WO2023210202A1 - 膜電極接合体、電気化学セルおよび燃料電池システム - Google Patents

膜電極接合体、電気化学セルおよび燃料電池システム Download PDF

Info

Publication number
WO2023210202A1
WO2023210202A1 PCT/JP2023/010404 JP2023010404W WO2023210202A1 WO 2023210202 A1 WO2023210202 A1 WO 2023210202A1 JP 2023010404 W JP2023010404 W JP 2023010404W WO 2023210202 A1 WO2023210202 A1 WO 2023210202A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
oxide
electrochemical cell
comparative example
membrane
Prior art date
Application number
PCT/JP2023/010404
Other languages
English (en)
French (fr)
Inventor
祐一 見神
裕貴 中田
孝祐 布尾
智宏 黒羽
Original Assignee
パナソニックホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックホールディングス株式会社 filed Critical パナソニックホールディングス株式会社
Priority to JP2023547892A priority Critical patent/JP7367271B1/ja
Publication of WO2023210202A1 publication Critical patent/WO2023210202A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to membrane electrode assemblies, electrochemical cells, and fuel cell systems.
  • a solid oxide fuel cell (hereinafter referred to as "SOFC") is a fuel cell in which a solid oxide is used as an electrolyte that constitutes an electrolyte membrane.
  • Oxide ion conductors such as stabilized zirconia are widely used as solid oxides as electrolytes.
  • SOFC has the feature of operating at a high temperature of 600° C. or higher, and has a feature of having higher power generation efficiency than the polymer electrolyte fuel cell (PEFC), which is known as a low-temperature type.
  • PEFC polymer electrolyte fuel cell
  • a proton conducting ceramic fuel cell (hereinafter referred to as "PCFC"), which is a type of SOFC, is characterized in that a solid oxide having proton conductivity is used as an electrolyte that constitutes an electrolyte membrane.
  • PCFC proton conducting ceramic fuel cell
  • water vapor is generated on the fuel electrode side due to a power generation reaction. Therefore, in an operating environment with a high fuel utilization rate, the hydrogen fuel is diluted by water vapor, reducing the electromotive force of the fuel cell and increasing the risk of cell deterioration due to fuel exhaustion. Therefore, in general SOFCs, the fuel utilization rate cannot be made sufficiently high.
  • the coefficient of thermal expansion of yttria-stabilized zirconia, a common electrolyte is 11 ⁇ 10 -6 /K
  • the coefficient of thermal expansion of LaSrCoFe composite oxide, a common air electrode material is 15 ⁇ 10 -6 /K.
  • BaZrYb composite oxide is a common electrolyte for PCFC.
  • the thermal expansion coefficient of this BaZrYb composite oxide is in the range of 8 ⁇ 10 -6 /K to 9 ⁇ 10 -6 /K, and this value is higher than that of yttria-stabilized zirconia, which is a common SOFC electrolyte. is even smaller. Therefore, the difference in thermal expansion coefficient between the air electrode material and the electrolyte becomes larger in the case of PCFC.
  • a common method for improving the bonding at the interface between the air electrode and the electrolyte membrane is to mix the electrolyte used in the electrolyte membrane with the air electrode to form a composite electrode.
  • BaCeZrYYb composite oxide is used as an electrolyte forming an electrolyte membrane
  • LaSrCoFe composite oxide, LaSrCo composite oxide, or LaBaCo composite oxide is used for the air electrode.
  • a mixture with BaCeZrYYb composite oxide is used. That is, in the PCFC disclosed in Non-Patent Document 1, the electrolyte that forms the electrolyte membrane is also mixed in the air electrode. This configuration is advantageous in bonding the interface between the air electrode and the electrolyte membrane, and has the effect of suppressing peeling.
  • a common method for improving the bonding property of the interface between the air electrode and the electrolyte membrane is to mix the electrolyte used in the electrolyte membrane with the air electrode to form a composite electrode.
  • the present inventors have newly discovered that the above method is not necessarily effective in suppressing an increase in ohmic resistance.
  • An object of the present disclosure is to provide a membrane electrode assembly that is applicable to PCFC and that can suppress an increase in ohmic resistance.
  • the membrane electrode assembly includes: a first electrode; an electrolyte membrane containing an oxide having proton conductivity; Equipped with The first electrode includes a first oxide and a second oxide,
  • the first oxide is a first perovskite compound represented by the composition formula ABO 3 , where the constituent element of the A site in the first perovskite compound is selected from the group consisting of La, Sr, and Ba. and the constituent elements of the B site include at least one selected from the group consisting of Co and Fe;
  • the second oxide is a second perovskite compound consisting of Ba, Zr, Yb, one or more first transition elements including at least Co, and O.
  • the present disclosure provides a membrane electrode assembly that is applicable to PCFC and can suppress an increase in ohmic resistance.
  • FIG. 1A shows a cross-sectional view of a membrane electrode assembly according to Embodiment 1.
  • FIG. 1B shows a cross-sectional view of an electrochemical cell according to Embodiment 2.
  • FIG. 2 shows a fuel cell system according to a third embodiment.
  • FIG. 3 shows a Nyquist plot measured using the electrochemical cell according to Example 1.
  • FIG. 4 shows a Nyquist plot measured using the electrochemical cell according to Example 2.
  • FIG. 5 shows a Nyquist plot measured using the electrochemical cell according to Example 3.
  • FIG. 6 shows a Nyquist plot measured using the electrochemical cell according to Example 4.
  • FIG. 7 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 1.
  • FIG. 8 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 2.
  • FIG. 9 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 3.
  • FIG. 10 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 4.
  • FIG. 11 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 5.
  • FIG. 12 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 6.
  • FIG. 13 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 7.
  • FIG. 14 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 8.
  • FIG. 15 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 9.
  • FIG. 16 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 10.
  • Non-Patent Document 1 a mixture of an air electrode material for SOFC and a proton conductor electrolyte material used in an electrolyte membrane is used for the air electrode.
  • the present inventors have found that the above configuration is not necessarily effective in suppressing an increase in ohmic resistance between the air electrode and the electrolyte membrane.
  • proton conductor electrolyte materials have poor electronic conductivity.
  • the bonding path between the SOFC electrode materials having high electron conductivity in the air electrode is severed.
  • the proton conductor electrolyte material mixed into the electrode material reduces the electronic conductivity of the entire electrode. As a result, ohmic resistance increases in the membrane electrode assembly including the electrode and the electrolyte membrane.
  • the present inventors conducted intensive studies on a method for suppressing an increase in ohmic resistance of a membrane electrode assembly when using air electrode materials for SOFCs in PCFCs, and as a result, obtained the following knowledge. That is, the present inventors have developed an air electrode material for SOFC that has a perovskite structure and is composed of Ba, Zr, Yb, one or more first transition elements including at least Co, and O. It has been discovered that the ohmic resistance of a membrane electrode assembly can be reduced by mixing an oxide, leading to the present disclosure described below.
  • the membrane electrode assembly according to the first aspect of the present disclosure includes: a first electrode; an electrolyte membrane containing an oxide having proton conductivity; Equipped with The first electrode includes a first oxide and a second oxide,
  • the first oxide is a first perovskite compound represented by the composition formula ABO 3 , where the constituent element of the A site in the first perovskite compound is selected from the group consisting of La, Sr, and Ba. and the constituent elements of the B site include at least one selected from the group consisting of Co and Fe;
  • the second oxide is a second perovskite compound consisting of Ba, Zr, Yb, one or more first transition elements including at least Co, and O.
  • the membrane electrode assembly according to the first aspect is applicable to PCFC, and can suppress an increase in ohmic resistance.
  • the second oxide may consist of Ba, Zr, Yb, Co, and O.
  • the membrane electrode assembly according to the second aspect is applicable to PCFC and can suppress an increase in ohmic resistance.
  • the first oxide may satisfy any of the following (1) to (4).
  • the constituent elements of the A site include La and Sr, and the constituent elements of the B site include Co and Fe.
  • the constituent elements of the A site include La and Sr, and the constituent elements of the B site include Co.
  • the constituent elements of the A site include La and Ba, and the constituent elements of the B site include Co.
  • the constituent elements of the A site include La, and the constituent elements of the B site include Co.
  • the membrane electrode assembly according to the third aspect is applicable to PCFC and can suppress an increase in ohmic resistance.
  • the first electrode and the electrolyte membrane may be in contact with each other.
  • the membrane electrode assembly according to the fourth aspect is applicable to PCFC, and can suppress an increase in ohmic resistance.
  • interfacial bonding due to the difference in thermal expansion coefficient between the first electrode and the electrolyte membrane tends to be a problem.
  • the interfacial bond between the first electrode and the electrolyte membrane can be improved, and the ohmic resistance can be reduced.
  • the electrolyte membrane is made of a compound represented by the chemical formula Ba a1 Zr 1-x1 M1 x1 O 3- ⁇ 1 , At least one selected from the group consisting of a compound represented by the chemical formula Ba a2 Ce 1-x2 M2 x2 O 3- ⁇ 2 and a compound represented by the chemical formula Ba a3 Zr 1-x3-y3 Ce x3 M3 y3 O 3- ⁇ 3 M1, M2 and M3 are each selected from the group consisting of Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y, Sc, In and Lu.
  • Contains at least one of 0.95 ⁇ a1 ⁇ 1.05, 0.95 ⁇ a2 ⁇ 1.05, 0.95 ⁇ a3 ⁇ 1.05, 0 ⁇ x1 ⁇ 1, 0 ⁇ x2 ⁇ 1, 0 ⁇ x3 ⁇ 1, 0 ⁇ y3 ⁇ 1, 0 ⁇ 1 ⁇ 1, 0 ⁇ 2 ⁇ 1, and 0 ⁇ 3 ⁇ 1 may be satisfied.
  • the electrolyte membrane includes a material having excellent proton conductivity, the ohmic resistance of the membrane electrode assembly can be reduced.
  • M1 may be Yb.
  • the membrane electrode assembly according to the sixth aspect can reduce the ohmic resistance between the first electrode and the electrolyte membrane.
  • An electrochemical cell according to a seventh aspect of the present disclosure includes the membrane electrode assembly according to any one of the first to sixth aspects, and a second electrode, the first electrode, the electrolyte membrane, and the membrane electrode assembly according to any one of the first to sixth aspects.
  • the second electrodes are provided in this order.
  • the seventh aspect it is possible to provide a highly efficient electrochemical cell in which the ohmic resistance between the first electrode and the electrolyte membrane is reduced.
  • the second electrode may include at least one selected from the group consisting of NiO and Ni.
  • a highly efficient electrochemical cell can be provided.
  • the fuel cell system according to the ninth aspect includes: Electrochemical cell according to the seventh or eighth aspect, Oxidizing gas supply route, and raw material gas supply route, Equipped with The first electrode is connected to the oxidant gas supply path, The second electrode is connected to the source gas supply path.
  • the ninth aspect it is possible to provide a highly efficient fuel cell system including a highly efficient electrochemical cell in which the ohmic resistance between the first electrode and the electrolyte membrane is reduced.
  • FIG. 1A shows a cross-sectional view of a membrane electrode assembly 10 according to Embodiment 1.
  • the membrane electrode assembly 10 includes an electrolyte membrane 11 and a first electrode 12.
  • the electrolyte membrane 11 is provided on the first main surface 12a of the first electrode 12.
  • the first electrode 12 includes a first oxide and a second oxide.
  • the first oxide is a first perovskite compound represented by the composition formula ABO 3 .
  • the constituent elements of the A site include at least one selected from the group consisting of La, Sr, and Ba
  • the constituent elements of the B site include at least one selected from the group consisting of Co and Fe. At least one is included.
  • the first oxide is a common electrode material in SOFCs.
  • lanthanum strontium cobalt iron composite oxide examples include composite oxides.
  • the second oxide is a second perovskite compound consisting of Ba, Zr, Yb, one or more first transition elements including at least Co, and O. That is, the second oxide is either (i) or (ii) below.
  • a composite oxide having a perovskite structure and consisting of Ba, Zr, Yb, Co, and O (ii) A composite oxide having a perovskite structure and consisting of Ba, Zr, Yb, and Co , a composite oxide consisting of a first transition element other than Co and O
  • the second oxide contains Co as the first transition element.
  • the element contained in the second oxide as the first transition element is Co.
  • the second oxide is in (ii) above, the second oxide contains a plurality of elements as the first transition element, including Co and a first transition element other than Co.
  • the membrane electrode assembly 10 according to the first embodiment is applicable to PCFC, and can suppress an increase in ohmic resistance. Furthermore, the membrane electrode assembly 10 according to Embodiment 1 has the above configuration, thereby maintaining the bonding at the interface between the first electrode 12 and the electrolyte membrane 11, and preventing peeling at the interface between the first electrode 12 and the electrolyte membrane 11. can also be suppressed.
  • the first oxide is, for example, an oxide that can be used as a material for an air electrode of a SOFC. Therefore, the membrane electrode assembly 10 according to the first embodiment has an interface between the first electrode using an electrode material for SOFC and an electrolyte membrane containing an oxide having proton conductivity that can be used as an electrolyte material for PCFC. Bonding can be maintained, and increase in ohmic resistance and peeling can be suppressed.
  • oxides containing transition elements and having a perovskite structure exhibit electronic conductivity, but oxides containing Co especially tend to have high electronic conductivity.
  • the amount of the transition element added is, for example, 10 mol % or more, preferably 20 mol % or more, the effect of improving electronic conductivity is large.
  • transition elements are also used as sintering aids to improve the sintering properties of oxides having a perovskite structure, for example, but in that case, the amount added is at most about 5 mol%, and they enhance electronic conductivity. The effect is small.
  • the second oxide may be the oxide (i) above, that is, a composite oxide having a perovskite structure and consisting of Ba, Zr, Yb, Co, and O.
  • the first oxide may satisfy any of the following (1) to (4): (1)
  • the constituent elements of the A site include La and Sr, and the constituent elements of the B site include Co and Fe.
  • the constituent elements of the A site include La and Sr, and the constituent elements of the B site include Co.
  • the constituent elements of the A site include La and Ba, and the constituent elements of the B site include Co.
  • the constituent elements of the A site include La, and the constituent elements of the B site include Co.
  • the first oxide that satisfies any of the above (1) to (4) is a material used as an air electrode material of SOFC.
  • the air electrode material for SOFC as described above is used in combination with an electrolyte membrane used in PCFC, in conventional membrane electrode assemblies, poor bonding tends to occur at the interface between the electrode and the electrolyte membrane.
  • the first electrode 12 further contains the second oxide, so that the air electrode material for SOFC can be used in combination with the electrolyte membrane used for PCFC. Even if the first electrode 12 and the electrolyte membrane 11 are bonded well, it is possible to maintain good bonding properties between the first electrode 12 and the electrolyte membrane 11, and also to suppress an increase in ohmic resistance.
  • the second oxide may be any of the oxides (i) and (ii) above.
  • the second oxide when the first oxide is an oxide that satisfies (2) above (i.e., LSC), the second oxide may be any of the oxides (i) and (ii) above, It may be (i) above.
  • the second oxide when the first oxide is an oxide that satisfies (3) above (that is, LBC), the second oxide may be any of the oxides (i) and (ii) above.
  • the first oxide when the first oxide is an oxide (ie, LC) that satisfies (4) above, the second oxide may be any of the oxides (i) and (ii) above.
  • the first electrode 12 may contain other components in addition to the first oxide and second oxide described above.
  • Other components include, for example, impurities generated during the process of synthesizing the first oxide and the second oxide.
  • the first electrode 12 contains, for example, BaCO 3 , ZrO 2 , Yb 2 O 3 , La 2 O 3 , Co 3 O. 4 , SrO, or Fe 2 O 3 may be included.
  • the electrolyte membrane 11 is made of, for example, an electrolyte material having proton conductivity (ie, a proton conductor).
  • proton conductors are compounds represented by the chemical formula Ba a1 Zr 1-x1 M1 x1 O 3- ⁇ 1 , compounds represented by the chemical formula Ba a2 Ce 1-x2 M2 x2 O 3- ⁇ 2 , or chemical formula Ba a3 Zr 1 -x3-y3 Ce x3 M3 y3 O 3- ⁇ 3 .
  • M1, M2 and M3 are at least selected from the group consisting of Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y, Sc, In and Lu, respectively.
  • the electrolyte membrane 11 of the membrane electrode assembly 10 according to Embodiment 1 is made of, for example, a compound represented by the chemical formula Ba a1 Zr 1-x1 M1 x1 O 3- ⁇ 1 , or a compound represented by the chemical formula Ba a2 Ce 1-x2 M2 x2 O 3- ⁇ 2. and a compound represented by the chemical formula Ba a3 Zr 1-x3-y3 Ce x3 M3 y3 O 3- ⁇ 3 .
  • the electrolyte membrane 11 includes a material having excellent proton conductivity, the ohmic resistance of the membrane electrode assembly 10 can be reduced.
  • M1 may be Yb.
  • the thickness of the electrolyte membrane 11 is, for example, 1 to 500 ⁇ m, and may be 1 to 50 ⁇ m.
  • the first electrode 12 has a thickness of, for example, 1 to 1000 ⁇ m.
  • the first electrode 12 may have a thickness of 100 ⁇ m to 1000 ⁇ m.
  • the first electrode 12 may have a thickness of 1 to 100 ⁇ m, or may have a thickness of 5 to 50 ⁇ m.
  • the electrolyte membrane 11 and the first electrode 12 may be in contact with each other.
  • the membrane electrode assembly 10 according to the first embodiment even when the first electrode 12 and the electrolyte membrane 11 are in contact with each other, a good interfacial bond can be maintained and a reduction in ohmic resistance can be achieved. .
  • the electrolyte membrane 11 and the first electrode 12 do not need to be in contact with each other. That is, another layer may be provided between the electrolyte membrane 11 and the first electrode 12.
  • An example of another layer is, for example, a functional layer.
  • the functional layer is a layer that promotes the movement of electrons or protons between the electrolyte membrane 11 and the first electrode 12.
  • the functional layer is composed of, for example, a composite of cermet and complex oxide.
  • the electrolyte membrane 11 is produced, for example, by tape casting, spin coating, dip coating, sputtering, or PLD (Pulse Laser Deposition).
  • FIG. 1B shows a cross-sectional view of an electrochemical cell 20 according to a second embodiment.
  • the electrochemical cell 20 includes a membrane electrode assembly 10 and a second electrode 13. That is, the electrochemical cell 20 includes a first electrode 12, an electrolyte membrane 11, and a second electrode 13.
  • the membrane electrode assembly 10 is described in Embodiment 1.
  • the first electrode 12, the electrolyte membrane 11, and the second electrode 13 are provided in this order. That is, the electrolyte membrane 11 is sandwiched between the first electrode 12 and the second electrode 13. In other words, the electrolyte membrane 11 is provided between the first electrode 12 and the second electrode 13.
  • the electrochemical cell 20 according to the second embodiment can reduce the ohmic resistance between the first electrode 12 and the electrolyte membrane 11. Therefore, the electrochemical cell 20 according to the second embodiment can achieve high efficiency.
  • the first electrode 12 of the membrane electrode assembly 10 may be an air electrode. Therefore, the second electrode 13 may be a fuel electrode.
  • the second electrode 13 functions as a fuel electrode, the second electrode 13 contains, for example, a metal oxide.
  • the second electrode 13 mainly contains nickel oxide.
  • the second electrode 13 may be provided on the membrane electrode assembly 10 by, for example, a screen printing method.
  • the second electrode 13 includes at least one selected from the group consisting of, for example, a metal and a metal oxide.
  • the second electrode 13 includes at least one selected from the group consisting of nickel (namely, Ni) and nickel oxide (namely, NiO). According to this configuration, the electrochemical cell 20 having excellent fuel electrode performance can be provided.
  • the second electrode 13 may be provided on the membrane electrode assembly 10 by, for example, tape casting, spin coating, dip coating, sputtering, PLD, or screen printing.
  • the second electrode 13 and the electrolyte membrane 11 are provided in contact with each other, but the present invention is not limited thereto. Other layers may be provided between the second electrode 13 and the electrolyte membrane 11.
  • An example of another layer is a functional layer.
  • the functional layer is described in Embodiment 2.
  • the electrochemical cell 20 can be used in fuel cells, electrochemical hydrogen pumps, hydrogen sensors, and water electrolyzers.
  • FIG. 2 schematically shows a fuel cell system 1000 according to a third embodiment.
  • the fuel cell system 1000 includes an electrochemical cell 20. Electrochemical cell 20 is described in embodiment 2.
  • the electrochemical cell 20 is used as a fuel cell. Therefore, in this case, the first electrode 12 functions as an air electrode, and the second electrode 13 functions as a fuel electrode.
  • the fuel cell system 1000 further includes an oxidant gas supply path 1024 and a raw material gas supply path 1023.
  • the oxidizing gas supply path 1024 is connected to the first electrode 12 and the oxidizing gas supply device 1021.
  • the raw material gas supply path 1023 is connected to the second electrode 13 and the raw material supplier 1022.
  • a stack 30 is obtained by stacking the electrochemical cells 20.
  • the obtained stack 30 is stored in a housing 1014.
  • the housing 1014 may be made of a heat insulating member. Oxidizing gas is supplied to the first electrode 12 of the stacked electrochemical cell 20 .
  • the oxidizing gas is supplied from the oxidizing gas supply device 1021 to the first electrodes 12 (ie, cathodes) of the plurality of electrochemical cells 20 through the oxidizing gas supply path 1024.
  • the oxidant gas is, for example, air.
  • the raw material is supplied from the raw material supply device 1022 to the second electrodes 13 of the plurality of electrochemical cells 20 through the raw material gas supply path 1023.
  • the raw material is, for example, hydrogen molecules.
  • Hydrogen may be generated by a reforming reaction. Alternatively, hydrogen may be produced by water electrolysis.
  • the fuel cell system 1000 operates.
  • the fuel cell system 1000 then generates electricity.
  • the fuel cell system 1000 according to the third embodiment includes a highly efficient electrochemical cell 20 in which the ohmic resistance between the first electrode 12 and the electrolyte membrane 11 is reduced. Therefore, the fuel cell system 1000 according to the third embodiment can achieve high efficiency.
  • Example 1 (Preparation of air electrode) As the first electrode, an air electrode was produced by the following method.
  • LaSrCo composite oxide was prepared as the first oxide.
  • LaSrCo composite oxide (hereinafter referred to as LSC) was synthesized by a citric acid complex method. The following materials were used during the synthesis.
  • the median diameter D50 means the particle diameter when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • powder of LSC which is the first oxide
  • the composition of the obtained LSC was La 0.6 Sr 0.4 CoO 3- ⁇ .
  • an X-ray diffraction device "Smartlab” manufactured by Rigaku was used to analyze the crystal structure of the obtained first oxide. Specifically, CuK ⁇ rays were used as an X-ray source, and the obtained first oxide was irradiated with X-rays by a parallel beam method. By comparing the obtained peak shape with the inorganic crystal structure database (ICSD), it was determined that the first oxide obtained in this example had a perovskite structure.
  • the ICSD data to be queried used in the analysis of the crystal structure of the first oxide in Example 1 was ICSD86943 (La 0.6 Sr 0.4 CoO 3- ⁇ ).
  • the second oxide was synthesized by complex polymerization method. During the synthesis, each solution was first prepared. Electrode materials were synthesized using each of the prepared solutions.
  • the above materials were added to a polyethylene container containing 1800 mL of distilled water. Next, the distilled water to which the above materials were added was stirred well. A Zr solution was thus obtained. The concentration of Zr ions in this solution was calculated using inductively coupled plasma optical emission spectroscopy (hereinafter referred to as ICP-AES). As an analyzer for ICP-AES, "iCAP7400 Duo" manufactured by Thermo Fisher Scientific was used. As a result of the analysis, the concentration of Zr in the Zr solution was 0.49 mol/L.
  • Yb solution was prepared using the following materials. ⁇ Yb(NO 3 ) 3.5H 2 O (300g, manufactured by Kojundo Kagaku Kenkyusho Co., Ltd.) ⁇ C 6 H 8 O 7 ⁇ H 2 O (300g, manufactured by Kanto Kagaku Co., Ltd.)
  • the above materials were added to a polyethylene container containing 500 mL of distilled water. Next, the distilled water to which the above materials were added was stirred well. A solution of Yb was thus obtained.
  • the concentration of Yb ions in this solution was calculated using ICP-AES in the same manner as the calculation of the concentration of Zr ions in the Zr solution in (a) above. As a result, the concentration of Yb in the Yb solution was 0.91 mol/L.
  • the concentration of citric acid (i.e., C 6 H 8 O 7 ) in this solution is 2.84 mol/from the ratio of the amount of C 6 H 8 O 7 ⁇ H 2 O charged and the amount of distilled water charged It was calculated as L.
  • Co solution was prepared using the following materials. ⁇ Co(NO 3 ) 2.6H 2 O (300g, manufactured by Kanto Kagaku Co., Ltd.) ⁇ C 6 H 8 O 7 ⁇ H 2 O (300g, manufactured by Kanto Kagaku Co., Ltd.)
  • the above materials were added to a polyethylene container containing 500 mL of distilled water. Next, the distilled water to which the above materials were added was stirred well. A Co solution was thus obtained.
  • the concentration of Co ions in this solution was calculated using ICP-AES in the same manner as the calculation of the concentration of Zr ions in the Zr solution in (a) above. As a result, the Co concentration in the Co solution was 1.20 mol/L.
  • the concentration of citric acid (i.e., C 6 H 8 O 7 ) in this solution is 2.84 mol/from the ratio of the amount of C 6 H 8 O 7 ⁇ H 2 O charged and the amount of distilled water charged It was calculated as L.
  • Citric Acid Solution A citric acid solution was prepared using the following materials. ⁇ C 6 H 8 O 7 ⁇ H 2 O (1200g, manufactured by Kanto Kagaku Co., Ltd.)
  • the above materials were added to a polyethylene container containing 2000 mL of distilled water. Next, the distilled water to which the above materials were added was stirred well. A solution of citric acid was thus obtained.
  • the concentration of citric acid (i.e., C 6 H 8 O 7 ) in this solution is 2.84 mol/L from the ratio of the amount of C 6 H 8 O 7 ⁇ H 2 O charged and the amount of distilled water charged. Calculated.
  • BZYbCo second oxide BaZrYbCo composite oxide
  • citric acid monohydrate ie, C 6 H 8 O 7 .H 2 O
  • 80 mL of distilled water was added to a 1 L beaker and stirred with a stirrer.
  • a colorless and transparent first aqueous solution was obtained.
  • BaCO 3 was added to the resulting colorless and transparent first aqueous solution.
  • by further stirring with a stirrer BaCO 3 was completely dissolved. In this way, a colorless and transparent second aqueous solution was obtained.
  • the resulting mixed solution was continuously stirred with a stirrer.
  • the obtained mixed solution was heated to about 90° C. using a mantle heater. In this way, water was evaporated from the obtained mixed solution.
  • the mixed solution was further heated to about 130° C. to evaporate and remove ethylene glycol, thereby accelerating polymerization and concentrating it. Heating was stopped when the solution volume decreased to 100 mL. A concentrated solution was thus obtained.
  • the obtained concentrate was transferred to an alumina crucible and allowed to cool. Then, it was heated in a dryer at 120°C for 6 hours. In this way, ethylene glycol was removed from the concentrate. Thereafter, the alumina crucible containing the concentrated liquid from which ethylene glycol had been removed was calcined at 500° C.
  • the crystal structure of the obtained second oxide was analyzed by the same method as the crystal structure of the first oxide.
  • the second oxide obtained in this example had a perovskite structure.
  • the ICSD data to be queried used in the analysis of the crystal structure of the second oxide in Example 1 was ICSD157138 (BaZr 0.92 Yb 0.08 O 3- ⁇ ).
  • BZYb which is a proton conductor material constituting the electrolyte membrane 11 and a part of the mixture of the second electrode 13, is Ba(NO 3 ) 2 (manufactured by Kanto Kagaku) and ZrO (NO 3 ) 2.2H. It was produced by the citric acid complex method using powder of Yb(NO 3 ) 3 xH 2 O (manufactured by Kojundo Kagaku) as a starting material by adding powder of Yb(NO 3 ) 3 . Specifically, first, a mixture of each powder weighed in a predetermined proportion was dissolved in distilled water, and the resulting aqueous solution was stirred.
  • the obtained solid was crushed in a mortar and then defatted at about 400°C. After degreasing, the obtained powder was press-molded into a cylindrical shape and calcined at 900° C. for 10 hours. After calcining, the coarsely pulverized powder was placed in a plastic container together with zirconia balls, ethanol was added, and the mixture was pulverized in a ball mill for 4 days or more. After pulverization using a ball mill, the solvent was removed by lamp drying. Thereby, BaZr 0.8 Yb 0.2 O 3- ⁇ (BZYb) electrolyte material powder was obtained.
  • BaZr 0.8 Yb 0.2 O 3- ⁇ (BZYb) electrolyte material powder After kneading the obtained BaZr 0.8 Yb 0.2 O 3- ⁇ (BZYb) electrolyte material powder with polyvinyl butyral as a resin, butyl benzyl phthalate as a plasticizer, and butyl acetate and 1-butanol as a solvent.
  • a green sheet of an electrolyte membrane was obtained using the tape casting method.
  • NiO powder manufactured by Sumitomo Metal Mining
  • Example 1 a method for manufacturing the laminate of the second electrode 13 and the electrolyte membrane 11 in Example 1 will be described.
  • a laminate was obtained by hot pressing at 50 MPa.
  • the obtained laminate was fired at 1475° C. for 2 hours to produce a half cell consisting of a fuel electrode and an electrolyte membrane.
  • the half cell after firing had a size of about 20 mm ⁇ , an electrolyte thickness of about 13 ⁇ m, and a fuel electrode thickness of about 600 ⁇ m.
  • the obtained first electrode dispersion was printed using a screen printing method on the center of the main surface of the electrolyte membrane in the half cell of the fuel electrode/electrolyte membrane produced by the above method. Thereafter, it was fired in air at 900°C for 2 hours.
  • the first electrode produced was circular and had a diameter of 10 mm. In this way, an electrochemical cell for evaluation was produced.
  • silver ink manufactured by Nexceris
  • the electrochemical cell for evaluation was dried. Thereafter, it was held between alumina cell evaluation holders (manufactured by Chino Co., Ltd.). Foamed silver (manufactured by Magnex Co., Ltd., thickness 0.6 mm, diameter 12 mm) was sandwiched between the cell evaluation holder and the cell as a current collecting member for both the first electrode and the second electrode.
  • thermiculite #866 manufactured by Flexitaric Ltd., UK, thickness 0.5 mm, outer diameter 20 mm ⁇ , inner diameter 14 mm ⁇
  • the cell evaluation holder holding the electrochemical cell for evaluation was placed in an electric furnace, and the air supply route and the fuel supply route were connected to each other.
  • Humidified air (flow rate: 100 mL/min) at a dew point of 20°C was applied to the first electrode, which is the air electrode, of the electrochemical cell for evaluation, and nitrogen (flow rate: 100 mL/min), which was humidified at a dew point of 20°C, was applied to the second electrode, which was the fuel electrode.
  • the temperature was raised to 700° C. while supplying water (minutes), respectively, and then the gas supplied to the fuel electrode was switched to humidified hydrogen at a dew point of 20° C. (flow rate: 100 mL/min) to carry out reduction.
  • the temperature of the electrochemical cell for evaluation was lowered to 600° C., and after the temperature became stable, the ohmic resistance of the electrochemical cell for evaluation was measured based on the AC impedance method.
  • an alternating current signal was applied to the cell in the range of 100 kHz to 0.1 Hz with an amplitude of 10 mV using ModuLab XM ECS (manufactured by Solartron Analytical).
  • ModuLab XM ECS manufactured by Solartron Analytical
  • the intersection of the arc and the real number axis on the high frequency side was calculated as the ohmic resistance.
  • This ohmic resistance is the sum of the ohmic resistances of each element of the electrochemical cell, but since the second electrode and the electrolyte membrane are manufactured under the same conditions, the first electrode or the first electrode / The superiority or inferiority of ohmic resistance caused by the electrolyte membrane interface was determined. Note that the measurement was performed in a so-called open circuit state without applying an external current.
  • FIG. 3 shows a Nyquist plot measured using the electrochemical cell according to Example 1.
  • the ohmic resistance was 0.24 ⁇ cm 2 .
  • Example 2 Preparation of air electrode
  • LSCF First Oxide LaSrCoFe composite oxide
  • the subsequent synthesis procedure was the same as in Example 1.
  • powder of LSCF which is the first oxide
  • the composition of the obtained LSCF powder was La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3- ⁇ .
  • the crystal structure of the obtained first oxide was analyzed by the same method as in Example 1.
  • the first oxide obtained in Example 2 had a perovskite structure.
  • the ICSD data to be queried used to analyze the crystal structure of the first oxide in Example 2 was ICSD158799 (La 0.4 Sr 0.6 Co 0.2 Fe 0.8 O 3- ⁇ ).
  • Example 2 (Checking for presence or absence of electrode peeling) The procedure was the same as in Example 1. In Example 2, no electrode peeling was observed.
  • FIG. 4 shows a Nyquist plot measured using the electrochemical cell according to Example 2.
  • the ohmic resistance was 0.25 ⁇ cm 2 .
  • Example 3 (Preparation of air electrode) 1.
  • LBC First Oxide LaBaCo composite oxide
  • the following materials were used during the synthesis.
  • the subsequent synthesis procedure was the same as in Example 1.
  • powder of LBC which is the first oxide
  • the composition of the obtained LBC powder was La 0.6 Ba 0.4 CoO 3- ⁇ .
  • the crystal structure of the obtained first oxide was analyzed by the same method as in Example 1.
  • the first oxide obtained in Example 3 had a perovskite structure.
  • the ICSD data to be queried used in the analysis of the crystal structure of the first oxide in Example 3 was ICSD157906 (La 0.6 Ba 0.4 CoO 3- ⁇ ).
  • Example 3 (Checking for presence or absence of electrode peeling) The procedure was the same as in Example 1. In Example 3, no electrode peeling was observed.
  • FIG. 5 shows a Nyquist plot measured using the electrochemical cell according to Example 3.
  • the ohmic resistance was 0.27 ⁇ cm 2 .
  • Example 4 (Preparation of air electrode) 1.
  • LC First Oxide LaCo composite oxide
  • LC First Oxide LaCo composite oxide
  • the following materials were used during the synthesis.
  • the composition of the obtained LC powder was LaCoO 3 .
  • the crystal structure of the obtained first oxide was analyzed by the same method as in Example 1.
  • the first oxide obtained in Example 4 had a perovskite structure.
  • the ICSD data to be queried used to analyze the crystal structure of the first oxide in Example 4 was ICSD201761 (LaCoO 3 ).
  • Example 4 (Checking for presence or absence of electrode peeling) The procedure was the same as in Example 1. In Example 4, no electrode peeling was observed.
  • FIG. 6 shows a Nyquist plot measured using the electrochemical cell according to Example 4.
  • the ohmic resistance was 0.27 ⁇ cm2 .
  • FIG. 7 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 1.
  • the ohmic resistance was 0.29 ⁇ cm 2 .
  • FIG. 8 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 2.
  • the ohmic resistance was 0.31 ⁇ cm 2 .
  • FIG. 9 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 3.
  • the ohmic resistance was 0.41 ⁇ cm 2 .
  • FIG. 10 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 4.
  • the ohmic resistance was 0.31 ⁇ cm 2 .
  • Second oxide For synthesis, a precursor solution prepared in advance was used. As for the Ba solution, Zr solution, and Yb solution, the same solutions as in Example 1 (a), (b), and (c) were used. In addition, an Fe solution prepared by the following method was used.
  • the above materials were added to a polyethylene container containing 500 mL of distilled water. Next, the distilled water to which the above materials were added was stirred well. A solution of Fe was thus obtained.
  • the concentration of Fe ions in this solution was calculated using ICP-AES in the same manner as the calculation of the concentration of Zr ions in the Zr solution described above. As a result, the concentration of Fe in the Fe solution was 0.88 mol/L.
  • the concentration of citric acid (i.e., C 6 H 8 O 7 ) in this solution is 2.84 mol/from the ratio of the amount of C 6 H 8 O 7 ⁇ H 2 O charged and the amount of distilled water charged It was calculated as L.
  • BZYbFe BaZrYbFe composite oxide
  • citric acid monohydrate ie, C 6 H 8 O 7 .H 2 O
  • 80 mL of distilled water was added to a 1 L beaker and stirred with a stirrer.
  • a colorless and transparent first aqueous solution was obtained.
  • BaCO3 was added to the resulting colorless and transparent first aqueous solution.
  • BaCO 3 was completely dissolved. In this way, a colorless and transparent second aqueous solution was obtained.
  • the subsequent manufacturing procedure was the same as in Example 1. In this way, a powder of BZYbFe, which is the second oxide, was obtained.
  • the composition of the obtained BZYbFe powder was BaZr 0.375 Yb 0.125 Fe 0.500 O 3- ⁇ .
  • the crystal structure of the obtained second oxide was analyzed by the same method as in Example 1.
  • the second oxide obtained in Comparative Example 5 had a perovskite structure.
  • the ICSD data to be queried used in the analysis of the crystal structure of the second oxide in Comparative Example 5 was ICSD157138 (BaZr 0.92 Yb 0.08 O 3- ⁇ ).
  • FIG. 11 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 5.
  • the ohmic resistance was 0.66 ⁇ cm 2 .
  • FIG. 12 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 6.
  • the ohmic resistance was 0.79 ⁇ cm 2 .
  • FIG. 13 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 7.
  • the ohmic resistance was 0.62 ⁇ cm2.
  • Second oxide For synthesis, a precursor solution prepared in advance was used. As for the Ba solution, Zr solution, Yb solution, and Co solution, the same solutions as in Example 1 (a), (b), (c), and (d) were used. In addition, a Ce solution prepared by the following method was used.
  • the above materials were added to a polyethylene container containing 500 mL of distilled water. Next, the distilled water to which the above materials were added was stirred well. A solution of Ce was thus obtained.
  • the concentration of Ce ions in this solution was calculated using ICP-AES in the same manner as the calculation of the concentration of Zr ions in the Zr solution in (a) above. As a result, the concentration of Ce in the Ce solution was 0.88 mol/L.
  • the concentration of citric acid (i.e., C 6 H 8 O 7 ) in this solution is 2.84 mol/from the ratio of the amount of C 6 H 8 O 7 ⁇ H 2 O charged and the amount of distilled water charged It was calculated as L.
  • BCeZYbCo BaCeZrYbCo composite oxide
  • Comparative Example 8 A BaCeZrYbCo composite oxide (hereinafter referred to as BCeZYbCo), which is a second oxide according to Comparative Example 8, was synthesized using each solution prepared by the above method. The following materials and solutions were used to synthesize BCeZYbCo according to Comparative Example 8.
  • citric acid monohydrate ie, C 6 H 8 O 7 .H 2 O
  • 80 mL of distilled water was added to a 1 L beaker and stirred with a stirrer.
  • a colorless and transparent first aqueous solution was obtained.
  • BaCO 3 was added to the resulting colorless and transparent first aqueous solution.
  • by further stirring with a stirrer BaCO 3 was completely dissolved. In this way, a colorless and transparent second aqueous solution was obtained.
  • the subsequent manufacturing procedure was the same as in Example 1.
  • powder of BCeZYbCo which is the second oxide
  • the composition of the obtained BCeZYbCo was BaCe 0.205 Zr 0.170 Yb 0.125 Co 0.500 O 3- ⁇ .
  • the crystal structure of the obtained second oxide was analyzed by the same method as in Example 1.
  • the second oxide obtained in Comparative Example 8 had a perovskite structure.
  • the ICSD data to be queried used for analyzing the crystal structure of the second oxide in Comparative Example 8 was ICSD181964 (BaCe 0.45 Zr 0.4 Y 0.15 O 3- ⁇ ).
  • FIG. 14 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 8.
  • the ohmic resistance was 0.31 ⁇ cm 2 .
  • FIG. 15 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 9.
  • the ohmic resistance was 0.37 ⁇ cm 2 .
  • FIG. 16 shows a Nyquist plot measured using the electrochemical cell according to Comparative Example 10.
  • the ohmic resistance was 3.73 ⁇ cm2 .
  • the electrochemical cells of Examples 1 to 4 in which the first electrode as an air electrode includes both the first oxide and the second oxide have no electrode peeling and the first electrode
  • the ohmic resistance was lower than that of Comparative Examples 1 to 10, which contained only one of the first oxide and the second oxide. Therefore, the membrane electrode assembly and electrochemical cell of the present disclosure can reduce ohmic resistance in the membrane electrode assembly and electrochemical cell using a proton conductor as an electrolyte. Further, from Table 1, it can be seen that the reduction in ohmic resistance was achieved by mixing the second oxide, BZYbCo, with the first oxide used in existing SOFCs.
  • the ohmic resistance was 0.29 cm 2 when only LSC was used in Comparative Example 1, and the ohmic resistance was 0.29 cm 2 when only BZYbCo was used in Comparative Example 4.
  • the ohmic resistance was as small as 0.24 cm 2 when both LSC and BZYbCo were used. Normally, when two types of materials are mixed, the ohmic resistance is expected to take a value between the two.
  • the ohmic resistance of Example 1 is expected to take a value between 0.29 ⁇ cm 2 and 0.31 ⁇ cm 2 .
  • the actual ohmic resistance of Example 1 was 0.24 ⁇ cm 2 , which was a uniquely small ohmic resistance.
  • Similar results were obtained when comparing the results of Example 2, Comparative Example 2, and Comparative Example 4, when comparing the results of Example 3, Comparative Example 3, and Comparative Example 4, and when comparing the results of Example 4, Comparative Example 10, and Comparative Example 4. This can also be seen when comparing Comparative Example 4.
  • the LBC used in Comparative Example 3 is a material that exhibits high electronic conductivity equivalent to or higher than the LSC in Comparative Example 1 and the LSCF in Comparative Example 2.
  • the ohmic resistance obtained in Comparative Example 3 is larger than the results of Comparative Examples 1 and 2. This result is considered to be related to the fact that electrode peeling of LBC was observed in Comparative Example 3. If electrode peeling or poor bonding at the interface between the electrode and the electrolyte membrane is observed even if electrode peeling does not occur, ohmic resistance is considered to increase. That is, in Comparative Example 1, Comparative Example 2, and Comparative Example 3, it is considered that ohmic resistance was present due to poor bonding, although there were differences in magnitude. This is consistent with the fact that in Comparative Example 10, LC electrode peeling was observed and the ohmic resistance became very large.
  • BZYbCo has a relatively similar composition to BZYb, which is a proton conductor, its physical properties are also similar to BZYb. That is, in terms of thermal expansion coefficients, the thermal expansion coefficients of BZYbCo and BZYb are relatively close to each other, and when BZYbCo is used, there is a low possibility that a bonding failure will occur at the interface between the electrode and the electrolyte membrane.
  • BZYb itself is a material that has almost no electronic conductivity
  • BZYbCo also has low electronic conductivity compared to LSC, LSCF, LBC, and the like. That is, in Comparative Example 4, while the ohmic resistance due to poor bonding at the interface between the electrode and the electrolyte membrane was small, it is thought that ohmic resistance occurred inside the electrode.
  • the ohmic resistance factors of an electrochemical cell are thought to be poor bonding at the interface between the electrode and electrolyte membrane and low electron conductivity inside the electrode.
  • ohmic resistance factors in Examples 1 to 3, a combination of high electronic conductivity due to LSC, LSCF, LBC, or LC and improvement of bonding property at the interface between the electrode and the electrolyte membrane due to BZYbCo is achieved. It is thought that this effect reduced the ohmic resistance of the electrochemical cell.
  • Comparative Example 2 Comparative Example 5
  • Comparative Example 5 a mixture of LSCF and BZYbFe was used for the electrode, and the ohmic resistance of the electrochemical cell was 0.66 ⁇ cm 2 .
  • This value was between the ohmic resistance of 0.31 ⁇ cm 2 of LSCF in Comparative Example 2 and the ohmic resistance of 0.79 ⁇ cm 2 of BZYbFe in Comparative Example 6. That is, unlike Examples 1 to 3, no specific ohmic resistance reduction was observed due to mixed electrode formation (that is, using a mixture of existing SOFC electrode material and BZYbFe).
  • Comparative Example 7 uses a mixture of LSCF and BZYb for the electrode. This is an example in which an electrolyte material is mixed with an existing SOFC electrode material, and has the same technical idea as the invention described in Patent Document 1. Regarding the case where only BZYb is used for the electrode, the electrochemical cell was not evaluated because BZYb has almost no electronic conductivity and does not function as an electrode catalyst. However, from the results of Comparative Example 2 and Comparative Example 7, it is clear that reduction in ohmic resistance cannot be expected by creating a mixed electrode with BZYb (that is, using a mixture of existing SOFC electrode materials and BZYb for the electrode). be.
  • BZYbFe and BZYb should be expected to have the same improvement in interfacial bonding properties as BZYbCo.
  • no ohmic resistance reduction effect was observed with BZYb and BZYbFe.
  • BZYbFe did not exhibit the same effect as BZYbCo, even though it contains Fe, which is a transition element, and therefore has electronic conductivity.
  • Comparative Example 8 Comparative Example 9 will be explained.
  • a mixture of LSC and BCeZYbCo was used for the electrode, and the ohmic resistance of the electrochemical cell was 0.31 ⁇ cm 2 .
  • This value is between the ohmic resistance of LSC in Comparative Example 1 of 0.29 ⁇ cm 2 and the ohmic resistance of BCeZYbCo in Comparative Example 9 of 0.37 ⁇ cm 2 . That is, when BCeZYbCo was mixed with existing SOFC electrode materials, no specific ohmic resistance reduction effect was observed.
  • the possibility of an effect due to Co contained in the second oxide was mentioned above, a similar effect was not observed when the second oxide contained Ce. Although the reason for this is unknown, it is possible that the element diffusion behavior at the interface between the first oxide and the second oxide differs due to the inclusion of Ce, and a difference was observed in the bondability improvement at the particle level.
  • the membrane electrode assembly according to the present disclosure is suitable for a system using an electrochemical cell of a hydrogen generation system or a fuel cell system.
  • the membrane electrode assembly according to the present disclosure can also be used in electrochemical hydrogen pumps such as hydrogen purification devices and hydrogen compression devices.
  • Membrane electrode assembly 11 Electrolyte membrane 12a First main surface 12 First electrode 13 Second electrode 20 Electrochemical cell 30 Stack 1000 Fuel cell system 1014 Housing 1021 Oxidizing gas supply device 1022 Raw material supply device 1023 Raw material gas supply path 1024 Oxidizing gas supply route

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Compounds Of Iron (AREA)

Abstract

本開示の膜電極接合体は、第1電極と、プロトン伝導性を有する酸化物を含む電解質膜と、を具備し、前記第1電極は、第1酸化物と第2酸化物とを含み、前記第1酸化物は、組成式ABO3で表される第1ペロブスカイト化合物であり、ここで、前記第1ペロブスカイト化合物において、Aサイトの構成元素にはLa、Sr、およびBaからなる群より選択される少なくとも1つが含まれ、かつBサイトの構成元素にはCoおよびFeからなる群より選択される少なくとも1つが含まれ、前記第2酸化物は、Baと、Zrと、Ybと、少なくともCoを含む1種以上の第一遷移元素と、Oとからなる第2ペロブスカイト化合物である。

Description

膜電極接合体、電気化学セルおよび燃料電池システム
 本開示は、膜電極接合体、電気化学セルおよび燃料電池システムに関する。
 固体酸化物形燃料電池(以下、「SOFC」という)は、電解質膜を構成する電解質に固体酸化物が用いられた燃料電池である。電解質としての固体酸化物には、安定化ジルコニアに代表される酸化物イオン伝導体が広く用いられている。SOFCには、600℃以上の高温で動作する特徴があり、低温型で知られる固体高分子形燃料電池(PEFC)と比べて高い発電効率を有するという特長がある。
 SOFCの1種であるプロトン伝導セラミック燃料電池(以下、「PCFC」という)は、電解質膜を構成する電解質にプロトン伝導性を有する固体酸化物が用いられることが特徴である。一般的なSOFCでは、発電反応により燃料極側で水蒸気が生成する。このため、燃料利用率が高い動作環境では、燃料である水素が水蒸気によって希釈され、燃料電池の起電力が低下したり、燃料枯れによるセルの劣化のリスクが高まったりする。したがって、一般的なSOFCでは、燃料利用率を十分に高くすることができない。
 一方で、電解質にプロトン伝導体を用いたPCFCでは、発電反応による水蒸気の生成が空気極側で進行するため、燃料極で水素の希釈が抑制される。これにより、高い燃料利用率で運転した場合にも燃料電池の起電力を高く維持でき、燃料枯れのリスクも低減できるため、高燃料利用率での運転に有利である。燃料電池の発電効率は、セルの電圧と、燃料利用率との積で表されるため、高燃料利用率と高起電力とが両立できるPCFCは、SOFCの中でも特に高い発電効率が期待できる。
 SOFCでは、電解質膜および電極が固体酸化物で構成されるため、異種の酸化物材料の界面での接合不良が問題になりやすい。具体的には、電解質膜と電極との界面での接合不良によるオーミック抵抗の増大が問題となる。また、電解質膜と電極との界面での接合不良が顕著な場合には、剥離によるセル破壊のリスクがある。
 特にSOFCの構成材料の中で、空気極材料と電解質膜を構成する電解質とでは熱膨張率の差が大きいため、セルの作製時およびセルの起動停止時に材料界面の応力がたまりやすく、接合不良および剥離のリスクが高い。例えば、一般的な電解質であるイットリア安定化ジルコニアの熱膨張率は11×10-6/Kであるのに対し、一般的な空気極材料であるLaSrCoFe複合酸化物の熱膨張率は15×10-6/Kである。これらの材料の組み合わせは実用化がなされているが、例えば他の空気極材料であるLaSrCo複合酸化物およびLaBaCo複合酸化物はさらに熱膨張率が大きく、それぞれ約18×10-6/Kおよび20×10-6/Kであり、電極剥離のリスクは高まる。
 上記のようなSOFC用の空気極材料をPCFCに用いる場合には、空気極と電解質膜との界面での接合不良のリスクはさらに高くなる。例えば、一般的なPCFC用の電解質としてBaZrYb複合酸化物がある。このBaZrYb複合酸化物の熱膨張率は8×10-6/Kから9×10-6/Kの範囲であり、この値は一般的なSOFCの電解質であるイットリア安定化ジルコニアの熱膨張率よりもさらに小さい。そのため空気極材料と電解質との熱膨張率の差は、PCFCの場合にはより大きくなる。加えて、プロトン伝導体は結晶格子中に水が溶け込むことでプロトン伝導性を発現するため、熱膨張に加え、水和による膨張収縮が生じることが知られる。水和量は温度および水蒸気濃度によって変化するため、起動停止および運転の各種動作の中で膨張収縮が生じる。これにより、空気極と電解質膜との界面での接合不良はさらに助長されると考えられる。
 したがって、PCFCにSOFC用の空気極材料を用いる際には、空気極と電解質膜との界面の接合を保ち、オーミック抵抗の増大及び剥離を抑制することが重要である。
 空気極と電解質膜との界面の接合を向上するための一般的な手法として、電解質膜に用いられている電解質を空気極に混合して複合電極化する手法が挙げられる。例えば、非特許文献1に開示されているPCFCでは、電解質膜を形成する電解質としてBaCeZrYYb複合酸化物を用い、空気極には、LaSrCoFe複合酸化物、LaSrCo複合酸化物、またはLaBaCo複合酸化物と、BaCeZrYYb複合酸化物との混合物が用いられている。すなわち、非特許文献1に開示されているPCFCは、電解質膜を形成する電解質を、空気極にも混合している。この構成は、空気極と電解質膜との界面の接合は有利になり、剥離を抑制する効果がある。
 上述の通り、空気極と電解質膜との界面の接合性を向上するための一般的な手法として、電解質膜に用いられている電解質を空気極に混合して複合電極化する手法が挙げられる。しかしながら、オーミック抵抗の増大化を抑制するという観点では、上記手法は必ずしも有効でないことを本発明者らは新たに見出した。
 本開示の目的は、PCFCに適用可能であって、かつオーミック抵抗の増大化を抑制可能な膜電極接合体を提供することにある。
 本開示による膜電極接合体は、
 第1電極と、
 プロトン伝導性を有する酸化物を含む電解質膜と、
を具備し、
 前記第1電極は、第1酸化物と第2酸化物とを含み、
 前記第1酸化物は、組成式ABO3で表される第1ペロブスカイト化合物であり、ここで、前記第1ペロブスカイト化合物において、Aサイトの構成元素にはLa、Sr、およびBaからなる群より選択される少なくとも1つが含まれ、かつBサイトの構成元素にはCoおよびFeからなる群より選択される少なくとも1つが含まれ、
 前記第2酸化物は、Baと、Zrと、Ybと、少なくともCoを含む1種以上の第一遷移元素と、Oとからなる第2ペロブスカイト化合物である。
 本開示は、PCFCに適用可能であって、かつオーミック抵抗の増大化を抑制可能な膜電極接合体を提供する。
図1Aは、実施形態1による膜電極接合体の断面図を示す。 図1Bは、実施形態2による電気化学セルの断面図を示す。 図2は、実施形態3による燃料電池システムを示す。 図3は、実施例1による電気化学セルを用いて測定したナイキストプロットを示す。 図4は、実施例2による電気化学セルを用いて測定したナイキストプロットを示す。 図5は、実施例3による電気化学セルを用いて測定したナイキストプロットを示す。 図6は、実施例4による電気化学セルを用いて測定したナイキストプロットを示す。 図7は、比較例1による電気化学セルを用いて測定したナイキストプロットを示す。 図8は、比較例2による電気化学セルを用いて測定したナイキストプロットを示す。 図9は、比較例3による電気化学セルを用いて測定したナイキストプロットを示す。 図10は、比較例4による電気化学セルを用いて測定したナイキストプロットを示す。 図11は、比較例5による電気化学セルを用いて測定したナイキストプロットを示す。 図12は、比較例6による電気化学セルを用いて測定したナイキストプロットを示す。 図13は、比較例7による電気化学セルを用いて測定したナイキストプロットを示す。 図14は、比較例8による電気化学セルを用いて測定したナイキストプロットを示す。 図15は、比較例9による電気化学セルを用いて測定したナイキストプロットを示す。 図16は、比較例10による電気化学セルを用いて測定したナイキストプロットを示す。
 (本開示の一形態を得るに至った経緯)
 非特許文献1では、空気極に、SOFC用空気極材料と、電解質膜に用いられているプロトン伝導体電解質材料との混合体を用いている。しかしながら、空気極と電解質膜とのオーミック抵抗増大を抑制するという観点では、上記構成は必ずしも有効でないことを本発明者らは見出した。
 その具体的理由としては、プロトン伝導体電解質材料は電子伝導性に乏しいことが原因に挙げられる。プロトン伝導体電解質材料が空気極材料に混合されることにより、空気極内における電子伝導性が高いSOFC用電極材料同士の接合パスが寸断される。このように、電極材料に混合されるプロトン伝導体電解質材料は、電極全体の電子伝導性を低下させる。これにより、電極と電解質膜とを備えた膜電極接合体において、オーミック抵抗が増大する。
 ここで、本発明者らは、SOFC用の空気極材料をPCFCに用いる上で、膜電極接合体のオーミック抵抗増大を抑制する方法について鋭意検討を行った結果、以下の知見を得た。すなわち、本発明者らは、SOFC用空気極材料に対し、ペロブスカイト構造を有し、かつBaと、Zrと、Ybと、少なくともCoを含む1種以上の第一遷移元素と、Oとからなる酸化物を混合することで、膜電極接合体のオーミック抵抗を低減できることを見出し、以下に説明される本開示に至った。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る膜電極接合体は、
 第1電極と、
 プロトン伝導性を有する酸化物を含む電解質膜と、
を具備し、
 前記第1電極は、第1酸化物と第2酸化物とを含み、
 前記第1酸化物は、組成式ABO3で表される第1ペロブスカイト化合物であり、ここで、前記第1ペロブスカイト化合物において、Aサイトの構成元素にはLa、Sr、およびBaからなる群より選択される少なくとも1つが含まれ、かつBサイトの構成元素にはCoおよびFeからなる群より選択される少なくとも1つが含まれ、
 前記第2酸化物は、Baと、Zrと、Ybと、少なくともCoを含む1種以上の第一遷移元素と、Oとからなる第2ペロブスカイト化合物である。
 第1態様に係る膜電極接合体は、PCFCに適用可能であって、かつオーミック抵抗の増大化を抑制可能である。
 第2態様において、例えば、第1態様に係る膜電極接合体では、前記第2酸化物は、Baと、Zrと、Ybと、Coと、Oとからなっていてもよい。
 第2態様に係る膜電極接合体は、PCFCに適用可能であって、かつオーミック抵抗の増大化を抑制可能である。
 第3態様において、例えば、第1または第2態様に係る膜電極接合体では、前記第1酸化物は、以下の(1)から(4)のいずれかを満たしていてもよい。
(1)前記Aサイトの構成元素にはLaおよびSrが含まれ、かつ前記Bサイトの構成元素にはCoおよびFeが含まれている。
(2)前記Aサイトの構成元素にはLaおよびSrが含まれ、かつ前記Bサイトの構成元素にはCoが含まれている。
(3)前記Aサイトの構成元素にはLaおよびBaが含まれ、かつ前記Bサイトの構成元素にはCoが含まれている。
(4)前記Aサイトの構成元素にはLaが含まれ、かつ前記Bサイトの構成元素にはCoが含まれている。
 第3態様に係る膜電極接合体は、PCFCに適用可能であって、かつオーミック抵抗の増大化を抑制可能である。
 第4態様において、例えば、第1から第3態様のいずれか1つに係る膜電極接合体では、前記第1電極と前記電解質膜とは、互いに接していてもよい。
 第4態様に係る膜電極接合体は、PCFCに適用可能であって、かつオーミック抵抗の増大化を抑制可能である。第4態様に係る膜電極接合体のように、第1電極と電解質膜とが直接接する構成では、一般的に第1電極と電解質膜との熱膨張率差による界面接合が問題となりやすい。しかし、第4態様に係る膜電極接合体の構成によれば、第1電極と電解質膜との界面接合が向上でき、オーミック抵抗の低減を実現できる。
 第5態様において、例えば、第1から第4態様のいずれか1つに係る膜電極接合体では、前記電解質膜は、化学式Baa1Zr1-x1M1x13-δ1で表される化合物、化学式Baa2Ce1-x2M2x23-δ2で表される化合物、および化学式Baa3Zr1-x3-y3Cex3M3y33-δ3で表される化合物からなる群より選ばれる少なくとも1つを含み、M1、M2およびM3は、それぞれ、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Y、Sc、InおよびLuからなる群より選ばれる少なくとも1つを含んでおり、0.95≦a1≦1.05、0.95≦a2≦1.05、0.95≦a3≦1.05、0<x1<1、0<x2<1、0<x3<1、0<y3<1、0<δ1<1、0<δ2<1、かつ0<δ3<1が充足されてもよい。
 第5態様によれば、電解質膜が優れたプロトン伝導性を有する材料を含むため、膜電極接合体のオーミック抵抗が低減できる。
 第6態様において、例えば、第5態様に係る膜電極接合体では、M1はYbであってもよい。
 Ybを含むプロトン伝導性電解質は高いプロトン伝導性を有するため、第6態様に係る膜電極接合体は、第1電極と電解質膜とのオーミック抵抗を低減できる。
 本開示の第7態様に係る電気化学セルは、第1から第6態様のいずれか1つに係る膜電極接合体、および第2電極を具備し、前記第1電極、前記電解質膜、および前記第2電極が、この順に設けられている。
 第7態様によれば、第1電極と電解質膜とのオーミック抵抗が低減された、高効率な電気化学セルを提供できる。
 第8態様に係る電気化学セルは、例えば、第7態様に係る電気化学セルにおいて、前記第2電極は、NiOおよびNiからなる群より選ばれる少なくとも1つを含んでいてもよい。
 第8態様によれば、高効率な電気化学セルを提供できる。
 第9態様に係る燃料電池システムは、
 第7または第8態様に係る電気化学セル、
 酸化剤ガス供給経路、および
 原料ガス供給経路、
を具備し、
 前記第1電極は、前記酸化剤ガス供給経路と接続されており、
 前記第2電極は、前記原料ガス供給経路と接続されている。
 第9態様によれば、第1電極と電解質膜とのオーミック抵抗が低減された高効率な電気化学セルを備えた、高効率な燃料電池システムを提供できる。
 (本開示の実施形態)
 以下、本開示の実施形態が、図面を参照しながら説明される。
 (実施形態1)
 図1Aは、実施形態1による膜電極接合体10の断面図を示す。膜電極接合体10は、電解質膜11および第1電極12を具備する。例えば、第1電極12の第1主面12aに、電解質膜11が設けられている。
 第1電極12は、第1酸化物と第2酸化物とを含む。
 第1酸化物は、組成式ABO3で表される第1ペロブスカイト化合物である。第1ペロブスカイト化合物において、Aサイトの構成元素にはLa、Sr、およびBaからなる群より選択される少なくとも1つが含まれ、かつBサイトの構成元素にはCoおよびFeからなる群より選択される少なくとも1つが含まれる。第1酸化物は、SOFCにおいて一般的な電極材料である。例えば、ランタンストロンチウムコバルト鉄複合酸化物、ランタンストロンチウムコバルト複合酸化物、ランタンストロンチウム鉄複合酸化物、ランタンバリウムコバルト複合酸化物、ランタンバリウム鉄複合酸化物、ランタンバリウムコバルト鉄複合酸化物、バリウムストロンチウムコバルト鉄複合酸化物、などが挙げられる。
 第2酸化物は、Baと、Zrと、Ybと、少なくともCoを含む1種以上の第一遷移元素と、Oとからなる第2ペロブスカイト化合物である。すなわち、第2酸化物は、以下の(i)または(ii)のいずれかである。
(i)ペロブスカイト構造を有し、かつBaと、Zrと、Ybと、Coと、Oとからなる複合酸化物
(ii)ペロブスカイト構造を有し、かつBaと、Zrと、Ybと、Coと、Co以外の第一遷移元素と、Oとからなる複合酸化物
 上記のとおり、第2酸化物は、第一遷移元素としてCoを含む。第2酸化物が上記(i)の場合、第2酸化物に第一遷移元素として含まれる元素はCoである。第2酸化物が上記(ii)の場合、第2酸化物に第一遷移元素として含まれる元素は複数であり、Coと、Co以外の他の第一遷移元素である。
 実施形態1による膜電極接合体10は、上記構成を有することにより、PCFCに適用可能であって、かつオーミック抵抗の増大化を抑制可能である。さらに、実施形態1による膜電極接合体10は、上記構成を有することにより、第1電極12と電解質膜11との界面の接合を保ち、第1電極12と電解質膜11との界面での剥離を抑制することもできる。上述のとおり、第1酸化物は、例えば、SOFCの空気極の材料として用いられうる酸化物である。したがって、実施形態1による膜電極接合体10は、SOFC用の電極材料が用いられた第1電極と、PCFCの電解質材料として用いられうるプロトン伝導性を有する酸化物を含む電解質膜との界面の接合を保ち、オーミック抵抗の増大及び剥離を抑制することができる。
 第2酸化物のような、遷移元素を含み、かつペロブスカイト構造を有する酸化物は、電子伝導性を発現することが知られるが、中でも特にCoを含む酸化物は電子伝導性が高い傾向がある。遷移元素の添加量が例えば10mol%以上、望ましくは20mol%以上の場合に、電子伝導性の向上効果は大きい。なお、遷移元素は、例えばペロブスカイト構造を有する酸化物の焼結性を向上させる焼結助剤としても用いられるが、その場合は多くても5mol%程度の添加量であり、電子伝導性を高める効果は小さい。
 第2酸化物は、上記(i)の酸化物、すなわちペロブスカイト構造を有し、かつBaと、Zrと、Ybと、Coと、Oとからなる複合酸化物であってもよい。
 第1酸化物は、以下の(1)から(4)のいずれかを満たしていてもよい:
(1)Aサイトの構成元素にはLaおよびSrが含まれ、かつBサイトの構成元素にはCoおよびFeが含まれている。
(2)Aサイトの構成元素にはLaおよびSrが含まれ、かつBサイトの構成元素にはCoが含まれている。
(3)Aサイトの構成元素にはLaおよびBaが含まれ、かつBサイトの構成元素にはCoが含まれている。
(4)前記Aサイトの構成元素にはLaが含まれ、かつ前記Bサイトの構成元素にはCoが含まれている。
 上記(1)から(4)のいずれかを満たす第1酸化物は、SOFCの空気極材料として用いられる材料である。上記のようなSOFC用の空気極材料を、PCFCに用いられる電解質膜と組み合わせて用いる場合、従来の膜電極接合体では電極と電解質膜との界面で接合不良が生じやすかった。これに対し、実施形態1による膜電極接合体10は、第1電極12が第2酸化物をさらに含んでいることにより、SOFC用の空気極材料を、PCFCに用いられる電解質膜と組み合わせて用いても、第1電極12と電解質膜11との良好な接合性を保つことができ、かつオーミック抵抗の増大化も抑制できる。
 例えば、第1酸化物が上記(1)を満たす酸化物(すなわち、LSCF)である場合、第2酸化物は、上記(i)および(ii)のいずれの酸化物であってもよい。
 例えば、第1酸化物が上記(2)を満たす酸化物(すなわち、LSC)である場合、第2酸化物は、上記(i)および(ii)のいずれの酸化物であってもよいし、上記(i)であってもよい。
 例えば、第1酸化物が上記(3)を満たす酸化物(すなわち、LBC)である場合、第2酸化物は、上記(i)および(ii)のいずれの酸化物であってもよい。例えば、第1酸化物が上記(4)を満たす酸化物(すなわち、LC)である場合、第2酸化物は、上記(i)および(ii)のいずれの酸化物であってもよい。
 第1電極12は、上述した第1酸化物および第2酸化物の他に、他の成分を含んでいてもよい。他の成分として、例えば、第1酸化物および第2酸化物を合成する過程で生じる不純物等が挙げられる。例えば、後述の実施例1から実施例3において化合物を合成する過程で生じる不純物として、第1電極12には、例えば、BaCO3、ZrO2、Yb23、La23、Co34、SrO、またはFe23等が含まれていてもよい。
 第1酸化物と第2酸化物との混合比は、質量比で、第1酸化物:第2酸化物=10:90から90:10であってもよく、第1酸化物:第2酸化物=30:70から70:30であってもよい。
 電解質膜11は、例えば、プロトン伝導性を有する電解質材料(すなわち、プロトン伝導体)により構成されている。プロトン伝導体の例は、化学式Baa1Zr1-x1M1x13-δ1で表される化合物、化学式Baa2Ce1-x2M2x23-δ2で表される化合物または化学式Baa3Zr1-x3-y3Cex3M3y33-δ3で表される化合物である。ここで、M1、M2およびM3は、それぞれ、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Y、Sc、InおよびLuからなる群より選ばれる少なくとも1つを含んでおり、0.95≦a1≦1.05、0.95≦a2≦1.05、0.95≦a3≦1.05、0<x1<1、0<x2<1、0<x3<1、0<y3<1、かつ0<δ1<0.5、0<δ2<0.5、かつ0<δ3<0.5が充足される。但し、プロトン伝導体は、これに限定されない。実施形態1による膜電極接合体10の電解質膜11は、例えば、化学式Baa1Zr1-x1M1x13-δ1で表される化合物、化学式Baa2Ce1-x2M2x23-δ2で表される化合物および化学式Baa3Zr1-x3-y3Cex3M3y33-δ3で表される化合物からなる群より選ばれる少なくとも1つを含む。
 上記構成によると、電解質膜11が優れたプロトン伝導性を有する材料を含むため、膜電極接合体10のオーミック抵抗が低減できる。
 化学式BaaZr1-x1M1x13-δ1で表される化合物において、M1はYbであってもよい。
 電解質膜11の厚みは、例えば1から500μmであり、1から50μmであってもよい。
 第1電極12は、例えば、1から1000μmの厚みを有する。第1電極12がセルの支持体を兼ねる場合、第1電極12は、100μmから1000μmの厚みであってもよい。第1電極12以外の構成がセルの支持体となる場合、第1電極12は1から100μmの厚みであってもよく、5から50μmの厚みであってもよい。
 図1Aに示されているように、電解質膜11および第1電極12は、互いに接していてもよい。実施形態1による膜電極接合体10によれば、第1電極12と電解質膜11とが互いに接している場合であっても、良好な界面接合を保つことができ、オーミック抵抗の低減を実現できる。
 電解質膜11および第1電極12は、互いに接していなくてもよい。すなわち、電解質膜11および第1電極12の間に別の層が具備されていてもよい。別の層の例は、例えば機能層である。機能層は、電解質膜11と第1電極12との間において、電子またはプロトンの移動を促進する層である。機能層は、例えば、サーメットおよび複合酸化物のコンポジットから構成される。
 電解質膜11は、例えば、テープキャスト法、スピンコート法、ディップコート法、スパッタ、またはPLD(Pulse Laser Deposition)により作製される。
 (実施形態2)
 図1Bは、実施形態2による電気化学セル20の断面図を示す。
 実施形態2による電気化学セル20は、膜電極接合体10および第2電極13を備える。すなわち、電気化学セル20は、第1電極12、電解質膜11および第2電極13を備える。
 膜電極接合体10は、実施形態1において説明されている。
 図1Bで示すように、電気化学セル20では、第1電極12、電解質膜11および第2電極13がこの順に設けられている。すなわち、電解質膜11は、第1電極12と第2電極13との間に挟まれている。言い換えると、電解質膜11は、第1電極12と第2電極13との間に設けられている。
 実施形態2による電気化学セル20は、上記構成を有することにより、第1電極12と電解質膜11とのオーミック抵抗を低減することができる。したがって、実施形態2による電気化学セル20は、高い効率を実現できる。
 実施形態1で説明したように、膜電極接合体10の第1電極12は、空気極であってもよい。したがって、第2電極13は、燃料極であってもよい。第2電極13が燃料極として機能する場合、第2電極13は、例えば金属酸化物を含む。例えば、第2電極13は、酸化ニッケルを主として含む。第2電極13は、例えばスクリーン印刷法によって、膜電極接合体10に設けられ得る。また、第2電極13が燃料極として機能する場合、第2電極13は、例えば金属および金属酸化物からなる群より選ばれる少なくとも1つを含む。例えば、第2電極13は、ニッケル(すなわち、Ni)および酸化ニッケル(すなわち、NiO)からなる群より選ばれる少なくとも1つを含む。この構成によれば、優れた燃料極性能を有する電気化学セル20を提供できる。
 第2電極13は、例えば、テープキャスト法、スピンコート法、ディップコート法、スパッタ、PLD、またはスクリーン印刷法によって、膜電極接合体10に設けられ得る。
 図1Bに示されるように、第2電極13と電解質膜11とが接して設けられているが、これに限定されない。第2電極13と電解質膜11との間に他の層が設けられてもよい。
 別の層として、例えば、機能層が挙げられる。機能層は、実施形態2に説明されている。
 電気化学セル20は、燃料電池、電気化学的水素ポンプ、水素センサおよび水電解装置に用いられ得る。
 (実施形態3)
 図2は、実施形態3による燃料電池システム1000を模式的に示す。
 燃料電池システム1000は、電気化学セル20を備える。電気化学セル20は、実施形態2において説明されている。
 実施形態3による燃料電池システム1000では、電気化学セル20は燃料電池として用いられる。したがって、この場合、第1電極12が空気極として機能し、かつ第2電極13が燃料極として機能する。
 燃料電池システム1000は、酸化剤ガス供給経路1024および原料ガス供給経路1023をさらに備える。酸化剤ガス供給経路1024は、第1電極12および酸化剤ガス供給器1021に接続されている。原料ガス供給経路1023は、第2電極13および原料供給器1022に接続されている。
 電気化学セル20を積層して、スタック30が得られる。得られたスタック30は、筐体1014に格納されている。
 筐体1014は、断熱部材で構成されていてもよい。積層された電気化学セル20の第1電極12に、酸化剤ガスが供給される。
 具体的には、酸化剤ガスは、酸化剤ガス供給器1021から、酸化剤ガス供給経路1024を通って、複数の電気化学セル20の第1電極12(すなわち、カソード)に供給される。
 第1電極12において、以下の反応(1)が進行する。
 O2+4H++4e-→2H2O (1)
 酸化剤ガスは、例えば、空気である。
 原料は、原料供給器1022から、原料ガス供給経路1023を通って、複数の電気化学セル20の第2電極13に供給される。
 第2電極13において、以下の反応(2)が進行する。
 2H2→4H++4e- (2)
 原料は、例えば、水素分子である。
 水素は、改質反応により生成されてもよい。あるいは、水素は水電解により生成されてもよい。
 このようにして、燃料電池システム1000が作動する。そして燃料電池システム1000が発電する。
 実施形態3による燃料電池システム1000は、第1電極12と電解質膜11とのオーミック抵抗が低減された高効率な電気化学セル20を備えている。したがって、実施形態3による燃料電池システム1000は、高い効率を実現できる。
 以下、本開示が、以下の実施例および比較例を参照しながらより詳細に説明される。以下に説明されるように、実施例および比較例において、膜電極接合体、および当該膜電極接合体を備えた電気化学セルが作製された。各電気化学セルにおいて、電解質膜からの第1電極の剥離の有無と、第1電極と電解質膜とのオーミック抵抗とが評価された。
 [実施例1]
 (空気極の作製)
 第1電極として、空気極を以下の方法により作製した。
 1.第1酸化物の作製
 第1酸化物としてLaSrCo複合酸化物を作製した。LaSrCo複合酸化物(以下LSC)は、クエン酸錯体法によって合成された。合成に際しては以下の材料を用いた。
・La(NO33・6H2O(23.06g、関東化学株式会社製)
・Sr(NO32(7.51g、関東化学株式会社製)
・Co(NO32・6H2O(25.83g、関東化学株式会社製)
・C687・H2O(34.11g、関東化学株式会社製)
・エチレンジアミン四酢酸(25.94g、関東化学株式会社製)
・アンモニア水(28%、関東化学株式会社製)
 上記の材料を500mLの蒸留水が入ったビーカーに加え、攪拌して溶液を得た。その後、溶液を攪拌しながら90℃に加熱した。続いて、アンモニア水(28%)を加えてpH7に調整した。pH調整後、95℃から240℃に加熱して溶媒を除去し固形物を得た。得られた固形物を600℃で2時間焼成し脱脂して粉末を得た。脱脂後の粉末を900℃で2時間焼成した。これにより、La0.6Sr0.4CoO3-δの粉末を得た。得られた粉末を10g秤取し、酢酸ブチル(関東化学株式会社製)20mLとジルコニアボール(φ2mm)100gとともに遊星ボールミル(フリッチュ製)で混合粉砕した。粉砕条件は350rpm、2時間とした。粉砕後の溶液を回収し、乾燥させた。このようにして、微粉化後の第1酸化物の粉末を得た。得られた微粉化後の粉末の粒度分布を粒度分布測定装置(品名:MT3300EXII、マイクロトラック社製)によって測定した。微粉化後の粉末のメジアン径D50値は、およそ0.3μmであった。メジアン径D50は、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。これにより、第1酸化物であるLSCの粉末を得た。得られたLSCの組成はLa0.6Sr0.4CoO3-δであった。なお、得られた第1酸化物の結晶構造の解析には、X線回折装置「Smartlab」(Rigaku製)が用いられた。具体的には、X線源としてCuKα線が用いられ、得られた第1酸化物に対するX線照射が平行ビーム法により行われた。得られたピーク形状を無機結晶構造データベース(ICSD)と照合することにより、本実施例で得られた第1酸化物がペロブスカイト構造であることを判断した。ここで、実施例1において第1酸化物の結晶構造の解析に用いた照会対象のICSDデータは、ICSD86943(La0.6Sr0.4CoO3-δ)であった。
 2.第2酸化物の作製
 第2酸化物は、錯体重合法によって合成された。合成に際して、まず各溶液が調製された。調製された各溶液を用いて、電極材料が合成された。
 (1)各溶液の調製
(a)Zrの溶液
 Zrの溶液が、以下の材料を用いて調製された。
・ZrO(NO32・2H2O(240g、関東化学株式会社製)
 上記の材料を1800mLの蒸留水が入ったポリエチレン容器に加えた。次に、上記の材料が加えられた蒸留水が、よく攪拌された。このようにしてZrの溶液が得られた。本溶液中のZrイオンの濃度が、誘導結合プラズマ発光分光分析法(以下、ICP-AES)を用いて算出された。ICP-AESのための分析装置として、サーモフィッシャーサイエンティフィック社製の「iCAP7400 Duo」が用いられた。分析の結果、Zrの溶液におけるZrの濃度は、0.49mol/Lであった。
 (b)Ybの溶液
 Ybの溶液が、以下の材料を用いて調製された。
・Yb(NO33・5H2O(300g、株式会社高純度化学研究所製)
・C687・H2O(300g、関東化学株式会社製)
 上記の材料を500mLの蒸留水が入ったポリエチレン容器に加えた。次に、上記の材料が加えられた蒸留水が、よく攪拌された。このようにしてYbの溶液が得られた。本溶液中のYbイオンの濃度が、上記(a)のZrの溶液中のZrイオンの濃度の算出と同様の方法で、ICP-AESを用いて算出された。その結果、Ybの溶液におけるYbの濃度は、0.91mol/Lであった。なお、本溶液中のクエン酸(すなわち、C687)の濃度は、C687・H2Oの仕込み量と蒸留水の仕込み量との比から、2.84mol/Lと算出された。
 (c)Coの溶液
 Coの溶液が、以下の材料を用いて調製された。
・Co(NO32・6H2O(300g、関東化学株式会社製)
・C687・H2O(300g、関東化学株式会社製)
 上記の材料を500mLの蒸留水が入ったポリエチレン容器に加えた。次に、上記の材料が加えられた蒸留水が、よく攪拌された。このようにしてCoの溶液が得られた。本溶液中のCoイオンの濃度が、上記(a)のZrの溶液中のZrイオンの濃度の算出と同様の方法で、ICP-AESを用いて算出された。その結果、Coの溶液におけるCoの濃度は、1.20mol/Lであった。なお、本溶液中のクエン酸(すなわち、C687)の濃度は、C687・H2Oの仕込み量と蒸留水の仕込み量との比から、2.84mol/Lと算出された。
 (d)クエン酸の溶液
 クエン酸の溶液が、以下の材料を用いて調製された。
・C687・H2O(1200g、関東化学株式会社製)
 上記の材料を2000mLの蒸留水が入ったポリエチレン容器に加えた。次に、上記の材料が加えられた蒸留水が、よく攪拌された。このようにしてクエン酸の溶液が得られた。本溶液中のクエン酸(すなわち、C687)の濃度は、C687・H2Oの仕込み量と蒸留水の仕込み量との比から、2.84mol/Lと算出された。
 (2)第2酸化物の合成
 上記の方法で調製された各溶液を用いて、実施例1に係る第2酸化物であるBaZrYbCo複合酸化物(以下BZYbCo)が合成された。実施例1の第2酸化物の合成には、以下の材料および溶液が用いられた。
・BaCO3(0.05mol、関東化学株式会社製)
・C687・H2O(0.227mol、関東化学株式会社製)
・Zr溶液(38.3mL;Zr量=0.0188mol)
・Yb溶液(6.9mL;Yb量=0.0063mol、クエン酸量=0.020mol)
・Co溶液(20.8mL;Co量=0.025mol、クエン酸量=0.059mol)
・クエン酸溶液(68.5mL;クエン酸量=0.194mol)
・エチレングリコール(2mol)
 始めに、1Lビーカーにクエン酸一水和物(すなわち、C687・H2O)を加えた。次いで、蒸留水80mLを1Lビーカーに加えてスターラーで攪拌した。このようにして、無色透明な第一の水溶液を得た。得られた無色透明な第一の水溶液に、BaCO3を加えた。そして、スターラーでさらに攪拌することでBaCO3を完全に溶解させた。このようにして、無色透明な第二の水溶液とした。得られた無色透明な第二の水溶液の攪拌を続けながら、ピペッターを用いて、上記の量のZr溶液、Yb溶液、Cо溶液およびクエン酸溶液を、得られた無色透明な第二の水溶液に加えた。さらに、エチレングリコールも、得られた無色透明な第二の水溶液に加えた。このようにして混合溶液を得た。
 得られた混合溶液をスターラーで攪拌し続けた。得られた混合溶液を、マントルヒーターを用いて、90℃程度まで加温した。このようにして、得られた混合溶液から、水分を蒸発させた。さらに混合溶液を130℃程度まで加温し、エチレングリコールを蒸発させて除去することで、重合を加速させて濃縮した。溶液量が100mLまで減少した時点で加温を止めた。このようにして濃縮液を得た。得られた濃縮液をアルミナるつぼに移して放冷した。次いで、120℃の乾燥機中で6時間加熱した。このようにして、濃縮液からエチレングリコールを除去した。その後、エチレングリコールが除去された濃縮液の入ったアルミナるつぼを大気中、500℃で3時間、仮焼した。これにより、有機成分が除去された。このようにして、固形物を得た。その後、得られた固形物を乳鉢で解砕することにより仮焼粉末を得た。引き続いて、仮焼粉末をアルミナるつぼ中に入れ、大気雰囲気中、1100℃、2時間の条件で焼成を行った。得られた固形物を乳鉢で解砕した。このようにして、第2酸化物であるBZYbCoの粉末を得た。得られたBZYbCoの組成はBaZr0.375Yb0.125Co0.5003-δであった。
 得られた粉末を10g秤取し、酢酸ブチル(関東化学株式会社製)20mLとジルコニアボール(φ2mm)100gとともに遊星ボールミル(フリッチュ製)で混合粉砕した。粉砕条件は350rpm、2時間とした。粉砕後の溶液を回収し、乾燥させた。このようにして、微粉化後の第2酸化物の粉末を得た。得られた微粉化後の粉末の粒度分布を粒度分布測定装置(品名:MT3300EXII、マイクロトラック社製)によって測定した。微粉化後の粉末のメジアン径D50値は、およそ0.3μmであった。これにより、第2酸化物の粉末を得た。なお、得られた第2酸化物の結晶構造の解析は、第1酸化物の結晶構造の解析と同様の方法によって行われた。本実施例で得られた第2酸化物は、ペロブスカイト構造を有していた。ここで、実施例1において第2酸化物の結晶構造の解析に用いた照会対象のICSDデータは、ICSD157138(BaZr0.92Yb0.083-δ)であった。
 3.空気極の作製
 得られた第1酸化物5.00gと第2酸化物5.00gとをそれぞれ秤量し、乳鉢で混合することで質量比50:50の複合酸化物の粉末を得た。これにより、第1電極を得た。
 (燃料極/電解質膜のハーフセルの作製)
 次に、燃料極/電解質膜のハーフセルの作製方法を説明する。
 まず、電解質膜11となるBZYbグリーンシート材の製造方法について説明する。なお、本開示の実施例では、NiとBZYbとの体積比率が69:31(質量比率は、NiO:BZYb=80:20)となるように秤量した。
 ここで、電解質膜11と、第2電極13の混合物の一部とを構成するプロトン伝導体材料であるBZYbは、Ba(NO32(関東化学製)およびZrO(NO32・2H2O(関東化学製)の粉末に、Yb(NO33・xH2O(高純度化学製)の粉末を加えて出発原料として、クエン酸錯体法により作製した。具体的には、まず、所定の配分に秤量した各粉末の混合物を蒸留水に溶解させ、得られた水溶液を攪拌した。そして、水溶液に含まれる金属カチオンに対し1.5等量のクエン酸一水和物(関東化学製)および1.5等量のエチレンジアミン四酢酸(EDTA)(関東化学製)を水溶液に加えた。その後、水溶液を90℃で攪拌した。続いて、アンモニア水(28%)(関東化学製)を用いて、水溶液をpH7に調整した。pH調整後、ホットスターラーを用いて、95℃から240℃に加熱して溶媒を除去し、固形物を得た。得られた固形物を乳鉢粉砕した後、約400℃で脱脂した。脱脂後、得られた粉末を円柱状にプレス成型して900℃で10時間仮焼した。仮焼後、粗粉砕した粉末を、プラスチック容器にジルコニア製ボールとともに入れ、さらにエタノールを加えて4日間以上ボールミルにより粉砕した。ボールミルによる粉砕後、ランプ乾燥によって溶媒を除去した。これにより、BaZr0.8Yb0.23-δ(BZYb)電解質材料粉末を得た。得られた電解質材料粉末BaZr0.8Yb0.23-δ(BZYb)電解質材料粉末を、樹脂としてのポリビニルブチラール、可塑剤としてのブチルベンジルフタレート、ならびに溶剤としての酢酸ブチルおよび1-ブタノールと混錬後、テープキャスト法にて電解質膜のグリーンシートを得た。
 次に、実施例1における第2電極13である燃料極の製造方法について説明する。上記で得られた電解質材料粉末BaZr0.8Yb0.23-δ(BZYb)とNiO粉末(住友金属鉱山製)とを、質量比で、NiO:BZYb=80:20(NiとBZYbの体積比率が69:31)となるように秤量した。電解質材料粉末、NiO粉末、樹脂としてのポリビニルブチラール、可塑剤としてのブチルベンジルフタレート、ならびに溶剤としての酢酸ブチルおよび1-ブタノールを混錬後、テープキャスト法にて燃料極のグリーンシートを得た。
 次に、実施例1における第2電極13と電解質膜11との積層体の製造方法について説明する。上記で得られた電解質膜のグリーンシートと、得られた燃料極のグリーンシートとを積層した後、ホットプレス50MPaにより積層体を得た。積層体を25mmφにレーザーカット後、得られた積層体を1475℃で2時間焼成して燃料極と電解質膜とのハーフセルを作製した。なお、焼成後のハーフセルは大きさが約20mmΦ、電解質厚みは約13μm、燃料極厚みは約600μmであった。
 (評価用電気化学セルの作製)
 上記で得られた第1電極を5gと、ECビヒクル(日新化成株式会社製)3.33gとをプラスチック容器に秤取した。そして、これを、自転公転ミキサーを用いて1000rpmで5分間、攪拌した。このようにして、ペースト前駆体を得た。得られたペースト前駆体を3本ロールミル(商品名:BR-100VIII、アイメックス製)を用いて、分散した。このようにして、第1電極の分散液を得た。
 得られた第1電極の分散液を、上記手法で作製された燃料極/電解質膜のハーフセルにおける電解質膜の主面の中央に、スクリーン印刷法を用いて印刷した。その後、空気中で900℃、2時間の条件で焼成した。作製された第1電極は、円形であって、10mmの直径を有していた。このようにして、評価用電気化学セルが作製された。
 (電極剥離の有無の確認)
 評価用電気化学セルを用いて、電極剥離、すなわち電解質膜からの第1電極の剥離の有無が確認された。評価用電気化学セルにおける電極剥離の有無については、カプトンテープを第1電極の表面に押し当てて、テープ剥離試験によって確認した。カプトンテープ側に第1電極が付着する、すなわち電解質膜から剥離する場合は剥離ありと判断し、カプトンテープに目視で第1電極の付着が確認されない場合は剥離なしと判断した。実施例1に関しては、第1電極の剥離は見られなかった。
 (オーミック抵抗の測定)
 評価用電気化学セルを用いてオーミック抵抗を測定するため、以下の手法が用いられた。なお、オーミック抵抗測定用の電気化学セルには、上記の電極剥離試験とは別個に同プロセスで作製したセルのサンプルを用いた。
 スクリーン印刷法を用いて、評価用電気化学セルの両面の電極上に銀インク(Nexceris社製)が印刷された。なお、印刷された銀インクは、10mmの直径を有していた。評価用電気化学セルを乾燥させた。その後、アルミナ製セル評価ホルダー(株式会社チノー製)に挟持させた。セル評価ホルダとセルの間には、第1電極、第2電極ともに集電部材として発泡銀(マグネクス株式会社製、厚み0.6mm、12mmφ)を挟んだ。また、同様にセル評価ホルダとセルの間には、ガスシール材としてサーミキュライト#866(英国フレキシタリック社製、厚み0.5mm、外径20mmφ、内径14mmφ)を挟んだ。評価用電気化学セルを挟持したセル評価ホルダを電気炉内に静置し、空気供給経路、燃料供給経路をそれぞれ接続した。
 評価用電気化学セルの空気極である第1電極に20℃露点で加湿した空気(流速:100mL/分)を、燃料極である第2電極に20℃露点で加湿した窒素(流速:100mL/分)をそれぞれ供給しながら700℃に昇温し、その後、燃料極への供給ガスを20℃露点で加湿した水素(流速:100mL/分)に切り替え、還元を行った。2時間保持した後、評価用電気化学セルを600℃に降温し、温度が安定した後に交流インピーダンス法に基づき、評価用電気化学セルのオーミック抵抗を測定した。
 具体的には、ModuLab XM ECS(Solartron Analytical製)を用いて、10mVの振幅で、100kHzから0.1Hzの範囲でセルに交流信号が印加された。ナイキストプロットにおいて周波数およそ100kHzから0.01Hzの範囲で描かれる円弧について、円弧と実数軸との高周波数側の交点をオーミック抵抗として算出した。このオーミック抵抗は、電気化学セルの各要素のオーミック抵抗の合計であるが、第2電極と電解質膜とは同条件で作製していることから、オーミック抵抗の大小から第1電極あるいは第1電極/電解質膜界面に起因するオーミック抵抗の優劣を判断した。なお、測定は、外部電流を印加しない、いわゆる開回路状態にて実施した。
 なお、オーミック抵抗の評価の具体的な方法は、以下が参照される。
(i)ナイキストプロットにおいて周波数およそ100kHzから0.01Hzの範囲で描かれる円弧について、円弧と実数軸との高周波数側の交点(例えば、図3に示されたI1)が観測される場合
 円弧と実数軸との高周波数側の交点と原点との差(例えば、図3に示されたR1)をオーミック抵抗とした。
(ii)ナイキストプロットにおいて周波数およそ100kHzから0.01Hzの範囲で描かれる円弧について、円弧と実数軸との高周波数側の交点が観測されない場合
 円弧の極小点(例えば、図11におけるI2)における実数軸の値と原点との差(例えば、図11におけるR2)をオーミック抵抗とした。
 図3は、実施例1による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.24Ωcm2であった。
 [実施例2]
 (空気極の作製)
 1.第1酸化物の作製
 第1酸化物であるLaSrCoFe複合酸化物(以下LSCF)は、クエン酸錯体法によって合成された。合成に際しては以下の材料を用いた。
・La(NO33・6H2O(23.32g、関東化学株式会社製)
・Sr(NO32(7.60g、関東化学株式会社製)
・Co(NO32・6H2O(5.22g、関東化学株式会社製)
・Fe(NO33・9H2O(29.00g。関東化学株式会社製)
・C687・H2O(34.49g、関東化学株式会社製)
・エチレンジアミン四酢酸(26.23g、関東化学株式会社製)
・アンモニア水(28%、関東化学株式会社製)
 以降の合成手順は実施例1と同様とした。これにより第1酸化物であるLSCFの粉末を得た。得られたLSCF粉末の組成はLa0.6Sr0.4Co0.2Fe0.83-δであった。なお、得られた第1酸化物の結晶構造の解析は、実施例1と同様の方法によって行われた。実施例2で得られた第1酸化物は、ペロブスカイト構造を有していた。ここで、実施例2において第1酸化物の結晶構造の解析に用いた照会対象のICSDデータは、ICSD158799(La0.4Sr0.6Co0.2Fe0.83-δ)であった。
 2.第2酸化物の作製
 実施例1と同様とした。
 3.空気極の作製
 実施例1と同様とした。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。実施例2では電極剥離は確認されなかった。
 (オーミック抵抗の測定)
 実施例1と同様とした。図4は、実施例2による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.25Ωcm2であった。
 [実施例3]
 (空気極の作製)
 1.第1酸化物の作製
 第1酸化物であるLaBaCo複合酸化物(以下LBC)は、クエン酸錯体法によって合成された。合成に際しては以下の材料を用いた。
・La(NO33・6H2O(27.31g、関東化学株式会社製)
・Ba(NO32(10.99g、関東化学株式会社製)
・Co(NO32・6H2O(30.59g、関東化学株式会社製)
・C687・H2O(40.39g、関東化学株式会社製)
・エチレンジアミン四酢酸(30.72g、関東化学株式会社製)
・アンモニア水(28%、関東化学株式会社製)
 以降の合成手順は実施例1と同様とした。これにより第1酸化物であるLBCの粉末を得た。得られたLBC粉末の組成はLa0.6Ba0.4CoO3-δであった。なお、得られた第1酸化物の結晶構造の解析は、実施例1と同様の方法によって行われた。実施例3で得られた第1酸化物は、ペロブスカイト構造を有していた。ここで、実施例3において第1酸化物の結晶構造の解析に用いた照会対象のICSDデータは、ICSD157906(La0.6Ba0.4CoO3-δ)であった。
 2.第2酸化物の作製
 実施例1と同様とした。
 3.空気極の作製
 実施例1と同様とした。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。実施例3では電極剥離は確認されなかった。
 (オーミック抵抗の測定)
 実施例1と同様とした。図5は、実施例3による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.27Ωcm2であった。
 [実施例4]
 (空気極の作製)
 1.第1酸化物の作製
 第1酸化物であるLaCo複合酸化物(以下LC)は、クエン酸錯体法によって合成された。合成に際しては以下の材料を用いた。
・La(NO33・6H2O(45.52g、関東化学株式会社製)
・Co(NO32・6H2O(30.59g、関東化学株式会社製)
・C687・H2O(40.39g、関東化学株式会社製)
・エチレンジアミン四酢酸(30.72g、関東化学株式会社製)
・アンモニア水(28%、関東化学株式会社製)
 以降の合成手順は実施例1と同様とした。これにより第1酸化物であるLCの粉末を得た。得られたLC粉末の組成はLaCoO3であった。なお、得られた第1酸化物の結晶構造の解析は、実施例1と同様の方法によって行われた。実施例4で得られた第1酸化物は、ペロブスカイト構造を有していた。ここで、実施例4において第1酸化物の結晶構造の解析に用いた照会対象のICSDデータは、ICSD201761(LaCoO3)であった。
 2.第2酸化物の作製
 実施例1と同様とした。
 3.空気極の作製
 実施例1と同様とした。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。実施例4では電極剥離は確認されなかった。
 (オーミック抵抗の測定)
 実施例1と同様とした。図6は、実施例4による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.27Ωcmであった。
 [比較例1]
 (空気極の作製)
 1.第1酸化物の作製
 第1酸化物であるLSCは、実施例1と同様の方法で合成した。
 2.第2酸化物の作製
 比較例1においては、第2酸化物を使用しないため、本工程は割愛された。
 3.空気極の作製
 比較例1においては、第2酸化物を使用しないため、本工程は割愛された。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。比較例1では電極剥離は確認されなかった。
 (オーミック抵抗の測定)
 実施例1と同様とした。図7は、比較例1による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.29Ωcm2であった。
 [比較例2]
 (空気極の作製)
 1.第1酸化物の作製
 第1酸化物であるLSCFは、実施例2と同様の方法で合成した。
 2.第2酸化物の作製
 比較例2においては、第2酸化物を使用しないため、本工程は割愛された。
 3.空気極の作製
 比較例2においては、第2酸化物を使用しないため、本工程は割愛された。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。比較例2では電極剥離は確認されなかった。
 (オーミック抵抗の測定)
 実施例1と同様とした。図8は、比較例2による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.31Ωcm2であった。
 [比較例3]
 (空気極の作製)
 1.第1酸化物の作製
 第1酸化物であるLBCは、実施例3と同様の方法で合成した。
 2.第2酸化物の作製
 比較例3においては、第2酸化物を使用しないため、本工程は割愛された。
 3.空気極の作製
 比較例3においては、第2酸化物を使用しないため、本工程は割愛された。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。比較例3では、部分的な電極剥離が認められた。
 (オーミック抵抗の測定)
 実施例1と同様とした。図9は、比較例3による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.41Ωcm2であった。
 [比較例4]
 (空気極の作製)
 1.第1酸化物の作製
 比較例4においては、第1酸化物を使用しないため、本工程は割愛された。
 2.第2酸化物の作製
 実施例1と同様とした。
 3.空気極の作製
 比較例4においては、第1酸化物を使用しないため、本工程は割愛された。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。比較例4では電極剥離は確認されなかった。
 (オーミック抵抗の測定)
 実施例1と同様とした。図10は、比較例4による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.31Ωcm2であった。
 [比較例5]
 (空気極の作製)
 1.第1酸化物の作製
 実施例2と同様とした。
 2.第2酸化物の作製
 合成には、予め調整した前駆体溶液を用いた。Ba溶液、Zr溶液、およびYb溶液については実施例1の(a)、(b)、および(c)と同様の溶液を用いた。加えて、以下の方法で調整したFe溶液を用いた。
 (e)Feの溶液
 Feの溶液が、以下の材料を用いて調製された。
・Fe(NO33・9H2O(300g、関東化学株式会社製)
・C687・H2O(300g、関東化学株式会社製)
 上記の材料を500mLの蒸留水が入ったポリエチレン容器に加えた。次に、上記の材料が加えられた蒸留水が、よく攪拌された。このようにしてFeの溶液が得られた。本溶液中のFeイオンの濃度は、上記のZrの溶液中のZrイオンの濃度の算出と同様の方法で、ICP-AESを用いて算出された。その結果、Feの溶液におけるFeの濃度は、0.88mol/Lであった。なお、本溶液中のクエン酸(すなわち、C687)の濃度は、C687・H2Oの仕込み量と蒸留水の仕込み量との比から、2.84mol/Lと算出された。
 比較例5に係る第2酸化物であるBaZrYbFe複合酸化物(以下BZYbFe)の合成には、以下の材料および溶液が用いられた。
・BaCO3(0.05mol、関東化学株式会社製)
・C687・H2O(0.227mol、関東化学株式会社製)
・Zr溶液(38.3mL;Zr量=0.0188mol)
・Yb溶液(6.87mL;Yb量=0.0063mol、クエン酸量=0.020mol)
・Fe溶液(28.4mL;Fe量=0.025mol、クエン酸量=0.081mol)
・クエン酸溶液(60.9mL;クエン酸量=0.173mol)
・エチレングリコール(2mol)
 始めに、1Lビーカーにクエン酸一水和物(すなわち、C687・H2O)を加えた。次いで、蒸留水80mLを1Lビーカーに加えてスターラーで攪拌した。このようにして、無色透明な第一の水溶液を得た。得られた無色透明な第一の水溶液に、BaCO3を加えた。そして、スターラーでさらに攪拌することでBaCO3を完全に溶解させた。このようにして、無色透明な第二の水溶液とした。得られた無色透明な第二の水溶液の攪拌を続けながら、ピペッターを用いて、上記の量のZr溶液、Yb溶液、Fe溶液およびクエン酸溶液を、得られた無色透明な第二の水溶液に加えた。さらに、エチレングリコールも、得られた無色透明な第二の水溶液に加えた。このようにして混合溶液を得た。
 以降の作製手順は実施例1と同様とした。このようにして、第2酸化物であるBZYbFeの粉末を得た。得られたBZYbFe粉末の組成はBaZr0.375Yb0.125Fe0.5003-δであった。なお、得られた第2酸化物の結晶構造の解析は、実施例1と同様の方法によって行われた。比較例5で得られた第2酸化物は、ペロブスカイト構造を有していた。ここで、比較例5において第2酸化物の結晶構造の解析に用いた照会対象のICSDデータは、ICSD157138(BaZr0.92Yb0.083-δ)であった。
 3.空気極の作製
 実施例1と同様とした。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。比較例5では電極剥離は確認されなかった。
 (オーミック抵抗の測定)
 実施例1と同様とした。図11は、比較例5による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.66Ωcm2であった。
 [比較例6]
 (空気極の作製)
 1.第1酸化物の作製
 比較例6においては、第1酸化物を使用しないため、本工程は割愛された。
 2.第2酸化物の作製
 比較例5と同様とした。
 3.空気極の作製
 比較例6においては、第1酸化物を使用しないため、本工程は割愛された。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。比較例6では電極剥離は確認されなかった。
 (オーミック抵抗の測定)
 実施例1と同様とした。図12は、比較例6による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.79Ωcm2であった。
 [比較例7]
 (空気極の作製)
 1.第1酸化物の作製
 実施例2と同様とした。
 2.第2酸化物の作製
 実施例1におけるBaZr0.8Yb0.23-δ(BZYb)電解質材料粉末を用いた。なお、第2酸化物として用いられたBaZr0.8Yb0.23-δ(BZYb)電解質材料粉末の結晶構造の解析は、実施例1と同様の方法によって行われた。比較例7における第2酸化物は、ペロブスカイト構造を有していた。ここで、比較例7において第2酸化物の結晶構造の解析に用いた照会対象のICSDデータは、ICSD157138(BaZr0.92Yb0.083-δ)であった。
 3.空気極の作製
 実施例1と同様とした。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。比較例7では電極剥離は確認されなかった。
 (オーミック抵抗の測定)
 実施例1と同様とした。図13は、比較例7による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.62Ωcm2であった。
 [比較例8]
 (空気極の作製)
 1.第1酸化物の作製
 実施例1と同様とした。
 2.第2酸化物の作製
 合成には、予め調整した前駆体溶液を用いた。Ba溶液、Zr溶液、Yb溶液、Co溶液については実施例1の(a)、(b)、(c)、(d)と同様の溶液を用いた。加えて、以下の方法で調整したCe溶液を用いた。
 (f)Ceの溶液
 Ceの溶液が、以下の材料を用いて調製された。
・Ce(NO33・6H2O(300g、関東化学株式会社製)
・C687・H2O(300g、関東化学株式会社製)
 上記の材料を500mLの蒸留水が入ったポリエチレン容器に加えた。次に、上記の材料が加えられた蒸留水が、よく攪拌された。このようにしてCeの溶液が得られた。本溶液中のCeイオンの濃度が、上記(a)のZrの溶液中のZrイオンの濃度の算出と同様の方法で、ICP-AESを用いて算出された。その結果、Ceの溶液におけるCeの濃度は、0.88mol/Lであった。なお、本溶液中のクエン酸(すなわち、C687)の濃度は、C687・H2Oの仕込み量と蒸留水の仕込み量との比から、2.84mol/Lと算出された。
 上記の方法で調製された各溶液を用いて、比較例8に係る第2酸化物であるBaCeZrYbCo複合酸化物(以下BCeZYbCo)が合成された。比較例8に係るBCeZYbCoの合成には、以下の材料および溶液が用いられた。
・BaCO3(0.05mol、関東化学株式会社製)
・C687・H2O(0.227mol、関東化学株式会社製)
・Zr溶液(17.4mL;Zr量=0.0085mol)
・Yb溶液(6.9mL;Yb量=0.0063mol、クエン酸量=0.020mol)
・Co溶液(20.8mL;Co量=0.025mol、クエン酸量=0.059mol)
・Ce溶液(11.7mL;Ce量=0.010mоl、クエン酸量=0.033mоl)
・クエン酸溶液(56.8mL;クエン酸量=0.16mol)
・エチレングリコール(2mol)
 始めに、1Lビーカーにクエン酸一水和物(すなわち、C687・H2O)を加えた。次いで、蒸留水80mLを1Lビーカーに加えてスターラーで攪拌した。このようにして、無色透明な第一の水溶液を得た。得られた無色透明な第一の水溶液に、BaCO3を加えた。そして、スターラーでさらに攪拌することでBaCO3を完全に溶解させた。このようにして、無色透明な第二の水溶液とした。得られた無色透明な第二の水溶液の攪拌を続けながら、ピペッターを用いて、上記の量のZr溶液、Yb溶液、Cо溶液、Ce溶液、およびクエン酸溶液を、得られた無色透明な第二の水溶液に加えた。さらに、エチレングリコールも、得られた無色透明な第二の水溶液に加えた。このようにして混合溶液を得た。
 以降の作製手順は実施例1と同様とした。このようにして、第2酸化物であるBCeZYbCoの粉末を得た。得られたBCeZYbCoの組成はBaCe0.205Zr0.170Yb0.125Co0.5003-δであった。なお、得られた第2酸化物の結晶構造の解析は、実施例1と同様の方法によって行われた。比較例8で得られた第2酸化物は、ペロブスカイト構造を有していた。ここで、比較例8において第2酸化物の結晶構造の解析に用いた照会対象のICSDデータは、ICSD181964(BaCe0.45Zr0.40.153-δ)であった。
 3.空気極の作製
 実施例1と同様とした。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。比較例8では電極剥離は確認されなかった。
 (オーミック抵抗の測定)
 実施例1と同様とした。図14は、比較例8による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.31Ωcm2であった。
 [比較例9]
 (空気極の作製)
 1.第1酸化物の作製
 比較例9においては、第1酸化物を使用しないため、本工程は割愛された。
 2.第2酸化物の作製
 比較例8と同様とした。
 3.空気極の作製
 比較例9においては、第1酸化物を使用しないため、本工程は割愛された。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。比較例9では電極剥離は確認されなかった。
 (オーミック抵抗の測定)
 実施例1と同様とした。図15は、比較例9による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は0.37Ωcm2であった。
 [比較例10]
 (空気極の作製)
 1.第1酸化物の作製
 第1酸化物であるLCは、実施例4と同様の方法で合成した。
 2.第2酸化物の作製
 比較例10においては、第2酸化物を使用しないため、本工程は割愛された。
 3.空気極の作製
 比較例10においては、第2酸化物を使用しないため、本工程は割愛された。
 (燃料極/電解質ハーフセルの作製)
 実施例1と同様とした。
 (評価用電気化学セルの作製)
 実施例1と同様とした。
 (電極剥離の有無の確認)
 実施例1と同様とした。比較例4では、部分的な電極剥離が認められた。
 (オーミック抵抗の測定)
 実施例1と同様とした。図16は、比較例10による電気化学セルを用いて測定したナイキストプロットを示す。オーミック抵抗は3.73Ωcmであった。
 (まとめと考察)
 表1を参照して、実施例1から4および比較例1から10の結果を説明する。
 表1に示すように、空気極としての第1電極が、第1酸化物と第2酸化物との両方を含む実施例1から4における電気化学セルは、電極剥離がなく、かつ第1電極が第1酸化物または第2酸化物のいずれか一方の酸化物しか含まない比較例1から10と比較してオーミック抵抗が小さかった。したがって、本開示の膜電極接合体および電気化学セルは、プロトン伝導体を電解質に用いた膜電極接合体および電気化学セルにおいて、オーミック抵抗の低減を可能とする。また、表1から、オーミック抵抗の低減は、既存のSOFCで用いられるような第1酸化物に対し、第2酸化物であるBZYbCoを混合したことで実現されたことが分かる。
 具体的には、例えば実施例1、比較例1、および比較例4の結果を比べると、比較例1でLSCのみを用いた場合のオーミック抵抗0.29cm2、比較例4にてBZYbCoのみを用いた場合のオーミック抵抗0.31Ωcm2の両者に対して、実施例1にてLSCとBZYbCoの両方を用いた場合にはオーミック抵抗は0.24cm2と小さかった。通常であれば2種の材料を混合した場合にはオーミック抵抗は両者の間の値を取ると予想される。すなわち、実施例1のオーミック抵抗は、0.29Ωcm2から0.31Ωcm2の間の値を取ると予想される。しかし、実際の実施例1のオーミック抵抗は、実施例1では0.24Ωcm2と特異的に小さいオーミック抵抗となった。同様の結果は、実施例2、比較例2および比較例4の結果を比べた場合、実施例3、比較例3および比較例4の結果を比べた場合、ならびに実施例4、比較例10及び比較例4を比べた場合にも見られる。
 この結果については、以下のことが要因と考えられる。既存のSOFC用電極であるLSC、LSCF、およびLBCといった酸化物は、高い電子伝導度を示す一方で、熱膨張率が電解質と比べて大きい。また、SOFC用電極としての性能は乏しいものの同じく高い電子伝導度を示すLCも、熱膨張率が電解質と比べて大きい。したがって、電極内部は良好な電子伝導を示す一方で、電極と電解質膜との界面における接合が不十分となり、界面の接合不良に起因するオーミック抵抗が発生した可能性がある。この結果は、例えば、比較例1、比較例2、および比較例3の比較からもうかがえる。比較例3で用いたLBCは、比較例1でのLSCおよび比較例2でのLSCFと比べて、同等以上の高い電子伝導性を示す材料である。しかし、比較例3で得られたオーミック抵抗は、比較例1および比較例2の結果と比べて大きい。この結果が、比較例3ではLBCの電極剥離が認められたことと関連していると考えられる。電極剥離、あるいは電極剥離に至らずとも電極と電解質膜との界面における接合不良が見られた場合には、オーミック抵抗が増大すると考えられる。すなわち比較例1、比較例2、および比較例3では、大小の差はあれ接合不良に起因するオーミック抵抗が存在したと考えらえる。このことは、比較例10でLCの電極剥離が認められ、オーミック抵抗が非常に大きくなったこととも一致する。
 比較例4にて第2酸化物のBZYbCoのみを用いた場合については、別の要因があると考えらえる。BZYbCoは、プロトン伝導体であるBZYbと組成が比較的近いことから、物性についてもBZYbと似通ったところがある。すなわち、熱膨張率の観点では、BZYbCoとBZYbとの熱膨張率は比較的近くなり、BZYbCoを用いると電極と電解質膜との界面で接合不良が生じる可能性は低い。また電子伝導度の観点でもBZYb自体は電子伝導性をほとんど有さない材料であり、BZYbCoについてもLSC、LSCF、およびLBC等と比べると電子伝導度が小さい。つまり、比較例4では、電極と電解質膜との界面における接合不良にともなうオーミック抵抗は小さい一方で、電極内部でのオーミック抵抗が生じていたと考えられる。
 以上のように、電気化学セルのオーミック抵抗要因としては、電極と電解質膜との界面における接合不良と、電極内部における電子伝導性の低さとが考えられる。両者のオーミック抵抗要因に対して、実施例1から3では、それぞれ、LSC、LSCF、LBC、またはLCによる高い電子伝導度と、BZYbCoによる電極と電解質膜との界面における接合性の向上との複合的な効果により、電気化学セルのオーミック抵抗が低減できたと考えられる。
 続いて、比較例2、比較例5、および比較例6の結果について説明する。比較例5では、電極にLSCFとBZYbFeとの混合物を用いており、電気化学セルのオーミック抵抗は0.66Ωcm2であった。この値は、比較例2におけるLSCFのオーミック抵抗0.31Ωcm2と、比較例6におけるBZYbFeのオーミック抵抗0.79Ωcm2との間の値となった。すなわち、実施例1から3とは異なり、混合電極化(すなわち、既存のSOFC用電極材料とBZYbFeとの混合物を用いること)による特異的なオーミック抵抗低減は見られていない。
 同様の結果は比較例7でも見られる。比較例7では電極にLSCFとBZYbとの混合物を用いている。これは、既存のSOFC用電極材料に対し、電解質材料を混合した例であり、特許文献1に記載された発明と同様の技術思想である。BZYbのみを電極に用いた場合については、BZYbに電子伝導性がほとんどなく、かつ電極触媒としての機能も果たさないことから電気化学セルの評価を実施していない。しかしながら、比較例2と比較例7の結果から、BZYbとの混合電極化(すなわち、電極に既存のSOFC用電極材料とBZYbとの混合物を用いること)によるオーミック抵抗低減が期待できないことは明らかである。
 上記の結果から、既存のSOFC用電極材料に対し、BZYbCoを混合する場合にのみ特異的なオーミック低減効果が見られることが分かる。熱膨張率の観点では、BZYbFeおよびBZYbでもBZYbCo同様の界面接合性の向上が期待されるはずである。しかしBZYbやBZYbFeではオーミック抵抗低減効果は見られなかった。特に、BZYbFeは遷移元素であるFeを含むことから電子伝導性を有する材料であるにも関わらず、BZYbCoのような効果がみられなかった。
 BZYbCoで特異的な効果が見られた明確な理由は不明であるが、Coを含むことで、例えば既存のSOFC用電極材料、BZYbCo、および電解質それぞれの粒子レベルで微量な元素拡散による接合性向上が促進され、電極内部の電子伝導性および電極と電解質膜との界面接合性が一層高められた可能性等が考えられる。
 最後に比較例8および比較例9について説明する。比較例8では、電極にLSCとBCeZYbCoとの混合物を用いており、電気化学セルのオーミック抵抗は0.31Ωcm2であった。この値は、比較例1でのLSCのオーミック抵抗0.29Ωcm2と比較例9でのBCeZYbCoのオーミック抵抗0.37Ωcm2の間の値である。すなわち、BCeZYbCoを既存のSOFC用電極材料に混合した場合に、特異的なオーミック抵抗低減効果は見られなかった。上記で第2酸化物に含まれるCoによる効果の可能性について触れたが、同様の効果は第2酸化物にCeを含む場合には観察されなかった。この理由は不明であるが、Ceを含むことで第1酸化物と第2酸化物との界面の元素拡散挙動が異なり、粒子レベルでの接合性向上に差が見られた可能性がある。
 以上より、第2酸化物として、BaZrYbに加えてCoを含むことにより電気化学セルのオーミック抵抗低減が生じることが見出された。
 本開示による膜電極接合体は、水素生成システムまたは燃料電池システムの電気化学セルを用いたシステムに適している。本開示に係る膜電極接合体は、水素純化装置、水素圧縮装置などの電気化学的水素ポンプにも利用され得る。
10  膜電極接合体
11  電解質膜
12a  第1主面
12  第1電極
13  第2電極
20  電気化学セル
30  スタック
1000  燃料電池システム
1014  筐体
1021  酸化剤ガス供給器
1022  原料供給器
1023  原料ガス供給経路
1024  酸化剤ガス供給経路

Claims (9)

  1.  第1電極と、
     プロトン伝導性を有する酸化物を含む電解質膜と、
    を具備し、
     前記第1電極は、第1酸化物と第2酸化物とを含み、
     前記第1酸化物は、組成式ABO3で表される第1ペロブスカイト化合物であり、ここで、前記第1ペロブスカイト化合物において、Aサイトの構成元素にはLa、Sr、およびBaからなる群より選択される少なくとも1つが含まれ、かつBサイトの構成元素にはCoおよびFeからなる群より選択される少なくとも1つが含まれ、
     前記第2酸化物は、Baと、Zrと、Ybと、少なくともCoを含む1種以上の第一遷移元素と、Oとからなる第2ペロブスカイト化合物である、
    膜電極接合体。
  2.  前記第2酸化物は、Baと、Zrと、Ybと、Coと、Oとからなる、
    請求項1に記載の膜電極接合体。
  3.  前記第1酸化物は、以下の(1)から(4)のいずれかを満たす、
    請求項1に記載の膜電極接合体。
    (1)前記Aサイトの構成元素にはLaおよびSrが含まれ、かつ前記Bサイトの構成元素にはCoおよびFeが含まれている。
    (2)前記Aサイトの構成元素にはLaおよびSrが含まれ、かつ前記Bサイトの構成元素にはCoが含まれている。
    (3)前記Aサイトの構成元素にはLaおよびBaが含まれ、かつ前記Bサイトの構成元素にはCoが含まれている。
    (4)前記Aサイトの構成元素にはLaが含まれ、かつ前記Bサイトの構成元素にはCoが含まれている。
  4.  前記第1電極と前記電解質膜とは、互いに接している、
    請求項1に記載の膜電極接合体。
  5.  前記電解質膜は、化学式Baa1Zr1-x1M1x13-δ1で表される化合物、化学式Baa2Ce1-x2M2x23-δ2で表される化合物、および化学式Baa3Zr1-x3-y3Cex3M3y33-δ3で表される化合物からなる群より選ばれる少なくとも1つを含み、
     M1、M2およびM3は、それぞれ、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Y、Sc、InおよびLuからなる群より選ばれる少なくとも1つを含んでおり、
     0.95≦a1≦1.05、0.95≦a2≦1.05、0.95≦a3≦1.05、0<x1<1、0<x2<1、0<x3<1、0<y3<1、0<δ1<0.5、0<δ2<0.5、かつ0<δ3<0.5が充足される、
    請求項1に記載の膜電極接合体。
  6.  M1はYbである、
    請求項5に記載の膜電極接合体。
  7.  電気化学セルであって、
     請求項1から6のいずれか一項に記載の膜電極接合体、および第2電極を具備し、
     前記第1電極、前記電解質膜、および前記第2電極が、この順に設けられている、
    電気化学セル。
  8.  前記第2電極は、NiOおよびNiからなる群より選ばれる少なくとも1つを含む、
    請求項7に記載の電気化学セル。
  9.  燃料電池システムであって、
     請求項7に記載の電気化学セル、
     酸化剤ガス供給経路、および
     原料ガス供給経路、
    を具備し、
     前記第1電極は、前記酸化剤ガス供給経路と接続されており、
     前記第2電極は、前記原料ガス供給経路と接続されている、
    燃料電池システム。
PCT/JP2023/010404 2022-04-26 2023-03-16 膜電極接合体、電気化学セルおよび燃料電池システム WO2023210202A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023547892A JP7367271B1 (ja) 2022-04-26 2023-03-16 膜電極接合体、電気化学セルおよび燃料電池システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-072718 2022-04-26
JP2022072718 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023210202A1 true WO2023210202A1 (ja) 2023-11-02

Family

ID=88518621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010404 WO2023210202A1 (ja) 2022-04-26 2023-03-16 膜電極接合体、電気化学セルおよび燃料電池システム

Country Status (1)

Country Link
WO (1) WO2023210202A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078204A (ja) * 2015-10-20 2017-04-27 東京瓦斯株式会社 高温水蒸気電解セル及び高温水蒸気電解システム
JP2017188439A (ja) * 2016-04-04 2017-10-12 パナソニック株式会社 膜電極接合体および固体酸化物形燃料電池
JP2020107406A (ja) * 2018-12-26 2020-07-09 東邦瓦斯株式会社 燃料電池および燃料電池の運転方法
JP2020135987A (ja) * 2019-02-15 2020-08-31 株式会社日本触媒 電気化学セル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078204A (ja) * 2015-10-20 2017-04-27 東京瓦斯株式会社 高温水蒸気電解セル及び高温水蒸気電解システム
JP2017188439A (ja) * 2016-04-04 2017-10-12 パナソニック株式会社 膜電極接合体および固体酸化物形燃料電池
JP2020107406A (ja) * 2018-12-26 2020-07-09 東邦瓦斯株式会社 燃料電池および燃料電池の運転方法
JP2020135987A (ja) * 2019-02-15 2020-08-31 株式会社日本触媒 電気化学セル

Similar Documents

Publication Publication Date Title
CN103390739B (zh) 一种固体氧化物燃料电池氧化铈基电解质隔层及其制备
KR101672588B1 (ko) 고체 산화물 연료전지 및 이의 제조방법
US20210344018A1 (en) Methods of fabricating solid oxide fuel cells
US9666891B2 (en) Gas phase modification of solid oxide fuel cells
Chasta et al. A review on materials, advantages, and challenges in thin film based solid oxide fuel cells
JP7002036B2 (ja) 膜電極接合体および固体酸化物形燃料電池
US9660273B2 (en) Liquid phase modification of solid oxide fuel cells
US20120021339A1 (en) Solid oxide fuel cell and manufacturing method thereof
JP5219370B2 (ja) イオン伝導体
WO2018230247A1 (ja) 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法
KR20170124819A (ko) 공기극 구조체, 이를 포함하는 연료 전지, 상기 연료 전지를 포함하는 전지 모듈 및 공기극 구조체의 제조방법
KR101330173B1 (ko) 고체 산화물 연료전지용 캐소드와 그 제조 방법 및 이 캐소드를 포함하는 연료전지
Baek et al. Electrochemical properties of composite cathodes using Sm doped layered perovskite for intermediate temperature-operating solid oxide fuel cell
WO2014021446A1 (ja) 燃料電池
JP4828104B2 (ja) 燃料電池セル
JP2015122286A (ja) 電極材料とその利用
JP7367271B1 (ja) 膜電極接合体、電気化学セルおよび燃料電池システム
WO2023210202A1 (ja) 膜電極接合体、電気化学セルおよび燃料電池システム
JP2015191810A (ja) 固体酸化物形燃料電池用アノード支持基板及び固体酸化物形燃料電池用セル
WO2020217742A1 (ja) 膜電極接合体、電気化学デバイスおよび電気化学システム
JP2017157553A (ja) 燃料電池
KR101698210B1 (ko) 고체산화물 전해질, 이를 포함하는 고체산화물 연료전지 및 이의 제조방법
US20210408569A1 (en) Membrane electrode assembly, solid oxide fuel cell, and electrochemical device
KR101927306B1 (ko) 산화물 입자, 이를 포함하는 전극 및 상기 전극을 포함하는 연료전지
JP6654903B2 (ja) 固体酸化物形燃料電池用の電極材料とその利用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023547892

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795949

Country of ref document: EP

Kind code of ref document: A1