WO2019123765A1 - Recycled pulp fiber manufacturing method, use of peracid for inactivating and degrading high water-absorption polymer, and peracid-containing agent for inactivating and degrading high water-absorption polymer - Google Patents

Recycled pulp fiber manufacturing method, use of peracid for inactivating and degrading high water-absorption polymer, and peracid-containing agent for inactivating and degrading high water-absorption polymer Download PDF

Info

Publication number
WO2019123765A1
WO2019123765A1 PCT/JP2018/036906 JP2018036906W WO2019123765A1 WO 2019123765 A1 WO2019123765 A1 WO 2019123765A1 JP 2018036906 W JP2018036906 W JP 2018036906W WO 2019123765 A1 WO2019123765 A1 WO 2019123765A1
Authority
WO
WIPO (PCT)
Prior art keywords
peracid
acid
aqueous solution
superabsorbent polymer
polymer
Prior art date
Application number
PCT/JP2018/036906
Other languages
French (fr)
Japanese (ja)
Inventor
孝義 小西
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Publication of WO2019123765A1 publication Critical patent/WO2019123765A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/26Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing carboxylic acid groups, their anhydrides or esters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • D21B1/30Defibrating by other means
    • D21B1/32Defibrating by other means of waste paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/02Working-up waste paper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/64Paper recycling

