WO2023210126A1 - Mounting machine - Google Patents

Mounting machine Download PDF

Info

Publication number
WO2023210126A1
WO2023210126A1 PCT/JP2023/005912 JP2023005912W WO2023210126A1 WO 2023210126 A1 WO2023210126 A1 WO 2023210126A1 JP 2023005912 W JP2023005912 W JP 2023005912W WO 2023210126 A1 WO2023210126 A1 WO 2023210126A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
suction nozzle
suction
light
mounting machine
Prior art date
Application number
PCT/JP2023/005912
Other languages
French (fr)
Japanese (ja)
Inventor
悟 柴田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023210126A1 publication Critical patent/WO2023210126A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present disclosure relates to a mounting machine.
  • Patent Document 1 discloses that a suction nozzle holding a component at its tip is positioned at a predetermined position of component mounting device information on an object to be mounted, and the suction nozzle is lowered from the predetermined position to mount the component at the component mounting position.
  • a component mounting method is disclosed in which the component is released from being held by a suction nozzle and the suction nozzle is raised.
  • the component mounting method is to set a measurement position at a predetermined height position on the suction nozzle's lifting path, and measure the time it takes for the component or suction nozzle to reach the measurement position from the predetermined position when the suction nozzle is lowered and/or raised. Based on the measured time, the quality of the holding and/or mounting state of the component by the suction nozzle is determined.
  • the present disclosure was devised in view of the above-mentioned conventional circumstances, and aims to provide a mounting machine that more accurately acquires the suction state of components suctioned by a nozzle.
  • a mounting machine includes a suction nozzle, a head that suctions a component with a tip of the suction nozzle and mounts the component on a substrate, a light source that irradiates a light beam, and a slit through which the light beam passes. It has a slit having a hole and a light-receiving element that receives the light beam that has passed through the slit hole. a sensor that outputs the light intensity of the received light beam; and a sensor that differentiates the light intensity of the light beam output from the sensor to obtain a differential value, and based on the differential value, the light beam is and a control unit that determines whether or not the component is being attracted to the tip of the suction nozzle passing through.
  • the suction nozzle has a taper that becomes thinner toward the tip, and the slit hole is arranged non-parallel to the taper.
  • the suction state of a component suctioned by a nozzle can be determined with higher accuracy.
  • Block diagram showing an example of internal configuration of a mounting machine according to Embodiment 1 A diagram illustrating an example of a partial configuration of a mounting machine according to Embodiment 1. Enlarged view of main parts of mounting machine Diagram explaining an example of IV conversion processing
  • Diagram explaining the IV conversion graph of diffracted light Diagram explaining the IV conversion graph and differential graph when diffraction occurs
  • the mounting machine calculates the theoretical value of the passing time when descending based on the descending speed of the suction nozzle, the thickness of the component, and the offset amount of the suction nozzle that are stored in advance. ) ⁇ (theoretical value of descending passing time), it is determined that the parts are normally suctioned.
  • the theoretical value of the descending passage time is calculated using the offset amount of the suction nozzle that is stored in advance. Therefore, when the suction nozzle of the mounting machine has deteriorated due to wear or the like, the descending passage time becomes short, and the accuracy of determining the suction posture of the component may be reduced.
  • the parts being transported by the suction nozzle can be detected using an optical sensor installed in the transport path of the parts from the parts supply position to the parts mounting position.
  • the amount of light shielding changes due to disturbances such as vibrations of the suction nozzle during transportation, so the mounting machine removes the disturbance by performing differential processing on the obtained light shielding amount, and calculates the differentially processed light shielding value. Based on this, the thickness of the parts was measured.
  • the amount of light shielding includes the diffracted light that is diffracted at the edge of the suction nozzle, it is difficult for the mounting machine to accurately measure the thickness of the component using the waveform of the amount of light shielding after differential processing. .
  • FIG. 9 is a diagram illustrating an IV conversion graph OpA of diffracted light.
  • FIG. 10 is a diagram illustrating an IV conversion graph OpB and a differential graph DfB when diffraction occurs.
  • the optical sensor receives light emitted from a light source and converts the received light into an electrical signal.
  • the optical sensor detects the tip of the suction nozzle 15Z based on the time-series changes in the differential value obtained by performing differential processing on a converted value (hereinafter referred to as "IV converted value") obtained by converting an electric signal (current) into a voltage.
