 19B shows details of the process S86 in FIG. 18. In this verification specific operation, the control unit 1a acquires data of a plurality of SAR images observed by the synthetic aperture radar of the earth observation satellite 7 based on the input water management information, and based on the data of the plurality of SAR images. Based on the determined water management status and period, verify the water management status and period of the target paddy field indicated by the input water management information, and Identify water management conditions and time frames to reduce methane. This verification specific operation will be described in detail below.
 対象水田の作業情報に含まれる入力水管理情報には、対象水田のメタンを削減するための水管理の状態及び期間として、中干状態と中干期間が含まれている。このため、まず水田メタン削減支援装置1の制御部1aは、入力水管理情報で示される対象水田の中干期間のうち、中干開始日と中干最終日とを判断する(図19AのS91)。なお、中干開始日とは、対象水田が中干されるために、湛水状態から落水状態に変化した日のことである。中干最終日とは、中干されている対象水田が落水状態から湛水状態に変化した日の前日のことである。 The input water management information included in the work information of the target rice field includes a mid-dry state and a mid-dry period as the state and period of water management for reducing methane in the target rice field. For this reason, the control unit 1a of the rice field methane reduction support device 1 first determines the mid-drying start date and the mid-drying final day of the mid-drying period of the target paddy field indicated by the input water management information (S91 in FIG. 19A). ). Note that the mid-drying start date is the day when the target paddy field changes from a flooded state to a submerged state due to being mid-dryed. The last day of mid-drying is the day before the target paddy field undergoing mid-drying changes from a flooded state to a flooded state.
 次に、制御部1aは、通信部1cにより、地球観測衛星7の合成開口レーダにより観測されたデータを記憶しているモニタリング装置6と通信して、対象水田の中干開始日と中干最終日のそれぞれに合成開口レーダにより観測された対象水田を含む地域のSAR画像のデータを取得(受信)する(S92)。 Next, the control unit 1a communicates with the monitoring device 6, which stores data observed by the synthetic aperture radar of the earth observation satellite 7, through the communication unit 1c, to determine the start date of mid-drying of the target paddy field and the end date of mid-drying of the target paddy field. SAR image data of the area including the target rice field observed by the synthetic aperture radar on each day is acquired (received) (S92).
 なお、合成開口レーダの観測データが、モニタリング装置6ではなく、例えば観測データサーバ(図示省略)に記憶されている場合には、制御部1aは、対象水田の中干開始日と中干最終日に合成開口レーダにより観測された対象水田を含む地域のSAR画像のデータを、観測データサーバから通信部1cにより取得する。モニタリング装置6と観測データサーバは、観測管理装置の一例である。 Note that if the observation data of the synthetic aperture radar is stored in, for example, an observation data server (not shown) instead of the monitoring device 6, the control unit 1a can control the data on the start date of mid-drying and the last day of mid-drying of the target paddy field. The communication unit 1c acquires SAR image data of the area including the target paddy field observed by the synthetic aperture radar from the observation data server. The monitoring device 6 and the observation data server are an example of an observation management device.
 また、対象水田と対象水田を含む地域の位置(緯度、経度)は、対象水田の水田情報で示されている。制御部1aは、当該水田情報に基づいて対象水田を含む地域の位置を判断し、当該位置を観測した合成開口レーダのSAR画像をモニタリング装置6又は観測データサーバから取得する。 Additionally, the location (latitude, longitude) of the target rice field and the area containing the target rice field is indicated by the rice field information of the target rice field. The control unit 1a determines the position of the area including the target rice field based on the rice field information, and acquires the SAR image of the synthetic aperture radar that observed the position from the monitoring device 6 or the observation data server.
 次に、制御部1aは、対象水田の中干開始日に観測されたSAR画像から対象水田を示す1つ以上の画素を抽出し、当該画素の画素値に対応する後方散乱係数を検出する(S93)。このとき、制御部1aは、検出した後方散乱係数の数、即ち対象水田の後方散乱係数の全数Naを数える。 Next, the control unit 1a extracts one or more pixels indicating the target paddy field from the SAR image observed on the first day of drying of the target paddy field, and detects the backscattering coefficient corresponding to the pixel value of the pixel ( S93). At this time, the control unit 1a counts the number of detected backscattering coefficients, that is, the total number Na of backscattering coefficients of the target paddy field.
 なお、SAR画像中の対象水田を示す画素数は、SAR画像の解像度(観測幅)によって変わる。このため、対象水田の面積と後方散乱係数の抽出数などを考慮して、適切な解像度のSAR画像をモニタリング装置6などから水田メタン削減支援装置1に取得する。 Note that the number of pixels indicating the target rice field in the SAR image changes depending on the resolution (observation width) of the SAR image. For this reason, a SAR image with an appropriate resolution is acquired from the monitoring device 6 or the like to the paddy field methane reduction support device 1, taking into account the area of the target paddy field, the number of backscattering coefficients to be extracted, and the like.
 次に、制御部1aは、中干開始日のSAR画像に基づいて検出した対象水田の後方散乱係数と、記憶部1bに記憶された第1閾値σ1とを比較して、第1閾値σ1より大きい後方散乱係数の該当数Nbを数える。そして、制御部1aは、水田の後方散乱係数の全数Naに対する該当数Nbの割合Rs(Rs=Nb/Na×100[%])を算出する(S94)。 Next, the control unit 1a compares the backscattering coefficient of the target paddy field detected based on the SAR image of the mid-drying start date with the first threshold value σ1 stored in the storage unit 1b, and the first threshold value σ1 is Count the corresponding number Nb of large backscattering coefficients. Then, the control unit 1a calculates the ratio Rs (Rs=Nb/Na×100 [%]) of the corresponding number Nb to the total number Na of the backscattering coefficients of the rice fields (S94).
 次に、割合Rsが、記憶部1bに記憶された所定の第3閾値Rt(例えば80%)以上である場合(S95:YES)、制御部1aは、入力水管理情報で示された中干開始日に、対象水田が落水状態で且つ中干状態にあると判断して、当該判断結果を記憶部1bに記録する(S96)。 Next, when the ratio Rs is equal to or higher than the predetermined third threshold value Rt (for example, 80%) stored in the storage unit 1b (S95: YES), the control unit 1a On the start date, it is determined that the target paddy field is in a flooded and semi-dry state, and the determination result is recorded in the storage unit 1b (S96).
 対して、割合Rsが第3閾値Rt未満である場合(S95:NO)、制御部1aは、入力水管理情報で示された中干開始日に、対象水田が落水状態になく、中干状態にもなかったと判断して、当該判断結果を記憶部1bに記録する(S97)。第3閾値Rtは、例えば図17に示したような、水田の後方散乱係数の実証データに基づいて設定されている。 On the other hand, when the ratio Rs is less than the third threshold value Rt (S95: NO), the control unit 1a determines that the target paddy field is not in a flooded state and is in a mid-dry state on the mid-drought start date indicated by the input water management information. The determination result is recorded in the storage unit 1b (S97). The third threshold value Rt is set based on the empirical data of the backscattering coefficient of rice fields, as shown in FIG. 17, for example.
 次に、制御部1aは、中干最終日のSAR画像から対象水田を示す画素を抽出し、当該画素の画素値に対応する後方散乱係数を検出する(図19BのS98)。また、制御部1aは、上述したように抽出した対象水田の後方散乱係数の全数Naに対する、第1閾値σ1より大きい後方散乱係数の該当数Nbの割合Reを算出する(S99)。 Next, the control unit 1a extracts a pixel indicating the target paddy field from the SAR image on the last day of drying, and detects a backscattering coefficient corresponding to the pixel value of the pixel (S98 in FIG. 19B). Further, the control unit 1a calculates the ratio Re of the corresponding number Nb of backscattering coefficients larger than the first threshold value σ1 to the total number Na of backscattering coefficients of the target rice fields extracted as described above (S99).
 そして、割合Reが第3閾値Rt以上である場合(S100:YES)、制御部1aは、入力水管理情報で示された中干最終日に対象水田が落水状態で且つ中干状態にあると判断して、当該判断結果を記憶部1bに記録する(S101)。 If the ratio Re is equal to or higher than the third threshold Rt (S100: YES), the control unit 1a determines that the target paddy field is in a flooded state and in a mid-dry state on the last day of the mid-dry period indicated by the input water management information. The determination result is recorded in the storage unit 1b (S101).
 対して、割合Reが第3閾値Rt未満である場合(S100:NO)、制御部1aは、入力水管理情報で示された中干最終日に対象水田が落水状態になく、中干状態にもなかったと判断して、当該判断結果を記憶部1bに記録する(S102)。 On the other hand, when the ratio Re is less than the third threshold value Rt (S100: NO), the control unit 1a determines that the target paddy field is not in a flooded state on the last day of the mid-dry period indicated by the input water management information, and is in a mid-dry state. It is determined that there is no error, and the determination result is recorded in the storage unit 1b (S102).
 上述したように制御部1aは、図19Aの処理S96及び図19Bの処理S101で、中干開始日と中干最終日に対象水田が中干状態であったと判断した場合、SAR画像のデータから判断した対象水田の中干の状態及び期間と、入力水管理情報で示された対象水田の中干の状態及び期間とが対応していると判断する(図19BのS103:YES)。そして、制御部1aは、入力水管理情報で示される水管理の状態及び期間が正当であると判断して(S104)、入力水管理情報を特定水管理情報として記憶部1bに記憶させる(S105)。 As described above, if the control unit 1a determines in process S96 of FIG. 19A and process S101 of FIG. It is determined that the determined drying state and period of the target paddy field correspond to the drying state and period of the target paddy field indicated by the input water management information (S103 in FIG. 19B: YES). Then, the control unit 1a determines that the state and period of water management indicated by the input water management information are valid (S104), and stores the input water management information in the storage unit 1b as specific water management information (S105). ).
 上記の例では、制御部1aが、SAR画像のデータから判断した対象水田の中干の状態及び期間と、入力水管理情報で示された対象水田の中干の状態及び期間とが一致している場合に対応していると判断した例を示したが、これに限定するものではない。例えば、入力水管理情報で対象水田の落水日と湛水日とが示されていて、当該落水日から湛水日までの日数が所定日(例えば5日)以上ある場合に、制御部1aが、落水日から湛水日までを対象水田の入力された中干期間と推定してもよい。そして、制御部1aが、対象水田が落水日に落水状態にあり且つ湛水日に湛水状態にあることをSAR画像のデータから確認することができたときに、SAR画像のデータから判断した対象水田の中干の状態及び期間と、入力水管理情報で示された対象水田の中干の状態及び期間とが対応していると判断してもよい。 In the above example, the control unit 1a determines that the drying state and period of the target paddy field determined from the SAR image data match the drying state and period of the target paddy field indicated by the input water management information. Although we have shown an example in which it was determined that the system is compatible with the following cases, the present invention is not limited to this example. For example, if the input water management information indicates the date of flooding and the date of flooding of the target rice field, and the number of days from the date of flooding to the date of flooding is more than a predetermined number of days (for example, 5 days), the control unit 1a , the input dry period of the target paddy field may be estimated from the date of flooding to the date of flooding. Then, when the control unit 1a can confirm from the SAR image data that the target rice field is in a flooded state on the flood date and is in a flooded state on the flood day, the control unit 1a makes a judgment from the SAR image data. It may be determined that the drying state and period of the target paddy field correspond to the drying state and period of the target paddy field indicated by the input water management information.
 また、例えば、対象水田の水位を低下させる作業の実施日と、対象水田の水位を略0まで低下させる排水作業の実施日と、対象水田の水位を上昇させる給水作業の実施日とが、入力水管理情報で示されている場合に、制御部1aが、対象水田の排水性に基づいて水位が略0まで低下する合理的な落水所要時間を推定し、対象水田の給水性に基づいて水位が上昇して湛水状態になる合理的な湛水所要時間を推定してもよい。 Also, for example, the implementation date of the work to lower the water level of the target paddy field, the implementation date of the drainage work to reduce the water level of the target paddy field to approximately 0, and the implementation date of the water supply work to raise the water level of the target paddy field are input. In the case indicated by the water management information, the control unit 1a estimates a reasonable time required for the water level to drop to approximately 0 based on the drainage performance of the target paddy field, and calculates the water level based on the water supply performance of the target paddy field. It is also possible to estimate a reasonable amount of time required for water to rise and become flooded.
 そして、制御部1aが、排水作業の実施日から落水所要時間の経過後に対象水田の水位が略0まで低下していることと、給水作業の実施日から湛水所要時間の経過後に対象水田の水位が上昇して湛水状態にあることとを、SAR画像のデータから確認することができたときに、SAR画像のデータから判断した対象水田の中干(又は間断灌水)の状態及び期間と、入力水管理情報で示された対象水田の中干(又は間断灌水)の状態及び期間とが対応していると判断してもよい。即ち、制御部1aは、入力水管理情報で示される対象水田の水管理状態と、SAR画像のデータから得られた対象水田の水管理状態とが適切な関係にある場合に、これらが対応していると判断すればよい。 Then, the control unit 1a determines that the water level of the target paddy field has decreased to approximately 0 after the elapse of the required flooding time from the implementation date of the water supply work, and that the water level of the target paddy field has decreased to approximately 0 after the elapse of the required flooding time from the implementation date of the water supply work. When it is possible to confirm from the SAR image data that the water level has risen and the water is in a flooded state, the condition and period of mid-drought (or intermittent irrigation) of the target rice field determined from the SAR image data. , it may be determined that the state and period of drying (or intermittent irrigation) of the target paddy field indicated by the input water management information correspond. That is, the control unit 1a determines whether the water management state of the target paddy field indicated by the input water management information and the water management state of the target paddy field obtained from the SAR image data correspond when there is an appropriate relationship. You can judge that it is.
 上述したように制御部1aは、入力水管理情報で示される水管理の状態及び期間が正当であると判断して(図19BのS104)、入力水管理情報を特定水管理情報として記憶部1bに記憶させた(S105)後、特定水管理情報と、入力水管理情報と、特定水管理情報と入力水管理情報とが対応していることを示す情報と、入力水管理情報が正当であることを示す情報とを含む検証情報を生成し、当該検証情報を記憶部1bに記憶させる(S106)。このとき、制御部1aは、対象水田の中干開始日と中干最終日のSAR画像のデータのうち、図15A~15Cに示したようなSAR画像の表示データ又は当該SAR画像から抽出した対象水田の画像の表示データを検証情報に含めてもよい。またこの場合、SAR画像或いは対象水田の画像の解説若しくは凡例などを、検証情報に含めてもよい。 As described above, the control unit 1a determines that the water management status and period indicated by the input water management information are valid (S104 in FIG. 19B), and stores the input water management information as specific water management information in the storage unit 1b. (S105), the specific water management information, the input water management information, information indicating that the specific water management information and the input water management information correspond to each other, and information indicating that the input water management information is valid. Verification information including information indicating this is generated, and the verification information is stored in the storage unit 1b (S106). At this time, the control unit 1a displays display data of SAR images as shown in FIGS. 15A to 15C among the SAR image data of the start date of mid-drying and the final day of mid-drying of the target paddy field, or the target paddy extracted from the SAR image. Display data of images of rice fields may be included in the verification information. Further, in this case, the verification information may include an explanation or legend of the SAR image or the image of the target paddy field.
 上記のように処理S104~S106が実行されて、図19A、図19Bの検証特定動作及び図18の水管理特定動作が終了することで、入力水管理情報が検証されて、対象水田の中干状態と中干期間とが制御部1aにより特定された状態となる。この場合、次に制御部1aは、対象水田に対応する算出式と、作業情報に含まれる対象水田での農作業の実施状態と、特定水管理情報とに基づいて、水田のメタン排出量を算出する(図6のS24)。そして、制御部1aは、前述したように対象水田のメタン削減量を算出し(S25)、当該メタン削減量を記憶部1bに記憶させ、当該対象水田のメタン削減量を含む評価情報を、農業者情報に基づいて農業者端末装置3に送信する(S26)。 By executing the processes S104 to S106 as described above and completing the verification specifying operation in FIGS. 19A and 19B and the water management specifying operation in FIG. 18, the input water management information is verified and the target paddy field is dry. The state and the mid-dry period are specified by the control unit 1a. In this case, the control unit 1a then calculates the methane emissions of the rice field based on the calculation formula corresponding to the target rice field, the implementation status of agricultural work in the target rice field included in the work information, and the specific water management information. (S24 in FIG. 6). Then, the control unit 1a calculates the methane reduction amount of the target paddy field as described above (S25), stores the methane reduction amount in the storage unit 1b, and stores the evaluation information including the methane reduction amount of the target paddy field. The information is transmitted to the farmer terminal device 3 based on the farmer information (S26).
 一方、制御部1aは、図19の処理S97で中干開始日に対象水田が中干状態でなかったと判断した場合、又は図19Bの処理S102で中干最終日に対象水田が中干状態でなかったと判断した場合、SAR画像のデータから水田の中干期間を判断することができない。このため、制御部1aは、SAR画像のデータから判断した対象水田の水管理状態と、入力水管理情報で示された対象水田の水管理状態とが対応していないと判断する(図19BのS103:NO)。上記以外に、SAR画像のデータから判断した対象水田の水管理状態と、入力水管理情報で示された対象水田の水管理状態とが適切な関係にない場合にも、制御部1aは、SAR画像のデータから判断した対象水田の水管理状態と、入力水管理情報で示された対象水田の水管理状態とが対応していないと判断してもよい(S103:NO)。 On the other hand, if the control unit 1a determines in process S97 of FIG. 19 that the target paddy field is not in a semi-drying state on the mid-drying start date, or in process S102 of FIG. If it is determined that there has not been, it is not possible to determine the mid-drought period of rice fields from the SAR image data. Therefore, the control unit 1a determines that the water management state of the target paddy field determined from the SAR image data does not correspond to the water management state of the target paddy field indicated by the input water management information (see FIG. 19B). S103: NO). In addition to the above, if the water management status of the target paddy field determined from the SAR image data and the water management status of the target paddy field indicated by the input water management information do not have an appropriate relationship, the control unit 1a also performs SAR It may be determined that the water management state of the target paddy field determined from the image data and the water management state of the target paddy field indicated by the input water management information do not correspond (S103: NO).
 そして、制御部1aは、入力水管理情報で示される水管理の状態及び期間が不当であると判断し、SAR画像のデータから判断した対象水田の水管理状態を示す画像水管理情報を生成して、当該画像水管理情報を記憶部1bに記憶させる(S107)。このとき、画像水管理情報には、中干開始日と中干最終日の少なくともいずれかの日に、対象水田が落水状態及び中干状態でなかったことが示されている。 Then, the control unit 1a determines that the water management status and period indicated by the input water management information are inappropriate, and generates image water management information indicating the water management status of the target rice field determined from the SAR image data. Then, the image water management information is stored in the storage unit 1b (S107). At this time, the image water management information indicates that the target paddy field was not in a submerged state or a semi-drying state on at least one of the mid-drying start date and the mid-drying final day.
 次に、制御部1aは、対象水田の画像水管理情報と、入力水管理情報と、画像水管理情報及び入力水管理情報が対応していなかったことを示す情報と、入力水管理情報が不当であることを示す情報とを含む検証情報を生成し、当該検証情報を記憶部1bに記憶させる(S108)。このときも、制御部1aは、対象水田の中干開始日と中干最終日のSAR画像のデータのうち、図15A~15Cに示したようなSAR画像の表示データ又は当該SAR画像から抽出した対象水田の画像の表示データを検証情報に含めて記憶部1bに記憶させてもよい。 Next, the control unit 1a outputs information indicating that the image water management information of the target rice field, the input water management information, the image water management information and the input water management information do not correspond, and that the input water management information is incorrect. Verification information including information indicating that the same is true is generated, and the verification information is stored in the storage unit 1b (S108). At this time as well, the control unit 1a selects display data of SAR images such as those shown in FIGS. 15A to 15C or extracted from the SAR images from among the SAR image data of the start date and final day of mid-drying of the target rice fields. The display data of the image of the target paddy field may be included in the verification information and stored in the storage unit 1b.
 さらに、制御部1aは、農業者情報に基づいて、農業者が使用する農業者端末装置3に検証情報を通信部1cにより送信し、農業者端末装置3を介して農業者に検証情報を通知する(図19BのS109)。詳しくは、検証情報を受信した農業者端末装置3が、当該検証情報をディスプレイに表示させることにより、当該検証情報の内容が農業者に通知される。また、制御部1aは、検証情報とともに、対象水田の入力水管理情報の再入力を求める要求情報を、農業者端末装置3に送信して、農業者端末装置3のディスプレイに表示させるようにしてもよい。これにより、要求情報も農業者端末装置3を介して農業者に通知される。 Further, the control unit 1a transmits verification information to the farmer terminal device 3 used by the farmer using the communication unit 1c based on the farmer information, and notifies the farmer of the verification information via the farmer terminal device 3. (S109 in FIG. 19B). Specifically, the farmer terminal device 3 that has received the verification information displays the verification information on the display, thereby notifying the farmer of the contents of the verification information. Further, the control unit 1a transmits request information for re-inputting the input water management information of the target paddy field to the farmer terminal device 3 together with the verification information, so that the request information is displayed on the display of the farmer terminal device 3. Good too. Thereby, the requested information is also notified to the farmer via the farmer terminal device 3.
 上記のように処理S107~S109が実行されて、図19A、図19Bの検証特定動作が終了することで、入力水管理情報が検証されて、対象水田が中干状態にあったと特定されず、中干期間も特定されていない状態となる。この場合、制御部1aは、図6の処理S24(メタン排出量の算出)を実行せず、図18の処理S81から以降の処理を再度実行する。 By executing the processes S107 to S109 as described above and completing the verification specifying operations shown in FIGS. 19A and 19B, the input water management information is verified and the target paddy field is not identified as being in a semi-drying state. The mid-dry period is also unspecified. In this case, the control unit 1a does not execute the process S24 (calculating the amount of methane emissions) in FIG. 6, but re-executes the processes starting from the process S81 in FIG. 18.
 例えば、図19Bの処理S109で通知された検証情報などを見た農業者が、農業者端末装置3を操作して、対象水田の入力水管理情報を再入力(変更)する。これにより、制御部1aは、図18の処理S85で、作業情報に入力水管理情報が含まれていることを確認し(S85:YES)、処理S86に対応する図19の検証特定動作を再度実行する。このように、制御部1aは、対象水田の中干状態及び中干期間を特定することができない間は、対象水田のメタン排出量及びメタン削減量を算出せず、評価情報を農業者端末装置3に送信することもない。 For example, a farmer who has viewed the verification information notified in step S109 of FIG. 19B operates the farmer terminal device 3 to re-enter (change) the input water management information of the target rice field. As a result, the control unit 1a confirms that the input water management information is included in the work information in step S85 of FIG. 18 (S85: YES), and repeats the verification specific operation of FIG. Execute. In this way, the control unit 1a does not calculate the methane emissions and methane reduction amount of the target paddy field and transmits the evaluation information to the farmer's terminal device while it is not possible to specify the mid-dry state and mid-dry period of the target paddy field. There is no need to send it to 3.
 また、例えば、水位センサ5と水管理装置4とが対象水田に設置されておらず、対象水田がモニタリング装置6のモニタリング対象に含まれていない状況で、対象水田の入力水管理情報が農業者により農業者端末装置3に入力されない場合がある。この場合、制御部1aは、作業情報に対象水田の検出水管理情報及び入力水管理情報が含まれていないことを確認する(図18のS82:NO、S85:NO)。そして、制御部1aは、地球観測衛星7の合成開口レーダによるSAR画像のデータに基づいて、対象水田のメタンを削減するために実施された水管理の状態及び期間の特定を実行する(S87)。 Furthermore, for example, in a situation where the water level sensor 5 and the water management device 4 are not installed in the target paddy field and the target paddy field is not included in the monitoring target of the monitoring device 6, the input water management information of the target paddy field is Therefore, it may not be input to the farmer terminal device 3. In this case, the control unit 1a confirms that the work information does not include detected water management information and input water management information of the target rice field (S82: NO, S85: NO in FIG. 18). Then, the control unit 1a identifies the state and period of water management implemented to reduce methane in the target rice field based on the SAR image data obtained by the synthetic aperture radar of the earth observation satellite 7 (S87). .
