WO2023210680A1 - アルミニウム積層体 - Google Patents

アルミニウム積層体 Download PDF

Info

Publication number
WO2023210680A1
WO2023210680A1 PCT/JP2023/016427 JP2023016427W WO2023210680A1 WO 2023210680 A1 WO2023210680 A1 WO 2023210680A1 JP 2023016427 W JP2023016427 W JP 2023016427W WO 2023210680 A1 WO2023210680 A1 WO 2023210680A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
layer
aluminum foil
resin film
aluminum laminate
Prior art date
Application number
PCT/JP2023/016427
Other languages
English (en)
French (fr)
Inventor
真輝 松本
享 新宮
光成 大八木
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Publication of WO2023210680A1 publication Critical patent/WO2023210680A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to an aluminum laminate with excellent flexibility.
  • Patent Document 1 JP2019-176022A
  • Patent Document 2 JP2013-065675A
  • the electromagnetic wave shielding material as described in Patent Document 1 is used to provide electromagnetic shielding by wrapping it around electric wires, cables, etc., but in order to exhibit high electromagnetic shielding properties, a layer made of metal foil such as copper foil or aluminum foil is used. as all or part of the structure.
  • a layer made of metal foil such as copper foil or aluminum foil is used. as all or part of the structure.
  • the electromagnetic shielding material described in Patent Document 1 has excellent electromagnetic shielding properties, it has a problem in that it is poor in flexibility, especially against repeated bending, and is not easy to use.
  • the electromagnetic shielding material described in Cited Document 2 is a sheet-shaped electromagnetic shielding material applied to a flat cable, but since it does not include a layer of metal foil, it has poor flexibility against repeated bending. Although it is excellent, there is a problem in that it does not provide a high degree of electromagnetic shielding.
  • sensors and control devices have been attached to devices in various fields, so the wires and cables that connect them are often used at the joints of the arms of robots, for example, and for devices used in vehicles. It is increasingly being used for movable parts that are subject to severe repeated bending, such as door mirrors and door opening/closing parts.
  • electromagnetic wave shielding materials applied to electric wires and cables are required to have higher bending characteristics than ever before to be able to withstand repeated bending.
  • metal foil for the electromagnetic shielding layer it will require a high degree of resistance to repeated bending. There was an essential problem that flexibility could not be obtained.
  • the present invention is a metal laminate for use in electromagnetic shielding tape, which is lightweight, has excellent electromagnetic shielding properties, and includes metal foil that can be wrapped around a cable, and which also exhibits excellent bending properties against repeated bending.
  • the purpose is to provide
  • the present inventors have conducted extensive studies on materials that exhibit advanced electromagnetic shielding characteristics, materials that exhibit advanced bending characteristics against repeated bending, and combinations of these materials.
  • the thickness ratio of the aluminum foil in the laminate is within a specific range, and the roll processing direction of the laminate is The present inventors have discovered that when the 0.2% yield strength, elongation at break, and width strain ratio of the material are higher than specific values, the bending properties against repeated bending are significantly improved, and the present invention has been completed.
  • the thickness t1 of the aluminum foil is 40% or more and 60% or less of the thickness t0 of the aluminum laminate
  • the aluminum laminate has a 0.2% proof stress in the rolling direction of greater than 50.0 N/mm 2 , an elongation at break in the rolling direction of the aluminum laminate of 30.0% or more
  • an aluminum laminate for electromagnetic shielding tape characterized in that the width strain ratio in the width direction is 0.60 or more.
  • the aluminum laminate of the present invention has a basic configuration in which at least one layer of resin film is laminated onto aluminum foil.
  • the ratio of the thickness t 1 of the aluminum foil to the thickness t 0 of the aluminum laminate and the 0.2% proof stress in the rolling direction of the aluminum laminate are limited because these values are as described above. If it is outside this range, when the aluminum laminate is bent or repeatedly bent, some of the aluminum foil in the laminate will not be able to withstand the deformation, resulting in premature breakage and poor electromagnetic shielding properties. This is because you will not be able to obtain it. Therefore, the aluminum laminate of the present invention achieves two contradictory properties: maintaining high electromagnetic shielding properties and achieving high bending properties against repeated bending.
  • the aluminum foil has a total diffraction intensity I that is the sum of the diffraction intensities showing each of the (111) plane, (200) plane, (220) plane, and (311) plane in X-ray diffraction.
  • the ratio P 200 of the diffraction intensity I 200 indicating the (200) plane to 0 is 30% or more and 60% or less
  • the ratio P 220 of the diffraction intensity I 220 indicating the (220) plane to the total diffraction intensity I 0 is 10%. It is preferable that it is 40% or less.
  • the aluminum foil preferably contains 0.4% by mass or more and 1.7% by mass or less of iron.
  • the iron content in the aluminum foil is less than 0.4% by mass, it becomes difficult to refine the crystal grains in the aluminum foil, resulting in insufficient strength of the aluminum foil and pinholes after cold rolling. The number of cases where this occurs will also increase. On the other hand, if the iron content is more than 1.7% by mass, coarse intermetallic compounds are likely to occur, resulting in poor workability and also in this case, pinholes are likely to occur.
  • the thickness of the aluminum foil in each layer is preferably 5 ⁇ m or more and 300 ⁇ m or less, more preferably 5 ⁇ m or more and 150 ⁇ m or less, and even more preferably 6 ⁇ m or more and 80 ⁇ m or less.
  • the aluminum laminate of the present invention can be easily wrapped around something with an extremely small radius of curvature, such as a cable, without causing breakage. To enable molding of an electromagnetic shielded cable without impairing its flexibility against repeated bending.
  • the resin film and the aluminum foil are laminated via an adhesive, and the peel strength between the resin film and the aluminum foil is preferably 3.0 N/15 mm or more.
  • the peel strength between the resin film and the aluminum foil is less than 3.0N/15mm, when subjected to bending deformation due to repeated bending, the deformation of the aluminum foil will not be able to sufficiently follow the deformation of the resin film, causing local damage. This is because the aluminum foil itself may deform excessively and break.
  • the resin film suitable for effectively improving the bending properties while maintaining the electromagnetic shielding effect of the aluminum foil preferably contains at least a polyester resin such as a polyethylene terephthalate resin. .
  • the aluminum laminate of the present invention may further have a printed layer or a coating layer laminated thereon from the viewpoint of improving convenience and decorativeness.
  • the thickness t1 of the aluminum foil is set to 40% or more and 60% or less with respect to the thickness t0 of the aluminum laminate.
  • the 0.2% yield strength is greater than 50.0 N/mm 2
  • the elongation at break in the roll processing direction of the aluminum laminate is 30.0% or more
  • the width strain ratio of the aluminum laminate in the roll processing width direction is 0.2%.
  • FIG. 1 is a cross-sectional view schematically showing a layered structure of an aluminum layered product according to a first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the laminated structure of an aluminum laminate according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the laminated structure of an aluminum laminate according to a third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing the laminated structure of an aluminum laminate according to a fourth embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the laminated structure of an aluminum laminate according to a fifth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing the laminated structure of an aluminum laminate according to a sixth embodiment of the present invention.
  • FIG. 1 shows an aluminum laminate in which one resin film (layer) 3 is laminated to one aluminum foil (layer) 2 via an adhesive (layer) 4, as a first embodiment of the present invention.
  • a cross-sectional view of 1a is shown.
  • the aluminum laminate 1a of this embodiment at least a resin film (layer) 3 and an aluminum foil (layer) 2 are laminated, as shown in FIG. If the aluminum foil (layer) 2 is alone, the bending properties against repeated bending will be significantly reduced. Therefore, by laminating the aluminum foil (layer) 2 and at least one resin film (layer) 3, the bending properties can be improved. The decline is suppressed or improved.
  • the aluminum laminate 1a further has an adhesive (layer) 4 between the aluminum foil (layer) 2 and the resin film (layer) 3.
  • the electromagnetic wave shield that covers electric wire cables etc. with an extremely small radius of curvature can be used. It can be used more suitably as a material.
  • the aluminum foil (layer) 2 and the resin film (layer) 3 of this embodiment do not necessarily have to be laminated with the adhesive (layer) 4 interposed therebetween; for example, the aluminum foil (layer) ) 2 and the resin film (layer) 3 may be directly laminated.
  • FIG. 2 shows, as a second embodiment, a cross-sectional view of an aluminum laminate 1b in which a printed layer 5 or a coating layer 5 is laminated on the aluminum foil (layer) 2 of the laminate 1a of the first embodiment.
  • FIG. 3 shows, as a third embodiment, an aluminum film in which a printed layer 5 or a coating layer 5 is laminated on the resin film (layer) 3 of the laminate 1a of the first embodiment.
  • a cross-sectional view of the laminate 1c is shown.
  • a second resin film (layer) is further placed on the aluminum foil (layer) 2 of the laminate 1a of the first embodiment via an adhesive (layer) 4. ) 3 is shown.
  • the aluminum laminate 1a of the first embodiment is used as the basic structure, and the aluminum foil (layer) 2 or the resin film is A printed layer 5 or a coating layer 5 may be further laminated on (layer) 3.
  • the printing layer 5 or the coating layer 5 is laminated on both sides of the aluminum foil (layer) 2 and the resin film (layer) 3 of the laminate 1a of the first embodiment. Good too.
  • the aluminum laminate 1a of the first embodiment is used as a basic structure, and an adhesive (layer) 4 is further applied on the aluminum foil (layer) 2.
  • the second resin film (layer) 3 may be laminated via.
  • the aluminum laminate 1d of the fourth embodiment has a resin film (layer) 3 on each of one side and the other side of the aluminum foil (layer) 2.
  • the aluminum foil (layer) 2 and the resin film (layer) 3 do not necessarily need to be laminated via the adhesive (layer) 4, as in the first embodiment. It is similar to
  • FIG. 5 as a fifth embodiment, a second aluminum foil (layer) is further placed on the resin film (layer) 3 of the laminate 1a of the first embodiment via an adhesive (layer) 4.
  • 6 is a cross-sectional view of an aluminum laminate 1e in which 2 aluminum foils (layers) 2 are laminated, and FIG. A cross-sectional view of an aluminum laminate 1f in which a second resin film (layer) 3 is further laminated on one surface via an adhesive (layer) 4 is shown.
  • the aluminum laminate 1a of the first embodiment is used as a basic structure, and an adhesive (layer) 4 is further applied on the resin film (layer) 3.
  • the second aluminum foil (layer) 2 may be laminated via the aluminum foil (layer) 2.
  • the aluminum laminate 1e of the fifth embodiment not only the aluminum foil (layer) 2 is laminated on one side of the resin film (layer) 3, but also the aluminum foil (layer) 2 is laminated on one side of the resin film (layer) 3.
  • a second aluminum foil (layer) 2 is further laminated on the other side of the resin film (layer) 3 that is not laminated.
  • the aluminum laminate 1a of the first embodiment is used as a basic structure like the aluminum laminate 1f of the sixth embodiment, and further, other first
  • the aluminum laminate 1a of the embodiment may be repeatedly laminated.
  • the aluminum foil (layer) 2 and the resin film (layer) 3 do not necessarily have to be laminated with the adhesive (layer) 4 in between. This is similar to the embodiment.
  • the aluminum laminates 1a to 1f of this embodiment have a characteristic that the 0.2% proof stress in the rolling direction is greater than 50.0 N/mm 2 . If the 0.2% yield strength in the roll processing direction is 50.0 N/mm2 or less, the aluminum laminates 1a to 1f will break early when subjected to repeated bending, resulting in good electromagnetic shielding properties. I won't be able to do it.
  • the aluminum laminates 1a to 1f of this embodiment which are formed into a tape shape, are usually coated by being deformed to form a U-shape to an O-shape (instead of being wound spirally). Therefore, when a cable or the like is repeatedly bent, it is alternately subjected to compressive stress generated on the side with a smaller radius of curvature and tensile stress generated on the side with a larger radius of curvature.
  • the aluminum laminates 1a to 1f of this embodiment are composite materials made of a metal material and a resin material, when the above-mentioned bending is repeated, the resin film (layer) 3 basically breaks down in the laminate.
