JP2003321574A - Decomposer for water absorptive polymer and method for decomposing water absorptive polymer by using the decomposer - Google Patents

Decomposer for water absorptive polymer and method for decomposing water absorptive polymer by using the decomposer

Info

Publication number
JP2003321574A
JP2003321574A JP2002128801A JP2002128801A JP2003321574A JP 2003321574 A JP2003321574 A JP 2003321574A JP 2002128801 A JP2002128801 A JP 2002128801A JP 2002128801 A JP2002128801 A JP 2002128801A JP 2003321574 A JP2003321574 A JP 2003321574A
Authority
JP
Japan
Prior art keywords
water
polymer
decomposing
decomposition
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002128801A
Other languages
Japanese (ja)
Other versions
JP3920139B2 (en
Inventor
Tadashi Komoto
忠史 甲本
Chiyuki Kikushima
千幸 菊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Asahi Kiko Hanbai Co Ltd
Original Assignee
Nippon Asahi Kiko Hanbai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Asahi Kiko Hanbai Co Ltd filed Critical Nippon Asahi Kiko Hanbai Co Ltd
Priority to JP2002128801A priority Critical patent/JP3920139B2/en
Publication of JP2003321574A publication Critical patent/JP2003321574A/en
Application granted granted Critical
Publication of JP3920139B2 publication Critical patent/JP3920139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decomposer for a water absorptive polymer, having excellent versatility and decomposing ability, and to provide a method for decomposing the polymer by using the decomposer. <P>SOLUTION: The decomposer is obtained by compounding an alkali compound to a persulfate oxidizer at a molar ratio of 0.1-10 and making the oxidizer concentration in an aqueous solution to be 0.002-10 wt.%, and the decomposing treatment of the water absorptive polymer is performed at 40-100°C by using the decomposer as an aqueous solution of pH 4 to pH 14. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この出願の発明は、吸水性ポ
リマーの分解剤とこれを用いる吸水性ポリマーの分解方
法に関するものである。
TECHNICAL FIELD The invention of the present application relates to a decomposing agent for a water-absorbing polymer and a method for decomposing a water-absorbing polymer using the same.

【0002】[0002]

【従来の技術と発明の課題】生理用品、紙おむつ等の衛
生用品をはじめとして種々の分野で使用されている吸水
性ポリマーは、水溶性ポリマーが三次元架橋した構造で
あるため、水を吸水して膨潤はしても溶解はしないとい
う特徴を有している。したがって、例えば、これらの吸
水性ポリマーを利用した紙おむつ等は、使用後、廃棄物
として焼却あるいは埋め立てにより処理される現況にあ
り、環境保全の面からは、好ましいことではない。
2. Description of the Related Art Water-absorbing polymers used in various fields such as sanitary products and sanitary products such as disposable diapers absorb water by virtue of their three-dimensionally cross-linked water-soluble polymers. It has a characteristic that it swells but does not dissolve. Therefore, for example, paper diapers and the like using these water-absorbent polymers are currently treated as incineration or landfill after use, which is not preferable from the viewpoint of environmental protection.

【0003】このような問題を解決するために、これま
でにも吸水性ポリマーの分解のための各種の方法が提案
されている。例えば、特開平4−317784号公報に
は、過酸化水素で、吸水性ポリマーを分解する廃棄方法
が開示されているが、大量の過酸化水素の使用と長時間
の処理を必要とするという問題点がある。
In order to solve such problems, various methods for decomposing water-absorbing polymers have been proposed so far. For example, Japanese Unexamined Patent Publication No. 4-317784 discloses a disposal method of decomposing a water-absorbing polymer with hydrogen peroxide, but it requires a large amount of hydrogen peroxide and a long-term treatment. There is a point.

【0004】そして、特開平5−247126号公報に
は、微生物による吸水性ポリマーの分解方法が開示され
ているが、常にポリマーに空気を吹き込むなどの種々の
条件設定と長時間の反応を必要とするという問題があ
る。
Japanese Patent Application Laid-Open No. 5-247126 discloses a method for decomposing a water-absorbing polymer by microorganisms, which requires various conditions such as constantly blowing air into the polymer and long-term reaction. There is a problem of doing.

【0005】また、特開平6−313008号公報に
は、過硫酸塩水溶液で加熱処理することによって吸水性
ポリマーを短時間で分解する方法が開示されているが、
処理できる吸水性ポリマーの量は、重量比で過硫酸塩水
溶液の30分の1以下で、しかも吸水性ポリマーの全体
が水溶液で膨潤した状態でなければならず、容器や反応
装置内で1回当たり処理できるポリマー量が限られた
り、水溶液で膨潤していないポリマーは分解されなかっ
たり、一旦分解したポリマーが再び架橋反応のためにゲ
ル化するという問題がある。
Further, JP-A-6-313008 discloses a method of decomposing a water-absorbing polymer in a short time by heating it with an aqueous solution of persulfate.
The amount of water-absorbent polymer that can be treated is not more than 1/30 of the weight ratio of the aqueous solution of persulfate, and the entire water-absorbent polymer must be swollen with the aqueous solution. There is a problem that the amount of polymer that can be treated per hour is limited, a polymer that is not swollen in an aqueous solution is not decomposed, and a polymer that has been decomposed once again becomes a gel due to a crosslinking reaction.

【0006】このような状況において、この出願の発明
者らは、吸水性ポリマーの分解について、特開2001
−316519号公報において、過ヨウ素酸塩を含む分
解剤とこれを用いた分解方法が過硫酸塩単独の場合より
優れていることを開示した。しかし、過ヨウ素酸塩は過
硫酸塩より高価であることから、より汎用性の高い酸化
剤と、これを用いた吸水性ポリマーの分解方法の開発が
望まれていた。
Under such circumstances, the inventors of the present application have disclosed that the water-absorbing polymer is decomposed by Japanese Patent Laid-Open No. 2001-2001.
In Japanese Patent No. 316519, it is disclosed that a decomposition agent containing periodate and a decomposition method using the decomposition agent are superior to the case of using persulfate alone. However, since periodate is more expensive than persulfate, it has been desired to develop a more versatile oxidizing agent and a method for decomposing a water-absorbing polymer using the oxidizing agent.

【0007】そこで、この出願の発明は、以上のとおり
の従来技術の問題点を解消し、より安価で汎用性の高い
酸化剤によって効率的に吸水性ポリマーを分解処理する
ことのできる新しい技術的方策を提供することを課題と
している。
Therefore, the invention of this application solves the problems of the prior art as described above, and is a new technical technique capable of efficiently decomposing a water-absorbing polymer with an inexpensive and highly versatile oxidizing agent. The challenge is to provide measures.

【0008】[0008]

【課題を解決するための手段】この出願の発明は前記の
課題を解決するものとして、第1には、吸水性ポリマー
を分解する分解剤であって、アルカリ化合物の少なくと
も1種と、酸化剤である過硫酸塩化合物の少なくとも1
種を含むことを特徴とする吸水性ポリマーの分解剤を提
供する。
Means for Solving the Problems To solve the above problems, the invention of the present application is as follows. First, a decomposing agent for decomposing a water-absorbing polymer, which comprises at least one alkali compound and an oxidizing agent. At least one of the persulfate compounds being
Disclosed is a water-absorbing polymer decomposing agent, which comprises a seed.

【0009】第2には、前記アルカリ化合物が、水溶性
であって、その水溶液中で一価の陽イオンと一価の陰イ
オンに解離してアルカリ性を示すことを特徴とする吸水
性ポリマーの分解剤を、第3には、前記酸化剤の濃度が
0.002〜10重量%である水溶液であることを特徴
とする吸水性ポリマーの分解剤を、第4には、前記アル
カリ化合物が前記酸化剤に対して、モル比で、0.1〜
10倍量含まれていることを特徴とする吸水性ポリマー
の分解剤を提供する。
Secondly, a water-absorbing polymer characterized in that the alkali compound is water-soluble and dissociates in its aqueous solution into monovalent cations and monovalent anions to show alkalinity. A decomposing agent, thirdly, a decomposing agent for a water-absorbing polymer, which is an aqueous solution in which the concentration of the oxidizing agent is 0.002 to 10% by weight, and fourthly, the alkali compound is The molar ratio to the oxidant is 0.1 to 0.1.
Disclosed is a decomposing agent for a water-absorbent polymer, which is contained in an amount of 10 times.

【0010】そして、この出願の発明は、第5には、吸
水性ポリマーもしくはこれを含有する吸水用材における
吸水性ポリマーの分解方法であって、吸水性ポリマーに
対して、前記いずれかの分解剤を加えて水の存在下に吸
水性ポリマーを分解処理することを特徴とする吸水性ポ
リマーの分解方法を提供する。
A fifth aspect of the invention of this application is a method for decomposing a water-absorbing polymer in a water-absorbing polymer or a water-absorbing material containing the water-absorbing polymer. A method for decomposing a water-absorbent polymer, which comprises decomposing the water-absorbent polymer in the presence of water.

