WO2023210528A1 - Method for producing plastic material derived from used sanitary product suitable for material recycling or chemical recycling, and plastic material derived from used sanitary product - Google Patents

Method for producing plastic material derived from used sanitary product suitable for material recycling or chemical recycling, and plastic material derived from used sanitary product Download PDF

Info

Publication number
WO2023210528A1
WO2023210528A1 PCT/JP2023/015928 JP2023015928W WO2023210528A1 WO 2023210528 A1 WO2023210528 A1 WO 2023210528A1 JP 2023015928 W JP2023015928 W JP 2023015928W WO 2023210528 A1 WO2023210528 A1 WO 2023210528A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic material
aqueous solution
oxidizing agent
fraction
treatment step
Prior art date
Application number
PCT/JP2023/015928
Other languages
French (fr)
Japanese (ja)
Inventor
孝義 小西
宜秀 石川
美彦 松本
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Publication of WO2023210528A1 publication Critical patent/WO2023210528A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/30Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B2101/00Type of solid waste
    • B09B2101/65Medical waste
    • B09B2101/67Diapers or nappies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing a plastic material derived from used sanitary products, which is suitable for material recycling or chemical recycling, and a plastic material derived from used sanitary products.
  • Patent Document 1 discloses a method for recovering constituent members from used absorbent articles.
  • This method is a method for recovering the component films and absorbent material from used absorbent articles.
  • This method includes a pre-treatment step in which the used absorbent article is swollen with water, and a physical impact is applied to the swollen used absorbent article so that at least the film and absorbent material of the used absorbent article are
  • the method includes a decomposition step of decomposing the film and a separation step of separating the decomposed film from the absorbent material.
  • the separated film can be used as a recyclable plastic material.
  • Patent Document 1 a plastic material such as a film or nonwoven fabric and an absorbent material such as a superabsorbent polymer or pulp fiber are separated from each other in a separation step.
  • an absorbent material such as a superabsorbent polymer or pulp fiber
  • Such impurities include, for example, odor-producing sulfur compounds (e.g., hydrogen sulfide) and nitrogen compounds (e.g., ammonia) derived from excreta (e.g., urine, feces) contained in used sanitary products, and absorbent materials. Examples include sodium derived from superabsorbent polymers in the material. If these impurities are contained in plastic materials, when plastic materials are applied to material recycling or chemical recycling to produce recycled products, there is a risk that they may have an adverse effect on the catalysts used in production, or they may cause damage to the recycled products produced. May cause unpleasant odors. Therefore, with respect to obtaining plastic materials suitable for material recycling or chemical recycling, there is room for improvement in terms of reducing these impurities.
  • odor-producing sulfur compounds e.g., hydrogen sulfide
  • nitrogen compounds e.g., ammonia
  • excreta e.g., urine, feces
  • absorbent materials e.g., sodium derived from superab
  • the purpose of the present invention is to provide a method for manufacturing plastic materials derived from used sanitary products suitable for material recycling or chemical recycling, which can suppress impurities in the manufactured plastic materials, and a method in which impurities can be suppressed.
  • the objective is to provide plastic materials derived from used sanitary products.
  • One aspect of the present invention is a method for producing plastic materials derived from used sanitary products suitable for material recycling or chemical recycling, wherein the used sanitary products include excrement, plastic materials, super absorbent a first fraction comprising the plastic material and a second fraction comprising the excreta, the inactivated superabsorbent polymer, and the pulp fibers; a first separation step of separating the first fraction into two parts; and the excrement remaining in the first fraction that could not be completely separated in the first separation step by applying a physical impact to the first fraction; A method comprising: a second separation step of separating the superabsorbent polymer and the pulp fibers from the plastic material; and an aqueous solution treatment step of spraying an aqueous solution onto the separated plastic material. .
  • Another aspect of the present invention is a plastic material derived from used sanitary products, wherein the proportion of sulfur contained in the plastic material is 500 ppm or less, and the proportion of nitrogen contained in the plastic material is 2000 ppm or less, The proportion of sodium contained in the plastic material is 500 ppm or less.
  • a method for producing plastic materials derived from used sanitary products suitable for material recycling or chemical recycling there is provided a method capable of suppressing impurities in the produced plastic materials, and a method in which impurities are suppressed. It is possible to provide plastic materials derived from used sanitary products.
  • FIG. 1 is a flowchart illustrating a method for manufacturing plastic material derived from used sanitary products according to an embodiment.
  • a method comprising: a second separation step of separating pulp fibers and the plastic material from each other; and an aqueous solution treatment step of injecting an aqueous solution to the separated plastic material.
  • a first fraction is separated in a first separation step.
  • the superabsorbent polymer that had been absorbing urine and the like has been inactivated, so sodium and nitrogen compounds are released (dehydrated) to the outside along with water and become granular. Therefore, in the second separation step, the superabsorbent polymer of the first fraction can be easily separated from the plastic material by physical impact.
  • the content of sodium and nitrogen compounds in the superabsorbent polymer can be reduced.
  • other excreta and pulp fibers can be easily separated from the plastic material by physical impact.
  • an aqueous solution treatment step is performed in which an aqueous solution is injected onto the plastic material separated in the second separation step.
  • the aqueous solution include water and an oxidizing agent aqueous solution containing an oxidizing agent.
  • the force of the spray can wash away sulfur compounds, nitrogen compounds, etc. adhering to the surface of the plastic material.
  • spraying the aqueous solution into fine particles and supplying it to the plastic material it is possible to make it easier for the aqueous solution to penetrate into the finer details of the plastic material.
  • a fresh aqueous solution can always be supplied to the surface of the plastic material, and variations in the cleaning effect can be reduced.
  • impurities containing sodium, sulfur, and nitrogen are separated and removed in the plastic material produced by the present method, so that impurities in the plastic material can be suppressed.
  • the aqueous solution treatment step includes an oxidizing agent treatment step of injecting an oxidizing agent aqueous solution containing an oxidizing agent as the aqueous solution onto the separated plastic material.
  • an oxidizing agent treatment step is performed in which an oxidizing agent aqueous solution containing an oxidizing agent is injected onto the plastic material separated in the second separation step.
  • the oxidizing agent can also sterilize plastic materials. At this time, the oxidizing agent aqueous solution can be made fine by spraying and supplied to the plastic material, thereby making it easier for the oxidizing agent aqueous solution to enter the fine details of the plastic material.
  • a fresh oxidizing agent aqueous solution can be constantly supplied to the surface of the plastic material, and variations in the sterilization effect can be reduced.
  • impurities containing sodium, sulfur, and nitrogen are decomposed and removed in greater amounts, so that impurities in the plastic material can be further suppressed.
  • sterilization can be performed at the same time.
  • a physical impact is applied to the first fraction while injecting an acidic aqueous solution to separate the excrement, the superabsorbent polymer, the pulp fibers, and the plastic material from each other.
  • the method according to aspect 1 or 2 comprising the step of separating.
  • an acidic aqueous solution is injected into the first fraction, so that the superabsorbent polymer remaining in the plastic material is further inactivated by the acidic aqueous solution, and is further inactivated by sodium and nitrogen. The compound is released to the outside (dehydrated) and becomes finer particles.
  • the superabsorbent polymer can be more easily separated (washed off) from the plastic material by physical impact or by a flow of acidic aqueous solution.
  • the content of sodium and nitrogen compounds in the superabsorbent polymer can be further reduced.
  • other excreta and pulp fibers can be more easily separated (washed off) from the plastic material by physical impact or a stream of acidic aqueous solutions.
  • plastic materials can be sterilized with acidic aqueous solutions.
  • the oxidizing agent in the oxidizing agent treatment step includes at least one of ozone and hydrogen peroxide.
  • the oxidizing agent in the oxidizing agent treatment step contains at least one of ozone and hydrogen peroxide. Therefore, the excrement-derived substances remaining in the plastic material can be reliably oxidized and converted into other substances.
  • the oxidizing agent does not contain chlorine, chlorine is unlikely to remain as an impurity in the plastic material, and the dechlorination step can be omitted in the manufacturing process of recycled products, reducing the impact on the catalyst used in the manufacturing process.
  • the first separation step includes a step of separating the used sanitary product into the first fraction and the second fraction while inactivating the superabsorbent polymer in an acidic aqueous solution. 7.
  • the plastic material obtained in the aqueous solution treatment step is for material recycling.
  • the plastic material obtained in the aqueous solution treatment step can be used for material recycling.
  • the plastic material obtained by this method is a plastic material with suppressed impurities, so its reuse can be recycled (a technology that turns plastic materials derived from used products into plastic raw materials or plastic products). This makes it possible to expand the scope of material recycling.
  • the plastic material produced has a sulfur content of 500 ppm or less, a nitrogen content of 2000 ppm or less, and a sodium content of 500 ppm or less, even though it is derived from used sanitary products. It is. That is, since the manufactured plastic material is a plastic material with suppressed impurities, it can be applied to various uses (eg, material recycling, chemical recycling).
  • a plastic material derived from used sanitary products wherein the proportion of sulfur contained in the plastic material is 500 ppm or less, the proportion of nitrogen contained in the plastic material is 2000 ppm or less, and the proportion of sodium contained in the plastic material is 500 ppm or less.
  • Plastic material the proportion of which is less than 500 ppm.
  • the proportion of sulfur it contains is 500 ppm or less
  • the proportion of nitrogen it contains is 2000 ppm or less
  • the proportion of sodium it contains is 500 ppm or less. That is, since the present plastic material is a plastic material with suppressed impurities, it can be said to be a recycled plastic material that is applied to various uses (eg, material recycling, chemical recycling).
  • the present plastic material contains 10% by mass or less of superabsorbent polymers and pulp fibers derived from used sanitary products.
  • impurities such as sulfur, nitrogen and sodium as well as superabsorbent polymers and pulp fibers are suppressed. Therefore, this plastic material can be said to be a recyclable plastic material applied to various uses.
  • used sanitary products are sanitary products that have been used by users, but may also include some unused but discarded sanitary products.
  • sanitary products include disposable diapers, incontinence pads, sanitary napkins, disposable shorts, bed sheets, and pet sheets.
  • Used sanitary products include sanitary products that have absorbed and retained the user's excrement (eg, urine, feces).
  • Chemical recycling is the process of chemically processing and recycling waste plastic materials. For example, it is a technology that decomposes used plastic materials using heat or catalysts to produce liquid products. In addition to oil conversion, other methods include gasification and monomerization. Material recycling is the production and reuse of new plastic products using waste plastic materials as raw materials.
  • used plastic materials can be used as raw materials for plastics, or used plastic raw materials can be used to make other plastics. Examples include manufacturing products.
  • the sanitary product includes a top sheet, a back sheet, and an absorbent body disposed between the top sheet and the back sheet.
  • Examples of the size of sanitary products include, but are not limited to, approximately 15 to 100 cm in length and 5 to 100 cm in width.
  • the sanitary product may further include other members included in common sanitary products, such as a diffusion sheet, a leak-proof wall, a side sheet, an exterior sheet, and an elastic member.
  • Examples of the constituent members of the topsheet include liquid-permeable nonwoven fabrics, synthetic resin films having liquid-permeable holes, composite sheets thereof, and the like.
  • Examples of the constituent members of the backsheet include liquid-impermeable nonwoven fabrics, liquid-impermeable synthetic resin films, and composite sheets thereof.
  • Examples of the constituent members of the diffusion sheet include liquid-permeable nonwoven fabric.
  • the leak-proof wall and the side sheet may be made of, for example, a water-repellent nonwoven fabric, and the leak-proof wall may include an elastic member such as rubber.
  • Examples of the constituent members of the exterior sheet include liquid-impermeable and breathable nonwoven fabrics, liquid-impermeable and breathable synthetic resin films, and composite sheets thereof.
  • Examples of the constituent members of the elastic member include rubber-based synthetic resin.
  • the type of nonwoven fabric is not particularly limited, and examples thereof include meltblown nonwoven fabric, spunbond nonwoven fabric, airlaid nonwoven fabric, air-through nonwoven fabric, and the like.
  • There are no particular restrictions on the type of synthetic resin film and known film materials can be used.
  • the materials of these nonwoven fabrics and synthetic resin films are synthetic resins and can be called plastic materials.
  • a sanitary product in which the constituent members of the back sheet are made of a synthetic resin film and the constituent members of the top sheet is made of a nonwoven fabric will be described as an example.
  • Components of the absorbent body include absorbent materials, ie, pulp fibers and superabsorbent polymers.
  • pulp fibers include cellulose fibers.
  • cellulosic fibers include wood pulp, crosslinked pulp, non-wood pulp, regenerated cellulose, and semi-synthetic cellulose.
  • the average length of the fibers is, for example, several tens of ⁇ m, preferably 20 to 40 ⁇ m, and the average fiber length is, for example, several mm, preferably 2 to 5 mm.
  • the super absorbent polymer (SAP) include polyacrylate-based, polysulfonate-based, and maleic anhydride-based water-absorbing polymers.
  • the average particle size is, for example, several hundred ⁇ m, preferably 200 to 500 ⁇ m.
  • the absorbent body may include a core wrap formed of a liquid permeable sheet.
  • One side and the other side of the absorber are bonded to a top sheet and a back sheet, respectively, via an adhesive.
  • the part of the topsheet that extends outside the absorbent body so as to surround the absorbent body is the part of the backsheet that extends outside the absorbent body so as to surround the absorbent body. It is joined to the extended portion (peripheral portion) via an adhesive. Therefore, the absorbent body is wrapped inside the joined body of the top sheet and the back sheet.
  • the adhesive is not particularly limited, and examples thereof include hot melt adhesives.
  • hot melt adhesives include pressure-sensitive adhesives or heat-sensitive adhesives that are mainly rubber-based such as styrene-ethylene-butadiene-styrene, styrene-butadiene-styrene, styrene-isoprene-styrene, or olefin-based adhesives such as polyethylene.
  • examples include agents.
  • a method for manufacturing a plastic material derived from used sanitary products suitable for material recycling or chemical recycling according to the present embodiment will be specifically described.
  • a disposable diaper will be described as an example of a sanitary product.
  • FIG. 1 is a flowchart illustrating a method for producing plastic material derived from used sanitary products suitable for material recycling or chemical recycling according to an embodiment.
  • This method includes a first separation step S2, a second separation step S3, and an aqueous solution treatment step as steps for manufacturing plastic material derived from used sanitary products.
  • the first oxidizing agent treatment step S5 is performed as the aqueous solution treatment step.
  • the method further includes a crushing step S1, an air conveying step S4, and a compression dehydration drying step S6.
  • a dust removal step S7 for recovering pulp fibers and superabsorbent polymers separated in the first separation step S2 and/or second separation step S3 to pulp fibers is described.
  • a separation step S10 is further performed. Each step will be explained below.
  • used sanitary products are collected from outside for reuse (recycling). At that time, multiple used sanitary products are sealed in collection bags to prevent excrement, fungi, and odors from leaking outside.
  • Each used sanitary product in a collection bag is rolled up, for example, with the top sheet from which excreta is excreted on the inside, so that excrement and fungi are not exposed on the outside and odors are not spread to the surrounding area. It is collected in a folded state. Note that the used sanitary products do not need to be enclosed in a collection bag or rolled up.
  • the crushing step S1 is a step of crushing used sanitary products in an inactivating aqueous solution containing an inactivating agent.
  • a collection bag containing used sanitary products is supplied to a receiving tank that receives the collection bags (used sanitary products).
  • the collection bags are delivered from the receiving tank to a crushing device (eg, a two-shaft crusher, such as a two-shaft rotary crusher, a two-shaft differential crusher, a two-shaft shear crusher).
  • the collection bag is crushed together with the collection bag by a crushing device.
  • the crushing device During crushing, the crushing device is supplied with an inactivated aqueous solution, whereby the used sanitary products in the collection bag are crushed together with the collection bag in the inactivated aqueous solution to produce crushed products.
  • the crushed material alone or together with the inactivating aqueous solution is sent to the first separation step S2.
  • the inactivating aqueous solution may be stored in advance in the receiving tank before receiving the collection bag.
  • the used sanitary products are preferably crushed so that the size of the crushed products is approximately 20 to 150 mm, preferably 25 to 100 mm.
  • the length is 20 mm or more, materials other than pulp fibers and superabsorbent polymers (examples: films, nonwoven fabrics, elastic bodies, etc.) will be cut into large pieces, and these materials will be combined with pulp fibers and superabsorbent polymers in the subsequent process. Can be easily separated.
  • the length is 150 mm or less, the materials of used sanitary products will not easily get entangled with each other, making it easier for larger materials to disintegrate, and also making it easier to separate pulp fibers and superabsorbent polymers sandwiched between these materials. .
  • the superabsorbent polymers contained or contained in the used sanitary products are inactivated and dehydrated to become small particle sizes. Therefore, handling (separation and recovery) of the superabsorbent polymer becomes easier in subsequent steps, improving processing efficiency. Moreover, at that time, the sodium and nitrogen compounds contained in the superabsorbent polymer are released (dehydrated) to the outside along with the water. Therefore, even if the superabsorbent polymer remains in the plastic material obtained by this method, the amount of sodium and nitrogen compounds in the plastic material can be suppressed.
  • an aqueous solution of an inorganic acid and an organic acid that is, an acidic aqueous solution.
  • an acidic aqueous solution compared to using an aqueous solution of lime or calcium chloride, it is difficult for ash and chlorine to remain in plastic materials and pulp fibers, and the degree of inactivation (particle size and specific gravity) can be easily adjusted by adjusting the pH.
  • organic acids examples include citric acid, tartaric acid, glycolic acid, malic acid, succinic acid, acetic acid, ascorbic acid, and the like, with citric acid being preferred.
  • Citric acid can trap and remove metal ions in excrement due to its chelating effect, and can also remove dirt components due to its cleaning effect.
  • examples of inorganic acids include sulfuric acid, hydrochloric acid, and nitric acid, with sulfuric acid being preferred. Sulfuric acid does not contain chlorine, so chlorine does not easily remain in plastic materials, etc., and is low cost.
  • the pH of the acidic aqueous solution is preferably 1.0 to 4.0.
  • the pH is set to 1.0 or higher, equipment is less likely to corrode, and the amount of alkaline chemicals required for neutralization during wastewater treatment can be reduced.
  • the pH is set to 4.0 or lower, the superabsorbent polymer can be made sufficiently small. Sterilization ability is also enhanced. Since pH changes depending on water temperature, pH in the present invention refers to pH measured at an aqueous solution temperature of 20°C.
  • the organic acid concentration of the organic acid aqueous solution is not particularly limited, but when the organic acid is citric acid, it is preferably 0.5% by mass or more and 4% by mass or less.
  • the inorganic acid concentration of the inorganic acid aqueous solution is not particularly limited, but when the inorganic acid is sulfuric acid, it is preferably 0.1% by mass or more and 0.5% by mass or less.
  • an aqueous solution of an inorganic acid sulfuric acid dilute sulfuric acid
  • an acidic aqueous solution is used as the inactivating aqueous solution.
  • the used sanitary products that are fed into the twin-shaft crusher do not need to be placed in a collection bag.
  • the collection bag containing the used sanitary products or the used sanitary products not contained in the collection bag may be thrown into the biaxial crusher without passing through the solution tank.
  • crushing with a twin-screw crusher does not need to be carried out in an acidic aqueous solution, and may be carried out, for example, in air. In that case, the subsequent steps, the first separation step S2 and/or the second separation step S3, are performed in an acidic aqueous solution.
  • each component of the used sanitary product is crushed into approximately a predetermined size.
  • the bonding force of the adhesive for example, hot melt adhesive
  • each component is reduced by the heat generated during crushing and/or the heat of the acidic aqueous solution, so that each component can easily disintegrate from each other. is also possible.
  • heating the acidic aqueous solution softens the adhesive (e.g., hot melt adhesive) used to bond the constituent parts of used sanitary products. Bonding force can be reduced. Thereby, the constituent members can be easily disaggregated naturally or by a small impact. It also becomes possible to further sterilize (disinfect) used sanitary products.
  • adhesive e.g., hot melt adhesive
  • the crushing step S1 when the crushing step S1 is not used, for example, the used sanitary products are immersed in a heated oxidizing agent aqueous solution, and the bonding strength of the adhesive between each component is reduced by physical impact such as stirring.
  • the respective constituent members may be disintegrated from each other.
  • the first separation step S2 is a step of separating the used sanitary products into a first fraction containing plastic material and a second fraction containing excrement, inactivated superabsorbent polymer, and pulp fibers. It is. That is, in the first separation step S2, the plastic material (first fraction containing) and the mixture of the plastic material, excrement, inactivated superabsorbent polymer, and pulp fiber obtained by decomposing used sanitary products are separated. , excrement, superabsorbent polymer and pulp fiber (a second fraction comprising) are separated.
  • a mixture of the crushed material generated in the crushing step S1 and an acidic aqueous solution that is an inactivated aqueous solution is supplied to a pulper separator (first separation device).
  • the pulper separator is equipped with a stirring separation tank that functions as both a washing tank for washing the mixture and a sieving tank for separating the mixture.
  • another acidic aqueous solution that is not used in the crushing step S1 may be supplied to the first separation step S2 as the acidic aqueous solution.
  • the mixture is agitated and washed by a pulper separator to remove dirt from the crushed material, while a screen separates the first fraction containing collection bags, films, non-woven fabrics, etc. from the pulp fibers and inactivated high-quality materials. It is separated into a second fraction containing water-absorbing polymers, excreta, acidic aqueous solutions, and the like. That is, the pulp fibers, superabsorbent polymer, excreta, and acidic aqueous solution are separated from the mixture through a screen and delivered from the pulper separator.
  • other materials such as collection bags, films, and non-woven fabrics that could not pass through the screen remain in the pulper separator and are then sent to the second separation step S3. At this time, a portion of the pulp fibers, superabsorbent polymer, excrement, and acidic aqueous solution may not pass through the screen and may remain on the screen together with other materials. Also, some of the other materials may pass through the screen.
  • the inactivating aqueous solution (acidic aqueous solution) may not be used, and water (aqueous solution) containing no inactivating agent may be used.
  • the first separation step S2 is performed by first removing the used sanitary products from an inactivating aqueous solution (acidic aqueous solution). ), that is, a step of inactivating the superabsorbent polymer.
  • processing methods include, for example, immersing the used sanitary products in an inactivated aqueous solution (acidic aqueous solution), or spraying the used sanitary products with an inactivated aqueous solution (acidic aqueous solution). .
  • the acidic aqueous solution is as described above.
  • the first separation step S2 is followed by a step of separating the used sanitary products into a first fraction and a second fraction.
  • the plastic material and a small amount of residual material (pulp fibers, superabsorbent polymer, excrement, and acidic aqueous solution) become residues (rejects) on the screen, and the separated pulp fibers and superabsorbent Polymers, excreta, and acidic aqueous solutions become what passes through the screen (accept).
  • the first separation step S2 is performed in one of the two first separation devices connected in parallel. For example, if two pulper separators are connected in parallel and one pulper separator is operated, and that pulper separator requires maintenance, then that pulper separator is stopped and the other pulper separator is operated. operate the machine. Thereby, the first separation step S2 can be performed continuously. Note that three or more first separation devices may be connected in parallel.
  • the pH of the acidic aqueous solution is adjusted to be maintained within a predetermined range.
  • the predetermined pH range is a range within which the pH fluctuation is within ⁇ 1.0.
  • the difference between the specific gravity and size of the superabsorbent polymer and the specific gravity and size of the pulp fibers can be kept within a predetermined range.
  • the difference within a predetermined range means, for example, that one is within a range of 0.2 to 5 times the other.
  • the difference between the pulp fiber and the superabsorbent polymer is that the specific gravity is within a predetermined range and the size is within a predetermined range.
  • pulp fibers and superabsorbent polymers can be used to make use of the differences in size and specific gravity from other materials (mainly plastic materials) used in used sanitary products other than pulp fibers and superabsorbent polymers.
  • the pH can be adjusted using an acidic aqueous solution or an alkaline aqueous solution based on the pH value measured by a pH sensor. Note that the pH may be adjusted in the second separation step S3 as well in the same manner as in the first separation step S2.
  • the pH of the acidic aqueous solution may be adjusted as in the first separation step S2.
  • the first fraction is subjected to physical impact to separate the plastic material, the excrement that was not completely separated in the first separation step S2 and remained in the first fraction, and the super absorbent polymer. and pulp fibers. That is, in the second separation step S3, the plastic material, the remaining excrement, the superabsorbent polymer, and the pulp fiber are separated from the mixture of the plastic material, the remaining excrement, the superabsorbent polymer, and the pulp fiber. and are separated, thereby recovering the plastic material.
  • the second separation step S3 performs separation by applying a physical impact to the first fraction while treating the first fraction with an acidic aqueous solution.
  • the mixture (plastic material and residue) from which excrement, pulp fibers, superabsorbent polymers, etc. have been separated in the first separation step S2 is supplied to a separation device.
  • Ru The separation device consists of a cylindrical part installed on its side, a plurality of impellers provided in the cylindrical part, a plurality of acidic aqueous solution supply parts provided on the upper outer circumferential surface of the cylindrical part, and a cylindrical part installed on its side.
  • a screen (sieve) provided on the lower outer peripheral surface.
  • a mixture supply port is provided at one end of the cylindrical portion, and a discharge port is provided at the other end.
  • the plurality of impellers are arranged at intervals along the direction of the central axis of the cylindrical part so that their rotation axes and the central axis of the cylindrical part overlap.
  • the plurality of impellers rotate about the central axis of the cylindrical portion, and the direction of the blades is adjusted so as to cause air to flow from one end of the cylindrical portion to the other end.
  • the plurality of acidic aqueous solution supply sections are lined up at intervals along the central axis direction, and spray the acidic aqueous solution toward the bottom of the cylindrical section.
  • the acidic aqueous solution supply unit sprays the acidic aqueous solution in the form of a spray.
  • the individual openings in the screen are sized to allow pulp fibers and superabsorbent polymers to pass through, but not to allow plastic materials to pass through.
  • the mixture In the air inside the cylindrical part of the separation device, the mixture is injected with an acidic aqueous solution from each of the plurality of acidic aqueous solution supply parts, stirred by the blades of a rotating impeller, and subjected to physical impact by collision of the blades of the impeller. It moves (flows) from one end side of the cylindrical part to the other end side while being During this time, the mixture is washed away from dirt and/or sterilized and bleached by the sprayed acidic aqueous solution.
  • the pulp fibers in the mixture are removed from the plastic materials in the mixture due to physical impact, and the superabsorbent polymers in the mixture are removed from the plastic materials in the mixture due to further inactivation with an acidic aqueous solution or physical impact. It will be done.
  • the removed pulp fibers and superabsorbent polymers pass through a screen below the cylindrical part and are separated (removed) together with the acidic aqueous solution.
  • the plastic material in the mixture from which pulp fibers, superabsorbent polymers, etc. have been removed is discharged from the discharge port at the other end of the cylindrical portion without passing through the screen. That is, the superabsorbent polymer and pulp fibers remaining without being separated in the first separation step S2 are separated from the plastic material, and a plastic material with suppressed impurities is produced and recovered.
  • the amount is not necessarily large, sulfur compounds and nitrogen compounds derived from excrement that could not be completely removed in the second separation step S3 remain in the plastic material.
  • the separated acidic aqueous solution may be reused in the first separation step S2 or the crushing step S1. Note that the acidic aqueous solution is as described above.
  • the amount of the acidic aqueous solution to be supplied is not particularly limited as long as it can achieve the desired function, but for example, the weight of the acidic aqueous solution may be 5 to 100 times the weight of the plastic material, and 10 to 50 times the weight of the plastic material. preferable.
  • the supply rate of the acidic aqueous solution is not particularly limited as long as it can achieve the desired function, but examples include 50 to 500 cm 3 /min, preferably 80 to 200 cm 3 /min. If the supply amount or supply rate is small, it will be difficult to obtain the desired effect, and if the supply rate is large, equipment, materials, etc. may be damaged.
  • an acidic aqueous solution is injected into the mixture.
  • the force of the jet can wash away residual superabsorbent polymers and pulp fibers adhering to the plastic material.
  • the acidic aqueous solution is made finer by spraying, it is possible to make it easier for the acidic aqueous solution to reach the superabsorbent polymer remaining in the details of the plastic material.
  • a fresh acidic aqueous solution can always be supplied to the surface of the plastic material, and variations in the effect of the acidic aqueous solution can be suppressed.
  • plastic materials can be sterilized with acidic aqueous solutions.
  • the separation may be performed by applying physical impact to the first fraction without treating the first fraction with the acidic aqueous solution.
  • the mixture is stirred by the blades of a rotating impeller in the air inside the cylindrical part of the separator, and is moved from one end of the cylindrical part to the other while being subjected to physical impact due to the collision of the impeller blades ( flow).
  • the mixture is knocked clean of dirt by physical impact.
  • pulp fibers or superabsorbent polymers in the mixture are removed from the plastic material in the mixture by physical impact. The removed pulp fibers and superabsorbent polymers pass through a screen below the cylindrical part and are separated (removed).
  • water or an aqueous solution containing no inactivating agent may be injected into the first fraction.
  • Water is injected from each of the multiple water supply parts into the mixture in the air inside the cylindrical part of the separator, and the mixture is stirred by the blades of a rotating impeller, and the mixture is subjected to physical impact due to the collision of the blades of the impeller. It moves (flows) from one end side of the cylindrical part to the other end side while being applied. During this time, the mixture is washed clean of dirt by the jetted water and knocked off by the physical impact.
  • pulp fibers and superabsorbent polymers in the mixture are removed from the plastic material in the mixture by water flow, physical impact, etc., respectively.
  • the removed pulp fibers and superabsorbent polymers pass through a screen below the cylindrical part and are separated (removed) along with water.
  • the air conveyance process S4 (conveyance process) is a process in which the plastic material separated in the second separation process S3 is conveyed by air to the first oxidizing agent treatment process S5, which is an example of an aqueous solution treatment process. That is, in the air conveyance step S4, the separated plastic material is conveyed to the next step while being dried in an air flow.
  • the air conveyance step S4 air flows through the pipe by a blower in a pipe connecting the separation device of the second separation step S3 and the first oxidizer treatment device (described later) of the first oxidizer treatment step S5. Then, the separated plastic material is transported from the separation device to the first oxidizer treatment device. At this time, the moisture contained in the plastic material is evaporated or blown away into the air, so that the moisture content of the plastic material is reduced. The moisture content decreases, for example, from about 95% to about 80%. Moreover, since the plurality of plastic materials can be separated into pieces by the air flow, the oxidizing agent aqueous solution can be supplied almost uniformly to the entire surface of each plastic material in the next first oxidizing agent treatment step S5. Note that the air conveyance step S4 may not be used, and the separated plastic material may be conveyed by other known conveyance means.
  • the first oxidizing agent treatment step S5 is a step of injecting an oxidizing agent aqueous solution containing an oxidizing agent onto the plastic material separated in the second separating step S3.
  • sulfur compounds, nitrogen compounds, and the like derived from excrement that were not completely removed in the second separation step S3 and remain in the plastic material can be removed using the oxidizing agent aqueous solution. .
  • a first oxidizing agent treatment step S5 is performed in which an oxidizing agent aqueous solution containing an oxidizing agent is injected onto the plastic material.
  • the aqueous solution treatment step after the second separation step S3 is not limited to that example, and water treatment in which water that does not contain an oxidizing agent is injected onto the plastic material instead of an oxidizing agent aqueous solution containing an oxidizing agent. You may perform the process.
  • the water may also contain substances that do not become impurities in the plastic material (eg, substances that do not easily adhere to the plastic material, substances that do not cause problems when the plastic material is reused).
  • an aqueous solution treatment step after the second separation step S3 an aqueous solution containing an oxidizing agent (oxidizing agent treatment step), a water treatment step containing no oxidizing agent (water treatment step), It can be said that it is a process of treating plastic materials using (including the case of ), so it can be said to be an aqueous solution treatment process.
  • the plastic material separated in the second separation step S3 (via the air conveyance step S4) is supplied to the first oxidizer treatment device.
  • the first oxidizing agent treatment device includes a conveyor (for example, a screw conveyor) that conveys the plastic material, and a plurality of oxidizing agent aqueous solution supply units that are provided above the conveyor and inject an oxidizing agent aqueous solution onto the plastic material being conveyed. , is provided.
  • the conveyor is inclined upwardly along the conveying direction (e.g. 30°), thereby conveying the aqueous oxidizer solution that has been jetted and spilled from the plastic material to a drain below.
  • the plurality of oxidizing agent aqueous solution supply units are lined up at intervals along the conveyance direction of the conveyor. It is preferable that the oxidizing agent aqueous solution supply section injects the oxidizing agent aqueous solution in the form of a spray.
  • the plastic material is conveyed from one end to the other end by a conveyor while being sprayed with an oxidizing agent aqueous solution supply section from each of the plurality of oxidizing agent aqueous solution supply sections.
  • the injected oxidant aqueous solution oxidizes sulfur compounds and nitrogen compounds derived from excrement remaining on the plastic material, and converts them into other odorless substances (e.g. sulfur (S) and nitrogen (N 2 )). , mixed into the oxidizing agent aqueous solution, and/or released as a gas. That is, sulfur compounds and nitrogen compounds remaining in the plastic material are removed.
  • the plastic material is sterilized by the oxidizing agent aqueous solution.
  • an oxidizing agent aqueous solution is injected onto the plastic material.
  • the force of the jet can wash away sulfur compounds and nitrogen compounds adhering to the surface of plastic materials.
  • the oxidizing agent aqueous solution becomes finer by spraying, it is possible to make it easier for the oxidizing agent aqueous solution to reach the sulfur compounds and nitrogen compounds remaining in the details of the plastic material.
  • a fresh oxidizing agent aqueous solution can always be supplied to the surface of the plastic material, and variations in the effects of the oxidizing agent aqueous solution (for example, cleaning and sterilizing effects) can be suppressed. can do.
  • the oxidizing agent aqueous solution is an aqueous solution containing an oxidizing agent.
  • the oxidizing agent includes at least one of ozone and hydrogen peroxide.
  • ozone is used as an oxidizing agent from the viewpoint of oxidizing power, sterilizing power, and bleaching power.
  • ozone water is used, which is water (or aqueous solution) such as pure water or clean water mixed with ozone gas.
  • the oxidizing agent aqueous solution may be acidic from the viewpoint of suppressing deactivation of ozone.
  • each step is continuous. It may be acidic from the viewpoint of properties and effective use of the aqueous solution.
  • an acidic aqueous solution for example, a dilute sulfuric acid aqueous solution
  • ozone gas is used as the acidic aqueous solution.
  • an acidic aqueous solution used in another process may be reused.
  • the ozone concentration in the oxidizing agent aqueous solution is not particularly limited as long as it can achieve the desired function, that is, oxidizing power, bactericidal power, and bleaching power against sulfur compounds (including sulfuric acid in acidic aqueous solutions), nitrogen compounds, etc. Its concentration is, for example, 0.2 to 10 ppm, preferably 0.5 to 5 ppm. If the concentration is not too low, the desired function can be achieved, and if the concentration is not too high, corrosion of equipment can be suppressed.
  • the treatment time with the oxidizing agent aqueous solution is not particularly limited as long as it can exhibit the desired function, but the higher the ozone concentration in the oxidizing agent aqueous solution, the shorter the treatment time, and the lower the ozone concentration, the longer the treatment time. ⁇ 30 minutes.
  • the product of the ozone concentration (ppm) in the oxidizing agent aqueous solution and the treatment time (minutes) of the treatment process (hereinafter also referred to as "CT value”) is, for example, 0.5 to 200 ppm min, and 5 to 100 ppm. ⁇ Minutes are preferable. If the CT value is not too small, the desired function can be achieved, and if the CT value is not too large, corrosion of the equipment can be suppressed. Note that, as the oxidizing agent aqueous solution, the oxidizing agent aqueous solution used in the second oxidizing agent treatment step S9, which will be described later, may be reused in this step after lowering its concentration.
  • the amount of the oxidizing agent aqueous solution to be supplied is not particularly limited as long as it can realize the desired function, but for example, the weight of the oxidizing agent aqueous solution to the weight of the plastic material may be 5 to 100 times, 50 times is preferable.
  • the supply rate of the oxidizing agent aqueous solution is not particularly limited as long as it can achieve the desired function, but examples include 50 to 500 cm 3 /min, preferably 80 to 200 cm 3 /min. If the supply amount or supply rate is small, it will be difficult to obtain the desired effect, and if the supply rate is large, equipment, materials, etc. may be damaged.
  • used paper diapers contain more than 1 billion bacteria/ml, but it cannot be said that they can be completely sterilized with the acidic aqueous solution up to the second separation step S3. Therefore, the plastic material separated in the second separation step S3 (to which a small amount of pulp fibers and superabsorbent polymers are attached) contains a certain amount of general bacteria (eg, 3,400 general bacteria/ml). If this happens, there may be concerns about adverse effects on worker safety and the possibility of rotting or mold growth in the removed plastic materials. There is also a strong odor of excrement that is thought to be caused by common bacteria.
  • general bacteria eg, 3,400 general bacteria/ml
  • the pressing, dehydrating and drying step S6 is a step of compressing, dehydrating and drying the plastic material treated in the first oxidizing agent treatment step S5. That is, in the compression dehydration drying step S6, a plurality of treated plastic materials are put together, compressed as a whole, dehydrated, and heated and dried.
  • the plastic material treated in the first oxidizing agent treatment step S5 is supplied to the compression dehydration drying device.
  • a compression dehydration drying device is a device that compresses a plurality of plastic materials together while heating them, squeezes out water, and dehydrates and dries them.
  • the heating temperature may be 120 to 180°C. If the temperature is high, pulp fibers that may be included in the plastic material may be carbonized, and if the temperature is low, it becomes difficult to obtain a drying effect.
  • the heating time depends on the heating temperature, but is, for example, 10 to 120 minutes, preferably 15 to 100 minutes. If the time is long, the drying effect will be saturated, and if the time is short, it will be difficult to obtain the drying effect.
  • the pressing pressure is, for example, 0.2 to 4 MPa, preferably 0.4 to 2 MPa, although it depends on the heating temperature and heating time. If the pressure is low, it is difficult to obtain the dehydration effect, and if the pressure is high, the dehydration effect is saturated.
  • the compression dehydration drying device softens (and/or melts) the plastic material and extrudes it to the outside through a large number of pores (eg, pore diameter: 5 to 15 mm). Thereby, the plastic material can be formed into flakes or pellets, making it easier to pack.
  • a plurality of plastic materials are put together by a compression dehydration drying device, compressed while being heated, and sent out. Thereby, the water is squeezed out and a evaporated and thus dehydrated, dry plastic material is produced. In this way, a recyclable plastic material is produced. At this time, the moisture content of the plastic material is 5% by mass or less, preferably 3% or less. Note that pressing dehydration and drying may be performed using separate devices.
  • the dehydration and drying of the plastic material is not limited to the above-mentioned pressing dehydration and drying step S6, and in cases where the shape of the plastic material is not changed, a general dehydration and drying step may be performed.
  • the dehydration/drying process includes, for example, a process of drying the plastic material in a high-temperature atmosphere in a constant temperature bath or with hot air.
  • the drying temperature may be, for example, 80 to 120°C.
  • the drying time is, for example, 10 to 120 minutes, although it depends on the drying temperature.
  • a plastic material derived from used sanitary products suitable for material recycling or chemical recycling according to the present embodiment is manufactured.
  • the first fraction is separated in the first separation step S2.
  • the superabsorbent polymer that had been absorbing urine and the like has been inactivated, so sodium and nitrogen compounds are released (dehydrated) to the outside along with water and become granular. Therefore, in the second separation step S3, the first fraction of the superabsorbent polymer can be easily separated from the plastic material by physical impact.
  • the content of sodium and nitrogen compounds in the superabsorbent polymer can be reduced.
  • other excreta and pulp fibers can be easily separated from the plastic material by physical impact.
  • an aqueous solution treatment step is performed in which an aqueous solution is injected onto the plastic material separated in the second separation step S3.
  • the aqueous solution may be a liquid consisting only of water.
  • the aqueous solution treatment step can be called a water treatment step.
  • the force of the spray can wash away sulfur compounds, nitrogen compounds, etc. adhering to the surface of the plastic material.
  • spraying the aqueous solution into fine particles and supplying it to the plastic material it is possible to make it easier for the aqueous solution to penetrate into the finer details of the plastic material.
  • a fresh aqueous solution can always be supplied to the surface of the plastic material, and variations in the cleaning effect can be reduced.
  • an oxidizing agent aqueous solution containing an oxidizing agent may be used as the aqueous solution.
  • the aqueous solution treatment step can be called a first oxidizing agent treatment step S5. That is, after the second separation step S3, a first oxidant treatment step S5 (oxidant treatment step) of an oxidizing agent aqueous solution containing an oxidizing agent is performed on the plastic material separated in the second separation step S3. At this time, sulfur compounds, nitrogen compounds, etc.
  • oxidized, and other odorless substances such as sulfur (S) and nitrogen ( N 2 )), some or all of which is mixed into the aqueous oxidizer solution and flows out and/or is released as a gas. That is, most of the sulfur compounds and nitrogen compounds remaining in the plastic material are further removed. In this way, the odor-producing sulfur and nitrogen compounds are converted into other odorless substances and are generally removed, thereby making the plastic material less likely to produce bad odors.
  • the oxidizing agent can also sterilize plastic materials.
  • the oxidizing agent aqueous solution can be made fine by spraying and supplied to the plastic material, thereby making it easier for the oxidizing agent aqueous solution to enter the fine details of the plastic material.
  • a fresh oxidizing agent aqueous solution can be constantly supplied to the surface of the plastic material, and variations in the sterilization effect can be reduced.
  • the second separation step S3 includes applying a physical impact to the first fraction while spraying an acidic aqueous solution to separate the excrement, the superabsorbent polymer, the pulp fibers, and the plastic material. , includes a step of separating them from each other.
  • the acidic aqueous solution is injected into the first fraction in the second separation step S3. Therefore, the superabsorbent polymer remaining in the plastic material is further inactivated by the acidic aqueous solution, and releases (dehydrates) sodium and nitrogen compounds to the outside, becoming finer particles.
  • the superabsorbent polymer can be more easily separated (washed off) from the plastic material by physical impact or by a flow of acidic aqueous solution.
  • the content of sodium and nitrogen compounds in the superabsorbent polymer can be further reduced.
  • other excreta and pulp fibers can be more easily separated (washed off) from the plastic material by physical impact or a stream of acidic aqueous solutions.
  • plastic materials can be sterilized with acidic aqueous solutions.
  • this method further includes a compression dehydration drying step S6 in which the plastic material treated in the aqueous solution treatment step (or first oxidizing agent treatment step S5) is compressed and dehydrated and dried. That is, since the plastic material treated in the aqueous solution treatment step (or the first oxidizing agent treatment step S5) is dried while being squeezed and dehydrated, the water content in the plastic material can be further reduced. As a result, impurities (e.g., substances containing sulfur and nitrogen that do not cause a bad odor) mixed in moisture (aqueous solution) in the aqueous solution treatment step (or first oxidizing agent treatment step S5) are discharged from the plastic material along with the moisture. be able to.
  • impurities e.g., substances containing sulfur and nitrogen that do not cause a bad odor
  • this method further includes an air conveyance step S4 in which the plastic material separated in the second separation step S3 is conveyed by air to the aqueous solution treatment step (or first oxidizing agent treatment step S5).
  • the moisture in the plastic material can be blown away by the airflow to the surrounding area, so that the moisture in the plastic material can be further reduced. Therefore, in the first and second separation steps S2, S3, etc., impurities (for example, sodium, nitrogen compounds, and sulfur compounds) mixed into the water (aqueous solution) can be removed together with the water.
  • the aqueous solution (or oxidizing agent treatment step S5), the aqueous solution (or oxidizing agent aqueous solution) is applied to the entire surface of each plastic material. Can be supplied evenly.
  • the oxidizing agent in the first oxidizing agent treatment step S5 contains at least one of ozone and hydrogen peroxide. Therefore, it is possible to reliably oxidize the excrement-derived substances remaining in the plastic material and convert them into other substances (for example, substances containing sulfur or nitrogen that do not produce bad odors). In addition, since the oxidizing agent does not contain chlorine, chlorine is unlikely to remain as an impurity in the plastic material, and the dechlorination step can be omitted in the manufacturing process of recycled products, reducing the impact on the catalyst used in the manufacturing process.
  • the first separation step S2 includes a step of separating the used sanitary product into a first fraction and a second fraction in an acidic aqueous solution.
  • the used sanitary products are separated in an acidic aqueous solution, so that the superabsorbent polymer that has absorbed urine etc. can be more reliably inactivated. Thereby, the sodium and nitrogen compounds in the superabsorbent polymer can be released to the outside together with the moisture.
  • the physical impact in the second separation step S3 is applied to the first fraction by the collision of rotating blades in an impeller that stirs the first fraction in air.
  • physical impact can be more reliably applied to the first fraction in air. Therefore, the excreta, superabsorbent polymers and pulp fibers remaining in the first fraction can be more easily removed from the plastic material.
  • the plastic material obtained after the aqueous solution treatment step (or first oxidizing agent treatment step S5) is for chemical recycling or material recycling.
  • the plastic material obtained by this method is a plastic material with few impurities as will be described later, so its reuse is limited to oil conversion (processing plastic materials derived from used products using heat or catalysts). It will be possible to expand this to chemical recycling, such as technology that decomposes plastic products to produce liquid products, and material recycling, such as reuse (technology that converts plastic materials derived from used products into plastic raw materials or plastic products). .
  • the produced plastic material has very few impurities, even though it is derived from used sanitary products.
  • the proportion of sulfur contained in the plastic material obtained by this method is 500 ppm or less, preferably 300 ppm, more preferably 100 ppm, and still more preferably 50 ppm or less.
  • the proportion of nitrogen contained in the plastic material obtained by this method is 2000 ppm or less, preferably 1500 ppm, more preferably 1000 ppm, and even more preferably 500 ppm or less.
  • the proportion of sodium contained in the plastic material obtained by this method is 500 ppm or less, preferably 300 ppm, more preferably 100 ppm, and still more preferably 50 ppm or less. Therefore, as described above, the plastic material obtained by this method is suitable for material recycling or chemical recycling, and can be applied to various uses (eg, oil conversion, recycling).
  • the method for measuring the content of sulfur, nitrogen, sodium, and chlorine in plastic materials is as follows. ⁇ Method for measuring sulfur, nitrogen, sodium, and chlorine content> (i) Prepare an energy dispersive X-ray analyzer (EDX: EDX-7200 manufactured by Shimadzu Corporation). (ii) Dry the plastic material to be measured (120°C x 60 minutes), collect a sufficient amount of sample from the dried plastic material that can be placed on the sample stand of the analyzer, and fix it on the sample stand. do. (iii) Measure the content of sulfur, nitrogen, sodium, and chlorine in the sample using an analyzer. (iv) The measurement results of the five samples are averaged to determine the content of sulfur, nitrogen, sodium, and chlorine in the final plastic material.
  • EDX energy dispersive X-ray analyzer
  • the produced plastic material has extremely low impurities, even though it is a plastic material derived from used sanitary products.
  • the plastic material obtained by this method contains a superabsorbent polymer and pulp fibers (total) in an amount of 10% by mass or less, preferably 5% by mass or less.
  • the plastic material obtained by this method is derived from used sanitary products, it is not only free from impurities such as sulfur, nitrogen, and sodium, but also contains impurities such as superabsorbent polymers and pulp fibers. . Therefore, the plastic material obtained by this method can be said to be a recycled plastic material that can be applied to various uses.
  • the method for measuring the content of pulp fibers and superabsorbent polymers in plastic materials is as follows. ⁇ Method for measuring pulp fiber and superabsorbent polymer content (mass%)> (i) Dry the plastic material (120° C. x 60 minutes), weigh about 100 g (measured value A), and use it as sample ⁇ 1. (ii) Sample ⁇ 1 is adjusted to an aqueous solution with a solid concentration of 1%, and ozone gas is blown into the solution while stirring to perform ozone treatment. However, the ozone concentration in the aqueous solution and the treatment time are set to 50 ppm x 30 minutes (CT value 1500) (the super absorbent polymer is decomposed, solubilized, and removed).
  • the produced plastic material has extremely low impurities, even though it is a plastic material derived from used sanitary products.
  • the plastic material obtained by this method contains ash in an amount of 10% by mass or less, preferably 6% by mass or less, and more preferably 4% by mass or less.
  • impurities such as sulfur, nitrogen and sodium as well as ash are suppressed. Therefore, the plastic material obtained by this method can be said to be a recycled plastic material that can be applied to various uses.
  • Ash content refers to the amount of inorganic or non-combustible residue left after organic matter is incinerated, and the ash content (% by mass), or ash content, is the ratio of ash contained in the sample to be measured ( mass ratio).
  • the ash content is measured in accordance with "5. Ash content test method” in "2. General test methods" of the Material Standard for Sanitary Treatment Products. Specifically, the ash content is measured as follows. (i) In advance, ignite a platinum, quartz, or porcelain crucible (with a lid) at 500 to 550°C for 1 hour, and after cooling, accurately weigh the mass.
  • the method includes a dust removal step S7 and a step of separately recovering pulp fibers and superabsorbent polymers (SAP) from used sanitary products.
  • the method may further include a separation step S8, a second oxidizing agent treatment step S9, and a pulp fiber separation step S10.
  • the mixed liquid containing the pulp fibers, superabsorbent polymer, excrement, and acidic aqueous solution separated in the first separation step S2 is processed in the dust removal step S7.
  • the pulp fibers, superabsorbent polymer, and the like separated in the second separation step S3 may also be mixed with the liquid mixture and treated in the dust removal step S7.
  • the dust removal step S7 dust that could not be completely separated from the mixed liquid supplied from the first separation step S2 (and second separation step S3) by at least one separator (example: screen separator, cyclone separator) Separate foreign objects such as other materials (collection bags, films, non-woven fabrics, elastic bodies, etc.).
  • a screen separator with a relatively large opening
  • a screen separator with a relatively small opening
  • a cyclone separator are arranged in this order to remove foreign substances from the mixed liquid. Separated sequentially.
  • pulp fibers and super absorbent polymers with less foreign matter can be obtained.
  • the mixed liquid of the pulp fibers with few foreign substances, the super absorbent polymer, and the acidic aqueous solution (containing excrement) is supplied to the SAP separation step S8.
  • At least one separator extracts a super absorbent liquid from the mixed liquid (containing pulp fibers and a super absorbent polymer with few foreign substances) supplied from the dust removal step S7. Separate the polymer.
  • the superabsorbent polymer and the acidic aqueous solution are separated from the mixed liquid by a drum screen separator.
  • a superabsorbent polymer and an acidic aqueous solution with few foreign substances can be obtained.
  • the superabsorbent polymer is separated from the acidic aqueous solution (liquid) and taken out by another separator (eg, an inclined screen separator).
  • pulp fibers with few foreign substances but containing a small amount of super absorbent polymer
  • the second oxidizing agent treatment step S9 oxidizes and decomposes the superabsorbent polymer in the pulp fibers containing few foreign substances (but contains a small amount of superabsorbent polymer) supplied from the SAP separation step S8 using an oxidizing agent aqueous solution, Solubilized and removed from pulp fibers.
  • pulp fibers are put into a treatment tank that stores an oxidizing agent aqueous solution containing ozone as an oxidizing agent, and the superabsorbent polymer in the pulp fibers is oxidized and decomposed, and the Upon solubilization, pulp fibers with very few impurities are obtained. Pulp fibers containing few impurities (including superabsorbent polymers) are supplied to pulp fiber separation step S10 together with an oxidizing agent aqueous solution.
  • the type of oxidizing agent in the second oxidizing agent treatment step S9 is the same as the oxidizing agent in the first oxidizing agent treatment step S5.
  • ozone is used as an oxidizing agent from the viewpoint of oxidizing power, sterilizing power, and bleaching power.
  • the ozone concentration in the oxidizing agent aqueous solution is not particularly limited as long as it is a concentration that can decompose the superabsorbent polymer, and may be, for example, 10 to 50 mass ppm. A concentration that is not too low allows the superabsorbent polymer to be completely solubilized, and a concentration that is not too high does not damage the pulp fibers.
  • the treatment time with the oxidizing agent aqueous solution is not particularly limited as long as it is enough to decompose the superabsorbent polymer, but the higher the ozone concentration in the oxidizing agent aqueous solution, the longer the ozone concentration.
  • the average time is 5 to 300 minutes.
  • the product of the ozone concentration (ppm) in the oxidizing agent aqueous solution and the treatment time (minutes) of the treatment step (hereinafter also referred to as "CT value”) is preferably 100 to 15,000 ppm ⁇ min. If the CT value is too small, the superabsorbent polymer may not be completely solubilized and the superabsorbent polymer may remain in the pulp fibers, and if the CT value is too large, there is a risk of damaging the pulp fibers.
  • a separator (example: screen separator) separates pulp fibers from the pulp fibers and the oxidizing agent aqueous solution supplied from the second oxidizing agent treatment step S9.
  • the pulp fibers separated and recovered in this manner become so-called recycled pulp fibers.
  • the recycled pulp fibers are washed with washing water and taken out.
  • Sample Example 1 Using a used disposable diaper as a raw material, a crushing step S1 to a pressing dehydration drying step S6 were performed to obtain a plastic material sample 1. However, the acidic aqueous solution in the second separation step S3 is a 0.1% by mass sulfuric acid aqueous solution, and the ozone concentration and treatment time (CT value) in the first oxidizing agent treatment step S5 are 2 ppm x 20 minutes (40 ppm min). did.
  • Example 2 Using a used disposable diaper as a raw material, a crushing step S1 to a pressing dehydration drying step S6 were performed to obtain a plastic material sample 2.
  • the acidic aqueous solution in the second separation step S3 is a 0.1% by mass sulfuric acid aqueous solution, and instead of the first oxidizing agent treatment step S5 (using an oxidizing agent (ozone) aqueous solution), the water treatment step (using only water) ) was carried out.
  • the aqueous solution treatment step (using only water) is performed instead of the first oxidizing agent treatment step S5 (using an oxidizing agent (ozone) aqueous solution), the sulfur, nitrogen, and sodium remaining in sample 2 are significantly reduced. It had been reduced. That is, the impurities remaining in Sample 2 were significantly reduced.
  • sanitary products of the present invention are not limited to the embodiments described above, and can be combined and changed as appropriate without departing from the purpose and gist of the present invention.