Definitions

  • the present disclosure relates to a process for the production of recycled pulp fibers, the use of peracids for the inactivation and degradation of superabsorbent polymers, and inactivation and degradation agents for superabsorbent polymers comprising peracids.
  • Patent Document 1 discloses a method of recovering pulp fibers from used sanitary products containing pulp fibers and super absorbent polymer, and producing recycled pulp reusable as a sanitary product, which method is used
  • Used sanitary articles are pulp fibers and other articles by applying physical force to used sanitary products in an aqueous solution containing polyvalent metal ions or an acidic aqueous solution having a pH of 2.5 or less.
  • the process of decomposing into materials, the process of separating pulp fibers from the mixture of pulp fibers and other materials generated in the decomposition process, and the process of treating the separated pulp fibers with an ozone-containing aqueous solution having a pH of 2.5 or less A method is disclosed characterized in that.
  • Patent Document 1 a step of deactivating a superabsorbent polymer using an aqueous solution containing polyvalent metal ions or an acidic aqueous solution having a pH of 2.5 or less, and an ozone-containing aqueous solution having a pH of 2.5 or less And a step of decomposing the activated superabsorbent polymer with a plurality of different agents, ie, an aqueous solution containing a divalent metal ion or an acidic aqueous solution having a pH of 2.5 or less (specifically, a polyvalent metal ion or acid).
  • a plurality of different agents ie, an aqueous solution containing a divalent metal ion or an acidic aqueous solution having a pH of 2.5 or less (specifically, a polyvalent metal ion or acid).
  • ozone-containing aqueous solution specifically, ozone
  • ozone having a pH of 2.5 or less
  • the present disclosure aims to provide a method for producing recycled pulp fibers in which the inactivation and degradation of superabsorbent polymer can be easily carried out using a single agent.
  • the present inventors are a method of producing recycled pulp fibers from used sanitary products, comprising pulp fibers and a superabsorbent polymer, comprising the pulp fibers and a superabsorbent polymer having an acid group.
  • the hygienic article constituent material which constitutes the above-mentioned hygienic article is immersed in a peroxy acid containing aqueous solution containing a peroxy acid to inactivate the above-mentioned super absorbent polymer, and at the same time the super absorbent polymer is deactivated which decomposes the above super absorbent polymer
  • the method includes a decomposition step, and a recycled pulp fiber recovery step of recovering the recycled pulp fibers from the peroxy acid-containing aqueous solution subjected to the superabsorbent polymer inactivation and decomposition step.
  • the method for producing recycled pulp fibers of the present disclosure can easily carry out the inactivation and decomposition of the superabsorbent polymer using a single agent.
  • FIG. 1 is a block diagram of a system 1 for implementing the method according to one of the embodiments of the present disclosure.
  • FIG. 2 is a schematic view showing a configuration example of the bag removing device 11 and the crushing device 12 of FIG.
  • FIG. 3 is a flow chart illustrating a method of using the system 1 to produce recycled pulp fibers from used sanitary products.
  • “Inactivation” with respect to a super absorbent polymer is preferably 50 times or less, more preferably 30 times or less, of the super absorbent polymer retaining excrement and the like. More preferably, adjustment is made to have an absorption capacity of 25 times or less, for example, release of retained excrement, suppression of absorption of a peracid-containing aqueous solution, and the like.
  • peracid-containing aqueous solution means an aqueous solution containing a peracid and / or a peracid-derived acid.
  • the peroxy acid-containing aqueous solution at the time of immersing the sanitary product component constituting the sanitary product contains a peracid.
  • the peracid-containing aqueous solution after decomposing the superabsorbent polymer, and the peracid-containing aqueous solution in the recycled pulp fiber recovery step are peracids depending on the degree of consumption of the peracid.
  • the acid contained in the contained aqueous solution may vary. Specifically, when the peracid oxidizes the superabsorbent polymer and the like and is completely consumed, the peracid-containing aqueous solution contains no peracid and contains a peracid-derived acid. In addition, when the peracid oxidizes the superabsorbent polymer and the like but is not completely consumed, the peracid-containing aqueous solution contains a peracid and a peracid-derived acid.
  • a method of producing recycled pulp fibers from used sanitary goods comprising pulp fibers and superabsorbent polymers comprising: The hygienic article constituent material which constitutes the above-mentioned hygienic goods which contains the above-mentioned pulp fiber and the super-absorbent polymer which has an acid group is immersed in the peroxy acid containing aqueous solution containing peroxy acid, and the above-mentioned super-absorbent polymer is inactivated.
  • the peracid in the superabsorbent polymer inactivation and decomposition step, not only acts as an inactivating agent that inactivates the superabsorbent polymer. Since the peracid also acts as a decomposing agent capable of decomposing the superabsorbent polymer, and inactivation and degradation of the superabsorbent polymer can be carried out in a single step, the productivity of recycled pulp fibers can be increased. Excellent.
  • the peracid since the peracid has an acid dissociation constant (pK a , in water) smaller than the acid group of the superabsorbent polymer, the peracid before oxidizing the superabsorbent polymer is not a superabsorbent polymer. It can have a higher effect as an activating inactivating agent.
  • pK a acid dissociation constant
  • the peracid from the acid generated from the peracid has the superabsorbent small acid dissociation constant than the acid group of the polymer (pK a, water), method according to embodiment 1 or 2.
  • the peracid derived acids because it has a high water-absorbing polymers a small acid dissociation constant than acid groups (pK a, water), peracids derived acid produced after the peracid to oxidize the superabsorbent polymer
  • pK a acid groups
  • the above-mentioned hygienic goods constituent material is the above-mentioned hygienic goods
  • the above-mentioned method immerses the above-mentioned hygienic article constituent material in the above-mentioned peroxy acid containing aqueous solution in the above-mentioned super absorbent polymer inactivation and decomposition step
  • the above-mentioned pulp fiber and super-absorbent polymer are removed among the above-mentioned hygienic article constituent materials Further including a removal step for removing In the superabsorbent polymer inactivation and decomposition step, after the removal step, a peracid is added to the peracid-containing aqueous solution,
  • the method according to any one of Aspects 1-3.
  • the sanitary product component material to be immersed in the aqueous solution containing the peroxy acid is a sanitary product, and the pulp fiber and the highly water-absorptive polymer of the component products can be used in the above-mentioned superabsorbent polymer inactivation and decomposition steps.
  • the method further includes a removal step of removing anything, and since the peracid is added to the peracid-containing aqueous solution after the removal step, the peracid can effectively decompose the superabsorbent polymer as a decomposing agent.
  • the above-mentioned hygienic goods constituent material is the above-mentioned hygienic goods
  • the above-mentioned method immerses the above-mentioned hygienic article constituent material in the above-mentioned peroxy acid containing aqueous solution in the above-mentioned super absorbent polymer inactivation and decomposition step
  • the above-mentioned pulp fiber and super-absorbent polymer are removed among the above-mentioned hygienic article constituent materials Further including a removal step for removing After the removal step in the superabsorbent polymer inactivation and decomposition step, raising the temperature of the peroxy acid-containing aqueous solution,
  • the method according to any one of aspects 1-4.
  • the sanitary product component material to be immersed in the aqueous solution containing the peroxy acid is a sanitary product, and the pulp fiber and the highly water-absorptive polymer of the component products can be used in the above-mentioned superabsorbent polymer inactivation and decomposition steps.
  • the method further includes a removal step of removing anything, and the temperature of the aqueous solution containing peracid is increased after the removal step, so that the peracid acts as a decomposing agent, that is, the oxidation of the superabsorbent polymer, and the superabsorbent It can promote the degradation of the polymer.
  • the recycling pulp fiber in the recycling pulp fiber recovery step, since the peracid-derived acid generated from the peracid is left in the recycling pulp fiber, the recycling pulp fiber can be provided with an antimicrobial property.
  • the peracid (and the peroxyacid derived acid) not only acts as an inactivating agent that inactivates the super absorbent polymer, but also that the peracid acts as a decomposing agent that degrades the super absorbent polymer Can.
  • the above-mentioned inactivating and decomposing agents can not only inactivate the superabsorbent polymer but also decompose the superabsorbent polymer.
  • a method of producing recycled pulp fibers from used sanitary goods including the pulp fiber of the present disclosure and the superabsorbent polymer includes the following steps. -The sanitary goods constituent material which constitutes the above-mentioned hygiene goods which contains the above-mentioned pulp fiber and a super-absorbent polymer which has an acid group is immersed in the peroxy acid containing aqueous solution containing peroxy acid, and the above-mentioned superabsorbent polymer is inactivated.
  • Superabsorbent polymer inactivation and decomposition step (hereinafter referred to as “superabsorbent polymer inactivation and decomposition step”)
  • Recycled pulp fiber recovery step (hereinafter sometimes referred to as “recycled pulp fiber recovery step”) which recovers the recycled pulp fiber from the aqueous solution containing peroxy acid which has been subjected to the super absorbent polymer inactivation and decomposition step
  • the sanitary article construction material containing pulp fibers and the superabsorbent polymer having an acid group is immersed in a peroxy acid containing aqueous solution to inactivate the superabsorbent polymer. Disassemble super absorbent polymer.
  • a peracid and / or a peracid-derived acid generated from the peracid can act as an inactivating agent for deactivating the superabsorbent polymer
  • the peracid is a superabsorbent polymer Is not particularly limited as long as it can act as a decomposing agent that oxidizes and decomposes the superabsorbent polymer, for example, percarboxylic acids (eg, peracetic acid, perbenzoic acid, metachloroperbenzoic acid), Persulfonic acid (eg, persulfuric acid, methanepersulfonic acid, trifluoromethanepersulfonic acid, p-toluenepersulfonic acid), perphosphoric acid and the like, and metal salts thereof and the like can be mentioned.
  • percarboxylic acids eg, peracetic acid, perbenzoic acid, metachloroperbenzoic acid
  • Persulfonic acid eg, persulfuric acid, me
  • peracid-derived acid examples include carboxylic acids (percarboxylic acids) such as acetic acid (peracetic acid), benzoic acid (perbenzoic acid), metachlorobenzoic acid (metachloroperbenzoic acid), sulfonic acid (Persulfonic acid), for example, sulfuric acid (persulfuric acid), methanesulfonic acid (methanepersulfonic acid), trifluoromethanesulfonic acid (trifluoromethanepersulfonic acid), p-toluenesulfonic acid (p-toluenepersulfonic acid), Phosphoric acid (perphosphoric acid) is mentioned.
  • carboxylic acids percarboxylic acids
  • acetic acid peracetic acid
  • benzoic acid perbenzoic acid
  • metachlorobenzoic acid metachloroperbenzoic acid
  • sulfonic acid Persulfonic acid
  • sulfuric acid persulfuric acid
  • the peracid may be added as a mixture of a peracid derived acid and hydrogen peroxide.
  • the peracid when the peracid is peracetic acid, the peracid may be added as a mixed aqueous solution of acetic acid which is a peracid-derived acid and hydrogen peroxide. This is from the viewpoint of stably adding (storing) the peracid.
  • the peracid preferably has a smaller acid dissociation constant (pKa, in water) than the acid group of the superabsorbent polymer. By doing so, the action of the peracid itself as an inactivating agent can be further enhanced.
  • pKa acid dissociation constant
  • the largest acid dissociation among the acid dissociation constants (pK a , water) of the peracids constant (pK a, water) is, when the acid dissociation constant (pK a, water) of the acid groups of the superabsorbent polymer is preferably smaller than, and the superabsorbent polymer has a plurality of types of acid groups, the acid dissociation constant (pK a in water) peracids greatest acid dissociation constant (pK a in water) out of the smallest acid dissociation constant (pK a of the superabsorbent polymer is more acid groups, in water It is preferable that it is smaller than. It is from the viewpoint of the inactivation efficiency of the super absorbent polymer.
  • the peracid-derived acid generated from the peracid have an acid dissociation constant (pK a , in water) smaller than the acid group of the superabsorbent polymer.
  • pK a acid dissociation constant
  • the acid dissociation constant of the peracid-derived acid (pK a , in water) the biggest acid dissociation constant (pK a, water) is an acid dissociation constant (pK a, water) of the acid groups of the superabsorbent polymer is preferably smaller than, and acid superabsorbent polymer is more of If with the above-mentioned acid dissociation constant of peracid from the acid (pK a, water) the largest acid dissociation constant of (pK a, water) is, the superabsorbent polymer is smallest among the plurality of kinds of groups acid dissociation constant (pK a, water) is preferably less than. It is from the viewpoint of the inactivation efficiency of the super absorbent polymer.
  • the acid dissociation constant (pk a , in water) the value described in the Electrochemical Handbook edited by the Institute of Electrochemical Society can be adopted. According to the Electrochemical Handbook, the acid dissociation constants (pk a , in water, 25 ° C.) of the major compounds are as follows: [Organic acid] - tartaric acid: 2.99 (pK a1), 4.44 (pK a2) - malic acid: 3.24 (pK a1), 4.71 (pK a2) Citric acid: 2.87 (pK a1), 4.35 (pK a2), 5.69 (pK a3) [Inorganic acid] -Sulfuric acid: 1.99
  • the acid dissociation constant (pk a , in water) of an acid not described in the Electrochemical Handbook can be determined by measurement.
  • an apparatus which can measure the acid dissociation constant (pk a , in water) of an acid for example, a compound physical property evaluation analysis system manufactured by Sirius, T3 can be mentioned.
  • the superabsorbent polymer is not particularly limited as long as it is used in the art as a superabsorbent polymer containing an acid group, and examples of the acid group include carboxyl. Groups, sulfo groups, etc. are mentioned, and a carboxyl group is preferable.
  • Examples of highly water-absorptive polymers containing a carboxyl group include those of polyacrylates and polyanhydrides, and examples of highly water-absorptive polymers containing sulfo and the like include polysulphonates. It can be mentioned.
  • the pulp fiber is not particularly limited as long as it can be contained in a sanitary product.
  • the superabsorbent polymer inactivation and degradation steps are preferably performed at a predetermined pH.
  • the predetermined pH is preferably 4.5 or less, more preferably 4.0 or less, still more preferably 3.5 or less, and still more preferably 3.0 or less. If the predetermined pH is too high, the inactivation of the superabsorbent polymer may be insufficient. Also, the predetermined pH is preferably 0.5 or more, and more preferably 1.0 or more. If the predetermined pH is too low, the recycled pulp fibers may be damaged.
  • prescribed pH means the value in 25 degreeC.
  • the predetermined pH described above can be measured, for example, using twin pH meter AS-711 manufactured by Horiba, Ltd.
  • the manufacturing method of the present disclosure it is preferable to satisfy at least the predetermined pH at the start of the superabsorbent polymer inactivation and decomposition steps, for example, when immersing the sanitary product component in a peroxy acid containing aqueous solution.
  • the production efficiency of the method for producing a recycled pulp of the present disclosure is reduced, and thus recycled pulp fibers to be produced, The super absorbent polymer may remain.
  • the predetermined pH be satisfied at the end of the superabsorbent polymer inactivation and decomposition steps, for example, when the manufactured recycled pulp fiber is taken out of the aqueous solution containing peracid. This is from the viewpoint of continuing to inactivate the remaining super absorbent polymer, and from the viewpoint of leaving the acid derived from the peroxy acid to the manufactured recycled pulp fiber and imparting the antibacterial property to the recycled pulp fiber.
  • a sanitary article construction material containing pulp fiber and superabsorbent polymer is put into a tank filled with a peroxy acid containing aqueous solution, and the peroxy acid containing aqueous solution is treated at room temperature. Stirring for about 5 to 60 minutes at (25 ° C.) can inactivate the superabsorbent polymer, oxidize the superabsorbent polymer, and decompose the superabsorbent polymer.
  • the specific method is not particularly limited as long as the sanitary product component can be immersed in the peroxy acid-containing aqueous solution.
  • the component The peracid-containing aqueous solution may be introduced into the tank in which the sanitary product construction material is disposed.
  • the sanitary product is not particularly limited as long as it contains pulp fibers and a superabsorbent polymer, and, for example, disposable diapers, disposable shorts, sanitary napkins, panty liners, urine absorbing pads, bed sheets, pets Sheet etc. may be mentioned.
  • Examples of the above-mentioned sanitary goods include those containing a liquid-permeable sheet, a liquid-impermeable sheet, and an absorbent (absorbent core and core wrap) therebetween.
  • the sanitary product component in the superabsorbent polymer inactivation and degradation step is a mixture of pulp fibers and the superabsorbent polymer, for example, an absorbent core removed from a used sanitary product.
  • the sanitary product component may be the sanitary product itself.
  • the sanitary goods component material to be immersed in the aqueous solution containing peroxy acid is referred to as additional material (hereinafter "non-specific material")
  • additional material hereinafter "non-specific material”
  • non-specific material for example, when including a liquid-permeable sheet, a liquid-impermeable sheet, etc., for example, when immersing the sanitary goods itself as a sanitary goods constituent material in a peroxy acid containing aqueous solution, a superabsorbent polymer
  • the inactivation and degradation steps can further include a removal substep of removing non-specific material (hereinafter sometimes referred to as "removal substep"). By doing so, the peracid can suppress oxidation of non-specific materials, and the peracid can efficiently oxidize the superabsorbent polymer.
  • all of the non-specific materials may be removed from the aqueous solution containing the specific materials, but it is practically difficult to remove all of the non-specific materials.
  • a part of non-specific material may remain in the aqueous solution containing peracid.
  • the superabsorbent polymer inactivation and degradation step further comprises a removal substep
  • the concentration of peracid in the aqueous solution containing peracid can be increased after performing the removal substep.
  • the action as a decomposing agent by peracid specifically, the oxidizing power can be increased, and the peracid can efficiently oxidize the superabsorbent polymer.
  • the total molar concentration of peracid and peracid-derived acid (hereinafter "peracidic acid”) in the aqueous solution containing peracid is removed
  • the total molar concentration of the peroxyacid in the aqueous solution containing peroxyacid immediately after completion can be increased by preferably 2 to 100 times, more preferably 3 to 50 times, and still more preferably 4 to 20 times. From the above point of view.
  • means for increasing the total molar concentration of the peracid acid include concentration of the peracid acid by heating of the peracid-containing aqueous solution, addition of the peracid to the peracid-containing aqueous solution, and the like.
  • the temperature of the aqueous solution containing peracid may be raised after the removal substep.
  • the temperature of the peroxy acid-containing aqueous solution is increased, the amount of radicals generated from the peroxyacid increases due to the thermal energy by heating, so the oxidative power of the peroxyacid increases, and the decomposition of the superabsorbent polymer can be promoted. .
  • the superabsorbent polymer inactivation and decomposition step prior to the removal substep is mainly based on the inactivation of superabsorbent polymer, in other words, the function as the peracid and / or the peracid derived acid as the activator. , For example, at room temperature.
  • the temperature can preferably be controlled at a temperature of 10 to 30 ° C, more preferably 15 to 25 ° C. By controlling the temperature within the above range, the action of the peracid as a decomposing agent can be suppressed, and the action of the peracid on non-specific materials as a decomposing agent can be suppressed.
  • the temperature can be managed preferably at a temperature of 30 to 70 ° C., more preferably 40 to 60 ° C. higher.
  • recycled pulp fiber recovery step recycled pulp fibers are recovered from the peroxy acid-containing aqueous solution that has undergone the superabsorbent polymer inactivation and decomposition steps.
  • Recovery of the recycled pulp fiber can be used without particular limitation as long as it is an apparatus capable of solid-liquid separation, and examples of the apparatus capable of solid-liquid separation include a rotary drum screen, an inclined screen, a vibrating screen and the like.
  • the recycled pulp fiber recovery step it is preferable to leave the peracid-derived acid in the recovered recycled pulp fiber. By doing so, it is possible to impart the antibacterial property to the recycled pulp fiber, and for example, even when the recycled pulp fiber is stored in a wet state, it is possible to suppress the growth of mold and the like.
  • the present disclosure relates to the use of peracids for the deactivation and degradation of superabsorbent polymers with acid groups.
  • the peracid and the peroxyacid derived acid
  • the peracid not only acts as an inactivating agent that inactivates the super absorbent polymer, but also that the peracid acts as a decomposing agent that degrades the super absorbent polymer Can inactivate and degrade the superabsorbent polymer.
  • the present disclosure also relates to the use of peracid for producing recycled pulp fibers from sanitary product construction materials comprising pulp fibers and superabsorbent polymers having acid groups.
  • the peracid (and the peroxyacid derived acid) not only acts as an inactivating agent that inactivates the super absorbent polymer, but also that the peracid acts as a decomposing agent that degrades the super absorbent polymer
  • Peracid-derived acid can impart antimicrobial properties to the recycled pulp fibers. Since the said use is demonstrated by "the manufacturing method of recycle pulp fiber", description here is abbreviate
  • the present disclosure relates to deactivating and decomposing agents for superabsorbent polymers having acid groups, including peracids.
  • the above-mentioned inactivating and decomposing agents can not only inactivate the superabsorbent polymer but also decompose the superabsorbent polymer.
  • the present disclosure also relates to a superabsorbent polymer inactivating and decomposing agent in a sanitary product construction material comprising pulp fibers and a superabsorbent polymer having acid groups, comprising a peracid.
  • the above-mentioned inactivating and decomposing agents can not only inactivate the superabsorbent polymer, but can decompose the superabsorbent polymer as well as impart antimicrobial properties to the recycled pulp fibers.
  • the said inactivation and decomposition agent since it is demonstrated by "the manufacturing method of a recycling pulp fiber", description here is abbreviate
  • FIG. 1 is a block diagram of a system 1 for implementing the manufacturing method according to one of the embodiments of the present disclosure.
  • FIG. 1 is a diagram for explaining a manufacturing method according to one of the embodiments of the present disclosure, and does not limit the present disclosure in any way.
  • the system 1 includes a bag removing device 11, a shredding device 12, a first separating device 13, a first dust removing device 14, a second dust removing device 15, a third dust removing device 16, a disassembling device 17, and a second And a separation device 18.
  • the bag-breaking device 11 is filled with a peroxy acid-containing aqueous solution, and forms an opening in the collection bag containing used sanitary goods in the peroxy acid-containing aqueous solution.
  • the crusher 12 crushes the used sanitary goods sunk below the surface of the aqueous solution containing the peroxy acid together with the collection bag.
  • FIG. 2 is a schematic view showing a configuration example of the bag removing device 11 and the crushing device 12 of FIG.
  • the bag-breaking apparatus 11 is filled with a peroxy acid-containing aqueous solution B, forms an opening in the collection bag A that has settled in the peroxy acid-containing aqueous solution B, contains used sanitary goods, A collection bag 91 is formed.
  • the bag-breaking apparatus 11 includes a solution tank V and an aperture forming part 50.
  • the solution tank V stores the peracid-containing aqueous solution B.
  • the hole forming portion 50 is provided in the solution tank V, and when the collection bag A is put in the solution tank V, a hole is formed on the surface of the collection bag A in contact with the aqueous solution B containing peroxy acid. Do.
  • the hole forming unit 50 includes a feeding unit 30 and a bag opening 40.
  • the feed unit 30 feeds (pulls) the collection bag A (physically and forcibly) into the peroxy acid-containing aqueous solution B in the solution tank V.
  • the feed unit 30 is, for example, a stirrer, and includes a stirring blade 33, a support shaft (rotary shaft) 32 supporting the stirring blade 33, and a drive device 31 rotating the support shaft 32 along an axis.
  • the stirring blade 33 rotates around the rotation shaft (support shaft 32) by the drive device 31 to generate a swirling flow in the peroxy acid-containing aqueous solution B.
  • the feed unit 30 draws the collection bag A toward the bottom of the peroxy acid-containing aqueous solution B (solution tank V) by the swirling flow.
  • the tear-off portion 40 is disposed at the lower portion (preferably the bottom) of the solution tank V, and the tear-off blade 41, a support shaft (rotation shaft) 42 for supporting the tear-off blade 41, and the support shaft 42 And a driving device 43 which rotates along with it.
  • the tear-off blade 41 forms an opening in the collection bag A moved to the lower part of the aqueous solution B (solution tank V) by rotating around the rotation shaft (support shaft 42) by the drive device 43. .
  • the crushing apparatus 12 crushes the used sanitary goods in the collection bag A sunk below the surface of the aqueous solution B containing peroxy acid together with the collection bag A.
  • the crushing apparatus 12 includes a crushing unit 60 and a pump 63.
  • the crushing part 60 is connected by the solution tank V and the pipe 61, includes the used sanitary goods discharged from the solution tank V, and includes the collection bag 91 having the opening part, including the collection bag A, including the peroxide
  • the aqueous solution B is crushed to form a peracid-containing aqueous solution 92 containing the crushed material.
  • the crusher 60 may be a twin-screw crusher (for example, a twin-screw rotary crusher, a twin-screw differential crusher, a twin-screw shear crusher). Company-made).
  • the pump 63 is connected to the crushing unit 60 by a pipe 62, and draws out from the crushing unit 60 the aqueous solution containing peracid containing the crushed material obtained in the crushing unit 60 and delivers it to the next process.
  • the crushed material includes materials including pulp fiber, super absorbent polymer, material of collecting bag A, film, non-woven fabric, elastic body and the like.
  • the first separation device 13 contains the crushed material while stirring the peracid-containing aqueous solution 92 containing the crushed material obtained by the crushing device 12 to remove dirt (excrements etc.) from the crushed material. From the aqueous solution containing peroxy acid 92, the aqueous solution containing peroxy acid 93 containing pulp fibers and super absorbent polymer from which foreign matter has been removed is separated and sent to the first dust removing device.
  • Examples of the first separation device 13 include a washing tub and a dewatering tub and a washing machine provided with a water tub surrounding the same.
  • a washing tank and dewatering tank (rotary drum) is used as a washing tank and sieving tank (separation tank).
  • Examples of the washing machine include a horizontal washing machine ECO-22B (manufactured by Inamoto Seisakusho Co., Ltd.).
  • the first dust remover 14 further removes foreign matter present in the aqueous solution containing peroxyacid 93 from which foreign matter has been removed by a screen having a plurality of openings, and foreign matter including pulp fiber and superabsorbent polymer is further removed.
  • a peroxy acid-containing aqueous solution 94 is formed.
  • the first dust remover 14 include a screen separator (coarse screen separator), and specifically, for example, a pack pulper (manufactured by Satomi Seisakusho Co., Ltd.).
  • the second dust remover 15 removes finer foreign particles from the peroxy acid-containing aqueous solution 94 from the first dust remover 14 which has been removed from the first dust remover 14 by a screen having a plurality of openings, thereby removing pulp fibers and high water absorption. To form a peracid-containing aqueous solution 95 from which foreign substances have been further removed, including a hydrophobic polymer.
  • Examples of the second dust remover 15 include a screen separator, and more specifically, for example, Lamo Screen (manufactured by Aikawa Tekko Co., Ltd.).
  • the third dust remover 16 further removes foreign matter from the peroxy acid-containing aqueous solution 95 which is sent from the second dust remover 15 by centrifugal separation and from which foreign matter is further removed, and contains pulp fibers and a superabsorbent polymer And forms an aqueous solution containing peracid 96 from which foreign matter is further removed.
  • Examples of the third dust remover 16 include a cyclone separator, specifically, ACT low concentration cleaner (manufactured by Aikawa Iron Works Co., Ltd.).
  • the peracid-containing aqueous solution 96 from the third dust removing device 16 from which foreign substances are further removed is heated, and the superabsorbent polymer is oxidized and decomposed by the oxidizing power of the peracid to increase pulp fiber Remove the water absorbing polymer. Then, the peracid-containing aqueous solution 97 containing recycled pulp fibers is discharged.
  • the second separation device 18 separates the recycled pulp fibers from the peroxy acid-containing aqueous solution 97 containing recycled pulp fibers that has been treated by the decomposition device 17 using a screen having a plurality of openings.
  • Examples of the second separation device 18 include a screen separator.
  • FIG. 3 is a flow chart illustrating a method of producing recycled pulp fibers from used sanitary products using the system 1 shown in FIG.
  • the flowchart shown in FIG. 3 is an example and does not limit the present disclosure.
  • FIG. 3 shows the superabsorbent polymer inactivation and decomposition step S1, the removal substep S1 S , and the recycled pulp fiber recovery step S2.
  • the process P16 and the decomposition process P17 are included, and the removal sub-step S1 S includes the first separation process P13, the first dust removal process P14, the second dust removal process P15, and the third dust removal process P16.
  • Be The recycled pulp fiber recovery step S2 includes a second separation step P18. The details will be described below.
  • the opening portion forming step P11 is performed using the bag opening device 11.
  • the collection bag A in which the used sanitary goods are enclosed is put into the solution tank V storing the peracid-containing aqueous solution B, and an opening is formed on the surface of the collection bag A in contact with the peroxy acid-containing aqueous solution B.
  • the aqueous solution B containing peracid has a periphery of the collection bag A so that the dirt, fungi, odor and the like of the used sanitary goods in the collection bag A are not released to the outside when an opening is formed in the collection bag A. Seal around.
  • the gas in the collection bag A escapes to the outside of the collection bag A, and the specific gravity of the collection bag A becomes heavier than the peroxy acid-containing aqueous solution B.
  • A precipitates in the peracid-containing aqueous solution B.
  • the peracid in the peracid-containing aqueous solution B acts as an inactivating agent, inactivates the superabsorbent polymer in the used sanitary goods in the collection bag A, and acts as a decomposing agent, thereby causing high water absorption. Oxidizable polymer begins to degrade.
  • a peracid-derived acid generated by oxidizing a hygienic product constituent material such as a superabsorbent polymer or the like by the peracid oxidizes the superabsorbent polymer as an inactivating agent.
  • the superabsorbent polymer in the used sanitary goods is inactivated and its ability to absorb water is reduced, so that the superabsorbent polymer is dewatered and the particle size is reduced, making it easy to handle in the subsequent steps. Process efficiency is improved.
  • peracid used for inactivation, there is an advantage that ash does not remain in the pulp fiber as compared with the case of inactivating the superabsorbent polymer using lime, calcium chloride or the like, and the degree of inactivation (particle diameter, There is an advantage that it is easy to adjust the size of specific gravity etc. by pH.
  • the sanitary product construction material to be immersed in the peroxy acid-containing aqueous solution contains a non-specific material such as a liquid permeable sheet, a liquid impermeable sheet, etc., for example, the sanitary product itself as a sanitary product construction material
  • a non-specific material such as a liquid permeable sheet, a liquid impermeable sheet, etc.
  • the sanitary product itself as a sanitary product construction material
  • the size, specific gravity, etc., of the pulp fibers constituting the specific material be relatively close to the size, specific gravity, etc. of the superabsorbent polymer.
  • the peracid-containing aqueous solution have the above-mentioned predetermined pH in the superabsorbent polymer inactivation and decomposition step.
  • the rotation of the stirring blade 33 around the rotation shaft (support shaft 32) generates a swirling flow in the peroxy acid-containing aqueous solution B, and the collection bag A is physically forced to be peracid. It is drawn toward the bottom of the contained aqueous solution B (solution tank V). Then, the collection bag A that has moved to the bottom portion contacts the tear-off blade 41 by the rotation of the tear-off blade 41 around the rotation axis (support shaft 42), and an opening is formed in the collection bag A .
  • the crushing process P12 is performed by the crushing apparatus 12.
  • the collection bag 91 including the used sanitary goods and having the opening portion moves from the solution tank V to the crushing apparatus 12 together with the peroxy acid containing aqueous solution B, and in the crushing apparatus 12, the used bag in the collection bag A is used. Sanitary goods are crushed in the aqueous solution B containing peracid together with the collection bag A.
  • the collection bag 91 having the openings and containing the used sanitary goods delivered by the crushing part 60 together with the aqueous solution B containing the peroxy acid from the solution tank V is collected It is crushed in the peracid-containing aqueous solution B together with the bag A (in-liquid crushing step).
  • the peracid-containing aqueous solution 92 containing the crushed material obtained in the crushing part 60 is drawn from the crushing part 60 by the pump 63 (extraction step) to the next step It is sent out.
  • the first separation step P13 is performed by the first separation device 13. While stirring the peracid-containing aqueous solution 92 containing the crushed material obtained by the crusher 12 while cleaning to remove dirt from the crushed material, the peracid-containing aqueous solution 92 containing the crushed material is a specified material and a peracid It separates into contained aqueous solution (namely, aqueous solution containing peracid containing pulp fiber and super absorbent polymer) and non-specific material of sanitary goods. At that time, a peracid-containing aqueous solution may be separately added to enhance the washing effect and / or to adjust the pH.
  • aqueous solution namely, aqueous solution containing peracid containing pulp fiber and super absorbent polymer
  • the peracid-containing aqueous solution 93 from which the foreign matter has been removed is separated from the peracid-containing aqueous solution 92 containing the crushed material through the through holes and delivered from the first separation device 13.
  • a relatively large nonspecific material can not pass through the through hole, and remains in the first separation device 13 or is delivered by another route.
  • small ones can not be separated by the first separation device 13 and are included in the aqueous solution containing peracid 93 from which foreign matter has been removed.
  • the size of the through hole of the washing tub functioning as a sieve may be 5 mm to 20 mm in the case of a round hole, and holes of other shapes may be used. In the case, the size of the area substantially the same as that of the round hole may be mentioned.
  • the first dust removing process P14 is performed by the first dust removing device 14.
  • the peroxy acid-containing aqueous solution 93 from the first separation device 13 from which foreign matter has been removed is passed through a screen, and a peroxy acid-containing aqueous solution containing pulp fibers and a superabsorbent polymer, and crushed non-specific material (foreign body) To separate.
  • the crushed non-specific material foreign matter
  • the crushed non-specific material foreign material
  • smaller ones are included in the peroxy acid containing aqueous solution 94 from which foreign matter is further removed without being completely separated by the first dust removing device 14.
  • the second dust removing step P15 is executed by the second dust removing device 15, and the peroxy acid-containing aqueous solution 94 from the first dust removing device 14 from which foreign matter is further removed is passed through a screen, and pulp fibers and superabsorbent polymer are removed.
  • the aqueous solution containing peroxy acid is further separated from the crushed non-specified material (foreign substance).
  • the crushed non-specific material foreign material
  • the peracid-containing aqueous solution 95 from which the foreign material is further removed is delivered from the second dust removing device 15.
  • the crushed non-specific material (foreign matter) can not pass through the screen and remains in the second dust remover 15, or is sent out through another path.
  • the crushed non-specific materials smaller ones are included in the aqueous solution containing peracid 95 from which foreign matter is further removed without being completely separated by the second dust remover 15.
  • the third dust removal step P16 is performed by the third dust remover 16, and centrifugally separates the peroxy acid-containing aqueous solution 95 from the second dust remover 15, from which foreign matter has been further removed, in the inverted conical housing.
  • a peracid-containing aqueous solution containing pulp fibers and a superabsorbent polymer is further separated from crushed non-specified materials (foreign matter).
  • the peracid-containing aqueous solution 96 from which foreign matter is further removed is delivered from the upper part of the third dust remover 16 (cyclone separator).
  • crushed non-specific material foreign material
  • particularly heavy material such as metal is delivered from the lower part of the third dust remover 16 (cyclone separator).
  • the pH of the peroxy acid-containing aqueous solution is adjusted so that the specific gravity and size of the superabsorbent polymer and the specific gravity and size of the pulp fibers are within predetermined ranges.
  • the decomposition process P17 is performed by the decomposition apparatus 17.
  • the peracid-containing aqueous solution 96 from which the foreign matter is further removed, which is sent from the third dust collector 16, is introduced into the decomposition apparatus 17, and the peracid-containing aqueous solution 96 from which the foreign matter is further removed is heated.
  • a peracid-derived acid act as an inactivating agent, while enhancing the oxidizing power by the peracid and further enhancing the function of the peracid as a decomposing agent.
  • the superabsorbent polymer adhering to the pulp fibers (for example, remaining on the surface of the pulp fibers) is converted into a low molecular weight organic substance soluble in an aqueous solution and removed from the pulp fibers.
  • sterilization, bleaching, deodorization and the like of pulp fibers are performed by the peracid, and a peracid-containing aqueous solution 97 containing recycled pulp fibers is formed.
  • a peracid may be added to the peroxy acid-containing aqueous solution 96 from which foreign matter is further removed.
  • the action of the peracid as a decomposing agent can be enhanced to promote the decomposition of the superabsorbent polymer It is because it can.
  • the second separation step P18 is executed by the second separation device 18 and processed by the decomposition device 17.
  • the peroxy acid-containing aqueous solution 97 containing recycled pulp fibers passes through the screen having the plurality of slits, and the recycled pulp is removed.
  • the fiber and the aqueous solution containing the peracid are separated.
  • the recycled pulp fibers do not pass through the screen, but remain in the second separation device 18 or are delivered separately.
  • Example 1 Polyacrylic acid-based highly water-absorbing polymer (Sumitomo Seika Co., Ltd., AquaKeep, unused product) at a temperature ratio of 25 ⁇ 5 ° C. and a humidity of 65 ⁇ 5% RH in a constant temperature and humidity chamber of 150 in mass ratio Immersed in double volume of saline for 10 minutes.
  • the water absorption capacity of the immersed super absorbent polymer was measured according to the method as described in this specification, the absorption capacity was 86.6 (g / g).
  • Biocide A is composed of 5.6% by mass of peracetic acid, 26.5% by mass of hydrogen peroxide, and 67.9% by mass of acetic acid and water.
  • the decomposition rate of the highly water-absorbing polymer after stirring for 10 minutes was measured.
  • Example 2 The superabsorbent polymer was inactivated and degraded in the same manner as in Example except that the amount of Biocide A was changed to 300 mL.
  • the pH one minute after the start of stirring was 1.6, and the pH ten minutes after the start of stirring was 1.8.
  • the decomposition rate was 72 mass%. From the above, it can be seen that, by adjusting the treatment time, treatment temperature and the like, peracetic acid can decompose the highly water-absorbent polymer in the sanitary product component.