【0011】第6には、前記分解剤の水溶液のpHを4
〜14の範囲とすることを特徴とする分解方法を、第7
には、処理温度を40℃〜100℃の範囲とすることを
特徴とする分解方法を提供する。
Sixth, the pH of the aqueous solution of the decomposing agent is set to 4
The decomposition method is characterized in that
The present invention provides a decomposition method, wherein the treatment temperature is in the range of 40 ° C to 100 ° C.

【0012】さらに、第8には、吸水性ポリマーの少く
と一部を含水させた状態で分解処理することを特徴とす
る分解方法を提供し、第9には、含水量は、吸水性ポリ
マーの重量に対しての重量比で、5〜1000倍である
ことを特徴とする分解方法を提供する。
Further, eighthly, there is provided a decomposition method characterized in that the water-absorbing polymer is decomposed in a state of containing at least a part of the water-absorbing polymer. And a weight ratio to the weight of 5 to 1000 times.

【0013】[0013]

【発明の実施の形態】この出願の発明は前記のとおりの
特徴をもつものであるが、以下に、その実施の形態につ
いて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the characteristics as described above, and the embodiments thereof will be described in detail below.

【0014】この出願の発明において、分解剤による分
解に供される吸水性ポリマーとは、例えば、生理用品、
紙おむつ等の衛生用品をはじめとして種々の分野で使用
される水分を吸収することにより、湿潤または膨潤する
高分子ポリマーのことを言う。
In the invention of this application, the water-absorbent polymer to be decomposed by the decomposing agent is, for example, a sanitary article,
It refers to a high molecular weight polymer which is used in various fields including hygiene products such as paper diapers and which wets or swells by absorbing water.

【0015】このような吸水性ポリマーとしては、その
種類や組成は特に限定されないが、例えば、アクリル酸
塩架橋重合体、イソブチレン−マレイン酸塩架橋重合
体、アクリル酸エステル−酢酸ビニル共重合体のけん化
物架橋体、デンプン−アクリル酸塩グラフト共重合体等
の親水性のビニルポリマーを構造中に含むものが挙げら
れ、なかでも、アクリル酸塩架橋重合体、イソブチレン
−マレイン酸塩架橋重合体であるものが好適な対象とし
て例示される。
The kind and composition of the water-absorbing polymer are not particularly limited, but examples thereof include acrylic acid cross-linked polymers, isobutylene-maleic acid cross-linked polymers, and acrylic acid ester-vinyl acetate copolymers. Examples include those containing a hydrophilic vinyl polymer such as a saponified product crosslinked product and a starch-acrylic acid salt graft copolymer in the structure. Among them, an acrylic acid crosslinked polymer and an isobutylene-maleic acid crosslinked polymer are included. Some are exemplified as suitable targets.

【0016】また、この吸水性ポリマーの形態(形状)
としては、特に限定されず、例えば、粉末、粒状、シー
ト状、繊維状、織布、不織布等のいかなるものであって
もよい。
Further, the form (shape) of this water-absorbent polymer
The material is not particularly limited, and may be, for example, powder, granule, sheet, fibrous, woven fabric, non-woven fabric, or the like.

【0017】そして、この出願の発明の吸水性ポリマー
の分解剤は、酸化剤として過硫酸塩を含むものである。
The water-absorbing polymer decomposing agent of the invention of this application contains persulfate as an oxidizing agent.

【0018】発明者は、吸水性ポリマーを効率よく分解
できる分解剤について、鋭意、研究を重ねた結果、この
酸化剤としての過硫酸塩とアルカリ化合物との混合水溶
液が、過硫酸塩のみからなる水溶液に比べ、吸水性ポリ
マーの分解能が格段に優れた分解剤であることを見出
し、このような知見に基づいてこの出願の発明を完成し
ている。
The inventor has conducted extensive studies on a decomposing agent capable of efficiently decomposing a water-absorbing polymer, and as a result, a mixed aqueous solution of a persulfate salt as an oxidant and an alkali compound is composed of only a persulfate salt. It has been found that the water-absorbing polymer is a decomposing agent having a remarkably excellent resolution as compared with an aqueous solution, and the invention of this application has been completed based on such knowledge.

【0019】すなわち、まず、過硫酸塩を単独で(過ヨ
ウ素酸塩やアルカリ化合物を含まずに)使用し、一度に
多量の吸水性ポリマーを分解しようとした場合、例え
ば、水と吸水性ポリマーの重量比、すなわち、吸水倍率
が30倍以下の場合、あるいは、それ以上の吸水倍率で
も、過硫酸塩濃度が3%以上では、この水溶液に吸水性
ポリマーを添加、混合し、加熱すると過硫酸塩の分解物
と水との反応から生成するヒドロキシラジカルが、ポリ
アクリル酸主鎖の水素を引き抜き、主鎖にラジカルが生
成し、隣接する吸水性ポリマー鎖間あるいは、一旦分解
して溶解したポリマー鎖の間で架橋・ゲル化反応(副反
応)が起こる。この基本的な反応機構は、放射線照射の
場合と同じである(S.Zhu ら、Eur. Polym. J., 34巻,
487(1998))。これに対し、この出願の発明のように、
過硫酸塩とアルカリ化合物の混合水溶液の場合には、吸
水性ポリマーは分解して溶液に溶解した後においても、
副反応である架橋・ゲル化が起こらず、よって、吸水性
ポリマーの分解能に優れたものとなる。
That is, first, when persulfate is used alone (without a periodate or an alkali compound) to decompose a large amount of water-absorbing polymer at one time, for example, water and water-absorbing polymer are used. When the water absorption ratio is 30% or less, or even when the water absorption ratio is 30% or less, if the persulfate concentration is 3% or more, the water-absorbing polymer is added to and mixed with this aqueous solution, and the persulfate is heated. Hydroxy radicals generated from the reaction of salt decomposition products with water abstract hydrogen from the polyacrylic acid main chain, and radicals are generated in the main chain, between adjacent water-absorbing polymer chains or once decomposed and dissolved polymers Cross-linking / gelling reaction (side reaction) occurs between the chains. This basic reaction mechanism is the same as in the case of irradiation (S.Zhu et al., Eur. Polym. J., Vol. 34,
487 (1998)). On the other hand, like the invention of this application,
In the case of a mixed aqueous solution of a persulfate and an alkaline compound, even after the water-absorbing polymer is decomposed and dissolved in the solution,
Cross-linking and gelation, which are side reactions, do not occur, so that the water-absorbing polymer has excellent resolution.

【0020】なお、前述した架橋・ゲル化反応は、水溶
液のpHが4より低くなると、吸水性ポリマーの側鎖カ
ルボキシル基の解離が抑制され、側鎖間のイオン反発が
減少するため、ポリマー鎖間距離が接近し、結果とし
て、分子鎖間でラジカルの再結合による架橋反応が分解
反応より優先し、ゲル化する。過硫酸塩のみの水溶液で
は、分解反応の初期は、pHは6程度であり、分解反応
が優先的に起こるが、時間とともに溶液のpHは徐々に
低下し続けるため、一旦、吸水性ポリマーが分解し均一
な水溶液となる場合もあるが、pH4以上の弱酸性領域
でも、部分的にポリマーの分子鎖が接近した状態では、
架橋反応が起こることがあるため、pHが6より低くな
ると均一溶液から透明なゲルが生成することもある。
In the above-mentioned crosslinking / gelation reaction, when the pH of the aqueous solution becomes lower than 4, the dissociation of the side chain carboxyl groups of the water-absorbing polymer is suppressed and the ionic repulsion between the side chains is reduced. As a result, the crosslinking reaction due to the recombination of radicals between the molecular chains takes precedence over the decomposition reaction and gels as a result. In an aqueous solution containing only persulfate, the pH is about 6 in the initial stage of the decomposition reaction, and the decomposition reaction occurs preferentially, but since the pH of the solution continues to decrease gradually with time, the water-absorbing polymer is once decomposed. However, even if it is a uniform aqueous solution, even in a weakly acidic region of pH 4 or higher, when the polymer molecular chains are partially close,
Since the crosslinking reaction may occur, a transparent gel may be formed from the homogeneous solution when the pH becomes lower than 6.

【0021】このような知見から、この出願の発明で
は、過硫酸塩による架橋・ゲル化が起こらないように、
水溶液のpHを4〜14の範囲、より好ましくは、5〜
14の範囲、さらに好ましくは6〜14の範囲の条件下
で吸水性ポリマーの分解反応のみを行うことを好ましい
実施の形態としている。
From the above knowledge, in the invention of this application, in order to prevent crosslinking and gelation due to persulfate,
The pH of the aqueous solution is in the range of 4 to 14, more preferably 5 to
It is a preferred embodiment to carry out only the decomposition reaction of the water-absorbent polymer under the condition of 14 range, more preferably 6-14.

