WO2023210411A1 - Granulation device, method for producing granulation sintering raw material, and method for producing sintered ore - Google Patents

Granulation device, method for producing granulation sintering raw material, and method for producing sintered ore Download PDF

Info

Publication number
WO2023210411A1
WO2023210411A1 PCT/JP2023/015186 JP2023015186W WO2023210411A1 WO 2023210411 A1 WO2023210411 A1 WO 2023210411A1 JP 2023015186 W JP2023015186 W JP 2023015186W WO 2023210411 A1 WO2023210411 A1 WO 2023210411A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
steam
sintering raw
sintering
granulated
Prior art date
Application number
PCT/JP2023/015186
Other languages
French (fr)
Japanese (ja)
Inventor
友司 岩見
頌平 藤原
隆英 樋口
佑治 今井
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023546185A priority Critical patent/JPWO2023210411A1/ja
Publication of WO2023210411A1 publication Critical patent/WO2023210411A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates

Definitions

  • the present invention relates to a granulation device for granulating sintered raw materials, a method for producing granulated sintered raw materials, and a method for producing sintered ore.
  • Sintered ore which is a raw material for blast furnaces, is generally made up of iron-containing raw materials such as iron ore powder, recovered powder in steel works, and sintered ore unsieved powder, CaO-containing raw materials such as limestone and dolomite, and charcoal such as coke powder and anthracite.
  • (solid fuel) as a sintering raw material using a Dwight Lloyd sintering machine (hereinafter sometimes referred to as a "sintering machine"), which is an endless moving sintering machine.
  • the sintering raw material is charged into an endlessly movable pallet of the sintering machine to form a charging layer.
  • the thickness (height) of the charging layer is approximately 400 to 800 mm.
  • the coal material on the surface layer of the charging layer is ignited by an ignition furnace installed above the charging layer.
  • the carbonaceous material in the charging layer is sequentially combusted by sucking air downward through a wind box placed under the pallet. This combustion progresses progressively lower and forward as the pallet moves.
  • the combustion heat generated at this time burns and melts the sintering raw material, producing a sintered cake.
  • the obtained sintered cake is crushed in an ore discharge section, cooled in a cooler, and sized to become a finished sintered ore.
  • Patent Document 1 discloses a method for producing a granulated sintering raw material, in which steam such as water vapor is blown into the sintering raw material during granulation to heat the sintering raw material. According to Patent Document 1, by granulating the sintered raw material while blowing water vapor into it, the sintered raw material is preheated and dried, improving the permeability of the charging layer and improving the production rate of sintered ore. .
  • the sintering raw material is granulated while blowing steam, so it is necessary to separately prepare steam to be blown into the sintering raw material. Therefore, there has been a problem in that the manufacturing cost of sintered ore increases due to the cost required to prepare the steam. On the other hand, if steam can be used to efficiently heat the sintering raw material, the amount of steam used can be reduced, and an increase in the manufacturing cost of sintered ore can be suppressed.
  • the present invention has been made in view of the problems of the prior art, and its purpose is to provide a granulation device and a granulation/sintering device that can efficiently heat the sintering raw material by blowing steam into the sintering raw material. It is an object of the present invention to provide a method for producing a raw material and a method for producing sintered ore using the method for producing the granulated and sintered raw material.
  • a granulator for granulating sintering raw materials including an iron-containing raw material, a CaO-containing raw material, and a coagulant, which includes an input port into which the sintering raw materials are input, and an outlet from which the granulated sintering raw materials are discharged.
  • a cylindrical drum that rotates with the horizontal direction as an axis of rotation; It has a steam pipe provided only in the first half, and a plurality of nozzles that are connected to the steam pipe and eject steam onto the deposition surface of the sintering raw material, and the plurality of nozzles are configured to prevent the deposition of the sintering raw material.
  • a granulation device installed at a distance of 500 mm or more from the surface.
  • more than half of the nozzles are provided so that the steam jetting directions are inclined toward the discharge port side, and the steam jetting directions of the remaining nozzles are provided with respect to the deposition surface of the sintering raw material.
  • the granulation device according to [1] which is installed so that steam is ejected vertically.
  • a method for producing a granulated sintered raw material in which a sintered raw material containing an iron-containing raw material, a CaO-containing raw material, and a coagulating material is granulated using a granulating device, the granulating device
  • a cylindrical drum is provided with an input port into which granulated sintering raw material is input, and a discharge port through which the granulated sintering raw material is discharged, the drum having a cylindrical drum that rotates with a rotation axis in the horizontal direction, and within the drum, Blowing steam into the sintering raw material from a position 500 mm or more away from the deposition surface of the sintering raw material in the first half between the input port and the intermediate position between the input port and the discharge port.
  • a method for producing a granulated sintered raw material that has a temperature higher than that of a granulated sintered raw material that is 10°C or more higher than that of a granulated sintered raw material that is granulated without heating.
  • [5] The production of the granulated sintering raw material according to [4], wherein of the total amount of steam blown into the sintering raw material, half or more of the steam is blown in such a manner that the jetting direction is directed toward the discharge port side.
  • the granulation apparatus By using the granulation apparatus according to the present invention, steam can be blown into the sintering raw material to efficiently heat it, so the steam consumption rate of the steam used during granulation can be reduced.
  • the permeability of the charging layer is improved and the production rate of sintered ore is improved. It is possible to improve the production rate and suppress the increase in the manufacturing cost of sintered ore.
  • FIG. 1 is a schematic diagram showing an example of a sintered ore production facility 10 having a drum mixer 32, which is a granulation device according to the present embodiment.
  • FIG. 2 is a graph showing the relationship between the temperature of the sintered raw material at the exit side of the drum mixer and the air permeability index JPU of the charging layer.
  • FIG. 3 is a graph showing the relationship between the temperature of the sintered raw material at the exit side of the drum mixer and the air permeability index JPU of the charging layer.
  • FIG. 4 is a schematic diagram illustrating the configuration of the drum mixer.
  • FIG. 5 is a cross-sectional view of the drum mixer showing the positions of a plurality of nozzles.
  • FIG. 6 is a graph showing the results of the steam blowing experiment.
  • FIG. 7 is a schematic diagram showing steam piping.
  • FIG. 8 is a graph showing the results of the steam blowing experiment.
  • FIG. 1 is a schematic diagram showing an example of a sintered ore production facility 10 having a drum mixer 32, which is a granulation device according to the present embodiment.
  • the iron-containing raw material 12 stored in the yard 11 is transported to a mixing tank 22 by a transport conveyor 14.
  • the iron-containing raw material 12 includes various brands of iron ore and dust generated within a steel mill.
  • the raw material supply section 20 includes a plurality of blending tanks 22, 24, 25, 26, and 28.
  • the iron-containing raw material 12 is stored in the blending tank 22 .
  • the blending tank 24 stores a CaO-containing raw material 16 containing limestone, quicklime, etc.
  • the blending tank 25 stores an MgO-containing raw material 17 including dolomite, refined nickel slag, etc.
  • the blending tank 26 stores a coagulating material 18 containing coke powder and anthracite that have been crushed to a particle size of 1 mm or less using a rod mill.
  • the blending tank 28 stores return ore (sintered ore undersieve powder) with a particle size of 5 mm or less, which is the undersieve of the sintered ore.
  • a predetermined amount of each raw material is cut out from the blending tanks 22 to 28 of the raw material supply section 20, and these are blended to form a sintering raw material.
  • the sintering raw material is conveyed to a drum mixer 32 by a conveyor 30.
  • the MgO-containing raw material 17 is an optionally blended raw material, and may or may not be blended with the sintering raw material.
  • the drum mixer 32 is a granulation device that granulates the sintered raw material while blowing steam onto it.
  • the drum mixer 32 includes a cylindrical drum 33 that rotates with the horizontal direction as an axis of rotation, a steam pipe 36, and a plurality of nozzles 37 that are connected to the steam pipe 36 and eject steam 38 onto the surface on which the sintering raw material is deposited.
  • water vapor is an example of steam.
  • the cylindrical drum 33 has an input port 34 provided on one end surface of the drum 33 for introducing the sintering raw material, and an input port 34 provided on the other end surface of the drum 33 for receiving the granulated sintering material. (hereinafter referred to as pseudo particles) is provided with a discharge port 35 through which the particles are discharged.
  • the steam pipe 36 is provided in a region within the drum 33 that is the first half between the input port 34 and an intermediate position between the input port 34 and the discharge port 35 .
  • the plurality of nozzles 37 are provided at positions 500 mm or more away from the sintering raw material deposition surface in the vertical direction, and blow water vapor from the positions toward the sintering raw material deposition surface.
  • the average particle size at a temperature of 10°C or more higher than that of pseudo-particles granulated without blowing in water vapor is approximately 3.0 mm. It is granulated into pseudo particles.
  • the pseudo particles are transported to a sintering machine 40 by a transport conveyor 39.
  • the average particle size of the pseudo particles is the arithmetic mean particle size, ⁇ (Vi ⁇ di) (where Vi is the abundance ratio of particles in the i-th particle size range, and di is the i It is the particle size defined by the representative particle size of the particle size range.
  • the drum mixer 32 is an example of a granulating device that granulates the sintering raw material.
  • the sintering machine 40 is, for example, a downward suction type Dwight Lloyd type sintering machine.
  • the sintering machine 40 includes a sintering raw material supply device 42, an endlessly movable pallet truck 44, an ignition furnace 46, and a wind box 48.
  • the sintering raw material is charged from the sintering raw material supply device 42 to the pallet truck 44, and a charged layer of the sintering raw material is formed.
  • the charge layer is ignited in an ignition furnace 46.
  • suctioning air through the wind box 48 the coagulated material 18 is combusted within the charge layer, and the combustion/melting zone within the charge layer is moved below the charge layer. This causes the charging layer to sinter and form a sintered cake.
  • a gaseous fuel supply device 47 may be provided.
  • the gaseous fuel supplied from the gaseous fuel supply device 47 includes blast furnace gas, coke oven gas, blast furnace/coke oven mixed gas, converter gas, city gas, natural gas, methane gas, ethane gas, propane gas, shale gas, and mixtures thereof. Any combustible gas selected from gases.
  • the sintered cake is crushed into sintered ore by a crusher 50.
  • the sintered ore crushed by the crusher 50 is cooled by a cooler 52.
  • the sintered ore cooled by the cooler 52 is sieved by a sieving device 54 having a plurality of sieves, and is separated into finished sintered ore 56 with a particle size of more than 5 mm and return ore 58 with a particle size of 5 mm or less. be done.
  • the finished sintered ore 56 is used as a blast furnace raw material.
  • the return ore 58 is conveyed to the blending tank 28 of the raw material supply section 20 by a conveyor 60.
  • the particle size of the finished sintered ore 56 and the particle size of the return ore 58 mean the particle size that can be sieved by a sieve. This is the particle size that is sieved on the sieve, and the particle size of 5 mm or less is the particle size that is sieved under the sieve using a sieve with an opening of 5 mm.