Abstract

The purpose of the present invention is to provide a recycled pulp fiber manufacturing method with which it is possible to easily inactivate and degrade a high water-absorption polymer using a single chemical. This method is for manufacturing recycled pulp fibers from used sanitary goods containing pulp fibers and high water-absorption polymer, and is characterized by comprising: a high water-absorption polymer inactivation and degradation step (S1) for immersing a sanitary goods constituent material containing the pulp fibers and an acid radical-containing high water-absorption polymer in a peracid-containing aqueous solution so as to inactivate and degrade the high water-absorption polymer; and a recycled pulp fiber recovery step (S2) for recovering the recycled pulp fibers from the peracid-containing aqueous solution that has undergone the high water-absorption polymer inactivation and degradation step (S1).

Description

リサイクルパルプ繊維の製造方法、過酸の、高吸水性ポリマーの不活化及び分解のための使用、並びに過酸を含む、高吸水性ポリマーの不活化及び分解剤Process for the production of recycled pulp fibers, the use of peracids for the deactivation and degradation of superabsorbent polymers, and superabsorbent polymer inactivation and degradation agents comprising peracids
 本開示は、リサイクルパルプ繊維の製造方法、過酸の、高吸水性ポリマーの不活化及び分解のための使用、並びに過酸を含む、高吸水性ポリマーの不活化及び分解剤に関する。 The present disclosure relates to a process for the production of recycled pulp fibers, the use of peracids for the inactivation and degradation of superabsorbent polymers, and inactivation and degradation agents for superabsorbent polymers comprising peracids.
 使用済の衛生用品から、リサイクルパルプ繊維を回収する方法が知られている。
 例えば、特許文献1には、パルプ繊維および高吸水性ポリマーを含む使用済み衛生用品からパルプ繊維を回収し、衛生用品として再利用可能なリサイクルパルプを製造する方法であって、該方法が、使用済み衛生用品を、多価金属イオンを含む水溶液またはpHが2.5以下の酸性水溶液中で、使用済み衛生用品に物理的な力を作用させることによって、使用済み衛生物品をパルプ繊維とその他の素材に分解する工程、分解工程において生成したパルプ繊維とその他の素材の混合物からパルプ繊維を分離する工程、および分離されたパルプ繊維をpHが2.5以下のオゾン含有水溶液で処理する工程を含むことを特徴とする方法が開示されている。
Methods are known for recovering recycled pulp fibers from used sanitary products.
For example, Patent Document 1 discloses a method of recovering pulp fibers from used sanitary products containing pulp fibers and super absorbent polymer, and producing recycled pulp reusable as a sanitary product, which method is used Used sanitary articles are pulp fibers and other articles by applying physical force to used sanitary products in an aqueous solution containing polyvalent metal ions or an acidic aqueous solution having a pH of 2.5 or less. The process of decomposing into materials, the process of separating pulp fibers from the mixture of pulp fibers and other materials generated in the decomposition process, and the process of treating the separated pulp fibers with an ozone-containing aqueous solution having a pH of 2.5 or less A method is disclosed characterized in that.
特開2016-881号公報JP, 2016-881, A
 特許文献1では、多価金属イオンを含む水溶液又はpHが2.5以下の酸性水溶液を用いて高吸水性ポリマーを不活化するステップと、pHが2.5以下のオゾン含有水溶液を用いて不活化した高吸水性ポリマーを分解するステップとを、異なる複数の薬剤、すなわち、価金属イオンを含む水溶液又はpHが2.5以下の酸性水溶液(具体的には、多価金属イオン又は酸)と、pHが2.5以下のオゾン含有水溶液(具体的には、オゾン)とが担っているため、それらを別個に管理することが必要となるため、製造性の観点から改善の余地がある。また、オゾン含有水溶液を形成するためには、オゾン発生装置等の機械的な設備を必要とするため、製造設備が大きくなる傾向がある。
 従って、本開示は、高吸水性ポリマーの不活化及び分解を単一の薬剤を用いて簡易に実施することができる、リサイクルパルプ繊維の製造方法を提供することを目的とする。
In Patent Document 1, a step of deactivating a superabsorbent polymer using an aqueous solution containing polyvalent metal ions or an acidic aqueous solution having a pH of 2.5 or less, and an ozone-containing aqueous solution having a pH of 2.5 or less And a step of decomposing the activated superabsorbent polymer with a plurality of different agents, ie, an aqueous solution containing a divalent metal ion or an acidic aqueous solution having a pH of 2.5 or less (specifically, a polyvalent metal ion or acid). Since an ozone-containing aqueous solution (specifically, ozone) having a pH of 2.5 or less is responsible, it is necessary to separately manage them, and there is room for improvement from the viewpoint of manufacturability. Moreover, in order to form ozone containing aqueous solution, since mechanical installation, such as an ozone generator, is required, there exists a tendency for a manufacturing installation to become large.
Accordingly, the present disclosure aims to provide a method for producing recycled pulp fibers in which the inactivation and degradation of superabsorbent polymer can be easily carried out using a single agent.
 本開示者らは、パルプ繊維及び高吸水性ポリマーを含む、使用済の衛生用品からリサイクルパルプ繊維を製造する方法であって、上記パルプ繊維と、酸基を有する高吸水性ポリマーとを含む、上記衛生用品を構成する衛生用品構成資材を、過酸を含む過酸含有水溶液に浸漬し、上記高吸水性ポリマーを不活化するとともに、上記高吸水性ポリマーを分解する高吸水性ポリマー不活化及び分解ステップ、上記高吸水性ポリマー不活化及び分解ステップを経た上記過酸含有水溶液から、上記リサイクルパルプ繊維を回収するリサイクルパルプ繊維回収ステップを含むことを特徴とする方法を見出した。 The present inventors are a method of producing recycled pulp fibers from used sanitary products, comprising pulp fibers and a superabsorbent polymer, comprising the pulp fibers and a superabsorbent polymer having an acid group. The hygienic article constituent material which constitutes the above-mentioned hygienic article is immersed in a peroxy acid containing aqueous solution containing a peroxy acid to inactivate the above-mentioned super absorbent polymer, and at the same time the super absorbent polymer is deactivated which decomposes the above super absorbent polymer It has been found that the method includes a decomposition step, and a recycled pulp fiber recovery step of recovering the recycled pulp fibers from the peroxy acid-containing aqueous solution subjected to the superabsorbent polymer inactivation and decomposition step.
 本開示のリサイクルパルプ繊維の製造方法は、高吸水性ポリマーの不活化及び分解を単一の薬剤を用いて簡易に実施することができる。 The method for producing recycled pulp fibers of the present disclosure can easily carry out the inactivation and decomposition of the superabsorbent polymer using a single agent.
図1は、本開示の実施形態の1つに従う方法を実施するためのシステム1のブロック図である。FIG. 1 is a block diagram of a system 1 for implementing the method according to one of the embodiments of the present disclosure. 図2は、図1の破袋装置11及び破砕装置12の構成例を示す模式図である。FIG. 2 is a schematic view showing a configuration example of the bag removing device 11 and the crushing device 12 of FIG. 図3は、システム1を用いた、使用済の衛生用品からリサイクルパルプ繊維を製造する方法を説明するフローチャートである。FIG. 3 is a flow chart illustrating a method of using the system 1 to produce recycled pulp fibers from used sanitary products.
<定義>
・高吸水性ポリマーに関する「不活化」
 本明細書において、高吸水性ポリマー(Super Absorbent Polymer,SAP)に関する「不活化」は、排泄物等を保持している高吸水性ポリマーが、好ましくは50倍以下、より好ましくは30倍以下、そしてさらに好ましくは25倍以下の吸収倍率を有するように調整すること、例えば、保持している排泄物を放出させること、過酸含有水溶液の吸収を抑制すること等を意味する。
<Definition>
・ "Inactivation" related to super absorbent polymer
In the present specification, “inactivation” with respect to a super absorbent polymer (Super Absorbent Polymer, SAP) is preferably 50 times or less, more preferably 30 times or less, of the super absorbent polymer retaining excrement and the like. More preferably, adjustment is made to have an absorption capacity of 25 times or less, for example, release of retained excrement, suppression of absorption of a peracid-containing aqueous solution, and the like.
 上記吸収倍率は、以下の通り測定される。
(1)不活化した高吸水性ポリマーを、メッシュに入れて5分間吊るし、それらの表面に付着した水分を除去し、その乾燥前質量:m1(g)を測定する。
(2)不活化した高吸水性ポリマーを、120℃で10分間乾燥し、その乾燥後質量:m2(g)を測定する。
(3)吸収倍率(g/g)を、次の式:
 吸収倍率(g/g)=m1/m2
 により算出する。
The absorption capacity is measured as follows.
(1) The inactivated super absorbent polymer is put into a mesh and suspended for 5 minutes to remove water adhering to the surface thereof, and the mass before drying: m 1 (g) is measured.
(2) The inactivated superabsorbent polymer is dried at 120 ° C. for 10 minutes, and the mass after drying: m 2 (g) is measured.
(3) Absorption capacity (g / g), the following formula:
Absorption capacity (g / g) = m 1 / m 2
Calculated by
・「過酸含有水溶液」
 本明細書において、「過酸含有水溶液」は、過酸及び/又は過酸由来酸を含む水溶液を意味する。
 高吸水性ポリマー不活化及び分解ステップにおいて、衛生用品を構成する衛生用品構成資材を浸漬する時点の過酸含有水溶液は、過酸を含む。
 また、高吸水性ポリマー不活化及び分解ステップにおいて、高吸水性ポリマーを分解した後の過酸含有水溶液、並びにリサイクルパルプ繊維回収ステップにおける過酸含有水溶液は、過酸の消費の度合いによって、過酸含有水溶液が含む酸が変化しうる。具体的には、過酸が、高吸水性ポリマー等を酸化し、完全に消費された場合には、上記過酸含有水溶液は、過酸を含まず、そして過酸由来酸を含む。また、過酸が、高吸水性ポリマー等を酸化しても、完全に消費されていない場合には、上記過酸含有水溶液は、過酸及び過酸由来酸を含む。
・ "Peroxy acid containing aqueous solution"
As used herein, "peracid-containing aqueous solution" means an aqueous solution containing a peracid and / or a peracid-derived acid.
In the superabsorbent polymer inactivation and decomposition step, the peroxy acid-containing aqueous solution at the time of immersing the sanitary product component constituting the sanitary product contains a peracid.
Furthermore, in the superabsorbent polymer inactivation and decomposition step, the peracid-containing aqueous solution after decomposing the superabsorbent polymer, and the peracid-containing aqueous solution in the recycled pulp fiber recovery step are peracids depending on the degree of consumption of the peracid. The acid contained in the contained aqueous solution may vary. Specifically, when the peracid oxidizes the superabsorbent polymer and the like and is completely consumed, the peracid-containing aqueous solution contains no peracid and contains a peracid-derived acid. In addition, when the peracid oxidizes the superabsorbent polymer and the like but is not completely consumed, the peracid-containing aqueous solution contains a peracid and a peracid-derived acid.
 具体的には、本開示は以下の態様に関する。
[態様1]
 パルプ繊維及び高吸水性ポリマーを含む、使用済の衛生用品からリサイクルパルプ繊維を製造する方法であって、
 上記パルプ繊維と、酸基を有する高吸水性ポリマーとを含む、上記衛生用品を構成する衛生用品構成資材を、過酸を含む過酸含有水溶液に浸漬し、上記高吸水性ポリマーを不活化するとともに、上記高吸水性ポリマーを分解する高吸水性ポリマー不活化及び分解ステップ、
 上記高吸水性ポリマー不活化及び分解ステップを経た上記過酸含有水溶液から、上記リサイクルパルプ繊維を回収するリサイクルパルプ繊維回収ステップ、
 を含むことを特徴とする、上記方法。
Specifically, the present disclosure relates to the following aspects.
[Aspect 1]
A method of producing recycled pulp fibers from used sanitary goods comprising pulp fibers and superabsorbent polymers, comprising:
The hygienic article constituent material which constitutes the above-mentioned hygienic goods which contains the above-mentioned pulp fiber and the super-absorbent polymer which has an acid group is immersed in the peroxy acid containing aqueous solution containing peroxy acid, and the above-mentioned super-absorbent polymer is inactivated. Superabsorbent polymer inactivation and decomposition steps to degrade said superabsorbent polymer,
A recycling pulp fiber recovery step of recovering the recycling pulp fiber from the peroxy acid-containing aqueous solution subjected to the superabsorbent polymer inactivation and decomposition step;
Said method, characterized in that it comprises.
 上記方法では、高吸水性ポリマー不活化及び分解ステップにおいて、過酸(及び過酸から生成される過酸由来酸)が、高吸水性ポリマーを不活化する不活化剤として作用するのみならず、過酸が、高吸水性ポリマーを分解することができる分解剤としても作用し、高吸水性ポリマーの不活化及び分解を単一のステップで実施することができるので、リサイクルパルプ繊維の製造性に優れる。 In the above method, in the superabsorbent polymer inactivation and decomposition step, the peracid (and the peracid-derived acid generated from the peracid) not only acts as an inactivating agent that inactivates the superabsorbent polymer. Since the peracid also acts as a decomposing agent capable of decomposing the superabsorbent polymer, and inactivation and degradation of the superabsorbent polymer can be carried out in a single step, the productivity of recycled pulp fibers can be increased. Excellent.
[態様2]
 上記過酸が、上記高吸水性ポリマーの上記酸基よりも小さな酸解離定数(pKa,水中)を有する、態様1に記載の方法。
[Aspect 2]
The method according to embodiment 1, wherein said peracid has a smaller acid dissociation constant (pK a , in water) than said acid groups of said superabsorbent polymer.
 上記方法では、過酸が、高吸水性ポリマーの酸基よりも小さな酸解離定数(pKa,水中)を有するので、高吸水性ポリマーを酸化する前の過酸が、高吸水性ポリマーを不活化する不活化剤として、より高い作用を有することができる。 In the above method, since the peracid has an acid dissociation constant (pK a , in water) smaller than the acid group of the superabsorbent polymer, the peracid before oxidizing the superabsorbent polymer is not a superabsorbent polymer. It can have a higher effect as an activating inactivating agent.
[態様3]
 上記過酸から生成される過酸由来酸が、上記高吸水性ポリマーの上記酸基よりも小さな酸解離定数(pKa,水中)を有する、態様1又は2に記載の方法。
[Aspect 3]
The peracid from the acid generated from the peracid has the superabsorbent small acid dissociation constant than the acid group of the polymer (pK a, water), method according to embodiment 1 or 2.
 上記方法では、過酸由来酸が、高吸水性ポリマーの酸基よりも小さな酸解離定数(pKa,水中)を有するので、過酸が高吸水性ポリマーを酸化した後に生成する過酸由来酸が、高吸水性ポリマーを不活化する不活化剤として、より高い作用を有することができる。 In the above method, the peracid derived acids, because it has a high water-absorbing polymers a small acid dissociation constant than acid groups (pK a, water), peracids derived acid produced after the peracid to oxidize the superabsorbent polymer However, it can have a higher action as an inactivating agent for inactivating superabsorbent polymers.
[態様4]
 上記衛生用品構成資材が上記衛生用品であり、
 上記方法が、上記高吸水性ポリマー不活化及び分解ステップにおいて、上記衛生用品構成資材を上記過酸含有水溶液に浸漬した後、上記衛生用品構成資材のうち上記パルプ繊維及び高吸水性ポリマーを除くものを除去する除去ステップをさらに含み、
 上記高吸水性ポリマー不活化及び分解ステップにおいて、上記除去ステップの後、上記過酸含有水溶液に過酸を添加する、
 態様1~3のいずれか一項に記載の方法。
[Aspect 4]
The above-mentioned hygienic goods constituent material is the above-mentioned hygienic goods,
After the above-mentioned method immerses the above-mentioned hygienic article constituent material in the above-mentioned peroxy acid containing aqueous solution in the above-mentioned super absorbent polymer inactivation and decomposition step, the above-mentioned pulp fiber and super-absorbent polymer are removed among the above-mentioned hygienic article constituent materials Further including a removal step for removing
In the superabsorbent polymer inactivation and decomposition step, after the removal step, a peracid is added to the peracid-containing aqueous solution,
The method according to any one of Aspects 1-3.
 上記方法では、過酸含有水溶液に浸漬する衛生用品構成資材が衛生用品であるとともに、上記高吸水性ポリマー不活化及び分解ステップにおいて、上記衛生用品構成資材のうち上記パルプ繊維及び高吸水性ポリマーを除くものを除去する除去ステップをさらに含み、除去ステップの後、過酸含有水溶液に過酸を添加するので、過酸が、分解剤として、高吸水性ポリマーを効率的に分解することができる。 In the above method, the sanitary product component material to be immersed in the aqueous solution containing the peroxy acid is a sanitary product, and the pulp fiber and the highly water-absorptive polymer of the component products can be used in the above-mentioned superabsorbent polymer inactivation and decomposition steps. The method further includes a removal step of removing anything, and since the peracid is added to the peracid-containing aqueous solution after the removal step, the peracid can effectively decompose the superabsorbent polymer as a decomposing agent.
[態様5]
 上記衛生用品構成資材が上記衛生用品であり、
 上記方法が、上記高吸水性ポリマー不活化及び分解ステップにおいて、上記衛生用品構成資材を上記過酸含有水溶液に浸漬した後、上記衛生用品構成資材のうち上記パルプ繊維及び高吸水性ポリマーを除くものを除去する除去ステップをさらに含み、
 上記高吸水性ポリマー不活化及び分解ステップにおいて、上記除去ステップの後、上記過酸含有水溶液の温度を高くする、
 態様1~4のいずれか一項に記載の方法。
[Aspect 5]
The above-mentioned hygienic goods constituent material is the above-mentioned hygienic goods,
After the above-mentioned method immerses the above-mentioned hygienic article constituent material in the above-mentioned peroxy acid containing aqueous solution in the above-mentioned super absorbent polymer inactivation and decomposition step, the above-mentioned pulp fiber and super-absorbent polymer are removed among the above-mentioned hygienic article constituent materials Further including a removal step for removing
After the removal step in the superabsorbent polymer inactivation and decomposition step, raising the temperature of the peroxy acid-containing aqueous solution,
The method according to any one of aspects 1-4.
 上記方法では、過酸含有水溶液に浸漬する衛生用品構成資材が衛生用品であるとともに、上記高吸水性ポリマー不活化及び分解ステップにおいて、上記衛生用品構成資材のうち上記パルプ繊維及び高吸水性ポリマーを除くものを除去する除去ステップをさらに含み、除去ステップの後、過酸含有水溶液の温度を高くするので、過酸による、分解剤としての作用、すなわち、高吸水性ポリマーの酸化、並びに高吸水性ポリマーの分解を促進することができる。 In the above method, the sanitary product component material to be immersed in the aqueous solution containing the peroxy acid is a sanitary product, and the pulp fiber and the highly water-absorptive polymer of the component products can be used in the above-mentioned superabsorbent polymer inactivation and decomposition steps. The method further includes a removal step of removing anything, and the temperature of the aqueous solution containing peracid is increased after the removal step, so that the peracid acts as a decomposing agent, that is, the oxidation of the superabsorbent polymer, and the superabsorbent It can promote the degradation of the polymer.
[態様6]
 上記リサイクルパルプ繊維回収ステップにおいて、上記リサイクルパルプ繊維に、上記過酸から生成される過酸由来酸を残存させる、態様1~5のいずれか一項に記載の方法。
[Aspect 6]
The method according to any one of modes 1 to 5, wherein in the recycled pulp fiber recovery step, the recycled pulp fiber is left with a peracid-derived acid generated from the peracid.
 上記方法では、リサイクルパルプ繊維回収ステップにおいて、リサイクルパルプ繊維に、上記過酸から生成する過酸由来酸を残存させるため、リサイクルパルプ繊維に抗菌性を付与することができる。 In the above method, in the recycling pulp fiber recovery step, since the peracid-derived acid generated from the peracid is left in the recycling pulp fiber, the recycling pulp fiber can be provided with an antimicrobial property.
[態様7]
 過酸の、酸基を有する高吸水性ポリマーの不活化及び分解のための使用。
[Aspect 7]
Use of peracids for the deactivation and degradation of superabsorbent polymers with acid groups.
 上記使用では、過酸(及び過酸由来酸)が、高吸水性ポリマーを不活化する不活化剤として作用するのみならず、過酸が、高吸水性ポリマーを分解する分解剤として作用することができる。 In the above use, the peracid (and the peroxyacid derived acid) not only acts as an inactivating agent that inactivates the super absorbent polymer, but also that the peracid acts as a decomposing agent that degrades the super absorbent polymer Can.
[態様8]
 過酸を含む、酸基を有する高吸水性ポリマーの不活化及び分解剤。
[Aspect 8]
An activating and decomposing agent for a superabsorbent polymer having an acid group, which comprises a peracid.
 上記不活化及び分解剤は、高吸水性ポリマーを不活化するのみならず、高吸水性ポリマーを分解することができる。 The above-mentioned inactivating and decomposing agents can not only inactivate the superabsorbent polymer but also decompose the superabsorbent polymer.
 本開示のリサイクルパルプ繊維の製造方法、過酸の、高吸水性ポリマーの不活化及び分解のための使用、並びに過酸を含む、高吸水性ポリマーの不活化及び分解剤について、以下、詳細に説明する。 The process for producing recycled pulp fibers of the present disclosure, the use of peracids for deactivating and decomposing superabsorbent polymers, and the deactivating and decomposing agents for superabsorbent polymers containing peracids are described in detail below. explain.
<<リサイクルパルプ繊維の製造方法>>
 本開示のパルプ繊維及び高吸水性ポリマーを含む、使用済の衛生用品からリサイクルパルプ繊維を製造する方法(以下、「リサイクルパルプ繊維の製造方法」、「本開示の製造方法」等と称する場合がある)は、以下のステップを含む。
・上記パルプ繊維と、酸基を有する高吸水性ポリマーとを含む、上記衛生用品を構成する衛生用品構成資材を、過酸を含む過酸含有水溶液に浸漬し、上記高吸水性ポリマーを不活化するとともに、上記高吸水性ポリマーを分解する高吸水性ポリマー不活化及び分解ステップ(以下、「高吸水性ポリマー不活化及び分解ステップ」と称する場合がある)
・上記高吸水性ポリマー不活化及び分解ステップを経た上記過酸含有水溶液から、上記リサイクルパルプ繊維を回収するリサイクルパルプ繊維回収ステップ(以下、「リサイクルパルプ繊維回収ステップ」と称する場合がある)
<< Production method of recycled pulp fiber >>