  • the aluminum foil (layer) 2 undergoes repeated elastic deformation, it is considered that the aluminum foil (layer) 2 repeatedly undergoes plastic deformation beyond its elastic limit from an early stage.
  • the aluminum foil (layer) 2 in the aluminum laminates 1a to 1f easily changes from elastic deformation to plastic deformation, resulting in plastic deformation. It is thought that the ratio of bending in the area becomes high, causing so-called metal fatigue and easily breaking.
  • the "roll processing direction” refers to the processing direction when laminating a resin film onto aluminum foil using a roll-to-roll method.
  • the aluminum laminates 1a to 1f are made of a resin material used in the rolling direction of the aluminum foil 2 during rolling and when forming the resin film 3 in order to improve the mechanical strength in the longitudinal direction.
  • the layers are stacked so that the direction in which the particles flow coincides with the roll processing direction.
  • the aluminum laminates 1a to 1f of this embodiment are characterized in that the thickness t 1 of the aluminum foil (layer) 2 is 40% or more and 60% or less of the thickness t 0 of the aluminum laminate.
  • the ratio of the thickness t1 of the aluminum foil (layer) 2 becomes smaller than 40%, not only the cross-sectional area (section modulus) of the aluminum foil (layer) 2 in the aluminum laminate becomes insufficient, but also the aluminum foil (layer) 2 suffers from bending deformation.
  • the aluminum foil (layer) 2 that is off the neutral plane of the aluminum laminates 1a to 1f will undergo large deformation, so within the large deformation allowed by the resin film (layer) 3, the aluminum foil Layer 2 reaches the breaking strength first and breaks, and as a result, it becomes impossible to obtain good electromagnetic shielding properties.
  • the ratio of the thickness t 1 of the aluminum foil (layer) 2 is larger than 60%, the thickness of the aluminum foil (layer) 2 that occupies the aluminum laminate becomes excessive, so that the aluminum laminates 1a to 1f are bent.
  • the inside of the aluminum foil (layer) 2 has a surface that receives compressive stress on the side with a small radius of curvature and a surface that receives tensile stress on the side with a large radius of curvature.
  • the foil (layer) 2 undergoes metal fatigue at an early stage and easily breaks even under small stress and small deformation (strain), making it impossible to obtain good electromagnetic shielding properties.
  • the aluminum laminates 1a to 1f of this embodiment have a characteristic that the elongation at break in a tensile test in the rolling direction is 30.0% or more. If the elongation at break in the rolling direction is less than 30.0%, the aluminum laminates 1a to 1f will break early when subjected to repeated bending, making it impossible to obtain good electromagnetic shielding properties. Therefore, the elongation at break of the aluminum laminates 1a to 1f is preferably 30.0% or more, more preferably 35.0% or more, and even more preferably 40.0% or more. When the elongation at break of the aluminum laminates 1a to 1f is within the above range, it becomes more difficult to break.
  • the aluminum laminates 1a to 1f of this embodiment have a characteristic that the width strain ratio r in the roll width direction is 0.60 or more.
  • the width strain ratio r in the roll processing width direction is defined as: W 0 is the width of the aluminum laminate before tensile deformation, W is the width of the aluminum laminate after tensile deformation, L 0 is the length of the aluminum laminate before tensile deformation, When the length of the aluminum laminate after tensile deformation is L, it is calculated by the following equation (1), and is an index representing the anisotropy when tensile deformation is applied to the material.
  • r log(W 0 /W)/log[(W ⁇ L)/(W 0 ⁇ L 0 )]...(1) r: Width strain ratio W 0 (mm): Width before tensile deformation, W (mm): Width after tensile deformation L 0 (mm): Length before tensile deformation, L (mm): Length after tensile deformation difference
  • width strain ratio in the roll width direction of the aluminum laminates 1a to 1f is less than 0.60, repeated bending will cause many pinholes to form in the aluminum foil (layer) 2 of the aluminum laminates 1a to 1f at an early stage. , it becomes impossible to obtain good electromagnetic shielding properties.
  • the detailed mechanism is not clear, it is inferred as follows.
  • the aluminum laminates 1a to 1f are alternately subjected to tensile and compressive deformation in the rolling direction.
  • the deformation of the aluminum laminates 1a to 1f due to this force is divided into deformation in the thickness direction and width direction, but if the width strain ratio is high, that is, it is easy to deform in the width direction, the pins of the aluminum foil (layer) 2 It is thought that deformation becomes easier while suppressing the generation of holes, and good electromagnetic shielding properties can be obtained.
  • the aluminum foil 2 has a total diffraction intensity of (111) plane, (200) plane, (220) plane, and (311) plane in X-ray diffraction.
  • the ratio P 200 of the diffraction intensity I 200 indicating the ( 200 ) plane to a certain total diffraction intensity I 0 is 30% or more and 60% or less, and the ratio of the diffraction intensity I 220 indicating the (220) plane to the total diffraction intensity I 0 It is preferable that P220 is 10% or more and 40% or less.
  • the ratio P 200 of the diffraction intensity I 200 indicating the (200) plane in X-ray diffraction is the ratio P 200 of the (111) plane, (200) plane, (220) plane and (311) plane on the diffraction chart in the X-ray diffraction apparatus.
  • Each diffraction intensity indicating each is measured as an integrated intensity after removing the background (BG), and the ratio P 200 to the total diffraction intensity I 0 , which is the sum of the above respective diffraction intensities, is calculated by the following (Formula 2). be done.
  • the actual integrated intensity is measured by reading it using an integrated intensity calculation program that is analysis software of the X-ray diffraction apparatus used.
  • P 200 [ ⁇ (200) plane diffraction intensity I 200 ⁇ / ⁇ (111) plane, (200) plane, (220) plane, and (311) plane diffraction intensity I 0 ⁇ ] ⁇ 100[ %]...(Formula 2)
  • the ratio P 220 of the diffraction intensity I 220 indicating the (220) plane in X-ray diffraction can also be determined in the same manner. That is, the numerator in (Formula 2) may be replaced with "diffraction intensity I 220 of the (220) plane".
  • the surface on which the X-ray diffraction intensity is measured is the rolled surface of the aluminum foil 2, that is, the surface that comes into contact with the rolling roll during cold rolling when manufacturing the aluminum foil 2, and is the surface of the aluminum foil 2 of the aluminum laminates 1a to 1f. It is also the surface of (layer) 2.
  • the present inventors set the ratio P 200 of the diffraction intensity I 200 indicating the (200) plane to the above-mentioned total diffraction intensity I 0 from 30% to 60%.
  • the ratio P 220 of the diffraction intensity I 220 representing the (220) plane is set to 10% or more and 40% or less, it has been found that excellent bending properties against repeated bending can be imparted to the aluminum laminates 1a to 1f.
  • the ratios P 200 and P 220 of the diffraction intensities I 200 and I 220 indicating the (200) and ( 220 ) planes are out of the above range, the balance of each crystal orientation will be lost, resulting in repeated This is thought to be because the bending properties against bending are reduced. From the viewpoint of bending properties against repeated bending, it is more preferable that the ratio P 200 of the diffraction intensity I 200 indicating the (200) plane to the total diffraction intensity I 0 which is the sum of each diffraction intensity is 30% or more and 50% or less .
  • the aluminum foil 2 described later In order to homogenize an ingot having a composition of °C), and the working conditions for the subsequent plate making process (hot rolling, cold rolling, intermediate annealing) and foil making process (cold rolling) should be set to general conditions. Bye. Further, the obtained aluminum foil may or may not be subjected to final annealing. By laminating the thus produced aluminum foil 2 with a thickness of 5 to 300 ⁇ m with at least one layer of resin film 3, it is possible to obtain aluminum laminates 1a to 1f that exhibit excellent flexibility against repeated bending. can.
  • the thickness of the aluminum foil 2 used in this embodiment is preferably 5 ⁇ m or more and 300 ⁇ m or less, more preferably 5 ⁇ m or more and 150 ⁇ m or less, and still more preferably 6 ⁇ m or more and 80 ⁇ m or less.
  • the thickness of the aluminum foil 2 is less than 5 ⁇ m, there is a risk that it will break during molding or that pinholes will occur or expand. Furthermore, if the thickness of the aluminum foil 2 exceeds 300 ⁇ m, not only will it be difficult to obtain an X-ray diffraction intensity within the range specified in this embodiment, but also the weight will increase when formed into aluminum laminates 1a to 1f. , the coverage of cables etc. will be reduced.
  • the aluminum laminates 1a to 1f can break even if they have an extremely small radius of curvature, such as a cable. It can be easily wound without any bending, and it can be formed into an electromagnetic shielded cable without impairing its flexibility against repeated bending.
  • the aluminum foil 2 used in this embodiment contains iron (Fe) from 0.4% by mass to 1.7% by mass.
  • the content of Fe in the aluminum foil 2 is more preferably 0.7% by mass or more and 1.7% by mass or less, and even more preferably 1.1% by mass or more and 1.7% by mass or less.
  • the Fe content is less than 0.4% by mass, the effect of refining the crystal grains of the aluminum foil 2 will be insufficient, the strength of the foil will decrease, and a relatively large number of pinholes will occur after cold rolling. Tend. On the other hand, if the Fe content exceeds 1.7% by mass, coarse intermetallic compounds tend to occur, which reduces workability (rollability, formability) and also tends to cause pinholes. Become.
  • the crystal grains of the aluminum foil 2 are made finer and the generation of coarse intermetallic compounds is suppressed. At the same time, appropriate strength and elongation of the aluminum foil 2 are ensured.
  • the content of silicon (Si) is preferably 0.30% by mass or less, and more preferably 0.15% by mass or less.
  • Si content exceeds 0.30% by mass, coarse crystallized substances are likely to occur, the effect of refining the crystal grains of the aluminum foil 2 is reduced, and the strength and workability also tend to decrease. be.
  • the lower limit of the Si content may be set to 0.01% by mass.
  • the content of copper (Cu) is preferably 0.05% by mass or less, more preferably 0.02% by mass or less. If the Cu content exceeds 0.05% by mass, there is a risk that workability and corrosion resistance will decrease. Note that since Cu is unavoidably present in industrial aluminum, the lower limit of the Cu content may be set to 0.001% by mass.
  • the remainder other than the above-mentioned composition is aluminum (Al).
  • the aluminum foil 2 may each contain 0.05% by mass or less of trace elements other than the above-mentioned Fe, Si, and Cu.
  • trace elements include manganese (Mn), magnesium (Mg), zinc (Zn), titanium (Ti), zirconium (Zr), gallium (Ga), chromium (Cr), vanadium (V), and the like. These elements may exist in trace amounts in the aluminum foil 2 as unavoidable impurity elements.
  • the composition of the aluminum foil 2 used in this embodiment has been explained, but the composition of the aluminum foil 2 is, for example, alloy number 8021 or 8079 specified in JISH4160-1994, which is commercially available. It is preferable that the composition corresponds to . Therefore, the aluminum foil 2 is a versatile aluminum foil having a composition of 8000 series or close to 8000 series, which does not require expensive additive elements, and has excellent moldability, and when laminated with the resin film 3, This gives the aluminum laminates 1a to 1f excellent flexibility against repeated bending.
  • the peel strength between the aluminum foil (layer) 2 and the resin film (layer) 3 is It is preferable that the peel strength when peeling the aluminum foil (layer) 2 from the aluminum foil (layer) 2 is 3.0 N/15 mm or more.
  • the peel strength is less than 3.0 N/15 mm, when repeated bending deformation is applied, the deformation of the aluminum foil (layer) 2 cannot sufficiently follow the deformation of the resin film (layer) 3, causing local damage. This is because the aluminum foil (layer) 2 itself may deform excessively and break.
  • the aluminum foil (layer) 2 and the resin film (layer) 3 may be directly bonded together by heat fusion, for example, but the peel strength (adhesion strength) is improved.
  • the aluminum foil (layer) 2 and the resin film (layer) 3 may be bonded together via a reactive adhesive (layer) 4.
  • the main agent of the adhesive constituting adhesive (layer) 4 is polyester-based, polyester-urethane-based, etc. It is preferable to use an adhesive such as, for example, and the amount applied is about 0.5 to 10.0 g/m 2 . If the coating amount is less than 0.5 g/ m2 , there is a risk that the adhesive strength will be insufficient, while if it exceeds 10.0 g/ m2 , no further improvement in adhesive strength will be observed, and the moisture resistance and economic efficiency will deteriorate. This is because it is undesirable from a viewpoint as well. Furthermore, aliphatic or aromatic isocyanates can be used as curing agents.
  • a heat-reactive polyester polyol adhesive consisting of two or more liquids
  • the weight average molecular weight is 30,000 or more