  • the grain size values of the finished sintered ore 56 and the return ore 58 are just examples, and are not limited to these values.
  • FIG. 2 is a graph showing the relationship between the temperature of the pseudo particles at the exit side of the drum mixer and the air permeability index JPU of the charging layer.
  • the horizontal axis in FIG. 2 is the temperature (° C.) of the pseudo particles discharged from the drum mixer 32.
  • the temperature of the pseudo particles is the average temperature of the pseudo particles discharged from the drum mixer 32.
  • the temperature of the sintered raw material before being introduced into the drum mixer 32 is 35.0°C.
  • the sintering raw material includes a CaO-containing raw material. Since CaO generates heat when reacting with water to generate Ca(OH) 2 , the temperature of the sintering raw material rises from 35.0° C. to about 42.5° C. even without blowing water vapor into it.
  • the plot where the horizontal axis is 42.5°C is an example of granulation in which the sintered raw material is granulated without blowing steam into the sintered raw material, and the other plots are granulated by blowing steam into the sintered raw material. This is an example of granulation in which the sintered raw material is heated.
  • the vertical axis in FIG. 2 is the air permeability index JPU of the charging layer.
  • JPU is an air permeability index measured by coldly drawing atmospheric air downward through a charged layer formed by charging pseudo particles into a pallet.
  • the air permeability index JPU is calculated using the following formula (1).
  • V is the air volume (m 3 /min)
  • S is the effective area of the sintering machine (m 2 )
  • h is the charging layer height (mm)
  • ⁇ P is the pressure loss ( mmH2O ).
  • the air permeability of the charged layer was improved by blowing steam into the sintering raw material and raising the temperature of the pseudo particles higher than 42.5°C.
  • the air permeability of the charge layer formed by pseudo particles at 47.0 °C which is raised by 10 °C or more from 42.5 °C, is significantly higher than gender.
  • pseudo particles are formed with interlayers.
  • FIG. 3 is a graph showing the relationship between the temperature of the pseudo particles at the exit side of the drum mixer and the production rate of sintered ore.
  • the horizontal axis in FIG. 3 is the temperature (° C.) of the pseudo particles discharged from the drum mixer 32.
  • the vertical axis of FIG. 3 is the production rate (t/(hr ⁇ m 2 )) of sintered ore.
  • the production rate of sinter produced using pseudo particles at 56.0°C, which is 10°C higher than 43.5°C is The production rate was significantly higher than that of sinter produced using particles.
  • the configuration of the drum mixer 32 that can efficiently raise the temperature of the pseudo particles discharged from the drum mixer 32 by blowing in the steam of the sintering raw material will be described. Since the drum 33 rotates with the horizontal direction as the axis of rotation, the position at which the sintering raw material is deposited in the drum 33 is inclined in the rotation direction of the drum 33 with respect to the vertically downward direction.
  • the plurality of nozzles 37 are provided at positions separated from the deposition surface of the sintering raw material by 500 mm or more in the vertical direction. In this manner, by providing the plurality of nozzles 37 at positions separated by 500 mm or more in the vertical direction from the deposition surface of the sintering raw material, the temperature of the pseudo particles can be efficiently raised.
  • the rotation axis of the drum mixer 32 may be substantially horizontal. Further, in order to efficiently discharge the pseudo particles, the rotation axis may be tilted so that the discharge port 35 is located vertically below the input port 34.
  • FIG. 4 is a schematic diagram illustrating the configuration of the drum mixer 32.
  • FIG. 4(a) is a schematic cross-sectional view of the drum mixer 32.
  • FIG. 4(b) is a schematic diagram of the steam piping 36.
  • the plurality of nozzles 37 are indicated by arrows indicating the direction of water vapor ejected from each nozzle.
  • the steam pipe 36 is connected to a first half of the input port 34 from the input port 34 of the drum 33 to an intermediate position between the input port 34 and the discharge port 35. It is provided at a position up to 5000 mm from the mouth 34. Further, the steam pipe 36 is provided with 15 nozzles 37 at a pitch of 350 mm. Among these plurality of nozzles 37, the first to seventh nozzles from the input port 34 side are provided so as to eject water vapor perpendicularly to the deposition surface of the sintering raw material.
  • the 8th to 14th nozzles from the input port 34 side are provided so as to face the discharge port 35 side, and are inclined at 30 degrees toward the discharge port 35 side with respect to the perpendicular to the deposition surface of the sintering raw material.
  • the nozzle closest to the discharge port 35 side is provided at an angle of 45° toward the discharge port 35 with respect to the perpendicular to the deposition surface of the sintering raw material. That is, among the plurality of nozzles 37, more than half of the nozzles are installed at an angle so that the steam jet direction faces the discharge port 35 side, and the steam jet direction of the remaining nozzles is perpendicular to the deposition surface of the sintering raw material. It is installed so that steam can be blown out.
  • FIG. 5 is a cross-sectional view of the drum mixer showing the positions of multiple nozzles.
  • the drum mixer shown in FIG. A drum mixer equipped with steam piping was manufactured, and a steam injection experiment was conducted using the drum mixer.
  • FIG. 6 is a graph showing the results of the steam blowing experiment.
  • the horizontal axis in FIG. 6 is the position (m) in the drum mixer, and the vertical axis is the temperature (° C.) of the sintering raw material.
  • the temperature of the sintered raw material is the average temperature of the sintered raw material at each position within the drum mixer shown on the horizontal axis.
  • the conditions for this experiment were as follows: In all experimental examples (1 to 5), the steam injection amount was 7.5 t/h, the steam temperature was 170°C (steam piping pressure: 0.7 MPa), The experiment was conducted with a raw material (sintering raw material) input amount of 730 t/h.
  • the sintering raw material could be vertically It was confirmed that the temperature of the pseudo particles discharged from the drum mixer was higher than when a plurality of nozzles were provided at positions less than 500 mm apart. In this way, in the drum mixer according to this embodiment, the temperature of the pseudo particles can be efficiently increased by blowing steam, so if the amount of steam blown is the same, the temperature of the pseudo particles discharged from the drum mixer can be increased. It can be seen that if the temperature of the pseudo particles discharged from the drum mixer is the same, the amount of water vapor blown can be reduced.
  • the moisture content of the pseudo particles discharged from the drum mixer is also important.
  • the water content of the pseudo particles discharged from the drum mixer becomes less than the target water content (6.5% by mass)
  • granulation of the sintering raw material does not proceed, and the particle size of the pseudo particles after granulation becomes small.
  • the particle size of the pseudo-particles becomes small in this way, the permeability of the charging layer formed by the pseudo-particles with the small particle size deteriorates, and the production rate of sintered ore decreases.
  • FIG. 7 is a schematic diagram showing steam piping.
  • a plurality of nozzles are indicated by arrows indicating the direction of water vapor ejected from each nozzle.
  • FIG. 7A shows the steam piping of Experimental Example 11 in which a plurality of nozzles were provided so that the direction of the ejected water vapor was vertically downward.
  • FIG. 7A shows the steam piping of Experimental Example 11 in which a plurality of nozzles were provided so that the direction of the ejected water vapor was vertically downward.
  • the 1st to 7th nozzles from the input port side are installed so that the direction of water vapor ejected is vertically downward, and the 8th to 14th nozzles from the input port side are
  • the jetting direction of the water vapor spouted from the nozzle is inclined at 30 degrees toward the exhaust port with respect to the vertically downward direction, and the jetting direction of the steam spouting from the nozzle closest to the discharge port side is set to the vertically downward direction toward the discharge port.
  • This is the steam piping of Experimental Example 12, which was installed at an angle of 45 degrees to the side.
  • the jetting direction of water vapor ejected from the first to seventh nozzles from the input port side is inclined by 30 degrees toward the discharge port side with respect to the vertical downward direction.
  • a steam injection experiment was conducted using a drum mixer in which these steam pipes were installed so that steam was blown in from a position 1500 mm away from the deposition surface of the sintering raw material in the vertical direction.
  • FIG. 8 is a graph showing the results of the steam blowing experiment.
  • the horizontal axis in Figure 8 is the position (m) in the drum mixer, the vertical axis is the moisture content (mass%) of the sintered raw material, and the average of the sintered raw material at each position in the drum mixer shown on the horizontal axis. Indicates moisture content.
  • the water content of the pseudo particles granulated with the drum mixer equipped with steam piping of Experimental Examples 12 and 13 is lower than that of the pseudo particles granulated with the drum mixer equipped with the steam piping of Experimental Example 11.
  • the water content was higher than that of the pseudo particles. From these results, it can be seen that it is preferable that the nozzle be provided with a larger inclination so that as the position of the nozzle approaches the outlet, the direction of the ejected water vapor is directed more toward the outlet.
  • all the nozzles are provided at an angle so that the steam jetting direction of the nozzle faces the discharge port side.
  • the steam should be blown into the sintering raw material by tilting the nozzle so that more than half of the total amount of steam blown is directed toward the discharge port. is preferable, and it is more preferable to blow the water vapor into the sintering raw material by tilting so that all the water vapor jets are directed toward the discharge port.
  • the drum mixer 32 which is the granulation device according to the present embodiment, can blow steam into the sintering raw material and heat it efficiently. Therefore, if the amount of steam used is the same, the pseudo particles can be heated to a higher temperature, and if the temperature on the outlet side is the same, the pseudo particles can be heated with a smaller amount of steam used.
  • the granulation device according to the present embodiment it is possible to reduce the amount of steam used during the production of sintered ore while heating the sintered raw material to a predetermined temperature, thereby improving the production rate of the sintered ore. It is possible to suppress an increase in the manufacturing cost of sintered ore.
  • Sintered ore production equipment 11 Yard 12 Iron-containing raw material 14 Conveyor 16 CaO-containing raw material 17 MgO-containing raw material 18 Coagulating material 20 Raw material supply section 22 Blending tank 24 Blending tank 26 Blending tank 28 Blending tank 30 Conveyor 32 Drum mixer 33 Drum 34 Input port 35 Discharge port 36 Steam pipe 37 Nozzle 38 Steam 39 Conveyor 40 Sintering machine 42 Sintering raw material supply device 44 Pallet truck 46 Ignition furnace 48 Wind box 50 Crusher 52 Cooler 54 Sieving device 56 Finished sintered ore 58 Return ore 60 Conveyor 62 Sintering raw material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Provided are: a granulation device capable of efficiently heating a sintering raw material by blowing steam into the sintering raw material; a method for producing a granulation sintering raw material; and a method for producing a sintered ore using the method for producing a granulation sintering raw material. This granulation device granulates a sintering raw material including an iron-containing material, a CaO-containing raw material, and a coagulation material. The granulation device has: a cylindrical drum that rotates around the horizontal direction as a rotation axis and is provided with an inlet through which the sintering raw material is put in, and a discharge port through which the granulated sintering raw material is discharged; a steam pipe provided inside the drum and provided only in an anterior half portion between the inlet and the intermediate position between the inlet and the discharge port; and multiple nozzles which are connected to the steam pipe and from which steam is ejected toward a deposition surface of the sintering raw material, wherein the multiple nozzles are provided 500 mm or more apart from the deposition surface of the sintering raw material.