Abstract

Provided is a method for producing a plastic material derived from a used sanitary product suitable for material recycling or chemical recycling, wherein impurities in the produced plastic material can be suppressed. The method comprises: a first separation step S2 for separating a used sanitary product including excreta, a plastic material, a superabsorbent polymer, and pulp fibers into a first fraction containing the plastic material and a second fraction containing the excreta, the superabsorbent polymer, which has been deactivated, and the pulp fibers; a second separation step S3 for applying a physical impact to separate the first fraction into the plastic material and excreta, a superabsorbent polymer, and a pulp fibers remaining in the first fraction due to not being separated in the first separation step; and an aqueous solution treatment step for spraying an aqueous solution onto the separated plastic material.

Description

マテリアルリサイクル又はケミカルリサイクルに適した使用済み衛生用品由来のプラスチック材料を製造する方法、及び、使用済み衛生用品由来のプラスチック材料Method for producing plastic material derived from used sanitary products suitable for material recycling or chemical recycling, and plastic material derived from used sanitary products
 本発明は、マテリアルリサイクル又はケミカルリサイクルに適した使用済み衛生用品由来のプラスチック材料を製造する方法、及び、使用済み衛生用品由来のプラスチック材料に関する。 The present invention relates to a method for producing a plastic material derived from used sanitary products, which is suitable for material recycling or chemical recycling, and a plastic material derived from used sanitary products.
 使用済み衛生用品からリサイクル可能なプラスチック材料を製造する技術が知られている。例えば、特許文献1には、使用済み吸収性物品から構成部材を回収する方法が開示されている。この方法は、使用済み吸収性物品から構成部材であるフィルム及び吸収体材料を回収する方法である。この方法は、使用済み吸収性物品を水で膨潤させる前処理工程と、膨潤した使用済み吸収性物品に物理的な衝撃を与えて、使用済み吸収性物品を、少なくともフィルムと吸収体材料とに分解する分解工程と、分解されたフィルムと吸収体材料とを分離する分離工程と、を備える。分離されたフィルムは、リサイクル可能なプラスチック材料として利用し得る。 Technology for producing recyclable plastic materials from used sanitary products is known. For example, Patent Document 1 discloses a method for recovering constituent members from used absorbent articles. This method is a method for recovering the component films and absorbent material from used absorbent articles. This method includes a pre-treatment step in which the used absorbent article is swollen with water, and a physical impact is applied to the swollen used absorbent article so that at least the film and absorbent material of the used absorbent article are The method includes a decomposition step of decomposing the film and a separation step of separating the decomposed film from the absorbent material. The separated film can be used as a recyclable plastic material.
特開2018-171589号公報Japanese Patent Application Publication No. 2018-171589
 特許文献1では、分離工程において、フィルムや不織布のようなプラスチック材料と、高吸水性ポリマーやパルプ繊維のような吸収体材料と、が互いに分離される。しかし、分離されたプラスチック材料から、排泄物や吸収体材料を完全に分離することは難しく、分離されたプラスチック材料に、ある程度の排泄物や吸収体材料、すなわち、ある程度の不純物が含まれるおそれがある。 In Patent Document 1, a plastic material such as a film or nonwoven fabric and an absorbent material such as a superabsorbent polymer or pulp fiber are separated from each other in a separation step. However, it is difficult to completely separate excrement and absorbent material from the separated plastic material, and there is a risk that the separated plastic material may contain some amount of excrement and absorbent material, that is, a certain amount of impurities. be.
 そのような不純物としては、例えば、使用済み衛生用品に含まれる排泄物(例えば、尿、便)由来の臭気を発する硫黄化合物(例えば、硫化水素)や窒素化合物(例えば、アンモニア)や、吸収体材料中の高吸水性ポリマー由来のナトリウムなどが挙げられる。これらの不純物が、プラスチック材料に含まれる場合、プラスチック材料をマテリアルリサイクル又はケミカルリサイクルに適用してリサイクル製品を製造するとき、製造に使用される触媒に悪影響を及ぼすおそれや、製造されたリサイクル製品に好ましくない臭気を生じさせるおそれがある。したがって、マテリアルリサイクル又はケミカルリサイクルに適したプラスチック材料を得ることに関して、それら不純物の低減などの観点で改善の余地がある。 Such impurities include, for example, odor-producing sulfur compounds (e.g., hydrogen sulfide) and nitrogen compounds (e.g., ammonia) derived from excreta (e.g., urine, feces) contained in used sanitary products, and absorbent materials. Examples include sodium derived from superabsorbent polymers in the material. If these impurities are contained in plastic materials, when plastic materials are applied to material recycling or chemical recycling to produce recycled products, there is a risk that they may have an adverse effect on the catalysts used in production, or they may cause damage to the recycled products produced. May cause unpleasant odors. Therefore, with respect to obtaining plastic materials suitable for material recycling or chemical recycling, there is room for improvement in terms of reducing these impurities.
 本発明の目的は、マテリアルリサイクル又はケミカルリサイクルに適した使用済み衛生用品由来のプラスチック材料を製造する方法において、製造されるプラスチック材料の不純物を抑制することが可能な方法、及び、不純物が抑制された使用済み衛生用品由来のプラスチック材料を提供することにある。 The purpose of the present invention is to provide a method for manufacturing plastic materials derived from used sanitary products suitable for material recycling or chemical recycling, which can suppress impurities in the manufactured plastic materials, and a method in which impurities can be suppressed. The objective is to provide plastic materials derived from used sanitary products.
 本発明の一態様は、マテリアルリサイクル又はケミカルリサイクルに適した使用済み衛生製品由来のプラスチック材料を製造する方法であって、ここで、前記使用済み衛生用品は、排泄物、プラスチック材料、高吸水性ポリマー及びパルプ繊維を含んでおり、前記使用済み衛生用品を、前記プラスチック材料を含む第1画分と、前記排泄物、不活化された前記高吸水性ポリマー、及び前記パルプ繊維を含む第2画分と、に分離する第1分離工程と、前記第1画分を、物理的衝撃を加えて、前記第1分離工程で分離しきれずに前記第1画分に残存していた前記排泄物、前記高吸水性ポリマー及び前記パルプ繊維と、前記プラスチック材料と、に互いに分離する第2分離工程と、分離された前記プラスチック材料に、水溶液を噴射する水溶液処理工程と、を備える、方法、である。 One aspect of the present invention is a method for producing plastic materials derived from used sanitary products suitable for material recycling or chemical recycling, wherein the used sanitary products include excrement, plastic materials, super absorbent a first fraction comprising the plastic material and a second fraction comprising the excreta, the inactivated superabsorbent polymer, and the pulp fibers; a first separation step of separating the first fraction into two parts; and the excrement remaining in the first fraction that could not be completely separated in the first separation step by applying a physical impact to the first fraction; A method comprising: a second separation step of separating the superabsorbent polymer and the pulp fibers from the plastic material; and an aqueous solution treatment step of spraying an aqueous solution onto the separated plastic material. .
 本発明の他の態様は、使用済み衛生用品由来のプラスチック材料であって、前記プラスチック材料に含まれる硫黄の割合は500ppm以下であり、前記プラスチック材料に含まれる窒素の割合は2000ppm以下であり、前記プラスチック材料に含まれるナトリウムの割合は500ppm以下である、プラスチック材料、である。 Another aspect of the present invention is a plastic material derived from used sanitary products, wherein the proportion of sulfur contained in the plastic material is 500 ppm or less, and the proportion of nitrogen contained in the plastic material is 2000 ppm or less, The proportion of sodium contained in the plastic material is 500 ppm or less.
 本発明によれば、マテリアルリサイクル又はケミカルリサイクルに適した使用済み衛生用品由来のプラスチック材料を製造する方法において、製造されるプラスチック材料の不純物を抑制することが可能な方法、及び、不純物が抑制された使用済み衛生用品由来のプラスチック材料を提供することができる。 According to the present invention, in a method for producing plastic materials derived from used sanitary products suitable for material recycling or chemical recycling, there is provided a method capable of suppressing impurities in the produced plastic materials, and a method in which impurities are suppressed. It is possible to provide plastic materials derived from used sanitary products.
実施形態に係る使用済み衛生用品由来のプラスチック材料を製造する方法を示すフローチャートである。1 is a flowchart illustrating a method for manufacturing plastic material derived from used sanitary products according to an embodiment.
 本実施形態は、以下の態様に関する。
 [態様1]
 マテリアルリサイクル又はケミカルリサイクルに適した使用済み衛生製品由来のプラスチック材料を製造する方法であって、ここで、前記使用済み衛生用品は、排泄物、プラスチック材料、高吸水性ポリマー及びパルプ繊維を含んでおり、前記使用済み衛生用品を、前記プラスチック材料を含む第1画分と、前記排泄物、不活化された前記高吸水性ポリマー、及び前記パルプ繊維を含む第2画分と、に分離する第1分離工程と、前記第1画分を、物理的衝撃を加えて、前記第1分離工程で分離しきれずに前記第1画分に残存していた前記排泄物、前記高吸水性ポリマー及び前記パルプ繊維と、前記プラスチック材料と、に互いに分離する第2分離工程と、分離された前記プラスチック材料に、水溶液を噴射する水溶液処理工程と、を備える、方法。
This embodiment relates to the following aspects.
[Aspect 1]
A method for producing plastic materials derived from used sanitary products suitable for material recycling or chemical recycling, wherein the used sanitary products contain excrement, plastic materials, superabsorbent polymers and pulp fibers. and separating the used sanitary product into a first fraction containing the plastic material and a second fraction containing the excrement, the inactivated superabsorbent polymer, and the pulp fibers. 1 separation step, and the first fraction is subjected to physical impact to remove the excrement, the superabsorbent polymer, and the superabsorbent polymer that were not completely separated in the first separation step and remained in the first fraction. A method comprising: a second separation step of separating pulp fibers and the plastic material from each other; and an aqueous solution treatment step of injecting an aqueous solution to the separated plastic material.
 本方法では、第1分離工程で第1画分を分離する。このとき、尿などを吸収していた高吸水性ポリマーは不活化されているので、ナトリウムや窒素化合物を水分と共に外部へ放出(脱水)して粒状となっている。そのため、第2分離工程で、第1画分の高吸水性ポリマーを、物理的衝撃で、プラスチック材料から容易に分離できる。それに加えて、もしプラスチック材料から分離しきれない高吸水性ポリマーが存在したとしても、その高吸水性ポリマーのナトリウムや窒素化合物の含有量を低減できる。また、他の排泄物やパルプ繊維も、物理的衝撃で、プラスチック材料から容易に分離できる。
 その後、第2分離工程で分離されたプラスチック材料に水溶液を噴射する水溶液処理工程を実施する。ただし、水溶液としては、例えば、水、又は、酸化剤を含む酸化剤水溶液が挙げられる。このとき、水溶液を噴射によりプラスチック材料へ供給することにより、噴射の勢いでプラスチック材料の表面に付着している硫黄化合物や窒素化合物などを洗い落とすことができる。また、水溶液を噴射で細かくして、プラスチック材料へ供給することによりプラスチック材料の細部にまで水溶液を入り易くすることができる。また、水溶液にプラスチック材料を浸漬する場合と比較して、プラスチック材料の表面へ常にフレッシュな水溶液を供給でき、洗浄の効果のバラツキを少なくすることができる。
 このように、本方法により製造されたプラスチック材料では、ナトリウム、硫黄及び窒素を含む不純物が分離・除去されるので、そのプラスチック材料の不純物を抑制することができる。そして、そのプラスチック材料をマテリアルリサイクル又はケミカルリサイクルに適用してリサイクル製品を製造するとき、そのプラスチック材料の不純物が抑制されているため、製造工程に用いる触媒への影響を低減でき、好ましくない臭気を生じさせ難くすることができる。
In this method, a first fraction is separated in a first separation step. At this time, the superabsorbent polymer that had been absorbing urine and the like has been inactivated, so sodium and nitrogen compounds are released (dehydrated) to the outside along with water and become granular. Therefore, in the second separation step, the superabsorbent polymer of the first fraction can be easily separated from the plastic material by physical impact. In addition, even if there is a superabsorbent polymer that cannot be separated from the plastic material, the content of sodium and nitrogen compounds in the superabsorbent polymer can be reduced. Also, other excreta and pulp fibers can be easily separated from the plastic material by physical impact.
Thereafter, an aqueous solution treatment step is performed in which an aqueous solution is injected onto the plastic material separated in the second separation step. However, examples of the aqueous solution include water and an oxidizing agent aqueous solution containing an oxidizing agent. At this time, by supplying the aqueous solution to the plastic material by spraying, the force of the spray can wash away sulfur compounds, nitrogen compounds, etc. adhering to the surface of the plastic material. Further, by spraying the aqueous solution into fine particles and supplying it to the plastic material, it is possible to make it easier for the aqueous solution to penetrate into the finer details of the plastic material. Furthermore, compared to the case where the plastic material is immersed in an aqueous solution, a fresh aqueous solution can always be supplied to the surface of the plastic material, and variations in the cleaning effect can be reduced.
In this manner, impurities containing sodium, sulfur, and nitrogen are separated and removed in the plastic material produced by the present method, so that impurities in the plastic material can be suppressed. When applying the plastic material to material recycling or chemical recycling to manufacture recycled products, since the impurities in the plastic material are suppressed, the impact on the catalyst used in the manufacturing process can be reduced, and undesirable odors can be eliminated. It can be made difficult to cause.
 [態様2]
 前記水溶液処理工程は、分離された前記プラスチック材料に、前記水溶液としての、酸化剤を含む酸化剤水溶液を噴射する酸化剤処理工程を含む、態様1に記載の方法。
 本方法では、水溶液処理工程において、第2分離工程で分離されたプラスチック材料に、酸化剤を含む酸化剤水溶液を噴射する酸化剤処理工程を実施する。それにより、第2分離工程で分離しきれずにプラスチック材料に残存していた排泄物由来の硫黄化合物や窒素化合物などが酸化されて、無臭の他の物質(例えば、硫黄(S)や窒素(N))に変換され、その物質の一部又は全部が、酸化剤水溶液に混ざり込み流出する、及び/又は、気体として放出される。すなわち、プラスチック材料に残存していた硫黄化合物や窒素化合物は更に除去される。このように、臭気を発する硫黄化合物や窒素化合物が無臭の他の物質に変換されて概ね除去されるので、プラスチック材料が悪臭をより生じ難くすることができる。また、酸化剤によりプラスチック材料の殺菌も行うことができる。その際、酸化剤水溶液を噴射で細かくして、プラスチック材料へ供給することによりプラスチック材料の細部にまで酸化剤水溶液を入り易くすることができる。それにより、酸化剤水溶液にプラスチック材料を浸漬する場合と比較して、プラスチック材料の表面へ常にフレッシュな酸化剤水溶液を供給でき、殺菌の効果のバラツキを少なくすることができる。
 このように、本方法により製造されたプラスチック材料では、ナトリウム、硫黄及び窒素を含む不純物が分解され、より多く除去されるので、そのプラスチック材料の不純物をより抑制することができる。また、同時に殺菌も行うことができる。そして、そのプラスチック材料をマテリアルリサイクル又はケミカルリサイクルに適用してリサイクル製品を製造するとき、そのプラスチック材料の不純物がより抑制されているため、製造工程に用いる触媒への影響をより低減でき、好ましくない臭気よりを生じさせ難くすることができる。
[Aspect 2]
The method according to aspect 1, wherein the aqueous solution treatment step includes an oxidizing agent treatment step of injecting an oxidizing agent aqueous solution containing an oxidizing agent as the aqueous solution onto the separated plastic material.
In this method, in the aqueous solution treatment step, an oxidizing agent treatment step is performed in which an oxidizing agent aqueous solution containing an oxidizing agent is injected onto the plastic material separated in the second separation step. As a result, sulfur compounds and nitrogen compounds derived from excrement that were not completely separated in the second separation step and remained in the plastic material are oxidized, and other odorless substances such as sulfur (S) and nitrogen (N) are oxidized. 2 )), and part or all of the substance mixes with the aqueous oxidizing agent solution and flows out, and/or is released as a gas. That is, sulfur compounds and nitrogen compounds remaining in the plastic material are further removed. In this way, the odor-producing sulfur and nitrogen compounds are converted into other odorless substances and are generally removed, thereby making the plastic material less likely to produce bad odors. The oxidizing agent can also sterilize plastic materials. At this time, the oxidizing agent aqueous solution can be made fine by spraying and supplied to the plastic material, thereby making it easier for the oxidizing agent aqueous solution to enter the fine details of the plastic material. As a result, compared to the case where the plastic material is immersed in an oxidizing agent aqueous solution, a fresh oxidizing agent aqueous solution can be constantly supplied to the surface of the plastic material, and variations in the sterilization effect can be reduced.
In this way, in the plastic material produced by the present method, impurities containing sodium, sulfur, and nitrogen are decomposed and removed in greater amounts, so that impurities in the plastic material can be further suppressed. Moreover, sterilization can be performed at the same time. When the plastic material is applied to material recycling or chemical recycling to manufacture recycled products, since the impurities in the plastic material are further suppressed, the impact on the catalyst used in the manufacturing process can be further reduced, which may be undesirable. It is possible to make it difficult to cause odor.
 [態様3]
 前記第2分離工程は、前記第1画分に、酸性水溶液を噴射しつつ、物理的衝撃を加えて、前記排泄物、前記高吸水性ポリマー及び前記パルプ繊維と、前記プラスチック材料と、に互いに分離する工程を含む、態様1又は2に記載の方法。
 本方法では、第2分離工程で、前記第1画分に、酸性水溶液を噴射するので、プラスチック材料に残存している高吸水性ポリマーは、酸性水溶液で更に不活化されて、更にナトリウムや窒素化合物を外部へ放出(脱水)し、より細かい粒状となる。そのため、高吸水性ポリマーを、物理的衝撃又は酸性水溶液の流れで、プラスチック材料からより容易に分離できる(洗い落とすことができる)。それに加えて、もしプラスチック材料から分離しきれない高吸水性ポリマーが存在していたとしても、その高吸水性ポリマーのナトリウムや窒素化合物の含有量をさらに低減できる。また、他の排泄物やパルプ繊維も、物理的衝撃又は酸性水溶液の流れで、プラスチック材料からより容易に分離できる(洗い落とすことができる)。また、酸性水溶液により、プラスチック材料を殺菌することができる。
[Aspect 3]
In the second separation step, a physical impact is applied to the first fraction while injecting an acidic aqueous solution to separate the excrement, the superabsorbent polymer, the pulp fibers, and the plastic material from each other. The method according to aspect 1 or 2, comprising the step of separating.
In this method, in the second separation step, an acidic aqueous solution is injected into the first fraction, so that the superabsorbent polymer remaining in the plastic material is further inactivated by the acidic aqueous solution, and is further inactivated by sodium and nitrogen. The compound is released to the outside (dehydrated) and becomes finer particles. Therefore, the superabsorbent polymer can be more easily separated (washed off) from the plastic material by physical impact or by a flow of acidic aqueous solution. In addition, even if there is a superabsorbent polymer that cannot be separated from the plastic material, the content of sodium and nitrogen compounds in the superabsorbent polymer can be further reduced. Also, other excreta and pulp fibers can be more easily separated (washed off) from the plastic material by physical impact or a stream of acidic aqueous solutions. Additionally, plastic materials can be sterilized with acidic aqueous solutions.
 [態様4]
 前記水溶液処理工程で処理された前記プラスチック材料を、圧搾脱水乾燥する圧搾脱水乾燥工程を更に備える、態様1乃至3のいずれか一項に記載の方法。
 本方法では、水溶液処理工程で処理されたプラスチック材料を、圧搾して脱水させつつ乾燥するので、プラスチック材料中の水分を、より低減することができる。それにより、水溶液処理工程などで、水分(水溶液)に混ざり込んだ不純物(例えば、硫黄や窒素を含む物質)を水分と共にプラスチック材料から排出することができる。
[Aspect 4]
The method according to any one of aspects 1 to 3, further comprising a compression dehydration drying step of compressing dehydration drying the plastic material treated in the aqueous solution treatment step.
In this method, the plastic material treated in the aqueous solution treatment step is compressed and dried while being dehydrated, so that the water content in the plastic material can be further reduced. Thereby, impurities (for example, substances containing sulfur or nitrogen) mixed in water (aqueous solution) during an aqueous solution treatment process can be discharged from the plastic material along with the water.
 [態様5]
 前記第2分離工程で分離された前記プラスチック材料を、前記水溶液処理工程へ、空気で搬送する搬送工程を更に備える、態様1乃至4のいずれか一項に記載の方法。
 本方法では、第2分離工程で分離されたプラスチック材料を、水溶液処理工程へ空気で搬送することで、プラスチック材料中の水分を空気の流れで周囲に飛ばすことができ、それにより、プラスチック材料中の水分をより低減することができる。それゆえ、第1、第2分離工程などで、水分(水溶液)に混ざり込んだ不純物(例えば、ナトリウムや窒素化合物や硫黄化合物)を水分と共に除去することができる。また、空気の流れで、複数のプラスチック材料同士をバラバラに分離できるので、次の水溶液処理工程において、水溶液を、各プラスチック材料の全面に概ね均一に供給できる。
[Aspect 5]
The method according to any one of aspects 1 to 4, further comprising a conveyance step of conveying the plastic material separated in the second separation step to the aqueous solution treatment step by air.
In this method, the plastic material separated in the second separation step is transported by air to the aqueous solution treatment step, so that the water in the plastic material can be blown away by the air flow, thereby reducing the amount of moisture in the plastic material. water content can be further reduced. Therefore, impurities (for example, sodium, nitrogen compounds, and sulfur compounds) mixed into the water (aqueous solution) can be removed together with the water in the first and second separation steps. In addition, since the plurality of plastic materials can be separated into pieces by the air flow, the aqueous solution can be almost uniformly supplied to the entire surface of each plastic material in the next aqueous solution treatment step.
 [態様6]
 前記酸化剤処理工程における前記酸化剤は、オゾン、及び過酸化水素のうちの少なくとも一つを含む、態様2に記載の方法。
 本方法では、酸化剤処理工程における酸化剤が、オゾン、及び過酸化水素のうちの少なくとも一つを含んでいる。そのため、プラスチック材料に残存していた排泄物由来の物質を確実に酸化して、他の物質に変換することができる。また、酸化剤が塩素を含んでいないため、プラスチック材料に不純物として塩素が残存し難く、リサイクル製品の製造工程において、脱塩素工程を省略でき、製造工程に用いる触媒への影響を低減できる。
[Aspect 6]
The method according to aspect 2, wherein the oxidizing agent in the oxidizing agent treatment step includes at least one of ozone and hydrogen peroxide.
In this method, the oxidizing agent in the oxidizing agent treatment step contains at least one of ozone and hydrogen peroxide. Therefore, the excrement-derived substances remaining in the plastic material can be reliably oxidized and converted into other substances. In addition, since the oxidizing agent does not contain chlorine, chlorine is unlikely to remain as an impurity in the plastic material, and the dechlorination step can be omitted in the manufacturing process of recycled products, reducing the impact on the catalyst used in the manufacturing process.
 [態様7]
 前記第1分離工程は、酸性水溶液中で前記高吸水性ポリマーを不活化しつつ、前記使用済み衛生用品を、前記第1画分と、前記第2画分と、に分離する工程を含む、態様1乃至6のいずれか一項に記載の方法。
 本方法では、第1分離工程においても、使用済み衛生用品の分離を、酸性水溶液中で行うので、尿などを吸収していた高吸水性ポリマーをより確実に不活化することができる。それにより、より確実に、高吸水性ポリマー中のナトリウムや窒素化合物を水分と共に外部へ放出させることができる。
[Aspect 7]
The first separation step includes a step of separating the used sanitary product into the first fraction and the second fraction while inactivating the superabsorbent polymer in an acidic aqueous solution. 7. The method according to any one of aspects 1 to 6.
In this method, the used sanitary products are separated in an acidic aqueous solution even in the first separation step, so that the superabsorbent polymer that has absorbed urine etc. can be more reliably inactivated. Thereby, the sodium and nitrogen compounds in the superabsorbent polymer can be released to the outside together with the moisture.
 [態様8]
 前記第2分離工程における前記物理的衝撃は、空気中で前記第1画分を攪拌する羽根車における回転する羽の衝突により前記第1画分に加えられる、態様1乃至7のいずれか一項に記載の方法。
 本方法では、物理的衝撃が、空気中で第1画分を攪拌するための羽根車における回転する羽の衝突により第1画分に加えられる。それにより、空気中で、より確実に、第1画分に物理的衝撃を加えることができる。それゆえ、第1画分に残存する排泄物、高吸水性ポリマー及びパルプ繊維を、プラスチック材料からより取り除き易くすることができる。
[Aspect 8]
Any one of aspects 1 to 7, wherein the physical impact in the second separation step is applied to the first fraction by collision of rotating blades in an impeller that stirs the first fraction in air. The method described in.
In this method, a physical shock is applied to the first fraction by the impingement of rotating blades in an impeller to agitate the first fraction in air. Thereby, physical impact can be more reliably applied to the first fraction in air. Therefore, the excreta, superabsorbent polymers and pulp fibers remaining in the first fraction can be more easily removed from the plastic material.
 [態様9]
 前記水溶液処理工程で得られる前記プラスチック材料は、ケミカルリサイクル用である、態様1乃至8のいずれか一項に記載の方法。
 本方法では、水溶液処理工程で得られるプラスチック材料は、ケミカルリサイクル用とすることができる。すなわち、本方法で得られるプラスチック材料は、不純物が抑制されたプラスチック材料であるため、その再利用の用途を、油化(使用済み製品由来のプラスチック材料を熱又は触媒を使用して分解し、液状生成物を製造する技術)のようなケミカルリサイクルに広げることが可能となる。
[Aspect 9]
9. The method according to any one of aspects 1 to 8, wherein the plastic material obtained in the aqueous solution treatment step is for chemical recycling.
In this method, the plastic material obtained in the aqueous solution treatment step can be used for chemical recycling. In other words, since the plastic material obtained by this method is a plastic material with suppressed impurities, its reuse is limited to oil conversion (decomposition of plastic material derived from used products using heat or a catalyst). It will be possible to expand this technology to chemical recycling, such as technology for producing liquid products.
 [態様10]
 前記水溶液処理工程で得られる前記プラスチック材料は、マテリアルリサイクル用である、態様1乃至8のいずれか一項に記載の方法。
 本方法では、水溶液処理工程で得られるプラスチック材料は、マテリアルリサイクル用とすることができる。すなわち、本方法で得られるプラスチック材料は、不純物が抑制されたプラスチック材料であるため、その再利用の用途を、再生利用(使用済み製品由来のプラスチック材料をプラスチック原料やプラスチック製品にする技術)のようなマテリアルリサイクルに広げることが可能となる。
[Aspect 10]
The method according to any one of aspects 1 to 8, wherein the plastic material obtained in the aqueous solution treatment step is for material recycling.