【0022】また、分解反応では、水溶液中で過硫酸塩
1分子が熱分解して2分子のラジカルが発生する条件
下、すなわち、反応温度は40℃〜100℃の範囲が好
ましく、50℃〜100℃の範囲がより好ましく、60
℃〜100℃の範囲がさらに好ましい。
In the decomposition reaction, under the condition that one molecule of persulfate is thermally decomposed in an aqueous solution to generate two molecules of radicals, that is, the reaction temperature is preferably 40 ° C to 100 ° C, and 50 ° C to 50 ° C. The range of 100 ° C. is more preferable, and 60
The range of 100 ° C to 100 ° C is more preferable.

【0023】過硫酸塩としては、例えば、過硫酸カリウ
ム、過硫酸アンモニウム等の水溶性の酸化剤が好ましく
用いられる。
As the persulfate, for example, a water-soluble oxidizing agent such as potassium persulfate or ammonium persulfate is preferably used.

【0024】一方、アルカリ化合物としては、水溶性で
あって、その水溶液中で一価の陽イオンと一価の陰イオ
ンに解離してアルカリ性を示すものが好適に用いられ
る。例えば、水酸化ナトリウム、水酸化カリウム、水酸
化リチウムなどのアルカリ金属水酸化物、炭酸リチウ
ム、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属
炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等のア
ルカリ金属炭酸水素塩、酢酸ナトリウム、酢酸カリウ
ム、酢酸アンモニウムなどのアルカリ金属酢酸塩、シュ
ウ酸ナトリウム、シュウ酸カリウムなどのアルカリ金属
シュウ酸塩、コハク酸−ナトリウムなどのアルカリ金属
コハク酸塩、グリシン、アラニン、グルタミン酸などの
アミノ酸のアルカリ金属塩、アンモニアが好ましい。な
かでも、炭酸水素ナトリウム、水酸化ナトリウムを用い
るのがより好ましい。
On the other hand, as the alkali compound, those which are water-soluble and show alkalinity by being dissociated into a monovalent cation and a monovalent anion in the aqueous solution thereof are preferably used. For example, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, alkali metal carbonates such as lithium carbonate, sodium carbonate and potassium carbonate, alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate. Alkali metal acetates such as sodium acetate, potassium acetate and ammonium acetate, alkali metal oxalates such as sodium oxalate and potassium oxalate, alkali metal succinates such as sodium succinate-sodium, glycine, alanine and glutamic acid Alkali metal salts of amino acids and ammonia are preferred. Among them, it is more preferable to use sodium hydrogen carbonate or sodium hydroxide.

【0025】分解剤水溶液中の過硫酸塩に対するアルカ
リ化合物のモル比は、吸水性ポリマーの分解過程におい
て、反応水溶液のpHが少なくとも4以下にならない範
囲であれば特に限定されるものではない。これを可能と
する過硫酸塩に対するアルカリ化合物のモル比として
は、0.1〜10であるのが好ましく、1〜5であるの
がより好ましく、1.5〜3であるのがさらに好まし
い。これにより、前述した副反応である架橋・ゲル化反
応の抑制効果をより高めるとともに、広い範囲の吸水倍
率において、吸水性ポリマーの分解が可能となる。
The molar ratio of the alkali compound to the persulfate in the aqueous solution of the decomposing agent is not particularly limited as long as the pH of the aqueous solution of the reaction does not fall below at least 4 in the process of decomposing the water-absorbing polymer. The molar ratio of the alkali compound to the persulfate that enables this is preferably 0.1 to 10, more preferably 1 to 5, and even more preferably 1.5 to 3. As a result, the effect of suppressing the crosslinking / gelling reaction, which is a side reaction described above, can be further enhanced, and the water-absorbing polymer can be decomposed in a wide range of water absorption capacity.

【0026】このような分解剤は、例えば、固体、水溶
液等として用いるのが好ましい。
Such a decomposing agent is preferably used, for example, as a solid, an aqueous solution or the like.

【0027】分解剤を固体として使用する場合には、例
えば、吸水性ポリマーを水で膨潤させた後、この膨潤し
た吸水性ポリマーに分解剤である過硫酸塩とアルカリ化
合物を添加するか、吸水性ポリマーと分解剤を混合した
後、水を添加するようにすればよい。
When the decomposing agent is used as a solid, for example, the water-absorbing polymer is swollen with water, and then the persulfate which is a decomposing agent and an alkali compound are added to the swollen water-absorbing polymer, or the water-absorbing polymer is added. After mixing the water-soluble polymer and the decomposing agent, water may be added.

【0028】また、この場合、分解剤の形態(形状)と
しては、例えば、粉末、粒状、ペレト等のいかなるもの
でもよい。
In this case, the form (shape) of the decomposing agent may be, for example, powder, granules, pellets or the like.

【0029】一方、分解剤を水溶液として用いる場合に
は、例えば、過硫酸塩とアルカリ化合物を水に溶解し、
所定の濃度の水溶液を調製した後、この水溶液に吸水性
ポリマーを添加するようにすればよい。
On the other hand, when the decomposer is used as an aqueous solution, for example, a persulfate and an alkali compound are dissolved in water,
After preparing an aqueous solution having a predetermined concentration, the water absorbing polymer may be added to this aqueous solution.

【0030】分解剤を水溶液として用いる場合、酸化剤
の水溶液中の濃度は、特に限定されないが、例えば、
0.002〜10重量%であるのが好ましく、0.1〜
8重量%であるのがより好ましく、0.5〜5重量%で
あるのがさらに好ましい。
When the decomposing agent is used as an aqueous solution, the concentration of the oxidizing agent in the aqueous solution is not particularly limited.
It is preferably 0.002 to 10% by weight, and 0.1 to 10% by weight
It is more preferably 8% by weight, and even more preferably 0.5 to 5% by weight.

【0031】また、このような吸水性ポリマーの分解
は、吸水性ポリマーの少なくとも一部を、含水させた状
態で行うのが好ましい。すなわち、水または分解剤水溶
液により湿潤または膨潤させた状態で行うのが好まし
い。
Further, such decomposition of the water-absorbent polymer is preferably carried out while at least a part of the water-absorbent polymer is hydrated. That is, it is preferably carried out in a state of being moistened or swollen with water or a decomposition agent aqueous solution.

【0032】過硫酸塩を単独で用いた場合には、吸水性
ポリマーの全部を膨潤させた状態でないと、吸水性ポリ
マーの分解は進行しない。また、十分膨潤させた状態で
も、過硫酸塩を単独で用いた場合には、分解反応は完全
には進行せず、微量の未分解粒状物が残存する。
When the persulfate is used alone, decomposition of the water-absorbent polymer does not proceed unless all the water-absorbent polymer is swollen. Further, even when the persulfate is used alone even in a sufficiently swollen state, the decomposition reaction does not proceed completely, and a trace amount of undecomposed particulate matter remains.

【0033】これに対して、この出願の発明の分解剤で
は、必ずしも、吸水性ポリマーは全部を水(分解剤水溶
液)で膨潤させる必要はない。すなわち、吸水性ポリマ
ーの少なくとも一部を、含水させた状態であれば、この
部分から吸水性ポリマーの分解反応が進行し、徐々に分
解領域(分解部位)が増大していく。そして、最終的に
は、吸水性ポリマー全体が分解されることになる。した
がって、少量の分解剤でより多くの吸水性ポリマーを分
解することができる。
On the other hand, in the decomposing agent of the invention of this application, it is not always necessary that the entire water-absorbent polymer is swollen with water (decomposing agent aqueous solution). That is, if at least a part of the water-absorbent polymer is in a water-containing state, the decomposition reaction of the water-absorbent polymer proceeds from this part, and the decomposition region (decomposition site) gradually increases. And finally, the whole water-absorbent polymer will be decomposed. Therefore, a larger amount of the water-absorbent polymer can be decomposed with a small amount of the decomposing agent.

【0034】この含水量は、例えば、吸水性ポリマーの
重量に対して、重量比で5〜1000倍であるのが好ま
しく、10〜500倍であるのがより好ましく、15〜
200倍であるのがさらに好ましい。
The water content is, for example, preferably 5 to 1000 times, more preferably 10 to 500 times, and more preferably 15 to 1000 times the weight of the water-absorbent polymer.
More preferably, it is 200 times.

【0035】また、吸水性ポリマーは、酸化剤である過
硫酸塩の重量に対して、例えば、重量比で0.2倍以上
添加して分解するのが好ましく、0.5倍以上であるの
がより好ましく、1.0倍以上であるのがさらに好まし
い。これにより一度に分解(処理)できる吸水性ポリマ
ーの量を増大することができる。すなわち、少量の分解
剤で多量の吸水性ポリマーを分解することができる。そ
のため、吸水性ポリマーの分解後、分解溶液中の分解剤
の残存量を低減することができ、分解溶液の廃棄に際し
て、環境汚染の低減の面からも有利である。
The water-absorbent polymer is preferably decomposed by adding, for example, 0.2 times by weight or more, preferably 0.5 times or more, with respect to the weight of the persulfate which is an oxidizing agent. Is more preferable, and 1.0 times or more is further preferable. This can increase the amount of water-absorbent polymer that can be decomposed (treated) at one time. That is, a large amount of water-absorbing polymer can be decomposed with a small amount of decomposing agent. Therefore, it is possible to reduce the amount of the decomposing agent remaining in the decomposing solution after decomposing the water-absorbing polymer, which is advantageous from the viewpoint of reducing environmental pollution when the decomposing solution is discarded.