  • IV converted value a converted value obtained by performing differential processing on a converted value (hereinafter referred to as "IV converted value" obtained by converting an electric signal (current) into a voltage.
  • the thickness (height), width, posture (angle), etc. of the component P0 suctioned to the part are measured, and a determination process regarding the suction state or suction posture of the component P0 is executed.
  • the suction nozzle 15Z passes the light (ray) irradiated from the light source while the component P0 is suctioned at the tip.
  • the light from the light source that is blocked by the suction nozzle 15Z and the component P0 is diffracted by the suction nozzle 15Z and the component P0, which are obstacles.
  • the diffracted light DL1 shown in FIG. 9 is the diffracted light when the suction nozzle 15Z does not suction the component P0.
  • Diffracted light DL1 is light that is generated along edge EG1 and whose emission intensity changes periodically.
  • Diffracted light DL2 indicates diffracted light when diffracted by suction nozzle 15Z in a state of suctioning component P0.
  • the diffracted light DL2 is light that is generated along the edge EG2 and whose emission intensity changes periodically.
  • the IV conversion graph OpA is a graph showing a time-series change in the IV conversion value of the diffracted light DL2 received by the optical sensor and moving away from the suction nozzle 15A with reference to the position EG0 of the suction nozzle 15Z.
  • the emission intensity of the diffracted light DL2 is an attenuated wave that attenuates as it gets farther from the suction nozzle 15Z and the edge EG2 of the component P0, which are obstacles.
  • the IV conversion graph OpB shown in FIG. 10 is a graph showing time-series changes in the diffracted light DL2 received by the optical sensor and the IV conversion value of the light source.
  • the IV conversion graph OpB1 indicated by a broken line is a graph showing a time-series change in the IV conversion value when the component P0 is not suctioned by the suction nozzle 15Z.
  • the IV conversion graph OpB2 shown by a solid line is a graph showing a time-series change in the IV conversion value when the component P0 is sucked in the correct posture by the suction nozzle 15Z.
  • the IV conversion graph OpB indicated by a dashed line is a graph showing a time-series change in the IV conversion value when the component P0 is not sucked in the correct posture by the suction nozzle 15Z.
  • the IV conversion values corresponding to the diffracted light DL2 of the suction nozzle 15Z appear at points Pt11 and Pt14, and the thickness of the component P0 sucked by the suction nozzle 15Z appears at points Pt12 and Pt13. (that is, the amount of light shielded by the component P0), an IV conversion value corresponding to the amount of light shielded by the component P0 appears.
  • the differential graph DfB is a graph showing a time-series change in the differential value of the IV conversion value obtained by differentiating the IV conversion graph OpB.
  • the differential graph DfB1 indicated by a broken line is a graph showing a time-series change in the differential value when the component P0 is not sucked by the suction nozzle 15Z.
  • the differential graph DfB2 indicated by a solid line is a graph showing a time-series change in the differential value when the component P0 is sucked in the correct posture by the suction nozzle 15Z.
  • the differential graph DfB3 indicated by a dashed-dotted line is a graph showing a time-series change in the differential value when the component P0 is not attracted to the suction nozzle 15Z in the correct posture.
  • peaks Pk11 and Pk14 due to the diffracted light DL2 occur at positions (times) corresponding to points Pt11 and Pt14 of the IV conversion graph OpA, respectively. Further, in the differential graph DfB, peaks Pk12 and Pk13 due to the component P0 occur at positions (times) corresponding to points Pt12 and Pt13 of the IV conversion graph OpA, respectively.
  • peaks Pk11 and Pk14 indicating the intensity of the diffracted light LD2 are larger than peaks Pk12 and Pk13 indicating the thickness of the component P0. Therefore, it was difficult for the mounting machine to measure the thickness of the component P0 based on the peak of the differential value obtained from the differential graph DfB.
  • the X direction and the Y direction are directions perpendicular to each other within the horizontal plane.
  • the Z direction is a height direction (vertical direction) orthogonal to the X direction and the Y direction.
  • FIG. 1 is a diagram illustrating an example of the internal configuration of mounting machine 100 according to the first embodiment.
  • FIG. 2 is a diagram illustrating a partial configuration example of the mounting machine 100 according to the first embodiment.
  • FIG. 3 is an enlarged view of the main parts of the mounting machine 100.