In this method, the plastic material obtained in the aqueous solution treatment step can be used for material recycling. In other words, the plastic material obtained by this method is a plastic material with suppressed impurities, so its reuse can be recycled (a technology that turns plastic materials derived from used products into plastic raw materials or plastic products). This makes it possible to expand the scope of material recycling.
 [態様11]
 前記水溶液処理工程後の前記プラスチック材料は、含有する硫黄の割合が500ppm以下であり、含有する窒素の割合が2000ppm以下であり、含有するナトリウムの割合が500ppm以下である、態様1乃至10のいずれか一項に記載の方法。
 本方法では、製造されるプラスチック材料は、使用済み衛生用品由来であるにもかかわらず、含有する硫黄の割合が500ppm以下、含有する窒素の割合が2000ppm以下、及び含有するナトリウムの割合が500ppm以下である。すなわち、製造されるプラスチック材料は、不純物が抑制されたプラスチック材料であるため、様々な用途(例示:マテリアルリサイクル、ケミカルリサイクル)に適用することが可能となる。
[Aspect 11]
Any of Aspects 1 to 10, wherein the plastic material after the aqueous solution treatment step contains sulfur at a rate of 500 ppm or less, nitrogen at a rate of 2000 ppm or less, and sodium at a rate of 500 ppm or less. The method described in paragraph (1).
In this method, the plastic material produced has a sulfur content of 500 ppm or less, a nitrogen content of 2000 ppm or less, and a sodium content of 500 ppm or less, even though it is derived from used sanitary products. It is. That is, since the manufactured plastic material is a plastic material with suppressed impurities, it can be applied to various uses (eg, material recycling, chemical recycling).
 [態様12]
 使用済み衛生用品由来のプラスチック材料であって、前記プラスチック材料に含まれる硫黄の割合は500ppm以下であり、前記プラスチック材料に含まれる窒素の割合は2000ppm以下であり、前記プラスチック材料に含まれるナトリウムの割合は500ppm以下である、プラスチック材料。
 本プラスチック材料は、使用済み衛生用品由来であるにもかかわらず、含有する硫黄の割合が500ppm以下、含有する窒素の割合が2000ppm以下、及び含有するナトリウムの割合が500ppm以下である。すなわち、本プラスチック材料は、不純物が抑制されたプラスチック材料であるため、様々な用途(例示:マテリアルリサイクル、ケミカルリサイクル)に適用したリサイクル用のプラスチック材料ということができる。
[Aspect 12]
A plastic material derived from used sanitary products, wherein the proportion of sulfur contained in the plastic material is 500 ppm or less, the proportion of nitrogen contained in the plastic material is 2000 ppm or less, and the proportion of sodium contained in the plastic material is 500 ppm or less. Plastic material, the proportion of which is less than 500 ppm.
Although this plastic material is derived from used sanitary products, the proportion of sulfur it contains is 500 ppm or less, the proportion of nitrogen it contains is 2000 ppm or less, and the proportion of sodium it contains is 500 ppm or less. That is, since the present plastic material is a plastic material with suppressed impurities, it can be said to be a recycled plastic material that is applied to various uses (eg, material recycling, chemical recycling).
 [態様13]
 前記プラスチック材料は、ケミカルリサイクル用である、態様12に記載のプラスチック材料。
 本プラスチック材料は、硫黄、窒素、ナトリウムのような不純物が抑制されたプラスチック材料であるため、その再利用の用途を、油化(使用済み製品由来のプラスチック材料を熱又は触媒を使用して分解し、液状生成物を製造する技術)のようなケミカルリサイクルに広げることが可能となる。
[Aspect 13]
13. The plastic material according to aspect 12, wherein the plastic material is for chemical recycling.
Since this plastic material is a plastic material with suppressed impurities such as sulfur, nitrogen, and sodium, its reuse is reduced to oil (plastic material derived from used products is decomposed using heat or catalysts). This makes it possible to extend this technology to chemical recycling, such as technology for producing liquid products.
 [態様14]
 前記プラスチック材料は、マテリアルリサイクル用である、態様12に記載のプラスチック材料。
 本プラスチック材料は、硫黄、窒素、ナトリウムのような不純物が抑制されたプラスチック材料であるため、その再利用の用途を、再生利用(使用済み製品由来のプラスチック材料をプラスチック原料やプラスチック製品にする技術)のようなマテリアルリサイクルに広げることが可能となる。
[Aspect 14]
13. The plastic material according to aspect 12, wherein the plastic material is for material recycling.
This plastic material is a plastic material with suppressed impurities such as sulfur, nitrogen, and sodium, so its reuse can be recycled (a technology that turns plastic materials derived from used products into plastic raw materials or plastic products). ) can be extended to material recycling such as
 [態様15]
 高吸水性ポリマー及びパルプ繊維を10質量%以下で含む、態様12乃至14のいずれか一項に記載のプラスチック材料。
 本プラスチック材料は、使用済み衛生用品由来の高吸水性ポリマー及びパルプ繊維を10質量%以下で含んでいる。言い換えると、本プラスチック材料は、使用済み衛生製品由来でありながら、硫黄、窒素及びナトリウムのような不純物だけでなく、高吸水性ポリマー及びパルプ繊維のような不純物も抑制されている。そのため、本プラスチック材料は、様々な用途に適用したリサイクル用のプラスチック材料ということができる。
[Aspect 15]
The plastic material according to any one of aspects 12 to 14, comprising 10% by mass or less of a superabsorbent polymer and pulp fiber.
The present plastic material contains 10% by mass or less of superabsorbent polymers and pulp fibers derived from used sanitary products. In other words, although the plastic material is derived from used sanitary products, impurities such as sulfur, nitrogen and sodium as well as superabsorbent polymers and pulp fibers are suppressed. Therefore, this plastic material can be said to be a recyclable plastic material applied to various uses.
 以下、本実施形態に係るマテリアルリサイクル又はケミカルリサイクルに適した使用済み衛生用品由来のプラスチック材料を製造する方法、及び、使用済み衛生用品由来のプラスチック材料について説明する。 Hereinafter, a method for manufacturing a plastic material derived from used sanitary products suitable for material recycling or chemical recycling according to the present embodiment, and a plastic material derived from used sanitary products will be described.
 ただし、使用済み衛生用品は、使用者によって使用された衛生用品であるが、未使用だが廃棄された衛生用品を一部含んでいてもよい。衛生用品としては、例えば、使い捨ておむつ、尿取りパッド、生理用ナプキン、使い捨てショーツ、ベッド用シート及びペット用シートが挙げられる。使用済みの衛生用品は、使用者の排泄物(例えば、尿、便)を吸収・保持した状態の衛生用品を含んでいる。なお、ケミカルリサイクルは、廃プラスチック材料を化学的に処理して、再生利用することであり、例えば、使用済みのプラスチック材料を熱又は触媒を使用して分解し、液状生成物を製造する技術である油化のほか、ガス化やモノマー化などが挙げられる。マテリアルリサイクルは、廃プラスチック材料を原料にして新しいプラスチック製品などを製造して、再利用することであり、例えば、使用済みのプラスチック材料をそのままプラスチック原料にすることや、そのプラスチック原料から別のプラスチック製品を製造することなどが挙げられる。 However, used sanitary products are sanitary products that have been used by users, but may also include some unused but discarded sanitary products. Examples of sanitary products include disposable diapers, incontinence pads, sanitary napkins, disposable shorts, bed sheets, and pet sheets. Used sanitary products include sanitary products that have absorbed and retained the user's excrement (eg, urine, feces). Chemical recycling is the process of chemically processing and recycling waste plastic materials. For example, it is a technology that decomposes used plastic materials using heat or catalysts to produce liquid products. In addition to oil conversion, other methods include gasification and monomerization. Material recycling is the production and reuse of new plastic products using waste plastic materials as raw materials.For example, used plastic materials can be used as raw materials for plastics, or used plastic raw materials can be used to make other plastics. Examples include manufacturing products.
 まず、本実施形態において対象となる衛生用品の構成例について説明する。衛生用品は、表面シートと、裏面シートと、表面シートと裏面シートとの間に配置された吸収体とを備える。衛生用品の大きさとしては、例えば、長さ約15~100cm、幅5~100cmが挙げられるが、この例に限定されるものではない。なお、衛生用品は、一般的な衛生用品が備える他の部材、例えば拡散シート、防漏壁、サイドシート、外装シート、弾性部材などを更に含んでもよい。 First, a configuration example of the sanitary products targeted in this embodiment will be described. The sanitary product includes a top sheet, a back sheet, and an absorbent body disposed between the top sheet and the back sheet. Examples of the size of sanitary products include, but are not limited to, approximately 15 to 100 cm in length and 5 to 100 cm in width. Note that the sanitary product may further include other members included in common sanitary products, such as a diffusion sheet, a leak-proof wall, a side sheet, an exterior sheet, and an elastic member.
 表面シートの構成部材としては、例えば液透過性の不織布、液透過孔を有する合成樹脂フィルム、これらの複合シート等が挙げられる。裏面シートの構成部材としては、例えば液不透過性の不織布、液不透過性の合成樹脂フィルム、これらの複合シートが挙げられる。拡散シートの構成部材としては、例えば液透過性の不織布が挙げられる。防漏壁やサイドシートの構成部材としては、例えば撥水性の不織布が挙げられ、防漏壁はゴムのような弾性部材を含んでもよい。外装シートの構成部材としては、例えば液不透過性かつ通気性の不織布、液不透過性かつ通気性の合成樹脂フィルム、これらの複合シートが挙げられる。弾性部材の構成部材としては、例えば、ゴム系の合成樹脂が挙げられる。不織布の種類としては、特に制限はなく、例えばメルトブローン不織布、スパンボンド不織布、エアレイド不織布、エアスルー不織布などが挙げられる。合成樹脂フィルムの種類としては、特に制限はなく、公知のフィルム材料を用いることができる。不織布や合成樹脂フィルムの材料としては、衛生用品用として使用可能であれば特に制限はないが、例えばポリエチレン、ポリプロピレン等のオレフィン系樹脂、6-ナイロン、6,6-ナイロン等のポリアミド系樹脂、ポリエチレンタレフタレート、ポリブチレンテレタレート等のポリエステル系樹脂等が挙げられる。これらの不織布や合成樹脂フィルムの材料は、合成樹脂であり、プラスチック材料ということができる。本実施形態では、裏面シートの構成部材を合成樹脂フィルムとし、表面シートの構成部材を不織布とする衛生用品を例にして説明する。 Examples of the constituent members of the topsheet include liquid-permeable nonwoven fabrics, synthetic resin films having liquid-permeable holes, composite sheets thereof, and the like. Examples of the constituent members of the backsheet include liquid-impermeable nonwoven fabrics, liquid-impermeable synthetic resin films, and composite sheets thereof. Examples of the constituent members of the diffusion sheet include liquid-permeable nonwoven fabric. The leak-proof wall and the side sheet may be made of, for example, a water-repellent nonwoven fabric, and the leak-proof wall may include an elastic member such as rubber. Examples of the constituent members of the exterior sheet include liquid-impermeable and breathable nonwoven fabrics, liquid-impermeable and breathable synthetic resin films, and composite sheets thereof. Examples of the constituent members of the elastic member include rubber-based synthetic resin. The type of nonwoven fabric is not particularly limited, and examples thereof include meltblown nonwoven fabric, spunbond nonwoven fabric, airlaid nonwoven fabric, air-through nonwoven fabric, and the like. There are no particular restrictions on the type of synthetic resin film, and known film materials can be used. There are no particular restrictions on the materials for nonwoven fabrics and synthetic resin films as long as they can be used for sanitary products, but examples include olefin resins such as polyethylene and polypropylene, polyamide resins such as 6-nylon and 6,6-nylon, Examples include polyester resins such as polyethylene talphthalate and polybutylene terethalate. The materials of these nonwoven fabrics and synthetic resin films are synthetic resins and can be called plastic materials. In this embodiment, a sanitary product in which the constituent members of the back sheet are made of a synthetic resin film and the constituent members of the top sheet is made of a nonwoven fabric will be described as an example.
 吸収体の構成部材としては吸収体材料、すなわちパルプ繊維及び高吸水性ポリマーが挙げられる。パルプ繊維としては、例えば、セルロース系繊維が挙げられる。セルロース系繊維としては、例えば木材パルプ、架橋パルプ、非木材パルプ、再生セルロース、半合成セルロース等が挙げられる。パルプ繊維の大きさとしては、繊維の平均長径が例えば数十μmが挙げられ、20~40μmが好ましく、平均繊維長が例えば数mmが挙げられ、2~5mmが好ましい。高吸水性ポリマー(Super Absorbent Polymer:SAP)としては、例えばポリアクリル酸塩系、ポリスルホン酸塩系、無水マレイン酸塩系の吸水性ポリマーが挙げられる。高吸水性ポリマーの大きさ(乾燥時)としては、平均粒径が例えば数百μmが挙げられ、200~500μmが好ましい。吸収体は液透過性シートで形成されたコアラップを含んでもよい。 Components of the absorbent body include absorbent materials, ie, pulp fibers and superabsorbent polymers. Examples of pulp fibers include cellulose fibers. Examples of cellulosic fibers include wood pulp, crosslinked pulp, non-wood pulp, regenerated cellulose, and semi-synthetic cellulose. As for the size of the pulp fibers, the average length of the fibers is, for example, several tens of μm, preferably 20 to 40 μm, and the average fiber length is, for example, several mm, preferably 2 to 5 mm. Examples of the super absorbent polymer (SAP) include polyacrylate-based, polysulfonate-based, and maleic anhydride-based water-absorbing polymers. As for the size of the superabsorbent polymer (when dry), the average particle size is, for example, several hundred μm, preferably 200 to 500 μm. The absorbent body may include a core wrap formed of a liquid permeable sheet.
 吸収体の一方の面及び他方の面は、それぞれ表面シート及び裏面シートに接着剤を介して接合されている。平面視で、表面シートのうちの、吸収体を囲むように、吸収体の外側に延出した部分(周縁部分)は、裏面シートのうちの、吸収体を囲むように、吸収体の外側に延出した部分(周縁部分)と接着剤を介して接合されている。したがって、吸収体は表面シートと裏面シートとの接合体の内部に包み込まれている。接着剤としては、特に制限はないが、例えばホットメルト型接着剤が挙げられる。ホットメルト型接着剤としては、例えばスチレン-エチレン-ブタジエン-スチレン、スチレン-ブタジエン-スチレン、スチレン-イソプレン-スチレン等のゴム系主体、又はポリエチレン等のオレフィン系主体の感圧型接着剤又は感熱型接着剤が挙げられる。 One side and the other side of the absorber are bonded to a top sheet and a back sheet, respectively, via an adhesive. In plan view, the part of the topsheet that extends outside the absorbent body so as to surround the absorbent body (peripheral part) is the part of the backsheet that extends outside the absorbent body so as to surround the absorbent body. It is joined to the extended portion (peripheral portion) via an adhesive. Therefore, the absorbent body is wrapped inside the joined body of the top sheet and the back sheet. The adhesive is not particularly limited, and examples thereof include hot melt adhesives. Examples of hot melt adhesives include pressure-sensitive adhesives or heat-sensitive adhesives that are mainly rubber-based such as styrene-ethylene-butadiene-styrene, styrene-butadiene-styrene, styrene-isoprene-styrene, or olefin-based adhesives such as polyethylene. Examples include agents.
 次に、本実施形態に係るマテリアルリサイクル又はケミカルリサイクルに適した使用済み衛生用品由来のプラスチック材料を製造する方法について、具体的に説明する。本実施形態では、衛生用品の例として、使い捨ておむつを取り上げて説明する。 Next, a method for manufacturing a plastic material derived from used sanitary products suitable for material recycling or chemical recycling according to the present embodiment will be specifically described. In this embodiment, a disposable diaper will be described as an example of a sanitary product.
 図1は、実施形態に係るマテリアルリサイクル又はケミカルリサイクルに適した使用済み衛生用品由来のプラスチック材料を製造する方法を示すフローチャートである。本方法は、使用済み衛生用品由来のプラスチック材料を製造する工程として、第1分離工程S2と、第2分離工程S3と、水溶液処理工程と、を備えている。ただし、本実施形態では、水溶液処理工程として、第1酸化剤処理工程S5を実施する。 FIG. 1 is a flowchart illustrating a method for producing plastic material derived from used sanitary products suitable for material recycling or chemical recycling according to an embodiment. This method includes a first separation step S2, a second separation step S3, and an aqueous solution treatment step as steps for manufacturing plastic material derived from used sanitary products. However, in this embodiment, the first oxidizing agent treatment step S5 is performed as the aqueous solution treatment step.
 本実施形態では、本方法は、更に、破砕工程S1と、空気搬送工程S4と、圧搾脱水乾燥工程S6と、を備えている。なお、本実施形態では、本方法に関連して、第1分離工程S2及び/又は第2分離工程S3にて分離されたパルプ繊維及び高吸水性ポリマーを回収するための除塵工程S7~パルプ繊維分離工程S10が更に実施される。以下、各工程について説明する。 In this embodiment, the method further includes a crushing step S1, an air conveying step S4, and a compression dehydration drying step S6. In addition, in this embodiment, in relation to this method, a dust removal step S7 for recovering pulp fibers and superabsorbent polymers separated in the first separation step S2 and/or second separation step S3 to pulp fibers is described. A separation step S10 is further performed. Each step will be explained below.
 本実施形態では、使用済み衛生用品を、再利用(リサイクル)のために外部から回収して用いる。その際、複数の使用済み衛生用品を収集袋に封入することで、排泄物や菌類や臭気が外部に漏れることを抑制している。収集袋内の個々の使用済み衛生用品は、例えば、排泄物や菌類が表側に露出せず、臭気が周囲に拡散しないように、排泄物が排泄される表面シートを内側に、丸められた状態や折り畳まれた状態で回収される。なお、使用済み衛生用品は、収集袋に封入されなくてもよいし、丸められなくてもよい。 In this embodiment, used sanitary products are collected from outside for reuse (recycling). At that time, multiple used sanitary products are sealed in collection bags to prevent excrement, fungi, and odors from leaking outside. Each used sanitary product in a collection bag is rolled up, for example, with the top sheet from which excreta is excreted on the inside, so that excrement and fungi are not exposed on the outside and odors are not spread to the surrounding area. It is collected in a folded state. Note that the used sanitary products do not need to be enclosed in a collection bag or rolled up.
 破砕工程S1は、不活化剤を含む不活化水溶液中で使用済み衛生用品を破砕する工程である。本実施形態では、破砕工程S1において、使用済み衛生用品を封入した収集袋が、収集袋(使用済み衛生用品)を受け入れる受け入れ槽に供給される。収集袋は、受け入れ槽から破砕装置(例えば、二軸回転式破砕機、二軸差動式破砕機、二軸せん断式破砕機のような二軸破砕機)へ送出される。収集袋は、破砕装置により、収集袋ごと破砕される。破砕のとき、破砕装置には不活化水溶液が供給され、それにより、収集袋内の使用済み衛生用品が、収集袋ごと不活化水溶液中で破砕されて、破砕物が生成される。破砕物は単独で又は不活化水溶液と共に、第1分離工程S2へ送られる。ただし、収集袋の受け入れ前の受け入れ槽に、予め不活化水溶液が貯留されていてもよい。 The crushing step S1 is a step of crushing used sanitary products in an inactivating aqueous solution containing an inactivating agent. In this embodiment, in the crushing step S1, a collection bag containing used sanitary products is supplied to a receiving tank that receives the collection bags (used sanitary products). The collection bags are delivered from the receiving tank to a crushing device (eg, a two-shaft crusher, such as a two-shaft rotary crusher, a two-shaft differential crusher, a two-shaft shear crusher). The collection bag is crushed together with the collection bag by a crushing device. During crushing, the crushing device is supplied with an inactivated aqueous solution, whereby the used sanitary products in the collection bag are crushed together with the collection bag in the inactivated aqueous solution to produce crushed products. The crushed material alone or together with the inactivating aqueous solution is sent to the first separation step S2. However, the inactivating aqueous solution may be stored in advance in the receiving tank before receiving the collection bag.
 ここで、破砕工程S1では、破砕物の大きさが概ね20~150mm、好ましくは25~100mmとなるように、使用済み衛生用品が破砕されることが好ましい。20mm以上にすると、パルプ繊維及び高吸水性ポリマー以外の他の資材(例示:フィルム、不織布、弾性体など)が大きく切断されて、後続の工程でそれら資材とパルプ繊維及び高吸水性ポリマーとを分離し易くできる。150mm以下にすると、使用済みの衛生用品の各資材同士が絡み難くなるので、大きめの資材同士が離解し易くなるほか、それら資材同士に挟持されたパルプ繊維及び高吸水性ポリマーを分離し易くできる。 Here, in the crushing step S1, the used sanitary products are preferably crushed so that the size of the crushed products is approximately 20 to 150 mm, preferably 25 to 100 mm. If the length is 20 mm or more, materials other than pulp fibers and superabsorbent polymers (examples: films, nonwoven fabrics, elastic bodies, etc.) will be cut into large pieces, and these materials will be combined with pulp fibers and superabsorbent polymers in the subsequent process. Can be easily separated. If the length is 150 mm or less, the materials of used sanitary products will not easily get entangled with each other, making it easier for larger materials to disintegrate, and also making it easier to separate pulp fibers and superabsorbent polymers sandwiched between these materials. .
 使用済み衛生用品を不活化水溶液中で処理すると、使用済み衛生用品に含まれる又は含まれていた高吸水性ポリマーは、不活化し、脱水して、小粒径になる。そのため、後続の工程において高吸水性ポリマーの取り扱い(分離や回収)が容易になり、処理の効率が向上する。また、その際、高吸水性ポリマーに含まれていたナトリウムや窒素化合物が水分と共に外部へ放出(脱水)される。そのため、本方法で得られるプラスチック材料に高吸水性ポリマーが残存したとしても、プラスチック材料中のナトリウムや窒素化合物の量を抑制できる。不活化剤としては、無機酸及び有機酸の水溶液、すなわち酸性水溶液を用いることが好ましい。酸性水溶液を用いると、石灰や塩化カルシウムなどの水溶液を用いる場合と比較して、プラスチック材料やパルプ繊維などに灰分や塩素を残留し難くでき、不活化の程度(粒径や比重の大きさ)をpHで調整し易くできる。 When used sanitary products are treated in an inactivated aqueous solution, the superabsorbent polymers contained or contained in the used sanitary products are inactivated and dehydrated to become small particle sizes. Therefore, handling (separation and recovery) of the superabsorbent polymer becomes easier in subsequent steps, improving processing efficiency. Moreover, at that time, the sodium and nitrogen compounds contained in the superabsorbent polymer are released (dehydrated) to the outside along with the water. Therefore, even if the superabsorbent polymer remains in the plastic material obtained by this method, the amount of sodium and nitrogen compounds in the plastic material can be suppressed. As the inactivating agent, it is preferable to use an aqueous solution of an inorganic acid and an organic acid, that is, an acidic aqueous solution. When using an acidic aqueous solution, compared to using an aqueous solution of lime or calcium chloride, it is difficult for ash and chlorine to remain in plastic materials and pulp fibers, and the degree of inactivation (particle size and specific gravity) can be easily adjusted by adjusting the pH.
 有機酸としては、例えば、クエン酸、酒石酸、グリコール酸、リンゴ酸、コハク酸、酢酸、アスコルビン酸、等が挙げられ、クエン酸が好ましい。クエン酸は、キレート効果により、排泄物中の金属イオン等をトラップして除去可能であり、かつ、洗浄効果により、汚れ成分を除去可能である。一方、無機酸としては、例えば、硫酸、塩酸、硝酸が挙げられ、硫酸が好ましい。硫酸は、塩素を含まず、よってプラスチック材料などに塩素が残留し難く、低コストである。 Examples of organic acids include citric acid, tartaric acid, glycolic acid, malic acid, succinic acid, acetic acid, ascorbic acid, and the like, with citric acid being preferred. Citric acid can trap and remove metal ions in excrement due to its chelating effect, and can also remove dirt components due to its cleaning effect. On the other hand, examples of inorganic acids include sulfuric acid, hydrochloric acid, and nitric acid, with sulfuric acid being preferred. Sulfuric acid does not contain chlorine, so chlorine does not easily remain in plastic materials, etc., and is low cost.
 酸性水溶液のpHとしては1.0~4.0が好ましい。pHを1.0以上にすると、設備が腐食し難く、排水処理時の中和処理に必要なアルカリ薬品も低減でき、pHを4.0以下にすると、高吸水性ポリマーを十分に小さくでき、殺菌能力も高められる。pHは水温により変化するため、本発明におけるpHは、水溶液温度20℃で測定したpHをいうものとする。 The pH of the acidic aqueous solution is preferably 1.0 to 4.0. When the pH is set to 1.0 or higher, equipment is less likely to corrode, and the amount of alkaline chemicals required for neutralization during wastewater treatment can be reduced.When the pH is set to 4.0 or lower, the superabsorbent polymer can be made sufficiently small. Sterilization ability is also enhanced. Since pH changes depending on water temperature, pH in the present invention refers to pH measured at an aqueous solution temperature of 20°C.
 有機酸水溶液の有機酸濃度は、特に限定されないが、有機酸がクエン酸の場合は、0.5質量%以上4質量%以下が好ましい。無機酸水溶液の無機酸濃度は、特に限定されないが、無機酸が硫酸の場合は、0.1質量%以上0.5質量%以下が好ましい。本実施形態では、不活化水溶液として、無機酸の硫酸(希硫酸)の水溶液、すなわち酸性水溶液を用いた場合について説明する。 The organic acid concentration of the organic acid aqueous solution is not particularly limited, but when the organic acid is citric acid, it is preferably 0.5% by mass or more and 4% by mass or less. The inorganic acid concentration of the inorganic acid aqueous solution is not particularly limited, but when the inorganic acid is sulfuric acid, it is preferably 0.1% by mass or more and 0.5% by mass or less. In this embodiment, a case will be described in which an aqueous solution of an inorganic acid sulfuric acid (dilute sulfuric acid), that is, an acidic aqueous solution is used as the inactivating aqueous solution.
 なお、二軸破砕機へ投入される使用済み衛生用品は、収集袋に入っていなくてもよい。また、使用済み衛生用品を封入した収集袋又は収集袋に入っていない使用済み衛生用品は、溶液槽を経由せずに、二軸破砕機へ投入されてもよい。また、二軸破砕機での破砕は、酸性水溶液中で行わなくてもよく、例えば空気中で行ってもよい。その場合、後続の工程である第1分離工程S2及び/又は第2分離工程S3を、酸性水溶液中で行う。 Note that the used sanitary products that are fed into the twin-shaft crusher do not need to be placed in a collection bag. Moreover, the collection bag containing the used sanitary products or the used sanitary products not contained in the collection bag may be thrown into the biaxial crusher without passing through the solution tank. Moreover, crushing with a twin-screw crusher does not need to be carried out in an acidic aqueous solution, and may be carried out, for example, in air. In that case, the subsequent steps, the first separation step S2 and/or the second separation step S3, are performed in an acidic aqueous solution.
 このように、破砕工程S1では、使用済み衛生用品における各構成部材が、概ね所定の大きさに破砕される。その際、破砕時に生じる熱及び/又は酸性水溶液の熱などにより、各構成部材同士の接着剤(例えば、ホットメルト接着剤)の接合力を低下させて、各構成部材を互いに容易に離解させることも可能である。 In this way, in the crushing step S1, each component of the used sanitary product is crushed into approximately a predetermined size. At that time, the bonding force of the adhesive (for example, hot melt adhesive) between each component is reduced by the heat generated during crushing and/or the heat of the acidic aqueous solution, so that each component can easily disintegrate from each other. is also possible.
 なお、酸性水溶液を加熱すること(温度:70~95℃)で、使用済み衛生用品の構成部材間の接合に使用されている接着剤(例えば、ホットメルト接着剤)を軟化させ、接着剤の接合力を低下できる。それにより、自然に又は小さな衝撃で構成部材同士を容易に離解させることができる。使用済み衛生用品をより殺菌(消毒)することも可能となる。 In addition, heating the acidic aqueous solution (temperature: 70 to 95°C) softens the adhesive (e.g., hot melt adhesive) used to bond the constituent parts of used sanitary products. Bonding force can be reduced. Thereby, the constituent members can be easily disaggregated naturally or by a small impact. It also becomes possible to further sterilize (disinfect) used sanitary products.