 図20A及び図20Bは、水田メタン削減支援装置1の画像特定動作の一例を示すフローチャートである。図20A及び図20Bに示す画像特定動作は、図18の処理S87の詳細を示している。本画像特定動作において、制御部1aは、水田情報と作業情報とに基づいて、所定の期間に地球観測衛星7の合成開口レーダにより観測された複数のSAR画像のデータを取得し、当該複数のSAR画像のデータに基づいて、対象水田のメタンを削減するための水管理の状態及び期間を特定する。本画像特定動作について以下詳述する。 20A and 20B are flowcharts illustrating an example of the image specifying operation of the rice field methane reduction support device 1. The image specifying operation shown in FIGS. 20A and 20B shows details of the process S87 in FIG. 18. In this image specifying operation, the control unit 1a acquires data of a plurality of SAR images observed by the synthetic aperture radar of the earth observation satellite 7 during a predetermined period based on the rice field information and the work information, and Based on the SAR image data, the water management status and period for reducing methane in the target rice field will be identified. The main image specifying operation will be described in detail below.
 水田メタン削減支援装置1の制御部1aは、水田情報と作業情報とに基づいて、対象水田に作付けされた作物(水稲)の分げつ期と幼穂形成期とを判断する(図20AのS111)。次に、制御部1aは、分げつ期から幼穂形成期までの期間に地球観測衛星7の合成開口レーダにより観測された対象水田を含む地域の複数のSAR画像のデータを、通信部1cによりモニタリング装置6又は観測データサーバから取得する(S112)。 The control unit 1a of the rice field methane reduction support device 1 determines the tillering stage and panicle formation stage of the crop (paddy rice) planted in the target rice field based on the rice field information and work information (S111 in FIG. 20A). ). Next, the control unit 1a sends data of a plurality of SAR images of the area including the target rice field, which were observed by the synthetic aperture radar of the earth observation satellite 7 during the period from the tillering stage to the panicle formation stage, to the communication unit 1c. Obtained from the monitoring device 6 or observation data server (S112).
 処理S112において、例えば制御部1aは、分げつ期から幼穂形成期までの期間に、地球観測衛星7の合成開口レーダにより複数回観測された対象水田を含む地域の全てのSAR画像のデータを取得してもよい。この場合、地球観測衛星7の回帰日数に応じた数のSAR画像のデータが、水田メタン削減支援装置1に取得される。 In process S112, for example, the control unit 1a collects all SAR image data of the area including the target paddy field observed multiple times by the synthetic aperture radar of the earth observation satellite 7 during the period from the tillering stage to the panicle formation stage. You may obtain it. In this case, a number of SAR image data corresponding to the number of return days of the earth observation satellite 7 is acquired by the rice field methane reduction support device 1.
 処理S111、S112に代えて、制御部1aが、作業情報で示される特定期間に地球観測衛星7の合成開口レーダにより観測された対象水田を含む地域の複数のSAR画像のデータを、通信部1cによりモニタリング装置6などから取得してもよい。また、特定期間は、例えば農業者が農業者端末装置3により入力した水田の中干を予定している期間であってもよいし、又は地域で一般的な水田の中干期間より所定日数前の日から当該中干期間より所定日数後の日までの期間であってもよい。 Instead of processing S111 and S112, the control unit 1a sends data of a plurality of SAR images of the area including the target rice field observed by the synthetic aperture radar of the earth observation satellite 7 during the specific period indicated by the work information to the communication unit 1c. It may also be acquired from the monitoring device 6 or the like. Further, the specific period may be, for example, a period during which the farmer plans to dry rice fields inputted by the farmer using the farmer terminal device 3, or a predetermined number of days before the period when rice fields are partially dried, which is common in the region. It may be a period from the date to the day a predetermined number of days after the mid-dry period.
 制御部1aは、モニタリング装置6などから取得した複数のSAR画像のデータのうち、観測日が最古のSAR画像のデータを読み込んで(S113)、当該読み込んだSAR画像のデータから対象水田を示す画素を抽出し、当該画素の画素値に対応する後方散乱係数を検出する(S114)。このとき、制御部1aは、抽出した対象水田の後方散乱係数の全数Naを数える。次に、制御部1aは、読み込んだSAR画像のデータから抽出した対象水田の後方散乱係数のうち、第1閾値σ1より大きい後方散乱係数の該当数Nbを数え、対象水田の後方散乱係数の全数Naに対する該当数Nbの割合Rsを算出する(S115)。 The control unit 1a reads the data of the SAR image with the oldest observation date among the data of the plurality of SAR images acquired from the monitoring device 6 etc. (S113), and indicates the target paddy field from the data of the read SAR image. A pixel is extracted, and a backscattering coefficient corresponding to the pixel value of the pixel is detected (S114). At this time, the control unit 1a counts the total number Na of backscattering coefficients of the extracted target paddy fields. Next, the control unit 1a counts the number Nb of backscattering coefficients larger than the first threshold σ1 among the backscattering coefficients of the target paddy field extracted from the read SAR image data, and counts the total number of backscatter coefficients of the target paddy field. The ratio Rs of the corresponding number Nb to Na is calculated (S115).
 そして、割合Rsが第3閾値Rt以上である場合(S116:YES)、制御部1aは、読み込んだSAR画像のデータの観測日に、対象水田が落水状態で且つ中干状態にあると判断して、当該判断結果を記憶部1bに記録する(S117)。対して、割合Rsが第3閾値Rt未満である場合(S116:NO)、制御部1aは、読み込んだSAR画像のデータの観測日に、対象水田が落水状態になく、中干状態にもなかったと判断して、当該判断結果を記憶部1bに記録する(S118)。 If the ratio Rs is equal to or higher than the third threshold value Rt (S116: YES), the control unit 1a determines that the target rice field is in a flooded and semi-dry state on the observation date of the read SAR image data. Then, the determination result is recorded in the storage unit 1b (S117). On the other hand, if the ratio Rs is less than the third threshold Rt (S116: NO), the control unit 1a determines that the target paddy field is not in a flooded state or in a semi-dry state on the observation date of the read SAR image data. The determination result is recorded in the storage unit 1b (S118).
 次に、制御部1aは、取得した全てのSAR画像のデータを未だ読み込んでいない場合(図20BのS119:NO)、観測日が次に古いSAR画像のデータを読み込む(S120)。そして、制御部1aは、当該読み込んだSAR画像から対象水田を示す画素を抽出し、当該画素の画素値に対応する後方散乱係数を検出して(図20AのS114)、上述したように処理S115~S118を実行する。 Next, if the control unit 1a has not yet read the data of all the acquired SAR images (S119 in FIG. 20B: NO), the control unit 1a reads the data of the SAR image with the next oldest observation date (S120). Then, the control unit 1a extracts a pixel indicating the target paddy field from the read SAR image, detects a backscattering coefficient corresponding to the pixel value of the pixel (S114 in FIG. 20A), and processes S115 as described above. - Execute S118.
 また、制御部1aは、取得した全てのSAR画像のデータを読み込むまでは(図20BのS119:NO)、上述したように処理S114~S120を繰り返し実行する。これにより、制御部1aは、モニタリング装置6などから取得した複数のSAR画像のデータの観測日に、対象水田が中干状態であったか否か及び落水状態であったか否かをそれぞれ判断して、当該判断結果を記憶部1bに記憶させることができる。 Furthermore, the control unit 1a repeatedly executes the processes S114 to S120 as described above until all acquired SAR image data is read (S119 in FIG. 20B: NO). Thereby, the control unit 1a determines whether or not the target rice field was in a semi-dry state and whether it was in a flooded state on the observation date of the plurality of SAR image data acquired from the monitoring device 6, etc., and The determination result can be stored in the storage unit 1b.
 そして、制御部1aは、取得した全てのSAR画像のデータを読み込んだことを確認すると(S119:YES)、記憶部1bに記憶された各観測日の対象水田の中干状態及び落水状態の有無を示す情報を参照して、対象水田の中干状態(中干が実施されたか否か)及び中干期間を特定する(S121)。 Then, when the control unit 1a confirms that all the acquired SAR image data have been read (S119: YES), the control unit 1a determines whether or not there is a dry state and a submerged state of the target rice field on each observation date stored in the storage unit 1b. With reference to information indicating the target paddy field, the mid-drying state (whether mid-drying has been carried out or not) and the mid-drying period are identified (S121).
 このとき、例えば制御部1aは、記憶部1bに記憶された各観測日の対象水田の中干状態及び落水状態の有無を示す情報を観測日が古い方から順に参照する。そして、制御部1aは、中干状態及び落水状態が連続する複数の観測日のうち、最古の観測日から最新の観測日までの日数が所定日数(例えば5日)以上であれば、対象水田の中干が実施され、当該最古の観測日から最新の観測日までの期間を中干期間として特定する。 At this time, for example, the control unit 1a refers to the information stored in the storage unit 1b indicating the presence or absence of a dry state and a submerged state of the target rice field for each observation date in order from the oldest observation date. Then, if the number of days from the earliest observation date to the latest observation date is equal to or more than a predetermined number of days (for example, 5 days) among a plurality of observation days in which the dry state and the falling state are continuous, the control unit 1a controls the Mid-drying of rice fields is carried out, and the period from the earliest observation date to the latest observation date is identified as the mid-drying period.
 そして、制御部1aは、特定した対象水田の中干の状態及び期間を示す特定水管理情報を生成して、当該特定水管理情報を記憶部1bに記憶させる(S122)。また、制御部1aは、特定水管理情報を特定するために基づいたSAR画像の表示データなどを含む根拠情報を生成し、当該根拠情報を特定水管理情報と関連付けて記憶部1bに記憶させる(S123)。このとき、制御部1aは、特定水管理情報を特定するために基づいたSAR画像から抽出した対象水田の画像の表示データを、根拠情報に含めてもよい。また、上記SAR画像或いは対象水田の画像の解説若しくは凡例などを、根拠情報に含めてもよい。 Then, the control unit 1a generates specific water management information indicating the drying state and period of the specified target paddy field, and stores the specific water management information in the storage unit 1b (S122). Further, the control unit 1a generates basis information including display data of a SAR image based on which specific water management information is specified, and stores the basis information in the storage unit 1b in association with the specific water management information ( S123). At this time, the control unit 1a may include display data of an image of the target rice field extracted from the SAR image based on which the specific water management information is specified, in the basis information. Furthermore, explanations or legends of the SAR image or the image of the target paddy field may be included in the basis information.
 上記のように処理S121、S122が実行されて、図20A及び図20Bの画像特定動作が終了することで、対象水田の中干状態と中干期間とが制御部1aにより特定された状態となる。この場合も、次に制御部1aは、対象水田に対応する算出式と、農作業の実施状態と、特定水管理情報とに基づいて、対象水田のメタン排出量を算出する(図6のS24)。そして、制御部1aは、対象水田のメタン削減量を算出して(S25)、当該メタン削減量を記憶部1bに記憶させ、当該メタン削減量を含む評価情報を農業者端末装置3に送信する(S26)。 When processes S121 and S122 are executed as described above and the image specifying operation of FIGS. 20A and 20B is completed, the mid-dry state and mid-dry period of the target paddy field are identified by the control unit 1a. . In this case as well, the control unit 1a next calculates the methane emissions of the target paddy field based on the calculation formula corresponding to the target paddy field, the implementation status of agricultural work, and the specific water management information (S24 in FIG. 6). . Then, the control unit 1a calculates the methane reduction amount of the target rice field (S25), stores the methane reduction amount in the storage unit 1b, and transmits evaluation information including the methane reduction amount to the farmer terminal device 3. (S26).
 また、制御部1aは、図20Bの処理S123又は図18の処理S84と、図6のメタン評価動作とを実行した後に、図10のクレジット化動作を実行する。この場合、図10の処理S51で、制御部1aは、対象水田に対応する農業者情報と、対象水田のメタン削減量と、図20の処理S123又は図18の処理S84で記憶した根拠情報とを含む報告情報を生成し、当該報告情報をクレジット管理装置8に送信する。 Further, the control unit 1a executes the crediting operation in FIG. 10 after executing the process S123 in FIG. 20B or the process S84 in FIG. 18 and the methane evaluation operation in FIG. 6. In this case, in process S51 of FIG. 10, the control unit 1a stores the farmer information corresponding to the target paddy field, the methane reduction amount of the target paddy field, and the basis information stored in process S123 of FIG. 20 or process S84 of FIG. , and transmits the report information to the credit management device 8.
 また、制御部1aは、図19の処理S106と図6のメタン評価動作とを実行した後にも、図10のクレジット化動作を実行する。この場合は、図10の処理S51で、制御部1aは、対象水田に対応する農業者情報と、対象水田のメタン削減量と、図19の処理S106で記憶した検証情報とを含む報告情報を生成し、当該報告情報をクレジット管理装置8に送信する。 Further, the control unit 1a executes the crediting operation in FIG. 10 even after executing the process S106 in FIG. 19 and the methane evaluation operation in FIG. 6. In this case, in step S51 of FIG. 10, the control unit 1a sends report information including farmer information corresponding to the target paddy field, methane reduction amount of the target paddy field, and verification information stored in step S106 of FIG. and transmits the report information to the credit management device 8.
 図18~図20Bなどに示した実施形態では、水田のメタンを削減するための水管理の状態及び期間として、中干状態(中干の実施の有無)及び中干期間を特定する例を示したが、これに限定するものではない。水田メタン削減支援装置1の制御部1aは、水田の中干だけでなく、例えば間断灌水のような、水田のメタンを削減するための他の水管理の実施の有無及び実施期間を、合成開口レーダのSAR画像のデータに基づいて特定するようにしてもよい。 In the embodiments shown in FIGS. 18 to 20B, etc., examples are shown in which a mid-dry state (whether mid-drying is implemented) and a mid-dry period are specified as the state and period of water management to reduce methane in rice fields. However, it is not limited to this. The control unit 1a of the rice field methane reduction support device 1 controls not only drying of the rice fields, but also the presence or absence and implementation period of other water management to reduce methane in the rice fields, such as intermittent watering. The identification may be based on radar SAR image data.
 例えば間断灌水の場合、制御部1aは、SAR画像のデータから抽出した対象水田の後方散乱係数を、対象水田が落水状態にあることを判断するための第1閾値σ1だけでなく、対象水田が湛水状態にあることを判断するための第2閾値σ2と比較してもよい。 For example, in the case of intermittent irrigation, the control unit 1a uses the backscattering coefficient of the target paddy field extracted from SAR image data as well as the first threshold value σ1 for determining whether the target paddy field is in a flooded state. It may be compared with a second threshold value σ2 for determining whether the water is in a flooded state.
 具体的には、例えば制御部1aは、SAR画像のデータから抽出した対象水田の後方散乱係数の全数Naに対する、第1閾値σ1より大きい後方散乱係数の該当数Nbの割合Rs(Rs=Nb/Na)だけでなく、第2閾値σ2より小さい後方散乱係数の該当数Ncの割合Rf(Rf=Nc/Na)も算出してもよい。そして、制御部1aは、割合Rsが第3閾値(例えば80%)Rt以上の場合に、SAR画像のデータの観測日に対象水田が落水状態にあったと判断し、割合Rfが所定の第4閾値(例えば50%)Ru以上の場合に、SAR画像のデータの観測日に対象水田が湛水状態にあったと判断してもよい。第4閾値Ruも、図17に示したような水田の実証データに基づいて設定されて、記憶部1bに記憶されればよい。 Specifically, for example, the control unit 1a determines the ratio Rs (Rs=Nb/ In addition to Na), the ratio Rf (Rf=Nc/Na) of the corresponding number Nc of backscattering coefficients smaller than the second threshold value σ2 may also be calculated. Then, the control unit 1a determines that the target rice field was in a flooded state on the observation date of the SAR image data when the ratio Rs is equal to or higher than a third threshold value (for example, 80%) Rt, and the controller 1a determines that the target rice field was in a flooded state on the observation date of the SAR image data, and the ratio Rf is set to a predetermined fourth threshold value Rt. If the threshold value (for example, 50%) Ru is exceeded, it may be determined that the target rice field was in a flooded state on the observation date of the SAR image data. The fourth threshold value Ru may also be set based on the empirical data of rice fields as shown in FIG. 17 and stored in the storage unit 1b.
 また、水田メタン削減支援装置1の制御部1aが、ある第1水田に設置された水位センサ5の検出結果、監視カメラ(光学カメラなど)による第1水田の画像、及び農業者などが記録若しくは入力した第1水田の実際の水位のうちのいずれかの情報を取得部1cにより取得して、当該取得した情報から第1水田の水稲栽培中の実際の水位の時系列変化を示す水位変化情報(即ち実証データ)を特定してもよい。そして、制御部1aが、当該水位変化情報と、第1水田の水稲栽培中に複数回観測されたSAR画像のデータとを関連付けて記憶部1bに記憶(保存)させてもよい。さらに、制御部1aが、上記の第1水田の水位情報とSAR画像のデータとの相関関係(即ち、水位情報で示される水位と複数のSAR画像のデータで示される後方散乱係数との相関関係)を検出し、当該相関関係とSAR画像のデータとから第1閾値σ1及び第3閾値Rtなど(第2閾値σ2及び第4閾値Rgが含まれてもよい。)を設定し、当該第1閾値σ1及び第3閾値Rtなどの適性を検証(実証)してもよい。 In addition, the control unit 1a of the rice field methane reduction support device 1 receives the detection results of the water level sensor 5 installed in a certain first rice field, the image of the first rice field taken by a surveillance camera (such as an optical camera), and the information recorded or recorded by a farmer or the like. The acquisition unit 1c acquires any information of the inputted actual water level of the first paddy field, and uses the acquired information to obtain water level change information indicating a time-series change in the actual water level during rice cultivation in the first paddy field. (i.e., empirical data). Then, the control unit 1a may store (save) the water level change information in the storage unit 1b in association with SAR image data observed multiple times during rice cultivation in the first paddy field. Furthermore, the control unit 1a determines the correlation between the water level information of the first rice field and the SAR image data (that is, the correlation between the water level indicated by the water level information and the backscattering coefficient indicated by the data of the plurality of SAR images). ), the first threshold σ1, the third threshold Rt, etc. (the second threshold σ2 and the fourth threshold Rg may be included) are set from the correlation and the SAR image data, and the first The suitability of the threshold value σ1, the third threshold value Rt, etc. may be verified (demonstrated).
 また、制御部1aが、上記のように検証(実証)した第1閾値σ1及び第3閾値Rtなどを、上記の第1水田の水位情報及び複数のSAR画像のデータと関連付けて記憶部1bに記憶(保存)させてもよい。さらにその後、制御部1aが、上記の第1水田の水位情報とSAR画像のデータとの相関関係と、第1閾値σ1及び第3閾値Rtなどを適用して、実際の水位情報を得られない第2水田の水管理状態(水位、中干状態、間断灌水などを含む。)を特定してもよい。また、上記のような第1水田の水位情報とSAR画像のデータとの相関関係の検出を、水田メタン削減支援装置1の制御部1aに代えて、オペレータがコンピュータ及びAIの少なくともいずれかを用いて行ってもよい。 Further, the control unit 1a associates the first threshold value σ1, the third threshold value Rt, etc. verified (proved) as described above with the water level information of the first paddy field and the data of the plurality of SAR images, and stores them in the storage unit 1b. It may be stored (stored). Furthermore, after that, the control unit 1a applies the correlation between the water level information of the first paddy field and the SAR image data, the first threshold value σ1, the third threshold value Rt, etc., and cannot obtain the actual water level information. The water management state (including water level, dry state, intermittent irrigation, etc.) of the second rice field may be specified. Furthermore, instead of using the control unit 1a of the rice field methane reduction support device 1 to detect the correlation between the water level information of the first rice field and the SAR image data as described above, the operator may use at least one of a computer and AI. You can go.
 また、例えば制御部1aは、対象水田が落水状態にあると判断したSAR画像のデータの観測日が連続し、そのうち最古の観測日から最新の観測日までの期間が所定日数以上の場合に、対象水田が中干状態にあって、当該最古の観測日から最新の観測日までを中干期間と特定してもよい。さらに、制御部1aは、あるSAR画像のデータに基づいて対象水田が落水状態にあると判断し、それより新しいSAR画像のデータに基づいて対象水田が湛水状態にあると判断したことを所定回数繰り返した場合に、対象水田が間断灌水状態にあったと特定してもよい。 For example, the control unit 1a may detect that the observation dates of the SAR image data for which it is determined that the target rice field is in a flooded state are consecutive, and the period from the earliest observation date to the latest observation date is equal to or more than a predetermined number of days. , the target paddy field may be in a semi-dry state, and the period from the earliest observation date to the latest observation date may be specified as the semi-dry period. Further, the control unit 1a determines that the target paddy field is in a flooded state based on data of a certain SAR image, and determines that the target paddy field is in a flooded state based on data of a newer SAR image. If this is repeated a number of times, it may be determined that the target paddy field is in an intermittent irrigation state.
 上記のように、対象水田で間断灌水が行われた場合には、制御部1aは、例えば図5に示したモデル式(1)、(2)などに基づいて、間断灌水の場合のメタン排出量を算出する算出式を設定する。そして、制御部1aは、当該間断灌水の場合の算出式により対象水田のメタン排出量を算出し、当該メタン排出量を予め設定した基本メタン排出量から減算することにより、メタン削減量を算出すればよい。 As mentioned above, when intermittent irrigation is performed in the target paddy field, the control unit 1a controls the methane emission in the case of intermittent irrigation based on the model formulas (1) and (2) shown in FIG. 5, for example. Set the calculation formula to calculate the amount. Then, the control unit 1a calculates the methane emission amount of the target rice field using the calculation formula for the case of intermittent irrigation, and calculates the methane reduction amount by subtracting the methane emission amount from the preset basic methane emission amount. Bye.
 水田メタン削減支援装置1に取得するSAR画像については、当該SAR画像を観測する合成開口レーダを搭載した地球観測衛星7の回帰日数、又は合成開口レーダから照射されるマイクロ波の波長などに基づいて、適宜選択してもよい。 The SAR image acquired by the rice field methane reduction support device 1 is based on the number of return days of the earth observation satellite 7 equipped with a synthetic aperture radar that observes the SAR image, or the wavelength of microwaves emitted from the synthetic aperture radar. , may be selected as appropriate.
 例えば、図14A及び図14Bに示したように、合成開口レーダからXバンドのマイクロ波Waが照射された場合には、当該マイクロ波Waが水田Hで栽培している作物(水稲)Rの葉などで反射する。また、合成開口レーダからCバンドのマイクロ波Waが照射された場合には、当該マイクロ波Waが水田である程度生長した作物Rの茎などで反射する。このため、作物Rの生長が進行するに連れて、Xバンド又はCバンドのマイクロ波Waの後方散乱波Wbの強度、即ち後方散乱係数が大きくなるので、当該後方散乱係数に基づいて作物Rの生育の進行状況を検出することができる。 For example, as shown in FIGS. 14A and 14B, when an X-band microwave Wa is irradiated from a synthetic aperture radar, the microwave Wa is transmitted to the leaves of a crop (paddy rice) R grown in a paddy field H. reflected by etc. Further, when the C-band microwave Wa is irradiated from the synthetic aperture radar, the microwave Wa is reflected by the stems of crops R that have grown to some extent in the paddy field. Therefore, as the growth of the crop R progresses, the intensity of the backscattered wave Wb of the X-band or C-band microwave Wa, that is, the backscattering coefficient, increases. Growth progress can be detected.
 また、合成開口レーダからLバンドのマイクロ波Waが照射された場合、図21Aに示すように水田Hが湛水状態にあるときは、当該マイクロ波Waが水田Hの作物Rの葉などを透過して、水面Hwで反射する。このため、後方散乱波Wbの強度、即ち後方散乱係数が小さくなり、当該後方散乱波Wbに基づいて水田Hが湛水状態にあることを検出し易くなる。 In addition, when the L-band microwave Wa is irradiated from the synthetic aperture radar and the rice field H is flooded as shown in FIG. 21A, the microwave Wa transmits through the leaves of the crop R in the rice field H. Then, it is reflected on the water surface Hw. Therefore, the intensity of the backscattered wave Wb, that is, the backscattering coefficient, becomes small, and it becomes easier to detect that the rice field H is in a flooded state based on the backscattered wave Wb.