  • the softening point after curing of the coating film is 180°C or more. It is preferable to use one that is.
  • the adhesion method is not particularly limited, but it is preferable to use a dry lamination method.
  • the resin film 3 used in this embodiment is not particularly limited, but preferably contains at least a polyester resin.
  • the polyester resin film polyethylene terephthalate can be suitably used, but films made of polyethylene naphthalate or polybutylene terephthalate may also be used.
  • the resin film 3 may be manufactured by any known manufacturing method, such as an inflation method, a casting method, or an extrusion method.
  • a multilayer film made of nylon as a base and coextruded with polyester resin or ethylene vinyl alcohol (EVOH) resin can also be used.
  • EVOH ethylene vinyl alcohol
  • a film manufactured by general biaxial stretching may be used, and a non-stretched film may be used.
  • the thickness of the resin film 3 is preferably, for example, 10 ⁇ m or more and 30 ⁇ m or less, and more preferably 12 ⁇ m or more and 20 ⁇ m or less, considering the flexibility of the aluminum laminates 1a to 1f against repeated bending and ease of handling. preferable.
  • the tensile strength ratio (RD/TD) of the resin film 3 is preferably, for example, 1.15 or more, and more preferably 1.2 or more, considering the width strain due to compressive stress and tensile stress during bending.
  • the resin film 3 may contain additives and impurities. Examples of additives include curing agents, crosslinking agents, antioxidants, ultraviolet absorbers, and lubricants.
  • the aluminum laminates 1a to 1f of this embodiment may be further coated or printed for convenience, decoration, and the like.
  • the coating layer include laminating an insulating layer, an adhesive layer, a waterproof layer, an anti-corrosion layer, and the like.
  • the printing layer a known printing ink can be used, and the resin components included include cellulose, polyvinyl butyral, polyamide, polyolefin, polyurethane, acrylic, polyester, polyvinyl chloride, polyvinyl alcohol, ethylene-vinyl acetate, etc. Examples include those containing at least one of polymers, ethylene-vinyl alcohol copolymers, and ethylene-ethyl acrylate copolymers.
  • the coloring component contained in the printing ink include those containing at least one of organic pigments, inorganic pigments, and dyes.
  • the aluminum laminates 1a to 1f of this embodiment can be suitably used as electromagnetic shielding materials, particularly electromagnetic shielding tapes for electromagnetic shielding cables.
  • electromagnetic shielding materials particularly electromagnetic shielding tapes for electromagnetic shielding cables.
  • the cable can be covered by wrapping the aluminum laminates 1a to 1f of this embodiment around the cable to form a cylinder (UO pipe) and joining them.
  • an aluminum alloy ingot obtained by DC casting was subjected to homogenization heat treatment in a heating furnace at a predetermined temperature and time. After that, after performing hot rolling, cold rolling is performed multiple times, and intermediate annealing is performed at a predetermined temperature and time during the cold rolling. , 12, 15, and 20 ⁇ m, aluminum foil C was cold rolled to a thickness of 7 ⁇ m, and aluminum foil D was cold rolled to a thickness of 7 ⁇ m. Furthermore, aluminum foils A, B, and D were subjected to final annealing at a predetermined temperature and time.
  • the homogenization heat treatment temperature is high, once the temperature of the ingot reaches the homogenization heat treatment temperature, the ingot may be cooled to a temperature at which hot rolling can be started.
  • the homogenization heat treatment time may be within a general treatment time and is not necessarily limited to the time shown in Table 1. Further, since the intermediate annealing conditions do not have a large effect on the properties of the examples and comparative examples of the present invention, the heat treatment temperature and heat treatment time may be within the range of general operating conditions.
  • X-ray diffraction intensity of aluminum foil For each of the obtained aluminum foil samples A to D, X-ray diffraction was performed to calculate the ratio P 200 of the diffraction intensity I 200 indicating the (200) plane and the ratio P 220 of the diffraction intensity I 220 indicating the ( 220 ) plane. The strength was measured. The X-ray diffraction intensity was measured using a fully automatic multi-purpose horizontal X-ray diffractometer (Smart Lab manufactured by Rigaku Co., Ltd.), and the analysis software was RINT2000PC (Ver. 3.0.0.0) using CuK ⁇ radiation, 40 kV, 30 mA.
  • ⁇ Measurement of mechanical strength of aluminum foil The tensile strength, 0.2% proof stress, and elongation at break of the aluminum foil were measured at room temperature (20°C) using a tensile tester (Toyo Seiki Co., Ltd. Strograph VES5D, strain rate 20 mm/min, sample width 7 mm, distance between chucks) 100 mm).
  • 0.2% yield strength is determined by finding a straight line from the obtained load-displacement curve that has the same slope as the elastic straight line in the elastic deformation region and passes through a point 0.2% away from the initial sample length from the elastic modulus intersection. The point that intersects with the load-displacement curve was defined as the load at the proof point, and the value was calculated by dividing the load by the cross-sectional area of the sample.
  • the resin films O, P, Q, R, and S to be laminated on the aluminum foil described above include a 12 ⁇ m thick nylon resin film O (“ONBC84W#” manufactured by Unitika Co., Ltd.), and a 12 ⁇ m thick PET (polyethylene terephthalate) resin film P.
  • PET resin film Q with a thickness of 12 ⁇ m
  • PET resin film R with a thickness of 16 ⁇ m
  • PBT polymer
  • Examples 1 to 4 and Comparative Examples 1 to 10 were produced using the above aluminum foils A to D and resin films O to S. Specifically, according to the combinations and adhesive application amounts (g/m 2 ) shown in Table 3, resin films O to S were applied to one side of aluminum foils A to D using a polyurethane dry laminating adhesive. By laminating, aluminum laminates of Examples 2 and 3 and Comparative Examples 2 and 4 were produced. In addition, for Examples 1 and 4 and Comparative Examples 1, 3, and 5 to 10, aluminum foil -D were laminated to produce aluminum laminates of Examples and Comparative Examples.
  • the yield strength of the aluminum laminates of Examples 1 to 4 and Comparative Examples 1 to 10 was measured by tensile testing the aluminum laminates according to the following method using Strograph VES5D manufactured by Toyo Seiki.
  • the aluminum laminate was cut out by 200 mm in the rolling direction (RD) of the aluminum foil in the aluminum laminate and 7 mm in the width direction (TD) perpendicular to the rolling direction (RD).
  • the distance between the chucks was 100 mm, and the tensioning speed was 20 mm/min.
  • the aluminum laminate was cut out by 100 mm in the rolling direction (RD) of the aluminum foil in the aluminum laminate and 7 mm in the width direction (TD) perpendicular to the rolling direction (RD).
  • the cut out aluminum laminate is placed on the outside of a cable wire with an outer diameter of 1.6 mm ⁇ whose conductor is annealed copper wire and whose outside is insulated with foamed polyethylene.
  • a copper braided wire with an outer diameter of 2.0 mm was wound along the length so as to match the rolling direction (RD), and then a copper braided wire with an outer diameter of 2.0 mm was wound around the outer side of the wire.
  • the wire was placed in a polyolefin resin tube with an outer diameter of 3.6 mm, and heated at a temperature of 120 mm. Cable wires coated with the aluminum laminates of Examples and Comparative Examples were prepared by shrinking the polyolefin resin tube by holding it at °C for 2 minutes.
  • the above-obtained cable wire was bent to the left by 90° using a mandrel with a bending radius of 5 mm and returned to its original state, and then bent to the right by 90° and returned to its original state for one cycle (times). It was then bent multiple times. While bending the cable wire, the electrical resistance value at both ends of the aluminum laminate was continuously measured using a digital multimeter GDM-9061 manufactured by Tecsio Technology Co., Ltd. until the electrical resistance value became 1.0 ⁇ or more. The number of times n of bending was measured and used as an index indicating the flexibility of the aluminum laminate against repeated bending.
  • the reason why the electrical resistance value of the aluminum laminate increases to 1.0 ⁇ or more is considered to be due to damage such as breakage of all or part of the aluminum foil (layer) in the aluminum laminate.
  • the above bending test was performed three times for each sample, and the average values are shown in Table 3.
  • peel strength of the aluminum laminate was determined by bending the aluminum foil of the laminate by 180° at room temperature (20°C) using a tensile testing machine (Toyo Seiki Co., Ltd. Strograph VES5D), and then stacking the remaining laminate without bending. The peeling was performed at a peeling rate of 200 mm/min, a sample width of 7 mm, and a distance between chucks of 100 mm, with the interface being peeled at 180°.
  • the peel strength (N/15 mm) as meant in the specification of this application is measured by measuring the peel strength with the above-mentioned strip-shaped sample with a sample width of 7 mm, and converting the value to the peel strength when the sample width is 15 mm. (15/7 times).
  • ⁇ Measurement of mechanical strength of aluminum laminate The tensile strength, 0.2% yield strength, and elongation at break of the aluminum laminate were measured at room temperature (20°C) using a tensile tester (Toyo Seiki Co., Ltd. Strograph VES5D, strain rate 20 mm/min, sample width 7 mm, between chucks). distance of 100 mm).
  • 0.2% yield strength is determined by finding a straight line from the obtained load-displacement curve that has the same slope as the elastic straight line in the elastic deformation region and passes through a point 0.2% away from the initial sample length from the elastic modulus intersection. The point that intersects with the load-displacement curve was defined as the load at the proof point, and the value was calculated by dividing the load by the cross-sectional area of the sample.
  • the measured resistance value was calculated as a change in resistance value per unit cross-sectional area by dividing the difference up to 30 mm of elongation by the cross-sectional area of the aluminum foil.
  • the resistance value was set to infinity ( ⁇ ) since the elongation had already broken when the elongation was 30.0 mm.
  • the width-to-strain ratio of the aluminum laminate was measured by subjecting the aluminum laminate to a tensile test using the tensile testing machine described above according to the following method.
  • the aluminum laminate was cut out to a length of 150 mm in the machine flow direction (RD) and 7 mm in the width direction (TD).
  • the distance between the chucks was 50 mm
  • the tensile speed was 20 mm/min
  • the width of the aluminum laminate at an elongation of 20.0% was measured, and the width strain ratio was calculated.
  • the aluminum laminates of the examples 1 to 4 can not reach the aluminum laminates of the comparative examples 1 to 10, preferably 20,000. It was found that an extremely high bending number n of at least 25,000 times, more preferably 25,000 times or more, was achieved, and the material had excellent flexibility against repeated bending. In addition, since the aluminum laminates of Examples 1 to 4 had a change in electrical resistance value per unit cross-sectional area of 600 m ⁇ /mm 2 or less, most of the aluminum foils (layers) in the aluminum laminates were not damaged. It is inferred that the aluminum foil maintains the high electromagnetic wave shielding properties unique to aluminum foil.
  • At least one resin film (layer) must be added to the aluminum foil (layer). ) are laminated, and the thickness t 1 of the aluminum foil (layer) is set to 40% or more and 60% or less with respect to the thickness t 0 of the aluminum laminate, and the 0.2% yield strength in the rolling direction of the aluminum laminate is 50. It is extremely important to make the aluminum laminate higher than 0 N/mm 2 , to make the elongation at break in the roll processing direction of the aluminum laminate 30.0% or more, and to make the width strain ratio of the aluminum laminate in the roll processing width direction to 0.60 or more. It turned out to be.
  • the aluminum foil used for the aluminum laminate must have (111) plane, (200) plane, (220) plane and (311) plane in The ratio P 200 of the diffraction intensity I 200 indicating the (200) plane to the total diffraction intensity I 0 which is the sum of each diffraction intensity indicating each of the above is 30% or more and 60% or less, and the ratio P 200 to the total diffraction intensity I 0 is (220)
  • the ratio P 220 of the diffraction intensity I 220 indicating a plane is 10% or more and 40% or less
  • the iron content in the aluminum foil is 0.4% by mass or more and 1.7% by mass or less, or It has been found that it is effective to set the thickness of the aluminum foil (layer) to 5 ⁇ m or more and 300 ⁇ m or less.
  • the resin film from Tables 2 and 3, it is effective to include polyethylene terephthalate resin, and for the aluminum laminate, the peel strength between the resin film (layer) and the aluminum foil (layer) is It was found that 3.0 N/15 mm or more is preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本発明は、優れた電磁波シールド特性及び繰り返し曲げに対する屈曲特性を有する金属積層体を提供することを目的とする。本発明によれば、少なくとも樹脂フィルムおよびアルミニウム箔が積層されているアルミニウム積層体において、前記アルミニウム箔の厚みt1はアルミニウム積層体の厚みt0に対して40%以上60%以下であり、アルミニウム積層体のロール加工方向の0.2%耐力が50.0N/mm2よりも大きく、アルミニウム積層体のロール加工方向の破断伸びが30.0%以上とし、そしてアルミニウム積層体のロール加工幅方向の幅ひずみ比が0.60以上であることを特徴とする電磁波シールドテープ用アルミニウム積層体が提供される。