 なお、破砕工程S1を用いない場合には、例えば、加熱された酸化剤水溶液に、使用済み衛生用品を浸漬し、攪拌などの物理的衝撃により、各構成部材同士の接着剤の接合力を低下させて、各構成部材を互いに離解させてもよい。 In addition, when the crushing step S1 is not used, for example, the used sanitary products are immersed in a heated oxidizing agent aqueous solution, and the bonding strength of the adhesive between each component is reduced by physical impact such as stirring. The respective constituent members may be disintegrated from each other.
 第1分離工程S2は、使用済み衛生用品を、プラスチック材料を含む第1画分と、排泄物、不活化された高吸水性ポリマー、及びパルプ繊維を含む第2画分と、に分離する工程である。すなわち、第1分離工程S2では、使用済み衛生用品を分解し得られるプラスチック材料、排泄物、不活化された高吸水性ポリマー及びパルプ繊維の混合物から、プラスチック材料(を含む第1画分)と、排泄物、高吸水性ポリマー及びパルプ繊維(を含む第2画分)と、が分離される。 The first separation step S2 is a step of separating the used sanitary products into a first fraction containing plastic material and a second fraction containing excrement, inactivated superabsorbent polymer, and pulp fibers. It is. That is, in the first separation step S2, the plastic material (first fraction containing) and the mixture of the plastic material, excrement, inactivated superabsorbent polymer, and pulp fiber obtained by decomposing used sanitary products are separated. , excrement, superabsorbent polymer and pulp fiber (a second fraction comprising) are separated.
 本実施形態では、第1分離工程S2において、破砕工程S1で生成された破砕物と不活化水溶液である酸性水溶液との混合物が、パルパー分離機(第1次分離装置)に供給される。パルパー分離機は、混合物を洗浄する洗浄槽、及び、混合物を分離するふるい槽の両方の機能を有する撹拌分離槽を備えている。なお、第1分離工程S2には、酸性水溶液として、破砕工程S1で使用されていない別の酸性水溶液を供給してもよい。 In the present embodiment, in the first separation step S2, a mixture of the crushed material generated in the crushing step S1 and an acidic aqueous solution that is an inactivated aqueous solution is supplied to a pulper separator (first separation device). The pulper separator is equipped with a stirring separation tank that functions as both a washing tank for washing the mixture and a sieving tank for separating the mixture. Note that another acidic aqueous solution that is not used in the crushing step S1 may be supplied to the first separation step S2 as the acidic aqueous solution.
 混合物は、パルパー分離機により、撹拌され、破砕物の汚れを除去する洗浄を施されつつ、スクリーンにより、収集袋、フィルム、不織布などを含む第1画分と、パルプ繊維、不活化された高吸水性ポリマー、排泄物及び酸性水溶液などを含む第2画分とに分離される。すなわち、パルプ繊維、高吸水性ポリマー、排泄物及び酸性水溶液は、スクリーンを通過して混合物から分離されて、パルパー分離機から送出される。一方、スクリーンを通過できなかった収集袋、フィルム、不織布などの他の資材は、パルパー分離機内に残存し、その後、第2分離工程S3へ送出される。このとき、パルプ繊維、高吸水性ポリマー、排泄物及び酸性水溶液の一部はスクリーンを通過せず、他の資材と共にスクリーン上に残存し得る。また、他の資材の一部は、スクリーンを通過する場合があり得る。 The mixture is agitated and washed by a pulper separator to remove dirt from the crushed material, while a screen separates the first fraction containing collection bags, films, non-woven fabrics, etc. from the pulp fibers and inactivated high-quality materials. It is separated into a second fraction containing water-absorbing polymers, excreta, acidic aqueous solutions, and the like. That is, the pulp fibers, superabsorbent polymer, excreta, and acidic aqueous solution are separated from the mixture through a screen and delivered from the pulper separator. On the other hand, other materials such as collection bags, films, and non-woven fabrics that could not pass through the screen remain in the pulper separator and are then sent to the second separation step S3. At this time, a portion of the pulp fibers, superabsorbent polymer, excrement, and acidic aqueous solution may not pass through the screen and may remain on the screen together with other materials. Also, some of the other materials may pass through the screen.
 また、本実施形態のように、第1分離工程S2よりも前に(破砕工程S1等で)、高吸水性ポリマーを予め不活化し、粒状にして、吸水能力を抑えている場合には、第1分離工程S2では、不活化水溶液(酸性水溶液)を用いず、不活化剤を含まない水(水溶液)を用いてもよい。 Further, as in the present embodiment, when the superabsorbent polymer is previously inactivated and granulated to suppress its water absorption ability before the first separation step S2 (in the crushing step S1, etc.), In the first separation step S2, the inactivating aqueous solution (acidic aqueous solution) may not be used, and water (aqueous solution) containing no inactivating agent may be used.
 また、第1分離工程S2よりも前に(破砕工程S1等で)、高吸水性ポリマーを予め不活化しない場合、第1分離工程S2は、最初に使用済み衛生用品を不活化水溶液(酸性水溶液)で処理する工程、すなわち、高吸水性ポリマーを不活化する工程を含んでもよい。その場合、処理方法としては、例えば、使用済み衛生用品を不活化水溶液(酸性水溶液)に浸漬する、又は、使用済み衛生用品に不活化水溶液(酸性水溶液)を噴射する、などの方法が挙げられる。酸性水溶液については、既述のとおりである。第1分離工程S2は、その工程の後に、使用済み衛生用品を第1画分と第2画分と分離する工程を実施する。 In addition, if the superabsorbent polymer is not inactivated in advance before the first separation step S2 (such as in the crushing step S1), the first separation step S2 is performed by first removing the used sanitary products from an inactivating aqueous solution (acidic aqueous solution). ), that is, a step of inactivating the superabsorbent polymer. In that case, processing methods include, for example, immersing the used sanitary products in an inactivated aqueous solution (acidic aqueous solution), or spraying the used sanitary products with an inactivated aqueous solution (acidic aqueous solution). . The acidic aqueous solution is as described above. The first separation step S2 is followed by a step of separating the used sanitary products into a first fraction and a second fraction.
 ただし、他の資材である収集袋、フィルム、不織布などは、合成樹脂製であり、プラスチック材料ということができる。したがって、第1分離工程S2において、プラスチック材料並びに少量の残存物(パルプ繊維、高吸水性ポリマー、排泄物及び酸性水溶液)がスクリーン上の残留物(リジェクト)となり、分離されたパルプ繊維、高吸水性ポリマー、排泄物及び酸性水溶液がスクリーンを通過した通過物(アクセプト)となる。 However, other materials such as collection bags, films, and non-woven fabrics are made of synthetic resin and can be considered plastic materials. Therefore, in the first separation step S2, the plastic material and a small amount of residual material (pulp fibers, superabsorbent polymer, excrement, and acidic aqueous solution) become residues (rejects) on the screen, and the separated pulp fibers and superabsorbent Polymers, excreta, and acidic aqueous solutions become what passes through the screen (accept).
 本実施形態では、第1分離工程S2は、並列接続された二台の第1分離装置のうちの一方で実施される。例えば、二台のパルパー分離機を並列接続し、一方のパルパー分離機を稼働し、そのパルパー分離機にメンテナンス等が必要になった場合には、そのパルパー分離機を停止し、他方のパルパー分離機を稼働させる。それにより、連続的に、第1分離工程S2を実施できる。なお、第1分離装置は、三台以上並列接続されてもよい。 In this embodiment, the first separation step S2 is performed in one of the two first separation devices connected in parallel. For example, if two pulper separators are connected in parallel and one pulper separator is operated, and that pulper separator requires maintenance, then that pulper separator is stopped and the other pulper separator is operated. operate the machine. Thereby, the first separation step S2 can be performed continuously. Note that three or more first separation devices may be connected in parallel.
 本実施形態では、第1分離工程S2において、酸性水溶液のpHが所定の範囲内に維持されるように調整されている。pHの所定の範囲とは、pHの変動が±1.0以内の範囲とする。それにより、高吸水性ポリマーの比重さ及び大きさと、パルプ繊維の比重及び大きさとの相違が、所定の範囲内になるようにできる。この場合、相違が所定の範囲内とは、例えば一方が他方の0.2~5倍の範囲内とする。それにより、パルプ繊維と高吸水性ポリマーとの相違は、比重が所定の範囲内であり、かつ、大きさが所定の範囲内である。その結果、パルプ繊維及び高吸水性ポリマーを、使用済み衛生用品の資材のうちのパルプ繊維及び高吸水性ポリマーを除いた他の資材(主にプラスチック材料)と、大きさや比重の相違を利用して容易に分離できる。pHの調整は、pHセンサで測定されるpHの値に基づいて、酸性の水溶液やアルカリ性の水溶液を用いて行うことができる。なお、第2分離工程S3においても、第1分離工程S2と同様にpHが調整されてもよい。 In this embodiment, in the first separation step S2, the pH of the acidic aqueous solution is adjusted to be maintained within a predetermined range. The predetermined pH range is a range within which the pH fluctuation is within ±1.0. Thereby, the difference between the specific gravity and size of the superabsorbent polymer and the specific gravity and size of the pulp fibers can be kept within a predetermined range. In this case, the difference within a predetermined range means, for example, that one is within a range of 0.2 to 5 times the other. Thereby, the difference between the pulp fiber and the superabsorbent polymer is that the specific gravity is within a predetermined range and the size is within a predetermined range. As a result, we have found that pulp fibers and superabsorbent polymers can be used to make use of the differences in size and specific gravity from other materials (mainly plastic materials) used in used sanitary products other than pulp fibers and superabsorbent polymers. can be easily separated. The pH can be adjusted using an acidic aqueous solution or an alkaline aqueous solution based on the pH value measured by a pH sensor. Note that the pH may be adjusted in the second separation step S3 as well in the same manner as in the first separation step S2.
 また、破砕工程S1において、不活化水溶液(酸性水溶液)を用いる場合には、第1分離工程S2と同様に、酸性水溶液のpHが調整されてもよい。 Furthermore, when an inactivating aqueous solution (acidic aqueous solution) is used in the crushing step S1, the pH of the acidic aqueous solution may be adjusted as in the first separation step S2.
 第2分離工程S3は、第1画分を、物理的衝撃を加えて、プラスチック材料と、第1分離工程S2で分離しきれずに第1画分に残存していた排泄物、高吸水性ポリマー及びパルプ繊維と、に分離する工程である。すなわち、第2分離工程S3では、プラスチック材料、並びに、残存していた排泄物、高吸水性ポリマー及びパルプ繊維の混合物から、プラスチック材料と、残存していた排泄物、高吸水性ポリマー及びパルプ繊維と、が分離され、それにより、プラスチック材料が回収される。 In the second separation step S3, the first fraction is subjected to physical impact to separate the plastic material, the excrement that was not completely separated in the first separation step S2 and remained in the first fraction, and the super absorbent polymer. and pulp fibers. That is, in the second separation step S3, the plastic material, the remaining excrement, the superabsorbent polymer, and the pulp fiber are separated from the mixture of the plastic material, the remaining excrement, the superabsorbent polymer, and the pulp fiber. and are separated, thereby recovering the plastic material.
 本実施形態では、第2分離工程S3は、第1画分を酸性水溶液で処理しつつ、第1画分に物理的衝撃を加えて、分離を行う。具体的には、まず、第2分離工程S3において、第1分離工程S2で排泄物やパルプ繊維や高吸水性ポリマーなどを分離された混合物(プラスチック材料及び残存物)が、分離装置に供給される。その分離装置は、横倒しに設置された円筒部と、円筒部内に設けられた複数の羽根車と、横倒しの円筒部の上側の外周面に設けられた複数の酸性水溶液供給部と、円筒部の下側の外周面に設けられたスクリーン(ふるい)と、を備える。円筒部の一端側に混合物の供給口があり、他端側に排出口がある。複数の羽根車は、それらの回転軸と円筒部の中心軸とが重なるように、円筒部の中心軸方向に沿って間隔を空けて並んでいる。複数の羽根車は、円筒部の中心軸を中心として回転しつつ、円筒部の一端側から他端側へ空気の流れを生じさせるように、羽の向きを調整されている。複数の酸性水溶液供給部は、中心軸方向に沿って間隔を空けて並んでいて、酸性水溶液を円筒部の下方へ向かって噴射する。酸性水溶液供給部は、酸性水溶液をスプレー状に噴射することが好ましい。スクリーン(ふるい)の個々の開口の大きさは、パルプ繊維及び高吸水性ポリマーが通過可能、かつ、プラスチック材料が通過困難な大きさである。 In the present embodiment, the second separation step S3 performs separation by applying a physical impact to the first fraction while treating the first fraction with an acidic aqueous solution. Specifically, first, in the second separation step S3, the mixture (plastic material and residue) from which excrement, pulp fibers, superabsorbent polymers, etc. have been separated in the first separation step S2 is supplied to a separation device. Ru. The separation device consists of a cylindrical part installed on its side, a plurality of impellers provided in the cylindrical part, a plurality of acidic aqueous solution supply parts provided on the upper outer circumferential surface of the cylindrical part, and a cylindrical part installed on its side. A screen (sieve) provided on the lower outer peripheral surface. A mixture supply port is provided at one end of the cylindrical portion, and a discharge port is provided at the other end. The plurality of impellers are arranged at intervals along the direction of the central axis of the cylindrical part so that their rotation axes and the central axis of the cylindrical part overlap. The plurality of impellers rotate about the central axis of the cylindrical portion, and the direction of the blades is adjusted so as to cause air to flow from one end of the cylindrical portion to the other end. The plurality of acidic aqueous solution supply sections are lined up at intervals along the central axis direction, and spray the acidic aqueous solution toward the bottom of the cylindrical section. It is preferable that the acidic aqueous solution supply unit sprays the acidic aqueous solution in the form of a spray. The individual openings in the screen are sized to allow pulp fibers and superabsorbent polymers to pass through, but not to allow plastic materials to pass through.
 混合物は、分離装置の円筒部内の空気中で、複数の酸性水溶液供給部の各々から酸性水溶液を噴射され、回転する羽根車の羽で攪拌され、羽根車の羽の衝突により物理的衝撃を加えられつつ、円筒部の一端側から他端側へ移動(流動)する。その間、混合物は、噴射される酸性水溶液により、汚れが洗い流され、及び/又は、殺菌や漂白を施される。それと共に、混合物中のパルプ繊維などは、物理的衝撃などにより、混合物中の高吸水性ポリマーは、酸性水溶液による不活化の更なる進行や物理的衝撃などにより、それぞれ混合物中のプラスチック材料から取り除かれる。取り除かれたパルプ繊維や高吸水性ポリマーは、円筒部の下側のスクリーンを通過して酸性水溶液と共に分離(除去)される。 In the air inside the cylindrical part of the separation device, the mixture is injected with an acidic aqueous solution from each of the plurality of acidic aqueous solution supply parts, stirred by the blades of a rotating impeller, and subjected to physical impact by collision of the blades of the impeller. It moves (flows) from one end side of the cylindrical part to the other end side while being During this time, the mixture is washed away from dirt and/or sterilized and bleached by the sprayed acidic aqueous solution. At the same time, the pulp fibers in the mixture are removed from the plastic materials in the mixture due to physical impact, and the superabsorbent polymers in the mixture are removed from the plastic materials in the mixture due to further inactivation with an acidic aqueous solution or physical impact. It will be done. The removed pulp fibers and superabsorbent polymers pass through a screen below the cylindrical part and are separated (removed) together with the acidic aqueous solution.
 一方、パルプ繊維や高吸水性ポリマーなどを除去された混合物中のプラスチック材料は、スクリーンを通過せずに、円筒部の他端側の排出口から排出される。すなわち、第1分離工程S2で分離されずに残存していた高吸水性ポリマー及びパルプ繊維がプラスチック材料から分離されて、不純物の抑制されたプラスチック材料が生成されて、回収される。ただし、プラスチック材料には、量は必ずしも多くないが、第2分離工程S3で除去しきれなかった、排泄物由来の硫黄化合物や窒素化合物などが残存している。なお、分離された酸性水溶液を第1分離工程S2や破砕工程S1で再利用してもよい。なお、酸性水溶液については、既述のとおりである。 On the other hand, the plastic material in the mixture from which pulp fibers, superabsorbent polymers, etc. have been removed is discharged from the discharge port at the other end of the cylindrical portion without passing through the screen. That is, the superabsorbent polymer and pulp fibers remaining without being separated in the first separation step S2 are separated from the plastic material, and a plastic material with suppressed impurities is produced and recovered. However, although the amount is not necessarily large, sulfur compounds and nitrogen compounds derived from excrement that could not be completely removed in the second separation step S3 remain in the plastic material. Note that the separated acidic aqueous solution may be reused in the first separation step S2 or the crushing step S1. Note that the acidic aqueous solution is as described above.
 酸性水溶液の供給量としては、所望の機能を実現できる供給量であれば特に限定されないが、例えば、プラスチック材料の重量に対する酸性水溶液の重量が、5~100倍が挙げられ、10~50倍が好ましい。酸性水溶液の供給速度としては、所望の機能を実現できる供給速度であれば特に限定されないが、例えば、50~500cm/分が挙げられ、80~200cm/分が好ましい。供給量や供給速度が小さいと所望の効果を得難く、大きいと機器や材料などを損傷するおそれがある。 The amount of the acidic aqueous solution to be supplied is not particularly limited as long as it can achieve the desired function, but for example, the weight of the acidic aqueous solution may be 5 to 100 times the weight of the plastic material, and 10 to 50 times the weight of the plastic material. preferable. The supply rate of the acidic aqueous solution is not particularly limited as long as it can achieve the desired function, but examples include 50 to 500 cm 3 /min, preferably 80 to 200 cm 3 /min. If the supply amount or supply rate is small, it will be difficult to obtain the desired effect, and if the supply rate is large, equipment, materials, etc. may be damaged.
 第2分離工程S3では、好ましい態様として、酸性水溶液が混合物へ噴射される。噴射の勢いにより、プラスチック材料に付着している残存していた高吸水性ポリマー及びパルプ繊維などを洗い落とすことができる。また、噴射で酸性水溶液が細かくなるので、プラスチック材料の細部に残存している高吸水性ポリマーにまで酸性水溶液を到達し易くすることができる。また、酸性水溶液にプラスチック材料を浸漬する場合と比較して、プラスチック材料の表面へ常にフレッシュな酸性水溶液を供給でき、酸性水溶液の効果のバラツキを抑制することができる。更に、酸性水溶液により、プラスチック材料を殺菌することができる。 In the second separation step S3, in a preferred embodiment, an acidic aqueous solution is injected into the mixture. The force of the jet can wash away residual superabsorbent polymers and pulp fibers adhering to the plastic material. In addition, since the acidic aqueous solution is made finer by spraying, it is possible to make it easier for the acidic aqueous solution to reach the superabsorbent polymer remaining in the details of the plastic material. Moreover, compared to the case where a plastic material is immersed in an acidic aqueous solution, a fresh acidic aqueous solution can always be supplied to the surface of the plastic material, and variations in the effect of the acidic aqueous solution can be suppressed. Furthermore, plastic materials can be sterilized with acidic aqueous solutions.
 第2分離工程S3では、第1画分を酸性水溶液で処理せずに、第1画分に物理的衝撃を加えて、分離を行ってもよい。混合物は、分離装置の円筒部内の空気中で、回転する羽根車の羽で攪拌され、羽根車の羽の衝突により物理的衝撃を加えられつつ、円筒部の一端側から他端側へ移動(流動)する。その間、混合物は、物理的衝撃により、汚れが叩き落とされる。例えば、混合物中のパルプ繊維や高吸水性ポリマーは、物理的衝撃により、混合物中のプラスチック材料から取り除かれる。取り除かれたパルプ繊維や高吸水性ポリマーは、円筒部の下側のスクリーンを通過して分離(除去)される。 In the second separation step S3, the separation may be performed by applying physical impact to the first fraction without treating the first fraction with the acidic aqueous solution. The mixture is stirred by the blades of a rotating impeller in the air inside the cylindrical part of the separator, and is moved from one end of the cylindrical part to the other while being subjected to physical impact due to the collision of the impeller blades ( flow). During this time, the mixture is knocked clean of dirt by physical impact. For example, pulp fibers or superabsorbent polymers in the mixture are removed from the plastic material in the mixture by physical impact. The removed pulp fibers and superabsorbent polymers pass through a screen below the cylindrical part and are separated (removed).
 あるいは、第2分離工程S3では、酸性水溶液の代わりに、水や、不活化剤を含まない水溶液(以下、単に「水」ともいう。)を第1画分に噴射してもよい。混合物は、分離装置の円筒部内の空気中で、水を供給する複数の水供給部の各々から水を噴射され、回転する羽根車の羽で攪拌され、羽根車の羽の衝突により物理的衝撃を加えられつつ、円筒部の一端側から他端側へ移動(流動)する。その間、混合物は、噴射される水により汚れが洗い流され、かつ、物理的衝撃により汚れが叩き落とされる。例えば、混合物中のパルプ繊維及び高吸水性ポリマーは、水による流れや物理的衝撃などにより、それぞれ混合物中のプラスチック材料から取り除かれる。取り除かれたパルプ繊維や高吸水性ポリマーは、円筒部の下側のスクリーンを通過して水と共に分離(除去)される。 Alternatively, in the second separation step S3, instead of the acidic aqueous solution, water or an aqueous solution containing no inactivating agent (hereinafter also simply referred to as "water") may be injected into the first fraction. Water is injected from each of the multiple water supply parts into the mixture in the air inside the cylindrical part of the separator, and the mixture is stirred by the blades of a rotating impeller, and the mixture is subjected to physical impact due to the collision of the blades of the impeller. It moves (flows) from one end side of the cylindrical part to the other end side while being applied. During this time, the mixture is washed clean of dirt by the jetted water and knocked off by the physical impact. For example, pulp fibers and superabsorbent polymers in the mixture are removed from the plastic material in the mixture by water flow, physical impact, etc., respectively. The removed pulp fibers and superabsorbent polymers pass through a screen below the cylindrical part and are separated (removed) along with water.
 空気搬送工程S4(搬送工程)は、第2分離工程S3で分離されたプラスチック材料を、水溶液処理工程の一例である第1酸化剤処理工程S5へ、空気で搬送する工程である。すなわち、空気搬送工程S4では、分離されたプラスチック材料が、空気の流れの中で乾燥しつつ、次の工程へ搬送される。 The air conveyance process S4 (conveyance process) is a process in which the plastic material separated in the second separation process S3 is conveyed by air to the first oxidizing agent treatment process S5, which is an example of an aqueous solution treatment process. That is, in the air conveyance step S4, the separated plastic material is conveyed to the next step while being dried in an air flow.
 本実施形態では、空気搬送工程S4において、第2分離工程S3の分離装置と第1酸化剤処理工程S5の第1酸化剤処理装置(後述)とをつなぐ配管において、ブロアにより配管内を流れる空気で、分離されたプラスチック材料を、分離装置から第1酸化剤処理装置まで搬送する。その際、プラスチック材料に含まれる水分は、空気中に蒸散、又は吹き飛ばされるので、プラスチック材料の含水率が減少する。含水率は、例えば、95%程度から80%程度まで減少する。また、空気の流れで、複数のプラスチック材料同士をバラバラに分離できるので、次の第1酸化剤処理工程S5において、酸化剤水溶液を、各プラスチック材料の全面に概ね均一に供給できる。なお、空気搬送工程S4を用いなくてもよく、公知の他の搬送手段により、分離されたプラスチック材料を搬送してもよい。 In this embodiment, in the air conveyance step S4, air flows through the pipe by a blower in a pipe connecting the separation device of the second separation step S3 and the first oxidizer treatment device (described later) of the first oxidizer treatment step S5. Then, the separated plastic material is transported from the separation device to the first oxidizer treatment device. At this time, the moisture contained in the plastic material is evaporated or blown away into the air, so that the moisture content of the plastic material is reduced. The moisture content decreases, for example, from about 95% to about 80%. Moreover, since the plurality of plastic materials can be separated into pieces by the air flow, the oxidizing agent aqueous solution can be supplied almost uniformly to the entire surface of each plastic material in the next first oxidizing agent treatment step S5. Note that the air conveyance step S4 may not be used, and the separated plastic material may be conveyed by other known conveyance means.
 第1酸化剤処理工程S5は、第2分離工程S3で分離されたプラスチック材料に、酸化剤を含む酸化剤水溶液を噴射する工程である。第1酸化剤処理工程S5では、第2分離工程S3で除去しきれず、プラスチック材料に残存する排泄物由来の硫黄化合物や窒素化合物などを酸化剤水溶液により除去することができる。。 The first oxidizing agent treatment step S5 is a step of injecting an oxidizing agent aqueous solution containing an oxidizing agent onto the plastic material separated in the second separating step S3. In the first oxidizing agent treatment step S5, sulfur compounds, nitrogen compounds, and the like derived from excrement that were not completely removed in the second separation step S3 and remain in the plastic material can be removed using the oxidizing agent aqueous solution. .
 なお、本実施形態では、第2分離工程S3後の水溶液処理工程として、酸化剤を含む酸化剤水溶液をプラスチック材料に噴射する第1酸化剤処理工程S5を行っている。しかし、第2分離工程S3後の水溶液処理工程としては、その例に限定されるものではなく、酸化剤を含む酸化剤水溶液の代わりに、酸化剤を含まない水をプラスチック材料に噴射する水処理工程を行ってもよい。ただし、その水は、プラスチック材料の不純物にならない物質(例示:プラスチック材料に付着し難い物質、プラスチック材料の再利用のときに問題とならない物質)を含んでもよい。この場合にも、プラスチック材料に残存する排泄物由来の硫黄化合物や窒素化合物などを水(水のみの場合を含む)により除去することができる。第2分離工程S3後の水溶液処理工程は、酸化剤を含む酸化剤水溶液を用いる場合(酸化剤処理工程)も、酸化剤を含まない水を用いる場合(水処理工程)も、水溶液(水のみの場合を含む)を用いてプラスチック材料を処理する工程であるといえるので、水溶液処理工程ということができる。 Note that in this embodiment, as an aqueous solution treatment step after the second separation step S3, a first oxidizing agent treatment step S5 is performed in which an oxidizing agent aqueous solution containing an oxidizing agent is injected onto the plastic material. However, the aqueous solution treatment step after the second separation step S3 is not limited to that example, and water treatment in which water that does not contain an oxidizing agent is injected onto the plastic material instead of an oxidizing agent aqueous solution containing an oxidizing agent. You may perform the process. However, the water may also contain substances that do not become impurities in the plastic material (eg, substances that do not easily adhere to the plastic material, substances that do not cause problems when the plastic material is reused). In this case as well, sulfur compounds, nitrogen compounds, etc. derived from excrement remaining in the plastic material can be removed with water (including cases where only water is used). In the aqueous solution treatment step after the second separation step S3, an aqueous solution containing an oxidizing agent (oxidizing agent treatment step), a water treatment step containing no oxidizing agent (water treatment step), It can be said that it is a process of treating plastic materials using (including the case of ), so it can be said to be an aqueous solution treatment process.