A method of producing recycled pulp fibers from used sanitary goods including the pulp fiber of the present disclosure and the superabsorbent polymer (hereinafter referred to as “the method of producing the recycled pulp fiber”, “the production method of the present disclosure”, etc.) A) includes the following steps.
-The sanitary goods constituent material which constitutes the above-mentioned hygiene goods which contains the above-mentioned pulp fiber and a super-absorbent polymer which has an acid group is immersed in the peroxy acid containing aqueous solution containing peroxy acid, and the above-mentioned superabsorbent polymer is inactivated. Superabsorbent polymer inactivation and decomposition step (hereinafter referred to as "superabsorbent polymer inactivation and decomposition step")
・ Recycled pulp fiber recovery step (hereinafter sometimes referred to as “recycled pulp fiber recovery step”) which recovers the recycled pulp fiber from the aqueous solution containing peroxy acid which has been subjected to the super absorbent polymer inactivation and decomposition step
<高吸水性ポリマー不活化及び分解ステップ>
 高吸水性ポリマー不活化及び分解ステップでは、パルプ繊維と、酸基を有する高吸水性ポリマーとを含む、衛生用品構成資材を過酸含有水溶液に浸漬し、高吸水性ポリマーを不活化するとともに、高吸水性ポリマーを分解する。
<Superabsorbent polymer inactivation and decomposition step>
In the superabsorbent polymer inactivation and decomposition step, the sanitary article construction material containing pulp fibers and the superabsorbent polymer having an acid group is immersed in a peroxy acid containing aqueous solution to inactivate the superabsorbent polymer. Disassemble super absorbent polymer.
 上記過酸としては、過酸及び/又は過酸から生成される過酸由来酸が、高吸水性ポリマーを不活化する不活化剤として作用することができるとともに、過酸が、高吸水性ポリマーを酸化し、高吸水性ポリマーを分解する分解剤として作用することができるものであれば、特に制限されず、例えば、過カルボン酸(例えば、過酢酸、過安息香酸、メタクロロ過安息香酸)、過スルホン酸(例えば、過硫酸、メタン過スルホン酸、トリフルオロメタン過スルホン酸、p-トルエン過スルホン酸)、過リン酸等、並びにそれらの金属塩等が挙げられる。 As the peracid, a peracid and / or a peracid-derived acid generated from the peracid can act as an inactivating agent for deactivating the superabsorbent polymer, and the peracid is a superabsorbent polymer Is not particularly limited as long as it can act as a decomposing agent that oxidizes and decomposes the superabsorbent polymer, for example, percarboxylic acids (eg, peracetic acid, perbenzoic acid, metachloroperbenzoic acid), Persulfonic acid (eg, persulfuric acid, methanepersulfonic acid, trifluoromethanepersulfonic acid, p-toluenepersulfonic acid), perphosphoric acid and the like, and metal salts thereof and the like can be mentioned.
 上記過酸由来酸(過酸)としては、例えば、カルボン酸(過カルボン酸)、例えば、酢酸(過酢酸)、安息香酸(過安息香酸)、メタクロロ安息香酸(メタクロロ過安息香酸)、スルホン酸(過スルホン酸)、例えば、硫酸(過硫酸)、メタンスルホン酸(メタン過スルホン酸)、トリフルオロメタンスルホン酸(トリフルオロメタン過スルホン酸)、p-トルエンスルホン酸(p-トルエン過スルホン酸)、りん酸(過りん酸)が挙げられる。 Examples of the peracid-derived acid (peracid) include carboxylic acids (percarboxylic acids) such as acetic acid (peracetic acid), benzoic acid (perbenzoic acid), metachlorobenzoic acid (metachloroperbenzoic acid), sulfonic acid (Persulfonic acid), for example, sulfuric acid (persulfuric acid), methanesulfonic acid (methanepersulfonic acid), trifluoromethanesulfonic acid (trifluoromethanepersulfonic acid), p-toluenesulfonic acid (p-toluenepersulfonic acid), Phosphoric acid (perphosphoric acid) is mentioned.
 上記過酸は、過酸由来酸と、過酸化水素との混合物として添加されうる。例えば、上記過酸が過酢酸である場合には、当該過酸は、過酸由来酸である酢酸と、過酸化水素との混水溶液として添加されうる。過酸を安定的に添加する(保管する)観点からである。 The peracid may be added as a mixture of a peracid derived acid and hydrogen peroxide. For example, when the peracid is peracetic acid, the peracid may be added as a mixed aqueous solution of acetic acid which is a peracid-derived acid and hydrogen peroxide. This is from the viewpoint of stably adding (storing) the peracid.
 本開示の製造方法では、上記過酸は、高吸水性ポリマーの酸基よりも小さな酸解離定数(pKa,水中)を有することが好ましい。そうすることにより、過酸そのものの、不活化剤としての作用をより高めることができる。 In the production method of the present disclosure, the peracid preferably has a smaller acid dissociation constant (pKa, in water) than the acid group of the superabsorbent polymer. By doing so, the action of the peracid itself as an inactivating agent can be further enhanced.
 上記過酸が複数の酸基を有する場合、例えば、上記過酸が二塩基酸又は三塩基酸である場合には、上記過酸の酸解離定数(pKa,水中)のうち最も大きな酸解離定数(pKa,水中)が、高吸水性ポリマーの酸基の酸解離定数(pKa,水中)よりも小さいことが好ましく、そして高吸水性ポリマーが複数種の酸基を有する場合には、上記過酸の酸解離定数(pKa,水中)のうち最も大きな酸解離定数(pKa,水中)が、高吸水性ポリマーが複数種の酸基のうち最も小さな酸解離定数(pKa,水中)よりも小さいことが好ましい。高吸水性ポリマーの不活化の効率の観点からである。 When the peracid has a plurality of acid groups, for example, when the peracid is a dibasic acid or a tribasic acid, the largest acid dissociation among the acid dissociation constants (pK a , water) of the peracids constant (pK a, water) is, when the acid dissociation constant (pK a, water) of the acid groups of the superabsorbent polymer is preferably smaller than, and the superabsorbent polymer has a plurality of types of acid groups, the acid dissociation constant (pK a in water) peracids greatest acid dissociation constant (pK a in water) out of the smallest acid dissociation constant (pK a of the superabsorbent polymer is more acid groups, in water It is preferable that it is smaller than. It is from the viewpoint of the inactivation efficiency of the super absorbent polymer.
 本開示の製造方法では、過酸から生成される過酸由来酸が、高吸水性ポリマーの酸基よりも小さな酸解離定数(pKa,水中)を有することが好ましい。そうすることにより、過酸が高吸水性ポリマーを酸化し、過酸由来酸を生成した場合に、当該過酸由来酸が、高吸水性ポリマーを不活化する不活化剤として、より高い作用を有することができる。 In the production method of the present disclosure, it is preferable that the peracid-derived acid generated from the peracid have an acid dissociation constant (pK a , in water) smaller than the acid group of the superabsorbent polymer. By doing so, when the peracid oxidizes the superabsorbent polymer and generates a peracid-derived acid, the peracid derived acid acts more as an inactivating agent that inactivates the superabsorbent polymer. It can have.
 上記過酸由来酸が複数の酸基を有する場合、例えば、上記過酸由来酸が二塩基酸又は三塩基酸である場合には、上記過酸由来酸の酸解離定数(pKa,水中)のうち最も大きな酸解離定数(pKa,水中)が、高吸水性ポリマーの酸基の酸解離定数(pKa,水中)よりも小さいことが好ましく、そして高吸水性ポリマーが複数種の酸基を有する場合には、上記過酸由来酸の酸解離定数(pKa,水中)のうち最も大きな酸解離定数(pKa,水中)が、高吸水性ポリマーが複数種の酸基のうち最も小さな酸解離定数(pKa,水中)よりも小さいことが好ましい。高吸水性ポリマーの不活化の効率の観点からである。 When the peracid-derived acid has a plurality of acid groups, for example, when the peracid-derived acid is a dibasic acid or a tribasic acid, the acid dissociation constant of the peracid-derived acid (pK a , in water) the biggest acid dissociation constant (pK a, water) is an acid dissociation constant (pK a, water) of the acid groups of the superabsorbent polymer is preferably smaller than, and acid superabsorbent polymer is more of If with the above-mentioned acid dissociation constant of peracid from the acid (pK a, water) the largest acid dissociation constant of (pK a, water) is, the superabsorbent polymer is smallest among the plurality of kinds of groups acid dissociation constant (pK a, water) is preferably less than. It is from the viewpoint of the inactivation efficiency of the super absorbent polymer.
 本明細書では、酸解離定数(pka,水中)は、電気化学会編集の電気化学便覧に記載の値を採用することができる。
 電気化学便覧によると、主要な化合物の酸解離定数(pka,水中,25℃)は、以下の通りである。
[有機酸]
・酒石酸:2.99(pKa1),4.44(pKa2
・リンゴ酸:3.24(pKa1),4.71(pKa2
・クエン酸:2.87(pKa1),4.35(pKa2),5.69(pKa3
[無機酸]
・硫酸:1.99
In the present specification, as the acid dissociation constant (pk a , in water), the value described in the Electrochemical Handbook edited by the Institute of Electrochemical Society can be adopted.
According to the Electrochemical Handbook, the acid dissociation constants (pk a , in water, 25 ° C.) of the major compounds are as follows:
[Organic acid]
- tartaric acid: 2.99 (pK a1), 4.44 (pK a2)
- malic acid: 3.24 (pK a1), 4.71 (pK a2)
Citric acid: 2.87 (pK a1), 4.35 (pK a2), 5.69 (pK a3)
[Inorganic acid]
-Sulfuric acid: 1.99
 電気化学便覧に記載されていない酸の酸解離定数(pka,水中)は、測定により求めることができる。酸の酸解離定数(pka,水中)を測定することができる機器としては、例えば、Sirius社製の化合物物性評価分析システム,T3が挙げられる。 The acid dissociation constant (pk a , in water) of an acid not described in the Electrochemical Handbook can be determined by measurement. As an apparatus which can measure the acid dissociation constant (pk a , in water) of an acid, for example, a compound physical property evaluation analysis system manufactured by Sirius, T3 can be mentioned.
 本開示の製造方法では、高吸水性ポリマーは、当技術分野で、酸基を含む高吸水性ポリマーとして用いられているものであれば、特に制限されず、上記酸基としては、例えば、カルボキシル基、スルホ基等が挙げられ、カルボキシル基が好ましい。
 カルボキシル基を含む高吸水性ポリマーとしては、例えば、ポリアクリル酸塩系、ポリ無水マレイン酸塩系のものが挙げられ、スルホ基等を含む高吸水性ポリマーとしては、ポリスルホン酸塩系のものが挙げられる。
In the production method of the present disclosure, the superabsorbent polymer is not particularly limited as long as it is used in the art as a superabsorbent polymer containing an acid group, and examples of the acid group include carboxyl. Groups, sulfo groups, etc. are mentioned, and a carboxyl group is preferable.
Examples of highly water-absorptive polymers containing a carboxyl group include those of polyacrylates and polyanhydrides, and examples of highly water-absorptive polymers containing sulfo and the like include polysulphonates. It can be mentioned.
 上記パルプ繊維は、衛生用品に含まれうるものであれば、特に制限されない。 The pulp fiber is not particularly limited as long as it can be contained in a sanitary product.
 高吸水性ポリマー不活化及び分解ステップは、所定のpHにおいて実施されることが好ましい。上記所定のpHは、好ましくは4.5以下、より好ましくは4.0以下、さらに好ましくは3.5以下、そしてさらにいっそう好ましくは3.0以下である。上記所定のpHが高すぎると、高吸水性ポリマーの不活化が不充分となるおそれがある。
 また、上記所定のpHは、好ましくは0.5以上、そしてより好ましくは1.0以上である。上記所定のpHが低すぎると、リサイクルパルプ繊維を損傷するおそれがある。
 なお、上述の所定のpHは、25℃における値を意味する。上述の所定のpHは、例えば、株式会社堀場製作所製のtwin pHメーター AS-711を用いて測定することができる。
The superabsorbent polymer inactivation and degradation steps are preferably performed at a predetermined pH. The predetermined pH is preferably 4.5 or less, more preferably 4.0 or less, still more preferably 3.5 or less, and still more preferably 3.0 or less. If the predetermined pH is too high, the inactivation of the superabsorbent polymer may be insufficient.
Also, the predetermined pH is preferably 0.5 or more, and more preferably 1.0 or more. If the predetermined pH is too low, the recycled pulp fibers may be damaged.
In addition, the above-mentioned predetermined | prescribed pH means the value in 25 degreeC. The predetermined pH described above can be measured, for example, using twin pH meter AS-711 manufactured by Horiba, Ltd.
 本開示の製造方法では、上記所定のpHを、高吸水性ポリマー不活化及び分解ステップの開始時点、例えば、衛生用品構成資材を過酸含有水溶液に浸漬する際において少なくとも満たすことが好ましい。高吸水性ポリマーを不活化させるためであり、高吸水性ポリマーの不活化が不十分な場合には、本開示のリサイクルパルプの製造方法の製造効率が低下し、製造されるリサイクルパルプ繊維に、高吸水性ポリマーが残存する場合がある。 In the manufacturing method of the present disclosure, it is preferable to satisfy at least the predetermined pH at the start of the superabsorbent polymer inactivation and decomposition steps, for example, when immersing the sanitary product component in a peroxy acid containing aqueous solution. In order to inactivate the super absorbent polymer, when the super absorbent polymer is not sufficiently inactivated, the production efficiency of the method for producing a recycled pulp of the present disclosure is reduced, and thus recycled pulp fibers to be produced, The super absorbent polymer may remain.
 本開示の製造方法では、上記所定のpHを、高吸水性ポリマー不活化及び分解ステップの終了時点、例えば、製造されたリサイクルパルプ繊維を、過酸含有水溶液から取り出す際に満たすことが好ましい。残存している高吸水性ポリマーを不活化させ続ける観点、並びに製造されたリサイクルパルプ繊維に、過酸由来酸を残存させ、リサイクルパルプ繊維に抗菌性を付与する観点からである。 In the production method of the present disclosure, it is preferable that the predetermined pH be satisfied at the end of the superabsorbent polymer inactivation and decomposition steps, for example, when the manufactured recycled pulp fiber is taken out of the aqueous solution containing peracid. This is from the viewpoint of continuing to inactivate the remaining super absorbent polymer, and from the viewpoint of leaving the acid derived from the peroxy acid to the manufactured recycled pulp fiber and imparting the antibacterial property to the recycled pulp fiber.
 高吸水性ポリマー不活化及び分解ステップでは、例えば、パルプ繊維及び高吸水性ポリマーを含む、衛生用品構成資材を、過酸含有水溶液が充填された槽に投入し、当該過酸含有水溶液を、室温(25℃)で、約5~60分攪拌することにより、高吸水性ポリマーを不活化するとともに、高吸水性ポリマーを酸化し、高吸水性ポリマーを分解することができる。 In the superabsorbent polymer inactivation and decomposition step, for example, a sanitary article construction material containing pulp fiber and superabsorbent polymer is put into a tank filled with a peroxy acid containing aqueous solution, and the peroxy acid containing aqueous solution is treated at room temperature. Stirring for about 5 to 60 minutes at (25 ° C.) can inactivate the superabsorbent polymer, oxidize the superabsorbent polymer, and decompose the superabsorbent polymer.
 なお、本開示の製造方法では、衛生用品構成資材を過酸含有水溶液に浸漬することができれば、具体的な手法は特に限定されず、例えば、過酸含有水溶液を含む槽に、衛生用品構成資材を投入してもよく、そして衛生用品構成資材が配置されている槽に、過酸含有水溶液を投入してもよい。 In the production method of the present disclosure, the specific method is not particularly limited as long as the sanitary product component can be immersed in the peroxy acid-containing aqueous solution. For example, in a tank containing the peroxy acid-containing aqueous solution, the component The peracid-containing aqueous solution may be introduced into the tank in which the sanitary product construction material is disposed.
 上記衛生用品は、パルプ繊維と、高吸水性ポリマーとを含むものであれば、特に制限されず、例えば、使い捨ておむつ、使い捨てショーツ、生理用ナプキン、パンティーライナー、尿取りパッド、ベッド用シート、ペット用シート等が挙げられる。
 上記衛生用品としては、例えば、液透過性シートと、液不透過性シートと、それらの間の吸収体(吸収コア及びコアラップ)とを含むものが例示される。
The sanitary product is not particularly limited as long as it contains pulp fibers and a superabsorbent polymer, and, for example, disposable diapers, disposable shorts, sanitary napkins, panty liners, urine absorbing pads, bed sheets, pets Sheet etc. may be mentioned.
Examples of the above-mentioned sanitary goods include those containing a liquid-permeable sheet, a liquid-impermeable sheet, and an absorbent (absorbent core and core wrap) therebetween.
 本開示の製造方法では、高吸水性ポリマー不活化及び分解ステップにおける衛生用品構成資材は、パルプ繊維と、高吸水性ポリマーとの混合物、例えば、使用済の衛生用品から取り出した吸収コアであることができる。また、衛生用品構成資材は、衛生用品そのものであってもよい。 In the manufacturing method of the present disclosure, the sanitary product component in the superabsorbent polymer inactivation and degradation step is a mixture of pulp fibers and the superabsorbent polymer, for example, an absorbent core removed from a used sanitary product. Can. In addition, the sanitary product component may be the sanitary product itself.
 過酸含有水溶液に浸漬すべき衛生用品構成資材が、パルプ繊維及び高吸水性ポリマー(以下、「特定資材」と称する場合がある)に加え、追加の資材(以下、「非特定資材」と称する場合がある)、例えば、液透過性シート、液不透過性シート等を含む場合、例えば、衛生用品構成資材として、衛生用品そのものを、過酸含有水溶液に浸漬する場合には、高吸水性ポリマー不活化及び分解ステップは、非特定資材を除去する除去サブステップ(以下、「除去サブステップ」と称する場合がある)をさらに含むことができる。そうすることにより、過酸が、非特定資材を酸化することを抑制し、過酸が、高吸水性ポリマーを効率よく酸化することができる。 In addition to pulp fiber and super absorbent polymer (hereinafter sometimes referred to as "specific material"), the sanitary goods component material to be immersed in the aqueous solution containing peroxy acid is referred to as additional material (hereinafter "non-specific material") In some cases, for example, when including a liquid-permeable sheet, a liquid-impermeable sheet, etc., for example, when immersing the sanitary goods itself as a sanitary goods constituent material in a peroxy acid containing aqueous solution, a superabsorbent polymer The inactivation and degradation steps can further include a removal substep of removing non-specific material (hereinafter sometimes referred to as "removal substep"). By doing so, the peracid can suppress oxidation of non-specific materials, and the peracid can efficiently oxidize the superabsorbent polymer.
 なお、上記除去サブステップでは、特定資材を含む過酸含有水溶液から、非特定資材の全部を除去してもよいが、非特定資材の全部を除去することは現実的には難しく、特定資材を含む過酸含有水溶液に、非特定資材の一部が残存してもよい。 In the removal sub-step, all of the non-specific materials may be removed from the aqueous solution containing the specific materials, but it is practically difficult to remove all of the non-specific materials. A part of non-specific material may remain in the aqueous solution containing peracid.
 上記除去サブステップの具体例については、図1に示されるシステム1、並びに図3に示されるフローチャートに関連して後述する。 Specific examples of the removal sub-step will be described later in connection with the system 1 shown in FIG. 1 and the flow chart shown in FIG.
 高吸水性ポリマー不活化及び分解ステップが、除去サブステップをさらに含む場合には、除去サブステップを実施した後、過酸含有水溶液中の過酸の濃度を高くすることができる。そうすることにより、除去サブステップ後に、過酸による分解剤としての作用、具体的には、酸化力を高くすることができ、過酸が、高吸水性ポリマーを効率よく酸化することができる。 If the superabsorbent polymer inactivation and degradation step further comprises a removal substep, the concentration of peracid in the aqueous solution containing peracid can be increased after performing the removal substep. By doing so, after the removal substep, the action as a decomposing agent by peracid, specifically, the oxidizing power can be increased, and the peracid can efficiently oxidize the superabsorbent polymer.
 高吸水性ポリマー不活化及び分解ステップにおいて、除去サブステップの後、過酸含有水溶液中の、過酸及び過酸由来酸(以下、「過酸系酸」)の総モル濃度を、除去ステップを終えた直後の過酸含有水溶液中の過酸系酸の総モル濃度の、好ましくは2~100倍、より好ましくは3~50倍、そしてさらに好ましくは4~20倍に上げることができる。上述の観点からである。
 過酸系酸の総モル濃度を高くする手段としては、例えば、過酸含有水溶液の加温等による過酸系酸の濃縮、過酸含有水溶液への過酸の添加等が挙げられる。
In the superabsorbent polymer inactivation and decomposition step, after the removal substep, the total molar concentration of peracid and peracid-derived acid (hereinafter "peracidic acid") in the aqueous solution containing peracid is removed The total molar concentration of the peroxyacid in the aqueous solution containing peroxyacid immediately after completion can be increased by preferably 2 to 100 times, more preferably 3 to 50 times, and still more preferably 4 to 20 times. From the above point of view.
Examples of means for increasing the total molar concentration of the peracid acid include concentration of the peracid acid by heating of the peracid-containing aqueous solution, addition of the peracid to the peracid-containing aqueous solution, and the like.
 高吸水性ポリマー不活化及び分解ステップにおいて、除去サブステップの後、過酸含有水溶液の温度を高くしてもよい。過酸含有水溶液の温度を高くすると、加熱による熱エネルギーにより、過酸から生成されるラジカル量が増加するため、過酸による酸化力が高くなり、高吸水性ポリマーの分解を促進することができる。 In the superabsorbent polymer inactivation and degradation step, the temperature of the aqueous solution containing peracid may be raised after the removal substep. When the temperature of the peroxy acid-containing aqueous solution is increased, the amount of radicals generated from the peroxyacid increases due to the thermal energy by heating, so the oxidative power of the peroxyacid increases, and the decomposition of the superabsorbent polymer can be promoted. .