Description

アルミニウム積層体
 本発明は、屈曲性に優れたアルミニウム積層体に関する。
 近年の情報通信技術の発展に伴い、様々な分野で電磁波を発生する機器が利用されている。例えばAI技術の発展により、ロボットによる機器の操作や自動車分野における自動運転に代表されるように、各種センサーの搭載と制御が多用されるようになっている。
 一方で、例えば電気自動車のように交流モーターを動力源として駆動させるなど、ノイズとなる電磁波の発生も増加している。このため、各種制御機器やセンサー、それらを繋ぐケーブルには電磁波を受けることによる誤作動を防止することが重要であり、各種電線ケーブルにも電磁波シールドを施す必要性が生じている。
 例えば、電線ケーブルに電磁波シールドを施す手段としては、特開2019-176022号公報(特許文献1)や特開2013-065675号公報(特許文献2)などに記載されている電磁波シールド材が知られている。
 特許文献1に記載されているような電磁波シールド材は、電線ケーブルなどに巻き付けて電磁波シールドを施すものであるが、高い電磁波シールド性を発揮させるために銅箔やアルミニウム箔といった金属箔からなる層を構成体の全部または一部として含むものである。しかし、特許文献1に記載のような電磁波シールド材は、電磁波シールド性に優れるものの、特に繰り返し曲げに対する屈曲性に劣り、使い勝手が悪いという問題があった。
 一方、引用文献2に記載されている電磁波シールド材は、フラットケーブルに施されるシート状の電磁波シールド材であるが、金属箔からなる層を含まないものであるため、繰り返し曲げに対する屈曲性に優れるものの、高度な電磁波シールド性を得られないという問題があった。
 さらに、近年では、上述したように様々な分野の機器にセンサーや制御機器類が装着されるため、それらを繋ぐ電線ケーブルは、例えばロボットであれば腕の関節部分、例えば車載用途の機器であればドアミラーや扉開閉部などのように過酷な繰り返し曲げを伴う可動部に使用されることが多くなっている。
 このため、電線ケーブルに施される電磁波シールド材は、従来にも増して繰り返し曲げに耐え得る高い屈曲特性が求められている。ところが、電磁波シールド材は、上述したように繰り返し曲げに対する屈曲性を向上させようとすれば、電磁波シールド層を蒸着による金属層としたり、導電性粒子を含む樹脂層とすることで薄く又は粗にしなければならず、十分な電磁波シールド特性を得らないという本質的な問題があり、他方、電磁波シールド層に金属箔を用いることで優れた電磁波シールド特性を確保しようとすると、繰り返し曲げに対する高度な屈曲性が得られないという本質的な問題があった。
特開2019-176022号公報 特開2013-065675号公報
 そこで、本発明は、軽量で且つ電磁波シールド特性に優れ、ケーブルに巻き付けることが可能な金属箔を含む金属積層体であり、それでいて繰り返し曲げに対する優れた屈曲特性を示す電磁波シールドテープ用の金属積層体を提供することを目的とする。
 本発明者等は、高度な電磁波シールド特性を示す材料と、繰り返し曲げに対する高度な屈曲特性を示す材料およびそれらの材料の組み合わせなどについて鋭意検討を重ねた。その結果、電磁波シールド材の主材としてアルミニウム箔を用いたものに樹脂フィルムをラミネートした積層体において、その積層体中のアルミニウム箔の厚み比率を特定の範囲内とし、且つ積層体のロール加工方向の0.2%耐力、破断伸び、幅ひずみ比が特定の値よりも高い時に著しく繰り返し曲げに対する屈曲特性が向上することを見出し、本発明を完成するに至った。
 すなわち、本発明によれば、少なくとも樹脂フィルムおよびアルミニウム箔が積層されているアルミニウム積層体において、アルミニウム箔の厚みtはアルミニウム積層体の厚みtに対して40%以上60%以下であり、アルミニウム積層体のロール加工方向の0.2%耐力が50.0N/mmよりも大きく、アルミニウム積層体のロール加工方向の破断伸びが30.0%以上であり、そしてアルミニウム積層体のロール加工幅方向の幅ひずみ比が0.60以上であることを特徴とする電磁波シールドテープ用アルミニウム積層体が提供される。
 本発明のアルミニウム積層体は、アルミニウム箔に少なくとも1層以上の樹脂フィルムがラミネートされているという基本構成を有している。また、本発明において、アルミニウム積層体の厚みtに対するアルミニウム箔の厚みtの比率およびアルミニウム積層体のロール加工方向の0.2%耐力を限定しているのは、これらの値が上記の範囲から外れてしまうと、アルミニウム積層体を屈曲させた時或いは繰り返し屈曲させた時、積層体中のアルミニウム箔の一部が変形に耐えられなくなる結果、早期に破断を起こし良好な電磁波シールド性が得られなくなるからである。そのため、本発明のアルミニウム積層体は、高い電磁波シールド特性を維持しながら、繰り返し曲げに対する高度な屈曲特性を達成するという相反する2つの特性を両立させている。
 本発明のアルミニウム積層体では、アルミニウム箔は、X線回折において(111)面、(200)面、(220)面および(311)面のそれぞれを示す各回折強度の合計である合計回折強度Iに対する(200)面を示す回折強度I200の比率P200が30%以上60%以下であり、且つ合計回折強度Iに対する(220)面を示す回折強度I220の比率P220が10%以上40%以下であることが好ましい。
 アルミニウム箔の(200)面を示す回折強度I200の比率P200と(220)面を示す回折強度I220の比率P220を上記の範囲内に限定することにより、繰り返し曲げに対する優れた屈曲特性をアルミニウム積層体に付与することができる。
 本発明のアルミニウム積層体では、アルミニウム箔は、0.4質量%以上1.7質量%以下の鉄を含有していることが好ましい。
 アルミニウム箔中の鉄の含有量が0.4質量%未満となると、アルミニウム箔中の結晶粒を微細化することが困難となり、その結果アルミニウム箔の強度が不十分となり、冷間圧延後にピンホールが発生するケースも増加する。他方、鉄の含有量が1.7質量%よりも多くなると、粗大な金属間化合物が発生し易くなり、加工性が低下すると共に、この場合もピンホールが発生し易くなる。
 本発明のアルミニウム積層体は、各層のアルミニウム箔の厚みが5μm以上300μm以下であることが好ましく、より好ましくは5μm以上150μm以下であり、さらに好ましくは6μm以上80μm以下である。
 アルミニウム箔の厚みが上述の範囲内にあると、本発明のアルミニウム積層体は、ケーブルのような極めて小さな曲率半径を有するものであっても破断を起こすことなく容易に巻き付けることができ、また、繰り返し曲げに対する屈曲性を損なうことなく、電磁波シールド付きケーブルの成形を可能にする。
 本発明のアルミニウム積層体は、樹脂フィルムとアルミニウム箔は接着剤を介して積層されており、樹脂フィルムとアルミニウム箔の剥離強度が3.0N/15mm以上であることが好ましい。
 樹脂フィルムとアルミニウム箔の剥離強度が3.0N/15mmよりも小さいと、繰り返し曲げによる屈曲変形を受けた場合、樹脂フィルムの変形に対してアルミニウム箔の変形が十分に追従できず、局所的にアルミニウム箔自体が過度に変形を起こして破断を起こしてしまう場合があるからである。
 本発明において、アルミニウム箔による電磁波シールド効果を保持しつつ、その屈曲特性を効果的に向上させるのに適した樹脂フィルムとしては、少なくともポリエチレンテレフタレート系樹脂などのポリエステル系樹脂を含んでいることが好ましい。
 また、本発明のアルミニウム積層体は、利便性、装飾性を向上させる観点から、さらに印刷層または塗工層が積層されていてもよい。
 本発明のアルミニウム積層体は、アルミニウム箔を樹脂フィルムでラミネートし、アルミニウム箔の厚みtをアルミニウム積層体の厚みtに対して40%以上60%以下とし、アルミニウム積層体のロール加工方向の0.2%耐力を50.0N/mmよりも大きく、アルミニウム積層体のロール加工方向の破断伸びを30.0%以上とし、そしてアルミニウム積層体のロール加工幅方向の幅ひずみ比を0.60以上とすることにより、高度な電磁波シールド特性を維持しながら、繰り返し曲げに対する極めて優れた屈曲特性を達成することができる。
本発明の第1の実施形態に係るアルミニウム積層体の積層構造を模式的に表した断面図である。 本発明の第2の実施形態に係るアルミニウム積層体の積層構造を模式的に表した断面図である。 本発明の第3の実施形態に係るアルミニウム積層体の積層構造を模式的に表した断面図である。 本発明の第4の実施形態に係るアルミニウム積層体の積層構造を模式的に表した断面図である。 本発明の第5の実施形態に係るアルミニウム積層体の積層構造を模式的に表した断面図である。 本発明の第6の実施形態に係るアルミニウム積層体の積層構造を模式的に表した断面図である。
 以下、本発明の一実施形態に係るアルミニウム積層体について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示される実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で各種の変更が可能である。
<アルミニウム積層体の基本構成>
 図1には、本発明の第1の実施形態として、1つのアルミニウム箔(層)2に対して接着剤(層)4を介して1つの樹脂フィルム(層)3が積層されたアルミニウム積層体1aの断面図が示されている。
 本実施形態のアルミニウム積層体1aは、図1に示されるように少なくとも樹脂フィルム(層)3とアルミニウム箔(層)2が積層される。アルミニウム箔(層)2が単体であれば、繰り返し曲げに対する屈曲特性は著しく低下するため、アルミニウム箔(層)2と少なくとも1層以上の樹脂フィルム(層)3を積層することにより、屈曲特性の低下を抑止ないし向上させている。
 また、アルミニウム積層体1aは、アルミニウム箔(層)2と樹脂フィルム(層)3との間にさらに接着剤(層)4を有していることが好ましい。かかる態様であれば、アルミニウム箔(層)2と樹脂フィルム(層)3とが接着剤(層)4を介して強固に接着されるため、曲率半径が極めて小さな電線ケーブル等を被覆する電磁波シールド材としてより好適に使用するこができる。なお、本実施形態のアルミニウム箔(層)2と樹脂フィルム(層)3は、必ずしも接着剤(層)4を介して積層されている必要はなく、例えば熱融着などにより、アルミニウム箔(層)2と樹脂フィルム(層)3とが直接積層されていてもよい。
 図2には、第2の実施形態として、第1の実施形態の積層体1aのアルミニウム箔(層)2の上に印刷層5または塗工層5が積層されたアルミニウム積層体1bの断面図が示されており、図3には、第3の実施形態として、第1の実施形態の積層体1aの樹脂フィルム(層)3の上に印刷層5または塗工層5が積層されたアルミニウム積層体1cの断面図が示されている。また、図4には、第4の実施形態として第1の実施形態の積層体1aのアルミニウム箔(層)2の上に、さらに接着剤(層)4を介して第2の樹脂フィルム(層)3が積層されたアルミニウム積層体1dの断面図が示されている。
 本発明では、第2、第3の実施形態のアルミニウム積層体1b、1cのように、第1の実施形態のアルミニウム積層体1aを基本構成として、そのアルミニウム箔(層)2の上または樹脂フィルム(層)3の上にさらに印刷層5または塗工層5を積層させてもよい。また、図示しないが、印刷層5または塗工層5は、第1の実施形態の積層体1aのアルミニウム箔(層)2の上および樹脂フィルム(層)3の上の両面上に積層させてもよい。