 本実施形態では、第1酸化剤処理工程S5において、(空気搬送工程S4を介して)第2分離工程S3で分離されたプラスチック材料が、第1酸化剤処理装置に供給される。その第1酸化剤処理装置は、プラスチック材料を搬送するコンベア(例えば、スクリューコンベア)と、コンベアの上側に設けられ、搬送中のプラスチック材料に酸化剤水溶液を噴射する複数の酸化剤水溶液供給部と、を備える。コンベアは、搬送方向に沿って上方に向うように傾斜しており(例えば、30°)、それにより、噴射され、プラスチック材料から零れ落ちた酸化剤水溶液を下方の排水口へ運ぶ。複数の酸化剤水溶液供給部は、コンベアの搬送方向に沿って間隔を空けて並んでいる。酸化剤水溶液供給部は、酸化剤水溶液をスプレー状に噴射することが好ましい。 In this embodiment, in the first oxidizer treatment step S5, the plastic material separated in the second separation step S3 (via the air conveyance step S4) is supplied to the first oxidizer treatment device. The first oxidizing agent treatment device includes a conveyor (for example, a screw conveyor) that conveys the plastic material, and a plurality of oxidizing agent aqueous solution supply units that are provided above the conveyor and inject an oxidizing agent aqueous solution onto the plastic material being conveyed. , is provided. The conveyor is inclined upwardly along the conveying direction (e.g. 30°), thereby conveying the aqueous oxidizer solution that has been jetted and spilled from the plastic material to a drain below. The plurality of oxidizing agent aqueous solution supply units are lined up at intervals along the conveyance direction of the conveyor. It is preferable that the oxidizing agent aqueous solution supply section injects the oxidizing agent aqueous solution in the form of a spray.
 プラスチック材料は、複数の酸化剤水溶液供給部の各々から酸化剤水溶液供給部を噴射されつつ、コンベアでその一方の端から他方の端まで搬送される。その間、噴射される酸化剤水溶液により、プラスチック材料に残存していた排泄物由来の硫黄化合物や窒素化合物などが酸化され、無臭の他の物質(例えば、硫黄(S)や窒素(N))に変換され、酸化剤水溶液に混ざり込む、及び/又は、気体として放出される。すなわち、プラスチック材料に残存していた硫黄化合物や窒素化合物が除去される。また、酸化剤水溶液によりプラスチック材料の殺菌が行われる。 The plastic material is conveyed from one end to the other end by a conveyor while being sprayed with an oxidizing agent aqueous solution supply section from each of the plurality of oxidizing agent aqueous solution supply sections. During this time, the injected oxidant aqueous solution oxidizes sulfur compounds and nitrogen compounds derived from excrement remaining on the plastic material, and converts them into other odorless substances (e.g. sulfur (S) and nitrogen (N 2 )). , mixed into the oxidizing agent aqueous solution, and/or released as a gas. That is, sulfur compounds and nitrogen compounds remaining in the plastic material are removed. Furthermore, the plastic material is sterilized by the oxidizing agent aqueous solution.
 第1酸化剤処理工程S5では、酸化剤水溶液がプラスチック材料に噴射される。噴射の勢いにより、プラスチック材料の表面に付着している硫黄化合物や窒素化合物などを洗い落とすことができる。また、噴射で酸化剤水溶液水が細かくなるので、プラスチック材料の細部に残存している硫黄化合物や窒素化合物にまで酸化剤水溶液を到達し易くすることができる。また、酸化剤水溶液にプラスチック材料を浸漬する場合と比較して、プラスチック材料の表面へ常にフレッシュな酸化剤水溶液を供給でき、酸化剤水溶液の効果(例えば、洗浄及び殺菌の効果)のバラツキを抑制することができる。 In the first oxidizing agent treatment step S5, an oxidizing agent aqueous solution is injected onto the plastic material. The force of the jet can wash away sulfur compounds and nitrogen compounds adhering to the surface of plastic materials. Furthermore, since the oxidizing agent aqueous solution becomes finer by spraying, it is possible to make it easier for the oxidizing agent aqueous solution to reach the sulfur compounds and nitrogen compounds remaining in the details of the plastic material. In addition, compared to the case where plastic materials are immersed in an oxidizing agent aqueous solution, a fresh oxidizing agent aqueous solution can always be supplied to the surface of the plastic material, and variations in the effects of the oxidizing agent aqueous solution (for example, cleaning and sterilizing effects) can be suppressed. can do.
 ここで、酸化剤水溶液は、酸化剤を含む水溶液である。酸化剤としては、オゾン及び過酸化水素のうちの少なくとも一つを含んでいる。本実施形態では、酸化力や殺菌力や漂白力の観点から酸化剤としてオゾンを用いている。具体的には、酸化剤水溶液として、純水や上水のような水(又は水溶液)に、オゾンガスを混入させたオゾン水を用いている。なお、酸化剤水溶液は、オゾンの失活を抑制する観点から酸性としてもよい。更に、破砕工程S1、第1分離工程S2及び第2分離工程S3のうちの少なくとも第2分離工程S3において、不活化水溶液として(希)硫酸水溶液のような酸性水溶液を用いる場合、各工程の連続性や、水溶液の有効利用の観点からも、酸性としてもよい。その場合、酸性水溶液(例えば、希硫酸水溶液)にオゾンガスを混入させたものを用いる。酸性水溶液としては、他工程で利用した酸性水溶液を再利用してもよい。 Here, the oxidizing agent aqueous solution is an aqueous solution containing an oxidizing agent. The oxidizing agent includes at least one of ozone and hydrogen peroxide. In this embodiment, ozone is used as an oxidizing agent from the viewpoint of oxidizing power, sterilizing power, and bleaching power. Specifically, as the oxidizing agent aqueous solution, ozone water is used, which is water (or aqueous solution) such as pure water or clean water mixed with ozone gas. Note that the oxidizing agent aqueous solution may be acidic from the viewpoint of suppressing deactivation of ozone. Furthermore, in the case where an acidic aqueous solution such as a (dilute) sulfuric acid aqueous solution is used as the inactivation aqueous solution in at least the second separation step S3 of the crushing step S1, the first separation step S2, and the second separation step S3, each step is continuous. It may be acidic from the viewpoint of properties and effective use of the aqueous solution. In that case, an acidic aqueous solution (for example, a dilute sulfuric acid aqueous solution) mixed with ozone gas is used. As the acidic aqueous solution, an acidic aqueous solution used in another process may be reused.
 酸化剤水溶液中のオゾン濃度としては、所望の機能、すなわち硫黄化合物(酸性水溶液の硫酸を含む)や窒素化合物などに対する酸化力や殺菌力や漂白力を実現できる濃度であれば特に限定されない。その濃度としては、例えば0.2~10ppmが挙げられ、0.5~5ppmが好ましい。濃度が低過ぎないことで、所望の機能を発揮でき、濃度が高過ぎないことで、機器の腐食を抑えられる。酸化剤水溶液での処理時間は、所望の機能を発揮できる時間であれば、特に限定されないが、酸化剤水溶液中のオゾン濃度が高ければ短く、オゾン濃度が低ければ長くし、典型的には1~30分である。酸化剤水溶液中のオゾン濃度(ppm)と処理工程の処理時間(分)の積(以下、「CT値」ともいう。)としては、例えば0.5~200ppm・分が挙げられ、5~100ppm・分が好ましい。CT値が小さ過ぎないことで、所望の機能を発揮でき、CT値が大き過ぎないことで、機器の腐食を抑えられる。なお、酸化剤水溶液としては、後述される第2酸化剤処理工程S9で使用された酸化剤水溶液を、濃度を下げて本工程で再利用してもよい。 The ozone concentration in the oxidizing agent aqueous solution is not particularly limited as long as it can achieve the desired function, that is, oxidizing power, bactericidal power, and bleaching power against sulfur compounds (including sulfuric acid in acidic aqueous solutions), nitrogen compounds, etc. Its concentration is, for example, 0.2 to 10 ppm, preferably 0.5 to 5 ppm. If the concentration is not too low, the desired function can be achieved, and if the concentration is not too high, corrosion of equipment can be suppressed. The treatment time with the oxidizing agent aqueous solution is not particularly limited as long as it can exhibit the desired function, but the higher the ozone concentration in the oxidizing agent aqueous solution, the shorter the treatment time, and the lower the ozone concentration, the longer the treatment time. ~30 minutes. The product of the ozone concentration (ppm) in the oxidizing agent aqueous solution and the treatment time (minutes) of the treatment process (hereinafter also referred to as "CT value") is, for example, 0.5 to 200 ppm min, and 5 to 100 ppm.・Minutes are preferable. If the CT value is not too small, the desired function can be achieved, and if the CT value is not too large, corrosion of the equipment can be suppressed. Note that, as the oxidizing agent aqueous solution, the oxidizing agent aqueous solution used in the second oxidizing agent treatment step S9, which will be described later, may be reused in this step after lowering its concentration.
 また、酸化剤水溶液の供給量としては、所望の機能を実現できる供給量であれば特に限定されないが、例えば、プラスチック材料の重量に対する酸化剤水溶液の重量が5~100倍が挙げられ、10~50倍が好ましい。酸化剤水溶液の供給速度としては、所望の機能を実現できる供給速度であれば特に限定されないが、例えば、50~500cm/分が挙げられ、80~200cm/分が好ましい。供給量や供給速度が小さいと所望の効果を得難く、大きいと機器や材料などを損傷するおそれがある。 Further, the amount of the oxidizing agent aqueous solution to be supplied is not particularly limited as long as it can realize the desired function, but for example, the weight of the oxidizing agent aqueous solution to the weight of the plastic material may be 5 to 100 times, 50 times is preferable. The supply rate of the oxidizing agent aqueous solution is not particularly limited as long as it can achieve the desired function, but examples include 50 to 500 cm 3 /min, preferably 80 to 200 cm 3 /min. If the supply amount or supply rate is small, it will be difficult to obtain the desired effect, and if the supply rate is large, equipment, materials, etc. may be damaged.
 殺菌又は除菌に関し、例えば、使用済み紙おむつには10億個/ml以上の一般細菌が存在しているが、第2分離工程S3までの酸性水溶液では、殺菌しきれるとはいえない。そのため、第2分離工程S3で分離されたプラスチック材料(パルプ繊維や高吸水性ポリマーが少量付着)には、ある程度の一般細菌が存在する(例示:一般細菌3,400個/ml)。そうなると、作業者の安全性への悪影響や取り出したプラスチック材料の腐敗・カビの発生などへの懸念が生じ得る。また、一般細菌が原因と思われる強い排泄物臭も存在する。しかし、酸化剤水溶液を用いた第1酸化剤処理工程S5を実行することにより、プラスチック材料の一般細菌を、大腸菌同様に、検出限界以下に取り除くことができ、硫黄化合物や窒素化合物を分解して排泄物臭も殆どわからない程度まで低減できる。 Regarding sterilization or sterilization, for example, used paper diapers contain more than 1 billion bacteria/ml, but it cannot be said that they can be completely sterilized with the acidic aqueous solution up to the second separation step S3. Therefore, the plastic material separated in the second separation step S3 (to which a small amount of pulp fibers and superabsorbent polymers are attached) contains a certain amount of general bacteria (eg, 3,400 general bacteria/ml). If this happens, there may be concerns about adverse effects on worker safety and the possibility of rotting or mold growth in the removed plastic materials. There is also a strong odor of excrement that is thought to be caused by common bacteria. However, by performing the first oxidizing agent treatment step S5 using an oxidizing agent aqueous solution, general bacteria from plastic materials can be removed to below the detection limit, similar to E. coli, and sulfur and nitrogen compounds can be decomposed. The odor of excrement can also be reduced to an almost unnoticeable level.
 圧搾脱水乾燥工程S6は、第1酸化剤処理工程S5で処理されたプラスチック材料を、圧搾・脱水・乾燥する工程である。すなわち、圧搾脱水乾燥工程S6では、処理された複数のプラスチック材料が、まとめられ、全体として圧搾されて脱水されつつ、加熱されて乾燥される工程である。 The pressing, dehydrating and drying step S6 is a step of compressing, dehydrating and drying the plastic material treated in the first oxidizing agent treatment step S5. That is, in the compression dehydration drying step S6, a plurality of treated plastic materials are put together, compressed as a whole, dehydrated, and heated and dried.
 本実施形態では、圧搾脱水乾燥工程S6において、第1酸化剤処理工程S5で処理されたプラスチック材料が圧搾脱水乾燥装置に供給される。圧搾脱水乾燥装置は、加熱しつつ、複数のプラスチック材料を、まとめて圧搾し、水分を絞り出して、脱水・乾燥する装置である。加熱温度としては、120~180℃が挙げられる。温度が高いとプラスチック材料に含まれる可能性のあるパルプ繊維が炭化するおそれがあり、温度が低いと乾燥の効果を得難くなる。加熱時間は、加熱温度にもよるが、例えば10~120分が挙げられ、15~100分が好ましい。時間が長いと乾燥の効果が飽和し、時間が短いと乾燥の効果が得られ難くなる。圧搾する圧力としては、加熱温度・加熱時間にもよるが、例えば、0.2~4MPaが挙げられ、0.4~2MPaが好ましい。圧力が低いと脱水の効果が得られ難く、圧力が高いと脱水の効果が飽和する。圧搾脱水乾燥装置は、プラスチック材料を軟化させ(及び/又は溶融させ)、多数の孔部(例えば、開孔径:5~15mm)から外部へ押し出す。それにより、プラスチック材料をフレーク状又はペレット状の形に成形でき、梱包し易くすることができる。 In this embodiment, in the compression dehydration drying step S6, the plastic material treated in the first oxidizing agent treatment step S5 is supplied to the compression dehydration drying device. A compression dehydration drying device is a device that compresses a plurality of plastic materials together while heating them, squeezes out water, and dehydrates and dries them. The heating temperature may be 120 to 180°C. If the temperature is high, pulp fibers that may be included in the plastic material may be carbonized, and if the temperature is low, it becomes difficult to obtain a drying effect. The heating time depends on the heating temperature, but is, for example, 10 to 120 minutes, preferably 15 to 100 minutes. If the time is long, the drying effect will be saturated, and if the time is short, it will be difficult to obtain the drying effect. The pressing pressure is, for example, 0.2 to 4 MPa, preferably 0.4 to 2 MPa, although it depends on the heating temperature and heating time. If the pressure is low, it is difficult to obtain the dehydration effect, and if the pressure is high, the dehydration effect is saturated. The compression dehydration drying device softens (and/or melts) the plastic material and extrudes it to the outside through a large number of pores (eg, pore diameter: 5 to 15 mm). Thereby, the plastic material can be formed into flakes or pellets, making it easier to pack.
 複数のプラスチック材料が、圧搾脱水乾燥装置により、まとめられて、加熱されつつ、圧搾され、送出される。それにより、水分が絞り出され、かつ、水分が蒸発した、よって脱水され、乾燥したプラスチック材料が生成される。こうして、再利用が可能なプラスチック材料が生成される。このとき、プラスチック材料の水分率は、5質量%以下であり、好ましくは3%以下である。なお、圧搾脱水と乾燥とは別の装置で行ってもよい。 A plurality of plastic materials are put together by a compression dehydration drying device, compressed while being heated, and sent out. Thereby, the water is squeezed out and a evaporated and thus dehydrated, dry plastic material is produced. In this way, a recyclable plastic material is produced. At this time, the moisture content of the plastic material is 5% by mass or less, preferably 3% or less. Note that pressing dehydration and drying may be performed using separate devices.
 なお、プラスチック材料の脱水及び乾燥は、上記の圧搾脱水乾燥工程S6に限定されるものではなく、プラスチック材料の形状を変更しない場合などでは、一般的な脱水・乾燥工程を行ってもよい。その脱水・乾燥工程としては、例えば、恒温槽における高温の雰囲気又は熱風などでプラスチック材料を乾燥する工程が挙げられる。乾燥温度としては、例えば80~120℃が挙げられる。乾燥時間は、乾燥温度にもよるが、例えば10~120分が挙げられる。 Note that the dehydration and drying of the plastic material is not limited to the above-mentioned pressing dehydration and drying step S6, and in cases where the shape of the plastic material is not changed, a general dehydration and drying step may be performed. The dehydration/drying process includes, for example, a process of drying the plastic material in a high-temperature atmosphere in a constant temperature bath or with hot air. The drying temperature may be, for example, 80 to 120°C. The drying time is, for example, 10 to 120 minutes, although it depends on the drying temperature.
 以上のような製造方法により、本実施形態に係るマテリアルリサイクル又はケミカルリサイクルに適した使用済み衛生用品由来のプラスチック材料が製造される。 By the manufacturing method described above, a plastic material derived from used sanitary products suitable for material recycling or chemical recycling according to the present embodiment is manufactured.
 本方法では、第1分離工程S2で第1画分を分離する。このとき、尿などを吸収していた高吸水性ポリマーは不活化されているので、ナトリウムや窒素化合物を水分と共に外部へ放出(脱水)して粒状となっている。そのため、第2分離工程S3で、第1画分の高吸水性ポリマーを、物理的衝撃で、プラスチック材料から容易に分離できる。それに加えて、もしプラスチック材料から分離しきれない高吸水性ポリマーが存在したとしても、その高吸水性ポリマーのナトリウムや窒素化合物の含有量を低減できる。また、他の排泄物やパルプ繊維も、物理的衝撃で、プラスチック材料から容易に分離できる。 In this method, the first fraction is separated in the first separation step S2. At this time, the superabsorbent polymer that had been absorbing urine and the like has been inactivated, so sodium and nitrogen compounds are released (dehydrated) to the outside along with water and become granular. Therefore, in the second separation step S3, the first fraction of the superabsorbent polymer can be easily separated from the plastic material by physical impact. In addition, even if there is a superabsorbent polymer that cannot be separated from the plastic material, the content of sodium and nitrogen compounds in the superabsorbent polymer can be reduced. Also, other excreta and pulp fibers can be easily separated from the plastic material by physical impact.
 その後、第2分離工程S3で分離されたプラスチック材料に水溶液を噴射する水溶液処理工程を実施する。ただし、水溶液は、水のみの液体であってもよい。その場合、水溶液処理工程は、水処理工程ということができる。このとき、水溶液を噴射によりプラスチック材料へ供給することにより、噴射の勢いでプラスチック材料の表面に付着している硫黄化合物や窒素化合物などを洗い落とすことができる。また、水溶液を噴射で細かくして、プラスチック材料へ供給することによりプラスチック材料の細部にまで水溶液を入り易くすることができる。また、水溶液にプラスチック材料を浸漬する場合と比較して、プラスチック材料の表面へ常にフレッシュな水溶液を供給でき、洗浄の効果のバラツキを少なくすることができる。 After that, an aqueous solution treatment step is performed in which an aqueous solution is injected onto the plastic material separated in the second separation step S3. However, the aqueous solution may be a liquid consisting only of water. In that case, the aqueous solution treatment step can be called a water treatment step. At this time, by supplying the aqueous solution to the plastic material by spraying, the force of the spray can wash away sulfur compounds, nitrogen compounds, etc. adhering to the surface of the plastic material. Further, by spraying the aqueous solution into fine particles and supplying it to the plastic material, it is possible to make it easier for the aqueous solution to penetrate into the finer details of the plastic material. Furthermore, compared to the case where the plastic material is immersed in an aqueous solution, a fresh aqueous solution can always be supplied to the surface of the plastic material, and variations in the cleaning effect can be reduced.
 ただし、水溶液処理工程を実施するとき、水溶液として、酸化剤を含む酸化剤水溶液を用いてもよい。その場合、水溶液処理工程は、第1酸化剤処理工程S5ということができる。すなわち、第2分離工程S3の後、第2分離工程S3で分離されたプラスチック材料に酸化剤を含む酸化剤水溶液の第1酸化剤処理工程S5(酸化剤処理工程)を実施する。このとき、第2分離工程S3で分離しきれずにプラスチック材料に残存していた排泄物由来の硫黄化合物や窒素化合物などが酸化されて、無臭の他の物質(例えば、硫黄(S)や窒素(N))に変換され、その物質の一部又は全部が、酸化剤水溶液に混ざり込み流出する、及び/又は、気体として放出される。すなわち、プラスチック材料に残存していた硫黄化合物や窒素化合物の大部分は更に除去される。このように、臭気を発する硫黄化合物や窒素化合物が無臭の他の物質に変換されて概ね除去されるので、プラスチック材料が悪臭をより生じ難くすることができる。また、酸化剤によりプラスチック材料の殺菌も行うことができる。その際、酸化剤水溶液を噴射で細かくして、プラスチック材料へ供給することによりプラスチック材料の細部にまで酸化剤水溶液を入り易くすることができる。それにより、酸化剤水溶液にプラスチック材料を浸漬する場合と比較して、プラスチック材料の表面へ常にフレッシュな酸化剤水溶液を供給でき、殺菌の効果のバラツキを少なくすることができる。 However, when implementing the aqueous solution treatment step, an oxidizing agent aqueous solution containing an oxidizing agent may be used as the aqueous solution. In that case, the aqueous solution treatment step can be called a first oxidizing agent treatment step S5. That is, after the second separation step S3, a first oxidant treatment step S5 (oxidant treatment step) of an oxidizing agent aqueous solution containing an oxidizing agent is performed on the plastic material separated in the second separation step S3. At this time, sulfur compounds, nitrogen compounds, etc. derived from excrement that were not completely separated in the second separation step S3 and remained in the plastic material are oxidized, and other odorless substances such as sulfur (S) and nitrogen ( N 2 )), some or all of which is mixed into the aqueous oxidizer solution and flows out and/or is released as a gas. That is, most of the sulfur compounds and nitrogen compounds remaining in the plastic material are further removed. In this way, the odor-producing sulfur and nitrogen compounds are converted into other odorless substances and are generally removed, thereby making the plastic material less likely to produce bad odors. The oxidizing agent can also sterilize plastic materials. At this time, the oxidizing agent aqueous solution can be made fine by spraying and supplied to the plastic material, thereby making it easier for the oxidizing agent aqueous solution to enter the fine details of the plastic material. As a result, compared to the case where the plastic material is immersed in an oxidizing agent aqueous solution, a fresh oxidizing agent aqueous solution can be constantly supplied to the surface of the plastic material, and variations in the sterilization effect can be reduced.
 このように、本方法により製造されたプラスチック材料では、ナトリウム、硫黄及び窒素を含む不純物が分離又は分解・除去されるので、そのプラスチック材料の不純物を抑制することができる。また、水溶液として酸化剤水溶液を用いた場合には、同時に殺菌も行うことができる。そして、そのプラスチック材料をマテリアルリサイクル又はケミカルリサイクルに適用してリサイクル製品を製造するとき、そのプラスチック材料の不純物が抑制されているため、製造工程に用いる触媒への影響を低減でき、好ましくない臭気を生じさせ難くすることができる。 In this way, in the plastic material produced by the present method, impurities containing sodium, sulfur, and nitrogen are separated or decomposed and removed, so impurities in the plastic material can be suppressed. Moreover, when an oxidizing agent aqueous solution is used as the aqueous solution, sterilization can be performed at the same time. When applying the plastic material to material recycling or chemical recycling to manufacture recycled products, since the impurities in the plastic material are suppressed, the impact on the catalyst used in the manufacturing process can be reduced, and undesirable odors can be eliminated. It can be made difficult to cause.
 本法では、好ましい態様として、第2分離工程S3は、第1画分に、酸性水溶液を噴射しつつ、物理的衝撃を加えて、排泄物、高吸水性ポリマー及びパルプ繊維と、プラスチック材料と、に互いに分離する工程を含んでいる。このように、本方法では、第2分離工程S3で、第1画分に、酸性水溶液を噴射する。それゆえ、プラスチック材料に残存している高吸水性ポリマーは、酸性水溶液で更に不活化されて、更にナトリウムや窒素化合物を外部へ放出(脱水)し、より細かい粒状となる。そのため、高吸水性ポリマーを、物理的衝撃又は酸性水溶液の流れで、プラスチック材料からより容易に分離できる(洗い落とすことができる)。それに加えて、もしプラスチック材料から分離しきれない高吸水性ポリマーが存在していたとしても、その高吸水性ポリマーのナトリウムや窒素化合物の含有量をさらに低減できる。また、他の排泄物やパルプ繊維も、物理的衝撃又は酸性水溶液の流れで、プラスチック材料からより容易に分離できる(洗い落とすことができる)。また、酸性水溶液により、プラスチック材料を殺菌することができる。 In this method, in a preferred embodiment, the second separation step S3 includes applying a physical impact to the first fraction while spraying an acidic aqueous solution to separate the excrement, the superabsorbent polymer, the pulp fibers, and the plastic material. , includes a step of separating them from each other. In this way, in the present method, the acidic aqueous solution is injected into the first fraction in the second separation step S3. Therefore, the superabsorbent polymer remaining in the plastic material is further inactivated by the acidic aqueous solution, and releases (dehydrates) sodium and nitrogen compounds to the outside, becoming finer particles. Therefore, the superabsorbent polymer can be more easily separated (washed off) from the plastic material by physical impact or by a flow of acidic aqueous solution. In addition, even if there is a superabsorbent polymer that cannot be separated from the plastic material, the content of sodium and nitrogen compounds in the superabsorbent polymer can be further reduced. Also, other excreta and pulp fibers can be more easily separated (washed off) from the plastic material by physical impact or a stream of acidic aqueous solutions. Additionally, plastic materials can be sterilized with acidic aqueous solutions.
 本法では、好ましい態様として、水溶液処理工程(又は第1酸化剤処理工程S5)で処理されたプラスチック材料を、圧搾脱水乾燥する圧搾脱水乾燥工程S6を更に備えている。すなわち、水溶液処理工程(又は第1酸化剤処理工程S5)で処理されたプラスチック材料を、圧搾して脱水させつつ乾燥するので、プラスチック材料中の水分を、より低減することができる。それにより、水溶液処理工程(又は第1酸化剤処理工程S5)などで、水分(水溶液)に混ざり込んだ不純物(例えば、悪臭を生じさせない硫黄や窒素を含む物質)を水分と共にプラスチック材料から排出することができる。 In a preferred embodiment, this method further includes a compression dehydration drying step S6 in which the plastic material treated in the aqueous solution treatment step (or first oxidizing agent treatment step S5) is compressed and dehydrated and dried. That is, since the plastic material treated in the aqueous solution treatment step (or the first oxidizing agent treatment step S5) is dried while being squeezed and dehydrated, the water content in the plastic material can be further reduced. As a result, impurities (e.g., substances containing sulfur and nitrogen that do not cause a bad odor) mixed in moisture (aqueous solution) in the aqueous solution treatment step (or first oxidizing agent treatment step S5) are discharged from the plastic material along with the moisture. be able to.
 本方法では、好ましい態様として、第2分離工程S3で分離されたプラスチック材料を、水溶液処理工程(又は第1酸化剤処理工程S5)へ、空気で搬送する空気搬送工程S4を更に備えている。その際、プラスチック材料中の水分を空気の流れで周囲に飛ばすことができるので、プラスチック材料中の水分をより低減することができる。それゆえ、第1、第2分離工程S2、S3などで、水分(水溶液)に混ざり込んだ不純物(例えば、ナトリウムや窒素化合物や硫黄化合物)を水分と共に除去することができる。また、空気の流れで、複数のプラスチック材料同士をバラバラに分離できるので、次の水溶液処理工程(又は酸化剤処理工程S5)において、水溶液(又は酸化剤水溶液)を、各プラスチック材料の全面に概ね均一に供給できる。 In a preferred embodiment, this method further includes an air conveyance step S4 in which the plastic material separated in the second separation step S3 is conveyed by air to the aqueous solution treatment step (or first oxidizing agent treatment step S5). At this time, the moisture in the plastic material can be blown away by the airflow to the surrounding area, so that the moisture in the plastic material can be further reduced. Therefore, in the first and second separation steps S2, S3, etc., impurities (for example, sodium, nitrogen compounds, and sulfur compounds) mixed into the water (aqueous solution) can be removed together with the water. In addition, since multiple plastic materials can be separated into pieces by air flow, in the next aqueous solution treatment step (or oxidizing agent treatment step S5), the aqueous solution (or oxidizing agent aqueous solution) is applied to the entire surface of each plastic material. Can be supplied evenly.