【0036】環境保全の面からは、この出願の発明によ
る過硫酸塩とアルカリ化合物を含む分解剤水溶液は、酸
化剤である過硫酸塩は反応後、硫酸イオンとなり、アル
カリ化合物によって中和され、例えば、硫酸ナトリウム
や硫酸カリウムなどの状態となるので、分解反応終了後
の水溶液は、中性ないしアルカリ性であり、安全であ
る。また、分解生成物である水溶性ポリアクリル酸は、
鉱業、織物、化粧品、製紙業、石油採掘、農業用地の改
質、水の浄化等に広く利用されているポリマーであるの
で、環境汚染することはない。
From the viewpoint of environmental protection, the aqueous solution of the decomposer containing the persulfate and the alkali compound according to the invention of the present application, after the persulfate which is the oxidizing agent reacts to form a sulfate ion and is neutralized by the alkali compound, For example, since sodium sulfate, potassium sulfate, or the like is formed, the aqueous solution after the decomposition reaction is neutral or alkaline and safe. In addition, the water-soluble polyacrylic acid that is a decomposition product,
Since it is a polymer widely used in mining, textiles, cosmetics, paper manufacturing, oil mining, reforming agricultural land, water purification, etc., it does not pollute the environment.

【0037】また、水酸化ナトリウムのような強アルカ
リ化合物を使用した場合、低濃度でも溶液はpH10な
いし14の強いアルカリ性を示すが、炭酸水素ナトリウ
ムのような弱アルカリ化合物を使用した場合、溶液はp
H7ないし9の弱アルカリ性を示すので、分解物水溶液
の廃棄処理等の面から、炭酸水素塩がより好ましい。
When a strong alkali compound such as sodium hydroxide is used, the solution exhibits strong alkalinity of pH 10 to 14 even at a low concentration, but when a weak alkali compound such as sodium hydrogen carbonate is used, the solution is p
Since H7 to 9 exhibit weak alkalinity, hydrogen carbonate is more preferable from the viewpoint of disposal of the aqueous solution of decomposed products.

【0038】さらに、この出願の発明による吸水性ポリ
マーの分解は、紙おむつ・生理用品の構成物であるプラ
スチック製カバーシート、不織布、セルロース粉末等の
非分解性物質が共存していても、それらに影響されず、
分解反応は100%進行する。すなわち、分解反応終了
後は、カバーシート、不織布、セルロース粉末のみが、
水溶液中に分散した状態となる。
Further, the water-absorbent polymer according to the invention of this application can be decomposed even in the presence of non-decomposable substances such as plastic cover sheets, non-woven fabrics and cellulose powder which are constituents of disposable diapers and sanitary products. Unaffected,
The decomposition reaction proceeds 100%. That is, after the decomposition reaction, only the cover sheet, the non-woven fabric, and the cellulose powder,
It will be dispersed in the aqueous solution.

【0039】もちろん、この出願の発明は、これに限ら
れることはなく、農業・園芸分野での土壌中の吸水性ポ
リマー、食品分野での青果物の鮮度保持剤としての吸水
性ポリマー、土木・建築分野でのシーリング材に用いら
れる吸水性ポリマー等の分解にも応用性が高い。
Of course, the invention of this application is not limited to this, and the water-absorbent polymer in soil in the fields of agriculture and horticulture, the water-absorbent polymer as a freshness-keeping agent for fruits and vegetables in the field of food, civil engineering / construction It is also highly applicable to the decomposition of water-absorbing polymers used as sealing materials in the field.

【0040】また、吸水性ポリマーを分解する時間(分
解時間)としては、吸水性ポリマーの重量に対する水
(分解剤水溶液)の重量比(吸水倍率)、酸化剤である
過硫酸塩の濃度、アルカリ化合物濃度、温度等により適
宜選択することができ、特に限定されないが、通常、1
0分間〜50時間であるのが好ましく、15分間〜30
時間であるのがより好ましく、20分間〜24時間であ
るのがさらに好ましい。
As the time for decomposing the water-absorbent polymer (decomposition time), the weight ratio of water (decomposing agent aqueous solution) to the weight of the water-absorbing polymer (absorption capacity), the concentration of persulfate which is an oxidizing agent, the alkali It can be appropriately selected depending on the compound concentration, temperature and the like, and is not particularly limited, but usually 1
It is preferably 0 minutes to 50 hours, and 15 minutes to 30 hours.
Time is more preferable, and 20 minutes to 24 hours is even more preferable.

【0041】そこで以下に実施例を示し、さらに詳しく
説明する。もちろん、以下の例によって発明が限定され
ることはない。
Therefore, an embodiment will be shown below and further detailed description will be given. Of course, the invention is not limited to the following examples.

【0042】[0042]