 除去サブステップ前の高吸水性ポリマー不活化及び分解ステップは、高吸水性ポリマーの不活化が主体、換言すると、過酸及び/又は過酸由来酸の不活化剤としての作用が主体であるため、例えば、室温で管理することができる。除去サブステップ前の高吸水性ポリマー不活化及び分解ステップの温度を制御する場合には、好ましくは10~30℃、より好ましくは15~25℃の温度で管理することができる。上記範囲で温度を管理することにより、過酸による、分解剤としての作用を抑制し、過酸が、分解剤として非特定資材に作用することを抑制することができる。 The superabsorbent polymer inactivation and decomposition step prior to the removal substep is mainly based on the inactivation of superabsorbent polymer, in other words, the function as the peracid and / or the peracid derived acid as the activator. , For example, at room temperature. When controlling the temperature of the superabsorbent polymer inactivation and degradation step prior to the removal substep, the temperature can preferably be controlled at a temperature of 10 to 30 ° C, more preferably 15 to 25 ° C. By controlling the temperature within the above range, the action of the peracid as a decomposing agent can be suppressed, and the action of the peracid on non-specific materials as a decomposing agent can be suppressed.
 高吸水性ポリマー不活化及び分解ステップにおいて、除去サブステップ後は、高吸水性ポリマーの分解が主体、換言すると、過酸の分解剤としての作用が主体であるため、例えば、除去サブステップ前と比較して、好ましくは30~70℃、より好ましくは40~60℃高い温度で管理することができる。 In the superabsorbent polymer inactivation and degradation step, after the removal substep, degradation of the superabsorbent polymer predominates, in other words, since the action as a decomposing agent of a peracid is main, for example, before the removal substep In comparison, the temperature can be managed preferably at a temperature of 30 to 70 ° C., more preferably 40 to 60 ° C. higher.
<リサイクルパルプ繊維回収ステップ>
 リサイクルパルプ繊維回収ステップでは、高吸水性ポリマー不活化及び分解ステップを経た過酸含有水溶液から、リサイクルパルプ繊維を回収する。
 リサイクルパルプ繊維の回収は、固液分離可能な装置であれば、特に制限なく用いることができ、固液分離可能な装置としては、例えば、ロータリードラムスクリーン、傾斜スクリーン、振動スクリーン等が挙げられる。
<Recycled pulp fiber recovery step>
In the recycled pulp fiber recovery step, recycled pulp fibers are recovered from the peroxy acid-containing aqueous solution that has undergone the superabsorbent polymer inactivation and decomposition steps.
Recovery of the recycled pulp fiber can be used without particular limitation as long as it is an apparatus capable of solid-liquid separation, and examples of the apparatus capable of solid-liquid separation include a rotary drum screen, an inclined screen, a vibrating screen and the like.
 リサイクルパルプ繊維回収ステップでは、回収されるリサイクルパルプ繊維に、過酸由来酸を残存させることが好ましい。そうすることにより、リサイクルパルプ繊維に抗菌性を付与することができ、例えば、リサイクルパルプ繊維を湿潤状態で保管しても、カビ等の繁殖を抑制することができる。 In the recycled pulp fiber recovery step, it is preferable to leave the peracid-derived acid in the recovered recycled pulp fiber. By doing so, it is possible to impart the antibacterial property to the recycled pulp fiber, and for example, even when the recycled pulp fiber is stored in a wet state, it is possible to suppress the growth of mold and the like.
<過酸の、高吸水性ポリマーの不活化及び分解のための使用>
 本開示は、過酸の、酸基を有する高吸水性ポリマーの不活化及び分解のための使用に関する。上記使用では、過酸(及び過酸由来酸)が、高吸水性ポリマーを不活化する不活化剤として作用するのみならず、過酸が、高吸水性ポリマーを分解する分解剤として作用することができるので、高吸水性ポリマーを不活化し、分解することができる。
<Use of Peracid for Deactivation and Decomposition of Superabsorbent Polymer>
The present disclosure relates to the use of peracids for the deactivation and degradation of superabsorbent polymers with acid groups. In the above use, the peracid (and the peroxyacid derived acid) not only acts as an inactivating agent that inactivates the super absorbent polymer, but also that the peracid acts as a decomposing agent that degrades the super absorbent polymer Can inactivate and degrade the superabsorbent polymer.
 本開示はまた、過酸の、パルプ繊維と、酸基を有する高吸水性ポリマーとを含む衛生用品構成資材から、リサイクルパルプ繊維を製造するための使用に関する。上記使用では、過酸(及び過酸由来酸)が、高吸水性ポリマーを不活化する不活化剤として作用するのみならず、過酸が、高吸水性ポリマーを分解する分解剤として作用することができるとともに、過酸由来酸が、リサイクルパルプ繊維に抗菌性を付与することができる。
 上記使用については、「リサイクルパルプ繊維の製造方法」で説明されているため、ここでの説明は省略する。
The present disclosure also relates to the use of peracid for producing recycled pulp fibers from sanitary product construction materials comprising pulp fibers and superabsorbent polymers having acid groups. In the above use, the peracid (and the peroxyacid derived acid) not only acts as an inactivating agent that inactivates the super absorbent polymer, but also that the peracid acts as a decomposing agent that degrades the super absorbent polymer Peracid-derived acid can impart antimicrobial properties to the recycled pulp fibers.
Since the said use is demonstrated by "the manufacturing method of recycle pulp fiber", description here is abbreviate | omitted.
<過酸を含む、高吸水性ポリマーの不活化及び分解剤>
 本開示は、過酸を含む、酸基を有する高吸水性ポリマーの不活化及び分解剤に関する。上記不活化及び分解剤は、高吸水性ポリマーを不活化するのみならず、高吸水性ポリマーを分解することができる。
<Inactivation and decomposition agent of super absorbent polymer containing peracid>
The present disclosure relates to deactivating and decomposing agents for superabsorbent polymers having acid groups, including peracids. The above-mentioned inactivating and decomposing agents can not only inactivate the superabsorbent polymer but also decompose the superabsorbent polymer.
 本開示はまた、過酸を含む、パルプ繊維と、酸基を有する高吸水性ポリマーとを含む衛生用品構成資材中の高吸水性ポリマーの不活化及び分解剤に関する。上記不活化及び分解剤は、高吸水性ポリマーを不活化するのみならず、高吸水性ポリマーを分解することができるとともに、リサイクルパルプ繊維に抗菌性を付与することができる。
 上記不活化及び分解剤については、「リサイクルパルプ繊維の製造方法」で説明されているため、ここでの説明は省略する。
The present disclosure also relates to a superabsorbent polymer inactivating and decomposing agent in a sanitary product construction material comprising pulp fibers and a superabsorbent polymer having acid groups, comprising a peracid. The above-mentioned inactivating and decomposing agents can not only inactivate the superabsorbent polymer, but can decompose the superabsorbent polymer as well as impart antimicrobial properties to the recycled pulp fibers.
About the said inactivation and decomposition agent, since it is demonstrated by "the manufacturing method of a recycling pulp fiber", description here is abbreviate | omitted.
 図1は、本開示の実施形態の1つに従う製造方法を実施するためのシステム1のブロック図である。図1は、本開示の実施形態の1つに従う製造方法を説明するための図であって,本開示を何ら制限するものではない。
 システム1は、破袋装置11と、破砕装置12と、第1分離装置13と、第1除塵装置14と、第2除塵装置15と、第3除塵装置16と、分解装置17と、第2分離装置18とを備える。
FIG. 1 is a block diagram of a system 1 for implementing the manufacturing method according to one of the embodiments of the present disclosure. FIG. 1 is a diagram for explaining a manufacturing method according to one of the embodiments of the present disclosure, and does not limit the present disclosure in any way.
The system 1 includes a bag removing device 11, a shredding device 12, a first separating device 13, a first dust removing device 14, a second dust removing device 15, a third dust removing device 16, a disassembling device 17, and a second And a separation device 18.
 破袋装置11には、過酸含有水溶液が充填されており、過酸含有水溶液中で、使用済の衛生用品を含む収集袋に開孔部を形成する。破砕装置12は、過酸含有水溶液の水面下に沈んだ使用済の衛生用品を、収集袋ごと破砕する。図2は、図1の破袋装置11及び破砕装置12の構成例を示す模式図である。 The bag-breaking device 11 is filled with a peroxy acid-containing aqueous solution, and forms an opening in the collection bag containing used sanitary goods in the peroxy acid-containing aqueous solution. The crusher 12 crushes the used sanitary goods sunk below the surface of the aqueous solution containing the peroxy acid together with the collection bag. FIG. 2 is a schematic view showing a configuration example of the bag removing device 11 and the crushing device 12 of FIG.
 破袋装置11には、過酸含有水溶液Bが充填されており、過酸含有水溶液B中に沈降した収集袋Aに開孔部を形成し、使用済の衛生用品を含み、開孔部を有する収集袋91を形成する。破袋装置11は、溶液槽Vと、開孔形成部50とを含む。溶液槽Vは、過酸含有水溶液Bを溜めている。開孔形成部50は、溶液槽V内に設けられており、収集袋Aが溶液槽Vに入れられたときに、収集袋Aの、過酸含有水溶液Bに接する表面に開孔部を形成する。 The bag-breaking apparatus 11 is filled with a peroxy acid-containing aqueous solution B, forms an opening in the collection bag A that has settled in the peroxy acid-containing aqueous solution B, contains used sanitary goods, A collection bag 91 is formed. The bag-breaking apparatus 11 includes a solution tank V and an aperture forming part 50. The solution tank V stores the peracid-containing aqueous solution B. The hole forming portion 50 is provided in the solution tank V, and when the collection bag A is put in the solution tank V, a hole is formed on the surface of the collection bag A in contact with the aqueous solution B containing peroxy acid. Do.
 開孔形成部50は、送り込み部30と、破袋部40とを含む。送り込み部30は、収集袋Aを(物理的且つ強制的に)溶液槽V内の過酸含有水溶液B中に送り込む(引き込む)。送り込み部30は、例えば、攪拌機が挙げられ、撹拌羽根33と、撹拌羽根33を支持する支持軸(回転軸)32と、支持軸32を軸に沿って回転する駆動装置31とを備える。撹拌羽根33が、駆動装置31により回転軸(支持軸32)の周りを回転することで、過酸含有水溶液Bに旋回流を起こす。送り込み部30は、旋回流により、収集袋Aを過酸含有水溶液B(溶液槽V)の底部方向へ引き込む。 The hole forming unit 50 includes a feeding unit 30 and a bag opening 40. The feed unit 30 feeds (pulls) the collection bag A (physically and forcibly) into the peroxy acid-containing aqueous solution B in the solution tank V. The feed unit 30 is, for example, a stirrer, and includes a stirring blade 33, a support shaft (rotary shaft) 32 supporting the stirring blade 33, and a drive device 31 rotating the support shaft 32 along an axis. The stirring blade 33 rotates around the rotation shaft (support shaft 32) by the drive device 31 to generate a swirling flow in the peroxy acid-containing aqueous solution B. The feed unit 30 draws the collection bag A toward the bottom of the peroxy acid-containing aqueous solution B (solution tank V) by the swirling flow.
 破袋部40は、溶液槽Vの下部(好ましくは底部)に配置されており、破袋刃41と、破袋刃41を支持する支持軸(回転軸)42と、支持軸42を軸に沿って回転する駆動装置43とを備える。破袋刃41は、駆動装置43により回転軸(支持軸42)の周りを回転することで、過酸含有水溶液B(溶液槽V)の下部に移動した収集袋Aに開孔部を形成する。 The tear-off portion 40 is disposed at the lower portion (preferably the bottom) of the solution tank V, and the tear-off blade 41, a support shaft (rotation shaft) 42 for supporting the tear-off blade 41, and the support shaft 42 And a driving device 43 which rotates along with it. The tear-off blade 41 forms an opening in the collection bag A moved to the lower part of the aqueous solution B (solution tank V) by rotating around the rotation shaft (support shaft 42) by the drive device 43. .
 破砕装置12は、過酸含有水溶液Bの水面下に沈んだ収集袋A内の使用済の衛生用品を収集袋Aごと破砕する。破砕装置12は、破砕部60と、ポンプ63とを含む。破砕部60は、溶液槽Vと配管61で連接されており、溶液槽Vから排出された、使用済の衛生用品を含み、開孔部を有する収集袋91を、収集袋Aごと過酸含有水溶液B中で破砕して、破砕物を含む過酸含有水溶液92を形成する。 The crushing apparatus 12 crushes the used sanitary goods in the collection bag A sunk below the surface of the aqueous solution B containing peroxy acid together with the collection bag A. The crushing apparatus 12 includes a crushing unit 60 and a pump 63. The crushing part 60 is connected by the solution tank V and the pipe 61, includes the used sanitary goods discharged from the solution tank V, and includes the collection bag 91 having the opening part, including the collection bag A, including the peroxide The aqueous solution B is crushed to form a peracid-containing aqueous solution 92 containing the crushed material.
 破砕部60としては、二軸破砕機(例えば、二軸回転式破砕機、二軸差動式破砕機、二軸せん断式破砕機)が挙げられ、例えば、スミカッター(住友重機械エンバイロメント株式会社製)が挙げられる。ポンプ63は、破砕部60と、配管62で連接されており、破砕部60で得られた、破砕物を含む過酸含有水溶液92を、破砕部60から引き出して、次工程へ送出する。ただし、破砕物は、パルプ繊維、高吸水性ポリマー、収集袋Aの素材、フィルム、不織布、弾性体等を含む資材を含んでいる。 The crusher 60 may be a twin-screw crusher (for example, a twin-screw rotary crusher, a twin-screw differential crusher, a twin-screw shear crusher). Company-made). The pump 63 is connected to the crushing unit 60 by a pipe 62, and draws out from the crushing unit 60 the aqueous solution containing peracid containing the crushed material obtained in the crushing unit 60 and delivers it to the next process. However, the crushed material includes materials including pulp fiber, super absorbent polymer, material of collecting bag A, film, non-woven fabric, elastic body and the like.
 第1分離装置13は、破砕装置12で得られた、破砕物を含む過酸含有水溶液92を撹拌して、破砕物から汚れ(排泄物等)を除去する洗浄を行いつつ、破砕物を含む過酸含有水溶液92から、パルプ繊維及び高吸水性ポリマーを含む、異物が除去された過酸含有水溶液93を分離して、第1除塵装置14へ送出する。 The first separation device 13 contains the crushed material while stirring the peracid-containing aqueous solution 92 containing the crushed material obtained by the crushing device 12 to remove dirt (excrements etc.) from the crushed material. From the aqueous solution containing peroxy acid 92, the aqueous solution containing peroxy acid 93 containing pulp fibers and super absorbent polymer from which foreign matter has been removed is separated and sent to the first dust removing device.
 第1分離装置13としては、例えば、洗濯槽兼脱水槽及びそれを囲む水槽を備える洗濯機が挙げられる。ただし、洗濯槽兼脱水槽(回転ドラム)が洗浄槽兼ふるい槽(分離槽)として用いられる。上記洗濯機としては、例えば、横型洗濯機ECO-22B(株式会社稲本製作所製)が挙げられる。 Examples of the first separation device 13 include a washing tub and a dewatering tub and a washing machine provided with a water tub surrounding the same. However, a washing tank and dewatering tank (rotary drum) is used as a washing tank and sieving tank (separation tank). Examples of the washing machine include a horizontal washing machine ECO-22B (manufactured by Inamoto Seisakusho Co., Ltd.).
 第1除塵装置14は、複数の開口を有するスクリーンにより、異物が除去された過酸含有水溶液93中に存在する異物をさらに除去し、パルプ繊維及び高吸水性ポリマーを含む、異物がより除去された過酸含有水溶液94を形成する。第1除塵装置14としては、例えば、スクリーン分離機が挙げられる(粗スクリーン分離機)、具体的には、例えば、パックパルパー(株式会社サトミ製作所製)が挙げられる。 The first dust remover 14 further removes foreign matter present in the aqueous solution containing peroxyacid 93 from which foreign matter has been removed by a screen having a plurality of openings, and foreign matter including pulp fiber and superabsorbent polymer is further removed. A peroxy acid-containing aqueous solution 94 is formed. Examples of the first dust remover 14 include a screen separator (coarse screen separator), and specifically, for example, a pack pulper (manufactured by Satomi Seisakusho Co., Ltd.).
 第2除塵装置15は、複数の開口を有するスクリーンにより、第1除塵装置14から送出された、異物がより除去された過酸含有水溶液94から、さらに細かい異物を除去し、パルプ繊維及び高吸水性ポリマーを含む、異物がさらに除去された過酸含有水溶液95を形成する。第2除塵装置15としては、例えば、スクリーン分離機、具体的には、例えば、ラモスクリーン(相川鉄工株式会社製)が挙げられる。 The second dust remover 15 removes finer foreign particles from the peroxy acid-containing aqueous solution 94 from the first dust remover 14 which has been removed from the first dust remover 14 by a screen having a plurality of openings, thereby removing pulp fibers and high water absorption. To form a peracid-containing aqueous solution 95 from which foreign substances have been further removed, including a hydrophobic polymer. Examples of the second dust remover 15 include a screen separator, and more specifically, for example, Lamo Screen (manufactured by Aikawa Tekko Co., Ltd.).
 第3除塵装置16は、遠心分離により、第2除塵装置15から送出された、異物がさらに除去された過酸含有水溶液95から、さらにいっそう異物を除去し、パルプ繊維及び高吸水性ポリマーを含む、異物がさらにいっそう除去された過酸含有水溶液96を形成する。第3除塵装置16としては、例えば、サイクロン分離機、具体的には、ACT低濃度クリーナー(相川鉄工株式会社製)が挙げられる。 The third dust remover 16 further removes foreign matter from the peroxy acid-containing aqueous solution 95 which is sent from the second dust remover 15 by centrifugal separation and from which foreign matter is further removed, and contains pulp fibers and a superabsorbent polymer And forms an aqueous solution containing peracid 96 from which foreign matter is further removed. Examples of the third dust remover 16 include a cyclone separator, specifically, ACT low concentration cleaner (manufactured by Aikawa Iron Works Co., Ltd.).
 分解装置17では、第3除塵装置16から送出された、異物がさらにいっそう除去された過酸含有水溶液96を加熱し、過酸の酸化力により高吸水性ポリマーを酸化分解し、パルプ繊維から高吸水性ポリマーを除去する。次いで、リサイクルパルプ繊維を含む過酸含有水溶液97を排出する。 In the decomposing device 17, the peracid-containing aqueous solution 96 from the third dust removing device 16 from which foreign substances are further removed is heated, and the superabsorbent polymer is oxidized and decomposed by the oxidizing power of the peracid to increase pulp fiber Remove the water absorbing polymer. Then, the peracid-containing aqueous solution 97 containing recycled pulp fibers is discharged.
 第2分離装置18は、複数の開口を有するスクリーンを用いて、分解装置17にて処理された、リサイクルパルプ繊維を含む過酸含有水溶液97から、リサイクルパルプ繊維を分離する。第2分離装置18としては、例えば、スクリーン分離機が挙げられる。 The second separation device 18 separates the recycled pulp fibers from the peroxy acid-containing aqueous solution 97 containing recycled pulp fibers that has been treated by the decomposition device 17 using a screen having a plurality of openings. Examples of the second separation device 18 include a screen separator.
 図3は、図1に示されるシステム1を用いた、使用済の衛生用品からリサイクルパルプ繊維を製造する方法を説明するフローチャートである。図3に示されるフローチャートは、例示であり、本開示を何ら制限するものではない。 FIG. 3 is a flow chart illustrating a method of producing recycled pulp fibers from used sanitary products using the system 1 shown in FIG. The flowchart shown in FIG. 3 is an example and does not limit the present disclosure.
 図3には、高吸水性ポリマー不活化及び分解ステップS1、除去サブステップS1S、及びリサイクルパルプ繊維回収ステップS2が示されている。高吸水性ポリマー不活化及び分解ステップS1には、開孔部形成工程P11と、破砕工程P12と、第1分離工程P13と、第1除塵工程P14と、第2除塵工程P15と、第3除塵工程P16と、分解工程P17とが含まれ、そして除去サブステップS1Sには、第1分離工程P13と、第1除塵工程P14と、第2除塵工程P15と、第3除塵工程P16とが含まれる。
 リサイクルパルプ繊維回収ステップS2には、第2分離工程P18が含まれる。以下、詳細に説明する。
FIG. 3 shows the superabsorbent polymer inactivation and decomposition step S1, the removal substep S1 S , and the recycled pulp fiber recovery step S2. In the superabsorbent polymer inactivation and decomposition step S1, an aperture forming step P11, a crushing step P12, a first separation step P13, a first dust removal step P14, a second dust removal step P15, and a third dust removal The process P16 and the decomposition process P17 are included, and the removal sub-step S1 S includes the first separation process P13, the first dust removal process P14, the second dust removal process P15, and the third dust removal process P16. Be
The recycled pulp fiber recovery step S2 includes a second separation step P18. The details will be described below.
 開孔部形成工程P11は、破袋装置11を用いて実施される。使用済の衛生用品を封入した収集袋Aが、過酸含有水溶液Bを溜めた溶液槽Vに投入されて、収集袋Aにおける過酸含有水溶液Bに接する表面に開孔部を形成する。過酸含有水溶液Bは、収集袋Aに開孔部が形成されたとき、収集袋A内の使用済の衛生用品の汚れ、菌類、臭気等が外部に放出しないように、収集袋Aの周りを囲んで封止する。上記開孔部から過酸含有水溶液が収集袋A内に浸入すると、収集袋A内の気体が収集袋Aの外部へ抜け、収集袋Aの比重が過酸含有水溶液Bより重くなり、収集袋Aが過酸含有水溶液B内に沈降する。また、過酸含有水溶液B内の過酸は、不活化剤として作用し、収集袋A内の使用済の衛生用品内の高吸水性ポリマーを不活化するとともに、分解剤として作用し、高吸水性ポリマーを酸化し、分解させ始める。また、過酸が高吸水性ポリマー等の衛生用品構成資材を酸化することにより生成した過酸由来酸が、不活化剤として、高吸水性ポリマーを不活化する。 The opening portion forming step P11 is performed using the bag opening device 11. The collection bag A in which the used sanitary goods are enclosed is put into the solution tank V storing the peracid-containing aqueous solution B, and an opening is formed on the surface of the collection bag A in contact with the peroxy acid-containing aqueous solution B. The aqueous solution B containing peracid has a periphery of the collection bag A so that the dirt, fungi, odor and the like of the used sanitary goods in the collection bag A are not released to the outside when an opening is formed in the collection bag A. Seal around. When the peroxy acid-containing aqueous solution intrudes into the collection bag A from the opening, the gas in the collection bag A escapes to the outside of the collection bag A, and the specific gravity of the collection bag A becomes heavier than the peroxy acid-containing aqueous solution B. A precipitates in the peracid-containing aqueous solution B. In addition, the peracid in the peracid-containing aqueous solution B acts as an inactivating agent, inactivates the superabsorbent polymer in the used sanitary goods in the collection bag A, and acts as a decomposing agent, thereby causing high water absorption. Oxidizable polymer begins to degrade. In addition, a peracid-derived acid generated by oxidizing a hygienic product constituent material such as a superabsorbent polymer or the like by the peracid oxidizes the superabsorbent polymer as an inactivating agent.