  • the number of mounting machines connected to the management computer 21 is one, but a plurality of mounting machines may be connected at the same time. Further, in FIG. 1, illustration of the X-axis rail 10A, the Y-axis rail 10B, the component supply section 12, and the board rail 16 is omitted.
  • the mounting machine 100 drives each of the pair of board rails 16 to carry in the board 13.
  • the mounting machine 100 drives the head 11 each having one or more suction nozzles 15, and causes each of the suction nozzles 15 to suction the component P (see FIG. 3) supplied by the component supply section 12.
  • the mounting machine 100 sucks the component P with the suction nozzle 15, moves the head 11 onto the board 13, conveys the component P to the top of the board 13, and then places the component P at each component mounting position on the board 13.
  • the mounting machine 100 produces a mounted board by mounting (installing) all the components P to be mounted on the board 13, and then drives each of the pair of board rails 16 to carry out the produced mounted board. do.
  • the mounting machine 100 includes a head 11, a component supply section 12, a measurement system 14, one or more suction nozzles 15, a pair of board rails 16, a processor 17, a memory 18, and an output section 19. Consists of.
  • the communication unit 20 is not an essential component and may be omitted.
  • the mounting machine 100 when configured to include the communication unit 20, it may be communicably connected to the management computer 21 (that is, an external device) and may be capable of transmitting and receiving data.
  • Each of the pair of X-axis rails 10A is coupled to the Y-axis rail 10B, and supports the Y-axis rail 10B so as to be movable in the X direction and the ⁇ X direction.
  • the Y-axis rail 10B is connected to the head 11 and supports the head 11 so as to be movable in the Y direction and the -Y direction.
  • Each of the pair of X-axis rails 10A and the Y-axis rail 10B constitute a moving mechanism that moves the head 11.
  • the head 11 is controlled by a movement mechanism and is driven (moved) in each of the X-axis direction, Y-axis direction, and Z-axis direction.
  • the head 11 is coupled to the Y-axis rail 10B and transports the component P between the component supply section 12 and a predetermined component mounting position on the board 13.
  • the head 11 includes one or more suction nozzles 15.
  • the suction nozzle 15 is raised and lowered by the processor 17 in the direction along the Z-axis direction (elevating direction) between the conveyance height of the component P and the mounting height of the component P onto the board 13 .
  • the processor 17 causes each of the suction nozzles 15 to suck the component P, and to release the suction.
  • the head 11 adsorbs the component P supplied by the component supply unit 12 with the tip of the suction nozzle 15, transports it to a predetermined component mounting position on the board 13, and then releases the adsorption of the component P to place the component P on the board 13. Implement on top.
  • the mounting machine 100 measures the thickness of the component P sucked at the tip of each suction nozzle 15 based on the amount of light 14B blocked (that is, the amount of variation in the amount of received light), and Determine the condition.
  • the component supply unit 12 is controlled by the processor 17 and supplies components P to be mounted on the board 13. Note that the component supply unit 12 may be able to simultaneously supply a plurality of different types of components P. Further, the arrangement of the component supply section 12 shown in FIG. 2 is an example, and the arrangement is not limited thereto.
  • the measurement system 14 as an example of a sensor includes a light source 14A, a slit 14C, a photoelectric conversion element 14D, and a current-voltage conversion section 14E.
  • the slit 14C has a slit hole 141C and is arranged on the surface facing the light source 14A. Note that the arrangement positions of the measurement system 14 shown in each of FIGS. 1 to 3 are merely examples, and the present invention is not limited thereto.
  • the photoelectric conversion element 14D which is an example of a light receiving element, converts light (ray 14B) emitted from a light source 14A such as an LED (Light Emitting Diode) or an LD (Laser Diode) and passed through the slit hole 141C of the slit 14C into electricity.
  • the signal is converted into a signal and output to the current-voltage converter 14E.
  • the current-voltage converter 14E converts the electric signal (current) output from the photoelectric conversion element 14D into a voltage and outputs a converted value (hereinafter referred to as "IV converted value") to the differential processor 17A in the processor 17.
  • IV converted value a converted value
  • the slit 14C is arranged such that the substantially rectangular slit hole 141C is located at a predetermined position (height) relative to the suction nozzle 15.
  • the slit hole 141C of the slit 14C is formed by the thickness A of the component P in the Z direction (see FIGS. 6 and 7) and the tip heights H2 and H5 of the suction nozzle 15 attached to the head 11 (see FIG. 6). , see FIG. 7), the upper limit value of the placement height of the suction nozzle 15 (height B, which will be described later) is determined.
  • the slit 14C is arranged based on the determined upper limit of the arrangement height for the suction nozzle 15 (height B described later).
  • the shape of the slit hole 141C is not limited to a substantially rectangular shape. At least a portion of the slit hole 141C may be parallel to the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C. For example, both ends of the slit hole 141C in the height direction may be formed in an arc shape. It's okay.
  • the processor 17 as an example of a control unit is, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or an FPGA (Field Programmable Gate Arra). y), and controls the operation of each part of the processor 17.
  • the processor 17 cooperates with the memory 18 to perform various types of processing and control in an integrated manner. Specifically, the processor 17 references programs and data held in the memory 18 and executes the programs to realize the functions of each section. Note that each section referred to here is a differential processing section 17A and a determination section 17B.
  • the differential processing unit 17A calculates the differential (difference) of each of the two consecutive IV converted values output from the current-voltage conversion unit 14E, and obtains a differential value indicating the amount of change in the IV converted value.
  • the differential processing section 17A outputs each of the obtained differential values to the determining section 17B.
  • the determination unit 17B determines the thickness (height) in the Z direction and the width in the , posture (angle), etc., and performs determination processing regarding the suction state or suction posture of the component P.
  • the determination unit 17B determines whether the thickness of the component P sucked by each suction nozzle 15 is normal or not. It is determined whether the thickness of the part P is the same as when it is being sucked. Further, the determination unit 17B determines the suction posture (angle) of the component P suctioned by each suction nozzle 15 based on the differential value output from the differential processing unit 17A and the threshold value 18A stored in the memory 18. It is determined whether the suction posture of the component P is one in which the component P is normally suctioned.
  • the normal posture (angle) referred to here is data regarding the posture (angle) of the component P that is set corresponding to the orientation of the component P mounted on the board 13, and is, for example, data that is included in production data. It will be done.
  • the head 11 sucks and takes out the component P from the component supply section 12 based on the attitude (angle) of the component P included in the production data, and conveys and mounts it onto the board 13.
  • the determination unit 17B outputs the determination result to the output unit 19. Note that the determination unit 17B may output the determination result to the output unit 19 only when determining that the component P is not normally suctioned or is not in a normal suction posture. Further, the determination unit 17B may store the determination result in the memory 18. Further, when the mounting machine 100 is communicably connected to the management computer 21 via the communication unit 20, the judgment unit 17B outputs the judgment result to the management computer 21 via the communication unit 20. It's okay.
  • the determination unit 17B calculates the angular difference between the measured suction angle of the component P and the normal suction angle. , the corresponding suction nozzle 15 may be rotated based on the calculated angular difference. Thereby, the mounting machine 100 can correct the suction posture (angle) of the component P to a normal suction posture.
  • the memory 18 includes, for example, a RAM (Random Access Memory) as a work memory used when executing each process of the processor 17, and a ROM (Read Only Memory) that stores programs and data that define the operations of the processor 17. have Data or information generated or acquired by the processor 17 is temporarily stored in the RAM. A program that defines the operation of the processor 17 is written in the ROM.
  • the memory 18 stores a threshold value 18A used for various determinations performed by the determination unit 17B. Further, the memory 18 stores production data for producing a mounting board to be produced.
  • the production data here is information used to produce mounted boards by the mounting machine 100.
  • the production data includes, for example, the size of the substrate 13, the size and shape of the component P, information regarding the suction nozzle, the number of substrates produced, and the like. Note that the production data does not need to be limited to the data of the items described above.
  • the production data may include information on a threshold value 18A for each part P, which will be described later.
  • the threshold value 18A is set for each type of component P, and is a threshold value for determining whether the component P is normally suctioned by the suction nozzle 15.
  • the threshold value 18A stored in the memory 18 is a threshold value ThA for determining whether or not the component P is normally suctioned based on the thickness of the component P; , Threshold ThB for determining whether the suction posture (angle) of the part P is normal or not, Based on the width of the part P, the suction posture (angle) of the part P and whether the suction surface is normal or not.
  • ThC for determining. Note that at least one threshold value may be set as the threshold value used for each determination.