 本方法では、好ましい態様として、第1酸化剤処理工程S5における酸化剤は、オゾン、及び過酸化水素のうちの少なくとも一つを含んでいる。そのため、プラスチック材料に残存していた排泄物由来の物質を確実に酸化して、他の物質(例えば、悪臭を生じさせない硫黄や窒素を含む物質)に変換することができる。また、酸化剤が塩素を含んでいないため、プラスチック材料に不純物として塩素が残存し難く、リサイクル製品の製造工程において、脱塩素工程を省略でき、製造工程に用いる触媒への影響を低減できる。 In a preferred embodiment of this method, the oxidizing agent in the first oxidizing agent treatment step S5 contains at least one of ozone and hydrogen peroxide. Therefore, it is possible to reliably oxidize the excrement-derived substances remaining in the plastic material and convert them into other substances (for example, substances containing sulfur or nitrogen that do not produce bad odors). In addition, since the oxidizing agent does not contain chlorine, chlorine is unlikely to remain as an impurity in the plastic material, and the dechlorination step can be omitted in the manufacturing process of recycled products, reducing the impact on the catalyst used in the manufacturing process.
 本方法では、好ましい態様として、第1分離工程S2は、酸性水溶液中で、使用済み衛生用品を、第1画分と、第2画分と、に分離する工程を含んでいる。このように、第1分離工程S2において、使用済み衛生用品の分離を、酸性水溶液中で行うので、尿などを吸収していた高吸水性ポリマーをより確実に不活化することができる。それにより、より確実に、高吸水性ポリマー中のナトリウムや窒素化合物を水分と共に外部へ放出させることができる。 In a preferred embodiment of this method, the first separation step S2 includes a step of separating the used sanitary product into a first fraction and a second fraction in an acidic aqueous solution. In this way, in the first separation step S2, the used sanitary products are separated in an acidic aqueous solution, so that the superabsorbent polymer that has absorbed urine etc. can be more reliably inactivated. Thereby, the sodium and nitrogen compounds in the superabsorbent polymer can be released to the outside together with the moisture.
 本方法は、好ましい態様として、第2分離工程S3における物理的衝撃は、空気中で第1画分を攪拌する羽根車における回転する羽の衝突により第1画分に加えられる。それにより、空気中で、より確実に、第1画分に物理的衝撃を加えることができる。それゆえ、第1画分に残存する排泄物、高吸水性ポリマー及びパルプ繊維を、プラスチック材料からより取り除き易くすることができる。 In a preferred embodiment of this method, the physical impact in the second separation step S3 is applied to the first fraction by the collision of rotating blades in an impeller that stirs the first fraction in air. Thereby, physical impact can be more reliably applied to the first fraction in air. Therefore, the excreta, superabsorbent polymers and pulp fibers remaining in the first fraction can be more easily removed from the plastic material.
 本方法では、好ましい態様として、水溶液処理工程(又は第1酸化剤処理工程S5)以降で得られるプラスチック材料は、ケミカルリサイクル用又はマテリアルリサイクル用である。すなわち、本方法で得られるプラスチック材料は、後述されるように不純物が少ないプラスチック材料であるため、その再利用の用途を、油化(使用済み製品由来のプラスチック材料を熱又は触媒を使用して分解し、液状生成物を製造する技術)のようなケミカルリサイクルや、再利用(使用済み製品由来のプラスチック材料をプラスチック原料やプラスチック製品にする技術)のようなマテリアルリサイクルに広げることが可能となる。 In this method, as a preferred embodiment, the plastic material obtained after the aqueous solution treatment step (or first oxidizing agent treatment step S5) is for chemical recycling or material recycling. In other words, the plastic material obtained by this method is a plastic material with few impurities as will be described later, so its reuse is limited to oil conversion (processing plastic materials derived from used products using heat or catalysts). It will be possible to expand this to chemical recycling, such as technology that decomposes plastic products to produce liquid products, and material recycling, such as reuse (technology that converts plastic materials derived from used products into plastic raw materials or plastic products). .
 本方法では、好ましい態様として、製造されるプラスチック材料は、使用済み衛生用品由来のプラスチック材料であるにもかかわらず、その不純物が非常に少ない。具体的には、本方法で得られるプラスチック材料が含有する硫黄の割合は、500ppm以下であり、好ましくは300ppmであり、より好ましくは100ppmであり、さらに好ましくは50ppm以下である。また、本方法で得られるプラスチック材料が含有する窒素の割合は、2000ppm以下であり、好ましくは1500ppmであり、より好ましくは1000ppmであり、さらに好ましくは500ppm以下である。また、本方法で得られるプラスチック材料が含有するナトリウムの割合は、500ppm以下であり、好ましくは300ppmであり、より好ましくは100ppmであり、さらに好ましくは50ppm以下である。そのため、上記のように、本方法で得られるプラスチック材料は、マテリアルリサイクル又はケミカルリサイクルに適しており、様々な用途(例示:油化、再生利用)に適用することができる。 In a preferred embodiment of this method, the produced plastic material has very few impurities, even though it is derived from used sanitary products. Specifically, the proportion of sulfur contained in the plastic material obtained by this method is 500 ppm or less, preferably 300 ppm, more preferably 100 ppm, and still more preferably 50 ppm or less. Further, the proportion of nitrogen contained in the plastic material obtained by this method is 2000 ppm or less, preferably 1500 ppm, more preferably 1000 ppm, and even more preferably 500 ppm or less. Moreover, the proportion of sodium contained in the plastic material obtained by this method is 500 ppm or less, preferably 300 ppm, more preferably 100 ppm, and still more preferably 50 ppm or less. Therefore, as described above, the plastic material obtained by this method is suitable for material recycling or chemical recycling, and can be applied to various uses (eg, oil conversion, recycling).
 ただし、プラスチック材料中の硫黄、窒素、ナトリウム、塩素の含有量の測定方法は以下のとおりである。
 <硫黄、窒素、ナトリウム、塩素の含有量の測定方法>
 (i)エネルギー分散型X線分析装置(EDX:島津製作所製EDX-7200)を準備する。
 (ii)測定対象のプラスチック材料を乾燥(120℃×60分)し、乾燥されたプラスチック材料から分析装置の試料台に載置可能かつ測定に十分な量の試料を採取し、試料台に固定する。
 (iii)分析装置により、試料中の硫黄、窒素、ナトリウム、塩素の含有量を測定する。
 (iv)5つの試料の測定結果を平均して、最終的なプラスチック材料中の硫黄、窒素、ナトリウム、塩素の含有量とする。
However, the method for measuring the content of sulfur, nitrogen, sodium, and chlorine in plastic materials is as follows.
<Method for measuring sulfur, nitrogen, sodium, and chlorine content>
(i) Prepare an energy dispersive X-ray analyzer (EDX: EDX-7200 manufactured by Shimadzu Corporation).
(ii) Dry the plastic material to be measured (120°C x 60 minutes), collect a sufficient amount of sample from the dried plastic material that can be placed on the sample stand of the analyzer, and fix it on the sample stand. do.
(iii) Measure the content of sulfur, nitrogen, sodium, and chlorine in the sample using an analyzer.
(iv) The measurement results of the five samples are averaged to determine the content of sulfur, nitrogen, sodium, and chlorine in the final plastic material.
 本方法では、好ましい態様として、製造されるプラスチック材料は、使用済み衛生用品由来のプラスチック材料であるにもかかわらず、その不純物が更に非常に少ない。具体的には、本方法で得られるプラスチック材料は、高吸水性ポリマー及びパルプ繊維(合計)を10質量%以下で含み、好ましくは5質量%以下で含んでいる。言い換えると、本方法で得られるプラスチック材料は、使用済み衛生製品由来でありながら、硫黄、窒素及びナトリウムのような不純物だけでなく、高吸水性ポリマー及びパルプ繊維のような不純物も抑制されている。そのため、本方法で得られるプラスチック材料は、様々な用途に適用したリサイクル用のプラスチック材料ということができる。 In this method, as a preferred embodiment, the produced plastic material has extremely low impurities, even though it is a plastic material derived from used sanitary products. Specifically, the plastic material obtained by this method contains a superabsorbent polymer and pulp fibers (total) in an amount of 10% by mass or less, preferably 5% by mass or less. In other words, although the plastic material obtained by this method is derived from used sanitary products, it is not only free from impurities such as sulfur, nitrogen, and sodium, but also contains impurities such as superabsorbent polymers and pulp fibers. . Therefore, the plastic material obtained by this method can be said to be a recycled plastic material that can be applied to various uses.
 ただし、プラスチック材料中のパルプ繊維及び高吸水性ポリマーの含有量の測定方法は以下のとおりである。
 <パルプ繊維及び高吸水性ポリマーの含有量(質量%)の測定方法>
 (i)プラスチック材料を乾燥(120℃×60分)し、約100g秤量して(測定値A)、試料α1とする。
 (ii)試料α1を、固形物濃度1%の水溶液に調整し、撹拌しながらオゾンガスを吹込み、オゾン処理を行う。ただし、水溶液中のオゾン濃度及び処理時間を50ppm×30分(CT値1500)とする(高吸水性ポリマーが分解、可溶化され除去される)。
 (iii)上記(ii)のオゾン水溶液を固液分離して得られた試料α2を乾燥(120℃×60分)し、秤量する(測定値A’)。その結果、|A’-A|が含有されて高吸水性ポリマーの質量Dとなる。
 (iv)試料α2をトルエンに浸漬し、接着剤(HMA)を溶解し、パルプ繊維とプラスチック材料とに分離する。次いで、パルプ繊維をドラフト内で風乾(60分)後、秤量した結果が、パルプ繊維の質量Cとなる。
 (v)プラスチック材料そのものの質量Bは、A-D-Cにて算出される。
 したがって、
   プラスチック材料(質量%)=B/A×100
   パルプ繊維(質量%)=C/A×100
   高吸水性ポリマー(質量%)=D/A×100
 となる。
However, the method for measuring the content of pulp fibers and superabsorbent polymers in plastic materials is as follows.
<Method for measuring pulp fiber and superabsorbent polymer content (mass%)>
(i) Dry the plastic material (120° C. x 60 minutes), weigh about 100 g (measured value A), and use it as sample α1.
(ii) Sample α1 is adjusted to an aqueous solution with a solid concentration of 1%, and ozone gas is blown into the solution while stirring to perform ozone treatment. However, the ozone concentration in the aqueous solution and the treatment time are set to 50 ppm x 30 minutes (CT value 1500) (the super absorbent polymer is decomposed, solubilized, and removed).
(iii) Sample α2 obtained by solid-liquid separation of the ozone aqueous solution in (ii) above is dried (120° C. x 60 minutes) and weighed (measured value A'). As a result, |A'-A| is contained, resulting in a mass D of the superabsorbent polymer.
(iv) Sample α2 is immersed in toluene to dissolve the adhesive (HMA) and separate it into pulp fibers and plastic material. Next, the pulp fibers are air-dried in a draft (60 minutes) and weighed, and the result is the mass C of the pulp fibers.
(v) The mass B of the plastic material itself is calculated by ADC.
therefore,
Plastic material (mass%) = B/A x 100
Pulp fiber (mass%) = C/A x 100
Super absorbent polymer (mass%) = D/A x 100
becomes.
 本方法では、好ましい態様として、製造されるプラスチック材料は、使用済み衛生用品由来のプラスチック材料であるにもかかわらず、その不純物が更に非常に少ない。具体的には、本方法で得られるプラスチック材料は、灰分を10質量%以下で含み、好ましくは6質量%以下で含み、より好ましくは4質量%以下で含んでいる。言い換えると、本方法で得られるプラスチック材料は、使用済み衛生製品由来でありながら、硫黄、窒素及びナトリウムのような不純物だけでなく、灰分のような不純物も抑制されている。そのため、本方法で得られるプラスチック材料は、様々な用途に適用したリサイクル用のプラスチック材料ということができる。 In this method, as a preferred embodiment, the produced plastic material has extremely low impurities, even though it is a plastic material derived from used sanitary products. Specifically, the plastic material obtained by this method contains ash in an amount of 10% by mass or less, preferably 6% by mass or less, and more preferably 4% by mass or less. In other words, although the plastic material obtained by this method is derived from used sanitary products, impurities such as sulfur, nitrogen and sodium as well as ash are suppressed. Therefore, the plastic material obtained by this method can be said to be a recycled plastic material that can be applied to various uses.
 ただし、プラスチック材料中の灰分の含有量の測定方法は以下のとおりである。
 <灰分の含有量(質量%)の測定方法>
 灰分は、有機質が灰化されてあとに残った無機質又は不燃性残留物の量を意味し、灰分の含有量(質量%)、すなわち灰分率は、測定すべき試料に含まれる灰分の比率(質量比)を意味する。上記灰分率は、生理処理用品材料規格の「2.一般試験法」の「5.灰分試験法」に従って測定する。具体的には、灰分率は、以下の通り測定される。
 (i)あらかじめ白金製、石英製又は磁製のるつぼ(蓋付き)を、500~550℃で1時間強熱し、放冷後、その質量を精密に量る。
 (ii)120℃で60分乾燥したプラスチック材料2~4gを採取し、るつぼに入れ、その質量を精密に量る。
 (iii)るつぼを、必要ならば蓋をとるか、又はずらして、初めは弱く加熱し、徐々に温度を上げて500~550℃で4時間以上強熱して、炭化物が残らなくなるまで灰化する。
 (iv)放冷後、るつぼの質量を精密に量る。再び残留物を恒量になるまで灰化し、放冷後、るつぼの質量を精密に量る。それら(1)、(2)、(4)の測定値に基づいて、灰分率(質量%)を算出する。
However, the method for measuring the ash content in plastic materials is as follows.
<Method for measuring ash content (mass%)>
Ash content refers to the amount of inorganic or non-combustible residue left after organic matter is incinerated, and the ash content (% by mass), or ash content, is the ratio of ash contained in the sample to be measured ( mass ratio). The ash content is measured in accordance with "5. Ash content test method" in "2. General test methods" of the Material Standard for Sanitary Treatment Products. Specifically, the ash content is measured as follows.
(i) In advance, ignite a platinum, quartz, or porcelain crucible (with a lid) at 500 to 550°C for 1 hour, and after cooling, accurately weigh the mass.
(ii) Collect 2 to 4 g of plastic material that has been dried at 120°C for 60 minutes, place it in a crucible, and accurately weigh its mass.
(iii) Remove or shift the lid if necessary and heat the crucible weakly at first, then gradually increase the temperature and ignite it at 500 to 550°C for 4 hours or more to incinerate until no carbide remains. .
(iv) After cooling, accurately weigh the crucible. The residue is incinerated again until it reaches a constant weight, and after cooling, the mass of the crucible is precisely weighed. Based on the measured values of (1), (2), and (4), the ash content (% by mass) is calculated.
 また、本実施形態では、図1に示すように、本方法は、使用済み衛生用品からパルプ繊維と高吸水性ポリマー(SuperAbsorbent Polymer:SAP)とを別々に回収する工程として、除塵工程S7とSAP分離工程S8と第2酸化剤処理工程S9とパルプ繊維分離工程S10とを更に備えていてもよい。 In addition, in this embodiment, as shown in FIG. 1, the method includes a dust removal step S7 and a step of separately recovering pulp fibers and superabsorbent polymers (SAP) from used sanitary products. The method may further include a separation step S8, a second oxidizing agent treatment step S9, and a pulp fiber separation step S10.
 本実施形態では、第1分離工程S2で分離されたパルプ繊維、高吸水性ポリマー、排泄物及び酸性水溶液を含む混合液は、除塵工程S7で処理される。なお、第2分離工程S3で分離されたパルプ繊維及び高吸水性ポリマーなども、上記混合液に混合されて、除塵工程S7で処理されてもよい。 In the present embodiment, the mixed liquid containing the pulp fibers, superabsorbent polymer, excrement, and acidic aqueous solution separated in the first separation step S2 is processed in the dust removal step S7. Note that the pulp fibers, superabsorbent polymer, and the like separated in the second separation step S3 may also be mixed with the liquid mixture and treated in the dust removal step S7.
 除塵工程S7は、少なくとも一台の分離機(例示:スクリーン分離機、サイクロン分離機)により、第1分離工程S2(及び第2分離工程S3)から供給された混合液から、分離しきれなかった他の資材(収集袋、フィルム、不織布、弾性体など)などの異物を分離する。本実施形態では、除塵工程S7において、スクリーン分離機(目開きが相対的に大)、スクリーン分離機(目開きが相対的に小)及びサイクロン分離機がこの順に配置され、混合液から異物が順次分離される。それにより、異物の少ないパルプ繊維及び高吸水性ポリマーが得られる。異物の少ないパルプ繊維及び高吸水性ポリマーと酸性水溶液(排泄物を含む)との混合液は、SAP分離工程S8へ供給される。 In the dust removal step S7, dust that could not be completely separated from the mixed liquid supplied from the first separation step S2 (and second separation step S3) by at least one separator (example: screen separator, cyclone separator) Separate foreign objects such as other materials (collection bags, films, non-woven fabrics, elastic bodies, etc.). In the present embodiment, in the dust removal step S7, a screen separator (with a relatively large opening), a screen separator (with a relatively small opening), and a cyclone separator are arranged in this order to remove foreign substances from the mixed liquid. Separated sequentially. As a result, pulp fibers and super absorbent polymers with less foreign matter can be obtained. The mixed liquid of the pulp fibers with few foreign substances, the super absorbent polymer, and the acidic aqueous solution (containing excrement) is supplied to the SAP separation step S8.
 SAP分離工程S8は、少なくとも一台の分離機(例示:ドラムスクリーン分離機)により、除塵工程S7から供給された混合液(異物の少ないパルプ繊維及び高吸水性ポリマーを含む)から、高吸水性ポリマーを分離する。本実施形態では、SAP分離工程S8において、ドラムスクリーン分離機により、混合液から高吸水性ポリマー及び酸性水溶液(排泄物を含む)が分離される。それにより、異物の少ない高吸水性ポリマー及び酸性水溶液が得られる。高吸水性ポリマーは、他の分離機(例示:傾斜スクリーン分離機)により、酸性水溶液(液体)から分離されて、取り出される。一方、異物の少ないパルプ繊維(ただし少量の高吸水性ポリマーを含む)は、第2酸化剤処理工程S9へ供給される。 In the SAP separation step S8, at least one separator (example: drum screen separator) extracts a super absorbent liquid from the mixed liquid (containing pulp fibers and a super absorbent polymer with few foreign substances) supplied from the dust removal step S7. Separate the polymer. In this embodiment, in the SAP separation step S8, the superabsorbent polymer and the acidic aqueous solution (including excrement) are separated from the mixed liquid by a drum screen separator. As a result, a superabsorbent polymer and an acidic aqueous solution with few foreign substances can be obtained. The superabsorbent polymer is separated from the acidic aqueous solution (liquid) and taken out by another separator (eg, an inclined screen separator). On the other hand, pulp fibers with few foreign substances (but containing a small amount of super absorbent polymer) are supplied to the second oxidizing agent treatment step S9.
 第2酸化剤処理工程S9は、酸化剤水溶液により、SAP分離工程S8から供給された異物の少ないパルプ繊維(ただし、少量の高吸水性ポリマーを含む)中の高吸水性ポリマーを酸化分解し、可溶化して、パルプ繊維から除去する。本実施形態では、第2酸化剤処理工程S9において、酸化剤としてオゾンを含む酸化剤水溶液を貯留する処理槽に、パルプ繊維が投入され、パルプ繊維中の高吸水性ポリマーが酸化分解され、可溶化されて、不純物のきわめて少ないパルプ繊維が得られる。不純物(高吸水性ポリマーを含む)の少ないパルプ繊維は、酸化剤水溶液と共にパルプ繊維分離工程S10へ供給される。 The second oxidizing agent treatment step S9 oxidizes and decomposes the superabsorbent polymer in the pulp fibers containing few foreign substances (but contains a small amount of superabsorbent polymer) supplied from the SAP separation step S8 using an oxidizing agent aqueous solution, Solubilized and removed from pulp fibers. In the present embodiment, in the second oxidizing agent treatment step S9, pulp fibers are put into a treatment tank that stores an oxidizing agent aqueous solution containing ozone as an oxidizing agent, and the superabsorbent polymer in the pulp fibers is oxidized and decomposed, and the Upon solubilization, pulp fibers with very few impurities are obtained. Pulp fibers containing few impurities (including superabsorbent polymers) are supplied to pulp fiber separation step S10 together with an oxidizing agent aqueous solution.
 第2酸化剤処理工程S9における酸化剤の種類については、第1酸化剤処理工程S5の酸化剤と同様である。本実施形態では、酸化力や殺菌力や漂白力の観点から酸化剤としてオゾンを用いている。酸化剤水溶液中のオゾン濃度は、高吸水性ポリマーを分解することができる濃度であれば、特に限定されないが、例えば10~50質量ppmが挙げられる。濃度が低過ぎないことで、高吸水性ポリマーを完全に可溶化でき、濃度が高過ぎないことで、パルプ繊維に損傷を与えることはない。酸化剤水溶液での処理時間は、高吸水性ポリマーを分解することができる時間であれば、特に限定されないが、酸化剤水溶液中のオゾン濃度が高ければ短く、オゾン濃度が低ければ長くし、典型的には5~300分である。酸化剤水溶液中のオゾン濃度(ppm)と処理工程の処理時間(分)の積(以下「CT値」ともいう。)は、好ましくは100~15000ppm・分である。CT値が小さすぎると、高吸水性ポリマーを完全に可溶化できずパルプ繊維に高吸水性ポリマーが残留するおそれがあり、CT値が大きすぎると、パルプ繊維に損傷を与えるおそれがある The type of oxidizing agent in the second oxidizing agent treatment step S9 is the same as the oxidizing agent in the first oxidizing agent treatment step S5. In this embodiment, ozone is used as an oxidizing agent from the viewpoint of oxidizing power, sterilizing power, and bleaching power. The ozone concentration in the oxidizing agent aqueous solution is not particularly limited as long as it is a concentration that can decompose the superabsorbent polymer, and may be, for example, 10 to 50 mass ppm. A concentration that is not too low allows the superabsorbent polymer to be completely solubilized, and a concentration that is not too high does not damage the pulp fibers. The treatment time with the oxidizing agent aqueous solution is not particularly limited as long as it is enough to decompose the superabsorbent polymer, but the higher the ozone concentration in the oxidizing agent aqueous solution, the longer the ozone concentration. The average time is 5 to 300 minutes. The product of the ozone concentration (ppm) in the oxidizing agent aqueous solution and the treatment time (minutes) of the treatment step (hereinafter also referred to as "CT value") is preferably 100 to 15,000 ppm·min. If the CT value is too small, the superabsorbent polymer may not be completely solubilized and the superabsorbent polymer may remain in the pulp fibers, and if the CT value is too large, there is a risk of damaging the pulp fibers.
 パルプ繊維分離工程S10は、分離機(例示:スクリーン分離機)により、第2酸化剤処理工程S9から供給されたパルプ繊維及び酸化剤水溶液から、パルプ繊維を分離する。このようにして分離、回収されたパルプ繊維は、いわゆるリサイクルパルプ繊維となる。リサイクルパルプ繊維は洗浄水で洗浄されて取り出される。 In the pulp fiber separation step S10, a separator (example: screen separator) separates pulp fibers from the pulp fibers and the oxidizing agent aqueous solution supplied from the second oxidizing agent treatment step S9. The pulp fibers separated and recovered in this manner become so-called recycled pulp fibers. The recycled pulp fibers are washed with washing water and taken out.
 以下、実施例に基づき、本発明を説明するが、本発明は実施例に限定されない。 Hereinafter, the present invention will be explained based on Examples, but the present invention is not limited to the Examples.
 (1)試料
 実施例1:使用済みの使い捨ておむつを原料とし、破砕工程S1~圧搾脱水乾燥工程S6を実行して、プラスチック材料の試料1を得た。
 ただし、第2分離工程S3における酸性水溶液は0.1質量%硫酸水溶液であり、第1酸化剤処理工程S5におけるオゾン濃度及び処理時間(CT値)は、2ppm×20分(40ppm・分)とした。
 実施例2:使用済みの使い捨ておむつを原料とし、破砕工程S1~圧搾脱水乾燥工程S6を実行して、プラスチック材料の試料2を得た。
 ただし、第2分離工程S3における酸性水溶液は0.1質量%硫酸水溶液であり、第1酸化剤処理工程S5(酸化剤(オゾン)水溶液を使用)の代わりに、水処理工程(水のみを使用)を実施した。
(1) Sample Example 1: Using a used disposable diaper as a raw material, a crushing step S1 to a pressing dehydration drying step S6 were performed to obtain a plastic material sample 1.
However, the acidic aqueous solution in the second separation step S3 is a 0.1% by mass sulfuric acid aqueous solution, and the ozone concentration and treatment time (CT value) in the first oxidizing agent treatment step S5 are 2 ppm x 20 minutes (40 ppm min). did.
Example 2: Using a used disposable diaper as a raw material, a crushing step S1 to a pressing dehydration drying step S6 were performed to obtain a plastic material sample 2.
However, the acidic aqueous solution in the second separation step S3 is a 0.1% by mass sulfuric acid aqueous solution, and instead of the first oxidizing agent treatment step S5 (using an oxidizing agent (ozone) aqueous solution), the water treatment step (using only water) ) was carried out.
 (2)評価方法
 (a)定量評価
 試料1(実施例1)に付着し残留する硫黄、窒素、ナトリウム、塩素、パルプ繊維、高吸水性ポリマー、及び灰分の各々の量(質量ppm又は質量%)を評価した。
 試料2(実施例2)に付着し残留する硫黄、窒素、ナトリウムの各々の量(質量ppm)を評価した。
 ただし、それぞれの測定方法(算出方法)は、既述のとおりである。
(2) Evaluation method (a) Quantitative evaluation The amounts of each of sulfur, nitrogen, sodium, chlorine, pulp fibers, super absorbent polymer, and ash remaining on Sample 1 (Example 1) (mass ppm or mass %) ) was evaluated.
The amounts (mass ppm) of each of sulfur, nitrogen, and sodium adhering to and remaining on Sample 2 (Example 2) were evaluated.
However, each measurement method (calculation method) is as described above.
 (3)評価結果
 (a)定量評価
 試料1に残留する硫黄、窒素、ナトリウム、塩素の量は、それぞれ検出限界以下(ただし、検出限界は10ppm)、280ppm、204ppm、570ppmであった。試料1に残留するパルプ繊維及び高吸水性ポリマーの量は、5.0質量%であった。試料1に残留する灰分の量は、3.8質量%であった。したがって、試料1に残留する硫黄、窒素、ナトリウム、塩素、パルプ繊維、高吸水性ポリマー、及び灰分が著しく低減されていた。すなわち、試料1に残留する不純物が著しく低減されていた。
 試料2に残留する硫黄、窒素、ナトリウム量は、それぞれ110ppm、600ppm、60ppmであった。したがって、第1酸化剤処理工程S5(酸化剤(オゾン)水溶液を使用)の代わりに、水溶液処理工程(水のみを使用)を実施した場合でも、試料2に残留する硫黄、窒素、ナトリウムが著しく低減されていた。すなわち、試料2に残留する不純物が著しく低減されていた。
(3) Evaluation results (a) Quantitative evaluation The amounts of sulfur, nitrogen, sodium, and chlorine remaining in Sample 1 were below the detection limit (however, the detection limit was 10 ppm), 280 ppm, 204 ppm, and 570 ppm, respectively. The amount of pulp fibers and superabsorbent polymer remaining in Sample 1 was 5.0% by mass. The amount of ash remaining in Sample 1 was 3.8% by mass. Therefore, the sulfur, nitrogen, sodium, chlorine, pulp fiber, superabsorbent polymer, and ash remaining in Sample 1 were significantly reduced. That is, the impurities remaining in Sample 1 were significantly reduced.
The amounts of sulfur, nitrogen, and sodium remaining in Sample 2 were 110 ppm, 600 ppm, and 60 ppm, respectively. Therefore, even if the aqueous solution treatment step (using only water) is performed instead of the first oxidizing agent treatment step S5 (using an oxidizing agent (ozone) aqueous solution), the sulfur, nitrogen, and sodium remaining in sample 2 are significantly reduced. It had been reduced. That is, the impurities remaining in Sample 2 were significantly reduced.
 本発明の衛生用品は、上述した実施形態に制限されることなく、本発明の目的、趣旨を逸脱しない範囲内において、適宜組合せや変更等が可能である。 The sanitary products of the present invention are not limited to the embodiments described above, and can be combined and changed as appropriate without departing from the purpose and gist of the present invention.
  S2  第1分離工程
  S3  第2分離工程
  S5  第1酸化剤処理工程
S2 First separation step S3 Second separation step S5 First oxidizing agent treatment step