 使用済の衛生用品内の高吸水性ポリマーが不活化され、その吸水能力が低下することで、高吸水性ポリマーが脱水して、粒径が小さくなるので、後続の各工程での取り扱いが容易になり、処理の効率が向上する。不活化に過酸を用いると、石灰、塩化カルシウム等を用いて高吸水性ポリマーを不活化する場合と比較して、パルプ繊維に灰分が残留しない利点があり、不活化の度合い(粒径、比重等の大きさ)をpHで調整し易い利点がある。 The superabsorbent polymer in the used sanitary goods is inactivated and its ability to absorb water is reduced, so that the superabsorbent polymer is dewatered and the particle size is reduced, making it easy to handle in the subsequent steps. Process efficiency is improved. When peracid is used for inactivation, there is an advantage that ash does not remain in the pulp fiber as compared with the case of inactivating the superabsorbent polymer using lime, calcium chloride or the like, and the degree of inactivation (particle diameter, There is an advantage that it is easy to adjust the size of specific gravity etc. by pH.
 過酸含有水溶液に浸漬すべき衛生用品構成資材が、非特定資材、例えば、液透過性シート、液不透過性シート等を含む場合、例えば、衛生用品構成資材として、衛生用品そのものを、過酸含有水溶液に浸漬する場合には、特定資材を構成するパルプ繊維の大きさ、比重等と、高吸水性ポリマーの大きさ、比重等とが比較的近い方が好ましい。当該観点からも、高吸水性ポリマー不活化及び分解ステップにおいて、過酸含有水溶液が、上述の所定のpHを有することが好ましい。 When the sanitary product construction material to be immersed in the peroxy acid-containing aqueous solution contains a non-specific material such as a liquid permeable sheet, a liquid impermeable sheet, etc., for example, the sanitary product itself as a sanitary product construction material In the case of immersing in a containing aqueous solution, it is preferable that the size, specific gravity, etc., of the pulp fibers constituting the specific material be relatively close to the size, specific gravity, etc. of the superabsorbent polymer. From this point of view also, it is preferable that the peracid-containing aqueous solution have the above-mentioned predetermined pH in the superabsorbent polymer inactivation and decomposition step.
 図2の破袋装置11では、撹拌羽根33の回転軸(支持軸32)の周りの回転により、過酸含有水溶液Bに旋回流が生じて、収集袋Aが物理的に強制的に過酸含有水溶液B(溶液槽V)の底部方向へ引き込まれる。そして、底部に移動してきた収集袋Aが、破袋刃41の回転軸(支持軸42)の周りの回転により、破袋刃41に接触して、収集袋Aに開孔部が形成される。 In the bag-breaking apparatus 11 of FIG. 2, the rotation of the stirring blade 33 around the rotation shaft (support shaft 32) generates a swirling flow in the peroxy acid-containing aqueous solution B, and the collection bag A is physically forced to be peracid. It is drawn toward the bottom of the contained aqueous solution B (solution tank V). Then, the collection bag A that has moved to the bottom portion contacts the tear-off blade 41 by the rotation of the tear-off blade 41 around the rotation axis (support shaft 42), and an opening is formed in the collection bag A .
 破砕工程P12は、破砕装置12により実行される。使用済の衛生用品を含み、開孔部を有する収集袋91が、過酸含有水溶液Bとともに、溶液槽Vから破砕装置12に移動し、破砕装置12内で、収集袋A内の使用済の衛生用品が、収集袋Aごと過酸含有水溶液B中で破砕される。 The crushing process P12 is performed by the crushing apparatus 12. The collection bag 91 including the used sanitary goods and having the opening portion moves from the solution tank V to the crushing apparatus 12 together with the peroxy acid containing aqueous solution B, and in the crushing apparatus 12, the used bag in the collection bag A is used. Sanitary goods are crushed in the aqueous solution B containing peracid together with the collection bag A.
 例えば、図2の破砕装置12では、まず、破砕部60により、溶液槽Vから過酸含有水溶液Bと共に送出された、使用済の衛生用品を含み、開孔部を有する収集袋91が、収集袋Aごと過酸含有水溶液B中で破砕される(液中破砕工程)。図2の破砕装置12において、ポンプ63により、破砕部60(液中破砕工程)で得られた、破砕物を含む過酸含有水溶液92が破砕部60から引き出され(引出工程)、次工程へ送出される。 For example, in the crushing apparatus 12 of FIG. 2, first, the collection bag 91 having the openings and containing the used sanitary goods delivered by the crushing part 60 together with the aqueous solution B containing the peroxy acid from the solution tank V is collected It is crushed in the peracid-containing aqueous solution B together with the bag A (in-liquid crushing step). In the crushing apparatus 12 of FIG. 2, the peracid-containing aqueous solution 92 containing the crushed material obtained in the crushing part 60 (in-liquid crushing step) is drawn from the crushing part 60 by the pump 63 (extraction step) to the next step It is sent out.
 第1分離工程P13は、第1分離装置13により実行される。破砕装置12で得られた、破砕物を含む過酸含有水溶液92を撹拌しながら、破砕物から汚れを除去する洗浄を行いつつ、破砕物を含む過酸含有水溶液92を、特定資材及び過酸含有水溶液(すなわち、パルプ繊維及び高吸水性ポリマーを含む過酸含有水溶液)と、衛生用品の非特定資材とに分離する。その際、洗浄効果を高めるため、そして/又はpHを調整するために、別途、過酸含有水溶液を添加してもよい。 The first separation step P13 is performed by the first separation device 13. While stirring the peracid-containing aqueous solution 92 containing the crushed material obtained by the crusher 12 while cleaning to remove dirt from the crushed material, the peracid-containing aqueous solution 92 containing the crushed material is a specified material and a peracid It separates into contained aqueous solution (namely, aqueous solution containing peracid containing pulp fiber and super absorbent polymer) and non-specific material of sanitary goods. At that time, a peracid-containing aqueous solution may be separately added to enhance the washing effect and / or to adjust the pH.
 その結果、破砕物を含む過酸含有水溶液92から、異物が除去された過酸含有水溶液93が、貫通孔を通過して分離されて、第1分離装置13から送出される。一方、破砕物を含む過酸含有水溶液92のなかで、比較的大きな非特定資材は、貫通孔を通過できず、第1分離装置13内に残存するか、又は別経路で送出される。なお、破砕された非特定資材のうち小さなものは、第1分離装置13にて分離しきれず、異物が除去された過酸含有水溶液93に含まれる。 As a result, the peracid-containing aqueous solution 93 from which the foreign matter has been removed is separated from the peracid-containing aqueous solution 92 containing the crushed material through the through holes and delivered from the first separation device 13. On the other hand, in the peracid-containing aqueous solution 92 containing the crushed material, a relatively large nonspecific material can not pass through the through hole, and remains in the first separation device 13 or is delivered by another route. Among the crushed non-specific materials, small ones can not be separated by the first separation device 13 and are included in the aqueous solution containing peracid 93 from which foreign matter has been removed.
 ここで、第1分離装置13として洗濯機を用いるとき、ふるいとして機能する洗濯槽の貫通孔の大きさとしては、丸孔の場合には5mm~20mmφが挙げられ、それ以外の形状の孔の場合には丸孔と略同一面積の大きさが挙げられる。 Here, when a washing machine is used as the first separation device 13, the size of the through hole of the washing tub functioning as a sieve may be 5 mm to 20 mm in the case of a round hole, and holes of other shapes may be used. In the case, the size of the area substantially the same as that of the round hole may be mentioned.
 第1除塵工程P14は、第1除塵装置14により実行される。第1分離装置13から送出された、異物が除去された過酸含有水溶液93をスクリーンに通し、パルプ繊維及び高吸水性ポリマーを含む過酸含有水溶液と、破砕された非特定資材(異物)とをさらに分離する。その結果、破砕された非特定資材(異物)は、スクリーンを通過できずに分離されて、異物がより除去された過酸含有水溶液94が、第1除塵装置14から送出される。一方、破砕された非特定資材(異物)は、スクリーンを通過できず第1除塵装置14内に残存するか、又は別経路で送出される。なお、破砕された非特定資材のうちより小さなものは、第1除塵装置14にて分離しきれずに、異物がより除去された過酸含有水溶液94に含まれる。 The first dust removing process P14 is performed by the first dust removing device 14. The peroxy acid-containing aqueous solution 93 from the first separation device 13 from which foreign matter has been removed is passed through a screen, and a peroxy acid-containing aqueous solution containing pulp fibers and a superabsorbent polymer, and crushed non-specific material (foreign body) To separate. As a result, the crushed non-specific material (foreign matter) is separated without passing through the screen, and the peracid-containing aqueous solution 94 from which the foreign matter is further removed is delivered from the first dust removing device 14. On the other hand, the crushed non-specific material (foreign material) can not pass through the screen and remains in the first dust remover 14 or is sent out through another path. Among the crushed non-specific materials, smaller ones are included in the peroxy acid containing aqueous solution 94 from which foreign matter is further removed without being completely separated by the first dust removing device 14.
 第2除塵工程P15は、第2除塵装置15により実行され、第1除塵装置14から送出された、異物がより除去された過酸含有水溶液94をスクリーンに通し、パルプ繊維及び高吸水性ポリマーを含む過酸含有水溶液と、破砕された非特定資材(異物)とをさらに分離する。その結果、破砕された非特定資材(異物)が、スクリーンを通過できずに分離され、異物がさらに除去された過酸含有水溶液95が、第2除塵装置15から送出される。一方、破砕された非特定資材(異物)は、スクリーンを通過できず第2除塵装置15内に残存するか、又は別経路で送出される。なお、破砕された非特定資材のうちさらに小さなものは、第2除塵装置15にて分離しきれずに、異物がさらに除去された過酸含有水溶液95に含まれる。 The second dust removing step P15 is executed by the second dust removing device 15, and the peroxy acid-containing aqueous solution 94 from the first dust removing device 14 from which foreign matter is further removed is passed through a screen, and pulp fibers and superabsorbent polymer are removed. The aqueous solution containing peroxy acid is further separated from the crushed non-specified material (foreign substance). As a result, the crushed non-specific material (foreign material) is separated without being able to pass through the screen, and the peracid-containing aqueous solution 95 from which the foreign material is further removed is delivered from the second dust removing device 15. On the other hand, the crushed non-specific material (foreign matter) can not pass through the screen and remains in the second dust remover 15, or is sent out through another path. Among the crushed non-specific materials, smaller ones are included in the aqueous solution containing peracid 95 from which foreign matter is further removed without being completely separated by the second dust remover 15.
 第3除塵工程P16は、第3除塵装置16により実行され、第2除塵装置15から送出された、異物がさらに除去された過酸含有水溶液95を、逆さ向きの円錐筐体内で遠心分離し、パルプ繊維及び高吸水性ポリマーを含む過酸含有水溶液と、破砕された非特定資材(異物)とをさらにいっそう分離する。その結果、異物がさらにいっそう除去された過酸含有水溶液96が、第3除塵装置16(サイクロン分離機)の上部から送出される。一方、破砕された非特定資材(異物)、特に、金属等の重い資材が、第3除塵装置16(サイクロン分離機)の下部から送出される。
 なお、過酸含有水溶液のpHは、高吸水性ポリマーの比重及び大きさと、パルプ繊維の比重及び大きさとが所定の範囲内にあるように調整されている。
The third dust removal step P16 is performed by the third dust remover 16, and centrifugally separates the peroxy acid-containing aqueous solution 95 from the second dust remover 15, from which foreign matter has been further removed, in the inverted conical housing. A peracid-containing aqueous solution containing pulp fibers and a superabsorbent polymer is further separated from crushed non-specified materials (foreign matter). As a result, the peracid-containing aqueous solution 96 from which foreign matter is further removed is delivered from the upper part of the third dust remover 16 (cyclone separator). On the other hand, crushed non-specific material (foreign material), particularly heavy material such as metal, is delivered from the lower part of the third dust remover 16 (cyclone separator).
The pH of the peroxy acid-containing aqueous solution is adjusted so that the specific gravity and size of the superabsorbent polymer and the specific gravity and size of the pulp fibers are within predetermined ranges.
 分解工程P17は、分解装置17により実行される。第3除塵装置16から送出された、異物がさらにいっそう除去された過酸含有水溶液96を、分解装置17に投入し、異物がさらにいっそう除去された過酸含有水溶液96を加熱し、過酸(及び過酸由来酸)を、不活化剤として作用させる一方で、過酸による酸化力を高め、過酸の、分解剤としての作用をより高める。そうすることにより、パルプ繊維に付着(例えば、パルプ繊維の表面に残存)していた高吸水性ポリマーが、水溶液に可溶な低分子量の有機物に変化し、パルプ繊維から除去される。また、過酸により、パルプ繊維の殺菌、漂白及び消臭等が行われ、リサイクルパルプ繊維を含む過酸含有水溶液97が形成する。 The decomposition process P17 is performed by the decomposition apparatus 17. The peracid-containing aqueous solution 96 from which the foreign matter is further removed, which is sent from the third dust collector 16, is introduced into the decomposition apparatus 17, and the peracid-containing aqueous solution 96 from which the foreign matter is further removed is heated. And a peracid-derived acid) act as an inactivating agent, while enhancing the oxidizing power by the peracid and further enhancing the function of the peracid as a decomposing agent. By doing so, the superabsorbent polymer adhering to the pulp fibers (for example, remaining on the surface of the pulp fibers) is converted into a low molecular weight organic substance soluble in an aqueous solution and removed from the pulp fibers. Moreover, sterilization, bleaching, deodorization and the like of pulp fibers are performed by the peracid, and a peracid-containing aqueous solution 97 containing recycled pulp fibers is formed.
 分解工程P17を実施する際に、異物がさらにいっそう除去された過酸含有水溶液96に過酸を添加してもよい。混合水溶液中の過酸と、過酸から生成する過酸由来酸との総モル濃度を高くすることにより、過酸の分解剤としての作用を高め、高吸水性ポリマーの分解を促進することができるからである。 When the decomposition step P17 is performed, a peracid may be added to the peroxy acid-containing aqueous solution 96 from which foreign matter is further removed. By increasing the total molar concentration of the peracid in the mixed aqueous solution and the peracid-derived acid generated from the peracid, the action of the peracid as a decomposing agent can be enhanced to promote the decomposition of the superabsorbent polymer It is because it can.
 第2分離工程P18は、第2分離装置18により実行され、分解装置17にて処理された、リサイクルパルプ繊維を含む過酸含有水溶液97が、複数のスリットを有するスクリーンを通過して、リサイクルパルプ繊維と、過酸含有水溶液とを分離する。リサイクルパルプ繊維は、スクリーンを通過せずに、第2分離装置18に残存するか、又は別経路で送出する。 The second separation step P18 is executed by the second separation device 18 and processed by the decomposition device 17. The peroxy acid-containing aqueous solution 97 containing recycled pulp fibers passes through the screen having the plurality of slits, and the recycled pulp is removed. The fiber and the aqueous solution containing the peracid are separated. The recycled pulp fibers do not pass through the screen, but remain in the second separation device 18 or are delivered separately.
 以下、例を挙げて本開示を説明するが、本開示はこれらの例に限定されるものではない。
[実施例1]
 ポリアクリル酸系の高吸水性ポリマー(住友精化社製、アクアキープ、未使用品)を、温度:25±5℃及び湿度:65±5%RHの恒温恒湿室において、質量比で150倍量の生理食塩水に10分間浸漬した。
 なお、浸漬した高吸水性ポリマーの吸水倍率を本明細書に記載の方法に従って測定したところ、吸収倍率は、86.6(g/g)であった。
Hereinafter, the present disclosure will be described by way of examples, but the present disclosure is not limited to these examples.
Example 1
Polyacrylic acid-based highly water-absorbing polymer (Sumitomo Seika Co., Ltd., AquaKeep, unused product) at a temperature ratio of 25 ± 5 ° C. and a humidity of 65 ± 5% RH in a constant temperature and humidity chamber of 150 in mass ratio Immersed in double volume of saline for 10 minutes.
In addition, when the water absorption capacity of the immersed super absorbent polymer was measured according to the method as described in this specification, the absorption capacity was 86.6 (g / g).
 温度:25±5℃及び湿度:65±5%RHの恒温恒湿室において、生理食塩水に10分浸漬した高吸水性ポリマー(住友精化社製、アクアキープ、未使用品、乾燥質量:1.0g)86.6gと、バイオサイドA 150mLと、脱イオン水150mLとをビーカーに入れ、10分間撹拌した。株式会社堀場製作所製のtwin pHメーター AS-711でpHを測定したところ、撹拌開始から1分後のpHは1.8であり、そして撹拌開始から10分撹拌後のpHは2.2であった。
 なお、バイオサイドAは、そのMDSによると、過酢酸5.6質量%と、過酸化水素26.5質量%と、酢酸及び水67.9質量%とから構成される。
Temperature: 25 ± 5 ° C. and humidity: in a constant temperature and humidity room at 65 ± 5% RH, a superabsorbent polymer (manufactured by Sumitomo Seika Chemicals, Aquakeep, unused goods, dry mass: 10 minutes immersed in physiological saline) 1.0 g) 86.6 g of Biocide A, 150 mL of deionized water and 150 mL of deionized water were placed in a beaker and stirred for 10 minutes. The pH was measured with a twin pH meter AS-711 manufactured by Horiba, Ltd. The pH after 1 minute from the start of stirring was 1.8, and the pH after 10 minutes from the start of stirring was 2.2 The
In addition, according to the MDS, Biocide A is composed of 5.6% by mass of peracetic acid, 26.5% by mass of hydrogen peroxide, and 67.9% by mass of acetic acid and water.
 10分撹拌後の高吸水性ポリマーの分解率を測定したところ、8質量%であった。
 なお、上記分解率は、以下の通り測定した。
(1)ビーカーの内容物を、メッシュ(株式会社NBCメッシュテック製,250メッシュナイロンネット)に入れて5分間吊るし、それらの表面に付着した水分を除去する。
(2)メッシュ上の高吸水性ポリマーを、120℃で10分間乾燥し、その試験後乾燥質量:m3(g)を測定する。
(3)分解率(質量%)を、次の式:
 分解率(質量%)=100×(1.0-m3)/1.0
 により算出する。
It was 8 mass% when the decomposition rate of the highly water-absorbing polymer after stirring for 10 minutes was measured.
In addition, the said decomposition rate was measured as follows.
(1) Put the contents of a beaker in a mesh (NBC Meshtec Co., Ltd., 250 mesh nylon net) and suspend for 5 minutes to remove water adhering to the surface.
(2) The superabsorbent polymer on the mesh is dried at 120 ° C. for 10 minutes, and after the test, the dry mass: m 3 (g) is measured.
(3) The decomposition rate (mass%) is expressed by the following formula:
Decomposition rate (mass%) = 100 × (1.0-m 3 ) /1.0
Calculated by
[実施例2]
 バイオサイドAの量を300mLに変更した以外は、実施例と同様にして、高吸水性ポリマーを不活化及び分解させた。
 撹拌開始から1分後のpHは1.6であり、そして撹拌開始から10分撹拌後のpHは1.8であった。また、分解率は、72質量%であった。
 以上より、処理時間、処理温度等を調整することにより、過酢酸が、衛生用品構成資材中の高吸水性ポリマーを分解することができることがわかる。
Example 2
The superabsorbent polymer was inactivated and degraded in the same manner as in Example except that the amount of Biocide A was changed to 300 mL.
The pH one minute after the start of stirring was 1.6, and the pH ten minutes after the start of stirring was 1.8. Moreover, the decomposition rate was 72 mass%.
From the above, it can be seen that, by adjusting the treatment time, treatment temperature and the like, peracetic acid can decompose the highly water-absorbent polymer in the sanitary product component.
 1  システム
 11  破袋装置
 12  破砕装置
 13  第1分離装置
 14  第1除塵装置
 15  第2除塵装置
 16  第3除塵装置
 17  分解装置
 18  第2分離装置
 91  使用済の衛生用品を含み、開孔部を有する収集袋
 92  破砕物を含む過酸含有水溶液
 93  異物が除去された過酸含有水溶液
 94  異物がより除去された過酸含有水溶液
 95  異物がさらに除去された過酸含有水溶液
 96  異物がさらにいっそう除去された過酸含有水溶液
 97  リサイクルパルプ繊維を含む過酸含有水溶液
 S1  高吸収性ポリマー不活化及び分解ステップ
 S1S  除去サブステップ
 S2  リサイクルパルプ繊維回収ステップ
 P11  開孔部形成工程
 P12  破砕工程
 P13  第1分離工程
 P14  第1除塵工程
 P15  第2除塵工程
 P16  第3除塵工程
 P17  分解工程
 P18  第2分離工程
DESCRIPTION OF SYMBOLS 1 system 11 tearing apparatus 12 shredding apparatus 13 1st separation apparatus 14 1st dust removal apparatus 15 2nd dust removal apparatus 16 3rd dust removal apparatus 17 decomposition apparatus 18 2nd separation apparatus 91 A used hygiene article is included and an opening part is made Collection bag 92 Peroxy acid-containing aqueous solution containing crushed material 93 Peroxy acid-containing aqueous solution from which foreign matter has been removed 94 Peroxy acid-containing aqueous solution from which foreign matter has been removed 95 Peroxy acid-containing aqueous solution from which foreign matter has been further removed 96 Peroxy acid-containing aqueous solution 97 Peroxyacid-containing aqueous solution containing recycled pulp fibers S1 Superabsorbent polymer inactivation and decomposition step S1 S removal substep S2 recycled pulp fiber recovery step P11 Opening formation process P12 crushing process P13 first separation Process P14 1st dust removal process P15 2nd dust removal process P16 3rd dust removal process P1 Decomposition step P18 the second separation step