【実施例】1.吸水性ポリマーの分解 (実施例1)過硫酸カリウム0.3gと炭酸水素ナトリ
ウム0.185g(過硫酸カリウムに対するモル比で2
倍量)を蒸留水10gに溶解し、この水溶液に、アルカ
リ酸塩架橋重合体(吸水性ポリマー/粒状:花王株式会
社製「メリーズ」に使用されているもの)0.064g
を添加(吸水倍率156倍)して混合し、80℃で吸水
性ポリマーの分解ならびに反応系の観察を行った。反応
開始後20分で、すべての吸水性ポリマーは分解し、均
一溶液となった。その後、長時間を経てもゲル化は全く
起こらず、均一溶液であった。なお、堀場製作所D−2
1 pHメータで液相のpHを測定したところ、反応開
始時はpH8.4、吸水性ポリマーが100%分解した
20分後はpH8.5であり、長時間後もpHの低下は
わずかであった。 (実施例2)過硫酸カリウム0.6gと炭酸水素ナトリ
ウム0.37g(過硫酸カリウムに対するモル比で2倍
量)を蒸留水20gに溶解し、この溶液に、前記実施例
1と同様の吸水性ポリマー0.2gを添加(吸水倍率1
00倍)、混合し、80℃で吸水性ポリマーの分解なら
びに反応系の観察を行った。反応開始後15分で、すべ
ての吸水性ポリマーは分解し、均一溶液となった。その
後、長時間を経てもゲル化は全く起こらず、均一溶液で
あった。なお、液相のpHを測定したところ、反応開始
時はpH7.7、吸水性ポリマーが100%分解した1
5分後はpH7.8であり、長時間後もpHの低下はわ
ずかであった。 (実施例3)過硫酸カリウム0.6gと水酸化ナトリウ
ム0.18g(過硫酸カリウムに対するモル比で2倍
量)を蒸留水20gに溶解し、この溶液に、前記実施例
1と同様の吸水性ポリマー0.2gを添加(吸水倍率1
00倍)、混合し、80℃で吸水性ポリマーの分解なら
びに反応系の観察を行った。反応開始後20分で、すべ
ての吸水性ポリマーは分解し、均一溶液となった。その
後、長時間を経てもゲル化は全く起こらず、均一溶液で
あった。なお、液相のpHを測定したところ、反応開始
時はpH13.5、吸水性ポリマーが100%分解した
20分後はpH12.7であり、その後、pHは徐々に
低下したが、長時間後のpHは8と一定であった。 (実施例4)過硫酸カリウム0.6gと炭酸水素ナトリ
ウム0.6g(過硫酸カリウムに対するモル比で3.2
倍量)を蒸留水20gに溶解し、この溶液に、前記実施
例1と同様の吸水性ポリマー0.2gを添加(吸水倍率
100倍)、混合し、80℃で吸水性ポリマーの分解な
らびに反応系の観察を行った。反応開始後45分で、す
べての吸水性ポリマーは分解し、均一溶液となった。そ
の後、長時間を経てもゲル化は全く起こらず、均一溶液
であった。なお、液相のpHを測定したところ、反応開
始時はpH8.4、吸水性ポリマーが100%分解した
45分後はpH8.5であり、長時間後もpHはほとん
ど変化がなかった。 (実施例5)過硫酸カリウム0.6gと水酸化ナトリウ
ム0.29g(過硫酸カリウムに対するモル比で3.3
倍量)を蒸留水20gに溶解し、この溶液に、前記実施
例1と同様の吸水性ポリマー0.2gを添加(吸水倍率
100倍)、混合し、80℃で吸水性ポリマーの分解な
らびに反応系の観察を行った。反応開始後15分で、す
べての吸水性ポリマーは分解し、均一溶液となった。そ
の後、長時間を経てもゲル化は全く起こらず、均一溶液
であった。なお、液相のpHを測定したところ、反応開
始時はpH13.9、吸水性ポリマーが100%分解し
た15分後はpH12.8であり、長時間後もpHはほ
とんど変化がなかった。 (実施例6)過硫酸カリウム0.6gと水酸化ナトリウ
ム0.06g(過硫酸カリウムに対するモル比で0.6
8倍量)を蒸留水20gに溶解し、この溶液に、前記実
施例1と同様の吸水性ポリマー0.2gを添加(吸水倍
率100倍)、混合し、80℃で吸水性ポリマーの分解
ならびに反応系の観察を行った。反応開始後15分で、
すべての吸水性ポリマーは分解し、均一溶液となった。
その後、長時間を経てもゲル化は全く起こらず、均一溶
液であった。なお、液相のpHを測定したところ、反応
開始時はpH12.4、吸水性ポリマーが100%分解
した15分後はpH12.2であり、その後、pHは徐
々に低下し、長時間後のpHは約5であった。 (実施例7)過硫酸カリウム0.3gと炭酸水素ナトリ
ウム0.185g(過硫酸カリウムに対するモル比で2
倍量)を蒸留水10gに溶解し、この溶液に、前記実施
例1と同様の吸水性ポリマー0.67gを添加(吸水倍
率15倍)し、80℃で吸水性ポリマーの分解ならびに
反応系の観察を行った。反応開始後90分で、すべての
吸水性ポリマーは分解し、均一溶液となった。その後、
長時間を経てもゲル化は全く起こらず、均一溶液であっ
た。なお、分解反応により、反応開始後15分で液相の
pHの測定が可能となった。この時のpHは7.6で、
吸水性ポリマーが100%分解した90分後はpH7.
6であり、長時間後もpHの低下はわずかであった。 (実施例8)過硫酸カリウム0.3gと水酸化ナトリウ
ム0.06g(過硫酸カリウムに対するモル比で1.3
倍量)を蒸留水10gに溶解し、この溶液に、前記実施
例1と同様の吸水性ポリマー0.67gを添加(吸水倍
率15倍)し、80℃で吸水性ポリマーの分解ならびに
反応系の観察を行った。反応開始後720分で、すべて
の吸水性ポリマーは分解し、均一溶液となった。その
後、長時間を経てもゲル化は全く起こらず、均一溶液で
あった。なお、反応開始後30分で、分解により液相が
出現し、この液相のpHを測定したところ、pH7.
9、吸水性ポリマーが100%分解した720分後のp
Hは約5であった。 (実施例9)過硫酸カリウム0.3gと炭酸水素ナトリ
ウム0.185g(過硫酸カリウムに対するモル比で2
倍量)を蒸留水10gに溶解し、この溶液に、イソブチ
レン−マレイン酸塩架橋重合体(吸水性ポリマー/粒
状:株式会社クラレ製「KI−GEL 201K」)
0.064gを添加(吸水倍率15倍)、混合し、80
℃で吸水性ポリマーの分解ならびに反応系の観察を行っ
た。反応開始後30分で、すべての吸水性ポリマーは分
解し、均一溶液となった。その後、長時間を経てもゲル
化は全く起こらず、均一溶液であった。なお、液相のp
Hを測定したところ、反応開始時はpH9.2、吸水性
ポリマーが100%分解した30分後はpH9.0であ
り、長時間後もpHの低下はわずかであった。 (実施例10)過硫酸カリウム0.3gと炭酸水素ナト
リウム0.185g(過硫酸カリウムに対するモル比で
2倍量)を蒸留水10gに溶解し、この溶液に、前記実
施例9と同様の吸水性ポリマー0.67gを添加(吸水
倍率15倍)し、80℃で吸水性ポリマーの分解ならび
に反応系の観察を行った。反応開始後30分で、すべて
の吸水性ポリマーは分解し、均一溶液となった。その
後、長時間を経てもゲル化は全く起こらず、均一溶液で
あった。なお、分解反応により、反応開始後15分で液
相のpHの測定が可能となった。この時のpHは8.7
で、吸水性ポリマーが100%分解した30分後はpH
8.6であり、長時間後もpHの低下はわずかであっ
た。 (実施例11)過硫酸カリウム0.3gと水酸化ナトリ
ウム0.06g(過硫酸カリウムに対するモル比で1.
3倍量)を蒸留水10gに溶解し、この溶液に、前記実
施例9と同様の吸水性ポリマー0.67gを添加(吸水
倍率15倍)し、80℃で吸水性ポリマーの分解ならび
に反応系の観察を行った。反応開始後30分で、すべて
の吸水性ポリマーは分解し、均一溶液となった。その
後、長時間を経てもゲル化は全く起こらず、均一溶液で
あった。なお、反応開始後15分で、分解により液相が
出現し、この液相のpHを測定したところ、pH10.
0、吸水性ポリマーが100%分解した30分後のpH
は9.7であった。長時間後もpHの低下はわずかであ
った。 (比較例1)過硫酸カリウム0.3gを蒸留水10gに
溶解し、この溶液に、前記実施例1と同様の吸水性ポリ
マー0.064gを添加(吸水倍率156倍)、混合
し、80℃で吸水性ポリマーの分解ならびに反応系の観
察を行った。反応開始後15分で、一部の吸水性ポリマ
ーの分解により液相の粘性は低下したが、吸水性ポリマ
ー粒子は残存したままであった。60分後、吸水性ポリ
マー粒子のゲル化が起こった。なお、液相のpHを測定
したところ、反応開始時はpH6.3、ゲル化が起こっ
た60分後はpH5.7であった。 (比較例2)過硫酸カリウム0.6gを蒸留水20gに
溶解し、この溶液に、前記実施例1と同様の吸水性ポリ
マー0.2gを添加(吸水倍率100倍)、混合し、8
0℃で吸水性ポリマーの分解ならびに反応系の観察を行
った。反応開始後15分で、すべての吸水性ポリマーは
分解し、均一溶液となった。しかし、45分後、再ゲル
化が始まり、90分後には、ゲル相と液相が分離した。
その後、ゲルが消失することはなかった。なお、液相の
pHを測定したところ、反応開始時はpH6.1で、再
ゲル化が起こった45分後はpH5.6であった。 (比較例3)過硫酸カリウム0.3gを蒸留水10gに
溶解し、この溶液に、前記実施例1と同様の吸水性ポリ
マー0.67gを添加(吸水倍率15倍)し、80℃で
吸水性ポリマーの分解ならびに反応系の観察を行った。
初期は、上記水溶液で吸水性ポリマー全体が湿潤した状
態で、時間の経過とともに溶解することなく、15分後
に系がゲル化した。なお、液相が生成しなかったため、
pHを測定することはできなかった。 (比較例4)過硫酸カリウム0.3gを蒸留水10gに
溶解し、この溶液に、前記実施例9と同様の吸水性ポリ
マー0.064gを添加(吸水倍率156倍)、混合
し、80℃で吸水性ポリマーの分解ならびに反応系の観
察を行った。反応開始後30分で、すべての吸水性ポリ
マーは分解し、均一溶液となった。しかし、60分後、
再びゲル化が起り、120分後には、ゲル化物が沈殿
し、その後、ゲルは分解・消失することはなかった。な
お、液相のpHを測定したところ、反応開始時はpH
7.2、ゲル化が起こった60分後はpH3.3まで低
下した。 2.評 価 前記の実施例1〜11においては、所定時間の経過後、
未分解の吸水性ポリマーは、ろ紙によりろ過した後、水
洗し、80℃で24時間乾燥し、乾燥物の重量を測定
し、測定値に基づき吸水性ポリマーの分解率を求めた。
また、比較例1〜5においては、一旦分解し、溶解した
吸水性ポリマーであっても、所定時間の経過後には、再
ゲル化が起ったり、部分的に吸水性ポリマーが分解し、
他の吸水性ポリマー粒子が残存したままゲル化したこと
から、この出願の発明の目的は、吸水性ポリマーを完全
に分解し、安定な均一溶液とする分解剤と分解方法の開
発にあることを考慮し、実施例1〜11のような方法で
の分解率を求めることは行わなかった。
[Example] 1. Decomposition of water-absorbing polymer (Example 1) 0.3 g of potassium persulfate and 0.185 g of sodium hydrogencarbonate (2 in molar ratio to potassium persulfate)
0.06 g of an alkali acid salt cross-linked polymer (water-absorbing polymer / granular: used in "Merrys" manufactured by Kao Corporation) in 10 g of distilled water.
Was added (water absorption ratio of 156 times) and mixed, and the water-absorbent polymer was decomposed and the reaction system was observed at 80 ° C. Twenty minutes after the start of the reaction, all the water-absorbent polymers were decomposed and became a uniform solution. After that, gelation did not occur at all even after a long time, and the solution was uniform. In addition, HORIBA, Ltd. D-2
1 When the pH of the liquid phase was measured with a pH meter, it was pH 8.4 at the start of the reaction and pH 8.5 at 20 minutes after 100% decomposition of the water-absorbing polymer, showing a slight decrease in pH even after a long time. It was (Example 2) 0.6 g of potassium persulfate and 0.37 g of sodium hydrogencarbonate (twice the molar ratio to potassium persulfate) were dissolved in 20 g of distilled water, and the same water absorption as in Example 1 was applied to this solution. 0.2g of water-soluble polymer (water absorption capacity 1
00 times), mixed, and decomposed the water-absorbent polymer and observed the reaction system at 80 ° C. 15 minutes after the start of the reaction, all the water-absorbent polymers were decomposed and became a homogeneous solution. After that, gelation did not occur at all even after a long time, and the solution was uniform. When the pH of the liquid phase was measured, it was pH 7.7 at the start of the reaction and 100% of the water-absorbent polymer was decomposed.
After 5 minutes, the pH was 7.8, and even after a long time, the decrease in pH was slight. (Example 3) 0.6 g of potassium persulfate and 0.18 g of sodium hydroxide (twice the molar ratio with respect to potassium persulfate) were dissolved in 20 g of distilled water, and the same water absorption as in Example 1 was applied to this solution. 0.2g of water-soluble polymer (water absorption capacity 1
00 times), mixed, and decomposed the water-absorbent polymer and observed the reaction system at 80 ° C. Twenty minutes after the start of the reaction, all the water-absorbent polymers were decomposed and became a uniform solution. After that, gelation did not occur at all even after a long time, and the solution was uniform. When the pH of the liquid phase was measured, it was pH 13.5 at the start of the reaction and pH 12.7 20 minutes after 100% decomposition of the water-absorbent polymer, and then the pH gradually decreased, but after a long time. The pH of was constant at 8. (Example 4) 0.6 g of potassium persulfate and 0.6 g of sodium hydrogencarbonate (3.2 mol ratio to potassium persulfate)
20 g of distilled water, and 0.2 g of the same water-absorbing polymer as in Example 1 was added (water-absorption capacity 100 times) to the solution and mixed to decompose and react the water-absorbing polymer at 80 ° C. The system was observed. Forty-five minutes after the start of the reaction, all the water-absorbent polymers were decomposed and became a homogeneous solution. After that, gelation did not occur at all even after a long time, and the solution was uniform. When the pH of the liquid phase was measured, it was pH 8.4 at the start of the reaction and was pH 8.5 45 minutes after 100% decomposition of the water-absorbing polymer, and showed almost no change even after a long time. (Example 5) 0.6 g of potassium persulfate and 0.29 g of sodium hydroxide (the molar ratio to potassium persulfate is 3.3).
20 g of distilled water, and 0.2 g of the same water-absorbing polymer as in Example 1 was added (water-absorption capacity 100 times) to the solution and mixed to decompose and react the water-absorbing polymer at 80 ° C. The system was observed. 15 minutes after the start of the reaction, all the water-absorbent polymers were decomposed and became a homogeneous solution. After that, gelation did not occur at all even after a long time, and the solution was uniform. When the pH of the liquid phase was measured, it was pH 13.9 at the start of the reaction, pH 12.8 15 minutes after 100% decomposition of the water-absorbing polymer, and pH did not change even after a long time. (Example 6) 0.6 g of potassium persulfate and 0.06 g of sodium hydroxide (molar ratio to potassium persulfate: 0.6)