Claims (15)

  1.  マテリアルリサイクル又はケミカルリサイクルに適した使用済み衛生製品由来のプラスチック材料を製造する方法であって、ここで、前記使用済み衛生用品は、排泄物、プラスチック材料、高吸水性ポリマー及びパルプ繊維を含んでおり、
     前記使用済み衛生用品を、前記プラスチック材料を含む第1画分と、前記排泄物、不活化された前記高吸水性ポリマー、及び前記パルプ繊維を含む第2画分と、に分離する第1分離工程と、
     前記第1画分を、物理的衝撃を加えて、前記第1分離工程で分離しきれずに前記第1画分に残存していた前記排泄物、前記高吸水性ポリマー及び前記パルプ繊維と、前記プラスチック材料と、に互いに分離する第2分離工程と、
     分離された前記プラスチック材料に、水溶液を噴射する水溶液処理工程と、
     を備える、
     方法。
    A method for producing plastic materials derived from used sanitary products suitable for material recycling or chemical recycling, wherein the used sanitary products contain excrement, plastic materials, superabsorbent polymers and pulp fibers. Ori,
    a first separation of the used sanitary product into a first fraction containing the plastic material and a second fraction containing the excrement, the inactivated superabsorbent polymer, and the pulp fibers; process and
    The first fraction is subjected to physical impact to remove the excrement, the superabsorbent polymer, and the pulp fibers that were not completely separated in the first separation step and remained in the first fraction; a second separation step of separating the plastic material from each other;
    an aqueous solution treatment step of injecting an aqueous solution onto the separated plastic material;
    Equipped with
    Method.
  2.  前記水溶液処理工程は、分離された前記プラスチック材料に、前記水溶液としての、酸化剤を含む酸化剤水溶液を噴射する酸化剤処理工程を含む、
     請求項1に記載の方法。
    The aqueous solution treatment step includes an oxidizing agent treatment step of injecting an oxidizing agent aqueous solution containing an oxidizing agent as the aqueous solution onto the separated plastic material.
    The method according to claim 1.
  3.  前記第2分離工程は、前記第1画分に、酸性水溶液を噴射しつつ、物理的衝撃を加えて、前記排泄物、前記高吸水性ポリマー及び前記パルプ繊維と、前記プラスチック材料と、に互いに分離する工程を含む、
     請求項1又は2に記載の方法。
    In the second separation step, a physical impact is applied to the first fraction while injecting an acidic aqueous solution to separate the excrement, the superabsorbent polymer, the pulp fibers, and the plastic material from each other. including the step of separating;
    The method according to claim 1 or 2.
  4.  前記水溶液処理工程で処理された前記プラスチック材料を、圧搾脱水乾燥する圧搾脱水乾燥工程を更に備える、
     請求項1又は2に記載の方法。
    Further comprising a compression dehydration drying step of compressing and dehydrating the plastic material treated in the aqueous solution treatment step.
    The method according to claim 1 or 2.
  5.  前記第2分離工程で分離された前記プラスチック材料を、前記水溶液処理工程へ、空気で搬送する搬送工程を更に備える、
     請求項1又は2に記載の方法。
    Further comprising a conveyance step of conveying the plastic material separated in the second separation step to the aqueous solution treatment step by air.
    The method according to claim 1 or 2.
  6.  前記酸化剤処理工程における前記酸化剤は、オゾン、及び過酸化水素のうちの少なくとも一つを含む、
     請求項2に記載の方法。
    The oxidizing agent in the oxidizing agent treatment step includes at least one of ozone and hydrogen peroxide.
    The method according to claim 2.
  7.  前記第1分離工程は、酸性水溶液中で前記高吸水性ポリマーを不活化しつつ、前記使用済み衛生用品を、前記第1画分と、前記第2画分と、に分離する工程を含む、
     請求項1又は2に記載の方法。
    The first separation step includes a step of separating the used sanitary product into the first fraction and the second fraction while inactivating the superabsorbent polymer in an acidic aqueous solution.
    The method according to claim 1 or 2.
  8.  前記第2分離工程における前記物理的衝撃は、空気中で前記第1画分を攪拌する羽根車における回転する羽の衝突により前記第1画分に加えられる、
     請求項1又は2に記載の方法。
    The physical impact in the second separation step is applied to the first fraction by the collision of rotating blades in an impeller that stirs the first fraction in air.
    The method according to claim 1 or 2.
  9.  前記水溶液処理工程で得られる前記プラスチック材料は、ケミカルリサイクル用である、
     請求項1又は2に記載の方法。
    The plastic material obtained in the aqueous solution treatment step is for chemical recycling.
    The method according to claim 1 or 2.
  10.  前記水溶液処理工程で得られる前記プラスチック材料は、マテリアルリサイクル用である、
     請求項1又は2に記載の方法。
    The plastic material obtained in the aqueous solution treatment step is for material recycling,
    The method according to claim 1 or 2.
  11.  前記水溶液処理工程後の前記プラスチック材料は、
      含有する硫黄の割合が500ppm以下であり、
      含有する窒素の割合が2000ppm以下であり、
      含有するナトリウムの割合が500ppm以下である、
     請求項1又は2に記載の方法。
    The plastic material after the aqueous solution treatment step is
    The proportion of sulfur contained is 500 ppm or less,
    The proportion of nitrogen contained is 2000 ppm or less,
    The proportion of sodium contained is 500 ppm or less,
    The method according to claim 1 or 2.
  12.  使用済み衛生用品由来のプラスチック材料であって、
     前記プラスチック材料に含まれる硫黄の割合は500ppm以下であり、
     前記プラスチック材料に含まれる窒素の割合は2000ppm以下であり、
     前記プラスチック材料に含まれるナトリウムの割合は500ppm以下である、
     プラスチック材料。
    A plastic material derived from used sanitary products,
    The proportion of sulfur contained in the plastic material is 500 ppm or less,
    The proportion of nitrogen contained in the plastic material is 2000 ppm or less,
    The proportion of sodium contained in the plastic material is 500 ppm or less,
    plastic material.
  13.  前記プラスチック材料は、ケミカルリサイクル用である、
     請求項12に記載のプラスチック材料。
    the plastic material is for chemical recycling;
    Plastic material according to claim 12.
  14.  前記プラスチック材料は、マテリアルリサイクル用である、
     請求項12に記載のプラスチック材料。
    the plastic material is for material recycling;
    Plastic material according to claim 12.
  15.  高吸水性ポリマー及びパルプ繊維を10質量%以下で含む、
     請求項12に記載のプラスチック材料。
    Contains 10% by mass or less of super absorbent polymer and pulp fiber,
    Plastic material according to claim 12.
PCT/JP2023/015928 2022-04-27 2023-04-21 Method for producing plastic material derived from used sanitary product suitable for material recycling or chemical recycling, and plastic material derived from used sanitary product WO2023210528A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022073775 2022-04-27
JP2022-073775 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210528A1 true WO2023210528A1 (en) 2023-11-02