Description

造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法Granulation equipment, method for producing granulated and sintered raw materials, and method for producing sintered ore
 本発明は、焼結原料を造粒する造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法に関する。 The present invention relates to a granulation device for granulating sintered raw materials, a method for producing granulated sintered raw materials, and a method for producing sintered ore.
 高炉用原料である焼結鉱は、一般に、鉄鉱石粉、製鉄所内回収粉、焼結鉱篩下粉などの鉄含有原料と、石灰石及びドロマイトなどの含CaO原料と、粉コークスや無煙炭などの炭材(固体燃料)とを焼結原料として、無端移動型焼結機であるドワイトロイド式焼結機(以下、「焼結機」と記載する場合がある。)を用いて製造される。焼結原料は、焼結機の無端移動式のパレットに装入され、装入層が形成される。装入層の厚さ(高さ)は400~800mm程度である。その後、装入層の上方に設置された点火炉により、装入層表層の炭材に点火される。パレットの下に配設されている風箱を介して空気を下方に吸引することにより、装入層中の炭材を順次燃焼させる。この燃焼は、パレットの移動につれて次第に下層にかつ前方に進行する。このときに発生する燃焼熱によって、焼結原料が燃焼、溶融し、焼結ケーキが生成される。その後、得られた焼結ケーキは、排鉱部において破砕され、クーラーで冷却され、整粒されて成品焼結鉱となる。 Sintered ore, which is a raw material for blast furnaces, is generally made up of iron-containing raw materials such as iron ore powder, recovered powder in steel works, and sintered ore unsieved powder, CaO-containing raw materials such as limestone and dolomite, and charcoal such as coke powder and anthracite. (solid fuel) as a sintering raw material using a Dwight Lloyd sintering machine (hereinafter sometimes referred to as a "sintering machine"), which is an endless moving sintering machine. The sintering raw material is charged into an endlessly movable pallet of the sintering machine to form a charging layer. The thickness (height) of the charging layer is approximately 400 to 800 mm. Thereafter, the coal material on the surface layer of the charging layer is ignited by an ignition furnace installed above the charging layer. The carbonaceous material in the charging layer is sequentially combusted by sucking air downward through a wind box placed under the pallet. This combustion progresses progressively lower and forward as the pallet moves. The combustion heat generated at this time burns and melts the sintering raw material, producing a sintered cake. Thereafter, the obtained sintered cake is crushed in an ore discharge section, cooled in a cooler, and sized to become a finished sintered ore.
 上述した焼結機を用いた焼結鉱の製造では、焼結原料を予熱乾燥することで装入層の湿潤帯が占める割合を縮小させて装入層の通気性を向上させ、焼結鉱の生産性を向上させる技術が知られている。例えば、特許文献1には、焼結原料を造粒する造粒時に水蒸気などの蒸気を吹込み、焼結原料を加熱する造粒焼結原料の製造方法が開示されている。特許文献1によれば、水蒸気を吹込みながら焼結原料を造粒することで焼結原料が予熱乾燥され、装入層の通気性が向上して焼結鉱の生産率が向上できるとしている。 In the production of sintered ore using the above-mentioned sintering machine, the sintered raw material is preheated and dried to reduce the proportion of the wet zone in the charging layer and improve the permeability of the charging layer. Technologies that improve productivity are known. For example, Patent Document 1 discloses a method for producing a granulated sintering raw material, in which steam such as water vapor is blown into the sintering raw material during granulation to heat the sintering raw material. According to Patent Document 1, by granulating the sintered raw material while blowing water vapor into it, the sintered raw material is preheated and dried, improving the permeability of the charging layer and improving the production rate of sintered ore. .
国際公開2019/167888号International Publication 2019/167888
 特許文献1に開示の方法は、蒸気を吹き込みながら焼結原料を造粒するので、焼結原料に吹き込む蒸気を別途用意する必要がある。このため、蒸気を用意するのに要するコストにより焼結鉱の製造コストが上昇するという課題があった。一方、蒸気を用いて効率的に焼結原料を加熱できれば、使用する蒸気の量を削減でき、焼結鉱の製造コストの上昇を抑制できる。本発明は、このような従来技術の課題を鑑みてなされたものであり、その目的は、焼結原料に蒸気を吹き込んで、効率的に焼結原料を加熱できる造粒装置、造粒焼結原料の製造方法および当該造粒焼結原料の製造方法を用いた焼結鉱の製造方法を提供することである。 In the method disclosed in Patent Document 1, the sintering raw material is granulated while blowing steam, so it is necessary to separately prepare steam to be blown into the sintering raw material. Therefore, there has been a problem in that the manufacturing cost of sintered ore increases due to the cost required to prepare the steam. On the other hand, if steam can be used to efficiently heat the sintering raw material, the amount of steam used can be reduced, and an increase in the manufacturing cost of sintered ore can be suppressed. The present invention has been made in view of the problems of the prior art, and its purpose is to provide a granulation device and a granulation/sintering device that can efficiently heat the sintering raw material by blowing steam into the sintering raw material. It is an object of the present invention to provide a method for producing a raw material and a method for producing sintered ore using the method for producing the granulated and sintered raw material.
上記課題を解決するための手段は、以下の通りである。
[1]鉄含有原料、CaO含有原料および凝結材を含む焼結原料を造粒する造粒装置であって、前記焼結原料が投入される投入口と、造粒された焼結原料が排出される排出口と、が設けられ、横方向を回転軸として回転する筒状のドラムと、前記ドラム内であって、前記投入口から前記投入口と前記排出口との中間位置までの間の前半部分のみに設けられる蒸気配管と、前記蒸気配管に接続され、前記焼結原料の堆積面に蒸気を噴出させる複数のノズルと、を有し、前記複数のノズルは、前記焼結原料の堆積面から500mm以上離れて設けられる、造粒装置。
[2]前記複数のノズルのうち、半数以上のノズルの蒸気噴出方向が前記排出口側を向くように傾けて設けられ、残りのノズルの蒸気噴出方向が前記焼結原料の堆積面に対して垂直に蒸気を噴出されるように設けられる、[1]に記載の造粒装置。
[3]前記複数のノズルの蒸気噴出方向は、ノズルの位置が前記排出口に近づくに従って大きく前記排出口側を向くように傾けて設けられる、[1]または[2]に記載の造粒装置。
[4]造粒装置を用いて、鉄含有原料、CaO含有原料および凝結材を含む焼結原料を造粒する造粒焼結原料の製造方法であって、前記造粒装置は前記焼結原料が投入される投入口と、造粒された焼結原料が排出される排出口と、が設けられ、横方向を回転軸として回転する筒状のドラムを有し、前記ドラム内であって、前記投入口から前記投入口と前記排出口との中間位置までの間の前半部分で前記焼結原料の堆積面から500mm以上離れた位置から前記焼結原料に蒸気を吹き込んで、前記蒸気を吹き込まないで造粒した造粒焼結原料よりも10℃以上高い造粒焼結原料とする造粒焼結原料の製造方法。
[5]前記焼結原料に吹き込まれる全蒸気量のうち、半分以上の蒸気の噴出方向が前記排出口側を向くように傾けて吹き込まれる、[4]に記載の造粒焼結原料の製造方法。
[6][4]または[5]に記載の造粒焼結原料の製造方法を用いて造粒された造粒焼結原料を焼結機で焼結して焼結鉱を製造する、焼結鉱の製造方法。
The means for solving the above problems are as follows.
[1] A granulator for granulating sintering raw materials including an iron-containing raw material, a CaO-containing raw material, and a coagulant, which includes an input port into which the sintering raw materials are input, and an outlet from which the granulated sintering raw materials are discharged. a cylindrical drum that rotates with the horizontal direction as an axis of rotation; It has a steam pipe provided only in the first half, and a plurality of nozzles that are connected to the steam pipe and eject steam onto the deposition surface of the sintering raw material, and the plurality of nozzles are configured to prevent the deposition of the sintering raw material. A granulation device installed at a distance of 500 mm or more from the surface.
[2] Among the plurality of nozzles, more than half of the nozzles are provided so that the steam jetting directions are inclined toward the discharge port side, and the steam jetting directions of the remaining nozzles are provided with respect to the deposition surface of the sintering raw material. The granulation device according to [1], which is installed so that steam is ejected vertically.
[3] The granulation device according to [1] or [2], wherein the steam ejection direction of the plurality of nozzles is tilted so that as the position of the nozzle approaches the discharge port, it becomes larger toward the discharge port side. .
[4] A method for producing a granulated sintered raw material, in which a sintered raw material containing an iron-containing raw material, a CaO-containing raw material, and a coagulating material is granulated using a granulating device, the granulating device A cylindrical drum is provided with an input port into which granulated sintering raw material is input, and a discharge port through which the granulated sintering raw material is discharged, the drum having a cylindrical drum that rotates with a rotation axis in the horizontal direction, and within the drum, Blowing steam into the sintering raw material from a position 500 mm or more away from the deposition surface of the sintering raw material in the first half between the input port and the intermediate position between the input port and the discharge port. A method for producing a granulated sintered raw material that has a temperature higher than that of a granulated sintered raw material that is 10°C or more higher than that of a granulated sintered raw material that is granulated without heating.