Claims (8)

  1.  パルプ繊維及び高吸水性ポリマーを含む、使用済の衛生用品からリサイクルパルプ繊維を製造する方法であって、
     前記パルプ繊維と、酸基を有する高吸水性ポリマーとを含む、前記衛生用品を構成する衛生用品構成資材を、過酸を含む過酸含有水溶液に浸漬し、前記高吸水性ポリマーを不活化するとともに、前記高吸水性ポリマーを分解する高吸水性ポリマー不活化及び分解ステップ、
     前記高吸水性ポリマー不活化及び分解ステップを経た前記過酸含有水溶液から、前記リサイクルパルプ繊維を回収するリサイクルパルプ繊維回収ステップ、
     を含むことを特徴とする、前記方法。
    A method of producing recycled pulp fibers from used sanitary goods comprising pulp fibers and superabsorbent polymers, comprising:
    The hygienic article constituent material which constitutes the above-mentioned hygiene article which contains the above-mentioned pulp fiber and super absorbent polymer which has an acid group is immersed in the peroxy acid containing aqueous solution containing peroxy acid, and the above-mentioned super absorbent polymer is inactivated. Superabsorbent polymer inactivation and decomposition steps to degrade said superabsorbent polymer together with
    A recycling pulp fiber recovery step of recovering the recycling pulp fiber from the peroxy acid-containing aqueous solution subjected to the super absorbent polymer inactivation and decomposition step;
    Said method, characterized in that it comprises.
  2.  前記過酸が、前記高吸水性ポリマーの前記酸基よりも小さな酸解離定数(pKa,水中)を有する、請求項1に記載の方法。 The peracid has the high said smaller acid dissociation constant than acid groups of the water-absorbing polymer (pK a, water) The method of claim 1.
  3.  前記過酸から生成される過酸由来酸が、前記高吸水性ポリマーの前記酸基よりも小さな酸解離定数(pKa,水中)を有する、請求項1又は2に記載の方法。 The peracid derived acid formed from the peracid has the superabsorbent said smaller acid dissociation constant than acid groups of the polymer (pK a, water) The method of claim 1 or 2.
  4.  前記衛生用品構成資材が前記衛生用品であり、
     前記方法が、前記高吸水性ポリマー不活化及び分解ステップにおいて、前記衛生用品構成資材を前記過酸含有水溶液に浸漬した後、前記衛生用品構成資材のうち前記パルプ繊維及び高吸水性ポリマーを除くものを除去する除去ステップをさらに含み、
     前記高吸水性ポリマー不活化及び分解ステップにおいて、前記除去ステップの後、前記過酸含有水溶液に過酸を添加する、
     請求項1~3のいずれか一項に記載の方法。
    The sanitary product construction material is the sanitary product,
    The method comprises removing the pulp fiber and the superabsorbent polymer in the sanitary article construction material after immersing the sanitary article construction material in the peroxy acid containing aqueous solution in the superabsorbent polymer inactivation and decomposition step. Further including a removal step for removing
    In the superabsorbent polymer inactivation and decomposition step, a peracid is added to the peracid-containing aqueous solution after the removal step.
    The method according to any one of claims 1 to 3.
  5.  前記衛生用品構成資材が前記衛生用品であり、
     前記方法が、前記高吸水性ポリマー不活化及び分解ステップにおいて、前記衛生用品構成資材を前記過酸含有水溶液に浸漬した後、前記衛生用品構成資材のうち前記パルプ繊維及び高吸水性ポリマーを除くものを除去する除去ステップをさらに含み、
     前記高吸水性ポリマー不活化及び分解ステップにおいて、前記除去ステップの後、前記過酸含有水溶液の温度を高くする、
     請求項1~4のいずれか一項に記載の方法。
    The sanitary product construction material is the sanitary product,
    The method comprises removing the pulp fiber and the superabsorbent polymer in the sanitary article construction material after immersing the sanitary article construction material in the peroxy acid containing aqueous solution in the superabsorbent polymer inactivation and decomposition step. Further including a removal step for removing
    In the superabsorbent polymer inactivation and decomposition step, the temperature of the aqueous solution containing peracid is increased after the removal step.
    A method according to any one of the preceding claims.
  6.  前記リサイクルパルプ繊維回収ステップにおいて、前記リサイクルパルプ繊維に、前記過酸から生成される過酸由来酸を残存させる、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein in the recycled pulp fiber recovery step, the recycled pulp fiber is left with a peracid-derived acid generated from the peracid.
  7.  過酸の、酸基を有する高吸水性ポリマーの不活化及び分解のための使用。 Use of peracids for the deactivation and degradation of superabsorbent polymers with acid groups.
  8.  過酸を含む、酸基を有する高吸水性ポリマーの不活化及び分解剤。 An activating and decomposing agent for a superabsorbent polymer having an acid group, which comprises a peracid.
PCT/JP2018/036906 2017-12-20 2018-10-02 Recycled pulp fiber manufacturing method, use of peracid for inactivating and degrading high water-absorption polymer, and peracid-containing agent for inactivating and degrading high water-absorption polymer WO2019123765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017244095A JP6847028B2 (en) 2017-12-20 2017-12-20 Methods for producing recycled pulp fibers, use of peracids for inactivating and decomposing superabsorbent polymers, and inactivating and decomposing agents of superabsorbent polymers containing peracids.
JP2017-244095 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019123765A1 true WO2019123765A1 (en) 2019-06-27