Family

ID=88518861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015928 WO2023210528A1 (en) 2022-04-27 2023-04-21 Method for producing plastic material derived from used sanitary product suitable for material recycling or chemical recycling, and plastic material derived from used sanitary product

Country Status (1)

Country Link
WO (1) WO2023210528A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269746A (en) * 1993-03-11 1994-09-27 Dana L Watson Method and equipment for recycling waste
JP2000084533A (en) * 1998-09-16 2000-03-28 Takeshi Cho Method of regenerating material used in spent paper diaper
JP2001310178A (en) * 2000-04-28 2001-11-06 Daiki:Kk Method for recovering material of stained sanitary article
JP2009183893A (en) * 2008-02-07 2009-08-20 Samuzu:Kk Method of treating used paper diaper
JP2018024964A (en) * 2016-08-05 2018-02-15 ユニ・チャーム株式会社 Method for recovering pulp fiber from used absorptive article
WO2022085359A1 (en) * 2020-10-20 2022-04-28 ユニ・チャーム株式会社 Method for recovering plastic material from used nonwoven faric product which contains used absorent article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269746A (en) * 1993-03-11 1994-09-27 Dana L Watson Method and equipment for recycling waste
JP2000084533A (en) * 1998-09-16 2000-03-28 Takeshi Cho Method of regenerating material used in spent paper diaper
JP2001310178A (en) * 2000-04-28 2001-11-06 Daiki:Kk Method for recovering material of stained sanitary article
JP2009183893A (en) * 2008-02-07 2009-08-20 Samuzu:Kk Method of treating used paper diaper
JP2018024964A (en) * 2016-08-05 2018-02-15 ユニ・チャーム株式会社 Method for recovering pulp fiber from used absorptive article
WO2022085359A1 (en) * 2020-10-20 2022-04-28 ユニ・チャーム株式会社 Method for recovering plastic material from used nonwoven faric product which contains used absorent article

Similar Documents

Publication Publication Date Title
US10961658B2 (en) Method for recovering pulp fiber from used sanitary product and recycled pulp obtained thereby
RU2112096C1 (en) Method of treatment of hygienic products from absorbing paper, method of treatment of superabsorbing polymer, solidified superabsorbing polymer and device for treatment of hygienic products
JP7168350B2 (en) Method and system for recovering pulp fibers from used absorbent articles
JP5483147B2 (en) How to recover the material from contaminated sanitary goods
JP6843030B2 (en) Methods and systems for recovering pulp fibers and superabsorbent polymers from used absorbent articles
JP6762287B2 (en) Methods and systems for recovering pulp fibers from used absorbent articles
JP6465917B2 (en) Method for recovering components from used absorbent articles
JP7231522B2 (en) Method for producing regenerated superabsorbent polymer, method for producing superabsorbent polymer using regenerated superabsorbent polymer, and regenerated superabsorbent polymer
WO2019123765A1 (en) Recycled pulp fiber manufacturing method, use of peracid for inactivating and degrading high water-absorption polymer, and peracid-containing agent for inactivating and degrading high water-absorption polymer
JP3222462B2 (en) Processing of absorbent physiological paper products
JP7446384B2 (en) Method and system for recovering pulp fibers from used absorbent articles
WO2019123766A1 (en) Recycled pulp fiber manufacturing method
JP7379076B2 (en) Method for producing biogas using used sanitary products
JP2003200147A (en) Method for recovering raw material from fouled hygienic article
WO2022085359A1 (en) Method for recovering plastic material from used nonwoven faric product which contains used absorent article
WO2023210528A1 (en) Method for producing plastic material derived from used sanitary product suitable for material recycling or chemical recycling, and plastic material derived from used sanitary product
WO2020096014A1 (en) Method for manufacturing pulp fibers for cellulose nanofiberization
WO2020217757A1 (en) Method for producing recycled pulp fiber from used absorbent article containing highly water-absorbent polymer, pulp fiber, and excrement
US20200238574A1 (en) Method for recovering pulp fiber from used sanitary product and recycled pulp obtained thereby
JP4340721B2 (en) How to recover the material from contaminated sanitary goods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796270

Country of ref document: EP

Kind code of ref document: A1