[5] The production of the granulated sintering raw material according to [4], wherein of the total amount of steam blown into the sintering raw material, half or more of the steam is blown in such a manner that the jetting direction is directed toward the discharge port side. Method.
[6] Sintering of producing sintered ore by sintering the granulated sintered raw material granulated using the method for producing the granulated sintered raw material described in [4] or [5] in a sintering machine. Method for producing concretions.
 本発明に係る造粒装置を用いることで、焼結原料に蒸気を吹き込んで効率的に加熱できるので、造粒時に用いる蒸気の蒸気原単位を削減できる。この加熱された造粒焼結原料を用いることで、装入層の通気性が向上し焼結鉱の生産率が向上するので、本発明に係る造粒装置を用いることで、焼結鉱の生産率の向上と焼結鉱の製造コスト上昇の抑制とが実現できる。 By using the granulation apparatus according to the present invention, steam can be blown into the sintering raw material to efficiently heat it, so the steam consumption rate of the steam used during granulation can be reduced. By using this heated granulated and sintered raw material, the permeability of the charging layer is improved and the production rate of sintered ore is improved. It is possible to improve the production rate and suppress the increase in the manufacturing cost of sintered ore.
図1は、本実施形態に係る造粒装置であるドラムミキサー32を有する焼結鉱製造設備10の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a sintered ore production facility 10 having a drum mixer 32, which is a granulation device according to the present embodiment. 図2は、ドラムミキサー出側の焼結原料の温度と、装入層の通気性指数JPUとの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the temperature of the sintered raw material at the exit side of the drum mixer and the air permeability index JPU of the charging layer. 図3は、ドラムミキサー出側の焼結原料の温度と、装入層の通気性指数JPUとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the temperature of the sintered raw material at the exit side of the drum mixer and the air permeability index JPU of the charging layer. 図4は、ドラムミキサーの構成を説明する模式図である。FIG. 4 is a schematic diagram illustrating the configuration of the drum mixer. 図5は、複数のノズルの位置を示すドラムミキサーの断面図である。FIG. 5 is a cross-sectional view of the drum mixer showing the positions of a plurality of nozzles. 図6は、蒸気吹き込み実験の結果を示すグラフである。FIG. 6 is a graph showing the results of the steam blowing experiment. 図7は、蒸気配管を示す模式図である。FIG. 7 is a schematic diagram showing steam piping. 図8は、蒸気吹き込み実験の結果を示すグラフである。FIG. 8 is a graph showing the results of the steam blowing experiment.
 以下、発明の実施形態を通じて本発明を説明する。図1は、本実施形態に係る造粒装置であるドラムミキサー32を有する焼結鉱製造設備10の一例を示す模式図である。ヤード11に保管された鉄含有原料12は、搬送コンベア14によって配合槽22に搬送される。鉄含有原料12は、種々の銘柄の鉄鉱石および製鉄所内発生ダストを含む。 Hereinafter, the present invention will be explained through embodiments of the invention. FIG. 1 is a schematic diagram showing an example of a sintered ore production facility 10 having a drum mixer 32, which is a granulation device according to the present embodiment. The iron-containing raw material 12 stored in the yard 11 is transported to a mixing tank 22 by a transport conveyor 14. The iron-containing raw material 12 includes various brands of iron ore and dust generated within a steel mill.
 原料供給部20は、複数の配合槽22、24、25、26、28を備える。配合槽22には、鉄含有原料12が貯留される。配合槽24には、石灰石や生石灰等を含むCaO含有原料16、配合槽25にはドロマイトや精錬ニッケルスラグ等を含むMgO含有原料17がそれぞれ貯留される。配合槽26には、ロッドミルを用いて粒径1mm以下に破砕された粉コークスや無煙炭を含む凝結材18が貯留される。配合槽28には、焼結鉱の篩下となった粒径5mm以下の返鉱(焼結鉱篩下粉)が貯留される。原料供給部20の配合槽22~28から、各原料が所定量切り出され、これらが配合されて焼結原料となる。焼結原料は、搬送コンベア30によってドラムミキサー32に搬送される。MgO含有原料17は、任意配合原料であって、焼結原料に配合されてもよく、配合されなくてもよい。 The raw material supply section 20 includes a plurality of blending tanks 22, 24, 25, 26, and 28. The iron-containing raw material 12 is stored in the blending tank 22 . The blending tank 24 stores a CaO-containing raw material 16 containing limestone, quicklime, etc., and the blending tank 25 stores an MgO-containing raw material 17 including dolomite, refined nickel slag, etc. The blending tank 26 stores a coagulating material 18 containing coke powder and anthracite that have been crushed to a particle size of 1 mm or less using a rod mill. The blending tank 28 stores return ore (sintered ore undersieve powder) with a particle size of 5 mm or less, which is the undersieve of the sintered ore. A predetermined amount of each raw material is cut out from the blending tanks 22 to 28 of the raw material supply section 20, and these are blended to form a sintering raw material. The sintering raw material is conveyed to a drum mixer 32 by a conveyor 30. The MgO-containing raw material 17 is an optionally blended raw material, and may or may not be blended with the sintering raw material.
 ドラムミキサー32は、焼結原料に蒸気を吹き付けながら造粒する造粒装置である。ドラムミキサー32は、横方向を回転軸として回転する筒状のドラム33と、蒸気配管36と、蒸気配管36に接続され、焼結原料の堆積面に水蒸気38を噴出させる複数のノズル37とを有する。なお、水蒸気は蒸気の一例である。 The drum mixer 32 is a granulation device that granulates the sintered raw material while blowing steam onto it. The drum mixer 32 includes a cylindrical drum 33 that rotates with the horizontal direction as an axis of rotation, a steam pipe 36, and a plurality of nozzles 37 that are connected to the steam pipe 36 and eject steam 38 onto the surface on which the sintering raw material is deposited. have Note that water vapor is an example of steam.
 筒状のドラム33には、当該ドラム33の一端面側に設けられ、焼結原料が投入される投入口34と、ドラム33の他端面側に設けられ、造粒された造粒焼結原料(以後、擬似粒子と記載する。)が排出される排出口35と、が設けられている。蒸気配管36は、ドラム33内であって、投入口34から、投入口34と排出口35との中間位置までの間の前半部分となる領域に設けられる。複数のノズル37は、焼結原料の堆積面から垂直方向に500mm以上離れた位置に設けられ、当該位置から焼結原料の堆積面に向けて水蒸気を吹き込む。 The cylindrical drum 33 has an input port 34 provided on one end surface of the drum 33 for introducing the sintering raw material, and an input port 34 provided on the other end surface of the drum 33 for receiving the granulated sintering material. (hereinafter referred to as pseudo particles) is provided with a discharge port 35 through which the particles are discharged. The steam pipe 36 is provided in a region within the drum 33 that is the first half between the input port 34 and an intermediate position between the input port 34 and the discharge port 35 . The plurality of nozzles 37 are provided at positions 500 mm or more away from the sintering raw material deposition surface in the vertical direction, and blow water vapor from the positions toward the sintering raw material deposition surface.
 このように、水蒸気を吹き込みながら焼結原料を造粒して擬似粒子を製造することで、水蒸気を吹き込まないで造粒された擬似粒子よりも10℃以上高い温度の平均粒径3.0mm程度の擬似粒子に造粒している。擬似粒子は、搬送コンベア39によって焼結機40に搬送される。本実施形態において、擬似粒子の平均粒径は算術平均粒径であって、Σ(Vi×di)(但し、Viはi番目の粒度範囲の中にある粒子の存在比率であり、diはi番目の粒度範囲の代表粒径である。)で定義される粒径である。また、ドラムミキサー32は、焼結原料を造粒する造粒装置の一例である。 In this way, by producing pseudo-particles by granulating the sintered raw material while blowing in water vapor, the average particle size at a temperature of 10°C or more higher than that of pseudo-particles granulated without blowing in water vapor is approximately 3.0 mm. It is granulated into pseudo particles. The pseudo particles are transported to a sintering machine 40 by a transport conveyor 39. In this embodiment, the average particle size of the pseudo particles is the arithmetic mean particle size, Σ(Vi×di) (where Vi is the abundance ratio of particles in the i-th particle size range, and di is the i It is the particle size defined by the representative particle size of the particle size range. Further, the drum mixer 32 is an example of a granulating device that granulates the sintering raw material.