(8 times amount) was dissolved in 20 g of distilled water, and 0.2 g of the same water-absorbing polymer as in Example 1 was added to this solution (water-absorbing capacity 100 times) and mixed to decompose the water-absorbing polymer at 80 ° C. The reaction system was observed. 15 minutes after starting the reaction,
All the water-absorbent polymers decomposed and became a homogeneous solution.
After that, gelation did not occur at all even after a long time, and the solution was uniform. When the pH of the liquid phase was measured, it was pH 12.4 at the start of the reaction and pH 12.2 15 minutes after 100% of the water-absorbing polymer had decomposed. The pH was about 5. (Example 7) 0.3 g of potassium persulfate and 0.185 g of sodium hydrogen carbonate (2 in molar ratio to potassium persulfate)
(Double volume) was dissolved in 10 g of distilled water, and 0.67 g of the water-absorbing polymer similar to that used in Example 1 was added to this solution (water-absorption ratio: 15 times) to decompose the water-absorbing polymer at 80 ° C. Observed. 90 minutes after the start of the reaction, all the water-absorbent polymers were decomposed and became a homogeneous solution. afterwards,
Gelation did not occur at all even after a long time, and the solution was uniform. The decomposition reaction made it possible to measure the pH of the liquid phase 15 minutes after the start of the reaction. The pH at this time is 7.6,
90 minutes after 100% decomposition of the water-absorbent polymer, the pH was 7.
It was 6, and the decrease in pH was slight even after a long time. (Example 8) 0.3 g of potassium persulfate and 0.06 g of sodium hydroxide (1.3 mol ratio to potassium persulfate)
(Double volume) was dissolved in 10 g of distilled water, and 0.67 g of the water-absorbing polymer similar to that used in Example 1 was added to this solution (water-absorption ratio: 15 times) to decompose the water-absorbing polymer at 80 ° C. Observed. 720 minutes after the start of the reaction, all the water-absorbent polymers were decomposed and became a uniform solution. After that, gelation did not occur at all even after a long time, and the solution was uniform. It should be noted that 30 minutes after the start of the reaction, a liquid phase appeared due to decomposition, and the pH of this liquid phase was measured.
9, p after 720 minutes after 100% decomposition of the water-absorbent polymer
H was about 5. (Example 9) 0.3 g of potassium persulfate and 0.185 g of sodium hydrogen carbonate (2 in molar ratio to potassium persulfate)
(Double volume) is dissolved in 10 g of distilled water, and an isobutylene-maleate cross-linked polymer (water-absorbing polymer / granular: "KI-GEL 201K" manufactured by Kuraray Co., Ltd.) is added to this solution.
Add 0.064 g (water absorption capacity 15 times), mix, 80
The decomposition of the water-absorbent polymer and the observation of the reaction system were carried out at ℃. Thirty minutes after the start of the reaction, all the water-absorbent polymers were decomposed and became a uniform solution. After that, gelation did not occur at all even after a long time, and the solution was uniform. The liquid phase p
When H was measured, pH was 9.2 at the start of the reaction, pH was 9.0 after 30 minutes when the water-absorbing polymer was 100% decomposed, and the decrease in pH was slight even after a long time. (Example 10) 0.3 g of potassium persulfate and 0.185 g of sodium hydrogen carbonate (twice the molar ratio with respect to potassium persulfate) were dissolved in 10 g of distilled water, and the same water absorption as in Example 9 was applied to this solution. 0.67 g of a water-soluble polymer was added (water absorption capacity: 15 times), and the water-absorbent polymer was decomposed at 80 ° C. and the reaction system was observed. Thirty minutes after the start of the reaction, all the water-absorbent polymers were decomposed and became a uniform solution. After that, gelation did not occur at all even after a long time, and the solution was uniform. The decomposition reaction made it possible to measure the pH of the liquid phase 15 minutes after the start of the reaction. The pH at this time is 8.7.
Then, 30 minutes after 100% decomposition of the water-absorbent polymer, pH
It was 8.6, and the decrease in pH was slight even after a long time. (Example 11) 0.3 g of potassium persulfate and 0.06 g of sodium hydroxide (molar ratio to potassium persulfate: 1.
(3 times the amount) was dissolved in 10 g of distilled water, and 0.67 g of the water-absorbent polymer similar to that used in Example 9 was added to this solution (water-absorption ratio of 15 times) to decompose the water-absorbent polymer at 80 ° C. Was observed. Thirty minutes after the start of the reaction, all the water-absorbent polymers were decomposed and became a uniform solution. After that, gelation did not occur at all even after a long time, and the solution was uniform. 15 minutes after the start of the reaction, a liquid phase appeared due to decomposition, and the pH of this liquid phase was measured.
0, pH 30 minutes after 100% decomposition of water-absorbent polymer
Was 9.7. After a long period of time, the decrease in pH was slight. (Comparative Example 1) 0.3 g of potassium persulfate was dissolved in 10 g of distilled water, and 0.064 g of the same water-absorbing polymer as in Example 1 was added to this solution (water absorption capacity: 156 times) and mixed, and the mixture was heated to 80 ° C. The water-absorbent polymer was decomposed and the reaction system was observed. 15 minutes after the start of the reaction, the viscosity of the liquid phase decreased due to the decomposition of some of the water-absorbing polymer, but the water-absorbing polymer particles remained. After 60 minutes, gelation of the water-absorbent polymer particles occurred. The pH of the liquid phase was measured and found to be pH 6.3 at the start of the reaction and pH 5.7 60 minutes after gelation had occurred. (Comparative Example 2) 0.6 g of potassium persulfate was dissolved in 20 g of distilled water, and 0.2 g of the same water-absorbing polymer as in Example 1 was added to this solution (water absorption ratio 100 times) and mixed,
At 0 ° C., the water-absorbent polymer was decomposed and the reaction system was observed. 15 minutes after the start of the reaction, all the water-absorbent polymers were decomposed and became a homogeneous solution. However, after 45 minutes, regelation started, and after 90 minutes, the gel phase and the liquid phase separated.
After that, the gel did not disappear. The pH of the liquid phase was measured and found to be pH 6.1 at the start of the reaction and pH 5.6 45 minutes after regelation had occurred. (Comparative Example 3) 0.3 g of potassium persulfate was dissolved in 10 g of distilled water, and 0.67 g of the same water-absorbing polymer as that of Example 1 was added to this solution (water absorption ratio of 15 times), and water absorption at 80 ° C was carried out. Of the reactive polymer and the reaction system were observed.
Initially, the entire water-absorbent polymer was wet with the above aqueous solution, and the system gelled after 15 minutes without being dissolved over time. In addition, since the liquid phase was not generated,
The pH could not be measured. (Comparative Example 4) 0.3 g of potassium persulfate was dissolved in 10 g of distilled water, and 0.064 g of the same water-absorbing polymer as that of Example 9 was added to this solution (water absorption ratio of 156 times) and mixed, and the mixture was heated to 80 ° C. The water-absorbent polymer was decomposed and the reaction system was observed. Thirty minutes after the start of the reaction, all the water-absorbent polymers were decomposed and became a uniform solution. But after 60 minutes,
Gelation occurred again, and after 120 minutes, a gelled product was precipitated, and thereafter, the gel did not decompose and disappear. In addition, when the pH of the liquid phase was measured, the pH was
7.2, 60 minutes after gelation had occurred, the pH dropped to 3.3. 2. Evaluation In Examples 1 to 11 above, after elapse of a predetermined time,
The undegraded water-absorbent polymer was filtered with a filter paper, washed with water, dried at 80 ° C. for 24 hours, the weight of the dried product was measured, and the decomposition rate of the water-absorbent polymer was determined based on the measured value.
Further, in Comparative Examples 1 to 5, even if the water-absorbing polymer once decomposed and dissolved, re-gelation occurs or the water-absorbing polymer is partially decomposed after a predetermined period of time,
Since other water-absorbing polymer particles gelled while remaining, the object of the invention of this application is to develop a decomposing agent and a decomposition method for completely decomposing the water-absorbing polymer to form a stable homogeneous solution. Considering this, the decomposition rate was not determined by the method of Examples 1 to 11.