 対して、図21Bに示すように水田Hが落水状態にあるときは、当該マイクロ波Waが水田Hの作物Rの葉などを透過して、地表面Hgで反射する。このため、後方散乱波Wbの強度、即ち後方散乱係数が大きくなり、当該後方散乱波Wbに基づいて水田Hが落水状態にあることを検出し易くなる。 On the other hand, when the rice field H is in a flooded state as shown in FIG. 21B, the microwave Wa transmits through the leaves of the crops R in the rice field H and is reflected on the ground surface Hg. For this reason, the intensity of the backscattered wave Wb, that is, the backscattering coefficient becomes large, and it becomes easier to detect that the paddy field H is in the overflowing state based on the backscattered wave Wb.
 上記のような特性を考慮して、マイクロ波の波長を適宜選択し、選択した波長のマイクロ波を照射する合成開口レーダのSAR画像を、水田メタン削減支援装置1に取得すればよい。 Taking the above characteristics into consideration, the wavelength of the microwave may be appropriately selected, and the SAR image of the synthetic aperture radar that irradiates the microwave of the selected wavelength may be acquired by the rice field methane reduction support device 1.
 また、干渉SAR技術が適用された合成開口レーダにより水田を観測してもよい。これにより、地表面の変化が数センチレベルで合成開口レーダにより観測されるので、水田メタン削減支援装置1では、合成開口レーダにより観測されたSAR画像に基づいて、水田の一部湛水状態及び一部落水状態も詳細に検出することができる。 Additionally, rice fields may be observed using synthetic aperture radar to which interferometric SAR technology is applied. As a result, changes in the ground surface are observed by the synthetic aperture radar at a level of several centimeters, so the rice field methane reduction support device 1 determines the state of partial flooding in the rice fields based on the SAR images observed by the synthetic aperture radar. It is also possible to detect in detail the state of partial drowning.
 以上の実施形態で述べた合成開口レーダのSAR画像に基づく水田の水管理の状態及び期間の特定手法は一例であって、限定するものではない。水田メタン削減支援装置1が他の手法で、合成開口レーダに基づいて、水田の中干又は間断灌水などの水管理の状態及び期間を特定してもよい。 The method of identifying the state and period of water management in a paddy field based on the SAR image of the synthetic aperture radar described in the above embodiment is an example, and is not limited to the method. The rice field methane reduction support device 1 may use another method to identify the state and period of water management, such as drying of rice fields or intermittent irrigation, based on synthetic aperture radar.
 また、合成開口レーダを地球観測衛星7ではなく、他の航空機やドローンなどの飛行体、又は他の飛翔体に搭載して、水田を観測してもよい。また、合成開口レーダのSAR画像以外に、飛翔体又は飛行体に搭載された撮像装置により観測(撮像)した光学画像のデータに基づいて、水田の水管理の状態及び期間を特定してもよい。 Furthermore, the synthetic aperture radar may be mounted not on the earth observation satellite 7 but on another aircraft, a flying object such as a drone, or another flying object to observe rice fields. In addition to the SAR image of synthetic aperture radar, the state and period of water management in rice fields may be identified based on optical image data observed (captured) by a flying object or an imaging device mounted on a flying object. .
 図18~図19Bに示した実施形態では、農業者が農業者端末装置3により入力した水田の水管理情報を、SAR画像のデータに基づいて検証した例を示したが、これ以外に、例えば水管理装置4が水位センサ5などにより検出して、農業管理装置2に入力(送信)した水田の水管理状態などを示す情報を、SAR画像のデータに基づいて検証してもよい。即ち、農業者が使用する検出装置又はセンサにより検出されて、農業管理装置2などに入力された水田の検出水管理情報も、入力水管理情報とみなして、SAR画像のデータに基づいて検証してもよい。 In the embodiment shown in FIGS. 18 to 19B, an example was shown in which water management information of a rice field input by a farmer using the farmer terminal device 3 was verified based on SAR image data. The information indicating the water management status of the paddy field, etc. detected by the water management device 4 using the water level sensor 5 or the like and inputted (sent) to the agricultural management device 2 may be verified based on SAR image data. That is, the detected water management information of rice fields that is detected by a detection device or sensor used by a farmer and input into the agricultural management device 2 etc. is also considered as input water management information and verified based on the SAR image data. It's okay.
 さらに、水田メタン削減支援装置1において、メタンの排出量及び削減量を算出するために水田の特定水管理情報を用いる以外に、例えば、水田で栽培している作物の生育状況、水田での水管理作業の実施状況、又は水田の給排水状況などのような、他の目的で特定水管理情報を用いることもできる。また、水田のような圃場から排出されるメタン以外の温室効果ガス(二酸化炭素など)の排出量及び削減量を算出するために、水田メタン削減支援装置1を構成するコンピュータなどを用いてもよい。この場合、温室効果ガスの排出量及び削減量を算出するモデルデータを用いればよい。 Furthermore, in the rice field methane reduction support device 1, in addition to using the specific water management information of the rice field to calculate the amount of methane emission and reduction, for example, the growth status of crops cultivated in the rice field, the water Specific water management information can also be used for other purposes, such as the implementation status of management work or the water supply and drainage status of rice fields. Further, in order to calculate the amount of emissions and reductions of greenhouse gases other than methane (carbon dioxide, etc.) emitted from agricultural fields such as rice fields, a computer or the like constituting the rice field methane reduction support device 1 may be used. . In this case, model data for calculating greenhouse gas emissions and reduction amounts may be used.
 ところで、水田で水稲などの作物を栽培する地域では、雨期に多雨により洪水などの異常増水が発生することがある。水田の周辺で異常増水が発生したときに、農業者などが水田の周辺に近づくと危険である。また、例えば水田からのメタンの排出を削減するために、中干などの水管理作業を実施したときに、排水口の閉塞などにより、水田から水が抜けない排水異常が発生した場合、当該メタンの削減効果が得られない。さらに、例えば水田の中干を終了するために、水田に対して給水作業を実施しても、給水口の閉塞又は水不足などにより、水田が湛水されない給水異常が発生した場合、水田における水稲の収量が減少してしまう。そこで、例えば図14に示す構成により、上記のような水田の水管理異常が発生したことをいち早く検出する。 By the way, in areas where crops such as rice are grown in paddy fields, abnormal water rises such as flooding may occur during the rainy season due to heavy rainfall. It is dangerous for farmers and others to approach rice fields when abnormally high water levels occur around them. For example, when water management work such as drying is carried out to reduce methane emissions from rice fields, if a drainage abnormality occurs in which water cannot drain from the rice fields due to blockages in the drains, the methane No reduction effect can be obtained. Furthermore, even if water supply work is carried out to the rice fields to complete drying of the rice fields, if a water supply abnormality occurs in which the rice fields are not flooded due to blockage of the water supply ports or water shortage, Yield will decrease. Therefore, by using the configuration shown in FIG. 14, for example, it is possible to quickly detect the occurrence of water management abnormality in rice fields as described above.
 図14は、農業支援システム100の一例の構成図である。本農業支援システム100は、土地管理端末装置10以外の構成は、図1に示した水田メタン削減支援システム100と同様である。即ち、農業支援システム100は、水田メタン削減支援システム100を構成する。また、前述したように、水田メタン削減支援装置1は、コンピュータなどの情報処理装置から構成されている。水田メタン削減支援装置1は、水田における水管理異常の発生を検出する情報処理装置である。以下、水田メタン削減支援装置1を、情報処理装置1ということがある。 FIG. 14 is a configuration diagram of an example of the agricultural support system 100. This agricultural support system 100 has the same configuration as the rice field methane reduction support system 100 shown in FIG. 1 except for the land management terminal device 10. That is, the agricultural support system 100 constitutes a rice field methane reduction support system 100. Further, as described above, the rice field methane reduction support device 1 is composed of an information processing device such as a computer. The rice field methane reduction support device 1 is an information processing device that detects the occurrence of water management abnormalities in rice fields. Hereinafter, the rice field methane reduction support device 1 may be referred to as the information processing device 1.
 土地管理端末装置10は、水田の周辺の土地を管理する管理者が利用するコンピュータ、タブレット端末装置、又はスマートフォンなどから構成されている。土地の管理者は、個人であってもよいし、営農団体、法人、水田がある地域の自治体などであってもよい。図14では、土地管理端末装置10を1台例示しているが、土地管理端末装置10は2台以上あってもよい。 The land management terminal device 10 is composed of a computer, a tablet terminal device, a smartphone, etc. used by an administrator who manages land around rice fields. The land manager may be an individual, a farming organization, a corporation, a local government in the area where the rice fields are located, or the like. In FIG. 14, one land management terminal device 10 is illustrated, but there may be two or more land management terminal devices 10.
 土地管理端末装置10には、制御部(CPU)、記憶部(メモリ)、通信部(通信インタフェイス)、及び入出力インタフェイスが備わっている(図示省略)。土地管理端末装置10は、通信部によりインターネットなどを介して水田の周辺の土地に関する情報を受信し、当該受信した情報を入出力インタフェイスにより出力(表示)する。 The land management terminal device 10 includes a control unit (CPU), a storage unit (memory), a communication unit (communication interface), and an input/output interface (not shown). The land management terminal device 10 receives information regarding the land around the rice fields through the Internet or the like through the communication unit, and outputs (displays) the received information through the input/output interface.
図15は、情報処理装置1の水管理異常検出動作の一例を示すフローチャートである。情報処理装置1の制御部1aは、例えば雨期などの所定の時期に所定の周期で本水管理異常検出動作を実行する。まず制御部1aは、対象の水田に対応する水田情報と作業情報を農業管理装置2又は当該水田に対応する農業者が利用する農業者端末装置3から通信部1cにより取得する(S121)。通信部1cは、取得部及び出力部の一例である。 FIG. 15 is a flowchart illustrating an example of the water management abnormality detection operation of the information processing device 1. The control unit 1a of the information processing device 1 executes the main water management abnormality detection operation at a predetermined period at a predetermined time such as the rainy season, for example. First, the control unit 1a uses the communication unit 1c to acquire rice field information and work information corresponding to the target rice field from the agricultural management device 2 or the farmer terminal device 3 used by the farmer corresponding to the rice field (S121). The communication unit 1c is an example of an acquisition unit and an output unit.
 また、制御部1aは、水管理装置4又はモニタリング装置6により検出された水田の水管理状態を示す検出水管理情報を農業管理装置2から通信部1cにより取得する(S122)。検出水管理情報には、水田の水位を検出する水位センサ5の検出結果及び、水田がある地域を観測する地球観測衛星7の観測結果(レーダ画像)のうちの少なくともいずれかが含まれている。 Furthermore, the control unit 1a acquires detected water management information indicating the water management state of the rice field detected by the water management device 4 or the monitoring device 6 from the agricultural management device 2 through the communication unit 1c (S122). The detected water management information includes at least one of the detection results of the water level sensor 5 that detects the water level of the rice fields and the observation results (radar images) of the earth observation satellite 7 that observes the area where the rice fields are located. .
 次に、制御部1aは、取得した作業情報から、水田の目標となる水管理状態を示す目標水管理情報を特定する(S123)。このとき、制御部1aは、例えば作業情報に含まれる農作業の実施状況から水田における湛水、灌水、及び落水といった水管理作業の実施状態(水管理状態)を読み込み、当該実施状態から水田の目標となる表面の状態が水面であるか否かを判断して、当該判断結果を目標水管理情報として特定する。又は、制御部1aは、例えば水田の目標水位、若しくは水田の表面が水面である箇所の面積などを、目標水管理情報として特定してもよい。 Next, the control unit 1a identifies target water management information indicating the target water management state of the rice field from the acquired work information (S123). At this time, the control unit 1a reads, for example, the implementation status (water management status) of water management work such as flooding, irrigation, and falling water in the rice field from the implementation status of agricultural work included in the work information, and uses the implementation status to set the goal for the rice field. It is determined whether the surface condition is a water surface or not, and the determination result is specified as target water management information. Alternatively, the control unit 1a may specify, as the target water management information, for example, the target water level of the rice field, or the area of the area where the surface of the rice field is the water surface.
 次に、制御部1aは、目標水管理情報と検出水管理情報との差異に基づいて、水管理異常の有無を判断する(S124)。このとき、制御部1aは、例えば目標水管理情報から水田の目標水位を特定し、検出水管理情報に含まれる水位センサ5の検出結果から水田の実水位(水位の実測値)を特定する。そして、制御部1aは、水田の実水位が目標水位より第1所定値以上高い場合に、水田で水管理異常(異常増水)が発生したと判断する。また、第1所定値より大きい第2所定値が設定され、水田の実水位が目標水位より第2所定値以上高い場合に、制御部1aが水田及び水田の周辺で洪水が発生したと判断してもよい。対して、水田の実水位が目標水位より第1所定値以上高くない場合に、制御部1aは、水田で水管理異常が発生していないと判断する。 Next, the control unit 1a determines whether there is a water management abnormality based on the difference between the target water management information and the detected water management information (S124). At this time, the control unit 1a specifies, for example, the target water level of the rice field from the target water management information, and specifies the actual water level (actual value of the water level) of the rice field from the detection result of the water level sensor 5 included in the detected water management information. Then, when the actual water level in the rice field is higher than the target water level by a first predetermined value or more, the control unit 1a determines that a water management abnormality (abnormal water increase) has occurred in the rice field. Further, if a second predetermined value that is larger than the first predetermined value is set and the actual water level of the paddy field is higher than the target water level by the second predetermined value or more, the control unit 1a determines that a flood has occurred in and around the paddy field. It's okay. On the other hand, if the actual water level in the rice field is not higher than the target water level by the first predetermined value or more, the control unit 1a determines that no water management abnormality has occurred in the rice field.
 他の例として、制御部1aは、例えば目標水管理情報から水田の目標水管理状態を特定し、検出水管理情報に含まれる地球観測衛星7の観測結果から、水田の表面が水面であるか否かを特定する。そして、制御部1aは、水田の目標水管理状態が水田に水を張らない落水状態(水位が実質的にゼロの状態)であるのに対して、地球観測衛星7の観測結果から水田の表面が水面であると特定した場合、水田で水管理異常(水田の排水異常或いは水田周辺での洪水などの異常増水)が発生したと判断する。また、制御部1aは、水田の目標水管理状態が水田に水を張らない落水状態であり、地球観測衛星7の観測結果から水田の表面が水面でないと特定した場合、水田で水管理異常が発生していないと判断する。 As another example, the control unit 1a identifies the target water management state of the rice field from the target water management information, and determines whether the surface of the rice field is a water surface from the observation results of the earth observation satellite 7 included in the detected water management information. Specify whether or not. Then, the control unit 1a determines that the target water management state of the paddy field is a falling water state in which no water is filled in the paddy field (a state in which the water level is substantially zero), and based on the observation results of the earth observation satellite 7, the surface of the paddy field is If it is determined that the water is on the water surface, it is determined that a water management abnormality (abnormal water drainage such as drainage abnormality in the paddy field or abnormal increase in water such as flooding around the paddy field) has occurred in the paddy field. In addition, if the target water management state of the rice field is a falling water state in which the rice field is not filled with water, and the surface of the rice field is not a water surface from the observation results of the earth observation satellite 7, the control unit 1a determines that there is a water management abnormality in the rice field. It is determined that this has not occurred.
 また、他の例として、制御部1aは、例えば水田情報から水田の位置を特定し、目標水管理情報から表面が水面になる水田の目標水面面積を算出する。また、制御部1aは、地球観測衛星7の観測結果から、水田と水田の周辺にある土地の表面が水面であるか否かを判断して、表面が水面である水田及び土地の面積を合わせた実水面面積を算出する。そして、例えば、多雨により水が水田から周辺の土地に溢れ出して、実水面面積が目標水面面積よりも所定値以上大きくなった場合、制御部1aは、水田及び水田の周辺で水管理異常(洪水などの異常増水)が発生したと判断する。また、制御部1aは、実水面面積が目標水面面積よりも所定値以上大きくない場合、水田及び水田の周辺で水管理異常が発生していないと判断する。 As another example, the control unit 1a identifies the position of the rice field from the rice field information, and calculates the target water surface area of the rice field whose surface becomes the water surface from the target water management information. In addition, the control unit 1a determines whether the surface of the paddy field and the land around the paddy field is a water surface based on the observation results of the earth observation satellite 7, and calculates the area of the paddy field and land whose surface is a water surface. Calculate the actual water surface area. For example, if water overflows from the paddy field into the surrounding land due to heavy rain and the actual water surface area becomes larger than the target water surface area by a predetermined value or more, the control unit 1a will cause a water management abnormality ( It is determined that an abnormal water rise (such as a flood) has occurred. Furthermore, if the actual water surface area is not larger than the target water surface area by a predetermined value or more, the control unit 1a determines that no water management abnormality has occurred in or around the rice fields.
 また、上記では水田の水管理異常として排水異常又は異常増水を検出する例を示したが、制御部1aは、目標水管理情報と検出水管理情報との差異から、水田における給水異常を判断するもできる。例えば制御部1aは、水田の実水位が目標水位より第3所定値以上低い場合に、水田で給水異常(水管理異常)が発生したと判断する。第3所定値は、第1所定値よりも小さく設定される。また、制御部1aは、水田の目標水管理状態が湛水状態であるのに対して、地球観測衛星7の観測結果から水田の表面が水面でないと特定した場合も、水田で給水異常が発生したと判断する。 Furthermore, although the above example shows an example in which drainage abnormality or abnormal water increase is detected as a water management abnormality in a rice field, the control unit 1a determines a water supply abnormality in a rice field from the difference between the target water management information and the detected water management information. You can also do it. For example, the control unit 1a determines that a water supply abnormality (water management abnormality) has occurred in the rice field when the actual water level of the rice field is lower than the target water level by a third predetermined value or more. The third predetermined value is set smaller than the first predetermined value. Furthermore, if the target water management state of the paddy field is a flooded state, but the surface of the paddy field is determined to be not a water surface based on the observation results of the earth observation satellite 7, a water supply abnormality occurs in the paddy field. I judge that I did.
 上記のように制御部1aは水管理異常が発生したと判断すると(S125:YES)、水田及び水田の周辺で水管理異常が発生したことを示す水管理異常情報を通信部1cにより出力する(S126)。このとき、制御部1aは、水管理異常の内容、目標水管理情報、及び検出水管理情報などを水管理異常情報に含めてもよい。 When the control unit 1a determines that a water management abnormality has occurred as described above (S125: YES), the communication unit 1c outputs water management abnormality information indicating that a water management abnormality has occurred in and around the rice fields ( S126). At this time, the control unit 1a may include the details of the water management abnormality, target water management information, detected water management information, etc. in the water management abnormality information.
 また、制御部1aは、例えば水田に対応する農業者に関する農業者情報を農業管理装置2又は農業者端末装置3から通信部1cにより取得し、当該農業者情報に基づいて水管理異常情報を通信部1cにより農業者端末装置3に送信(出力)してもよい。この場合、農業者端末装置3は、水管理異常情報を受信すると、当該水管理異常情報を入出力インタフェイスにより表示することで、水田(及び水田周辺)で水管理異常が発生したことを農業者に通知する。このとき、水管理異常として洪水の発生が水管理異常情報で示されている場合、洪水が発生したため水田の周辺に近づかないことを示す警告(メッセージなど)を、農業者端末装置3により農業者に通知してもよい。なお、制御部1aは、水管理異常が発生したと判断する前に、農業者情報を通信部1cにより取得してもよい。 Further, the control unit 1a acquires farmer information regarding a farmer corresponding to a rice field, for example, from the agricultural management device 2 or the farmer terminal device 3 using the communication unit 1c, and communicates water management abnormality information based on the farmer information. The information may be transmitted (output) to the farmer terminal device 3 by the unit 1c. In this case, upon receiving the water management abnormality information, the farmer terminal device 3 displays the water management abnormality information on the input/output interface, thereby informing the farmer that a water management abnormality has occurred in the rice field (and around the rice field). Notify the person. At this time, if the water management abnormality information indicates that a flood has occurred as a water management abnormality, the farmer terminal device 3 sends a warning (message, etc.) to the farmer indicating that he should not go near the rice field due to a flood. may be notified. Note that the control unit 1a may acquire farmer information through the communication unit 1c before determining that a water management abnormality has occurred.
 また、制御部1aは、水田の水管理異常として洪水が発生したと判断した場合、水田の周辺の土地の管理者を示す情報を含む土地管理情報を農業管理装置2又は土地管理端末装置10から通信部1cにより取得し、当該土地管理情報に基づいて水管理異常情報を土地管理端末装置10に通信部1cにより送信(出力)してもよい。土地管理端末装置10は、水管理異常情報を受信すると、当該水管理異常情報を入出力インタフェイスにより表示することで、水田又は水田の周辺で洪水が発生したことを水田の周辺の土地の管理者に通知する。このときも、洪水が発生したため水田の周辺に近づかないことを示す警告(メッセージなど)を、農業者端末装置3により農業者に通知してもよい。なお、制御部1aは、洪水が発生したと判断する前に、土地管理情報を通信部1cにより取得してもよい。 Further, when the control unit 1a determines that a flood has occurred as a water management abnormality in the rice field, the control unit 1a transmits land management information including information indicating the manager of the land around the rice field from the agricultural management device 2 or the land management terminal device 10. The water management abnormality information may be acquired by the communication unit 1c and transmitted (output) to the land management terminal device 10 by the communication unit 1c based on the land management information. When the land management terminal device 10 receives the water management abnormality information, it displays the water management abnormality information through an input/output interface, thereby informing the management of the land surrounding the rice fields that a flood has occurred in or around the rice fields. Notify the person. At this time as well, the farmer terminal device 3 may notify the farmer of a warning (such as a message) indicating that the farmer should not go near the rice field because of a flood. Note that the control unit 1a may acquire land management information from the communication unit 1c before determining that a flood has occurred.
 また、制御部1aは洪水が発生したことを示す水管理異常情報を通信部1cにより農業管理装置2に出力してもよい。また、情報処理装置1、農業管理装置2、及び土地管理端末装置10は、所定のプロバイダにアクセスして、インターネット上の所定のホームページに洪水が発生したことを示す水管理異常情報を表示させてもよい。また、制御部1aは、水管理異常が発生した水田に対応する水管理装置5に対して、当該水管理異常を解消するための給排水動作の実行を命じる給排水指令を直接或いは農業管理装置2を介して送信してもよい。水管理装置5は、上記給排水指令を受信すると、当該給排水指令に基づいてアクチュエータを作動させて、水田に対する排水又は給水を実行する。 Additionally, the control unit 1a may output water management abnormality information indicating that a flood has occurred to the agricultural management device 2 through the communication unit 1c. Further, the information processing device 1, agricultural management device 2, and land management terminal device 10 access a predetermined provider and display water management abnormality information indicating that a flood has occurred on a predetermined homepage on the Internet. Good too. In addition, the control unit 1a directly or instructs the agricultural management device 2 to issue a water supply and drainage command to the water management device 5 corresponding to the rice field in which the water management abnormality has occurred, instructing it to execute a water supply and drainage operation to eliminate the water management abnormality. It may also be sent via. When the water management device 5 receives the water supply and drainage command, it operates an actuator based on the water supply and drainage command to drain water or supply water to the rice field.
 上述した水管理異常検出動作は、制御部1aが1つの水田を対象として実行してもよいし、或いは複数の水田を対象として実行してもよい。また、制御部1aは、所定範囲内にある複数の水田で異常増水(水管理異常)が発生したと判断した場合に、水田がある地域で洪水が発生したと確定し、当該複数の水田のうち、一方の水田で異常増水が発生したと判断し、他方の水田で異常増水が発生してないと判断した場合に、水田がある地域で洪水が発生していないと判断してもよい。 The above-described water management abnormality detection operation may be executed by the control unit 1a for one paddy field, or may be executed for a plurality of paddy fields. In addition, when the control unit 1a determines that an abnormal water increase (water management abnormality) has occurred in a plurality of rice fields within a predetermined range, it is determined that a flood has occurred in the area where the rice fields are located, and the control unit 1a determines that a flood has occurred in the area where the rice fields are located. If it is determined that an abnormal increase in water has occurred in one of the rice fields, and it is determined that an abnormal increase in water has not occurred in the other rice field, it may be determined that no flooding has occurred in the area where the rice fields are located.