 焼結機40は、例えば、下方吸引式のドワイトロイド式焼結機である。焼結機40は、焼結原料供給装置42と、無端移動式のパレット台車44と、点火炉46と、ウインドボックス48とを有する。焼結原料供給装置42から焼結原料がパレット台車44に装入され、焼結原料の装入層が形成される。装入層は点火炉46で点火される。ウインドボックス48を通じて空気を吸引することで、装入層内で凝結材18を燃焼させつつ装入層内の燃焼・溶融帯を装入層の下方へ移動させる。これにより、装入層は焼結されて焼結ケーキが形成される。本実施形態では、気体燃料供給装置47を備えても良い。気体燃料供給装置47から供給される気体燃料は、高炉ガス、コークス炉ガス、高炉・コークス炉混合ガス、転炉ガス、都市ガス、天然ガス、メタンガス、エタンガス、プロパンガス、シェールガスおよびそれらの混合ガスのうちから選ばれるいずれかの可燃性ガスである。 The sintering machine 40 is, for example, a downward suction type Dwight Lloyd type sintering machine. The sintering machine 40 includes a sintering raw material supply device 42, an endlessly movable pallet truck 44, an ignition furnace 46, and a wind box 48. The sintering raw material is charged from the sintering raw material supply device 42 to the pallet truck 44, and a charged layer of the sintering raw material is formed. The charge layer is ignited in an ignition furnace 46. By suctioning air through the wind box 48, the coagulated material 18 is combusted within the charge layer, and the combustion/melting zone within the charge layer is moved below the charge layer. This causes the charging layer to sinter and form a sintered cake. In this embodiment, a gaseous fuel supply device 47 may be provided. The gaseous fuel supplied from the gaseous fuel supply device 47 includes blast furnace gas, coke oven gas, blast furnace/coke oven mixed gas, converter gas, city gas, natural gas, methane gas, ethane gas, propane gas, shale gas, and mixtures thereof. Any combustible gas selected from gases.
 焼結ケーキは、破砕機50によって破砕され焼結鉱にされる。破砕機50で破砕された焼結鉱は、冷却機52によって冷却される。冷却機52によって冷却された焼結鉱は、複数の篩を有する篩分け装置54によって篩分けされ、粒径5mm超の成品焼結鉱56と、粒径5mm以下の返鉱58とに篩分けされる。成品焼結鉱56は、高炉原料として用いられる。一方、返鉱58は、搬送コンベア60によって原料供給部20の配合槽28に搬送される。本実施形態において、成品焼結鉱56の粒径および返鉱58の粒径は、篩によって篩分けられる粒径を意味し、例えば、粒径5mm超とは、目開き5mmの篩を用いて篩上に篩分けされる粒径であり、粒径5mm以下とは、目開き5mmの篩を用いて篩下に篩分けされる粒径である。成品焼結鉱56および返鉱58の粒径の各値は、あくまで一例であり、この値に限定するものではない。 The sintered cake is crushed into sintered ore by a crusher 50. The sintered ore crushed by the crusher 50 is cooled by a cooler 52. The sintered ore cooled by the cooler 52 is sieved by a sieving device 54 having a plurality of sieves, and is separated into finished sintered ore 56 with a particle size of more than 5 mm and return ore 58 with a particle size of 5 mm or less. be done. The finished sintered ore 56 is used as a blast furnace raw material. On the other hand, the return ore 58 is conveyed to the blending tank 28 of the raw material supply section 20 by a conveyor 60. In this embodiment, the particle size of the finished sintered ore 56 and the particle size of the return ore 58 mean the particle size that can be sieved by a sieve. This is the particle size that is sieved on the sieve, and the particle size of 5 mm or less is the particle size that is sieved under the sieve using a sieve with an opening of 5 mm. The grain size values of the finished sintered ore 56 and the return ore 58 are just examples, and are not limited to these values.
 このように、焼結鉱製造設備10を用いた焼結鉱の製造では、ドラムミキサー32で焼結原料に水蒸気を吹き込んで焼結原料を造粒するとともに加熱している。これにより、焼結原料の装入層の通気性が向上し、焼結原料の生産率が向上する。図2は、ドラムミキサー出側の擬似粒子の温度と、装入層の通気性指数JPUとの関係を示すグラフである。図2の横軸はドラムミキサー32から排出された擬似粒子の温度(℃)である。擬似粒子の温度は、ドラムミキサー32から排出された擬似粒子の平均温度である。 In this way, in the production of sintered ore using the sintered ore production equipment 10, the drum mixer 32 blows steam into the sintered raw material to granulate and heat the sintered raw material. This improves the air permeability of the charging layer of the sintering raw material and improves the production rate of the sintering raw material. FIG. 2 is a graph showing the relationship between the temperature of the pseudo particles at the exit side of the drum mixer and the air permeability index JPU of the charging layer. The horizontal axis in FIG. 2 is the temperature (° C.) of the pseudo particles discharged from the drum mixer 32. The temperature of the pseudo particles is the average temperature of the pseudo particles discharged from the drum mixer 32.
 ドラムミキサー32に投入される前の焼結原料の温度は35.0℃である。焼結原料はCaO含有原料を含む。CaOは水と反応してCa(OH)を生成する際に発熱するので、水蒸気を吹き込まなくても焼結原料の温度は35.0℃から約42.5℃に上昇する。図2の横軸が42.5℃のプロットは焼結原料に水蒸気を吹き込まずに焼結原料を造粒した造粒例であり、他のプロットは焼結原料に水蒸気を吹き込んで造粒し、焼結原料を加熱させた造粒例である。 The temperature of the sintered raw material before being introduced into the drum mixer 32 is 35.0°C. The sintering raw material includes a CaO-containing raw material. Since CaO generates heat when reacting with water to generate Ca(OH) 2 , the temperature of the sintering raw material rises from 35.0° C. to about 42.5° C. even without blowing water vapor into it. In Figure 2, the plot where the horizontal axis is 42.5°C is an example of granulation in which the sintered raw material is granulated without blowing steam into the sintered raw material, and the other plots are granulated by blowing steam into the sintered raw material. This is an example of granulation in which the sintered raw material is heated.
 図2の縦軸は装入層の通気性指数JPUである。JPUとは、擬似粒子をパレットに装入することで形成された装入層を、冷間で下向きに大気を吸引して測定される通気性指数である。通気性指数JPUは、下記(1)式を用いて算出される。 The vertical axis in FIG. 2 is the air permeability index JPU of the charging layer. JPU is an air permeability index measured by coldly drawing atmospheric air downward through a charged layer formed by charging pseudo particles into a pallet. The air permeability index JPU is calculated using the following formula (1).
 JPU=V/[S×(ΔP/h)0.6]・・・(1)
 上記(1)式において、Vは風量(m/min)であり、Sは焼結機の有効面積(m)であり、hは装入層高さ(mm)であり、ΔPは圧力損失(mmHO)である。
JPU=V/[S×(ΔP/h) 0.6 ]...(1)
In the above equation (1), V is the air volume (m 3 /min), S is the effective area of the sintering machine (m 2 ), h is the charging layer height (mm), and ΔP is the pressure loss ( mmH2O ).
 装入層の通気性が高いと通気性指数JPUは大きくなり、通気性が低いと通気性指数JPUは小さくなる。図2に示すように、焼結原料に水蒸気を吹込み、擬似粒子の温度を42.5℃よりも高くすることで装入層の通気性は向上した。また、42.5℃から10℃以上温度が高められた56.0℃の擬似粒子によって形成された装入層の通気性は、47.0℃の擬似粒子によって形成された装入層の通気性よりも顕著に高くなった。この結果から、焼結原料に水蒸気を吹き込んで造粒し、水蒸気を吹き込まずに造粒した擬似粒子よりも10℃以上高い温度の擬似粒子とすることが好ましく、これにより、高い通気性の装入層が形成される擬似粒子となることがわかる。 If the air permeability of the charged layer is high, the air permeability index JPU will be large, and if the air permeability is low, the air permeability index JPU will be small. As shown in FIG. 2, the air permeability of the charged layer was improved by blowing steam into the sintering raw material and raising the temperature of the pseudo particles higher than 42.5°C. In addition, the air permeability of the charge layer formed by pseudo particles at 47.0 °C, which is raised by 10 °C or more from 42.5 °C, is significantly higher than gender. From this result, it is preferable to granulate the sintering raw material by blowing water vapor into it to produce pseudoparticles with a temperature 10°C or more higher than pseudoparticles granulated without blowing water vapor into the material. It can be seen that pseudo particles are formed with interlayers.
 図3は、ドラムミキサー出側の擬似粒子の温度と、焼結鉱の生産率との関係を示すグラフである。図3の横軸はドラムミキサー32から排出された擬似粒子の温度(℃)である。図3の縦軸は、焼結鉱の生産率(t/(hr×m))である。図3に示すように、温度が43.5℃から10℃以上高い温度の56.0℃の擬似粒子を用いて焼結鉱を生産した焼結鉱の生産率は、47.0℃の擬似粒子を用いて焼結鉱を生産した焼結鉱の生産率よりも顕著に高くなった。この結果と図2の結果から、焼結原料に水蒸気を吹き込んで造粒し、水蒸気を吹き込まずに造粒した擬似粒子よりも10℃以上高い温度の擬似粒子とし、当該擬似粒子を用いて焼結鉱を製造することで、焼結鉱の生産率の向上が実現できることがわかる。 FIG. 3 is a graph showing the relationship between the temperature of the pseudo particles at the exit side of the drum mixer and the production rate of sintered ore. The horizontal axis in FIG. 3 is the temperature (° C.) of the pseudo particles discharged from the drum mixer 32. The vertical axis of FIG. 3 is the production rate (t/(hr×m 2 )) of sintered ore. As shown in Figure 3, the production rate of sinter produced using pseudo particles at 56.0°C, which is 10°C higher than 43.5°C, is The production rate was significantly higher than that of sinter produced using particles. From this result and the results shown in Figure 2, we found that the sintering raw material was granulated by blowing water vapor into it to create pseudo particles whose temperature was 10°C or more higher than that of pseudo particles granulated without blowing water vapor, and the pseudo particles were sintered using the pseudo particles. It can be seen that the production rate of sintered ore can be improved by producing concretions.