【0043】結果を表1に示した。比較例1〜5の分解
率の欄には、分解率の値の代わりに再ゲル化、あるいは
ゲル化と記載し、分解が100%進行しなかったことを
示した。
The results are shown in Table 1. In the column of the decomposition rate of Comparative Examples 1 to 5, regelation or gelation was described instead of the value of the decomposition rate, and it was shown that the decomposition did not proceed 100%.

【0044】[0044]

【表1】 [Table 1]

【0045】表1に示すように、実施例1〜11の各分
解剤は、いずれも吸水性ポリマーの分解能に優れるもの
であった。これに対して、比較例1〜5の各分解剤は、
いずれも吸水性ポリマーの分解能に劣るものであった。
As shown in Table 1, each of the decomposing agents of Examples 1 to 11 was excellent in the resolution of the water-absorbent polymer. On the other hand, each of the decomposing agents of Comparative Examples 1 to 5
All were inferior in the resolution of the water absorbing polymer.

【0046】また、例えば、吸水倍率が100倍の比較
例2と比較例5において、わずかな量の炭酸水素ナトリ
ウムを過硫酸カリウムに加えることにより、再ゲル化が
起こるまでの時間が長くなることがわかり、さらに、実
施例2のように、過硫酸カリウムに対する炭酸水素ナト
リウムのモル比が2では、再ゲル化反応が完全に抑制さ
れ、分解反応のみが起こることも明らかになった。
Further, for example, in Comparative Examples 2 and 5 having a water absorption capacity of 100 times, by adding a slight amount of sodium hydrogencarbonate to potassium persulfate, the time until regelation occurs becomes longer. It was also found that when the molar ratio of sodium hydrogencarbonate to potassium persulfate was 2, as in Example 2, the regelation reaction was completely suppressed and only the decomposition reaction occurred.

【0047】[0047]

【発明の効果】以上詳しく述べたように、この出願の発
明によれば汎用性が高く、しかも分解能に優れる吸水性
ポリマーの分解剤とこれを用いた高効率での分解方法を
提供することができる。
As described in detail above, according to the invention of this application, it is possible to provide a decomposing agent for a water-absorbing polymer, which has high versatility and excellent resolution, and a highly efficient decomposing method using the same. it can.

【0048】特に、過硫酸塩とアルカリ化合物を含む場
合には、過硫酸塩の熱分解に伴って引き起こされる吸水
性ポリマーの分子鎖上の生成するラジカルの分子鎖間で
の架橋反応、すなわち、ゲル化反応をアルカリ化合物が
大きく抑制し、分解反応を優先的にするという相乗効果
が発現し、より一層優れた分解能を発揮し、容易かつ安
価に製造でき有利である。
In particular, when a persulfate and an alkali compound are contained, a cross-linking reaction between the molecular chains of radicals produced on the molecular chains of the water-absorbing polymer caused by the thermal decomposition of the persulfate, that is, The alkali compound greatly suppresses the gelation reaction, and the synergistic effect of preferentially decomposing the decomposition reaction is exhibited, and further excellent resolution is exhibited, which is advantageous in that it can be easily and inexpensively produced.

【0049】このように、この出願の発明の分解剤は、
分解能に優れるので、少量でより多くの吸水性ポリマー
を分解することができ、環境保全の面から有利である。
Thus, the decomposing agent of the invention of this application is
Since it has excellent resolution, more water-absorbing polymers can be decomposed with a small amount, which is advantageous from the viewpoint of environmental protection.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊島 千幸 東京都港区芝公園2丁目6番11号 日本ア サヒ機工販売株式会社内 Fターム(参考) 4D004 AA06 AA48 CA34 CA35 CA36 CC11 DA03 DA06 DA10 DA11 DA20 4F301 CA09 CA23 CA41 CA72    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Chiyuki Kikushima             2-6-11 Shiba Park, Minato-ku, Tokyo Japan             Sahi Kiko Sales Co., Ltd. F-term (reference) 4D004 AA06 AA48 CA34 CA35 CA36                       CC11 DA03 DA06 DA10 DA11                       DA20                 4F301 CA09 CA23 CA41 CA72

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 吸水性ポリマーを分解する分解剤であっ
て、アルカリ化合物の少なくとも1種と、酸化剤である
過硫酸塩化合物の少なくとも1種を含むことを特徴とす
る吸水性ポリマーの分解剤。
1. A decomposing agent for decomposing a water-absorbing polymer, comprising at least one alkali compound and at least one persulfate compound which is an oxidizing agent. .
【請求項2】 前記アルカリ化合物が、水溶性であっ
て、その水溶液中で一価の陽イオンと一価の陰イオンに
解離してアルカリ性を示すことを特徴とする請求項1に
記載の分解剤。
2. The decomposition according to claim 1, wherein the alkaline compound is water-soluble and shows alkalinity by dissociating into a monovalent cation and a monovalent anion in an aqueous solution thereof. Agent.
【請求項3】 前記酸化剤の濃度が0.002〜10重
量%である水溶液であることを特徴とする請求項1に記
載の分解剤。
3. The decomposing agent according to claim 1, which is an aqueous solution in which the concentration of the oxidizing agent is 0.002 to 10% by weight.
【請求項4】 前記アルカリ化合物が前記酸化剤に対し
て、モル比で、0.1〜10倍量含まれていることを特
徴とする請求項1ないし3のいずれかに記載の分解剤。
4. The decomposing agent according to claim 1, wherein the alkali compound is contained in a molar ratio of 0.1 to 10 times that of the oxidizing agent.
【請求項5】 吸水性ポリマーもしくはこれを含有する
吸水用材における吸水性ポリマーの分解方法であって、
前記吸水性ポリマーに対して、請求項1ないし4のいず
れかに記載の分解剤を加え、水の存在下に前記吸水性ポ
リマーを分解処理することを特徴とする吸水性ポリマー
の分解方法。
5. A method for decomposing a water-absorbing polymer in a water-absorbing polymer or a water-absorbing material containing the same,
A method for decomposing a water-absorbent polymer, comprising adding the decomposing agent according to claim 1 to the water-absorbent polymer to decompose the water-absorbent polymer in the presence of water.
【請求項6】 分解剤の水溶液のpHを4〜14の範囲
とすることを特徴とする請求項5に記載の分解方法。
6. The decomposition method according to claim 5, wherein the pH of the aqueous solution of the decomposition agent is set in the range of 4 to 14.
【請求項7】 処理温度を40℃〜100℃の範囲とす
ることを特徴とする請求項5または6に記載の分解方
法。
7. The decomposition method according to claim 5, wherein the treatment temperature is in the range of 40 ° C. to 100 ° C.
【請求項8】 吸水性ポリマーの少くとも一部を含水さ
せた状態で分解処理することを特徴とする請求項5ない
し7のいずれかに記載の分解方法。
8. The decomposition method according to claim 5, wherein the decomposition treatment is carried out in a state where at least a part of the water-absorbent polymer is contained in water.
【請求項9】 含水量は、吸水性ポリマーの重量に対し
ての重量比で、5〜1000倍であることを特徴とする
請求項8に記載の分解方法。
9. The decomposition method according to claim 8, wherein the water content is 5-1000 times the weight ratio of the water-absorbent polymer.
JP2002128801A 2002-04-30 2002-04-30 Water-absorbing polymer decomposing agent and method for decomposing water-absorbing polymer using the same Expired - Fee Related JP3920139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002128801A JP3920139B2 (en) 2002-04-30 2002-04-30 Water-absorbing polymer decomposing agent and method for decomposing water-absorbing polymer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002128801A JP3920139B2 (en) 2002-04-30 2002-04-30 Water-absorbing polymer decomposing agent and method for decomposing water-absorbing polymer using the same