Family

ID=66993285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036906 WO2019123765A1 (en) 2017-12-20 2018-10-02 Recycled pulp fiber manufacturing method, use of peracid for inactivating and degrading high water-absorption polymer, and peracid-containing agent for inactivating and degrading high water-absorption polymer

Country Status (2)

Country Link
JP (1) JP6847028B2 (en)
WO (1) WO2019123765A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021062132A (en) * 2019-10-16 2021-04-22 ユニ・チャーム株式会社 Sanitary article using member derived from used sanitary article
WO2021162082A1 (en) 2020-02-14 2021-08-19 株式会社日本触媒 Method for recycling water absorbent resin
JP7355714B2 (en) 2020-07-20 2023-10-03 ユニ・チャーム株式会社 Method for producing purified recycled pulp fiber from used sanitary products
CN116194208A (en) * 2020-10-15 2023-05-30 三洋化成工业株式会社 Method for producing water-absorbent resin particles
JP2022072367A (en) 2020-10-29 2022-05-17 ユニ・チャーム株式会社 Method of treating effluent containing dissolved components of superabsorbent polymer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317785A (en) * 1991-04-15 1992-11-09 Nippon Shokubai Co Ltd Recovery of pulp from water absorbable product
JPH06502454A (en) * 1991-06-17 1994-03-17 ノワスト・テクノロジーズ・インコーポレーテツド Processing of absorbent sanitary paper products
JPH06313008A (en) * 1993-04-28 1994-11-08 Mitsubishi Petrochem Co Ltd Decomposition of water absorptive polymer
JPH09249711A (en) * 1996-03-19 1997-09-22 Mitsubishi Gas Chem Co Inc Method for decomposing water-absorbent polymer
JP2001316519A (en) * 2000-05-09 2001-11-16 Nippon Asahi Kiko Hanbai Kk Decomposing agent and decomposition method
JP2003321574A (en) * 2002-04-30 2003-11-14 Tadashi Komoto Decomposer for water absorptive polymer and method for decomposing water absorptive polymer by using the decomposer
US20140230322A1 (en) * 2011-09-23 2014-08-21 Zynnovation Llc Disposable diaper recycling and applications thereof
JP2014217835A (en) * 2013-04-10 2014-11-20 ユニ・チャーム株式会社 Method for recovering pulp fiber from used sanitary article and regenerated pulp obtained by the method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317785A (en) * 1991-04-15 1992-11-09 Nippon Shokubai Co Ltd Recovery of pulp from water absorbable product
JPH06502454A (en) * 1991-06-17 1994-03-17 ノワスト・テクノロジーズ・インコーポレーテツド Processing of absorbent sanitary paper products
JPH06313008A (en) * 1993-04-28 1994-11-08 Mitsubishi Petrochem Co Ltd Decomposition of water absorptive polymer
JPH09249711A (en) * 1996-03-19 1997-09-22 Mitsubishi Gas Chem Co Inc Method for decomposing water-absorbent polymer
JP2001316519A (en) * 2000-05-09 2001-11-16 Nippon Asahi Kiko Hanbai Kk Decomposing agent and decomposition method
JP2003321574A (en) * 2002-04-30 2003-11-14 Tadashi Komoto Decomposer for water absorptive polymer and method for decomposing water absorptive polymer by using the decomposer
US20140230322A1 (en) * 2011-09-23 2014-08-21 Zynnovation Llc Disposable diaper recycling and applications thereof
JP2014217835A (en) * 2013-04-10 2014-11-20 ユニ・チャーム株式会社 Method for recovering pulp fiber from used sanitary article and regenerated pulp obtained by the method

Also Published As

Publication number Publication date
JP2019108640A (en) 2019-07-04
JP6847028B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2019123765A1 (en) Recycled pulp fiber manufacturing method, use of peracid for inactivating and degrading high water-absorption polymer, and peracid-containing agent for inactivating and degrading high water-absorption polymer
WO2019123766A1 (en) Recycled pulp fiber manufacturing method
JP7115933B2 (en) Method for regenerating superabsorbent polymer, method for producing recycled superabsorbent polymer, and use of alkali metal ion source
RU2112096C1 (en) Method of treatment of hygienic products from absorbing paper, method of treatment of superabsorbing polymer, solidified superabsorbing polymer and device for treatment of hygienic products
JP6843030B2 (en) Methods and systems for recovering pulp fibers and superabsorbent polymers from used absorbent articles
JP7168350B2 (en) Method and system for recovering pulp fibers from used absorbent articles
JP6762287B2 (en) Methods and systems for recovering pulp fibers from used absorbent articles
JP7231522B2 (en) Method for producing regenerated superabsorbent polymer, method for producing superabsorbent polymer using regenerated superabsorbent polymer, and regenerated superabsorbent polymer
WO2019151538A1 (en) Method for regenerating highly water-absorbing polymer, method for producing highly water-absorbing recycled polymer, and use of alkali metal ion source
JP3222462B2 (en) Processing of absorbent physiological paper products
JP2023010724A (en) Method and system for recovery of pulp fiber from used absorbent articles
WO2019087488A1 (en) Recovery method for organic acid, and production method for recycled pulp
WO2019087487A1 (en) Recovery method for excrement and organic acid, and production method for recycled pulp fibers
WO2023210528A1 (en) Method for producing plastic material derived from used sanitary product suitable for material recycling or chemical recycling, and plastic material derived from used sanitary product
JP2020183585A (en) Method for producing recycled pulp fiber from used absorbent article containing super absorbent polymer, pulp fiber and excrement
WO2021124655A1 (en) Cellulose nanofiber manufacturing method and cellulose nanofiber
WO2021040046A1 (en) Method for manufacturing pulp fiber raw material for fiber composite reinforcing material, pulp fiber raw material for fiber composite reinforcing material, fiber composite reinforcing material, pellet, film, fiber, and nonwoven textile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891056

Country of ref document: EP

Kind code of ref document: A1