 本発明では、第4の実施形態のアルミニウム積層体1dのように、第1の実施形態のアルミニウム積層体1aを基本構成として、そのアルミニウム箔(層)2の上にさらに接着剤(層)4を介して第2の樹脂フィルム(層)3を積層させてもよい。別言すれば、第4の実施形態のアルミニウム積層体1dは、アルミニウム箔(層)2の一方面と他方面のそれぞれの上に樹脂フィルム(層)3を有する態様である。なお、第2~4の実施形態において、アルミニウム箔(層)2と樹脂フィルム(層)3は必ずしも接着剤(層)4を介して積層されている必要がないことは、第1の実施形態と同様である。
 図5には、第5の実施形態として、第1の実施形態の積層体1aの樹脂フィルム(層)3の上に、さらに接着剤(層)4を介して第2のアルミニウム箔(層)2が積層されたアルミニウム積層体1eの断面図が示されており、図6には第6の実施形態として、第5の実施形態の積層体1eの2つのアルミニウム箔(層)2のいずれか一方の面の上に、さらに接着剤(層)4を介して第2の樹脂フィルム(層)3が積層されたアルミニウム積層体1fの断面図が示されている。
 本発明では、第5の実施形態のアルミニウム積層体1eのように、第1の実施形態のアルミニウム積層体1aを基本構成として、その樹脂フィルム(層)3の上にさらに接着剤(層)4を介して第2のアルミニウム箔(層)2を積層させてもよい。別言すれば、第5の実施形態のアルミニウム積層体1eは、アルミニウム箔(層)2が樹脂フィルム(層)3の一方面の上に積層されるだけでなく、アルミニウム箔(層)2が積層されていない樹脂フィルム(層)3の他方面の上にも、さらに第2のアルミニウム箔(層)2を積層させた態様である。
 本発明では、第6の実施形態のアルミニウム積層体1fのように第1の実施形態のアルミニウム積層体1aを基本構成として、さらにその上に同じ材料層が重なり合わないように、他の第1の実施形態のアルミニウム積層体1aを繰り返し積層させてもよい。なお、第5、第6の実施形態において、アルミニウム箔(層)2と樹脂フィルム(層)3が必ずしも接着剤(層)4を介して積層されている必要がないことは、第1~4の実施形態と同様である。
<アルミニウム積層体のロール加工方向の0.2%耐力>
 本実施形態のアルミニウム積層体1a~1fは、ロール加工方向の0.2%耐力が50.0N/mmよりも大きいという特性を有している。ロール加工方向の0.2%耐力が50.0N/mm以下であると、アルミニウム積層体1a~1fが屈曲を伴う繰り返し曲げを受けた時に早期に破断を起こし、良好な電磁波シールド性が得られなくなる。
 この詳細なメカニズムは定かではないが、以下のように推察される。例えばテープ状に成形された本実施形態のアルミニウム積層体1a~1fは、通常、ケーブル等に(螺旋状に巻き付けられるのではなく)U字形からO字形を形成するように変形させて被覆されるため、ケーブル等の屈曲が繰り返されると、曲率半径が小さい側で生じる圧縮応力と曲率半径が大きい側で生じる引張応力を交互に受けることになる。他方、本実施形態のアルミニウム積層体1a~1fは、金属材料と樹脂材料とからなる複合材料であるため、上述の屈曲が繰り返されると、樹脂フィルム(層)3は基本的に積層体中で弾性変形を繰り返すが、アルミニウム箔(層)2は早期段階から弾性限界を超えて塑性変形を繰り返しているものと考えられる。
 そうすると、アルミニウム積層体1a~1fのロール加工方向の0.2%耐力が小さい場合、アルミニウム積層体1a~1f中のアルミニウム箔(層)2が弾性変形から塑性変形に容易に転じるために塑性変形域での屈曲の割合が高くなり、いわゆる金属疲労を起こし容易に破断するものと考えられる。
 なお、本発明において「ロール加工方向」とは、ロールtoロール方式によりアルミニウム箔へ樹脂フィルムをラミネートする際の加工方向を意味している。本実施形態では、アルミニウム積層体1a~1fは、特に断りがなければ長手方向の機械的強度を向上させるため、圧延する際のアルミニウム箔2の圧延方向および樹脂フィルム3を成形する際の樹脂材料が流れる方向とを上記ロール加工方向と一致させて積層している。
<アルミニウム積層体中に占めるアルミニウム箔(層)の厚み比率>
 本実施形態のアルミニウム積層体1a~1fは、アルミニウム箔(層)2の厚みtがアルミニウム積層体の厚みtに対して40%以上60%以下であるという特徴を有している。アルミニウム箔(層)2の厚みtの比率が40%より小さくなると、アルミニウム積層体中に占めるアルミニウム箔(層)2の断面積(断面係数)が不足するばかりでなく、屈曲変形を受けた時、アルミニウム積層体1a~1fの中立面から外れたアルミニウム箔(層)2が大きな変形を受けることになるので、樹脂フィルム(層)3により許容される大きな変形の中で、アルミニウム箔(層)2が先に破断強度に到達して破断を起こしてしまい、その結果良好な電磁波シールド性を得られなくなる。
 一方、アルミニウム箔(層)2の厚みtの比率が60%より大きくなると、アルミニウム積層体中に占めるアルミニウム箔(層)2の厚みが過度となるため、アルミニウム積層体1a~1fは、屈曲された時、アルミニウム箔(層)2の内部において曲率半径が小さい側で圧縮応力を受ける面と、曲率半径が大きい側で引張応力を受ける面とを生じるので、特に屈曲が繰り返されると、アルミニウム箔(層)2が早期に金属疲労を起こし、小さな応力、小さな変形(ひずみ)においても容易に破断し、良好な電磁波シールド性が得られなくなる。
<アルミニウム積層体のロール加工方向の破断伸び>
 本実施形態のアルミニウム積層体1a~1fは、ロール加工方向の引張試験における破断伸びが30.0%以上であるという特性を有している。ロール加工方向の破断伸びが30.0%未満であると、アルミニウム積層体1a~1fが屈曲を伴う繰り返し曲げを受けた時に早期に破断を起こし、良好な電磁波シールド性が得られなくなる。そのため、アルミニウム積層体1a~1fの上記の破断伸びは、30.0%以上であることが好ましく、35.0%以上であることがより好ましく、40.0%以上であることがさらに好ましい。アルミニウム積層体1a~1fの破断伸びが上記の範囲にあると、より破断し難くなる。
<アルミニウム積層体のロール加工幅方向の幅ひずみ比>
 本実施形態のアルミニウム積層体1a~1fは、ロール加工幅方向の幅ひずみ比rが0.60以上であるという特性を有している。ロール加工幅方向の幅ひずみ比rは、引張変形前のアルミニウム積層体の幅をW、引張変形後のアルミニウム積層体の幅をW、引張変形前のアルミニウム積層体の長さをL、引張変形後のアルミニウム積層体の長さをLとしたとき、下記(1)式によって算出され、材料に引張変形を加えた際の異方性を表す指標である。
 r=log(W/W)/log[(W×L)/(W×L)]・・・(1)
 r:幅ひずみ比
 W(mm):引張変形前の幅,W(mm):引張変形後の幅
 L(mm):引張変形前の長さ,L(mm):引張変形後の長さ
 アルミニウム積層体1a~1fのロール加工幅方向の幅ひずみ比が0.60未満である場合、屈曲を繰り返すとアルミニウム積層体1a~1fのアルミニウム箔(層)2中に早期にピンホールが多発し、良好な電磁波シールド性が得られなくなる。
 この詳細なメカニズムは定かではないが、以下のように推察される。屈曲が繰り返されると上述の通り、アルミニウム積層体1a~1fはロール加工方向に引っ張りと圧縮変形が交互に加わる。すなわち、この力によるアルミニウム積層体1a~1fの変形は厚み方向と幅方向の変形に別れるが、幅ひずみ比が高い、つまり幅方向に変形しやすい状態であるとアルミニウム箔(層)2のピンホールの発生を抑えながらの変形が容易になり、良好な電磁波シールド性が得られるようになるものと考えられる。
<アルミニウム箔の特性(回折強度比率)>
 本実施形態のアルミニウム積層体1a~1fでは、アルミニウム箔2は、X線回折において(111)面、(200)面、(220)面および(311)面のそれぞれを示す各回折強度の合計である合計回折強度Iに対する(200)面を示す回折強度I200の比率P200が30%以上60%以下であり、且つ合計回折強度Iに対する(220)面を示す回折強度I220の比率P220が10%以上40%以下であることが好ましい。
 アルミニウム箔2の(200)面を示す回折強度I200の比率P200と(220)面を示す回折強度I220の比率P220を上記の範囲内とすることにより、繰り返し曲げに対する優れた屈曲特性をアルミニウム積層体1a~1fに付与することができる。
 X線回折における(200)面を示す回折強度I200の比率P200は、X線回折装置で、回折チャート上の(111)面、(200)面、(220)面および(311)面のそれぞれを示す各回折強度を、バックグラウンド(BG)除去後の積分強度として測定し、上記の各回折強度の合計である合計回折強度Iに対する比率P200として、以下の(式2)により算出される。実際の積分強度の測定は、使用したX線回折装置の解析ソフトウエアである積分強度計算プログラムを用いて読取ることによって行う。
 P200=[{(200)面の回折強度I200}/{(111)面、(200)面、(220)面および、(311)面の各回折強度の合計I}]×100[%]・・・(式2)
 X線回折における(220)面を示す回折強度I220の比率P220も同様に求めることができる。すなわち、(式2)の分子を「(220)面の回折強度I220」に置き換えればよい。なお、X線回折強度を測定する面は、アルミニウム箔2の圧延面、すなわち、アルミニウム箔2を製造する際の冷間圧延時に圧延ロールと接する面であり、アルミニウム積層体1a~1fのアルミニウム箔(層)2の表面でもある。
 本発明者等は、X線回折で検出される回折強度において、上記の合計回折強度Iに対して、(200)面を示す回折強度I200の比率P200を30%以上60%以下とし、且つ(220)面を示す回折強度I220の比率P220を10%以上40%以下とすれば、繰り返し曲げに対する優れた屈曲特性をアルミニウム積層体1a~1fに付与できることを見出した。この理由は、(200)面と(220)面を示す回折強度I200、I220の各比率P200、P220が上記の範囲を外れると、各結晶方位のバランスが崩れて、結果として繰り返し曲げに対する屈曲特性が低下するからであると考えられる。繰り返し曲げに対する屈曲特性の観点からは、各回折強度の合計である合計回折強度Iに対する(200)面を示す回折強度I200の比率P200が30%以上50%以下であることがより好ましい。
 (200)面と(220)面を示す回折強度I200、I220の各比率P200、P220を所定の範囲に収めるためには、特に制限されるものではないが、後述するアルミニウム箔2の組成の鋳塊を均質化熱処理するために、該均質化熱処理温度を、従来、一般的に実施されている温度(500~540℃程度)、またはそれよりも高い温度(例えば570℃~630℃)で均質化熱処理すればよく、その後の製板工程(熱間圧延、冷間圧延、中間焼鈍)の作業条件と製箔工程(冷間圧延)の作業条件は一般的な条件に設定すればよい。また、得られたアルミニウム箔を最終焼鈍してもしなくてもよい。このようにして製造された厚みが5~300μmのアルミニウム箔2を少なくとも1層以上の樹脂フィルム3でラミネートすることにより、繰り返し曲げに対する優れた屈曲性を示すアルミニウム積層体1a~1fを得ることができる。