Publications (2)

Publication Number Publication Date
JP2003321574A true JP2003321574A (en) 2003-11-14
JP3920139B2 JP3920139B2 (en) 2007-05-30

Family

ID=29542435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128801A Expired - Fee Related JP3920139B2 (en) 2002-04-30 2002-04-30 Water-absorbing polymer decomposing agent and method for decomposing water-absorbing polymer using the same

Country Status (1)

Country Link
JP (1) JP3920139B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342570A (en) * 2004-05-31 2005-12-15 Toto Ltd Sanitary article dissolving treating apparatus
KR20150000400A (en) * 2013-06-24 2015-01-02 가부시키가이샤 리브도 코포레이션 Treatment of water-absorbing resin
WO2019123765A1 (en) * 2017-12-20 2019-06-27 ユニ・チャーム株式会社 Recycled pulp fiber manufacturing method, use of peracid for inactivating and degrading high water-absorption polymer, and peracid-containing agent for inactivating and degrading high water-absorption polymer
JP2020049398A (en) * 2018-09-25 2020-04-02 株式会社リブドゥコーポレーション Processing method of used sanitary articles
WO2020213298A1 (en) 2019-04-16 2020-10-22 三洋化成工業株式会社 Method for producing water-absorbing resin particles
CN114245811A (en) * 2019-08-23 2022-03-25 宝洁公司 Degradation of superabsorbent polymers via oxidative degradation
WO2023139987A1 (en) * 2022-01-18 2023-07-27 松本油脂製薬株式会社 Particles and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317784A (en) * 1991-04-15 1992-11-09 Nippon Shokubai Co Ltd Disposal of water absorbable polymer
JPH06313008A (en) * 1993-04-28 1994-11-08 Mitsubishi Petrochem Co Ltd Decomposition of water absorptive polymer
JPH11172039A (en) * 1997-12-08 1999-06-29 Idemitsu Petrochem Co Ltd Method for decomposition of water-soluble polymer
JP2001310970A (en) * 2000-02-22 2001-11-06 Panakku Kogyo Kk Method for recovering synthetic resin materials
JP2001316519A (en) * 2000-05-09 2001-11-16 Nippon Asahi Kiko Hanbai Kk Decomposing agent and decomposition method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317784A (en) * 1991-04-15 1992-11-09 Nippon Shokubai Co Ltd Disposal of water absorbable polymer
JPH06313008A (en) * 1993-04-28 1994-11-08 Mitsubishi Petrochem Co Ltd Decomposition of water absorptive polymer
JPH11172039A (en) * 1997-12-08 1999-06-29 Idemitsu Petrochem Co Ltd Method for decomposition of water-soluble polymer
JP2001310970A (en) * 2000-02-22 2001-11-06 Panakku Kogyo Kk Method for recovering synthetic resin materials
JP2001316519A (en) * 2000-05-09 2001-11-16 Nippon Asahi Kiko Hanbai Kk Decomposing agent and decomposition method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501151B2 (en) * 2004-05-31 2010-07-14 Toto株式会社 Sanitary ware dissolution treatment equipment
JP2005342570A (en) * 2004-05-31 2005-12-15 Toto Ltd Sanitary article dissolving treating apparatus
KR102217180B1 (en) 2013-06-24 2021-02-17 가부시키가이샤 리브도 코포레이션 Treatment of water-absorbing resin
KR20150000400A (en) * 2013-06-24 2015-01-02 가부시키가이샤 리브도 코포레이션 Treatment of water-absorbing resin
JP2015004034A (en) * 2013-06-24 2015-01-08 株式会社リブドゥコーポレーション Method of treating water-absorbing resin
WO2019123765A1 (en) * 2017-12-20 2019-06-27 ユニ・チャーム株式会社 Recycled pulp fiber manufacturing method, use of peracid for inactivating and degrading high water-absorption polymer, and peracid-containing agent for inactivating and degrading high water-absorption polymer
JP2019108640A (en) * 2017-12-20 2019-07-04 ユニ・チャーム株式会社 Method for manufacturing recycle pulp fiber, use for inactivation and decomposition of highly water-absorbing polymer of peracid, and inactivating and decomposing agent of highly water-absorbing polymer containing peracid
JP2020049398A (en) * 2018-09-25 2020-04-02 株式会社リブドゥコーポレーション Processing method of used sanitary articles
JP2023017919A (en) * 2018-09-25 2023-02-07 株式会社リブドゥコーポレーション Method for manufacturing regenerated pulp
JP7219570B2 (en) 2018-09-25 2023-02-08 株式会社リブドゥコーポレーション How to dispose of used sanitary products
JP7411051B2 (en) 2018-09-25 2024-01-10 株式会社リブドゥコーポレーション Method for producing recycled pulp
WO2020213298A1 (en) 2019-04-16 2020-10-22 三洋化成工業株式会社 Method for producing water-absorbing resin particles
CN114245811A (en) * 2019-08-23 2022-03-25 宝洁公司 Degradation of superabsorbent polymers via oxidative degradation
JP2022544666A (en) * 2019-08-23 2022-10-20 ザ プロクター アンド ギャンブル カンパニー Degradation of superabsorbent polymers via oxidative degradation
JP7350157B2 (en) 2019-08-23 2023-09-25 ザ プロクター アンド ギャンブル カンパニー Degradation of superabsorbent polymers via oxidative degradation
WO2023139987A1 (en) * 2022-01-18 2023-07-27 松本油脂製薬株式会社 Particles and use thereof
JPWO2023139987A1 (en) * 2022-01-18 2023-07-27
JP7454108B2 (en) 2022-01-18 2024-03-21 松本油脂製薬株式会社 Particles and their uses

Also Published As

Publication number Publication date
JP3920139B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP5376420B2 (en) Process for the preparation of water-soluble or water-swellable polymers, in particular water-soluble or water-swellable copolymers consisting of acrylamide and at least one ionic comonomer having a low residual monomer content
BRPI0610075A2 (en) water-absorbing polymeric structures, their uses, surface treatment processes, compounds, processes for their production, products comprising polymeric structures and uses of combinations of metal oxides and divalent metal cation metal salts or trivalent
CN113896913A (en) Modified biopolymers and methods of making and using the same
JP2003321574A (en) Decomposer for water absorptive polymer and method for decomposing water absorptive polymer by using the decomposer
WO1994011102A1 (en) Salt-resistant absorbent and process for producing the same
JP2003306609A (en) Water-absorbing polymer composition and method for producing the same
JPH0639485B2 (en) Water absorbent resin manufacturing method
JP2559447B2 (en) Water-absorbent resin composition with excellent stability
JP2000038407A (en) Production of water-absorbing resin
JP2527459B2 (en) Water absorbent resin composition
JP3308964B2 (en) Decomposition agent and decomposition method
CN100424101C (en) Preparation method of powdery, water-insoluble high hydroscopicity resin capable of adsorbing water, urine or blood and containing low content residue monomer not reacted
JPS5884804A (en) Water absorbing and retaining material
JP2004137382A (en) Water-absorbing composition
JP2720051B2 (en) Absorbent for high concentration inorganic salt aqueous solution
JP2000128982A (en) Production of crosslinked polymer
JPH06322180A (en) Salt-resistant absorbent composition
JP4171100B2 (en) Method for producing crosslinked polysuccinimide and method for producing crosslinked polyaspartic acid resin
JPH09136032A (en) Granular phosphorus adsorbent and method for removing phosphorus
JP4377797B2 (en) Solid waste fuel additive and solid waste fuel
TWI411638B (en) The processes of high efficient of disperse the wet gel
JP3434690B2 (en) Method for producing cross-linked polyaspartic resin
JP2003342093A (en) Composting aid and method for gelation or solidification of compost material by using the same
JP3434688B2 (en) Method for producing cross-linked polyaspartic resin
SU1505952A1 (en) Method of producing filled linked polyacrylamide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Ref document number: 3920139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees