JP2020139173A - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP2020139173A
JP2020139173A JP2019033179A JP2019033179A JP2020139173A JP 2020139173 A JP2020139173 A JP 2020139173A JP 2019033179 A JP2019033179 A JP 2019033179A JP 2019033179 A JP2019033179 A JP 2019033179A JP 2020139173 A JP2020139173 A JP 2020139173A
Authority
JP
Japan
Prior art keywords
sinter
iron ore
raw material
sintering
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019033179A
Other languages
Japanese (ja)
Other versions
JP6988844B2 (en
Inventor
健太 竹原
Kenta Takehara
健太 竹原
隆英 樋口
Takahide Higuchi
隆英 樋口
一洋 岩瀬
Kazuhiro Iwase
一洋 岩瀬
頌平 藤原
Shohei Fujiwara
頌平 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019033179A priority Critical patent/JP6988844B2/en
Publication of JP2020139173A publication Critical patent/JP2020139173A/en
Application granted granted Critical
Publication of JP6988844B2 publication Critical patent/JP6988844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method for producing sintered ores, in the case where fine powder iron ores having a grain size of 150 μm or lower are used as a sintering raw material, capable of promoting sintering reaction in a sintering machine, suppressing the collapse of pseudo grains, and suppressing reduction in the productivity of sintered ores.SOLUTION: A method for producing sintered ores has a process where a sintering raw material containing iron ores and a carbonaceous material is charged onto a pallet circulatively moving at a raw material ore feed part in a sintering machine to form a charge layer, thereafter, ignition is performed to the carbonaceous material at the upper surface of a charge layer by an ignition furnace arranged at the lower part of the pallet, a gas at the upper part of the charge layer is sucked by a wind box arranged at the lower part of the pallet, the gas is introduced into the charge layer, and the carbonaceous material in the charge layer is burnt to produce sintered ores, in which the iron ores contain fine powder ores having a grain size of 150 μm or lower by above 10 mass%, a part of the fine powder iron ores is made into a molded part and is mixed into the sintering raw material, and the oxygen concentration of the gas introduced into the charge layer is made higher than 23 vol.%.SELECTED DRAWING: Figure 5

Description

本発明は、下方吸引式の焼結機を用いて焼結される焼結鉱の製造方法に関する。 The present invention relates to a method for producing a sinter that is sintered using a downward suction type sinter.

高炉製銑法の主原料である焼結鉱は、一般に、図1に示すような、下方吸引式のドワイトロイド焼結機を有する製造工程で製造される。焼結鉱の原料は、粉鉄鉱石(一般に、8mm以下のシンターフィードと呼ばれているもの)や焼結鉱篩下粉、製鉄所内で発生した回収粉、石灰石およびドロマイトなどの含CaO系副原料、生石灰等の造粒助剤、コークス粉や無煙炭などの炭材(凝結材)である。これらの原料は、複数のホッパー1の各々から、コンベヤ上に所定の割合で切り出される。切り出された原料は、ドラムミキサー2、3によって適量の水が加えられ、混合、造粒されて、平均径が3〜6mmの擬似粒子である焼結原料にされる。 Sintered ore, which is the main raw material of the blast furnace ironmaking method, is generally produced in a manufacturing process having a downward suction type dwightroid sintering machine as shown in FIG. The raw materials for sinter are iron powder (generally called sinter feed of 8 mm or less), sinter sinter powder, recovered powder generated in the iron mill, limestone, dolomite, and other CaO-containing secondary substances. Raw materials, granulation aids such as quicklime, and charcoal materials (coagulants) such as coke powder and smokeless charcoal. These raw materials are cut out from each of the plurality of hoppers 1 on a conveyor at a predetermined ratio. An appropriate amount of water is added to the cut raw material by the drum mixers 2 and 3, and the cut raw material is mixed and granulated to be a sintered raw material which is a pseudo particle having an average diameter of 3 to 6 mm.

この焼結原料は、その後、焼結機の原料給鉱部に配設されているサージホッパー5からドラムフィーダー6と切り出しシュート7を介して循環移動するパレット9に装入され、カットゲート8によって400〜800mmの厚さの焼結ベッドともいわれる装入層10が形成される。その後、装入層10の上方に配設された点火炉11によって、装入層10の上表面の炭材が点火されるとともに、パレット9の下方に配設されたウインドボックス12を介して装入層10の上方のガスを下方に吸引することにより、装入層10内の炭材を順次燃焼させ、このときに発生する燃焼熱で焼結原料を溶融させて焼結ケーキを得る。このようにして得た焼結ケーキは、その後、排鉱部で破砕、冷却、整粒されて、約5mm以上の塊成物が成品焼結鉱として回収され高炉に供給される。 The sintered raw material is then charged into a pallet 9 that circulates from the surge hopper 5 arranged in the raw material supply section of the sintering machine via the drum feeder 6 and the cutting chute 7, and is charged by the cut gate 8. A charging layer 10 also called a sintered bed having a thickness of 400 to 800 mm is formed. After that, the carbonaceous material on the upper surface of the charging layer 10 is ignited by the ignition furnace 11 arranged above the charging layer 10, and the carbon material on the upper surface of the charging layer 10 is charged via the windbox 12 arranged below the pallet 9. By sucking the gas above the filling layer 10 downward, the carbonaceous material in the charging layer 10 is sequentially burned, and the sintering raw material is melted by the combustion heat generated at this time to obtain a sintered cake. The sintered cake thus obtained is then crushed, cooled, and sized at the sinter, and agglomerates of about 5 mm or more are recovered as adult sinter and supplied to the blast furnace.

上記製造工程において、点火炉11によって点火された装入層10内の炭材は、その後、装入層10内を上層から下層に向かって吸引されるガスによって燃焼を続け、パレット9が下流側に移動するのに伴って次第に装入層10の上層から下層に移行し、厚さ方向に幅をもった燃焼・溶融帯(以降、単に「燃焼帯」ともいう。)を形成する。図2は、点火炉で点火された装入層10の表層の炭材が、吸引されるガスによって燃焼を続けて燃焼帯を形成し、これが装入層10の上層から下層に順次移動し、燃焼帯が通過した後には、焼結反応が完了した焼結層(焼結ケーキ)が形成されていく過程を模式的に示した図である。 In the above manufacturing process, the carbonaceous material in the charging layer 10 ignited by the ignition furnace 11 continues to be burned by the gas sucked from the upper layer to the lower layer in the charging layer 10, and the pallet 9 is on the downstream side. It gradually shifts from the upper layer to the lower layer of the charging layer 10 as it moves to, and forms a combustion / melting zone (hereinafter, also simply referred to as “combustion zone”) having a width in the thickness direction. In FIG. 2, the carbonaceous material on the surface of the charging layer 10 ignited by the ignition furnace continues to burn by the sucked gas to form a combustion zone, which sequentially moves from the upper layer to the lower layer of the charging layer 10. It is the figure which showed typically the process of forming the sintered layer (sintered cake) which completed the sintering reaction after passing through a combustion zone.

上記燃焼帯の溶融部分は、吸引されるガスの流れを阻害するため、焼結時間が延長して生産性が低下する要因となる。また、燃焼帯が上層から下層に移行するのにともない、焼結原料中に含まれる水分は、炭材の燃焼熱で気化して、まだ温度が上昇していない下層の焼結原料中に濃縮し、湿潤帯を形成する。この水分濃度がある程度以上になると、吸引ガスの流路となる焼結原料の粒子間の空隙が水分で埋まり、燃焼帯と同様、通気抵抗を増大させる要因となる。図3は、厚さが600mmの装入層10の中を移動する燃焼帯が、装入層10内のパレット上約400mmの位置(装入層10の表面から200mm下)にあるときの、装入層10内の圧力損失(以下、圧損と記載する)と温度の分布を示したものであり、このときの圧損の分布は、湿潤帯におけるものが約30%、燃焼帯におけるものが約40%であることを示している。 Since the molten portion of the combustion zone obstructs the flow of the sucked gas, the sintering time is extended and the productivity is lowered. In addition, as the combustion zone shifts from the upper layer to the lower layer, the water contained in the sintered raw material is vaporized by the combustion heat of the carbonaceous material and concentrated in the sintered raw material of the lower layer whose temperature has not yet risen. And form a wet zone. When this water concentration exceeds a certain level, the voids between the particles of the sintered raw material, which are the flow paths of the suction gas, are filled with water, which causes an increase in airflow resistance as in the combustion zone. FIG. 3 shows a combustion zone moving in the charging layer 10 having a thickness of 600 mm at a position of about 400 mm on the pallet in the charging layer 10 (200 mm below the surface of the charging layer 10). The distribution of pressure loss (hereinafter referred to as pressure loss) and temperature in the charging layer 10 is shown. The distribution of pressure loss at this time is about 30% in the wet zone and about 30% in the combustion zone. It shows that it is 40%.

焼結機の生産量(t/h)は、一般に、生産率(t/(h×m))×焼結機面積(m)により決定される。即ち、焼結機の生産量は、焼結機の仕様(機幅、機長)、装入層10の厚さ、焼結原料の嵩密度、焼結(燃焼)時間、成品焼結鉱の歩留などにより決定される。したがって、焼結鉱の生産量を増加させるには、装入層10の厚さを増す、装入層10の通気性(圧損)を改善して焼結時間を短縮する、成品焼結鉱の強度を高めて歩留を向上することが有効であると考えられる。 The production amount (t / h) of the sintering machine is generally determined by the production rate (t / (h × m 2 )) × the area of the sintering machine (m 2 ). That is, the production volume of the sinter is the specifications of the sinter (machine width, machine length), the thickness of the charging layer 10, the bulk density of the sinter raw material, the sinter (burning) time, and the steps of the product sintered ore. It is decided by retaining. Therefore, in order to increase the production amount of the sinter, the thickness of the charging layer 10 is increased, the air permeability (pressure loss) of the charging layer 10 is improved, and the sintering time is shortened. It is considered effective to increase the strength and improve the yield.

ところで、焼結用粉鉄鉱石は、近年、高品質鉄鉱石の枯渇によって低品位化している。高品質鉄鉱石の低品位化は、スラグ成分の増加や鉄鉱石のさらなる微粉化を招き、アルミナ(Al)含有量の増大や微粉比率の増大によって造粒性が低下する傾向となっている。その一方で、高炉では溶銑製造コストの低減やCO発生量の低減という観点から低スラグ比が求められており、それに伴い焼結鉱としては、高被還元性かつ高強度のものが求められている。 By the way, the powdered iron ore for sintering has been deteriorated in quality in recent years due to the depletion of high quality iron ore. Lowering the grade of high-quality iron ore leads to an increase in the slag component and further pulverization of the iron ore, and the granulation property tends to decrease due to the increase in the alumina (Al 2 O 3 ) content and the increase in the fine powder ratio. ing. On the other hand, in blast furnaces, a low slag ratio is required from the viewpoint of reducing the cost of producing hot metal and reducing the amount of CO 2 generated, and accordingly, the sinter is required to have high reducibility and high strength. ing.

このような焼結用粉鉄鉱石を取り巻く環境の中で、スラグ成分の少ない難造粒性の微粉鉄鉱石(粒径150μm以下)を主体とするペレットフィードを使って、高品質の焼結鉱を製造するための技術が提案されている。例えば、こうした従来技術の1つに、Hybrid Pelletized Sinter法(以下、「HPS法」と記載する)がある。この技術は、ペレットフィードのような微粉を多量に含む鉄鉱石や造粒助剤、凝結材等をドラムミキサーとペレタイザーを使って造粒することで、低スラグ成分で高被還元性の焼結鉱を製造する技術が特許文献1〜5に開示されている。 In such an environment surrounding sintering pulverized iron ore, high quality sintered ore is used by using a pellet feed mainly composed of difficult-to-granular fine iron ore (particle size 150 μm or less) with a small amount of slag. Techniques for manufacturing have been proposed. For example, one of such conventional techniques is the Hybrid Pelletized Sinter method (hereinafter, referred to as “HPS method”). This technology uses a drum mixer and a pelletizer to granulate iron ore containing a large amount of fine powder such as pellet feed, granulation aids, coagulants, etc., resulting in low slag component and high reducibility sintering. Techniques for producing ore are disclosed in Patent Documents 1-5.

また、特許文献6には、多段点火焼結法で焼結鉱を製造する方法であって、点火炉の下流側で装入層内に酸素を富化した空気を導入する方法が開示されている。 Further, Patent Document 6 discloses a method for producing sinter by a multi-stage ignition sintering method, in which oxygen-enriched air is introduced into a charging layer on the downstream side of an ignition furnace. There is.

特公平2−4658号公報Tokuhei No. 2-4658 特公平6−21297号公報Special Fair 6-21297 Gazette 特公平6−21298号公報Special Fair 6-21298 特公平6−21299号公報Special Fair 6-21299 Gazette 特公平6−60358号公報Special Fair 6-60358 Gazette 特開2015−157980号公報Japanese Unexamined Patent Publication No. 2015-157980

しかしながら、特許文献1〜5に記載されているようなHPS法を用いてペレットフィードを造粒する方法では、造粒中に0.5mm未満の細粒のみならず、10mm超の粗大な粒子も多く生成される。細粒になるほど比表面積は大きくなるので、微粉であるペレットフィードは水分を優先的に吸収し、微粉が単に凝集しただけにすぎない擬似粒子や、核粒子のまわりに微粉が付着した形態の粒径の不揃いな粗大な擬似粒子になる。 However, in the method of granulating the pellet feed using the HPS method as described in Patent Documents 1 to 5, not only fine particles of less than 0.5 mm but also coarse particles of more than 10 mm are produced during granulation. Many are generated. Since the specific surface area becomes larger as the particles become finer, the pellet feed, which is a fine powder, preferentially absorbs water, and the pseudo particles in which the fine powder merely aggregates, or the particles in the form in which the fine powder adheres around the nuclear particles. It becomes coarse pseudo-particles with irregular diameters.

このようにペレットフィード等の粒径が150μm以下である微粉鉄鉱石を多く含む配合原料は、これを造粒すると、粒径が不揃いになると共に、微粉が単に凝集したにすぎない粗大な擬似粒子が生成される。このような粗大な擬似粒子は結合強度が弱いので、焼結機のパレット上に一定の層厚で堆積させると、荷重(圧縮力)が加わったときに崩壊し、当該擬似粒子が粉化して装入層の空隙率の低下を招く。これにより、装入層の通気性は悪化し、焼結原料の燃焼が阻害される。この結果、焼結鉱の焼結時間が長くなり、焼結鉱の生産性が低下する。また、焼結時間を同じとした場合には、焼結が不十分となり、焼結鉱の歩留低下を招き、この場合においても焼結鉱の生産性が低下する。 As described above, when the compounding raw material containing a large amount of fine iron ore having a particle size of 150 μm or less, such as pellet feed, is granulated, the particle size becomes uneven and the fine particles are merely aggregated coarse pseudo-particles. Is generated. Since such coarse pseudo-particles have weak bond strength, if they are deposited on the pallet of the sintering machine with a certain layer thickness, they will collapse when a load (compressive force) is applied, and the pseudo-particles will be pulverized. It causes a decrease in the porosity of the charge layer. As a result, the air permeability of the charging layer deteriorates, and the combustion of the sintered raw material is hindered. As a result, the sinter time of the sinter becomes long, and the productivity of the sinter becomes low. Further, when the sintering time is the same, the sintering becomes insufficient and the yield of the sinter is lowered, and the productivity of the sinter is also lowered in this case.

また、特許文献6に記載されているような多段点火焼結法においても、ペレットフィード等の粒径が150μm以下である微粉鉄鉱石を用いると、造粒中に微粉が単に凝集しただけにすぎない粗大な擬似粒子が生成されるので焼結鉱の生産性は低下する。 Further, even in the multi-stage ignition sintering method as described in Patent Document 6, when fine iron ore having a particle size of 150 μm or less such as pellet feed is used, the fine powder merely aggregates during granulation. The productivity of sinter is reduced because no coarse pseudo-particles are produced.

本発明は、上記課題を鑑みてなされたものであり、その目的は、粒径が150μm以下である微粉鉄鉱石を焼結原料として使用する場合において、焼結機での焼結反応を促進し、擬似粒子の崩壊を抑制して、焼結鉱の生産性の低下を抑制できる焼結鉱の製造方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to promote a sintering reaction in a sintering machine when fine iron ore having a particle size of 150 μm or less is used as a sintering raw material. It is an object of the present invention to provide a method for producing a sinter which can suppress the collapse of pseudo-particles and suppress a decrease in the productivity of the sinter.

このような課題を解決する本発明の特徴は、以下の通りである。
(1)焼結機の原料給鉱部で循環移動するパレット上に鉄鉱石と炭材とを含む焼結原料を装入して装入層を形成した後、前記原料給鉱部の下流側に配設した点火炉で前記装入層の上表面の炭材に点火し、パレット下方に配設したウインドボックスで前記装入層の上方のガスを吸引し、前記ガスを前記装入層に導入して前記装入層の炭材を燃焼させることにより焼結鉱を製造する焼結鉱の製造方法であって、前記鉄鉱石は、粒径が150μm以下である微粉鉄鉱石を10質量%より多く含み、前記微粉鉄鉱石の一部を成型物にして前記焼結原料に混合し、前記装入層に導入する前記ガスの酸素濃度を23体積%より高くする、焼結鉱の製造方法。
(2)前記微粉鉄鉱石の50質量%以上を成型物にして前記焼結原料に混合する、(1)に記載の焼結鉱の製造方法。
(3)前記鉄鉱石は、粒径が150μm以下である微粉鉄鉱石を15質量%以上含む、(1)または(2)に記載の焼結鉱の製造方法。
(4)前記装入層に導入する前記ガスの酸素濃度を24体積%以上にする、(1)から(3)の何れか1つに記載の焼結鉱の製造方法。
The features of the present invention that solve such a problem are as follows.
(1) After the sintering raw material containing iron ore and carbonaceous material is charged onto a pallet that circulates in the raw material supply section of the sintering machine to form a charging layer, the downstream side of the raw material supply section. The carbonaceous material on the upper surface of the charging layer is ignited by the ignition furnace arranged in the above, the gas above the charging layer is sucked by the wind box arranged below the pallet, and the gas is transferred to the charging layer. It is a method for producing sinter by introducing and burning the carbonaceous material of the charging layer, and the iron ore is 10% by mass of fine iron ore having a particle size of 150 μm or less. A method for producing sinter, which contains a larger amount of the fine iron ore and mixes it with the sinter raw material as a molded product to increase the oxygen concentration of the gas to be introduced into the charging layer to more than 23% by volume. ..
(2) The method for producing a sinter according to (1), wherein 50% by mass or more of the fine iron ore is made into a molded product and mixed with the sinter raw material.
(3) The method for producing a sinter according to (1) or (2), wherein the iron ore contains 15% by mass or more of fine iron ore having a particle size of 150 μm or less.
(4) The method for producing a sinter according to any one of (1) to (3), wherein the oxygen concentration of the gas introduced into the charging layer is 24% by volume or more.

本発明の焼結鉱の製造方法を実施することにより、結合強度の高い疑似粒子にできるとともに装入層内の炭材の燃焼性を改善できる。擬似粒子の結合強度の向上と炭材の燃焼性の改善により、微粉鉄鉱石が凝集した擬似粒子が崩壊する前に当該擬似粒子の表面を焼結できる。これにより、粒径が150μm以下である微粉鉄鉱石を10質量%より多く含有する鉄鉱石を焼結原料として使用した場合であっても、擬似粒子の粉化による通気性の悪化を抑制することができ、焼結時間の延長による焼結鉱の生産性の低下を抑制できる。また、本発明の焼結鉱の製造方法は、従来の焼結機を用いることができるので、簡便な設備を用いながら、粒径が150μm以下である微粉鉄鉱石を10質量%より多く含有する鉄鉱石を含む焼結原料から、焼結鉱の生産性を低下させることなく焼結鉱を製造できる。 By implementing the method for producing a sinter of the present invention, pseudo-particles having high bonding strength can be produced and the flammability of the carbonaceous material in the charging layer can be improved. By improving the bonding strength of the pseudo-particles and improving the flammability of the carbonaceous material, the surface of the pseudo-particles can be sintered before the pseudo-particles in which fine iron ore is aggregated collapse. As a result, even when iron ore containing more than 10% by mass of fine iron ore having a particle size of 150 μm or less is used as the sintering raw material, deterioration of air permeability due to pulverization of pseudo particles can be suppressed. It is possible to suppress a decrease in the productivity of sinter due to the extension of the sinter time. Further, since the conventional sinter machine can be used in the method for producing the sinter of the present invention, it contains more than 10% by mass of fine iron ore having a particle size of 150 μm or less while using simple equipment. Sintered ore can be produced from a sintered raw material containing iron ore without reducing the productivity of the sinter.

焼結鉱の製造方法を説明する図である。It is a figure explaining the manufacturing method of a sinter. 焼結層が形成されていく過程を模式的に示した図である。It is a figure which showed typically the process of forming a sintered layer. 焼結途中における原料装入層内の圧力損失と温度の分布を模式的に示した図である。It is the figure which showed typically the pressure loss and temperature distribution in the raw material charge layer in the middle of sintering. ペレットフィードの有無における擬似粒子の粒度分布の差を示すグラフである。It is a graph which shows the difference of the particle size distribution of pseudo-particles with and without pellet feed. 本実施形態に係る焼結鉱の製造方法が適用できる焼結鉱の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the sinter to which the manufacturing method of the sinter which concerns on this Embodiment can be applied. 粒径150μm以下の微粉比率と焼結鉱の生産率との関係を示すグラフである。It is a graph which shows the relationship between the fine powder ratio of a particle diameter of 150 μm or less, and the production rate of a sinter. 酸素濃度を24体積%に増加した場合の粒径150μm以下の微粉比率と焼結鉱の生産率改善効果との関係を示すグラフである。It is a graph which shows the relationship between the fine powder ratio of a particle diameter of 150 μm or less and the effect of improving the production rate of a sinter when the oxygen concentration is increased to 24% by volume. 酸素濃度と焼結鉱生産率との関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration and the sinter production rate.

本発明は、粒径が150μm以下である微粉鉄鉱石を含む焼結原料の装入層10に酸素濃度を増加させた酸素富化空気を導入することによって、装入層10内の炭材の燃焼性を改善させるとともに当該微粉鉄鉱石の50質量%以上を成型物とすることで、擬似粒子の粉化による装入層10の通気性の悪化を抑制して、焼結鉱の生産性の低下を抑制するものである。まず、粒径が150μm以下である微粉鉄鉱石を含む焼結原料の特性について説明する。 According to the present invention, by introducing oxygen-enriched air having an increased oxygen concentration into the charging layer 10 of a sintered raw material containing fine iron ore having a particle size of 150 μm or less, the carbonaceous material in the charging layer 10 is charged. By improving flammability and forming 50% by mass or more of the fine iron ore into a molded product, deterioration of the air permeability of the charging layer 10 due to pulverization of pseudo particles is suppressed, and the productivity of the sinter is increased. It suppresses the decrease. First, the characteristics of the sintered raw material containing fine iron ore having a particle size of 150 μm or less will be described.

図4は、ペレットフィードの有無における擬似粒子の粒度分布の差を示すグラフである。図4において黒プロットは、粒径が150μm以下の微粉鉄鉱石であるペレットフィードが配合されていない鉄鉱石の粒度分布を示している。また、白プロットは、黒プロットで粒度分布が示された鉄鉱石に粒径が150μm以下の微粉鉄鉱石であるペレットフィードを40質量%配合したものの粒度分布を示している。 FIG. 4 is a graph showing the difference in particle size distribution of pseudo particles with and without pellet feed. In FIG. 4, the black plot shows the particle size distribution of iron ore in which pellet feed, which is a fine iron ore having a particle size of 150 μm or less, is not blended. The white plot shows the particle size distribution of iron ore whose particle size distribution is shown in the black plot mixed with 40% by mass of pellet feed, which is fine iron ore having a particle size of 150 μm or less.

図4に示すようにペレットフィードを40質量%の比率で配合すると、黒プロットで示されていた粒度分布は、白プロットで示した粒度分布になる。すなわち、ペレットフィードを40質量%の比率で混合させることで、細粒(0.5mm未満)のみならず、粗大(10mm超)な擬似粒子も多く生成された。微粉鉄鉱石は、濡れ性が同じであれば細粒ほど比表面積が大きく水分をより吸収するので、粉体間に多くの水分を保持する。このため、微粉鉄鉱石は、微粉鉄鉱石ではない粗粒鉄鉱石に対して優先的に水分を吸収する。そして、水分を吸収するとともに微粉鉄鉱石どうしが凝集して、単に微粉鉄鉱石が凝集した粗大な擬似粒子が生成する。なお、本実施形態において、粒径および比率は、JIS Z 8801−1に準拠した目開きの篩いを用いて篩うことで原料を各粒度に分け、各粒度の質量をそれぞれ測定し、各粒度の質量と全体の質量から、各粒度の比率を算出している。例えば、「粒径150μm以下のペレットフィードを40質量%配合する」とは、JIS Z 8801−1に準拠した公称目開き150μmの篩を通過したペレットフィードを、鉄鉱石全体の質量に対する割合が40%になるように配合することをいう。 When the pellet feed is blended at a ratio of 40% by mass as shown in FIG. 4, the particle size distribution shown in the black plot becomes the particle size distribution shown in the white plot. That is, by mixing the pellet feed at a ratio of 40% by mass, not only fine particles (less than 0.5 mm) but also coarse particles (more than 10 mm) were produced in large numbers. If the wettability of the fine iron ore is the same, the finer the granules, the larger the specific surface area and the more water is absorbed, so that a large amount of water is retained between the powders. Therefore, the fine iron ore preferentially absorbs water with respect to the coarse-grained iron ore that is not the fine iron ore. Then, as it absorbs water, the fine iron ore aggregates with each other, and coarse pseudo-particles in which the fine iron ore simply aggregates are generated. In the present embodiment, the particle size and the ratio are determined by sieving the raw materials using a sieve having a mesh size conforming to JIS Z 8801-1, dividing the raw material into each particle size, measuring the mass of each particle size, and measuring each particle size. The ratio of each particle size is calculated from the mass of the above and the total mass. For example, "blending 40% by mass of pellet feed having a particle size of 150 μm or less" means that the pellet feed that has passed through a sieve having a nominal opening of 150 μm according to JIS Z 8801-1 has a ratio of 40 to the total mass of iron ore. It means to mix so that it becomes%.

このような微粉鉄鉱石が凝集した粗大な擬似粒子は結合強度が弱く、焼結機のパレット上に堆積されると、荷重(圧縮力)が加わったときに崩壊し、当該擬似粒子が粉化して装入層10の空隙率を低下させる。これにより、装入層10の通気性は悪化し、焼結原料の燃焼が阻害される。この結果、焼結鉱の焼結時間が長くなり、焼結鉱の生産性が低下する。 Coarse pseudo-particles in which such fine iron ore is aggregated have a weak bond strength, and when they are deposited on the pallet of a sintering machine, they collapse when a load (compressive force) is applied, and the pseudo-particles are pulverized. The porosity of the charging layer 10 is reduced. As a result, the air permeability of the charging layer 10 deteriorates, and the combustion of the sintered raw material is hindered. As a result, the sinter time of the sinter becomes long, and the productivity of the sinter becomes low.

そこで、本実施形態の焼結鉱の製造方法では、焼結鉱の生産性の低下を抑制することを目的として、粒径が150μm以下である微粉鉄鉱石の一部を成型物とするとともに装入層10に導入する酸素富化空気の酸素濃度を23体積%より高くして装入層10の炭材の燃焼性を向上させている。これにより、擬似粒子の結合強度を向上させるとともに焼結時における装入層10の到達温度を高め、これにより、微粉鉄鉱石が凝集した擬似粒子が崩壊する前に当該擬似粒子の表面を焼結し、擬似粒子の崩壊を抑制している。この結果、擬似粒子の粉化による装入層10の通気性の悪化が抑制され、焼結鉱の生産性の低下を抑制できる。なお、本実施形態において酸素富化空気は装入層10に導入するガスの一例である。また、焼結原料に配合される炭材としては、粒径3mm未満が50質量%以上である炭材を用いることが好ましい。粒径3mm未満が50質量%以上である炭材を用いることで、炭材を装入層10の上層へ偏析させるとともに燃焼性を高めることができ、装入層10の焼結反応を促進できる。 Therefore, in the method for producing sinter of the present embodiment, a part of fine iron ore having a particle size of 150 μm or less is used as a molded product and is loaded for the purpose of suppressing a decrease in the productivity of the sinter. The oxygen concentration of the oxygen-enriched air introduced into the charging layer 10 is made higher than 23% by volume to improve the combustibility of the carbonaceous material of the charging layer 10. As a result, the bonding strength of the pseudo-particles is improved and the temperature reached by the charge layer 10 at the time of sintering is increased, whereby the surface of the pseudo-particles is sintered before the pseudo-particles in which the fine iron ore is aggregated collapse. However, the decay of pseudo particles is suppressed. As a result, deterioration of the air permeability of the charging layer 10 due to pulverization of the pseudo particles can be suppressed, and a decrease in the productivity of the sinter can be suppressed. In this embodiment, the oxygen-enriched air is an example of the gas introduced into the charging layer 10. Further, as the carbonaceous material blended in the sintering raw material, it is preferable to use a carbonaceous material having a particle size of less than 3 mm and 50% by mass or more. By using a carbonaceous material having a particle size of less than 3 mm and 50% by mass or more, the carbonaceous material can be segregated into the upper layer of the charging layer 10 and the combustibility can be enhanced, and the sintering reaction of the charging layer 10 can be promoted. ..

一方、酸素の使用は焼結鉱製造コストの増加を招くので、酸素富化空気の酸素濃度を増加させる領域はできるだけ狭くすることが好ましい。酸素濃度を増加させることで、焼結時における装入層10の温度を高めることができるので、酸素濃度を増加させる領域としては、常温の空気が装入層10に導入され炭材の燃焼性が劣る領域を選択することが好ましい。すなわち、酸素濃度を増加させる領域を、常温の空気が装入層10に導入され炭材の燃焼性が劣る点火炉11の下流側から排鉱部までの焼結機機長方向の点火炉11側とし、当該領域に導入される酸素富化空気の酸素濃度を増加させて炭材の燃焼性を改善させることが好ましい。 On the other hand, since the use of oxygen causes an increase in the cost of producing sinter, it is preferable to narrow the region where the oxygen concentration of the oxygen-enriched air is increased as much as possible. By increasing the oxygen concentration, the temperature of the charging layer 10 at the time of sintering can be raised. Therefore, as a region for increasing the oxygen concentration, air at room temperature is introduced into the charging layer 10 and the charcoal material is combustible. It is preferable to select a region inferior to. That is, in the region where the oxygen concentration is increased, the igniter 11 side in the direction of the sintering machine length from the downstream side of the igniter 11 where air at room temperature is introduced into the charging layer 10 and the combustibility of the carbonaceous material is inferior It is preferable to increase the oxygen concentration of the oxygen-enriched air introduced into the region to improve the combustibility of the carbonaceous material.

図5は、本実施形態に係る焼結鉱の製造方法が適用できる焼結鉱の製造工程を示す模式図である。図5において、図1と同じ設備には同じ符号を付して重複する説明を省略する。本実施形態に係る焼結鉱の製造方法では、複数のホッパー1から、焼結原料に含まれる粒径が150μm以下である微粉鉄鉱石の一部が切り出されて成型設備4で成型される。成型された微粉鉄鉱石は、ドラムミキサー2、3等によって擬似粒子に造粒された焼結原料に混合される。その後、焼結原料は、循環移動するパレット9に装入されて焼結され、焼結鉱が製造される。ドラムミキサー2ならびに成型設備4へは、それぞれ独立して任意の配合で複数のホッパー1から各種原料を切出すことができる。また、成型設備4で微粉鉄鉱石を成型する際には、セメント、ベントナイトなどの無機バインダーおよびピッチ、PVA、α化澱粉などの有機バインダーのうち1種以上を添加して成型後の強度を向上させてもよい。また、ドラムミキサー2および成型設備4のいずれか一方、または、両方の前に混合設備を設けて撹拌混合を実施してもよい。 FIG. 5 is a schematic view showing a sinter manufacturing process to which the sinter manufacturing method according to the present embodiment can be applied. In FIG. 5, the same equipment as in FIG. 1 is designated by the same reference numerals, and duplicate description will be omitted. In the method for producing sinter according to the present embodiment, a part of fine iron ore contained in the sinter raw material having a particle size of 150 μm or less is cut out from a plurality of hoppers 1 and molded by the molding facility 4. The molded fine iron ore is mixed with the sintering raw material granulated into pseudo particles by a drum mixer 2, 3 or the like. After that, the sinter raw material is charged into a circulating pallet 9 and sintered to produce a sinter. Various raw materials can be independently cut out from a plurality of hoppers 1 into the drum mixer 2 and the molding facility 4 with arbitrary formulations. Further, when molding fine iron ore in the molding facility 4, one or more of inorganic binders such as cement and bentonite and organic binders such as pitch, PVA and pregelatinized starch are added to improve the strength after molding. You may let me. Further, a mixing facility may be provided in front of either one or both of the drum mixer 2 and the molding facility 4 to carry out stirring and mixing.

このように、本実施形態に係る焼結鉱の製造方法は、微粉鉄鉱石を成型する成型設備4および酸素増加装置13を追加すれば既存の焼結機をそのまま用いて実施できる。このため、本実施形態に係る焼結鉱の製造方法は、簡便な設備を用いながら、粒径が150μm以下である微粉鉄鉱石を10質量%より多く含有する鉄鉱石を含む焼結原料から、焼結鉱の生産性の低下を抑制しながら焼結鉱を製造できる。 As described above, the method for producing sinter according to the present embodiment can be carried out by using the existing sinter as it is by adding the molding equipment 4 for molding fine iron ore and the oxygen increasing device 13. Therefore, the method for producing sinter according to the present embodiment uses a sinter raw material containing iron ore containing more than 10% by mass of fine iron ore having a particle size of 150 μm or less, while using simple equipment. Sinter can be produced while suppressing a decrease in the productivity of sinter.

上述したように、焼結原料の鉄鉱石に微粉鉄鉱石が多く含まれる場合に、微粉鉄鉱石どうしが単に凝集したにすぎない結合強度の弱い粗大な擬似粒子が生成するので、鉄鉱石中に粒径150μm以下の微粉鉄鉱石を多く含む場合に、本実施形態の焼結鉱の製造方法による焼結鉱の生産性低下の抑制効果が大きくなる。このため、本実施形態の焼結鉱の製造方法においては、焼結原料の鉄鉱石中に粒径150μm以下の微粉鉄鉱石を10質量%より多く配合する。なお、本実施形態において、鉄鉱石とは、粒径が150μm以下である微粉鉄鉱石と、粒径が150μmより大きい粗粒鉄鉱石を有する鉄鉱石を意味する。また、微粉鉄鉱石とは、鉱石の銘柄にかかわらず、鉄鉱石であって粒径が150μm以下である粒子の全てを指す。 As described above, when the iron ore of the sintering raw material contains a large amount of fine iron ore, coarse pseudo-particles having a weak bond strength are generated in which the fine iron ores are merely aggregated. When a large amount of fine iron ore having a particle size of 150 μm or less is contained, the effect of suppressing a decrease in the productivity of the sinter by the method for producing the sinter of the present embodiment becomes large. Therefore, in the method for producing sinter of the present embodiment, more than 10% by mass of fine iron ore having a particle size of 150 μm or less is blended in the iron ore as a raw material for sinter. In the present embodiment, the iron ore means an iron ore having a fine iron ore having a particle size of 150 μm or less and a coarse-grained iron ore having a particle size larger than 150 μm. Further, the fine iron ore refers to all of the iron ore particles having a particle size of 150 μm or less, regardless of the brand of the ore.

また、後述する実験において、酸素濃度が21体積%である空気を用いても焼結鉱の生産性低下の抑制効果がなかったことから、酸素富化空気の酸素濃度を23体積%より高くしている。なお、酸素富化空気の酸素濃度の上限は、特に制限を設けなくてもよいが、酸素増加装置の焼損防止の観点から、酸素富化空気の酸素濃度は50体積%以下とすることが好ましい。 Further, in the experiment described later, even if air having an oxygen concentration of 21% by volume was used, there was no effect of suppressing a decrease in the productivity of the sintered ore, so the oxygen concentration of the oxygen-enriched air was made higher than 23% by volume. ing. The upper limit of the oxygen concentration of the oxygen-enriched air does not have to be particularly limited, but the oxygen concentration of the oxygen-enriched air is preferably 50% by volume or less from the viewpoint of preventing burning of the oxygen increasing device. ..

また、点火炉11の点火手段も特に限定するものではないが、製鉄所の副生ガスであるCガス、BガスまたはMガス等の気体燃料を用いたバーナーを用いることが好ましい。なお、製鉄所において多く使用されているLNGやLPG、都市ガス等の気体燃料を用いたバーナーを使用してよい。また、装入層10上表層の粉コークス等の凝結材を短時間で着火するために、バーナーに供給される支燃性ガス中の酸素濃度を増加させてバーナーの火炎温度を高めてもよい。 Further, the ignition means of the ignition furnace 11 is not particularly limited, but it is preferable to use a burner using a gaseous fuel such as C gas, B gas or M gas which is a by-product gas of the steelworks. A burner using gaseous fuel such as LNG, LPG, or city gas, which is often used in steelworks, may be used. Further, in order to ignite the coagulant such as powder coke on the upper surface layer of the charging layer 10 in a short time, the oxygen concentration in the flammable gas supplied to the burner may be increased to raise the flame temperature of the burner. ..

さらに、装入層10の上層部に焼結に必要な温度を十分に確保することを目的として、装入層10の上層部に気体燃料を供給してもよい。この場合に、点火炉11の直後から排鉱部までの区間の概ね1/3の区間に、装入層10の上方にフードを有する気体燃料供給装置を設け、その内部に気体燃料供給配管を配設して気体燃料を供給する。この気体燃供給装置を利用して、その内部に酸素供給配管を配設し、酸素ガスを供給し、酸素富化空気の酸素濃度を増加させてもよい。なお、気体燃料としては、Cガス、Bガス、Mガス、LNG、LPGおよび都市ガスの少なくとも1種を用いてよい。 Further, gaseous fuel may be supplied to the upper layer of the charging layer 10 for the purpose of ensuring a sufficient temperature for sintering in the upper layer of the charging layer 10. In this case, a gas fuel supply device having a hood is provided above the charging layer 10 in a section of about 1/3 of the section from immediately after the ignition furnace 11 to the excretion part, and a gas fuel supply pipe is provided inside the gas fuel supply device. Arrange to supply gaseous fuel. This gas fuel supply device may be used to dispose an oxygen supply pipe inside the gas fuel supply device to supply oxygen gas and increase the oxygen concentration of oxygen-enriched air. As the gaseous fuel, at least one of C gas, B gas, M gas, LNG, LPG and city gas may be used.

内径が300mmφ×高さが400mmの円筒状の焼結実験装置(以下、焼結鍋と記載する)を使用して焼結実験を行なった。粒径が150μm以下である微粉鉄鉱石は、一部をダブルロール式のブリッケットマシンを用いて機械的に圧密して1.5ccの成型物とした。成型物の落下強度は、1mの高さから落下させた200gの成型物における5mm以上の質量割合で評価した。5mm以上の成型物の質量割合は、落下後の成型物を目開き5mmの篩で篩上となった成型物の質量を測定し、当該質量を全成型物の質量で除することで算出する。本実施例で用いた成型物の落下強度は52質量%であった。 A sintering experiment was carried out using a cylindrical sintering experiment device (hereinafter referred to as a sintering pot) having an inner diameter of 300 mmφ and a height of 400 mm. A part of the fine iron ore having a particle size of 150 μm or less was mechanically compacted using a double roll type briquette machine to obtain a 1.5 cc molded product. The drop strength of the molded product was evaluated by a mass ratio of 5 mm or more in a 200 g molded product dropped from a height of 1 m. The mass ratio of the molded product of 5 mm or more is calculated by measuring the mass of the molded product on the sieve with a mesh opening of 5 mm after dropping and dividing the mass by the mass of the total molded product. .. The drop strength of the molded product used in this example was 52% by mass.

なお、本実施例ではバインダーを使用しないで微粉鉄鉱石を成型したが、上述したようにバインダーを添加して微粉鉄鉱石を成型してもよい。例えば、α化澱粉を1質量%添加して成型することで、成型物の落下強度を1.5倍程度高めることができる。これにより、強い衝撃が発生する搬送手段を用いることができるので、搬送設備の設計自由度が向上する。また、微粉鉄鉱石に石灰石などの副原料や炭材や粒径が150μmより大きい鉄鉱石などの焼結鉱の原料を合計で25質量%配合しても落下強度の低下は1割程度であり、微粉鉄鉱石に微粉鉄鉱石以外の焼結鉱の原料を配合したとしても成型物の落下強度の低下はほとんどない。 In this embodiment, the fine iron ore was molded without using the binder, but the fine iron ore may be molded by adding the binder as described above. For example, by adding 1% by mass of pregelatinized starch for molding, the drop strength of the molded product can be increased by about 1.5 times. As a result, a transport means that generates a strong impact can be used, so that the degree of freedom in designing the transport facility is improved. In addition, even if a total of 25% by mass of auxiliary raw materials such as limestone and raw materials of sinter such as carbonaceous material and iron ore having a particle size larger than 150 μm are mixed with fine iron ore, the drop strength is reduced by about 10%. Even if a raw material of a sintered ore other than the fine iron ore is mixed with the fine iron ore, there is almost no decrease in the drop strength of the molded product.

成型物の強度は、圧潰強度で評価される場合もあるが、水分を含む場合には搬送時の衝撃で崩壊するかについて圧潰強度で評価することは難しい。例えば、10〜15mm程度の粒径の成型物について、セメント等を入れて乾燥させた圧潰強度が5kgf/pである成型物と、デンプンやポリビニルアルコールをバインダーとして使用した圧潰強度が1kgf/pである成型物を比較した場合、圧潰強度はセメントを使用した成型物の方が高いが、コンベア等で搬送された後に5mm以上であった成形物の比率で比較すると、デンプンやポリビニルアルコールをバインダーとして使用した成型物の方が逆に高くなる。デンプンやポリビニルアルコールをバインダーとして使用した成型物は、湿潤状態で可塑性があり、落下衝撃を受けた場合に塑性的に変形するものの粒子が崩壊することが少ない。一方、セメント等を入れて乾燥させたブリケットでは落下衝撃を受けると脆性的に壊れてしまう。成型した原料を焼結機で使用するには、ドラムミキサーから焼結機の装入部までのベルトコンベヤでの乗り継ぎ等による落下衝撃に耐える必要があるので、その強度の評価方法としては、圧潰強度ではなく落下強度の方が好ましい。 The strength of the molded product may be evaluated by the crushing strength, but when it contains water, it is difficult to evaluate by the crushing strength whether it collapses due to the impact during transportation. For example, for a molded product having a particle size of about 10 to 15 mm, a molded product having a crushing strength of 5 kgf / p when cement or the like is added and dried, and a molded product having a crushing strength using starch or polyvinyl alcohol as a binder are 1 kgf / p. When comparing certain molded products, the crushing strength is higher in the molded products using cement, but when compared by the ratio of the molded products that were 5 mm or more after being conveyed by a conveyor or the like, starch or polyvinyl alcohol was used as the binder. On the contrary, the molded product used is higher. Molded products using starch or polyvinyl alcohol as a binder are plastic in a wet state, and although they are plastically deformed when subjected to a drop impact, the particles are less likely to collapse. On the other hand, a briquette that has been dried with cement or the like is brittlely broken when it receives a drop impact. In order to use the molded raw material in a sintering machine, it is necessary to withstand the drop impact caused by the transfer of the molded raw material from the drum mixer to the charging part of the sintering machine with a belt conveyor, etc., so crushing is a method for evaluating its strength. Drop strength is preferred over strength.

成型物以外の焼結原料を直径1mのドラムミキサーを用いて、8rpmで300秒間回転させて擬似粒子とし、成型物を所定の割合で混合した後、焼結実験装置に当該擬似粒子を400mmの厚さまで装入して装入層を形成させ、その上表面を、プロパンを燃料としたバーナーを用いて60秒間加熱して点火し、焼結鍋の下部から700mmAqで吸引して、焼結ケーキを作製した。なお、擬似粒子と成型物を混合した焼結原料には、凝結材として粉コークスを5質量%添加した。また、いずれの実験も原料水分が平均7.5質量%で一定となるように調製した。 A sintering raw material other than the molded product was rotated at 8 rpm for 300 seconds using a drum mixer having a diameter of 1 m to obtain pseudo particles, and after mixing the molded products at a predetermined ratio, the pseudo particles were placed in a sintering experimental device having a diameter of 400 mm. It is charged to the thickness to form an charging layer, and the upper surface is heated for 60 seconds using a burner using propane as fuel to ignite, and is sucked from the bottom of the sintering pot with 700 mm Aq to obtain a sintered cake. Was produced. In addition, 5% by mass of coke breeze was added as a coagulant to the sintered raw material in which the pseudo particles and the molded product were mixed. In each experiment, the raw material water content was adjusted to be constant at an average of 7.5% by mass.

上記焼結実験においては、焼結鍋の下部から排出される燃焼排ガスの温度を測定し、点火からこの温度がピークに達した時点までの時間を焼結時間とした。また、焼結実験終了後、焼結ケーキを2mの高さから1回落下させ、10mm篩目の上に残った焼結鉱を成品として定義した。焼結鉱の歩留は、10mm以上の成品焼結鉱の質量を焼結ケーキの質量で除して算出した。また、焼結鍋の断面積(m)と、成品焼結鉱の重量(t)と、焼結時間(h)と、から単位炉床面積(m)、単位時間(h)当たりの焼結鉱生産量(t)である焼結鉱の生産率(t/(h×m))を算出した。 In the above sintering experiment, the temperature of the combustion exhaust gas discharged from the lower part of the sintering pot was measured, and the time from ignition to the time when this temperature reached the peak was defined as the sintering time. Further, after the completion of the sintering experiment, the sintered cake was dropped once from a height of 2 m, and the sintered ore remaining on the 10 mm mesh was defined as a product. The yield of the sinter was calculated by dividing the mass of the product sinter of 10 mm or more by the mass of the sinter cake. Further, from the cross-sectional area (m 2 ) of the sinter pot, the weight (t) of the product sintered ore, and the sinter time (h), the unit hearth area (m 2 ) and the unit time (h). The sinter production rate (t / (h × m 2 )), which is the sinter production amount (t), was calculated.

焼結実験において、点火から焼結時間の前半1/2の間、装入層に導入させる酸素富化空気の酸素濃度を21体積%(酸素増加無し)〜50体積%の範囲内で変化させた。各条件で焼結時間が異なるので、酸素濃度を増加させる時間を調整しながら繰り返し実験を実施し、酸素富化空気の酸素濃度を増加させる時間が焼結時間の前半の1/2となるように調整した。 In the sintering experiment, the oxygen concentration of the oxygen-enriched air introduced into the charging layer was changed within the range of 21% by volume (no increase in oxygen) to 50% by volume during the first half of the sintering time from ignition. It was. Since the sintering time is different under each condition, repeated experiments were carried out while adjusting the time to increase the oxygen concentration so that the time to increase the oxygen concentration of the oxygen-enriched air would be half of the first half of the sintering time. Adjusted to.

焼結実験に用いた鉄鉱石は粒径150μmより大きい粗粒鉄鉱石であり、縮分器を用いて2等分した一方の粗粒鉄鉱石を粉砕して、粒径150μm以下および粒径150μmより大きい粒度のみ異なる2種の鉄鉱石を調製した。化学組成は、SiOが4.9質量%、Alが1.8質量%であった。焼結原料の塩基度(CaO/SiO)は、石灰石の配合量を調整して2.0とした。また、実際の焼結機で使用する焼結原料を模擬し、5mm以下の焼結鉱(返鉱)を20質量%配合した。成型した微粉鉄鉱石を混合した焼結実験では、微粉鉄鉱石の50質量%を成型物とし、残りの50質量%を微粉鉄鉱石のまま使用した。 The iron ore used in the sintering experiment is a coarse-grained iron ore having a particle size larger than 150 μm, and one of the coarse-grained iron ores divided into two equal parts is crushed using a splitter to have a particle size of 150 μm or less and a particle size of 150 μm. Two types of iron ore were prepared that differed only in larger grain size. The chemical composition was 4.9% by mass of SiO 2 and 1.8% by mass of Al 2 O 3 . The basicity (CaO / SiO 2 ) of the sintering raw material was set to 2.0 by adjusting the blending amount of limestone. In addition, 20% by mass of sinter (return ore) of 5 mm or less was blended by simulating the sintering raw material used in an actual sinter. In the sintering experiment in which the molded fine iron ore was mixed, 50% by mass of the fine iron ore was used as a molded product, and the remaining 50% by mass was used as the fine iron ore.

図6は、粒径150μm以下の微粉比率と焼結鉱の生産率との関係を示すグラフである。図6に示したグラフにおいて、横軸は鉄鉱石中の粒径が150μm以下の微粉鉄鉱石の比率を示す微粉化率(質量%)であり、縦軸は焼結鉱の生産率(t/(h×m))である。 FIG. 6 is a graph showing the relationship between the fine powder ratio having a particle size of 150 μm or less and the production rate of sinter. In the graph shown in FIG. 6, the horizontal axis is the pulverization rate (mass%) indicating the ratio of pulverized iron ore having a particle size of 150 μm or less in the iron ore, and the vertical axis is the sinter production rate (t /). (H × m 2 )).

図6から、酸素増加を行っていない場合、微粉化率の増加に伴って、焼結鉱の生産率が大幅に低下することがわかる。特に、微粉比率が10質量%より高い条件では、微粉比率の増加により焼結鉱の生産率の低下(破線の傾き)が大きくなっている。微粉比率を15質量%とした焼結試験の実施により得られた焼結ケーキを高さ方向に3等分し、上層、中層および下層に分けて焼結鉱の歩留を評価したところ、微粉比率10質量%とした焼結試験と比較して、上層での焼結鉱の歩留の低下が大きく、これが焼結鉱の生産率を低下させる原因となっていた。 From FIG. 6, it can be seen that when the oxygen is not increased, the production rate of the sinter is significantly reduced as the pulverization rate is increased. In particular, under the condition that the fine powder ratio is higher than 10% by mass, the decrease in the production rate of the sinter (the slope of the broken line) becomes large due to the increase in the fine powder ratio. The sintered cake obtained by carrying out the sintering test with the fine powder ratio of 15% by mass was divided into three equal parts in the height direction, and the yield of the sintered ore was evaluated by dividing into the upper layer, the middle layer and the lower layer. Compared with the sinter test in which the ratio was 10% by mass, the yield of the sinter in the upper layer was significantly reduced, which was the cause of the decrease in the sinter production rate.

一方、焼結時間の前半で、酸素富化空気の酸素濃度を24体積%に増加させた場合、微粉比率の増加に伴って、焼結鉱の生産率が低下するものの、その低下幅は酸素濃度を増加させていない場合に比べて小さくなっていた。同様に、微粉比率を15質量%とした焼結試験の実施により得られた焼結ケーキを高さ方向で3等分し、上層、中層および下層の焼結鉱の歩留を評価したところ、酸素濃度を増加させていない場合と比較して上層での焼結鉱の歩留の低下が抑制されていた。 On the other hand, when the oxygen concentration of oxygen-enriched air is increased to 24% by volume in the first half of the sintering time, the production rate of sinter decreases as the fine powder ratio increases, but the amount of decrease is oxygen. It was smaller than when the concentration was not increased. Similarly, the sintered cake obtained by carrying out the sintering test with the fine powder ratio of 15% by mass was divided into three equal parts in the height direction, and the yields of the sintered ores in the upper layer, middle layer and lower layer were evaluated. The decrease in the yield of sinter in the upper layer was suppressed as compared with the case where the oxygen concentration was not increased.

さらに、微粉鉄鉱石の50質量%を成型物とした場合、微粉鉄鉱石をそのまま使用した場合に比べて、焼結鉱の生産率は大きく改善した。特に、微粉化率を20質量%とした場合には、微粉鉄鉱石を含まない場合とほぼ同じ生産率となった。 Further, when 50% by mass of the fine iron ore was used as a molded product, the production rate of the sintered ore was greatly improved as compared with the case where the fine iron ore was used as it was. In particular, when the pulverization rate was 20% by mass, the production rate was almost the same as when the pulverized iron ore was not contained.

次に、酸素濃度一定の条件で、微粉比率増加時における生産率の改善効果を比較した。図7は、酸素濃度を24体積%に増加した場合の粒径150μm以下の微粉比率と焼結鉱の生産率改善効果との関係を示すグラフである。図7に示したグラフにおいて、横軸は図6の横軸と同じ微粉比率(質量%)であり、縦軸は、焼結鉱の生産率改善効果(t/(h×m))である。焼結鉱の生産率改善効果とは、微粉鉄鉱石の50質量%を成型物とすることによって向上した焼結鉱の生産率を意味し、成型物比率を50質量%とした場合の焼結鉱の生産率と、成型物比率を0質量%とした場合の焼結鉱の生産率との差を取ることによって算出した。 Next, the effect of improving the production rate when the fine powder ratio was increased was compared under the condition that the oxygen concentration was constant. FIG. 7 is a graph showing the relationship between the fine powder ratio of a particle size of 150 μm or less and the effect of improving the production rate of sinter when the oxygen concentration is increased to 24% by volume. In the graph shown in FIG. 7, the horizontal axis is the same fine powder ratio (mass%) as the horizontal axis of FIG. 6, and the vertical axis is the effect of improving the production rate of sinter (t / (h × m 2 )). is there. The effect of improving the production rate of sinter means the production rate of sinter that is improved by using 50% by mass of fine iron ore as a molded product, and sintering when the ratio of the molded product is 50% by mass. It was calculated by taking the difference between the production rate of the ore and the production rate of the sinter when the molded product ratio was 0% by mass.

図7に示すように、微粉化率を10質量%より高くした場合のグラフの傾きは、微粉化率10質量%以下までのグラフの傾きより大きくなった。この結果から、鉄鉱石中の微粉化率を10質量%より高くすることで、微粉鉄鉱石の50質量%を成型物とすることによる生産率改善効果が高められることが確認された。なお、微粉鉄鉱石の50質量%を成型物とすることによる生産率改善効果をさらに高めることができることから、鉄鉱石中の微粉化率を15質量%以上とすることがより好ましい。 As shown in FIG. 7, the slope of the graph when the pulverization rate was higher than 10% by mass was larger than the slope of the graph up to the pulverization rate of 10% by mass or less. From this result, it was confirmed that by increasing the pulverization rate in the iron ore to more than 10% by mass, the effect of improving the production rate by forming 50% by mass of the pulverized iron ore into a molded product can be enhanced. It is more preferable that the pulverization rate in the iron ore is 15% by mass or more because the effect of improving the production rate can be further enhanced by forming 50% by mass of the pulverized iron ore into a molded product.

図8は、酸素濃度と焼結鉱生産率との関係を示すグラフである。図8に示したグラフにおいて、横軸は酸素富化空気の酸素濃度(体積%)であり、縦軸は焼結鉱の生産率(t/(h×m))である。図8に示すように、鉄鉱石中の微粉比率が0質量%の場合には、酸素富化空気の酸素濃度が増加するに従って焼結鉱の生産率は向上した。一方、鉄鉱石中の微粉比率が15質量%であって、かつ、7.5質量%の微粉鉄鉱石を成型物とした場合には、鉄鉱石中の微粉比率が0の場合と同様に、酸素富化空気の酸素濃度が増加するに従って焼結鉱の生産率は向上するが、酸素濃度を23体積%より高くすることで、焼結鉱の生産率は大きく向上し、微粉鉄鉱石を含まない場合に近い生産率となった。なお、焼結鉱の生産率をさらに向上できることから、酸素濃度を24体積%以上とすることがより好ましい。 FIG. 8 is a graph showing the relationship between the oxygen concentration and the sinter production rate. In the graph shown in FIG. 8, the horizontal axis represents the oxygen concentration (% by volume) of the oxygen-enriched air, and the vertical axis represents the production rate of sinter (t / (h × m 2 )). As shown in FIG. 8, when the fine powder ratio in the iron ore was 0% by mass, the production rate of the sinter increased as the oxygen concentration of the oxygen-enriched air increased. On the other hand, when the fine powder ratio in iron ore is 15% by mass and 7.5% by mass of fine iron ore is used as a molded product, the fine powder ratio in iron ore is 0, as in the case of 0. The production rate of sinter increases as the oxygen concentration of oxygen-enriched air increases, but by increasing the oxygen concentration to more than 23% by volume, the production rate of sinter increases significantly and contains fine iron ore. The production rate was close to the case without it. It is more preferable that the oxygen concentration is 24% by volume or more because the production rate of the sinter can be further improved.

このように、鉄鉱石中の微粉比率を15質量%以上とし、かつ、そのうちの50体積%を成型物とした焼結原料を用いた場合において、酸素富化空気の酸素濃度を23体積%より高くすることで焼結鉱の生産率を大きく向上できることが確認された。なお、鉄鉱石中の微粉比率を50質量%より高くすると、装入層の通気性が悪化して安定した焼結ができなくおそれがある。このため、鉄鉱石中の微粉比率は50質量%以下とすることが好ましい。 As described above, when the ratio of fine powder in iron ore is 15% by volume or more and 50% by volume of the fine powder is used as a molded raw material, the oxygen concentration of oxygen-enriched air is more than 23% by volume. It was confirmed that the production rate of sinter can be greatly improved by increasing the temperature. If the ratio of fine powder in iron ore is higher than 50% by mass, the air permeability of the charge layer deteriorates and stable sintering may not be possible. Therefore, the fine powder ratio in the iron ore is preferably 50% by mass or less.