<アルミニウム箔の特性(厚み)>
 本実施形態で用いられるアルミニウム箔2の厚みは、5μm以上300μm以下であることが好ましく、より好ましくは5μm以上150μm以下であり、さらに好ましくは6μm以上80μm以下である。
 アルミニウム箔2の厚みが5μm未満であると、成形時に破断したり、ピンホールが発生または拡大するおそれがある。またアルミニウム箔2の厚みが300μmを超えると、本実施形態で規定する範囲のX線回折強度を得ることが困難となるばかりでなく、アルミニウム積層体1a~1fに成形した時の重量が増加し、ケーブル等への被覆性が低下することになる。
 このため、本実施形態では、アルミニウム箔2の厚みを上述の範囲内に制御することにより、アルミニウム積層体1a~1fは、ケーブルのような極めて小さな曲率半径を有するものであっても破断を起こすことなく容易に巻き付けることができ、また、繰り返し曲げに対する屈曲性を損なうことなく、電磁波シールド付きケーブルへの成形が可能になる。
<アルミニウム箔の特性(組成)>
 本実施形態で用いられるアルミニウム箔2は、鉄(Fe)を0.4質量%以上1.7質量%以下含んでいる。アルミニウム箔2のFeの含有量は、0.7質量%以上1.7質量%以下であることがより好ましく、1.1質量%以上1.7質量%以下であることがさらに好ましい。
 Feの含有量が0.4質量%未満であると、アルミニウム箔2の結晶粒を微細化する効果が不十分となり、箔の強度が低下し、冷間圧延後にピンホールが比較的多く発生する傾向がある。他方、Feの含有量が1.7質量%を超えると、粗大な金属間化合物が発生し易くなり、加工性(圧延性、成形性)が低下すると共に、この場合もピンホールが発生し易くなる。
 このため、本実施形態では、Feの含有量を0.4質量%以上1.7質量%以下に制御することで、アルミニウム箔2の結晶粒を微細化し、粗大な金属間化合物の発生を抑制すると共に、アルミニウム箔2の適度な強度と伸びを確保している。
 本実施形態で用いるアルミニウム箔2において、シリコン(Si)の含有量は、好ましくは0.30質量%以下であり、さらに好ましくは0.15質量%以下であればよい。Siの含有量が0.30質量%を超えると、粗大な晶出物が発生し易くなり、アルミニウム箔2の結晶粒を微細化する効果が低減すると共に、強度と加工性も低下する傾向がある。なお、Siは工業用アルミニウム中に不可避的に存在するので、Si含有量の下限値を0.01質量%としてもよい。
 本実施形態で用いるアルミニウム箔2において、銅(Cu)の含有量は、好ましくは0.05質量%以下、さらに好ましくは0.02質量%以下であればよい。Cuの含有量が0.05質量%を超えると、加工性と耐食性が低下するおそれがある。なお、Cuは工業用アルミニウム中に不可避的に存在するので、Cu含有量の下限値を0.001質量%としてもよい。
 本実施形態で用いられるアルミニウム箔2において、上述した組成(元素)以外の残部はアルミニウム(Al)である。ここで該アルミニウム箔2は、上記のFe、Si、Cu以外の微量元素をそれぞれ0.05質量%以下含んでいてもよい。微量元素としては、マンガン(Mn)、マグネシウム(Mg)、亜鉛(Zn)、チタン(Ti)、ジルコニウム(Zr)、ガリウム(Ga)、クロム(Cr)、バナジウム(V)などが挙げられる。これらの元素は、アルミニウム箔2中に微量、不可避不純物元素として存在する場合がある。
 上述したように、本実施形態で用いられるアルミニウム箔2の組成を説明したが、該アルミニウム箔2の組成は、例えば工業的に市販されている、JISH4160-1994で規定された合金番号8021または8079に相当する組成であることが好ましい。従って、該アルミニウム箔2は、高価な添加元素を必要としない、8000系または8000系に近い組成を有する汎用性のアルミニウム箔であり、且つ成形加工性に優れ、樹脂フィルム3と積層した時、アルミニウム積層体1a~1fへ繰り返し曲げに対する優れた屈曲性を付与するものである。
<アルミニウム積層体の剥離強度>
 本実施形態のアルミニウム積層体1a~1fでは、アルミニウム箔(層)2と樹脂フィルム(層)3との間の剥離強度は、アルミニウム積層体1a~1fを180°曲げながら、樹脂フィルム(層)3からアルミニウム箔(層)2を剥離する時の剥離強度が3.0N/15mm以上であることが好ましい。剥離強度が3.0N/15mmよりも小さくなると、繰り返し屈曲変形が加えられた際、樹脂フィルム(層)3の変形に対してアルミニウム箔(層)2の変形が十分に追従できず、局所的にアルミニウム箔(層)2自体が過度に変形を起こして破断を起こしてしまう場合があるからである。
<接着剤(層)>
 本実施形態のアルミニウム積層体1a~1fは、例えば熱融着などにより、アルミニウム箔(層)2と樹脂フィルム(層)3とを直接接着させてもよいが、剥離強度(接着強度)を向上させる観点から、反応型の接着剤(層)4を介してアルミニウム箔(層)2と樹脂フィルム(層)3を接着させてもよい。
 接着剤(層)4を用いてアルミニウム箔(層)2と樹脂フィルム(層)3とを積層する場合、接着剤(層)4を構成する接着剤の主剤としては、ポリエステル系、ポリエステルウレタン系などの接着剤を用いるのが好ましく、その塗布量は0.5~10.0g/m程度である。塗布量が0.5g/m未満となると接着力が不十分となるおそれがある一方、10.0g/mを超えてもさらなる接着力の向上が見られず、耐湿性、経済性の観点からも望ましくないからである。また、硬化剤として、脂肪族又は芳香族イソシアネートを使用することができる。
 特に本実施形態のアルミニウム積層体1a~1fでは、2液以上からなる熱反応タイプのポリエステルポリオール接着剤で、その重量平均分子量が3万以上で、且つその塗膜硬化後軟化点が180℃以上であるものを用いることが好ましい。なお、接着方法としては、特に限定されるものではないが、ドライ・ラミネーション法によるのが好ましい。
<樹脂フィルム(層)>
 本実施形態で用いられる樹脂フィルム3は、特に限定されるものではないが、少なくともポリエステル樹脂を含んでいることが好ましい。ポリエステル系樹脂フィルムとしては、ポリエチレンテレフタレートを好適に用いることができるが、ポリエチレンナフタレートやポリブチレンテレフタレートからなるフィルムを用いてもよい。
 樹脂フィルム3は、インフレーション法、キャスティング法、押出法など、いずれの公知の製造方法によって製造されたものも使用することができる。一例としては、ナイロンをベースにポリエステル樹脂やエチレンビニルアルコール(EVOH)樹脂を共押し出しした複層フィルムなども使用することができる。また、ポリエチレンテレフタレート樹脂からなる樹脂フィルム3の場合は、一般的な二軸延伸によって製造されたフィルムを用いればよく、無延伸のフィルムを用いてもよい。樹脂フィルム3の厚みは、アルミニウム積層体1a~1fの繰り返し曲げに対する屈曲性や取り扱いのし易さなどを考慮すると、例えば10μm以上30μm以下であることが好ましく、12μm以上20μm以下であることがより好ましい。樹脂フィルム3の引張強度比(RD/TD)は屈曲時の圧縮応力及び引張応力による幅ひずみを考慮すると、例えば1.15以上であることが好ましく、1.2以上であることがより好ましい。また、樹脂フィルム3に添加物や不純物が含まれていてもよい。添加剤としては、例えば、硬化剤、架橋剤、酸化防止剤、紫外線吸収剤、潤滑剤等が挙げられる。
<印刷層、コーティング層>
 本実施形態のアルミニウム積層体1a~1fは、利便性、装飾性などの観点からさらに、コーティングや印刷が施されていてもよい。コーティング層としては、例えば絶縁層、粘着層、防水層、腐食防止層などを積層することが挙げられる。印刷層としては、公知の印刷インキを使用することができ、含まれる樹脂成分としては、セルロース、ポリビニルブチラール、ポリアミド、ポリオレフィン、ポリウレタン、アクリル、ポリエステル、ポリ塩化ビニル、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン- ビニルアルコール共重合体及びエチレン-アクリル酸エチル共重合体の少なくとも1種を含むものなどが挙げられる。また、印刷インキに含まれる着色成分としては、有機顔料、無機顔料、染料の少なくとも1種を含むものなどが挙げられる。
<利用の形態>
 本実施形態のアルミニウム積層体1a~1fは、電磁波シールド材、特に電磁波シールドケーブル用の電磁波シールドテープとして好適に用いることができる。とりわけ、繰り返し曲げに対する高い屈曲性が要求される、自動車のドアミラー部やロボットアームの関節部など通過するワイヤーハーネスなどに好適に用いられる。一例としては、本実施形態のアルミニウム積層体1a~1fを円柱(UOパイプ)を形成するようにケーブルに巻き付け、接合することにより、該ケーブルを被覆することができる。
 以下、実施例および比較例を挙げて、本発明の特徴を一層明確にする。
<アルミニウム箔の作製>
 先ず、以下に説明するように本発明の実施例と、比較例に用いるアルミニウム箔の試料を作製した。表1に示すアルミニウム箔A~Dを作製し、実施例用試料と比較例用試料のアルミニウム箔の試料として用いた。なお、表1において「その他元素計」とは、JIS(例えばJIS H4160)で規定される元素以外の不可避不純物元素(B、Bi、Pb、Naなど)の合計含有量を示している。
Figure JPOXMLDOC01-appb-T000001
 アルミニウム箔の製造工程は、DC鋳造によって得られたアルミニウム合金の鋳塊を加熱炉にて所定の温度と時間で均質化熱処理を行った。その後、熱間圧延を行った後、複数回の冷間圧延を行い、冷間圧延の途中で所定の温度と時間で中間焼鈍を実施し、アルミニウム箔Aについては7μm、アルミニウム箔Bについては7、12、15、20μm、アルミニウム箔Cについては7μm、およびアルミニウム箔Dについては7μmの厚みになるまで冷間圧延を行った。さらに、アルミニウム箔A、B、Dについては、所定の温度と時間で最終焼鈍を行った。
 なお、均質化熱処理温度は高温であることから、鋳塊の温度が均質化熱処理温度に達すれば、その後、熱間圧延が開始可能な温度まで鋳塊を冷却してもよい。さらに、均質化熱処理時間は一般的な処理時間内であればよく、必ずしも表1に示される時間に限定されるものではない。また、中間焼鈍条件は、本発明の実施例および比較例に特性に大きな影響を及ぼさないことから、熱処理温度と熱処理時間は一般的な操業条件の範囲内であればよい。
<アルミニウム箔のX線回折強度の測定>
 得られたアルミニウム箔A~Dの各試料について、(200)面を示す回折強度I200の比率P200と(220)面を示す回折強度I220の比率P220を算出するためにX線回折強度を測定した。X線回折強度の測定は、全自動多目的水平型X線回折装置(株式会社リガク製Smart Lab)を用い、解析ソフトウエアはRINT2000PC(Ver,3.0.0.0)を用いて、CuKα線、40kV、30mAの条件でX線回折を行い、X線回折で(111)面、(200)面、(220)面および、(311)面のX線回折強度(バックグラウンド除去後の積分強度)を測定することによって行った。得られた各面のX線回折強度の値を用いて、その相対的な回折強度比率を上述した(式1)により算出した。なお、アルミニウム箔のX線回折強度は、上述のようにアルミニウム箔A~D単体を測定しても、アルミニウム積層体中のアルミニウム箔A~Dを測定しても略同じ結果(測定値)が得られることが判った。