 次に、焼結原料の水蒸気を吹き込み、ドラムミキサー32から排出される擬似粒子の温度を効率的に高めることができるドラムミキサー32の構成について説明する。ドラム33は横方向を回転軸として回転するので、ドラム33内の焼結原料の堆積位置は、鉛直下方に対してドラム33の回転方向に傾いている。複数のノズル37は、焼結原料の堆積面から垂直方向に500mm以上離れた位置に設けられている。このように、複数のノズル37を焼結原料の堆積面から垂直方向に500mm以上離れた位置に設けることで、擬似粒子の温度を効率的に高めることができる。ドラムミキサー32における回転軸は、略水平にしてよい。また、擬似粒子を効率良く排出するため、投入口34に対して排出口35が鉛直方向の下方に位置するように回転軸を傾けてもよい。 Next, the configuration of the drum mixer 32 that can efficiently raise the temperature of the pseudo particles discharged from the drum mixer 32 by blowing in the steam of the sintering raw material will be described. Since the drum 33 rotates with the horizontal direction as the axis of rotation, the position at which the sintering raw material is deposited in the drum 33 is inclined in the rotation direction of the drum 33 with respect to the vertically downward direction. The plurality of nozzles 37 are provided at positions separated from the deposition surface of the sintering raw material by 500 mm or more in the vertical direction. In this manner, by providing the plurality of nozzles 37 at positions separated by 500 mm or more in the vertical direction from the deposition surface of the sintering raw material, the temperature of the pseudo particles can be efficiently raised. The rotation axis of the drum mixer 32 may be substantially horizontal. Further, in order to efficiently discharge the pseudo particles, the rotation axis may be tilted so that the discharge port 35 is located vertically below the input port 34.
 図4は、ドラムミキサー32の構成を説明する模式図である。図4(a)はドラムミキサー32の断面模式図である。図4(b)は蒸気配管36の模式図である。なお、図4(b)では、複数のノズル37を各ノズルから噴出される水蒸気の噴出方向を示す矢印で示している。 FIG. 4 is a schematic diagram illustrating the configuration of the drum mixer 32. FIG. 4(a) is a schematic cross-sectional view of the drum mixer 32. FIG. 4(b) is a schematic diagram of the steam piping 36. In FIG. 4B, the plurality of nozzles 37 are indicated by arrows indicating the direction of water vapor ejected from each nozzle.
 図4に示すように、本実施形態に係るドラムミキサー32において、蒸気配管36は、ドラム33の投入口34から、投入口34と排出口35との中間位置までの間の前半部分となる投入口34から5000mmまでの位置に設けられている。また、蒸気配管36には、15固のノズル37が350mmピッチでそれぞれ設けられている。これら複数のノズル37のうち、投入口34側から1~7番目のノズルは、焼結原料の堆積面に対して垂直に水蒸気が噴出されるように設けられている。投入口34側から8~14番目のノズルは、排出口35側を向くように、焼結原料の堆積面に対する垂線に対して排出口35側に30°傾斜して設けられている。最も排出口35側に近いノズルは、焼結原料の堆積面に対する垂線に対して排出口35側に45°傾斜して設けられている。即ち、複数のノズル37のうち、半数以上のノズルの蒸気噴出方向が排出口35側を向くように傾けて設けられ、残りのノズルの蒸気噴出方向が焼結原料の堆積面に対して垂直に蒸気を噴出されるように設けられる。 As shown in FIG. 4, in the drum mixer 32 according to the present embodiment, the steam pipe 36 is connected to a first half of the input port 34 from the input port 34 of the drum 33 to an intermediate position between the input port 34 and the discharge port 35. It is provided at a position up to 5000 mm from the mouth 34. Further, the steam pipe 36 is provided with 15 nozzles 37 at a pitch of 350 mm. Among these plurality of nozzles 37, the first to seventh nozzles from the input port 34 side are provided so as to eject water vapor perpendicularly to the deposition surface of the sintering raw material. The 8th to 14th nozzles from the input port 34 side are provided so as to face the discharge port 35 side, and are inclined at 30 degrees toward the discharge port 35 side with respect to the perpendicular to the deposition surface of the sintering raw material. The nozzle closest to the discharge port 35 side is provided at an angle of 45° toward the discharge port 35 with respect to the perpendicular to the deposition surface of the sintering raw material. That is, among the plurality of nozzles 37, more than half of the nozzles are installed at an angle so that the steam jet direction faces the discharge port 35 side, and the steam jet direction of the remaining nozzles is perpendicular to the deposition surface of the sintering raw material. It is installed so that steam can be blown out.
 図5は、複数のノズルの位置を示すドラムミキサーの断面図である。ノズルの設置位置の効果を確認するため、図4に示したドラムミキサーであって、ノズルの位置を焼結原料62の堆積面からの垂直方向の距離が100mm、300mm、500mm、1500mmおよび2500mmとなるように蒸気配管を設けたドラムミキサーを製作し、当該ドラムミキサーを用いて蒸気吹き込み実験を実施した。 FIG. 5 is a cross-sectional view of the drum mixer showing the positions of multiple nozzles. In order to confirm the effect of the nozzle installation position, the drum mixer shown in FIG. A drum mixer equipped with steam piping was manufactured, and a steam injection experiment was conducted using the drum mixer.
 図6は、蒸気吹き込み実験の結果を示すグラフである。図6の横軸はドラムミキサー内の位置(m)であり、縦軸は焼結原料の温度(℃)である。図6において、焼結原料の温度は、横軸に示したドラムミキサー内の各位置における焼結原料の平均温度である。本実験(蒸気吹き込み実験)の条件は、何れの実験例(1~5)においても、蒸気吹込み量を7.5t/h、蒸気温度を170℃(蒸気配管の圧力:0.7MPa)、原料(焼結原料)投入量を730t/hとして、実験を行った。 FIG. 6 is a graph showing the results of the steam blowing experiment. The horizontal axis in FIG. 6 is the position (m) in the drum mixer, and the vertical axis is the temperature (° C.) of the sintering raw material. In FIG. 6, the temperature of the sintered raw material is the average temperature of the sintered raw material at each position within the drum mixer shown on the horizontal axis. The conditions for this experiment (steam injection experiment) were as follows: In all experimental examples (1 to 5), the steam injection amount was 7.5 t/h, the steam temperature was 170°C (steam piping pressure: 0.7 MPa), The experiment was conducted with a raw material (sintering raw material) input amount of 730 t/h.
 図6に示すように、焼結原料の堆積面からの垂直方向の距離が500mm未満の実験例1、2のドラムミキサーでは、投入口付近の温度は高くなるものの、その後、温度は低下していき、これらのドラムミキサーから排出される擬似粒子の温度は低くなった。一方、焼結原料の堆積面からの垂直方向の距離が500mm以上離れた実験例3、4、5のドラムミキサーでは、投入口付近の温度は低いもののその後の温度低下が抑制され、これらのドラムミキサーから排出される擬似粒子の温度は実験例1、2よりも高くなった。これらの結果から、焼結原料の堆積面から垂直方向に500mm以上離れた位置に複数のノズルを設け、当該ノズルから焼結原料に水蒸気を吹き込むことで、焼結原料の堆積面から垂直方向に500mm未満の位置に複数のノズルを設けた場合よりもドラムミキサーから排出される擬似粒子の温度が高められることが確認された。このように、本実施形態に係るドラムミキサーでは、蒸気を吹き込んで効率よく擬似粒子の温度を高めることができるので、吹き込む蒸気量が同じであるならばドラムミキサーから排出される擬似粒子の温度をより高めることができ、ドラムミキサーから排出される擬似粒子の温度が同じであるならば、水蒸気の吹き込み量をより少なくできることがわかる。 As shown in Figure 6, in the drum mixers of Experimental Examples 1 and 2 in which the vertical distance from the sintering raw material deposition surface was less than 500 mm, the temperature near the input port increased, but the temperature subsequently decreased. As a result, the temperature of the pseudo particles discharged from these drum mixers became lower. On the other hand, in the drum mixers of Experimental Examples 3, 4, and 5, in which the vertical distance from the sintering raw material deposition surface was 500 mm or more, although the temperature near the input port was low, the subsequent temperature drop was suppressed, and these drums The temperature of the pseudo particles discharged from the mixer was higher than in Experimental Examples 1 and 2. Based on these results, we found that by installing multiple nozzles at positions 500 mm or more vertically away from the sintering raw material deposition surface and blowing water vapor into the sintering raw material from the nozzles, the sintering raw material could be vertically It was confirmed that the temperature of the pseudo particles discharged from the drum mixer was higher than when a plurality of nozzles were provided at positions less than 500 mm apart. In this way, in the drum mixer according to this embodiment, the temperature of the pseudo particles can be efficiently increased by blowing steam, so if the amount of steam blown is the same, the temperature of the pseudo particles discharged from the drum mixer can be increased. It can be seen that if the temperature of the pseudo particles discharged from the drum mixer is the same, the amount of water vapor blown can be reduced.