これらの結果は、微粉鉄鉱石の50質量%を成型物とすることで擬似粒子の結合強度を向上させ、かつ、酸素濃度の増加により炭材の燃焼性を改善することで粒子表面での昇温速度が速くなり、短時間で表面の焼結反応が進行して擬似粒子の崩壊が抑制され、これにより、焼結鉱の生産率の低下を抑制できたためと考えられる。なお、本実施例では、粒径が150μm以下である微粉鉄鉱石の50質量%を成型物とした例を示したが、これに限らない。微粉鉄鉱石の少なくとも一部を成型物とすれば、成型せずに微粉鉄鉱石のまま用いた場合よりも擬似粒子の粉化が抑制され、焼結鉱の生産率の低下を抑制できる。さらに、成型物とする微粉鉄鉱石が多いほど擬似粒子の粉化が抑制され、焼結鉱の生産率の低下が抑制されることから、微粉鉄鉱石の50質量%以上を成型物とすることがより好ましい。 These results show that 50% by mass of fine iron ore is used as a molded product to improve the bond strength of the pseudo-particles, and the increase in oxygen concentration improves the flammability of the carbonaceous material, resulting in an increase on the particle surface. It is considered that this is because the temperature rate became faster, the surface sintering reaction proceeded in a short time, and the decay of the pseudo-particles was suppressed, thereby suppressing the decrease in the production rate of the sintered ore. In this example, 50% by mass of fine iron ore having a particle size of 150 μm or less is used as a molded product, but the present invention is not limited to this. If at least a part of the fine iron ore is made into a molded product, the pulverization of pseudo-particles can be suppressed and the decrease in the production rate of the sintered ore can be suppressed as compared with the case where the fine iron ore is used as it is without molding. Further, as the amount of fine iron ore used as a molded product increases, the pulverization of pseudo particles is suppressed and the decrease in the production rate of sinter is suppressed. Therefore, 50% by mass or more of the fine iron ore should be used as a molded product. Is more preferable.

以上、説明したように、粒径が150μm以下の微粉鉄鉱石を10質量%より多く含む鉄鉱石を焼結原料として用いた場合に、本実施形態の焼結鉱の製造方法を用いることで、微粉鉄鉱石が凝集した擬似粒子の粉化による通気性の悪化が抑制され、焼結鉱の生産性の低下を抑制できる。また、本実施形態の焼結鉱の製造方法は、スラグ成分の少ない難造粒性の微粉(粒径150μm以下)であるペレットフィードを多量に含む焼結原料から生産性の低下を抑制しながら焼結鉱を製造でき、当該焼結鉱を高炉原料に用いることで高炉操業のスラグ比の低減に寄与できる。 As described above, when iron ore containing more than 10% by mass of fine iron ore having a particle size of 150 μm or less is used as a sinter raw material, the method for producing sinter of the present embodiment can be used. Deterioration of air permeability due to pulverization of pseudo-particles in which fine iron ore is agglomerated can be suppressed, and deterioration of sinter productivity can be suppressed. Further, in the method for producing a sinter of the present embodiment, while suppressing a decrease in productivity from a sinter raw material containing a large amount of pellet feed which is a difficult-to-granulate fine powder (particle size 150 μm or less) having a small slag component. Sintered ore can be produced, and by using the sintered ore as a raw material for blast furnace, it is possible to contribute to the reduction of the slag ratio in blast furnace operation.

1 ホッパー
2 ドラムミキサー
3 ドラムミキサー
4 成型設備
5 サージホッパー
6 ドラムフィーダー
7 切り出しシュート
8 カットゲート
9 パレット
10 装入層
11 点火炉
12 ウインドボックス(風箱)
13 酸素増加装置
1 Hopper 2 Drum Mixer 3 Drum Mixer 4 Molding Equipment 5 Surge Hopper 6 Drum Feeder 7 Cutout Chute 8 Cut Gate 9 Pallet 10 Charge Layer 11 Ignition Furnace 12 Wind Box (Wind Box)
13 Oxygen increasing device

Claims (4)

焼結機の原料給鉱部で循環移動するパレット上に鉄鉱石と炭材とを含む焼結原料を装入して装入層を形成した後、前記原料給鉱部の下流側に配設した点火炉で前記装入層の上表面の炭材に点火し、パレット下方に配設したウインドボックスで前記装入層の上方のガスを吸引し、前記ガスを前記装入層に導入して前記装入層の炭材を燃焼させることにより焼結鉱を製造する焼結鉱の製造方法であって、
前記鉄鉱石は、粒径が150μm以下である微粉鉄鉱石を10質量%より多く含み、
前記微粉鉄鉱石の一部を成型物にして前記焼結原料に混合し、
前記装入層に導入する前記ガスの酸素濃度を23体積%より高くする、焼結鉱の製造方法。
A sintering raw material containing iron ore and carbonaceous material is charged onto a pallet that circulates in the raw material supply section of the sintering machine to form a charging layer, and then arranged on the downstream side of the raw material supply section. The carbon material on the upper surface of the charging layer is ignited by the firing furnace, the gas above the charging layer is sucked by the wind box arranged below the pallet, and the gas is introduced into the charging layer. It is a method for producing sinter by burning the carbonaceous material of the charging layer.
The iron ore contains more than 10% by mass of fine iron ore having a particle size of 150 μm or less.
A part of the fine iron ore is made into a molded product and mixed with the sintered raw material.
A method for producing a sinter in which the oxygen concentration of the gas introduced into the charging layer is made higher than 23% by volume.
前記微粉鉄鉱石の50質量%以上を成型物にして前記焼結原料に混合する、請求項1に記載の焼結鉱の製造方法。 The method for producing a sinter according to claim 1, wherein 50% by mass or more of the fine iron ore is made into a molded product and mixed with the sinter raw material. 前記鉄鉱石は、粒径が150μm以下である微粉鉄鉱石を15質量%以上含む、請求項1または請求項2に記載の焼結鉱の製造方法。 The method for producing a sintered ore according to claim 1 or 2, wherein the iron ore contains 15% by mass or more of fine iron ore having a particle size of 150 μm or less. 前記装入層に導入する前記ガスの酸素濃度を24体積%以上にする、請求項1から請求項3の何れか一項に記載の焼結鉱の製造方法。 The method for producing a sinter according to any one of claims 1 to 3, wherein the oxygen concentration of the gas introduced into the charging layer is 24% by volume or more.
JP2019033179A 2019-02-26 2019-02-26 Sintered ore manufacturing method Active JP6988844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033179A JP6988844B2 (en) 2019-02-26 2019-02-26 Sintered ore manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033179A JP6988844B2 (en) 2019-02-26 2019-02-26 Sintered ore manufacturing method

Publications (2)

Publication Number Publication Date
JP2020139173A true JP2020139173A (en) 2020-09-03
JP6988844B2 JP6988844B2 (en) 2022-01-05

Family

ID=72280004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033179A Active JP6988844B2 (en) 2019-02-26 2019-02-26 Sintered ore manufacturing method

Country Status (1)

Country Link
JP (1) JP6988844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023103513A1 (en) * 2021-12-06 2023-06-15 江苏沙钢集团有限公司 Ultra-thick material layer sintering process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057028A (en) * 2006-09-04 2008-03-13 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore
JP2016020520A (en) * 2014-07-14 2016-02-04 新日鐵住金株式会社 Pretreatment method of sintering raw material
JP2018003153A (en) * 2016-06-22 2018-01-11 Jfeスチール株式会社 Production method of sinter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057028A (en) * 2006-09-04 2008-03-13 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore
JP2016020520A (en) * 2014-07-14 2016-02-04 新日鐵住金株式会社 Pretreatment method of sintering raw material
JP2018003153A (en) * 2016-06-22 2018-01-11 Jfeスチール株式会社 Production method of sinter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023103513A1 (en) * 2021-12-06 2023-06-15 江苏沙钢集团有限公司 Ultra-thick material layer sintering process

Also Published As

Publication number Publication date
JP6988844B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
TWI460278B (en) Sintering method
JP5699567B2 (en) Method for producing sintered ore
JP6686974B2 (en) Sintered ore manufacturing method
JP2014001438A (en) Production method for sintered ore
JP5950098B2 (en) Method for producing sintered ore
JP2009097027A (en) Method for producing sintered ore
JP6988844B2 (en) Sintered ore manufacturing method
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
JP6460293B2 (en) Method for producing sintered ore
JP7227053B2 (en) Method for producing sintered ore
JP2007119841A (en) Method for manufacturing half-reduced and sintered ore
JP2014214339A (en) Method for producing sintered ore
JP6020840B2 (en) Sintering raw material manufacturing method
JP5206030B2 (en) Method for producing sintered ore
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP5126580B2 (en) Method for producing sintered ore
JP4078285B2 (en) Blast furnace operation method
JP6805672B2 (en) Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate
JP2008019455A (en) Method for producing half-reduced sintered ore
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP6988778B2 (en) Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter
JP2001262241A (en) Method for producing sintered ore containing carbon
JPH08199250A (en) Production of sintered ore
JP6816709B2 (en) Manufacturing method of coal material interior sinter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6988844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150