<アルミニウム箔の組成の測定>
 アルミニウム箔の組成は、得られたアルミニウム箔A~Dから測定用サンプルをそれぞれ1.00g測り取り、誘導結合プラズマ発光分析法(装置名:株式会社島津製作所製ICPS-8100)により分析を行うことにより測定した。
<アルミニウム箔の機械的強度の測定>
 アルミニウム箔の引張強度、0.2%耐力および破断伸びの測定は、室温(20℃)中で引張試験機(株式会社東洋精機 ストログラフVES5D、歪速度20mm/分、試料幅7mm、チャック間距離100mm)を用いて行った。なお、0.2%耐力は、得られた荷重変位曲線から、弾性変形領域の弾性率直線と同じ傾きをもち、弾性率交点より初期試料長より0.2%だけ離れた点を通る直線が荷重変位曲線と交わる点を耐力点の荷重とし、その荷重から試料断面積を割った値とした。
<樹脂フィルム>
 上述されたアルミニウム箔に積層する樹脂フィルムO、P、Q、R及びSとして、厚み12μmのナイロン樹脂フィルムO(ユニチカ株式会社製「ONBC84W#」)、厚み12μmのPET(ポリエチレンテレフタレート)樹脂フィルムP(ユニチカ株式会社製「PTM」)、厚み12μmのPET樹脂フィルムQ(東洋紡株式会社製「ET510」)、厚み16μmのPET樹脂フィルムR(東洋紡株式会社製「T4100」)および厚み15μmのPBT(ポリブチレンテレフタラート)樹脂フィルムS(東洋紡株式会社製「DE048」)を準備した。
<樹脂フィルムの機械的強度の測定>
 上記樹脂フィルムO~Sの引張強度、0.2%耐力および伸びの測定は、室温(20℃)中で引張試験機(株式会社東洋精機 ストログラフVES5D、歪速度20mm/分、試料幅7mm、チャック間距離100mm)を用いて行った。なお、0.2%耐力は、得られた荷重変位曲線から、弾性変形領域の弾性率直線と同じ傾きをもち、弾性率交点より初期試料長より0.2%だけ離れた点を通る直線が荷重変位曲線と交わる点を耐力点の荷重とし、その荷重から試料断面積を割った値とした。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<アルミニウム積層体の作製>
<アルミニウム積層体の作製>
 上記のアルミニウム箔A~Dおよび樹脂フィルムO~Sを用いて、実施例1~4および比較例1~10に示されるアルミニウム積層体を作製した。具体的には、表3に示される組み合わせ及び接着剤の塗布量(g/m)により、アルミニウム箔A~Dの一方面にポリウレタン系ドライラミネート用接着剤を用いて樹脂フィルムO~Sを積層することで実施例2、3および比較例2、4のアルミニウム積層体を作製した。また、実施例1、4および比較例1、3、5~10については、アルミニウム箔の他方面にポリウレタン系ドライラミネート用接着剤(乾燥後重量2.5g/m)を用いてアルミニウム箔A~Dを積層することにより、実施例および比較例のアルミニウム積層体を作製した。
<アルミニウム積層体のロール加工方向の0.2%耐力>
 実施例1~4および比較例1~10のアルミニウム積層体の耐力は、東洋精機製ストログラフVES5Dを用い、以下の方法によりアルミニウム積層体を引張試験することで測定した。アルミニウム積層体を、該アルミニウム積層体中のアルミニウム箔の圧延方向(RD)に200mm、該圧延方向(RD)と直行する幅方向(TD)に7mm切り出した。チャック間距離は100mmとし、引張速度は20mm/minで行った。ここで得られた荷重変位曲線から、弾性変形領域の弾性率直線と同じ傾きをもち、弾性率交点より初期試料長より0.2%だけ離れた点を通る直線が荷重変位曲線と交わる点を耐力点の荷重とし、その荷重から試料断面積を割った値をロール加工方向の0.2%耐力の値とした。
<アルミニウム積層体の繰り返し曲げに対する屈曲性の評価>
 実施例1~4および比較例1~10のアルミニウム積層体の繰り返し曲げに対する屈曲性は、ユアサシステム機器株式会社製多機能版小型卓上型耐久試験機にφ150mm面板を使った屈曲試験冶具を取り付け、左右90°の屈曲試験を行うことにより測定した。
 先ず、アルミニウム積層体を、該アルミニウム積層体中のアルミニウム箔の圧延方向(RD)に100mm、該圧延方向(RD)と直行する幅方向(TD)に7mm切り出した。導体が軟銅線でその外側に発泡ポリエチレンで絶縁被覆された外径1.6mmΦのケーブル線の外側に、上記の切り出したアルミニウム積層体を、ケーブル線の長手方向がアルミニウム積層体中のアルミニウム箔の圧延方向(RD)と一致するように縦沿いに巻き付け、さらにその外側に、外径2.0mmの銅編素線を巻きつけたものを外径3.6mmのポリオレフィン樹脂チューブに入れ、温度120℃で2分保持してポリオレフィン樹脂チューブをシュリンクさせることで、実施例および比較例のアルミニウム積層体で被覆されたケーブル線を作製した。
 得られた上記のケーブル線を屈曲半径5mmのマンドレルで左側に90°に屈曲させて元の状態に戻し、続いて右側に90°に屈曲させて元の状態に戻すサイクルを1サイクル(回)とし、複数回屈曲させた。ケーブル線を屈曲中、アルミニウム積層体の両端部の電気抵抗値を株式会社テクシオテクノロジー製のデジタルマルチメーターGDM-9061で連続的に測定を行い、電気抵抗値が1.0Ω以上になるまでの屈曲回数nを測定し、アルミニウム積層体の繰り返し曲げに対する屈曲性を示す指標とした。すなわち、アルミニウム積層体の電気抵抗値が1.0Ω以上に上昇するのは、アルミニウム積層体中のアルミニウム箔(層)の全部または一部が破断等の損傷を受けたことによるものと考えられるため、破断等に至る上記の屈曲回数nが高ければ高いほど繰り返し曲げに対する屈曲性に優れていることになる。なお、上記の屈曲試験は、各試料について3回ずつ行い、その平均値を表3に示した。
<アルミニウム積層体の剥離強度の測定>
 アルミニウム積層体の剥離強度は、室温(20℃)中で引張試験機(株式会社東洋精機 ストログラフVES5D)を用い、積層体のアルミニウム箔を180°曲げ、残りの積層体は曲げずに、積層界面が180°で剥がれる状態で、剥離速度200mm/分、試料幅7mm、チャック間距離100mmにて行った。なお、本願明細書で意味するところの剥離強度(N/15mm)は、上記の試料幅7mmの短冊状の試料で剥離強度を測定し、その値を試料幅15mmとした時の剥離強度に換算(15/7倍)したものである。
<アルミニウム積層体の機械的強度の測定>
 アルミニウム積層体の引張強度、0.2%耐力および破断伸びの測定は、室温(20℃)中で引張試験機(株式会社東洋精機 ストログラフVES5D、歪速度20mm/分、試料幅7mm、チャック間距離100mm)を用いて行った。なお、0.2%耐力は、得られた荷重変位曲線から、弾性変形領域の弾性率直線と同じ傾きをもち、弾性率交点より初期試料長より0.2%だけ離れた点を通る直線が荷重変位曲線と交わる点を耐力点の荷重とし、その荷重から試料断面積を割った値とした。
<単位断面積あたりの抵抗値の変化の評価>
 上記引張試験の測定と同時に、株式会社テクシオテクノロジー製デジタルマルチメーターGDM-9061を用い、以下の方法により引張試験中のアルミニウム積層体の抵抗値を測定した。これは電磁波シールド性の代替評価として取り入れている。アルミニウム積層体を上記記載の大きさに切り出して引張試験を行う際に、試験片の両端を10mm折り曲げてリード線に接続することで、長さ200mm×幅7mmのアルミニウム積層体における片側のアルミニウム箔の抵抗値を測定した。測定した抵抗値は伸び30mmまでの差分をアルミニウム箔の断面積で割り、単位断面積あたりの抵抗値の変化として算出した。破断伸びが30.0mmより小さいアルミニウム積層体については、伸び30.0mm時には既に破断していることから抵抗値は無限大(∞)とした。
<アルミニウム積層体の幅ひずみ比の評価>
 アルミニウム積層体の幅ひずみ比は上記記載の引張試験機を用い、以下の方法によりアルミニウム積層体を引張試験することで測定した。アルミニウム積層体を機械流れ方向(RD)に150mm、幅方向(TD)に7mm切り出した。チャック間距離は50mmとし、引張速度は20mm/minで行い、伸び20.0%でのアルミニウム積層体の幅を測定し、幅ひずみ比を算出した。
 アルミニウム積層体のロール加工方向の0.2%耐力、破断伸び、ロール加工幅方向の幅ひずみ比、単位断面積あたりの抵抗値の変化および剥離強度の測定結果を、下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
<考察>
 表3より、実施例のアルミニウム積層体と比較例のアルミニウム積層体を比較すると、実施例1~4のアルミニウム積層体は、比較例1~10のアルミニウム積層体では到達し得ない、好ましくは20000回以上、より好ましくは25000回以上という極めて高い屈曲回数nを達成しており、繰り返し曲げに対する極めて優れた屈曲性に優れていることが判った。また、実施例1~4のアルミニウム積層体は、単位断面積あたりの電気抵抗値の変化が600mΩ/mm以下であることから、アルミニウム積層体中のアルミニウム箔(層)が殆ど損傷を受けておらず、アルミニウム箔特有の高い電磁波シールド特性を保持していることが推察される。
 また、実施例1~4のアルミニウム積層体のように高い電磁波シールド特性を保持ながら、繰り返し曲げに対する極めて高い屈曲性を得るためには、アルミニウム箔(層)に少なくとも1層以上の樹脂フィルム(層)を積層し、そしてアルミニウム箔(層)の厚みtをアルミニウム積層体の厚みtに対して40%以上60%以下とし、アルミニウム積層体のロール加工方向の0.2%耐力を50.0N/mmよりも高くし、アルミニウム積層体のロール加工方向の破断伸びを30.0%以上とし、アルミニウム積層体のロール加工幅方向の幅ひずみ比を0.60以上とすることが極めて重要であることが判った。
 さらに、上述の特性を得るためには、表1及び3より、アルミニウム積層体に用いられるアルミニウム箔は、X線回折において(111)面、(200)面、(220)面および(311)面のそれぞれを示す各回折強度の合計である合計回折強度Iに対する(200)面を示す回折強度I200の比率P200を30%以上60%以下とし、且つ合計回折強度Iに対する(220)面を示す回折強度I220の比率P220を10%以上40%以下とすること、アルミニウム箔中の鉄の含有量を0.4質量%以上1.7質量%以下とすること、または一層のアルミニウム箔(層)の厚みを5μm以上300μm以下とすることが有効であることが判った。
 また、樹脂フィルムについては、表2及び3より、ポリエチレンテレフタレート系樹脂を含んでいることが有効であり、さらに、アルミニウム積層体については、樹脂フィルム(層)とアルミニウム箔(層)の剥離強度が3.0N/15mm以上であることが好ましいことが判った。
 1a、1b、1c、1d、1e、1f・・・アルミニウム積層体
 2・・・アルミニウム箔(層)
 3・・・樹脂フィルム(層)
 4・・・接着剤(層)
 5・・・印刷層、塗工層