 一方、ドラムミキサーから排出される擬似粒子の水分量も重要である。ドラムミキサーから排出される擬似粒子の水分量が目標水分量(6.5質量%)未満になると、焼結原料の造粒が進行せず、造粒後の擬似粒子の粒径が小さくなる。このように擬似粒子の粒径が小さくなると、当該粒径の小さい擬似粒子によって形成される装入層の通気性が悪化して焼結鉱の生産率が低下する。 On the other hand, the moisture content of the pseudo particles discharged from the drum mixer is also important. When the water content of the pseudo particles discharged from the drum mixer becomes less than the target water content (6.5% by mass), granulation of the sintering raw material does not proceed, and the particle size of the pseudo particles after granulation becomes small. When the particle size of the pseudo-particles becomes small in this way, the permeability of the charging layer formed by the pseudo-particles with the small particle size deteriorates, and the production rate of sintered ore decreases.
 図7は、蒸気配管を示す模式図である。図7においても、複数のノズルを各ノズルから噴出される水蒸気の噴出方向を示す矢印で示している。図7(a)は、噴出される水蒸気の噴出方向が鉛直下方になるように複数のノズルが設けられた実験例11の蒸気配管である。図7(b)は、複数のノズルのうち、投入口側から1~7番目のノズルから噴出される水蒸気の噴出方向が鉛直下方になるように設けられ、投入口側から8~14番目のノズルから噴出される水蒸気の噴出方向が鉛直下方に対して排出口側に30°傾斜させて設けられ、最も排出口側に近いノズルから噴出される水蒸気の噴出方向が鉛直下方に対して排出口側に45°傾斜させて設けられた実験例12の蒸気配管である。図7(c)は、複数のノズルのうち、投入口側から1~7番目のノズルから噴出される水蒸気の噴出方向が鉛直下方に対して排出口側に30°傾斜させて設けられ、投入口側から8~14番目のノズルから噴出される水蒸気の噴出方向が鉛直下方に対して排出口側に45°傾斜させて設けられ、最も排出口側に近いノズルから噴出される水蒸気の噴出方向が鉛直下方に対して排出口側に60°傾斜させて設けられた実験例13の蒸気配管である。これらの蒸気配管を焼結原料の堆積面から垂直方向に1500mm離れた位置から水蒸気が吹き込まれるように設置したドラムミキサーを用いて、水蒸気吹き込み実験を実施した。 FIG. 7 is a schematic diagram showing steam piping. In FIG. 7 as well, a plurality of nozzles are indicated by arrows indicating the direction of water vapor ejected from each nozzle. FIG. 7A shows the steam piping of Experimental Example 11 in which a plurality of nozzles were provided so that the direction of the ejected water vapor was vertically downward. In FIG. 7(b), among a plurality of nozzles, the 1st to 7th nozzles from the input port side are installed so that the direction of water vapor ejected is vertically downward, and the 8th to 14th nozzles from the input port side are The jetting direction of the water vapor spouted from the nozzle is inclined at 30 degrees toward the exhaust port with respect to the vertically downward direction, and the jetting direction of the steam spouting from the nozzle closest to the discharge port side is set to the vertically downward direction toward the discharge port. This is the steam piping of Experimental Example 12, which was installed at an angle of 45 degrees to the side. In Fig. 7(c), the jetting direction of water vapor ejected from the first to seventh nozzles from the input port side is inclined by 30 degrees toward the discharge port side with respect to the vertical downward direction. The direction of water vapor ejected from the 8th to 14th nozzles from the mouth side is inclined at 45 degrees toward the outlet side with respect to the vertical downward direction, and the direction of the water vapor ejected from the nozzle closest to the outlet side. is the steam piping of Experimental Example 13, which was provided at an angle of 60° toward the discharge port with respect to the vertically downward direction. A steam injection experiment was conducted using a drum mixer in which these steam pipes were installed so that steam was blown in from a position 1500 mm away from the deposition surface of the sintering raw material in the vertical direction.
 図8は、蒸気吹き込み実験の結果を示すグラフである。図8の横軸はドラムミキサー内の位置(m)であり、縦軸は焼結原料の水分量(質量%)であり、横軸に示したドラムミキサー内の各位置における焼結原料の平均水分量を示す。 FIG. 8 is a graph showing the results of the steam blowing experiment. The horizontal axis in Figure 8 is the position (m) in the drum mixer, the vertical axis is the moisture content (mass%) of the sintered raw material, and the average of the sintered raw material at each position in the drum mixer shown on the horizontal axis. Indicates moisture content.
 図8に示すように、実験例12、13の蒸気配管が設けられたドラムミキサーで造粒された擬似粒子の水分量は、実験例11の蒸気配管が設けられたドラムミキサーで造粒された擬似粒子の水分量より多くなった。これらの結果から、ノズルの位置が排出口に近づくに従って、噴出される水蒸気の噴出方向がより排出口側を向くように大きく傾けて設けられることが好ましいことがわかる。また、実験例12よりも実験例13の方が擬似粒子の水分量が多くなったことから、複数のノズルのうち、その半数以上のノズルの蒸気噴出方向が排出口を向くように傾けて設けられることが好ましく、その全てをノズルの蒸気噴出方向が排出口側を向くように傾けて設けられることがより好ましいことがわかる。なお、それぞれのノズルからの蒸気吹込み量は同じであるので、全水蒸気吹込み量のうち半分以上の水蒸気の噴出方向が排出口側を向くように傾けて、水蒸気を焼結原料に吹き込むことが好ましく、全ての水蒸気の噴出方向が排出口側を向くように傾けて、水蒸気を焼結原料に吹き込むことがより好ましいといえる。 As shown in FIG. 8, the water content of the pseudo particles granulated with the drum mixer equipped with steam piping of Experimental Examples 12 and 13 is lower than that of the pseudo particles granulated with the drum mixer equipped with the steam piping of Experimental Example 11. The water content was higher than that of the pseudo particles. From these results, it can be seen that it is preferable that the nozzle be provided with a larger inclination so that as the position of the nozzle approaches the outlet, the direction of the ejected water vapor is directed more toward the outlet. In addition, since the moisture content of the pseudo particles was higher in Experimental Example 13 than in Experimental Example 12, we installed the nozzles at an angle so that the steam jet direction of more than half of the nozzles faced the exhaust port. It can be seen that it is preferable that all the nozzles are provided at an angle so that the steam jetting direction of the nozzle faces the discharge port side. Note that since the amount of steam blown from each nozzle is the same, the steam should be blown into the sintering raw material by tilting the nozzle so that more than half of the total amount of steam blown is directed toward the discharge port. is preferable, and it is more preferable to blow the water vapor into the sintering raw material by tilting so that all the water vapor jets are directed toward the discharge port.
 以上、説明したように本実施形態に係る造粒装置であるドラムミキサー32は、焼結原料に蒸気を吹き込み、効率的に加熱できる。このため、蒸気使用量が同じであるならば、擬似粒子をより高温に加熱でき、排出口出側の温度が同じであるならば、より少ない蒸気使用量で擬似粒子を加熱できる。このように、本実施形態に係る造粒装置を用いることで焼結原料を所定温度に加熱しつつ焼結鉱製造時に使用する蒸気量を削減できるので、本焼結鉱の生産率の向上と焼結鉱の製造コスト上昇の抑制とが実現できる。 As described above, the drum mixer 32, which is the granulation device according to the present embodiment, can blow steam into the sintering raw material and heat it efficiently. Therefore, if the amount of steam used is the same, the pseudo particles can be heated to a higher temperature, and if the temperature on the outlet side is the same, the pseudo particles can be heated with a smaller amount of steam used. As described above, by using the granulation device according to the present embodiment, it is possible to reduce the amount of steam used during the production of sintered ore while heating the sintered raw material to a predetermined temperature, thereby improving the production rate of the sintered ore. It is possible to suppress an increase in the manufacturing cost of sintered ore.
10 焼結鉱製造設備
11 ヤード
12 鉄含有原料
14 搬送コンベア
16 CaO含有原料
17 MgO含有原料
18 凝結材
20 原料供給部
22 配合槽
24 配合槽
26 配合槽
28 配合槽
30 搬送コンベア
32 ドラムミキサー
33 ドラム
34 投入口
35 排出口
36 蒸気配管
37 ノズル
38 水蒸気
39 搬送コンベア
40 焼結機
42 焼結原料供給装置
44 パレット台車
46 点火炉
48 ウインドボックス
50 破砕機
52 冷却機
54 篩分け装置
56 成品焼結鉱
58 返鉱
60 搬送コンベア
62 焼結原料
 

 
10 Sintered ore production equipment 11 Yard 12 Iron-containing raw material 14 Conveyor 16 CaO-containing raw material 17 MgO-containing raw material 18 Coagulating material 20 Raw material supply section 22 Blending tank 24 Blending tank 26 Blending tank 28 Blending tank 30 Conveyor 32 Drum mixer 33 Drum 34 Input port 35 Discharge port 36 Steam pipe 37 Nozzle 38 Steam 39 Conveyor 40 Sintering machine 42 Sintering raw material supply device 44 Pallet truck 46 Ignition furnace 48 Wind box 50 Crusher 52 Cooler 54 Sieving device 56 Finished sintered ore 58 Return ore 60 Conveyor 62 Sintering raw material

Claims (6)

  1.  鉄含有原料、CaO含有原料および凝結材を含む焼結原料を造粒する造粒装置であって、
     前記焼結原料が投入される投入口と、造粒された焼結原料が排出される排出口と、が設けられ、横方向を回転軸として回転する筒状のドラムと、
     前記ドラム内であって、前記投入口から前記投入口と前記排出口との中間位置までの間の前半部分のみに設けられる蒸気配管と、
     前記蒸気配管に接続され、前記焼結原料の堆積面に蒸気を噴出させる複数のノズルと、を有し、
     前記複数のノズルは、前記焼結原料の堆積面から500mm以上離れて設けられる、造粒装置。
    A granulation device for granulating a sintering raw material containing an iron-containing raw material, a CaO-containing raw material, and a coagulating material,
    a cylindrical drum that is provided with an inlet into which the sintering raw material is input and an outlet through which the granulated sintering raw material is discharged, and which rotates with a horizontal direction as an axis of rotation;
    a steam pipe provided only in the first half of the drum between the input port and an intermediate position between the input port and the discharge port;
    a plurality of nozzles that are connected to the steam piping and eject steam onto the deposition surface of the sintering raw material;
    The plurality of nozzles are provided at a distance of 500 mm or more from a deposition surface of the sintering raw material.
  2.  前記複数のノズルのうち、半数以上のノズルの蒸気噴出方向が前記排出口側を向くように傾けて設けられ、残りのノズルの蒸気噴出方向が前記焼結原料の堆積面に対して垂直に蒸気を噴出されるように設けられる、請求項1に記載の造粒装置。 Among the plurality of nozzles, more than half of the nozzles are installed so that the steam jet direction is inclined toward the discharge port, and the steam jet direction of the remaining nozzles is perpendicular to the deposition surface of the sintering raw material. The granulation device according to claim 1, wherein the granulation device is installed so as to eject the granulation device.
  3.  前記複数のノズルの蒸気噴出方向は、ノズルの位置が前記排出口に近づくに従って大きく前記排出口側を向くように傾けて設けられる、請求項1または請求項2に記載の造粒装置。 The granulation device according to claim 1 or 2, wherein the steam ejection direction of the plurality of nozzles is tilted so that the position of the nozzle increases toward the discharge port as the position of the nozzle approaches the discharge port.
  4.  造粒装置を用いて、鉄含有原料、CaO含有原料および凝結材を含む焼結原料を造粒する造粒焼結原料の製造方法であって、
     前記造粒装置は前記焼結原料が投入される投入口と、造粒された焼結原料が排出される排出口と、が設けられ、横方向を回転軸として回転する筒状のドラムを有し、
     前記ドラム内であって、前記投入口から前記投入口と前記排出口との中間位置までの間の前半部分で前記焼結原料の堆積面から500mm以上離れた位置から前記焼結原料に蒸気を吹き込んで、前記蒸気を吹き込まないで造粒した造粒焼結原料よりも10℃以上高い造粒焼結原料とする、造粒焼結原料の製造方法。
    A method for producing a granulated sintered raw material, comprising granulating a sintered raw material containing an iron-containing raw material, a CaO-containing raw material, and a coagulating material using a granulating device, the method comprising:
    The granulation device has a cylindrical drum that is provided with an input port into which the sintering raw material is input, and a discharge port through which the granulated sintering raw material is discharged, and which rotates with a horizontal direction as an axis of rotation. death,
    Steam is applied to the sintering raw material from a position 500 mm or more away from the deposition surface of the sintering raw material in the first half of the drum between the input port and the intermediate position between the input port and the discharge port. A method for producing a granulated sintered raw material by blowing the steam into the granulated sintered raw material to obtain a granulated sintered raw material that is 10° C. or more higher than a granulated sintered raw material that is granulated without blowing the steam.
  5.  前記焼結原料に吹き込まれる全蒸気量のうち、半分以上の蒸気の噴出方向が前記排出口側を向くように傾けて吹き込まれる、請求項4に記載の造粒焼結原料の製造方法。 The method for producing a granulated sintered raw material according to claim 4, wherein of the total amount of steam blown into the sintered raw material, half or more of the steam is blown in such a manner that the jetting direction of the steam is angled toward the discharge port.
  6.  請求項4または請求項5に記載の造粒焼結原料の製造方法を用いて造粒された造粒焼結原料を焼結機で焼結して焼結鉱を製造する、焼結鉱の製造方法。
     

     
    A sintered ore produced by sintering a granulated sintered raw material granulated using the method for producing a granulated sintered raw material according to claim 4 or 5 in a sintering machine. Production method.


PCT/JP2023/015186 2022-04-28 2023-04-14 Granulation device, method for producing granulation sintering raw material, and method for producing sintered ore WO2023210411A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023546185A JPWO2023210411A1 (en) 2022-04-28 2023-04-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-073925 2022-04-28
JP2022073925 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210411A1 true WO2023210411A1 (en) 2023-11-02

Family

ID=88518547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015186 WO2023210411A1 (en) 2022-04-28 2023-04-14 Granulation device, method for producing granulation sintering raw material, and method for producing sintered ore

Country Status (3)

Country Link
JP (1) JPWO2023210411A1 (en)
TW (1) TW202346607A (en)
WO (1) WO2023210411A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172903A (en) * 2015-03-17 2016-09-29 株式会社神戸製鋼所 Method for producing raw material for sintered ore production
WO2019167888A1 (en) * 2018-02-28 2019-09-06 Jfeスチール株式会社 Method for manufacturing granular sintered raw material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172903A (en) * 2015-03-17 2016-09-29 株式会社神戸製鋼所 Method for producing raw material for sintered ore production
WO2019167888A1 (en) * 2018-02-28 2019-09-06 Jfeスチール株式会社 Method for manufacturing granular sintered raw material

Also Published As

Publication number Publication date
JPWO2023210411A1 (en) 2023-11-02
TW202346607A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP2010132946A (en) Sintering machine
KR101824111B1 (en) Raw material treatment apparatus and method for raw material treatment using the same
JP6686974B2 (en) Sintered ore manufacturing method
WO2023210411A1 (en) Granulation device, method for producing granulation sintering raw material, and method for producing sintered ore
KR20150059784A (en) Oxygen-gas fuel supply device for sintering machine
EP3892744B1 (en) Sintered ore manufacturing method
RU2655423C1 (en) Rotary hearth furnace
CN108779960A (en) Agglomerating plant and sintering method
JP5439981B2 (en) Method for producing sintered ore
WO2023210412A1 (en) Granulation device, method for producing granulated sintering starting material, and method for producing sintered ore
JP6734370B2 (en) Raw material processing apparatus and raw material processing method
US20200102627A1 (en) Method of operating a sinter plant
JP5581582B2 (en) Sintering machine
US7402191B2 (en) Process for producing sintering feedstock and apparatus therefor
JP2018536837A (en) Raw material charging apparatus and method
CN103038368A (en) Method for producing starting material for sintering
KR101149156B1 (en) Method of producing sintered ore
JP7227053B2 (en) Method for producing sintered ore
JP2020139173A (en) Method for producing sintered ore
JP2004197141A (en) Method and device for pseudo granulation of raw material for sintering
EP2862949B1 (en) Method for manufacturing sintered ore
JP5803454B2 (en) Oxygen-gas fuel supply device for sintering machine
JP5831694B2 (en) Sintering machine
JP2010126774A (en) Method for manufacturing sintered ore
JP2014047358A (en) Gas fuel feeding method to sintering machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023546185

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796154

Country of ref document: EP

Kind code of ref document: A1