 また、制御部1aは、水田で異常増水(水管理異常)が発生したと判断した場合、通信部1cにより農業管理装置2又は水田に対応する水管理装置4と通信して、水田の排水口又は排水用水門で正常排水できない排水エラーが発生しているか否を確認してもよい。例えば、制御部1aは、水田に対応するエラー情報の送信を要求するリクエスト信号を、通信部1cにより農業管理装置2又は水管理装置4に送信する。そして、農業管理装置2又は水管理装置4から排水エラーが発生したことを示すエラー情報を通信部1cにより受信した場合、水田で排水エラーによる異常増水が発生したと判断する。また、制御部1aは、農業管理装置2又は水管理装置4からエラー情報を受信しなかった場合、水田の異常増水が排出エラーによるものではなく、多雨などによる洪水であると判断する。即ち、制御部1aは、水田の異常増水が排水エラーではないことを確認してから、当該異常増水が水田周辺の洪水によるものであると判断する。 In addition, when the control unit 1a determines that an abnormal increase in water (water management abnormality) has occurred in the paddy field, the communication unit 1c communicates with the agricultural management device 2 or the water management device 4 corresponding to the paddy field, and Alternatively, it may be confirmed whether a drainage error has occurred in the drainage sluice gate that prevents normal drainage. For example, the control unit 1a transmits a request signal requesting transmission of error information corresponding to a rice field to the agricultural management device 2 or the water management device 4 through the communication unit 1c. When the communication unit 1c receives error information indicating that a drainage error has occurred from the agricultural management device 2 or the water management device 4, it is determined that an abnormal water increase has occurred in the rice field due to a drainage error. Furthermore, if the control unit 1a does not receive error information from the agricultural management device 2 or the water management device 4, it determines that the abnormal increase in water in the rice fields is not due to a discharge error but is a flood caused by heavy rain or the like. That is, after confirming that the abnormal increase in water in the rice field is not due to a drainage error, the control unit 1a determines that the abnormal increase in water is due to flooding around the rice field.
 また、制御部1aが、地球観測衛星7の観測結果、即ちレーダ画像(SAR衛星画像)を用いて水田の異常増水の有無を判断する場合、水田の表面が水面であるときのレーダ画像と、水田の表面が水面でないときのレーダ画像とから、水田の表面が水面であるか否かを判定するための閾値を設定してもよい。また、当該閾値を用いて、例えば他の圃場(畑)、道路、住宅街、工業団地、及び河川敷などのような、水田以外の土地の表面が水面であるか否かを判断してもよい。そして、水田以外の土地において異常増水(又は洪水)の有無を判断する場合に、図15の水管理異常検出動作を適用してもよい。この場合、制御部1aが、例えば地球観測衛星7の観測結果から、対象地の実際の水位・水面状態を検出することで、種々の対象地における異常増水(又は洪水)の有無を検出することができ、また対象地に水位センサ5などを設置しなくても、異常増水(又は洪水)の有無を広範囲にわたって検出することが可能となる。 In addition, when the control unit 1a determines whether there is an abnormal increase in water in a rice field using the observation results of the earth observation satellite 7, that is, a radar image (SAR satellite image), a radar image when the surface of the rice field is a water surface, A threshold value for determining whether the surface of the rice field is a water surface may be set based on a radar image when the surface of the rice field is not a water surface. In addition, the threshold value may be used to determine whether the surface of land other than rice fields, such as other fields (fields), roads, residential areas, industrial parks, riverbeds, etc., is a water surface. . The water management abnormality detection operation shown in FIG. 15 may be applied when determining the presence or absence of abnormal water rise (or flooding) in land other than rice fields. In this case, the control unit 1a detects the presence or absence of abnormal water rise (or flooding) in various target locations by detecting the actual water level and water surface condition of the target locations, for example, from the observation results of the earth observation satellite 7. Moreover, the presence or absence of abnormal water rise (or flooding) can be detected over a wide range without installing a water level sensor 5 or the like in the target area.
 上記実施形態では、水田メタン削減支援装置1を構成する情報処理装置が、水管理異常検出動作を実行した例を示したが、これに代えて、農業管理装置2を構成する情報処理装置が、水管理異常検出動作を実行してもよい。又は、水田メタン削減支援装置1及び農業管理装置2とは異なる情報処理装置が、水管理異常検出動作を実行してもよい。 In the embodiment described above, an example was shown in which the information processing device constituting the rice field methane reduction support device 1 executed the water management abnormality detection operation, but instead of this, the information processing device constituting the agricultural management device 2 A water management abnormality detection operation may also be performed. Alternatively, an information processing device different from the rice field methane reduction support device 1 and the agricultural management device 2 may perform the water management abnormality detection operation.
 以上説明した本実施形態の水田メタン削減支援装置1及び水田メタン削減支援システム100は、以下の構成を備え、効果を奏する。 The rice field methane reduction support device 1 and the rice field methane reduction support system 100 of this embodiment described above have the following configurations and are effective.
 本実施形態の水田メタン削減支援装置1は、水田のメタンの排出量を算出するためのモデルデータ(図5)が記憶された記憶部1bと、モデルデータに基づいて水田のメタン排出量を算出する制御部1aと、を備え、制御部1aは、農業者に関する農業者情報と、当該農業者情報に対応する水田で作物を栽培するための農作業に関する作業情報とを取得して、当該作業情報に含まれる農作業の実施状態に基づいて水田の所定の基本メタン排出量から削減されたメタン削減量を算出する。 The rice field methane reduction support device 1 of this embodiment includes a storage unit 1b that stores model data (FIG. 5) for calculating the amount of methane emissions from the rice fields, and calculates the amount of methane emissions from the rice fields based on the model data. The control unit 1a acquires farmer information regarding a farmer and work information regarding agricultural work for cultivating crops in a paddy field corresponding to the farmer information, and acquires the work information. Calculate the amount of methane reduced from the predetermined basic methane emissions of rice fields based on the implementation status of agricultural operations included in.
 また、本実施形態の水田メタン削減支援システム100は、水田のメタン排出量の削減を支援する水田メタン削減支援装置1と、複数の水田と複数の農業者に関する情報を格納したデータベース2dが構築された農業管理装置2と、を含んでいる。 In addition, the rice field methane reduction support system 100 of the present embodiment includes a rice field methane reduction support device 1 that supports the reduction of methane emissions from rice fields, and a database 2d that stores information regarding a plurality of rice fields and a plurality of farmers. and an agricultural management device 2.
 上記構成によれば、農業者が水田での農作業の実施状態を変更することで、水田メタン削減支援装置1により水田のメタン削減量が定量的に評価されるので、利便性を向上させることができる。またこの結果、水田からメタンを削減する取り組みが農業者によって推進され、農業分野でのメタンの削減を活性化させることが可能となる。 According to the above configuration, the amount of methane reduction in the rice field is quantitatively evaluated by the rice field methane reduction support device 1 when the farmer changes the implementation status of agricultural work in the rice field, so convenience can be improved. can. This will also encourage farmers to take steps to reduce methane from rice fields, making it possible to activate methane reduction in the agricultural sector.
 本実施形態では、制御部1aは、作業情報に含まれ且つ水田の水管理状態を示す水管理情報に基づいて、水田のメタン削減量を算出する。これにより、農業者が水田の間断灌漑又は中干などの水管理作業の実施状態を変更することで、水田メタン削減支援装置1により水田のメタン削減量が定量的に評価され、利便性を向上させることができる。 In the present embodiment, the control unit 1a calculates the amount of methane reduction in the rice field based on water management information included in the work information and indicating the water management state of the rice field. As a result, farmers can quantitatively evaluate the amount of methane reduction in rice fields by the rice field methane reduction support device 1 by changing the implementation status of water management work such as intermittent irrigation or mid-drying of rice fields, improving convenience. can be done.
 また、本実施形態では、制御部1aは、水田の湛水、灌水、及び落水を示す水管理情報に基づいて、水田における作物栽培中の中干状態を特定し、当該中干状態に基づいて水田のメタン削減量を算出する。これにより、農業者が水田の中干を実施したり、中干期間を延長したりすることで、水田メタン削減支援装置1により水田のメタン削減量が定量的に評価され、利便性を向上させることができる。 Further, in the present embodiment, the control unit 1a identifies a dry state during crop cultivation in the paddy field based on water management information indicating flooding, irrigation, and overwatering of the paddy field, and identifies a dry state during crop cultivation in the paddy field. Calculate the amount of methane reduction in rice fields. As a result, when farmers carry out mid-drying of rice fields or extend the mid-drying period, the rice field methane reduction support device 1 quantitatively evaluates the amount of methane reduction in the rice fields, improving convenience. be able to.
 また、本実施形態では、制御部1aは、水田のメタン削減量を示す評価情報を、農業者情報に基づいて農業者に通知する。また、一実施形態では、制御部1aは、農業者情報に基づいて農業者端末装置3に、水田のメタン削減量を示す評価情報を通信部1cにより送信する。これにより、農業者は、水田での農作業の実施状態を変更したことによるメタンの削減効果を容易に把握することができ、利便性を向上させることができる。 Furthermore, in the present embodiment, the control unit 1a notifies the farmer of evaluation information indicating the amount of methane reduction in the rice field based on the farmer information. Further, in one embodiment, the control unit 1a transmits evaluation information indicating the amount of methane reduction in the rice field to the farmer terminal device 3 based on the farmer information using the communication unit 1c. As a result, farmers can easily grasp the methane reduction effect caused by changing the implementation status of agricultural work in rice fields, and can improve convenience.
 また、本実施形態では、制御部1aは、水田に関する水田情報を取得して、当該水田情報と作業情報とモデルデータとに基づいて、水田のメタン排出量を算出する算出式を設定し、水田の従来の水管理情報に基づいて、水田の基本中干状態を設定し、算出式と基本中干状態とに基づいて、水田の基本メタン排出量を算出し、算出式と基本中干状態と基本メタン排出量とを、水田情報と関連付けて記憶部1bに記憶させ、水田の変更された水管理情報に基づいて、水田の中干状態を特定し、水田の中干状態と算出式とに基づいて、水田のメタン排出量を算出し、水田の基本メタン排出量からメタン排出量を減算して、水田のメタン削減量を算出する。これにより、水田の基本中干状態に対して実際の中干期間が延長されるなどのように、実際の中干状態が変更されることで、水田のメタン排出量の基本メタン排出量に対する削減量を算出することができる。 Further, in the present embodiment, the control unit 1a acquires rice field information regarding the rice fields, sets a calculation formula for calculating the methane emissions of the rice fields based on the rice field information, work information, and model data, and Based on the conventional water management information of The basic methane emission amount is stored in the storage unit 1b in association with the rice field information, the dry state of the rice field is specified based on the changed water management information of the rice field, and the dry state of the rice field is combined with the calculation formula. Based on this, the methane emissions from the rice fields are calculated, and the methane emissions are subtracted from the basic methane emissions from the rice fields to calculate the amount of methane reduction from the rice fields. This will reduce the amount of methane emissions from rice fields compared to the basic methane emissions by changing the actual drying period, such as extending the actual drying period compared to the basic drying state of rice fields. The amount can be calculated.
 また、本実施形態では、制御部1aは、シミュレーションで水田の基本中干状態に含まれる基本中干期間を前後に所定間隔で延長する毎に、当該延長後の中干期間と水田の算出式と基本中干期間と基本メタン排出量とに基づいてメタン削減量を算出して、水田の中干期間とメタン削減量の相関関係を導出し、当該相関関係を示す第1相関データを記憶部1bに記憶させ、水田の変更された水管理情報に基づいて、水田の中干期間を特定し、当該中干期間と第1相関データとに基づいて、水田のメタン削減量を算出する。これにより、水田のメタン排出量を算出することなく、中干期間と第1相関データとに基づいてメタン削減量を容易に算出することができる。 In addition, in the present embodiment, each time the basic drying period included in the basic drying state of paddy fields is extended at a predetermined interval before and after in the simulation, the control unit 1a calculates the calculation formula for the medium drying period after the extension and the paddy field. The amount of methane reduction is calculated based on the basic dry period and the basic methane emission amount, the correlation between the dry period of rice fields and the amount of methane reduction is derived, and the first correlation data indicating the correlation is stored in the storage unit. 1b, a mid-dry period of the paddy field is specified based on the changed water management information of the paddy field, and a methane reduction amount of the paddy field is calculated based on the mid-dry period and the first correlation data. Thereby, the methane reduction amount can be easily calculated based on the mid-dry period and the first correlation data without calculating the methane emission amount of the rice fields.
 また、本実施形態では、制御部1aは、水田の水田情報及び作業情報のうちの少なくともいずれかの変更に伴って、水田の算出式を更新する。これにより、水田の基本メタン排出量又は中干期間とメタン削減量の相関関係を示す第1相関データも更新することができ、水田のメタン削減量の正確性を向上させることが可能となる。 Furthermore, in the present embodiment, the control unit 1a updates the calculation formula for the paddy field in response to a change in at least one of the paddy field information and work information of the paddy field. As a result, the first correlation data indicating the correlation between the basic methane emissions of the rice fields or the dry period and the amount of methane reduction can also be updated, making it possible to improve the accuracy of the amount of methane reduction in the rice fields.
 また、本実施形態では、水田メタン削減支援装置1は、外部装置と通信する通信部1cを備え、制御部1aは、複数の水田と複数の農業者に関する情報を格納したデータベース2dが構築された農業管理装置2と、農業者が利用する農業者端末装置3とのうちの少なくともいずれかから、農業者情報と当該農業者情報に対応する水田の水田情報及び作業情報を通信部1cにより取得し、水田の水管理状態を検出する検出装置4、6(水管理装置4、モニタリング装置6)、農業管理装置2、及び農業者端末装置3のうちの少なくともいずれかから、農業者情報に対応する水田の水管理情報を通信部1cにより取得する。これにより、水田メタン削減支援装置1は、検出装置4、6、農業管理装置2、又は農業者端末装置3から取得した水田の水管理状態を示す水管理情報に基づいて、中干状態を正確に特定することができる。 In addition, in this embodiment, the rice field methane reduction support device 1 includes a communication unit 1c that communicates with an external device, and the control unit 1a has a database 2d that stores information regarding a plurality of rice fields and a plurality of farmers. The communication unit 1c acquires farmer information and paddy field information and work information of the paddy field corresponding to the farmer information from at least one of the agricultural management device 2 and the farmer terminal device 3 used by the farmer. , the detection devices 4 and 6 (water management device 4, monitoring device 6), agricultural management device 2, and farmer terminal device 3 corresponding to farmer information. The water management information of the rice fields is acquired by the communication unit 1c. As a result, the rice field methane reduction support device 1 can accurately determine the mid-dry state based on the water management information indicating the water management state of the rice field acquired from the detection devices 4 and 6, the agricultural management device 2, or the farmer terminal device 3. can be specified.
 また、本実施形態では、農業者端末装置3は、農業者情報、作業情報、及び水田情報のうちの少なくともいずれかを入力可能に構成されている。このため、農業者情報、作業情報、又は水田情報に変更があっても、農業者が変更後の農業者情報、作業情報、又は水田情報を即座に入力することができる。また、農業者は、検出装置4、6によって検出することができない水田の水管理状態を示す水管理情報を含んだ作業情報を、農業者端末装置3により入力することができる。そして、水田メタン削減支援装置1が、水田の水管理情報に基づいて、中干状態を特定することができる。 Furthermore, in this embodiment, the farmer terminal device 3 is configured to be able to input at least one of farmer information, work information, and rice field information. Therefore, even if there is a change in farmer information, work information, or rice field information, the farmer can immediately input the changed farmer information, work information, or rice field information. Further, the farmer can input, using the farmer terminal device 3, work information including water management information indicating the water management state of the rice fields that cannot be detected by the detection devices 4 and 6. Then, the rice field methane reduction support device 1 can identify the dry state based on the water management information of the rice field.
 また、本実施形態では、検出装置4(水管理装置4)は、水田の水位を検出する水位センサ5の検出結果から、水田における作物栽培中の水管理状態を検出し、制御部1aは、検出装置4により検出された水田の水管理状態を示す水管理情報を周期的に又は所定のタイミングで取得して、当該取得した複数の水管理情報に基づいて、水田の中干状態を特定する。これにより、水位センサ5による水田の水位の検出結果に基づいて、水田の湛水、灌水、及び落水の水管理状態を正確に検出し、当該水管理状態を示す水管理情報に基づいて、水田の中干状態をより正確に特定することができる。 Further, in this embodiment, the detection device 4 (water management device 4) detects the water management state during crop cultivation in the paddy field from the detection result of the water level sensor 5 that detects the water level in the paddy field, and the control unit 1a The water management information indicating the water management state of the rice field detected by the detection device 4 is acquired periodically or at a predetermined timing, and the dry state of the rice field is identified based on the plurality of acquired water management information. . Thereby, based on the water level detection result of the rice field by the water level sensor 5, the water management status of the rice field including flooding, irrigation, and falling water is accurately detected, and based on the water management information indicating the water management status, the rice field is It is possible to more accurately identify the mid-dry state of
 また、本実施形態では、検出装置6(モニタリング装置6)は、飛翔体又は飛行体に搭載された観測装置(地球観測衛星)7による水田の観測結果から、水田における作物栽培中の水管理状態を検出し、制御部1aは、検出装置6により検出された水田の水管理状態を示す水管理情報を周期的に又は所定のタイミングで取得して、当該取得した複数の水管理情報に基づいて、水田の中干状態を特定する。これにより、観測装置7による水田の観測結果に基づいて、水田の湛水、灌水、及び落水の水管理状態を正確に検出し、当該水管理状態を示す水管理情報に基づいて、水田の中干状態をより正確に特定することができる。また、水田に水管理状態を検出する装置を設置しなくてもよいので、当該装置の設置にかかるコストを削減することができる。 In the present embodiment, the detection device 6 (monitoring device 6) detects the water management status during crop cultivation in the paddy field based on the observation results of the paddy field by the flying object or the observation device (earth observation satellite) 7 mounted on the flying object. , the control unit 1a periodically or at a predetermined timing acquires water management information indicating the water management state of the paddy field detected by the detection device 6, and based on the acquired plurality of water management information. , to identify the dry state of rice fields. As a result, the water management status of flooding, irrigation, and falling water in the rice field can be accurately detected based on the observation results of the rice field by the observation device 7, and the water management status of the rice field can be accurately detected based on the water management information indicating the water management status. The dry state can be identified more accurately. Furthermore, since it is not necessary to install a device for detecting water management conditions in the rice field, the cost for installing the device can be reduced.
 また、本実施形態では、観測装置7は合成開口レーダを有している。これにより、天候及び雲の影響を受けずに、合成開口レーダにより水田を観測して、当該観測結果に基づいて、水田の湛水、灌水、又は落水の水管理状態を正確に検出し、当該水管理状態を示す水管理情報に基づいて、水田の中干状態をより正確に特定することができる。 Furthermore, in this embodiment, the observation device 7 has a synthetic aperture radar. As a result, rice fields can be observed using synthetic aperture radar without being affected by weather or clouds, and based on the observation results, the water management status of rice fields such as flooding, irrigation, or falling water can be accurately detected. Based on the water management information indicating the water management state, it is possible to more accurately identify the dry state of the rice field.
 また、本実施形態では、制御部1aは、水田の中干期間とメタン削減量の相関関係を示す第1相関データに基づいて、メタン削減量が所定値以上になる水田の推奨中干期間を判断し、推奨中干期間を含む作業提案情報を、農業者情報に基づいて農業者に通知する。これにより、水田からのメタンの削減に適した推奨中干期間が農業者に通知されるので、農業者が推奨中干期間に基づいて水田の中干を実施して、水田からのメタンを容易且つ有効に削減することができ、利便性を一層向上させることが可能となる。 Furthermore, in the present embodiment, the control unit 1a determines a recommended dry period for rice fields in which the amount of methane reduction is equal to or greater than a predetermined value, based on first correlation data indicating the correlation between the dry period of rice fields and the amount of methane reduction. Based on the farmer's information, the farmer is notified of work proposal information including the recommended mid-drying period. This will notify farmers of the recommended mid-drying period suitable for reducing methane from paddy fields, so farmers can easily reduce methane from paddy fields by carrying out mid-drying of paddy fields based on the recommended mid-drying period. In addition, it is possible to effectively reduce the amount, and it becomes possible to further improve convenience.
 また、本実施形態では、制御部1aは、水田の基本中干期間と水田に対応する水田情報と作業情報とに基づいて、水田の作物の基本収量を推定し、シミュレーションで田の基本中干期間を前後に所定間隔で延長する毎に、当該延長後の中干期間と水田の水田情報と作業情報とに基づいて、水田の作物の収量を推定し、当該収量と基本収量とに基づいて作物の減収量を算出して、水田の干期間と前作物の減収量の相関関係を導出し、当該相関関係を示す第2相関データを記憶部1bに記憶させ、第1相関データと第2相関データとに基づいて、メタン削減量が第1所定値以上で且つ作物の減収量が第2所定値以下になる水田の推奨中干期間を判断する。これにより、水田のメタン削減量と作物の収量とのバランスがとられた推奨中干期間が農業者に通知されるので、農業者が推奨中干期間に基づいて水田の中干を容易に実施して、作物の減収量を低く抑えながら、水田からのメタンを削減することができ、利便性を一層向上させることが可能となる。 Further, in the present embodiment, the control unit 1a estimates the basic yield of crops in the paddy field based on the basic dry period of the paddy field, the paddy field information and work information corresponding to the paddy field, and performs the simulation to estimate the basic yield of crops in the paddy field. Each time the period is extended at predetermined intervals, the yield of crops in the paddy field is estimated based on the mid-dry period after the extension, the paddy field information and the work information of the paddy field, and the yield is estimated based on the yield and the basic yield. The yield loss of the crop is calculated, the correlation between the dry period of the paddy field and the yield loss of the previous crop is derived, second correlation data indicating the correlation is stored in the storage unit 1b, and the first correlation data and the second correlation data are stored. Based on the correlation data, a recommended mid-drying period for rice fields in which the amount of methane reduction is greater than or equal to a first predetermined value and the amount of crop yield reduction is less than or equal to a second predetermined value is determined. As a result, farmers will be notified of the recommended drying period that balances the amount of methane reduction in rice fields with crop yield, making it easier for farmers to carry out drying of rice fields based on the recommended drying period. As a result, it is possible to reduce methane from rice fields while keeping the loss of crop yields low, making it possible to further improve convenience.
 また、本実施形態では、制御部1aは、水田のメタン削減量と水田に対応する農業者情報とを含む報告情報を、通信部1cによりクレジット管理装置8に送信し、水田のメタン削減量に応じてクレジット管理装置8から発行された電子的なクレジットを示すクレジット情報を通信部1cにより取得し、クレジット情報を農業者情報に基づいて農業者に通知する。これにより、農業者は煩雑な手続きを行わなくても、水田での農作業変更に伴って生じたメタン削減量に応じたクレジットを得ることができ、農業者の利便性及び有益性を向上させることが可能となる。 Further, in the present embodiment, the control unit 1a transmits report information including the amount of methane reduction in the rice fields and farmer information corresponding to the rice fields to the credit management device 8 through the communication unit 1c, and reports the amount of methane reduction in the rice fields. Accordingly, the communication unit 1c acquires credit information indicating the electronic credit issued from the credit management device 8, and notifies the farmer of the credit information based on the farmer information. As a result, farmers can obtain credits based on the amount of methane reduced due to changes in farming practices in rice fields without having to go through complicated procedures, improving convenience and profitability for farmers. becomes possible.
 また、本実施形態では、制御部1aは、複数の水田のメタン削減量を合算して、当該合算したメタン削減量を示す報告情報を、通信部1cによりクレジット管理装置8に送信し、当該合算したメタン削減量に応じてクレジット管理装置8から発行されたクレジットを示すクレジット情報を通信部1cにより取得し、当該クレジット情報で示されるクレジットを複数の水田のメタンの削減量に応じて分配し、当該分配したクレジットを示すクレジット情報を農業者情報に基づいて、複数の水田にそれぞれ対応する農業者に通知する。これにより、農業者は水田毎に煩雑な手続きを行わなくても、農作業の変更に伴って生じたメタン削減量に応じたクレジットを一括で得ることができ、また、1枚1枚の水田のメタン削減量が少なくても、当該メタン削減量に応じたクレジットを得ることができる。このため、農業者の利便性及び有益性を一層向上させることが可能となる。 Further, in the present embodiment, the control unit 1a adds up the methane reduction amount of a plurality of rice fields, transmits report information indicating the combined methane reduction amount to the credit management device 8 through the communication unit 1c, and The communication unit 1c acquires credit information indicating credits issued from the credit management device 8 according to the amount of methane reduction that has been made, and distributes the credits indicated by the credit information according to the amount of methane reduction of a plurality of rice fields, Credit information indicating the distributed credits is notified to farmers corresponding to each of the plurality of rice fields based on the farmer information. As a result, farmers can receive credits in a lump sum based on the amount of methane reduced due to changes in farming practices, without having to go through complicated procedures for each rice field. Even if the amount of methane reduction is small, credits can be obtained according to the amount of methane reduction. Therefore, it becomes possible to further improve convenience and usefulness for farmers.
 また、本実施形態では、制御部1aは、水田に関する水田情報、水田における従来の作業情報、水田からのメタンを削減するために変更された農作業を示す対象の作業情報、モデルデータに基づいて設定した水田のメタン排出量を算出する算出式、及び当該算出式に含まれる変数のうちの少なくともいずれかを、報告情報に含めて通信部1cによりクレジット管理装置8に送信する。これにより、クレジット管理業者は、クレジット管理装置8により受信した報告情報に含まれる水田情報、作業情報、算出式、又は変数によって、当該報告情報に含まれるメタン削減量を検証したり、当該メタン削減量の妥当性を判断したりすることができ、クレジットを正当に発行することができる。 Further, in the present embodiment, the control unit 1a makes settings based on rice field information regarding rice fields, conventional work information in the rice fields, target work information indicating agricultural work that has been changed to reduce methane from the rice fields, and model data. At least one of the calculation formula for calculating the amount of methane emissions from the rice fields and the variables included in the calculation formula is included in the report information and transmitted to the credit management device 8 by the communication unit 1c. As a result, the credit management company can verify the amount of methane reduction included in the report information, using the rice field information, work information, calculation formula, or variable included in the report information received by the credit management device 8, and It is possible to judge the validity of the amount and issue credits legitimately.
 また、本実施形態では、制御部1aは、水田のメタン削減量に応じたクレジットを見積もり、当該見積もったクレジットを示す仮クレジット情報を報告情報に含めて通信部1cによりクレジット管理装置8に送信し、又は仮クレジット情報を農業者情報に基づいて農業者に通知する。これにより、水田のメタン削減量に応じたクレジットの見積もりを、水田メタン削減支援装置1で管理することができ、又は農業者が把握することができる。 Further, in the present embodiment, the control unit 1a estimates credits according to the amount of methane reduction in rice fields, includes provisional credit information indicating the estimated credits in report information, and transmits the report information to the credit management device 8 through the communication unit 1c. , or notify the farmer of the provisional credit information based on the farmer information. This allows the rice field methane reduction support device 1 to manage the credit estimate according to the amount of methane reduction in the rice field, or allows the farmer to grasp the estimate.
 また、本実施形態では、水田メタン削減支援装置1は、情報を入出力する入出力インタフェイス1dを備え、制御部は1a、農業者が所有するクレジットを売却したい旨を示す売却希望情報を、農業者端末装置3から通信部1cにより受信すると、当該売却希望情報で示されるクレジットの代価を所定の取引者に支払わせる指示を示す支払指示情報を入出力インタフェイス1dにより出力し、取引者が代価を農業者に支払ったことを示す支払完了情報が、入出力インタフェイス1dにより入力されると、クレジットの所有者を農業者から取引者に変更する。これにより、農業者は煩雑な手順で直接需要者とクレジットを取引しなくても、所有するクレジットの代価を容易に得ることができ、農業者の利便性及び有益性を一層向上させることが可能となる。 In addition, in this embodiment, the rice field methane reduction support device 1 includes an input/output interface 1d for inputting and outputting information, and the control unit 1a sends sale wish information indicating that the farmer wants to sell credits owned by the farmer. When received by the communication unit 1c from the farmer terminal device 3, the input/output interface 1d outputs payment instruction information indicating an instruction to make a predetermined trader pay the price of the credit indicated by the relevant sale information, and the trader When payment completion information indicating that the price has been paid to the farmer is input through the input/output interface 1d, the owner of the credit is changed from the farmer to the trader. This allows farmers to easily obtain compensation for the credits they own without having to deal with credits directly with consumers through complicated procedures, further improving convenience and profitability for farmers. becomes.
 また、本実施形態では、制御部1aは、クレジットを買い取りたい旨を示す買取希望情報を、需要者が利用する需要者端末装置9から通信部1cにより受信すると、当該買取希望情報で示されるクレジットの代価を需要者に支払わせる支払指令を、需要者端末装置9に送信し、需要者が代価を取引者に支払ったことを示す支払完了情報を、需要者端末装置9から通信部1cにより受信すると、クレジットの所有者を取引者から需要者に変更する。これにより、水田のメタン削減量に応じて発行されたクレジットを、需要者との間で容易に取引することができ、利便性を一層向上させることが可能となる。 Further, in the present embodiment, when the communication unit 1c receives purchase request information indicating that the customer wants to purchase credits from the consumer terminal device 9 used by the customer, the control unit 1a receives the purchase request information indicated by the purchase request information. A payment instruction to make the consumer pay the price is sent to the consumer terminal device 9, and payment completion information indicating that the consumer has paid the price to the transaction person is received by the communication unit 1c from the consumer terminal device 9. Then, the owner of the credit is changed from the transactor to the consumer. As a result, credits issued according to the amount of methane reduction in rice fields can be easily traded with consumers, making it possible to further improve convenience.
 本実施形態の水田メタン削減支援装置1は、水田に関する水田情報、水田で作物を栽培するための農作業に関する作業情報、及び観測装置(地球観測装置)7により観測された水田を含む地域の観測画像のデータを取得する取得部(通信部、通信インタフェイス)1cと、水田情報と作業情報と観測画像のデータとに基づいて、作物の栽培中に水田から排出されるメタンを削減するための水田の水管理の状態と当該状態が継続した期間とを特定して、当該水管理の状態及び期間を示す特定水管理情報を生成する制御部1aと、特定水管理情報を記憶する記憶部1bと、を備えている。 The rice field methane reduction support device 1 of this embodiment provides rice field information regarding rice fields, work information regarding agricultural work for cultivating crops in the rice fields, and observation images of the area including the rice fields observed by the observation device (earth observation device) 7. An acquisition unit (communication unit, communication interface) 1c that acquires data on paddy fields to reduce methane emitted from the paddy fields during crop cultivation based on the paddy field information, work information, and observation image data. a control unit 1a that identifies the state of water management and the period during which the state continued and generates specific water management information indicating the state and period of water management; and a storage unit 1b that stores the specific water management information. , is equipped with.
 本実施形態の水田メタン削減支援システム100は、作物を栽培する水田からのメタンの排出量の削減を支援する水田メタン削減支援装置1と、水田と水田で行う農業に関する情報を格納したデータベース2dが構築された農業管理装置2と、を含み、水田メタン削減支援装置1は、上記の制御部1a、記憶部1b、及び取得部1cを備え、農業管理装置2及び水田に対応する農業者が利用する農業者端末装置3のうちの少なくともいずれかから水田情報及び作業情報を取得部1cにより取得し、且つ地上を観測する観測装置7の観測データを記憶する観測管理装置(モニタリング装置6又は観測データサーバ)から、観測装置7により観測された水田を含む地域の観測画像のデータを取得部1cにより取得する。 The rice field methane reduction support system 100 of this embodiment includes a rice field methane reduction support device 1 that supports the reduction of methane emissions from rice fields where crops are cultivated, and a database 2d that stores information about rice fields and agriculture performed in the rice fields. The constructed agricultural management device 2, and the rice field methane reduction support device 1 includes the above-mentioned control section 1a, storage section 1b, and acquisition section 1c, and is used by the agricultural management device 2 and the farmer corresponding to the paddy field. Observation management device (monitoring device 6 or observation data The acquisition unit 1c acquires observation image data of the area including the rice fields observed by the observation device 7 from the server (server).
 上記構成により、観測装置7の観測画像のデータから、水田のメタンの排出量を削減するための水管理の状態及び期間を客観的に検出することができる。また、その検出した水田の水管理の状態及び期間を示す特定水管理情報の高い証拠性と正当性を確保することができ、改ざんを防止することもできる。さらにこの結果、水田のメタンの排出量を削減するための農業者による水管理作業が客観的に認められ、当該取り組みが農業者により推進され易くなる。 With the above configuration, it is possible to objectively detect the state and period of water management for reducing methane emissions in rice fields from the observation image data of the observation device 7. Furthermore, it is possible to ensure high evidentiality and validity of the specific water management information indicating the state and period of water management of the detected rice fields, and it is also possible to prevent falsification. Furthermore, as a result, farmers' water management efforts to reduce methane emissions from rice fields will be objectively recognized, making it easier for farmers to promote such efforts.
 本実施形態では、作業情報には、予め入力された水田の水管理の状態及び期間を示す入力水管理情報が含まれており、制御部1aは、入力水管理情報に基づいて複数の観測画像のデータを取得部1cにより取得し、複数の観測画像のデータに基づいて入力水管理情報で示される水管理の状態及び期間を検証して、当該検証結果を示す検証情報を記憶部1bに記憶させ、入力水管理情報で示される水管理の状態及び期間が正当である場合に、入力水管理情報を特定水管理情報として記憶部1bに記憶させる。 In this embodiment, the work information includes input water management information indicating the state and period of water management of the paddy field inputted in advance, and the control unit 1a selects a plurality of observation images based on the input water management information. data is acquired by the acquisition unit 1c, the state and period of water management indicated by the input water management information is verified based on the data of the plurality of observation images, and verification information indicating the verification result is stored in the storage unit 1b. If the state and period of water management indicated by the input water management information are valid, the input water management information is stored in the storage unit 1b as specific water management information.
 上記により、例えば農業者が農業者端末装置3により入力した入力水管理情報に関連する複数の観測画像のデータを取得し、当該入力水管理情報で示される水田の水管理の状態及び期間を示す入力水管理情報が正当であるか又は不当であるかを確認することができる。そして、正当な入力水管理情報が特定水管理情報として記憶部1bに記憶されるので、以降特定水管理情報を信頼して活用することができる。また、例えば農業者が使用する水管理装置4又は水位センサ5などの検出装置により検出された水田の水管理状態を示す情報が農業管理装置2などに入力された場合にも、当該情報を入力水管理情報とみなして、当該入力水管理情報に関連する複数の観測画像のデータを取得し、当該入力水管理情報が正当であるか又は不当であるかを確認することができる。さらにこの場合、検証結果から、検出装置の異常を判断することが可能になる。 As a result of the above, for example, data of a plurality of observation images related to the input water management information inputted by the farmer using the farmer terminal device 3 is acquired, and the state and period of water management of the paddy field indicated by the input water management information is shown. It is possible to confirm whether input water management information is valid or invalid. Since the valid input water management information is stored in the storage unit 1b as specific water management information, the specific water management information can be used with confidence from now on. For example, when information indicating the water management status of a paddy field detected by a detection device such as the water management device 4 or water level sensor 5 used by a farmer is input to the agricultural management device 2, the information is input. It is possible to acquire data of a plurality of observation images related to the input water management information by regarding it as water management information, and to check whether the input water management information is valid or invalid. Furthermore, in this case, it becomes possible to determine an abnormality in the detection device from the verification results.
 また、本実施形態では、制御部1aは、入力水管理情報で示される水管理の期間に観測装置7により観測された観測画像のデータを取得する。これにより、入力水管理情報を検証するために取得する観測装置7の観測画像のデータの数を限定的に減少させて、当該データの取得に要する費用を低減することができる。 Furthermore, in the present embodiment, the control unit 1a acquires data of observation images observed by the observation device 7 during the water management period indicated by the input water management information. Thereby, the number of observation image data of the observation device 7 that is acquired in order to verify the input water management information can be reduced to a limited extent, and the cost required for acquiring the data can be reduced.
 また、本実施形態では、制御部1aは、複数の観測画像のデータから水管理の状態を判断して、当該判断した水管理の状態と、入力水管理情報で示される水管理の状態とが対応している場合、入力水管理情報が正当であることを示す情報を検証情報に含め、且つ入力水管理情報を特定水管理情報として記憶部1bに記憶させる。これにより、入力水管理情報及び特定水管理情報の高い証拠性及び正当性をより確保することができる。 Further, in the present embodiment, the control unit 1a determines the water management state from data of a plurality of observation images, and the determined water management state and the water management state indicated by the input water management information are different from each other. If the input water management information is compatible, information indicating that the input water management information is valid is included in the verification information, and the input water management information is stored in the storage unit 1b as specific water management information. Thereby, high evidentiality and validity of the input water management information and specific water management information can be further ensured.
 また、本実施形態では、制御部1aは、水田に対応する農業者、即ち水田で農作業を行う農業者又は入力水管理情報を入力した農業者に関する農業者情報を取得部1cにより取得し、複数の観測画像のデータから水管理の状態を判断して、当該判断した水管理の状態と、入力水管理情報で示される水管理の状態とが対応していなかった場合、当該検証結果を示す検証情報を農業者情報に基づいて農業者に通知する。このとき、制御部1aは、農業者情報に基づいて、農業者が使用する農業者端末装置3に検証情報を通信インタフェイス(通信部1c)により送信して、農業者端末装置3を介して農業者に検証情報を通知する。これにより、入力水管理情報で示される水田の水管理の状態及び期間が不当であることを農業者に認識させて、入力水管理情報の再入力を促すことができる。 Further, in the present embodiment, the control unit 1a uses the acquisition unit 1c to acquire farmer information regarding a farmer corresponding to a rice field, that is, a farmer who performs agricultural work in a rice field, or a farmer who has input the input water management information. If the water management status is determined from the observation image data, and the determined water management status does not correspond to the water management status indicated by the input water management information, verification will be performed to show the verification result. Notify farmers of information based on farmer information. At this time, the control unit 1a transmits verification information to the farmer terminal device 3 used by the farmer through the communication interface (communication unit 1c) based on the farmer information, and sends the verification information via the farmer terminal device 3. Notify farmers of verification information. Thereby, the farmer can be made aware that the state and period of water management of the rice field indicated by the input water management information are inappropriate, and can be prompted to re-enter the input water management information.
 また、本実施形態では、制御部1aは、水田情報と作業情報とに基づいて、所定の期間に観測装置により観測された複数の観測画像のデータを取得部により取得し、複数の観測画像のデータから水田の水管理の状態及び期間を特定する。これにより、入力水管理情報が入力されなくても、所定の期間に観測された水田を含む地域の複数の観測画像のデータを取得して、水田のメタンの排出量を削減するための水管理の状態及び期間を特定することができる。また、取得する観測画像のデータ数を限定的に減少させて、当該データの取得に要する費用を低減し、水田の水管理の状態及び期間を効率良く特定することができる。さらに、水田に水管理装置4又は水位センサ5などの検出装置を設置しなくても、水田の水管理の状態及び期間を特定することができるので、当該検出装置の設置にかかるコストを削減することができる。 Further, in the present embodiment, the control unit 1a causes the acquisition unit to acquire data of a plurality of observation images observed by the observation device in a predetermined period based on the rice field information and the work information, and Identify the status and period of water management in rice fields from the data. As a result, even if input water management information is not input, data of multiple observation images of the area including rice fields observed during a predetermined period can be acquired, and water management for reducing methane emissions from rice fields can be performed. The state and period of time can be specified. Furthermore, by reducing the number of observation image data to be acquired to a limited extent, the cost required for acquiring the data can be reduced, and the state and period of water management in rice fields can be efficiently specified. Furthermore, the state and period of water management in a paddy field can be determined without installing a detection device such as the water management device 4 or water level sensor 5 in the paddy field, which reduces the cost of installing the detection device. be able to.
 また、本実施形態では、制御部1aは、水田情報と作業情報とに基づいて、水田に作付けされた作物の分げつ期から幼穂形成期までの期間を判断し、当該判断した期間に観測装置により観測された複数の観測画像のデータを取得部により取得する。これにより、水田からのメタンを削減するのに有効な水管理作業が実施される分げつ期から幼穂形成期までの期間に、観測装置7により観測された水田の複数の観測画像のデータを取得することができる。そして、取得した複数の観測画像のデータから、水田のメタンの排出量を削減するための水管理の状態及び期間を特定することができる。また、取得する観測画像のデータ数をより限定的に減少させて、当該データの取得に要する費用をより低減し、水田の水管理の状態及び期間をより効率良く特定することができる。 Furthermore, in the present embodiment, the control unit 1a determines the period from the tillering stage to the panicle formation stage of crops planted in the rice field based on the rice field information and the work information, and performs observation during the determined period. The acquisition unit acquires data of a plurality of observation images observed by the device. As a result, data from multiple observation images of rice fields observed by the observation device 7 can be collected during the period from the tillering stage to the panicle formation stage, when effective water management work to reduce methane from rice fields is carried out. can be obtained. Then, from the data of the plurality of acquired observation images, it is possible to specify the state and period of water management for reducing the amount of methane discharged from the rice fields. In addition, the number of observation image data to be acquired can be more limited, the cost required for acquiring the data can be further reduced, and the state and period of water management in rice fields can be identified more efficiently.
 また、本実施形態では、制御部1aは、飛翔体又は飛行体に搭載された観測装置7が有する合成開口レーダにより観測された複数の観測画像のデータを取得部1cにより取得し、当該複数の観測画像のそれぞれから水田を示す1つ以上の画素を抽出して、当該画素の色の濃淡及び明るさの少なくともいずれかを表す画素値に対応付けられた後方散乱係数を検出し、検出した後方散乱係数に基づいて水田の水管理の状態及び期間を特定する。これにより、天候及び雲の影響を受けずに、合成開口レーダにより観測された複数の観測画像のデータから、水田の湛水・落水の状態と当該状態が継続した期間とを検出して、中干又は間断灌水などの水管理の状態及び期間を特定することができる。 Further, in the present embodiment, the control unit 1a causes the acquisition unit 1c to acquire data of a plurality of observation images observed by the synthetic aperture radar of the flying object or the observation device 7 mounted on the flying object, and One or more pixels indicating a rice field are extracted from each observed image, and a backscattering coefficient associated with a pixel value representing at least one of the color shading and brightness of the pixel is detected, and the detected backscattering coefficient is Identify the water management status and period of rice fields based on the scattering coefficient. As a result, the state of flooding and overflowing of rice fields and the period during which the state continued can be detected from the data of multiple observation images observed by synthetic aperture radar without being affected by weather or clouds. The state and duration of water management such as dry or intermittent irrigation can be specified.
 また、本実施形態では、記憶部1bには、予め設定された1つ以上の閾値(第1閾値σ1、第2閾値σ2、第3閾値Rt、第4閾値Ru)が記憶されており、制御部1aは、複数の観測画像のデータから検出した後方散乱係数と閾値とを比較した結果に基づいて、水田が中干状態であるか否かと、水田が湛水状態であるか否かのうちの、少なくともいずれかを判断する。これにより、水田の中干又は間断灌水などの水管理の状態及び期間を特定することができる。 In addition, in the present embodiment, the storage unit 1b stores one or more preset thresholds (first threshold σ1, second threshold σ2, third threshold Rt, fourth threshold Ru), and controls Part 1a determines whether the paddy field is in a dry state or not, or whether the paddy field is in a flooded state, based on the results of comparing the backscattering coefficient detected from data of a plurality of observation images with a threshold value. Determine at least one of the following. Thereby, the state and period of water management such as drying of rice fields or intermittent irrigation can be specified.
 また、本実施形態では、制御部1aは、取得部1cにより取得した水田の実際の水位を示す情報から、水田の実際の水位の時系列変化を示す水位変化情報を特定し、取得部1cにより取得した複数の観測画像のデータから、水田に対応する後方散乱係数をそれぞれ検出し、水位変化情報で示される水田の実際の水位と、水田に対応する後方散乱係数との相関関係を検出し、水田に対応する後方散乱係数と相関関係とから閾値を設定して記憶部1bに記憶させる。これにより、水田の中干又は間断灌水などの水管理の状態及び期間を特定するための閾値の適性を向上させることができる。 Further, in the present embodiment, the control unit 1a specifies water level change information indicating a time-series change in the actual water level of the rice field from the information indicating the actual water level of the rice field acquired by the acquisition unit 1c, and the acquisition unit 1c Detect the backscattering coefficients corresponding to the rice fields from the data of the multiple observation images acquired, and detect the correlation between the actual water level of the rice fields indicated by the water level change information and the backscattering coefficients corresponding to the rice fields, A threshold value is set based on the backscattering coefficient and the correlation corresponding to the paddy field, and is stored in the storage unit 1b. As a result, it is possible to improve the suitability of the threshold value for specifying the state and period of water management such as drying of rice fields or intermittent irrigation.
 また、本実施形態では、制御部1aは、記憶部1bに記憶された閾値を、他の水田の中干状態及び湛水状態の少なくともいずれかを判断するために適用する。これにより、水田毎に閾値を設定する必要がなく、水位センサ5などで実際の水位を確認することができない水田に対しても、当該水田の中干又は間断灌水などの水管理の状態及び期間を特定することができ、利便性を向上させることが可能となる。 Furthermore, in the present embodiment, the control unit 1a applies the threshold value stored in the storage unit 1b to determine at least one of the dry state and the flooded state of other rice fields. As a result, there is no need to set a threshold value for each paddy field, and even for paddy fields where the actual water level cannot be confirmed using the water level sensor 5, etc., the state and period of water management such as drying or intermittent irrigation of the paddy field can be adjusted. can be identified, and convenience can be improved.
 また、本実施形態では、記憶部1bには、水田からのメタン排出量を算出するためのモデルデータが記憶されており、制御部1aは、水田情報、作業情報、特定水管理情報、及びモデルデータに基づいて、水田の所定の基本メタン排出量から削減されたメタン削減量を算出して、当該メタン削減量を記憶部1bに記憶させる。これにより、水田の水田情報、作業情報、観測装置7の観測画像のデータにより特定した信頼性の高い水管理の状態及び期間、及びモデルデータに基づいて、水田からのメタンの削減量を算出することができ、当該メタンの削減量の信頼性を高めることが可能となる。また、水田のメタン削減量を定量的に評価して、利便性を向上させることができ、水田からのメタンを削減する水管理が農業者によって推進され、農業分野でのメタンの削減を活性化させることが可能となる。 Further, in this embodiment, the storage unit 1b stores model data for calculating methane emissions from rice fields, and the control unit 1a stores rice field information, work information, specific water management information, and model data. Based on the data, a methane reduction amount reduced from a predetermined basic methane emission amount of the paddy field is calculated, and the methane reduction amount is stored in the storage unit 1b. As a result, the reduction amount of methane from the rice fields is calculated based on the highly reliable water management status and period identified from the rice field information, work information, and observation image data of the observation device 7, and model data. This makes it possible to increase the reliability of the methane reduction amount. In addition, it is possible to quantitatively evaluate the amount of methane reduced in rice fields, improving convenience, encouraging farmers to implement water management that reduces methane from rice fields, and activating methane reduction in the agricultural field. It becomes possible to do so.
 また、本実施形態では、制御部1aは、水田情報と作業情報とモデルデータとに基づいて、水田のメタン排出量を算出する算出式を設定し、水田の従来の水管理の状態及び期間を示す従来水管理情報を取得部1cにより取得し、従来水管理情報と算出式とに基づいて、水田の基本メタン排出量を算出し、水田の特定水管理情報と算出式とに基づいて、水田のメタン排出量を算出し、水田の基本メタン排出量からメタン排出量を減算して、水田のメタン削減量を算出する。これにより、水田の従来のメタン排出量(基本メタン排出量)と、水田からのメタンを削減するために実施した水管理の状態及び期間を示す特定水管理情報に応じた取り組み後のメタン排出量とを算出して、取り組み後のメタン排出量の従来のメタン排出量に対する削減量を算出することができる。 Furthermore, in the present embodiment, the control unit 1a sets a calculation formula for calculating the amount of methane emissions from the rice field based on the rice field information, work information, and model data, and calculates the state and period of conventional water management for the rice field. The acquisition unit 1c acquires the conventional water management information shown in FIG. Calculate the methane emissions of the rice fields, and subtract the methane emissions from the basic methane emissions of the rice fields to calculate the amount of methane reduction in the rice fields. As a result, the conventional methane emissions from rice fields (basic methane emissions) and the methane emissions after efforts according to specific water management information indicating the status and period of water management implemented to reduce methane from rice fields. It is possible to calculate the amount of reduction in methane emissions after the initiative compared to conventional methane emissions.
 また、本実施形態では、取得部1cは、通信インタフェイス(通信部1c)から構成され、制御部1aは、水田に対応する農業者に関する農業者情報を、農業管理装置2及び農業者端末装置3のうちの少なくともいずれかから通信インタフェイス1cにより取得し、水田のメタン削減量と農業者情報とを含む報告情報を通信インタフェイス1cによりクレジット管理装置8に送信し、メタン削減量に応じてクレジット管理装置8から発行された電子的なクレジットを示すクレジット情報を通信インタフェイス1cにより取得し、農業者情報に基づいてクレジット情報を農業者に通知する。このとき、制御部1aは、農業者情報に基づいて農業者端末装置3にクレジット情報を通信インタフェイス1cにより送信して、農業者端末装置3を介して農業者にクレジット情報を通知する。これにより、水田に対応する農業者は、煩雑な手続きを行わなくても、水田での水管理作業の変更に伴って生じたメタン削減量に応じたクレジットを得ることができ、農業者の利便性及び有益性を向上させることが可能となる。 Further, in this embodiment, the acquisition unit 1c includes a communication interface (communication unit 1c), and the control unit 1a transmits farmer information regarding a farmer corresponding to a paddy field to the agricultural management device 2 and the farmer terminal device. 3 through the communication interface 1c, and transmits report information including the amount of methane reduction in the rice fields and farmer information to the credit management device 8 through the communication interface 1c, and according to the amount of methane reduction. Credit information indicating electronic credit issued from the credit management device 8 is acquired by the communication interface 1c, and the credit information is notified to the farmer based on the farmer information. At this time, the control unit 1a transmits credit information to the farmer terminal device 3 via the communication interface 1c based on the farmer information, and notifies the farmer of the credit information via the farmer terminal device 3. As a result, farmers working with rice fields can obtain credits based on the amount of methane reduced due to changes in water management operations in rice fields without having to go through complicated procedures, making it convenient for farmers. This makes it possible to improve performance and usefulness.
 また、本実施形態では、制御部1aは、前述したように入力水管理情報で示される水田の水管理の状態及び期間を検証した場合には、クレジット管理装置8に送信する報告情報に、水田のメタン削減量と農業者情報とに加えて検証情報を含める。これにより、水田のメタンの排出量を削減するために実施した水管理の状態及び期間を示す特定水管理情報と、当該特定水管理情報に基づいて算出されたメタン削減量との高い正当性及び証拠性を、クレジット管理装置8を介してクレジット管理業者に証明することができる。またこの結果、水田のメタン削減量に応じたクレジットが発行され易くなり、農業者の利便性、有益性、及び信用性を向上させることが可能となる。 Further, in this embodiment, when the control unit 1a verifies the state and period of water management of the paddy field indicated by the input water management information as described above, the control unit 1a includes the paddy field in the report information transmitted to the credit management device 8. Include verification information in addition to methane reduction amount and farmer information. As a result, specific water management information indicating the status and period of water management implemented to reduce methane emissions from rice fields and the amount of methane reduction calculated based on the specific water management information are highly valid and valid. The evidence can be proved to the credit management company via the credit management device 8. Moreover, as a result, it becomes easier to issue credits according to the amount of methane reduction in rice fields, making it possible to improve convenience, usefulness, and credibility for farmers.
 本実施形態の情報処理装置1は、水田で作物を栽培するための農作業に関する作業情報及び、検出装置4、6(水管理装置4、モニタリング装置6)により検出された水田の水管理状態を示す検出水管理情報を取得する取得部(通信部)1cと、作業情報から特定した水田の水管理状態を示す目標水管理情報と検出水管理情報との差異に基づいて、前記水田で水管理異常が発生したか否かを判断する制御部1aと、水管理異常が発生したことを示す水管理異常情報出力する出力部(通信部)1cと、を備える。また、本実施形態の農業支援システム100は、検出装置4、6と情報処理装置1とを備える。 The information processing device 1 of the present embodiment shows work information related to agricultural work for cultivating crops in a paddy field and the water management status of the paddy field detected by the detection devices 4 and 6 (water management device 4 and monitoring device 6). The acquisition unit (communication unit) 1c that acquires the detected water management information detects a water management abnormality in the rice field based on the difference between the target water management information indicating the water management status of the rice field identified from the work information and the detected water management information. The system includes a control unit 1a that determines whether or not a water management abnormality has occurred, and an output unit (communication unit) 1c that outputs water management abnormality information indicating that a water management abnormality has occurred. Further, the agricultural support system 100 of this embodiment includes detection devices 4 and 6 and an information processing device 1.
 上記構成により、水田の目標水管理情報と、検出装置4、6により検出した検出水管理情報とから、水田で水管理異常が発生したことをいち早く検出することができる。また、水田で水管理異常が発生したことを示す水管理異常情報を出力して、関係者に通知することができ、農業者などが水田の水管理異常に適切に対処することが可能となる。 With the above configuration, it is possible to quickly detect the occurrence of a water management abnormality in a rice field from the target water management information of the rice field and the detected water management information detected by the detection devices 4 and 6. In addition, water management abnormality information indicating that water management abnormalities have occurred in rice fields can be output and notified to related parties, allowing farmers and others to appropriately deal with water management abnormalities in rice fields. .
 また、本実施形態では、検出水管理情報には、水田の水位を検出する水位センサ5の検出結果が含まれていて、制御部1aは、目標水管理情報から水田の目標水位を特定し、水位センサの検出結果から水田の実水位を特定し、実水位が目標水位より所定値以上高い場合に、水田で水管理異常が発生したと判断する。これにより、例えば水田の水位が多雨により異常に増水した場合に、洪水などの水管理異常が発生したことを確実且つ迅速に検出することができる。 Further, in the present embodiment, the detected water management information includes the detection result of the water level sensor 5 that detects the water level of the rice field, and the control unit 1a specifies the target water level of the rice field from the target water management information, The actual water level of the rice field is determined from the detection result of the water level sensor, and if the actual water level is higher than the target water level by a predetermined value or more, it is determined that a water management abnormality has occurred in the rice field. With this, for example, when the water level of a rice field increases abnormally due to heavy rain, it is possible to reliably and quickly detect that a water management abnormality such as a flood has occurred.
 また、本実施形態では、検出水管理情報には、水田がある地域を観測する観測装置(地球観測衛星)7の観測結果が含まれていて、制御部1aは、目標水管理情報から水田の目標水管理状態を特定し、観測装置7の観測結果から水田の表面が水面であるか否かを特定し、目標水管理状態が水田に水を張らない落水状態であるのに対して、観測装置7の観測結果から水田の表面が水面であると特定した場合に、水田で水管理異常が発生したと判断する。これにより、例えば農業者が意図せずに、多雨により水が水田に溜まって、さらに当該水が水田の周辺にあふれ出るような洪水が生じたときに、当該洪水が発生したことを確実且つ迅速に検出することができる。 Further, in this embodiment, the detected water management information includes the observation results of the observation device (earth observation satellite) 7 that observes the area where the rice fields are located, and the control unit 1a controls the detection of the rice fields from the target water management information. The target water management state is specified, and from the observation results of the observation device 7 it is determined whether or not the surface of the rice field is a water surface. When it is determined that the surface of the rice field is a water surface from the observation results of the device 7, it is determined that a water management abnormality has occurred in the rice field. For example, if a farmer unintentionally causes a flood in which water accumulates in a rice field due to heavy rainfall and then the water overflows around the rice field, it can be confirmed reliably and quickly that the flood has occurred. can be detected.
 また、本実施形態では、検出水管理情報には、少なくとも1つの水田がある地域を観測する観測装置7の観測結果が含まれていて、制御部1aは、取得部1cにより水田に関する水田情報を取得して、当該水田情報から水田の位置を特定し、目標水管理情報から表面が水面になる水田の目標水面面積を算出し、観測装置7の観測結果から水田及び水田の周辺にある土地の表面が水面であるか否かを判断して、表面が水面である水田及び土地の面積を合わせた実水面面積を算出し、実水面面積が目標水面面積よりも所定値以上大きい場合に、水田で水管理異常が発生したと判断する。これにより、例えば多雨により水が水田から周辺の土地にあふれ出て、当該土地で洪水などの水管理異常が生じたときに、当該水管理異常が発生したことを確実且つ迅速に検出することができる。 Further, in this embodiment, the detected water management information includes the observation results of the observation device 7 that observes an area where at least one rice field is located, and the control unit 1a uses the acquisition unit 1c to obtain rice field information regarding the rice field. The position of the rice field is determined from the rice field information, the target water surface area of the rice field where the surface becomes the water surface is calculated from the target water management information, and the area of the rice field and the land around the rice field is determined from the observation results of the observation device 7. It is determined whether the surface is a water surface or not, and the actual water surface area is calculated by combining the areas of paddy fields and land whose surfaces are water surfaces. If the actual water surface area is larger than the target water surface area by a predetermined value or more, the paddy field It is determined that a water management abnormality has occurred. As a result, for example, when water overflows from a paddy field into surrounding land due to heavy rainfall and a water management abnormality such as a flood occurs in that land, it is possible to reliably and quickly detect that the water management abnormality has occurred. can.
 また、本実施形態では、制御部1aは、水田に対応する農業者に関する農業者情報を取得部1cにより取得し、水管理異常が発生したと判断すると、農業者情報に基づいて農業者に水管理異常情報を出力部1cにより通知する。これにより、農業者などが水田又は水田の周辺で水管理異常が発生したことを確実に認識して、当該水管理異常に適切に対処することができる。 Further, in the present embodiment, the control unit 1a acquires farmer information regarding the farmer corresponding to the rice field using the acquisition unit 1c, and when it is determined that a water management abnormality has occurred, the control unit 1a sends water to the farmer based on the farmer information. The management abnormality information is notified by the output unit 1c. As a result, farmers and the like can reliably recognize that a water management abnormality has occurred in or around a rice field, and can appropriately deal with the water management abnormality.
 さらに、本実施形態では、制御部1aは、水田の周辺の土地の管理者を示す情報を含む土地管理情報を取得部1cにより取得し、水管理異常が発生したと判断すると、土地管理情報に基づいて管理者に水管理異常情報を出力部1cにより通知する。これにより、水田の周辺の土地の管理者が水田又は水田の周辺で水管理異常が発生したことを確実に認識して、当該水管理異常に適切に対処することができる。また、水管理異常が洪水などの異常増水である場合には、土地の管理者などが、当該異常増水が発生したことを地域の人々などに周知させることで、地域の人々などが水田の周辺に近づくのを防止することができる。 Furthermore, in the present embodiment, the control unit 1a acquires land management information including information indicating the manager of the land around the rice field using the acquisition unit 1c, and when it is determined that a water management abnormality has occurred, the control unit 1a changes the land management information to the land management information. Based on this, the water management abnormality information is notified to the administrator by the output unit 1c. Thereby, the manager of the land around the rice field can reliably recognize that a water management abnormality has occurred in or around the rice field, and can appropriately deal with the water management abnormality. In addition, if the water management abnormality is an abnormal increase in water such as a flood, land managers etc. can inform the local people that the abnormal increase in water has occurred, so that the local people can can be prevented from approaching.
 以上、本発明について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 Although the present invention has been described above, the embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.
  1  水田メタン削減支援装置、情報処理装置
  1a 制御部
  1b 記憶部
  1c 通信部(取得部、通信インタフェイス)
  1d 入出力インタフェイス
  2  農業管理装置(外部装置、情報処理装置)
  2d データベース
  3  農業者端末装置(外部装置)
  4  水管理装置(外部装置、検出装置)
  5  水位センサ
  6  モニタリング装置(外部装置、検出装置)
  7  地球観測衛星(観測装置)
  8  クレジット管理装置(外部装置)
  9  需要者端末装置(外部装置)
 100 水田メタン削減支援システム、農業支援システム
  H  水田
  R  水稲(作物)
1 Rice field methane reduction support device, information processing device 1a Control unit 1b Storage unit 1c Communication unit (acquisition unit, communication interface)
1d Input/output interface 2 Agricultural management device (external device, information processing device)
2d Database 3 Farmer terminal device (external device)
4 Water management device (external device, detection device)
5 Water level sensor 6 Monitoring device (external device, detection device)
7 Earth observation satellite (observation equipment)
8 Credit management device (external device)
9 Consumer terminal device (external device)
100 Paddy field methane reduction support system, agricultural support system H Paddy field R Paddy rice (crop)

Claims (54)

  1.  水田のメタン排出量を算出するためのモデルデータが記憶された記憶部と、
     前記モデルデータに基づいて水田のメタン排出量を算出する制御部と、を備え、
     前記制御部は、農業者に関する農業者情報と、当該農業者情報に対応する水田で作物を栽培するための農作業に関する作業情報とを取得して、当該作業情報に含まれる前記農作業の実施状態に基づいて前記水田の所定の基本メタン排出量から削減されたメタン削減量を算出する水田メタン削減支援装置。
    A storage unit that stores model data for calculating methane emissions from rice fields;
    a control unit that calculates methane emissions from the rice field based on the model data,
    The control unit acquires farmer information regarding the farmer and work information regarding agricultural work for cultivating crops in the paddy field corresponding to the farmer information, and determines the implementation state of the agricultural work included in the work information. A rice field methane reduction support device that calculates a methane reduction amount reduced from a predetermined basic methane emission amount of the rice field based on the rice field.
  2.  前記制御部は、前記作業情報に含まれ且つ前記水田の水管理状態を示す水管理情報に基づいて、前記水田の前記メタン削減量を算出する請求項1に記載の水田メタン削減支援装置。 The rice field methane reduction support device according to claim 1, wherein the control unit calculates the methane reduction amount of the rice field based on water management information included in the work information and indicating the water management state of the rice field.
  3.  前記制御部は、前記水田の湛水、灌水、及び落水を示す前記水管理情報に基づいて、前記水田における作物栽培中の中干状態を特定し、当該中干状態に基づいて前記水田の前記メタン削減量を算出する請求項2に記載の水田メタン削減支援装置。 The control unit identifies a semi-dry state during crop cultivation in the paddy field based on the water management information indicating flooding, irrigation, and falling water in the paddy field, and determines the dry state of the paddy field based on the semi-dry state. The rice field methane reduction support device according to claim 2, which calculates a methane reduction amount.
  4.  前記制御部は、前記水田の前記メタン削減量を示す評価情報を、前記農業者情報に基づいて前記農業者に通知する請求項1~3のいずれかに記載の水田メタン削減支援装置。 The rice field methane reduction support device according to any one of claims 1 to 3, wherein the control unit notifies the farmer of evaluation information indicating the amount of methane reduction in the rice field based on the farmer information.
  5.  前記制御部は、
     前記水田に関する水田情報を取得して、当該水田情報と前記作業情報と前記モデルデータとに基づいて、前記水田のメタン排出量を算出する算出式を設定し、
     前記水田の従来の前記水管理情報に基づいて、前記水田の基本中干状態を設定し、
     前記算出式と前記基本中干状態とに基づいて、前記水田の前記基本メタン排出量を算出し、
     前記算出式と前記基本中干状態と前記基本メタン排出量とを、前記水田情報と関連付けて前記記憶部に記憶させ、
     前記水田の変更された前記水管理情報に基づいて、前記水田の前記中干状態を特定し、
     前記水田の前記中干状態と前記算出式とに基づいて、前記水田のメタン排出量を算出し、
     前記水田の前記基本メタン排出量から前記メタン排出量を減算して、前記水田のメタン削減量を算出する請求項3に記載の水田メタン削減支援装置。
    The control unit includes:
    acquiring rice field information regarding the rice field, and setting a calculation formula for calculating methane emissions of the rice field based on the rice field information, the work information, and the model data;
    setting a basic dry state of the rice field based on the conventional water management information of the rice field;
    Calculating the basic methane emission amount of the rice field based on the calculation formula and the basic dry state,
    storing the calculation formula, the basic dry state, and the basic methane emission amount in the storage unit in association with the rice field information;
    identifying the semi-dry state of the rice field based on the changed water management information of the rice field;
    Calculating the methane emissions of the rice field based on the dry state of the rice field and the calculation formula,
    The rice field methane reduction support device according to claim 3, wherein the methane emission amount is subtracted from the basic methane emission amount of the rice field to calculate the methane reduction amount of the rice field.
  6.  前記制御部は、
     前記水田に関する水田情報を取得して、当該水田情報と前記作業情報と前記モデルデータとに基づいて、前記水田のメタン排出量を算出する算出式を設定し、
     前記水田の従来の前記水管理情報に基づいて、前記水田の基本中干状態を設定し、
     前記算出式と前記基本中干状態とに基づいて、前記水田の前記基本メタン排出量を算出し、
     前記算出式と前記基本中干状態と前記基本メタン排出量とを、前記水田情報と関連付けて前記記憶部に記憶させ、
     シミュレーションで前記水田の前記基本中干状態に含まれる基本中干期間を前後に所定間隔で延長する毎に、当該延長後の中干期間と前記水田の前記算出式と前記基本中干期間と前記基本メタン排出量とに基づいて前記メタン削減量を算出して、前記水田の前記中干期間と前記メタン削減量の相関関係を導出し、当該相関関係を示す第1相関データを前記記憶部に記憶させ、
     前記水田の変更された前記水管理情報に基づいて、前記水田の中干期間を特定し、当該中干期間と前記第1相関データとに基づいて、前記水田のメタン削減量を算出する請求項3に記載の水田メタン削減支援装置。
    The control unit includes:
    acquiring rice field information regarding the rice field, and setting a calculation formula for calculating methane emissions of the rice field based on the rice field information, the work information, and the model data;
    setting a basic dry state of the rice field based on the conventional water management information of the rice field;
    Calculating the basic methane emission amount of the rice field based on the calculation formula and the basic dry state,
    storing the calculation formula, the basic dry state, and the basic methane emission amount in the storage unit in association with the rice field information;
    Each time the basic mid-dry period included in the basic mid-dry state of the paddy field is extended at predetermined intervals before and after in the simulation, the mid-dry period after the extension, the calculation formula for the paddy field, the basic mid-dry period, and the The methane reduction amount is calculated based on the basic methane emission amount, a correlation between the dry period of the rice field and the methane reduction amount is derived, and first correlation data indicating the correlation is stored in the storage unit. let me remember,
    The method further comprises: identifying a mid-dry period of the paddy field based on the changed water management information of the paddy field, and calculating a methane reduction amount of the paddy field based on the mid-dry period and the first correlation data. 3. The rice field methane reduction support device described in 3.
  7.  前記制御部は、前記水田の前記水田情報及び前記作業情報のうちの少なくともいずれかの変更に伴って、前記水田の前記算出式を更新する請求項5又は6に記載の水田メタン削減支援装置。 The rice field methane reduction support device according to claim 5 or 6, wherein the control unit updates the calculation formula for the rice field in accordance with a change in at least one of the rice field information and the work information of the rice field.
  8.  外部装置と通信する通信部を備え、
     前記制御部は、
     複数の水田と複数の農業者に関する情報を格納したデータベースが構築された農業管理装置と、前記農業者が利用する農業者端末装置とのうちの少なくともいずれかから、前記農業者情報と当該農業者情報に対応する水田の前記水田情報及び前記作業情報を前記通信部により取得し、
     水田の前記水管理状態を検出する検出装置、前記農業管理装置、及び前記農業者端末装置のうちの少なくともいずれかから、前記農業者情報に対応する水田の前記水管理情報を前記通信部により取得する請求項5又は6に記載の水田メタン削減支援装置。
    Equipped with a communication unit that communicates with external devices,
    The control unit includes:
    The farmer information and the farmer concerned are acquired from at least one of an agricultural management device in which a database storing information about a plurality of rice fields and a plurality of farmers is stored, and a farmer terminal device used by the farmer. acquiring the paddy field information and the work information of the paddy field corresponding to the information by the communication unit;
    The communication unit acquires the water management information of the rice field corresponding to the farmer information from at least one of the detection device that detects the water management state of the rice field, the agricultural management device, and the farmer terminal device. The rice field methane reduction support device according to claim 5 or 6.
  9.  前記検出装置は、水田の水位を検出する水位センサの検出結果から、前記水田における作物栽培中の前記水管理状態を検出し、
     前記制御部は、前記検出装置により検出された前記水田の前記水管理状態を示す前記水管理情報を周期的に又は所定のタイミングで取得して、当該取得した複数の前記水管理情報に基づいて、前記水田の前記中干状態を特定する請求項8に記載の水田メタン削減支援装置。
    The detection device detects the water management state during crop cultivation in the rice field from the detection result of a water level sensor that detects the water level of the rice field,
    The control unit acquires the water management information indicating the water management state of the rice field detected by the detection device periodically or at a predetermined timing, and based on the acquired plurality of water management information. 9. The rice field methane reduction support device according to claim 8, wherein the rice field methane reduction support device identifies the dry state of the rice field.
  10.  前記検出装置は、飛翔体又は飛行体に搭載された観測装置による水田の観測結果から、前記水田における作物栽培中の前記水管理状態を検出し、
     前記制御部は、前記検出装置により検出された前記水田の前記水管理状態を示す前記水管理情報を周期的に又は所定のタイミングで取得して、当該取得した複数の前記水管理情報に基づいて、前記水田の前記中干状態を特定する請求項8に記載の水田メタン削減支援装置。
    The detection device detects the water management state during crop cultivation in the paddy field from observation results of the paddy field by a flying object or an observation device mounted on the flying object,
    The control unit acquires the water management information indicating the water management state of the rice field detected by the detection device periodically or at a predetermined timing, and based on the acquired plurality of water management information. 9. The rice field methane reduction support device according to claim 8, wherein the rice field methane reduction support device identifies the dry state of the rice field.
  11.  前記観測装置は合成開口レーダを有している請求項10に記載の水田メタン削減支援装置。 The rice field methane reduction support device according to claim 10, wherein the observation device has a synthetic aperture radar.
  12.  前記制御部は、
     前記水田に関する水田情報を取得して、当該水田情報と前記作業情報と前記モデルデータとに基づいて、前記水田のメタン排出量を算出する算出式を設定し、
     前記水田の従来の前記水管理情報に基づいて、前記水田の基本中干状態を設定し、
     前記算出式と前記基本中干状態とに基づいて、前記水田の前記基本メタン排出量を算出し、
     シミュレーションで前記水田の前記基本中干状態に含まれる基本中干期間を前後に所定間隔で延長する毎に、当該延長後の中干期間と前記水田の前記算出式と前記基本中干期間と前記基本メタン排出量とに基づいて前記メタン削減量を算出して、前記水田の前記中干期間と前記メタン削減量の相関関係を導出し、当該相関関係を示す第1相関データを前記記憶部に記憶させ、
     前記第1相関データに基づいて、前記メタン削減量が所定値以上になる前記水田の推奨中干期間を判断し、
     前記推奨中干期間を含む作業提案情報を、前記農業者情報に基づいて前記農業者に通知する請求項3に記載の水田メタン削減支援装置。
    The control unit includes:
    acquiring rice field information regarding the rice field, and setting a calculation formula for calculating methane emissions of the rice field based on the rice field information, the work information, and the model data;
    setting a basic dry state of the rice field based on the conventional water management information of the rice field;
    Calculating the basic methane emission amount of the rice field based on the calculation formula and the basic dry state,
    Each time the basic mid-dry period included in the basic mid-dry state of the paddy field is extended at predetermined intervals before and after in the simulation, the mid-dry period after the extension, the calculation formula for the paddy field, the basic mid-dry period, and the The methane reduction amount is calculated based on the basic methane emission amount, a correlation between the dry period of the rice field and the methane reduction amount is derived, and first correlation data indicating the correlation is stored in the storage unit. let me remember,
    Based on the first correlation data, determining a recommended mid-drought period for the rice field during which the methane reduction amount is equal to or greater than a predetermined value;
    The rice field methane reduction support device according to claim 3, wherein the farmer is notified of work proposal information including the recommended drying period based on the farmer information.
  13.  前記制御部は、
     前記水田の前記基本中干期間と前記水田情報と前記作業情報とに基づいて、前記水田の前記作物の基本収量を推定し、
     シミュレーションで前記水田の前記基本中干期間を前後に所定間隔で延長する毎に、当該延長後の中干期間と前記水田の前記水田情報と前記作業情報とに基づいて、前記水田の前記作物の収量を推定し、当該収量と前記基本収量とに基づいて前記作物の減収量を算出して、前記水田の前記中干期間と前記作物の減収量の相関関係を導出し、当該相関関係を示す第2相関データを前記記憶部に記憶させ、
     前記第1相関データと前記第2相関データとに基づいて、前記メタン削減量が第1所定値以上で且つ前記作物の減収量が第2所定値以下になる前記水田の前記推奨中干期間を判断する請求項12に記載の水田メタン削減支援装置。
    The control unit includes:
    Estimating the basic yield of the crop in the paddy field based on the basic mid-dry period of the paddy field, the paddy field information, and the work information,
    Each time the basic mid-dry period of the paddy field is extended at predetermined intervals in the simulation, the crops of the paddy field are determined based on the extended mid-dry period, the paddy field information, and the work information of the paddy field. Estimate the yield, calculate the yield loss of the crop based on the yield and the basic yield, derive a correlation between the mid-dry period of the paddy field and the yield decrease of the crop, and show the correlation. storing second correlation data in the storage unit;
    Based on the first correlation data and the second correlation data, determine the recommended mid-drought period for the paddy field during which the methane reduction amount is at least a first predetermined value and the yield loss of the crops is at most a second predetermined value. The rice field methane reduction support device according to claim 12, which makes a determination.
  14.  外部装置と通信する通信部を備え、
     前記制御部は、
     前記水田の前記メタン削減量と前記水田に対応する前記農業者情報とを含む報告情報を、前記通信部によりクレジット管理装置に送信し、
     前記メタン削減量に応じて前記クレジット管理装置から発行された電子的なクレジットを示すクレジット情報を前記通信部により取得し、
     前記クレジット情報を前記農業者情報に基づいて前記農業者に通知する請求項1に記載の水田メタン削減支援装置。
    Equipped with a communication unit that communicates with external devices,
    The control unit includes:
    transmitting report information including the methane reduction amount of the rice field and the farmer information corresponding to the rice field to a credit management device by the communication unit;
    acquiring credit information indicating an electronic credit issued by the credit management device according to the methane reduction amount by the communication unit;
    The rice field methane reduction support device according to claim 1, wherein the credit information is notified to the farmer based on the farmer information.
  15.  外部装置と通信する通信部を備え、
     前記制御部は、
     複数の前記水田のメタン削減量を合算して、当該合算したメタン削減量を示す報告情報を、前記通信部によりクレジット管理装置に送信し、
     前記合算したメタン削減量に応じて前記クレジット管理装置から発行されたクレジットを示すクレジット情報を前記通信部により取得し、
     前記クレジット情報で示される前記クレジットを複数の前記水田のメタンの削減量に応じて分配し、
     分配した前記クレジットを示すクレジット情報を前記農業者情報に基づいて、複数の前記水田にそれぞれ対応する前記農業者に通知する請求項1に記載の水田メタン削減支援装置。
    Equipped with a communication unit that communicates with external devices,
    The control unit includes:
    summing the methane reduction amounts of the plurality of rice fields and transmitting report information indicating the combined methane reduction amount to the credit management device by the communication unit;
    acquiring credit information indicating credits issued by the credit management device according to the total methane reduction amount by the communication unit;
    Distributing the credits indicated by the credit information according to the amount of methane reduction in the plurality of rice fields;
    The rice field methane reduction support device according to claim 1, wherein credit information indicating the distributed credits is notified to the farmers corresponding to each of the plurality of rice fields based on the farmer information.
  16.  前記制御部は、前記水田に関する水田情報、前記水田における従来の前記作業情報、前記水田からのメタンを削減するために変更された前記農作業を示す対象の前記作業情報、前記モデルデータに基づいて設定した前記水田の前記メタン排出量を算出する算出式、及び当該算出式に含まれる変数のうちの少なくともいずれかを、前記報告情報に含めて前記通信部により前記クレジット管理装置に送信する請求項14又は請求項15に記載の水田メタン削減支援装置。 The control unit sets the settings based on the rice field information regarding the rice field, the conventional work information in the rice field, the target work information indicating the agricultural work changed to reduce methane from the rice field, and the model data. 15. The reporting information includes at least one of a calculation formula for calculating the methane emission amount of the rice field and a variable included in the calculation formula, and is transmitted to the credit management device by the communication unit. Or the rice field methane reduction support device according to claim 15.
  17.  前記制御部は、前記水田のメタン削減量に応じた前記クレジットを見積もり、当該見積もったクレジットを示す仮クレジット情報を前記報告情報に含めて前記通信部により前記クレジット管理装置に送信し、又は前記仮クレジット情報を前記農業者情報に基づいて前記農業者に通知する請求項14又は請求項15に記載の水田メタン削減支援装置。 The control unit estimates the credit according to the amount of methane reduction in the rice field, includes temporary credit information indicating the estimated credit in the report information, and transmits the report information to the credit management device through the communication unit, or The rice field methane reduction support device according to claim 14 or 15, wherein credit information is notified to the farmer based on the farmer information.
  18.  情報を入出力する入出力インタフェイスを備え、
     前記制御部は、
     前記農業者が所有する前記クレジットを売却したい旨を示す売却希望情報を、前記農業者が利用する農業者端末装置から前記通信部により受信すると、当該売却希望情報で示される前記クレジットの代価を所定の取引者に支払わせる指示を示す支払指示情報を前記入出力インタフェイスにより出力し、
     前記取引者が前記代価を前記農業者に支払ったことを示す支払完了情報が、前記入出力インタフェイスにより入力されると、前記クレジットの所有者を前記農業者から前記取引者に変更する請求項14又は15に記載の水田メタン削減支援装置。
    Equipped with an input/output interface for inputting and outputting information,
    The control unit includes:
    When the communication unit receives sale request information indicating that the farmer wants to sell the credit owned by the farmer from the farmer terminal device used by the farmer, the communication unit receives a predetermined price for the credit indicated by the sale request information. outputting payment instruction information indicating an instruction to make payment to the transaction person through the input/output interface;
    When payment completion information indicating that the transaction person has paid the price to the farmer is input through the input/output interface, the owner of the credit is changed from the farmer to the transaction person. The rice field methane reduction support device according to 14 or 15.
  19.  前記制御部は、
     前記クレジットを買い取りたい旨を示す買取希望情報を、需要者が利用する需要者端末装置から前記通信部により受信すると、当該買取希望情報で示される前記クレジットの代価を前記需要者に支払わせる支払指令を、前記需要者端末装置に送信し、
     前記需要者が前記代価を前記取引者に支払ったことを示す支払完了情報を、前記需要者端末装置から前記通信部により受信すると、前記クレジットの所有者を前記取引者から前記需要者に変更する請求項14又は15に記載の水田メタン削減支援装置。
    The control unit includes:
    When the communication unit receives purchase request information indicating that the customer wishes to purchase the credit from a customer terminal device used by the customer, a payment instruction is issued to cause the customer to pay the price of the credit indicated by the purchase request information. to the consumer terminal device,
    When the communication unit receives payment completion information indicating that the consumer has paid the price to the trader from the consumer terminal device, the owner of the credit is changed from the trader to the consumer. The rice field methane reduction support device according to claim 14 or 15.
  20.  水田のメタン排出量の削減を支援する水田メタン削減支援装置と、
     複数の水田と複数の農業者に関する情報を格納したデータベースが構築された農業管理装置と、を含み、
     前記水田メタン削減支援装置は、
     外部装置と通信する通信部と、
     水田のメタン排出量を算出するためのモデルデータが記憶された記憶部と、
     前記モデルデータに基づいて水田のメタン排出量を算出する制御部と、を備え、
     前記制御部は、前記農業管理装置と前記農業者が利用する農業者端末装置のうちの少なくともいずれかから、前記農業者に関する農業者情報と、当該農業者情報に対応する水田で作物を栽培するための農作業に関する作業情報とを取得して、当該作業情報に含まれる前記農作業の実施状態に基づいて前記水田の所定の基本メタン排出量から削減されたメタン削減量を算出する水田メタン削減支援システム。
    A rice field methane reduction support device that supports the reduction of methane emissions from rice fields,
    an agricultural management device in which a database storing information regarding a plurality of rice fields and a plurality of farmers is constructed;
    The rice field methane reduction support device is
    a communication unit that communicates with an external device;
    A storage unit that stores model data for calculating methane emissions from rice fields;
    a control unit that calculates methane emissions from the rice field based on the model data,
    The control unit receives farmer information regarding the farmer from at least one of the agricultural management device and a farmer terminal device used by the farmer, and cultivates crops in the paddy field corresponding to the farmer information. A rice field methane reduction support system that calculates a methane reduction amount reduced from a predetermined basic methane emission amount of the rice field based on the implementation status of the agricultural work included in the work information. .
  21.  前記水田メタン削減支援装置の前記制御部は、前記農業者情報に基づいて前記農業者端末装置に、前記水田の前記メタン削減量を示す評価情報を前記通信部により送信する請求項20に記載の水田メタン削減支援システム。 21. The control unit of the rice field methane reduction support device transmits evaluation information indicating the methane reduction amount of the rice field to the farmer terminal device based on the farmer information using the communication unit. Rice field methane reduction support system.
  22.  水田の水管理状態を検出する検出装置を含み、
     前記検出装置は、水田の水位を検出する水位センサの検出結果、又は飛翔体若しくは飛行体に搭載された観測装置による水田の観測結果に基づいて、前記水田の前記水管理状態を検出して、当該水管理状態を含む前記水管理情報を、前記農業管理装置と前記水田メタン削減支援装置のうちの少なくともいずれかに送信し、
     前記水田メタン削減支援装置の前記制御部は、
     前記農業管理装置と前記農業者端末装置のうちの少なくともいずれかから、前記農業者情報と当該農業者情報に対応する前記水田の前記水田情報及び前記作業情報とを前記通信部により取得し、
     前記検出装置と前記農業管理装置と前記農業者端末装置のうちの少なくともいずれかから、前記水田における作物栽培中の前記水管理情報を前記通信部により周期的に又は所定のタイミングで取得し、当該取得した複数の前記水管理情報に基づいて、前記水田の前記中干状態を特定し、当該中干状態に基づいて前記水田の前記メタン削減量を算出する請求項20に記載の水田メタン削減支援システム。
    Includes a detection device that detects the water management status of rice fields,
    The detection device detects the water management state of the paddy field based on the detection result of a water level sensor that detects the water level of the paddy field, or the observation result of the paddy field by a flying object or an observation device mounted on a flying object. transmitting the water management information including the water management state to at least one of the agricultural management device and the rice field methane reduction support device;
    The control unit of the rice field methane reduction support device includes:
    The communication unit acquires the farmer information and the paddy field information and work information of the rice field corresponding to the farmer information from at least one of the agricultural management device and the farmer terminal device;
    The communication unit periodically or at a predetermined timing acquires the water management information during crop cultivation in the paddy field from at least one of the detection device, the agricultural management device, and the farmer terminal device; The rice field methane reduction support according to claim 20, wherein the partially dry state of the rice field is specified based on the plurality of acquired water management information, and the methane reduction amount of the rice field is calculated based on the partially dry state. system.
  23.  前記農業者端末装置は、前記農業者情報、前記作業情報、及び前記水田に関する水田情報のうちの少なくともいずれかを入力可能に構成されている請求項20に記載の水田メタン削減支援システム。 The rice field methane reduction support system according to claim 20, wherein the farmer terminal device is configured to be able to input at least one of the farmer information, the work information, and rice field information regarding the rice field.
  24.  前記水田メタン削減支援装置の前記制御部は、
     前記水田の前記メタン削減量と前記水田に対応する前記農業者情報とを含む報告情報を、前記通信部によりクレジット管理装置に送信し、
     前記メタン削減量に応じて前記クレジット管理装置から発行された電子的なクレジットを示すクレジット情報を前記通信部により取得し、
     前記クレジット情報を前記通信部により前記農業者端末装置に送信する請求項20~23に記載の水田メタン削減支援システム。
    The control unit of the rice field methane reduction support device includes:
    transmitting report information including the methane reduction amount of the rice field and the farmer information corresponding to the rice field to a credit management device by the communication unit;
    acquiring credit information indicating an electronic credit issued by the credit management device according to the methane reduction amount by the communication unit;
    The rice field methane reduction support system according to claim 20, wherein the credit information is transmitted to the farmer terminal device by the communication unit.
  25.  作物を栽培する水田からのメタンの排出量の削減を支援する水田メタン削減支援方法であって、
     水田のメタン排出量を算出するためのモデルデータが記憶された記憶部と、前記モデルデータに基づいて前記水田のメタン排出量を算出する制御部と、を水田メタン削減支援装置に備えるステップと、
     前記制御部が、農業者に関する農業者情報と、当該農業者情報に対応する水田で作物を栽培するための農作業に関する作業情報とを取得するステップと、
     前記制御部が、前記作業情報に含まれる前記農作業の実施状態に基づいて、前記農業者情報に対応する前記水田の所定の基本メタン排出量から削減されたメタン削減量を算出するステップと、を含む水田メタン削減支援方法。
    A rice field methane reduction support method that supports the reduction of methane emissions from rice fields where crops are cultivated, the method comprising:
    a step of providing a rice field methane reduction support device with a storage unit storing model data for calculating the methane emissions of the rice fields, and a control unit that calculates the methane emissions of the rice fields based on the model data;
    a step in which the control unit acquires farmer information regarding the farmer and work information regarding agricultural work for cultivating crops in the paddy field corresponding to the farmer information;
    The control unit calculates a methane reduction amount reduced from a predetermined basic methane emission amount of the rice field corresponding to the farmer information, based on the implementation state of the agricultural work included in the work information. Methods to support rice field methane reduction, including:
  26.  水田に関する水田情報、前記水田で作物を栽培するための農作業に関する作業情報、及び観測装置により観測された前記水田を含む地域の観測画像のデータを取得する取得部と、
     前記水田情報と前記作業情報と前記観測画像のデータとに基づいて、前記作物の栽培中に前記水田から排出されるメタンを削減するための前記水田の水管理の状態と当該状態が継続した期間とを特定して、当該水管理の状態及び期間を示す特定水管理情報を生成する制御部と、
     前記特定水管理情報を記憶する記憶部と、を備えた水田メタン削減支援装置。
    an acquisition unit that acquires rice field information regarding the rice fields, work information regarding agricultural work for cultivating crops in the rice fields, and observation image data of the area including the rice fields observed by an observation device;
    Based on the rice field information, the work information, and the observation image data, the state of water management of the rice field for reducing methane emitted from the rice field during the cultivation of the crops, and the period during which the state continued. a control unit that generates specific water management information indicating the state and period of the water management;
    A rice field methane reduction support device, comprising: a storage unit that stores the specific water management information.
  27.  前記作業情報には、予め入力された前記水田の前記水管理の状態及び期間を示す入力水管理情報が含まれており、
     前記制御部は、
     前記入力水管理情報に基づいて複数の前記観測画像のデータを前記取得部により取得し、
     前記複数の観測画像のデータに基づいて前記入力水管理情報で示される前記水管理の状態及び期間を検証して、当該検証結果を示す検証情報を前記記憶部に記憶させ、
     前記入力水管理情報で示される前記水管理の状態及び期間が正当である場合に、前記入力水管理情報を前記特定水管理情報として前記記憶部に記憶させる請求項26に記載の水田メタン削減支援装置。
    The work information includes input water management information indicating the state and period of the water management of the rice field input in advance,
    The control unit includes:
    acquiring data of a plurality of observation images by the acquisition unit based on the input water management information;
    verifying the state and period of the water management indicated by the input water management information based on data of the plurality of observation images, and storing verification information indicating the verification result in the storage unit;
    The rice field methane reduction support according to claim 26, wherein when the state and period of the water management indicated by the input water management information are valid, the input water management information is stored in the storage unit as the specific water management information. Device.
  28.  前記制御部は、前記入力水管理情報で示される前記水管理の期間に前記観測装置により観測された前記観測画像のデータを取得する請求項27に記載の水田メタン削減支援装置。 The rice field methane reduction support device according to claim 27, wherein the control unit acquires data of the observation image observed by the observation device during the water management period indicated by the input water management information.
  29.  前記制御部は、前記複数の観測画像のデータから前記水管理の状態を判断して、当該判断した前記水管理の状態と、前記入力水管理情報で示される前記水管理の状態とが対応している場合、前記入力水管理情報が正当であることを示す情報を前記検証情報に含め、且つ前記入力水管理情報を前記特定水管理情報として前記記憶部に記憶させる請求項27又は28に記載の水田メタン削減支援装置。 The control unit determines the water management state from data of the plurality of observation images, and determines whether the determined water management state corresponds to the water management state indicated by the input water management information. 29. If the input water management information is valid, the verification information includes information indicating that the input water management information is valid, and the input water management information is stored in the storage unit as the specific water management information. rice field methane reduction support device.
  30.  前記制御部は、
     前記水田に対応する農業者に関する農業者情報を前記取得部により取得し、
     前記複数の観測画像のデータから前記水管理の状態を判断して、当該判断した前記水管理の状態と、前記入力水管理情報で示される前記水管理の状態とが対応していなかった場合、前記検証情報を前記農業者情報に基づいて前記農業者に通知する請求項29に記載の水田メタン削減支援装置。
    The control unit includes:
    acquiring farmer information regarding a farmer corresponding to the rice field by the acquisition unit;
    If the state of the water management is determined from the data of the plurality of observation images, and the determined state of the water management does not correspond to the state of the water management indicated by the input water management information, The rice field methane reduction support device according to claim 29, wherein the verification information is notified to the farmer based on the farmer information.
  31.  前記制御部は、
     前記水田情報と前記作業情報とに基づいて、所定の期間に前記観測装置により観測された複数の前記観測画像のデータを前記取得部により取得し、
     前記複数の観測画像のデータから前記水田の前記水管理の状態及び期間を特定する請求項26に記載の水田メタン削減支援装置。
    The control unit includes:
    Based on the rice field information and the work information, the acquisition unit acquires data of the plurality of observation images observed by the observation device during a predetermined period;
    The rice field methane reduction support device according to claim 26, wherein the water management state and period of the rice field are specified from data of the plurality of observation images.
  32.  前記制御部は、前記水田情報と前記作業情報とに基づいて、前記水田に作付けされた前記作物の分げつ期から幼穂形成期までの期間を判断し、当該判断した期間に前記観測装置により観測された複数の前記観測画像のデータを前記取得部により取得する請求項31に記載の水田メタン削減支援装置。 The control unit determines the period from the tillering stage to the panicle formation stage of the crop planted in the rice field based on the rice field information and the work information, and the controller determines the period from the tillering stage to the panicle formation stage of the crop planted in the rice field, and uses the observation device during the determined period. The rice field methane reduction support device according to claim 31, wherein data of the plurality of observed images is acquired by the acquisition unit.
  33.  前記制御部は、
     飛翔体又は飛行体に搭載された前記観測装置が有する合成開口レーダにより観測された複数の前記観測画像のデータを前記取得部により取得し、
     前記複数の観測画像のそれぞれから前記水田を示す1つ以上の画素を抽出して、当該画素の画素値に対応付けられた後方散乱係数を検出し、
     前記検出した後方散乱係数に基づいて前記水田の前記水管理の状態及び期間を特定する請求項27又は31に記載の水田メタン削減支援装置。
    The control unit includes:
    The acquisition unit acquires data of a plurality of observation images observed by a synthetic aperture radar possessed by a flying object or the observation device mounted on the flying object;
    extracting one or more pixels indicating the rice field from each of the plurality of observed images, detecting a backscattering coefficient associated with the pixel value of the pixel,
    The rice field methane reduction support device according to claim 27 or 31, wherein the state and period of the water management of the rice field are specified based on the detected backscattering coefficient.
  34.  前記記憶部には、予め設定された1つ以上の閾値が記憶されており、
     前記制御部は、前記複数の観測画像のデータにより検出した後方散乱係数と前記閾値とを比較した結果に基づいて、前記水田が中干状態であるか否かと、前記水田が湛水状態であるか否かのうちの、少なくともいずれかを判断する請求項33に記載の水田メタン削減支援装置。
    The storage unit stores one or more preset threshold values,
    The control unit determines whether the paddy field is in a semi-dry state and whether the paddy field is in a flooded state based on a result of comparing a backscattering coefficient detected from data of the plurality of observation images with the threshold value. The rice field methane reduction support device according to claim 33, wherein at least one of the following is determined.
  35.  前記制御部は、
     前記取得部により取得した前記水田の実際の水位を示す情報から、前記水田の実際の水位の時系列変化を示す水位変化情報を特定し、
     前記取得部により取得した複数の前記観測画像のデータから前記水田に対応する後方散乱係数をそれぞれ検出し、
     前記水位変化情報で示される前記水田の実際の水位と、前記水田に対応する後方散乱係数との相関関係を検出し、
     前記水田に対応する後方散乱係数と前記相関関係とから前記閾値を設定して前記記憶部に記憶させる請求項34に記載の水田メタン削減支援装置。
    The control unit includes:
    Identifying water level change information indicating a time-series change in the actual water level of the rice field from information indicating the actual water level of the rice field acquired by the acquisition unit,
    Detecting backscattering coefficients corresponding to the rice fields from data of the plurality of observation images acquired by the acquisition unit,
    detecting a correlation between the actual water level of the rice field indicated by the water level change information and a backscattering coefficient corresponding to the rice field;
    The rice field methane reduction support device according to claim 34, wherein the threshold value is set from the backscattering coefficient corresponding to the rice field and the correlation and is stored in the storage unit.
  36.  前記制御部は、前記記憶部に記憶された前記閾値を、他の水田の中干状態及び湛水状態の少なくともいずれかを判断するために適用する請求項35に記載の水田メタン削減支援装置。 The rice field methane reduction support device according to claim 35, wherein the control unit applies the threshold value stored in the storage unit to determine at least one of a dry state and a flooded state of another rice field.
  37.  前記記憶部には、前記水田からのメタン排出量を算出するためのモデルデータが記憶されており、
     前記制御部は、前記水田情報、前記作業情報、前記特定水管理情報、及び前記モデルデータに基づいて、前記水田の所定の基本メタン排出量から削減されたメタン削減量を算出して、当該メタン削減量を前記記憶部に記憶させる請求項27に記載の水田メタン削減支援装置。
    The storage unit stores model data for calculating methane emissions from the rice fields,
    The control unit calculates a methane reduction amount reduced from a predetermined basic methane emission amount of the rice field based on the rice field information, the work information, the specific water management information, and the model data, and The rice field methane reduction support device according to claim 27, wherein the reduction amount is stored in the storage unit.
  38.  前記制御部は、
     前記水田情報と前記作業情報と前記モデルデータとに基づいて、前記水田のメタン排出量を算出する算出式を設定し、
     前記水田の従来の前記水管理の状態及び期間を示す従来水管理情報を前記取得部により取得し、
     前記従来水管理情報と前記算出式とに基づいて、前記水田の前記基本メタン排出量を算出し、
     前記水田の前記特定水管理情報と前記算出式とに基づいて、前記水田のメタン排出量を算出し、
     前記水田の前記基本メタン排出量から前記メタン排出量を減算して、前記水田のメタン削減量を算出する請求項37に記載の水田メタン削減支援装置。
    The control unit includes:
    setting a calculation formula for calculating methane emissions from the rice field based on the rice field information, the work information, and the model data;
    acquiring conventional water management information indicating the state and period of the conventional water management of the rice field by the acquisition unit;
    Calculating the basic methane emissions of the rice field based on the conventional water management information and the calculation formula,
    Calculating the methane emissions of the rice field based on the specific water management information of the rice field and the calculation formula,
    The rice field methane reduction support device according to claim 37, wherein the methane emission amount is subtracted from the basic methane emission amount of the rice field to calculate the methane reduction amount of the rice field.