 

Claims (8)

  1.  少なくとも樹脂フィルムおよびアルミニウム箔が積層されているアルミニウム積層体において、
     前記アルミニウム箔の厚みtはアルミニウム積層体の厚みtに対して40%以上60%以下であり、
     アルミニウム積層体のロール加工方向の0.2%耐力が50.0N/mmよりも大きく、
     アルミニウム積層体のロール加工方向の破断伸びが30.0%以上であり、そして
     アルミニウム積層体のロール加工幅方向の幅ひずみ比が0.60以上であることを特徴とする
    電磁波シールドテープ用アルミニウム積層体。
  2.  前記アルミニウム箔は、X線回折において(111)面、(200)面、(220)面および(311)面のそれぞれを示す各回折強度の合計である合計回折強度Iに対する(200)面を示す回折強度I200の比率P200が30%以上60%以下であり、且つ前記合計回折強度Iに対する(220)面を示す回折強度I220の比率P220が10%以上40%以下である請求項1に記載のアルミニウム積層体。
  3.  前記樹脂フィルムと前記アルミニウム箔は接着剤を介して積層されており、前記樹脂フィルムと前記アルミニウム箔の剥離強度が3.0N/15mm以上である請求項2に記載のアルミニウム積層体。
  4.  前記アルミニウム箔は、0.4質量%以上1.7質量%以下の鉄を含有している請求項3に記載のアルミニウム積層体。
  5.  一層の前記アルミニウム箔の厚みが5μm以上300μm以下である請求項4に記載のアルミニウム積層体。
  6.  前記樹脂フィルムは、少なくともポリエステル系樹脂を含んでいる請求項5に記載のアルミニウム積層体。
  7.  前記樹脂フィルムは、少なくともポリエチレンテレフタレート系樹脂を含んでいる請求項6に記載のアルミニウム積層体。
  8.  印刷層または塗工層がさらに積層されている請求項1から7のいずれか1項に記載のアルミニウム積層体。

     
PCT/JP2023/016427 2022-04-27 2023-04-26 アルミニウム積層体 WO2023210680A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022073545A JP2023162859A (ja) 2022-04-27 2022-04-27 アルミニウム積層体
JP2022-073545 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210680A1 true WO2023210680A1 (ja) 2023-11-02

Family

ID=88519047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016427 WO2023210680A1 (ja) 2022-04-27 2023-04-26 アルミニウム積層体

Country Status (2)

Country Link
JP (1) JP2023162859A (ja)
WO (1) WO2023210680A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167593A (ja) * 2015-03-02 2016-09-15 デクセリアルズ株式会社 シールドテープの製造方法及びシールドテープ
JP2022079311A (ja) * 2020-11-16 2022-05-26 東洋アルミニウム株式会社 アルミニウム積層体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167593A (ja) * 2015-03-02 2016-09-15 デクセリアルズ株式会社 シールドテープの製造方法及びシールドテープ
JP2022079311A (ja) * 2020-11-16 2022-05-26 東洋アルミニウム株式会社 アルミニウム積層体

Also Published As

Publication number Publication date
JP2023162859A (ja) 2023-11-09

Similar Documents

Publication Publication Date Title
US10381611B2 (en) Packaging material for cell
KR101866113B1 (ko) 전지용 포장 재료
JP7446203B2 (ja) アルミニウム積層体
EP2439063B1 (en) Copper foil composite
DE112015000853B4 (de) Batterie-Verpackungs-Material
EP3188278B1 (en) Packaging material for battery
EP2695733B1 (en) Copper foil composite, copper foil used for the same, formed product and method of producing the same
JP6579279B2 (ja) 電池用包装材料、その製造方法、及び電池
WO2017073774A1 (ja) 電池用包装材料、電池、電池用包装材料の製造方法、及びアルミニウム合金箔
JP2012052158A (ja) アルミニウム箔と容器
JP7160217B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP2017084786A (ja) 電池用包装材料、電池、電池用包装材料の製造方法、及びアルミニウム合金箔
JP7317504B2 (ja) アルミニウム合金箔及びその積層体並びにそれらの製造方法
KR101532229B1 (ko) 필름 커패시터용 클래드메탈 부스바 및 이를 포함하는 필름 커패시터
WO2023210680A1 (ja) アルミニウム積層体
JP6003953B2 (ja) 電池用包装材料
JP2017084787A (ja) 電池用包装材料、電池、電池用包装材料の製造方法、及びアルミニウム合金箔
JP6245328B2 (ja) 電池用包装材料
WO2024018752A1 (ja) 電磁波遮蔽材料、被覆材又は外装材及び電気・電子機器
JP5603269B2 (ja) アルミニウム箔樹脂積層体およびその製造方法
WO2023277100A1 (ja) 蓄電デバイス、及び、蓄電デバイスの製造方法
KR20230068802A (ko) 셀 파우치용 프로필렌계 다층 필름
JP2023005826A (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP5283489B2 (ja) 熱特性に優れた銅箔複合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796420

Country of ref document: EP

Kind code of ref document: A1