  39.  前記取得部は、通信インタフェイスから構成され、
     前記制御部は、
     前記水田に対応する農業者に関する農業者情報を前記通信インタフェイスにより取得し、
     前記水田の前記メタン削減量と前記農業者情報とを含む報告情報を前記通信インタフェイスによりクレジット管理装置に送信し、
     前記メタン削減量に応じて前記クレジット管理装置から発行された電子的なクレジットを示すクレジット情報を前記通信インタフェイスにより取得し、
     前記農業者情報に基づいて前記クレジット情報を前記農業者に通知する請求項37又は38に記載の水田メタン削減支援装置。
    The acquisition unit is composed of a communication interface,
    The control unit includes:
    obtaining farmer information regarding a farmer corresponding to the rice field through the communication interface;
    transmitting report information including the methane reduction amount of the rice field and the farmer information to a credit management device through the communication interface;
    acquiring credit information indicating an electronic credit issued by the credit management device according to the methane reduction amount through the communication interface;
    The rice field methane reduction support device according to claim 37 or 38, wherein the credit information is notified to the farmer based on the farmer information.
  40.  前記記憶部には、前記水田からのメタン排出量を算出するためのモデルデータが記憶されており、
     前記取得部は、通信インタフェイスから構成され、
     前記制御部は、
     前記水田に対応する農業者に関する農業者情報を前記通信インタフェイスにより取得し、
     前記水田情報、前記作業情報、前記特定水管理情報、及び前記モデルデータに基づいて、前記水田の所定の基本メタン排出量から削減されたメタン削減量を算出して、当該メタン算出量を前記記憶部に記憶させ、
     前記農業者情報と前記水田の前記メタン削減量と前記検証情報とを含む報告情報を、前記通信インタフェイスによりクレジット管理装置に送信し、
     前記メタン削減量に応じて前記クレジット管理装置から発行された電子的なクレジットを示すクレジット情報を前記通信インタフェイスにより取得し、
     前記農業者情報に基づいて前記クレジット情報を前記農業者に通知する請求項27に記載の水田メタン削減支援装置。
    The storage unit stores model data for calculating methane emissions from the rice fields,
    The acquisition unit is composed of a communication interface,
    The control unit includes:
    obtaining farmer information regarding a farmer corresponding to the rice field through the communication interface;
    Based on the rice field information, the work information, the specific water management information, and the model data, calculate a methane reduction amount reduced from a predetermined basic methane emission amount of the rice field, and store the calculated methane amount in the storage. Let the department memorize it,
    transmitting report information including the farmer information, the methane reduction amount of the rice field, and the verification information to a credit management device through the communication interface;
    acquiring credit information indicating an electronic credit issued by the credit management device according to the methane reduction amount through the communication interface;
    The rice field methane reduction support device according to claim 27, wherein the credit information is notified to the farmer based on the farmer information.
  41.  作物を栽培する水田からのメタンの排出量の削減を支援する水田メタン削減支援装置と、
     前記水田と前記水田で行う農業に関する情報を格納したデータベースが構築された農業管理装置と、を含み、
     前記水田メタン削減支援装置は、
     前記農業管理装置及び前記水田に対応する農業者が利用する農業者端末装置のうちの少なくともいずれかから、前記水田に関する水田情報及び前記水田で前記作物を栽培するための農作業に関する作業情報を取得し、且つ地上を観測する観測装置の観測データを記憶する観測管理装置から、前記観測装置により観測された前記水田を含む地域の観測画像のデータを取得する取得部と、
     前記水田情報と前記作業情報と前記観測画像のデータとに基づいて、前記作物の栽培中に前記水田から排出されるメタンを削減するための前記水田の水管理の状態と当該状態が継続した期間とを特定して、当該水管理の状態及び期間を示す特定水管理情報を生成する制御部と、
     前記特定水管理情報を記憶する記憶部と、を備えた水田メタン削減支援システム。
    A rice field methane reduction support device that supports the reduction of methane emissions from rice fields where crops are grown;
    an agricultural management device configured with a database storing information regarding the rice field and the agriculture carried out in the rice field,
    The rice field methane reduction support device is
    Paddy field information regarding the paddy field and work information regarding agricultural work for cultivating the crops in the paddy field are acquired from at least one of the agricultural management device and a farmer terminal device used by a farmer corresponding to the paddy field. , and an acquisition unit that acquires observation image data of an area including the paddy field observed by the observation device from an observation management device that stores observation data of an observation device that observes the ground;
    Based on the rice field information, the work information, and the observation image data, the state of water management of the rice field for reducing methane emitted from the rice field during the cultivation of the crops, and the period during which the state continued. a control unit that generates specific water management information indicating the state and period of the water management;
    A paddy field methane reduction support system, comprising: a storage unit that stores the specific water management information.
  42.  前記作業情報には、予め入力された前記水田の前記水管理の状態及び期間を示す入力水管理情報が含まれており、
     前記制御部は、
     前記入力水管理情報に基づいて複数の前記観測画像のデータを前記観測管理装置から前記取得部により取得し、
     前記複数の観測画像のデータに基づいて前記入力水管理情報で示される前記水管理の状態及び期間を検証し、当該検証結果を示す検証情報を前記記憶部に記憶させ、
     前記入力水管理情報で示される前記水管理の状態及び期間が正当である場合に、前記入力水管理情報を前記特定水管理情報として前記記憶部に記憶させる請求項41に記載の水田メタン削減支援システム。
    The work information includes input water management information indicating the state and period of the water management of the rice field input in advance,
    The control unit includes:
    acquiring data of a plurality of observation images from the observation management device by the acquisition unit based on the input water management information;
    verifying the state and period of water management indicated by the input water management information based on data of the plurality of observation images, and storing verification information indicating the verification result in the storage unit;
    The rice field methane reduction support according to claim 41, wherein when the state and period of the water management indicated by the input water management information are valid, the input water management information is stored in the storage unit as the specific water management information. system.
  43.  前記記憶部には、前記水田からのメタン排出量を算出するためのモデルデータが記憶されており、
     前記取得部は、通信インタフェイスから構成され、
     前記制御部は、
     前記水田情報、前記作業情報、前記特定水管理情報、及び前記モデルデータに基づいて、前記水田の所定の基本メタン排出量から削減されたメタン削減量を算出して、当該メタン削減量を前記記憶部に記憶させ、
     前記農業者に関する農業者情報を前記農業管理装置及び前記農業者端末装置のうちの少なくともいずれかから前記通信インタフェイスにより取得し、
     前記水田の前記メタン削減量と前記農業者情報と前記検証情報とを含む報告情報を、前記通信インタフェイスによりクレジット管理装置に送信し、
     前記メタン削減量に応じて前記クレジット管理装置から発行された電子的なクレジットを示すクレジット情報を前記通信インタフェイスにより取得し、
     前記農業者情報に基づいて前記クレジット情報を前記通信インタフェイスにより前記農業者端末装置に通知する請求項42に記載の水田メタン削減支援システム。
    The storage unit stores model data for calculating methane emissions from the rice fields,
    The acquisition unit is composed of a communication interface,
    The control unit includes:
    Based on the rice field information, the work information, the specific water management information, and the model data, calculate the methane reduction amount reduced from a predetermined basic methane emission amount of the rice field, and store the methane reduction amount in the storage. Let the department memorize it,
    acquiring farmer information regarding the farmer from at least one of the agricultural management device and the farmer terminal device through the communication interface;
    transmitting report information including the methane reduction amount of the rice field, the farmer information, and the verification information to a credit management device through the communication interface;
    acquiring credit information indicating an electronic credit issued by the credit management device according to the methane reduction amount through the communication interface;
    The rice field methane reduction support system according to claim 42, wherein the credit information is notified to the farmer terminal device through the communication interface based on the farmer information.
  44.  前記制御部は、
     前記水田情報と前記作業情報とに基づいて、所定の確認期間に前記観測装置により観測された複数の前記観測画像のデータを前記観測管理装置から前記取得部により取得し、
     前記複数の観測画像のデータから前記水田の前記水管理の状態及び期間を特定する請求項41に記載の水田メタン削減支援システム。
    The control unit includes:
    Based on the rice field information and the work information, the acquisition unit acquires data of the plurality of observation images observed by the observation device during a predetermined confirmation period from the observation management device;
    The rice field methane reduction support system according to claim 41, wherein the state and period of the water management of the rice field are specified from data of the plurality of observation images.
  45.  前記記憶部には、前記水田からのメタン排出量を算出するためのモデルデータが記憶されており、
     前記取得部は、通信インタフェイスから構成され、
     前記制御部は、
     前記水田情報、前記作業情報、前記特定水管理情報、及び前記モデルデータに基づいて、前記水田の所定の基本メタン排出量から削減されたメタン削減量を算出して、当該メタン削減量を前記記憶部に記憶させ、
     前記農業者に関する農業者情報を前記農業管理装置及び前記農業者端末装置のうちの少なくともいずれかから前記通信インタフェイスにより取得し、
     前記水田の前記メタン削減量と前記農業者情報とを含む報告情報を前記通信インタフェイスによりクレジット管理装置に送信し、
     前記メタン削減量に応じて前記クレジット管理装置から発行された電子的なクレジットを示すクレジット情報を前記通信インタフェイスにより取得し、
     前記農業者情報に基づいて前記クレジット情報を前記通信インタフェイスにより前記農業者端末装置に通知する請求項44に記載の水田メタン削減支援システム。
    The storage unit stores model data for calculating methane emissions from the rice fields,
    The acquisition unit is composed of a communication interface,
    The control unit includes:
    Based on the rice field information, the work information, the specific water management information, and the model data, calculate the methane reduction amount reduced from a predetermined basic methane emission amount of the rice field, and store the methane reduction amount in the storage. Let the department memorize it,
    acquiring farmer information regarding the farmer from at least one of the agricultural management device and the farmer terminal device through the communication interface;
    transmitting report information including the methane reduction amount of the rice field and the farmer information to a credit management device through the communication interface;
    acquiring credit information indicating an electronic credit issued by the credit management device according to the methane reduction amount through the communication interface;
    The rice field methane reduction support system according to claim 44, wherein the credit information is notified to the farmer terminal device through the communication interface based on the farmer information.
  46.  作物を栽培する水田からのメタンの排出量の削減を支援する水田メタン削減支援方法であって、
     水田メタン削減支援装置に備わる制御部が、前記水田に関する水田情報、前記水田で前記作物を栽培するための農作業に関する作業情報、及び観測装置により観測された前記水田を含む地域の観測画像のデータを、水田メタン削減支援装置に備わる取得部により取得するステップと、
     前記制御部が、前記水田情報と前記作業情報と前記観測画像のデータとに基づいて、前記作物の栽培中に前記水田から排出されるメタンを削減するための前記水田の水管理の状態と当該状態が継続した期間とを特定するステップと、
     前記制御部が、特定した水管理の状態及び期間を示す特定水管理情報を生成して、当該特定水管理情報を記憶部に記憶させるステップと、を含む水田メタン削減支援方法。
    A rice field methane reduction support method that supports the reduction of methane emissions from rice fields where crops are cultivated, the method comprising:
    A control unit included in the rice field methane reduction support device collects rice field information regarding the rice field, work information regarding agricultural work for cultivating the crops in the rice field, and observation image data of the area including the rice field observed by the observation device. , a step of acquiring by an acquisition unit provided in the rice field methane reduction support device;
    The control unit determines, based on the rice field information, the work information, and the observation image data, the state of water management of the rice field for reducing methane emitted from the rice field during the cultivation of the crops. determining the duration of the condition;
    A rice field methane reduction support method comprising: the control unit generating specific water management information indicating the specified water management state and period, and storing the specific water management information in a storage unit.
  47.  水田で作物を栽培するための農作業に関する作業情報及び、検出装置により検出された前記水田の水管理状態を示す検出水管理情報を取得する取得部と、
     前記作業情報から特定した前記水田の水管理状態を示す目標水管理情報と前記検出水管理情報との差異に基づいて、前記水田で水管理異常が発生したか否かを判断する制御部と、
     前記水管理異常が発生したことを示す水管理異常情報を出力する出力部と、を備えた情報処理装置。
    an acquisition unit that acquires work information related to agricultural work for cultivating crops in a rice field and detected water management information indicating a water management state of the rice field detected by a detection device;
    a control unit that determines whether a water management abnormality has occurred in the rice field based on a difference between target water management information indicating a water management state of the rice field identified from the work information and the detected water management information;
    An information processing device comprising: an output unit that outputs water management abnormality information indicating that the water management abnormality has occurred.
  48.  前記検出水管理情報には、前記水田の水位を検出する水位センサの検出結果が含まれていて、
     前記制御部は、
     前記目標水管理情報から前記水田の目標水位を特定し、
     前記水位センサの検出結果から前記水田の実水位を特定し、
     前記実水位が前記目標水位より所定値以上高い場合に、前記水管理異常が発生したと判断する請求項47に記載の情報処理装置。
    The detected water management information includes a detection result of a water level sensor that detects the water level of the rice field,
    The control unit includes:
    identifying the target water level of the rice field from the target water management information;
    Identifying the actual water level of the rice field from the detection result of the water level sensor,
    The information processing device according to claim 47, wherein it is determined that the water management abnormality has occurred when the actual water level is higher than the target water level by a predetermined value or more.
  49.  前記検出水管理情報には、前記水田がある地域を観測する観測装置の観測結果が含まれていて、
     前記制御部は、
     前記目標水管理情報から前記水田の目標水管理状態を特定し、
     前記観測装置の観測結果から前記水田の表面が水面であるか否かを特定し、
     前記目標水管理状態が前記水田に水を張らない落水状態であるのに対して、前記観測装置の観測結果から前記水田の表面が水面であると特定した場合に、前記水管理異常が発生したと判断する請求項47に記載の情報処理装置。
    The detected water management information includes observation results of an observation device that observes the area where the rice field is located,
    The control unit includes:
    identifying a target water management state of the rice field from the target water management information;
    Identifying whether the surface of the rice field is a water surface from the observation results of the observation device,
    The water management abnormality occurs when the target water management state is a falling water state in which the rice field is not filled with water, but the observation result of the observation device identifies that the surface of the rice field is a water surface. The information processing apparatus according to claim 47, wherein the information processing apparatus determines that.
  50.  前記検出水管理情報には、少なくとも1つの前記水田がある地域を観測する観測装置の観測結果が含まれていて、
     前記制御部は、
     前記取得部により前記水田に関する水田情報を取得して、当該水田情報から前記水田の位置を特定し、
     前記目標水管理情報から表面が水面になる前記水田の目標水面面積を算出し、
     前記観測装置の観測結果から前記水田及び前記水田の周辺にある土地の表面が水面であるか否かを判断して、表面が水面である前記水田及び前記土地の面積を合わせた実水面面積を算出し、
     前記実水面面積が前記目標水面面積よりも所定値以上大きい場合に、前記水管理異常が発生したと判断する請求項47に記載の情報処理装置。
    The detected water management information includes observation results of an observation device that observes an area where at least one of the rice fields is located,
    The control unit includes:
    acquiring rice field information regarding the rice field by the acquisition unit, and identifying the position of the rice field from the rice field information;
    Calculating a target water surface area of the rice field whose surface is a water surface from the target water management information,
    From the observation results of the observation device, it is determined whether the surface of the paddy field and the land around the paddy field is a water surface, and the actual water surface area is determined by adding the area of the paddy field and the land whose surface is a water surface. Calculate,
    The information processing device according to claim 47, wherein it is determined that the water management abnormality has occurred when the actual water surface area is larger than the target water surface area by a predetermined value or more.
  51.  前記制御部は、
     前記水田に対応する農業者に関する農業者情報を前記取得部により取得し、
     前記水管理異常が発生したと判断すると、前記農業者情報に基づいて前記農業者に前記水管理異常情報を前記出力部により通知する請求項47~50のいずれかに記載の情報処理装置。
    The control unit includes:
    acquiring farmer information regarding a farmer corresponding to the rice field by the acquisition unit;
    The information processing device according to any one of claims 47 to 50, wherein when determining that the water management abnormality has occurred, the output unit notifies the farmer of the water management abnormality information based on the farmer information.
  52.  前記制御部は、
     前記水田の周辺の土地の管理者を示す情報を含む土地管理情報を前記取得部により取得し、
     前記水管理異常が発生したと判断すると、前記土地管理情報に基づいて前記管理者に前記水管理異常情報を前記出力部により通知する請求項47~50のいずれかに記載の情報処理装置。
    The control unit includes:
    acquiring land management information including information indicating a manager of land surrounding the rice field by the acquisition unit;
    The information processing device according to any one of claims 47 to 50, wherein when determining that the water management abnormality has occurred, the output unit notifies the manager of the water management abnormality information based on the land management information.
  53.  水田の水管理状態を検出する検出装置と、
     情報処理装置と、を含み、
     前記情報処理装置は、
     前記水田で作物を栽培するための農作業に関する作業情報及び、前記検出装置により検出された前記水田の水管理状態を示す検出水管理情報を取得する取得部と、
     前記作業情報から特定した前記水田の水管理状態を示す目標水管理情報と前記検出水管理情報との差異に基づいて、前記水田で水管理異常が発生したか否かを判断する制御部と、
     前記水管理異常が発生したことを示す水管理異常情報を出力する出力部と、を備えた農業支援システム。
    A detection device that detects water management status of rice fields;
    an information processing device;
    The information processing device includes:
    an acquisition unit that acquires work information related to agricultural work for cultivating crops in the rice field and detected water management information indicating a water management state of the rice field detected by the detection device;
    a control unit that determines whether a water management abnormality has occurred in the rice field based on a difference between target water management information indicating a water management state of the rice field identified from the work information and the detected water management information;
    An agricultural support system comprising: an output unit that outputs water management abnormality information indicating that the water management abnormality has occurred.
  54.  検出装置が水田の水管理状態を検出するステップと、
     情報処理装置が、前記水田で作物を栽培するための農作業に関する作業情報及び、前記検出装置により検出された前記水田の水管理状態を示す検出水管理情報を取得するステップと、
     前記情報処理装置が、前記作業情報から特定した前記水田の水管理状態を示す目標水管理情報と前記検出水管理情報との差異に基づいて、前記水田で水管理異常が発生したか否かを判断するステップと、
     前記情報処理装置が、前記水管理異常が発生したことを示す水管理異常情報を出力するステップと、を備えた農業支援方法。
    a step in which the detection device detects the water management status of the rice field;
    an information processing device acquiring work information related to agricultural work for cultivating crops in the rice field and detected water management information indicating a water management state of the rice field detected by the detection device;
    The information processing device determines whether a water management abnormality has occurred in the rice field based on a difference between target water management information indicating a water management state of the rice field identified from the work information and the detected water management information. the step of determining,
    An agricultural support method comprising: the information processing device outputting water management abnormality information indicating that the water management abnormality has occurred.
PCT/JP2023/016601 2022-04-28 2023-04-27 Paddy methane reduction support device, paddy methane reduction support system, paddy methane reduction support method, information processing device, agriculture support system, and agriculture support method WO2023210733A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2022075401 2022-04-28
JP2022-075401 2022-04-28
JP2022-153851 2022-09-27
JP2022153851 2022-09-27
JP2023-037689 2023-03-10
JP2023037689A JP2024048329A (en) 2022-09-27 2023-03-10 Paddy field methane reduction support device, paddy field methane reduction support system
JP2023071925A JP2023164357A (en) 2022-04-28 2023-04-26 Rice field methane reduction support apparatus, rice field methane reduction support system, information processing apparatus, and agriculture support system
JP2023-071925 2023-04-26

Publications (1)

Publication Number Publication Date
WO2023210733A1 true WO2023210733A1 (en) 2023-11-02

Family

ID=88518788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016601 WO2023210733A1 (en) 2022-04-28 2023-04-27 Paddy methane reduction support device, paddy methane reduction support system, paddy methane reduction support method, information processing device, agriculture support system, and agriculture support method

Country Status (1)

Country Link
WO (1) WO2023210733A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002149978A (en) * 2000-11-15 2002-05-24 Global Industrial & Social Progress Research Institute Carbon dioxide emission right transaction system and assessing system for carbon dioxide emission amount reducing cost
JP2011138356A (en) * 2009-12-28 2011-07-14 Pasuko:Kk Paddy rice crop status tracking system, paddy rice crop status tracking method and paddy rice crop status tracking program
WO2012147227A1 (en) * 2011-04-28 2012-11-01 住友林業株式会社 Business model for methane-suppressed cultivation method
JP2017042071A (en) * 2015-08-25 2017-03-02 積水化学工業株式会社 Field water management system and field water management method
JP2021185896A (en) * 2020-06-05 2021-12-13 株式会社クボタ Water distributing/feeding management system, farm field water management device and irrigation water management device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002149978A (en) * 2000-11-15 2002-05-24 Global Industrial & Social Progress Research Institute Carbon dioxide emission right transaction system and assessing system for carbon dioxide emission amount reducing cost
JP2011138356A (en) * 2009-12-28 2011-07-14 Pasuko:Kk Paddy rice crop status tracking system, paddy rice crop status tracking method and paddy rice crop status tracking program
WO2012147227A1 (en) * 2011-04-28 2012-11-01 住友林業株式会社 Business model for methane-suppressed cultivation method
JP2017042071A (en) * 2015-08-25 2017-03-02 積水化学工業株式会社 Field water management system and field water management method
JP2021185896A (en) * 2020-06-05 2021-12-13 株式会社クボタ Water distributing/feeding management system, farm field water management device and irrigation water management device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The new calculation method for methane emissions from paddy fields adopted in the IPC guidelines in 2006 edition", 5 January 2013 (2013-01-05), Retrieved from the Internet <URL:https://web.archive.org/web/20130105091037/http://www.naro.affrc.go.jp/archive/niaes/sinfo/result/result23/result23_06.html> [retrieved on 20230425] *

Similar Documents

Publication Publication Date Title
US11523571B2 (en) Crop-specific automated irrigation and nutrient management
CN113473840B (en) Agricultural field digital modeling and tracking for implementing agricultural field trials
CN111246729B (en) Farmland digital modeling and tracking for implementing farmland experiments
US20200250593A1 (en) Yield estimation in the cultivation of crop plants
WO2016127094A1 (en) Methods and systems for recommending agricultural activities
CN103930919A (en) Agricultural and soil management
Panpatte Artificial intelligence in agriculture: An emerging era of research
Laing et al. Mechanised dry seeding is an adaptation strategy for managing climate risks and reducing labour costs in rainfed rice production in lowland Lao PDR
CN111095314A (en) Yield estimation for crop plant planting
AU2022271449B2 (en) Dynamic tank management based on previous environment and machine measurements
Ahmad et al. Satellite Farming
Prasuhn Experience with the assessment of the USLE cover-management factor for arable land compared with long-term measured soil loss in the Swiss Plateau
WO2023210733A1 (en) Paddy methane reduction support device, paddy methane reduction support system, paddy methane reduction support method, information processing device, agriculture support system, and agriculture support method
EP4239593A1 (en) Compensating for occlusions in a detection system of a farming machine
Tenge et al. Participatory soil and water conservation planning using a financial analysis tool in the West Usambara highlands of Tanzania
Nezamzade et al. Factors causing yield gap in rape seed production in the eastern of Mazandaran province, Iran
JP2024048329A (en) Paddy field methane reduction support device, paddy field methane reduction support system
JP2023164357A (en) Rice field methane reduction support apparatus, rice field methane reduction support system, information processing apparatus, and agriculture support system
Lairez et al. Sustainability assessment of cropping systems: A field-based approach on family farms. Application to maize cultivation in Southeast Asia
Zhang et al. Developing spring wheat in the Noah-MP land surface model (v4. 4) for growing season dynamics and responses to temperature stress
Larsen et al. Sugar productivity—time to make an omelette
EP4238416A1 (en) Dynamically adjusting treatment buffers for plant treatments
US11844298B2 (en) Management of the dosing of inputs to be applied to an agricultural surface
EP4201184A1 (en) Crop yield component map
EP4238415A1 (en) Farming machines configured to treat plants with a combination of treatment mechanisms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796469

Country of ref document: EP

Kind code of ref document: A1