  • the output unit 19 is configured using a display such as an LCD (Liquid Crystal Display) or an organic EL (Electroluminescence).
  • the output unit 19 displays the determination result regarding the suction state or suction posture of the component P output from the determination unit 17B, and outputs audio.
  • the communication unit 20 is connected to the management computer 21 for wireless or wired communication, and transmits and receives data.
  • the communication unit 20 transmits the determination result regarding the suction state or suction posture of the component P output from the determination unit 17B to the management computer 21.
  • the communication unit 20 also acquires the production data of the board 13, the production data for each part P, or the threshold value for each part P transmitted from the management computer 21, and outputs it to the processor 17.
  • the wireless communication referred to here is communication via a wireless LAN (Local Area Network) such as Wi-Fi (registered trademark).
  • the determination process regarding the suction state or suction posture (angle) of the component P may be executed by the management computer 21.
  • the processor 17 in the mounter 100 associates the IV conversion value output from the current-voltage converter 14E with identification information that can identify the mounter 100 and the suction nozzle 15, and sends it to the management computer 21.
  • the differential value calculated by the differential processing section 17A and identification information that can identify the mounting machine 100 and the suction nozzle 15 may be associated with each other and transmitted to the management computer 21.
  • the mounting machine 100 may acquire the determination result regarding the suction state or suction posture of the component P transmitted from the management computer 21, store it in the memory 18, and output it to the output unit 19. .
  • the management computer 21 is, for example, a PC (Personal Computer), a notebook PC, a tablet terminal, etc., and is operated by a worker.
  • the management computer 21 is communicably connected to one or more mounting machines, and generates production information related to the mounting board production process input or set in advance by an operator, and an execution command for executing the production process. and send it to each mounting machine.
  • FIG. 4 is a diagram illustrating an example of IV conversion processing. Note that in FIG. 4, illustration of the head 11 is omitted to make the explanation easier to understand.
  • Each of the plurality of suction nozzles 15 included in the head 11 may have individual differences in the length to the tip that suctions the component P, the shape of the tip, etc. due to manufacturing errors, deterioration over time, etc.
  • changes in the IV conversion output value due to individual differences in the suction nozzles 15 will be specifically explained.
  • each of the plurality of suction nozzles 15 is simultaneously detected by the measurement system 14 in a direction different from the irradiation direction (Y direction) of the light beam 14B, as shown in FIGS. 2 and 3. Placed so as not to be detected. Thereby, the mounting machine 100 can detect the suction state (or suction posture) of the component P for each suction nozzle 15.
  • the suction nozzle 15A is suctioning the component P at a height HA.
  • the suction nozzle 15B suctions the component P at a height HB.
  • the amount of light ray 14B blocked by suction nozzle 15A is larger than the amount of light ray 14B blocked by suction nozzle 15B.
  • the IV conversion graph Op1 is a graph showing a time-series change in the IV conversion value obtained when the suction nozzle 15A passes the light beam 14B.
  • the IV conversion graph Op2 is a graph showing a time-series change in the IV conversion value obtained when the suction nozzle 15B passes the light beam 14B.
  • the vertical axis of each of the IV conversion graphs Op1 and Op2 indicates the IV conversion value output from the current-voltage converter 14E.
  • the horizontal axis of each of the IV conversion graphs Op1 and Op2 indicates time.
  • the respective IV conversion values of the IV conversion graphs Op1 and Op2 increase in proportion to the amount of light ray 14B blocked.
  • the light blocking level LV0A is an IV conversion value indicating that the light beam 14B is not blocked by the suction nozzle.
  • the amount of light shielding becomes maximum as the suction nozzle 15A and the component P pass the light beam 14B in the time period T11, and the IV conversion value reaches the maximum value V11.
  • the amount of light shielding becomes maximum, and the IV conversion value becomes the maximum value V12.
  • the mounting machine 100 has different IV conversion values when picking up the component P indicated by the IV conversion graphs Op1 and Op2. It becomes difficult to determine the suction state of the component P more accurately.
  • the differentiation processing section 17A differentiates each of the two consecutive IV conversion values output from the current-voltage conversion section 14E.
  • the mounting machine 100 generates time-series data of differential values (differences) indicating the amount of change in the IV converted value excluding individual differences between suction nozzles from the IV converted value (for example, the differential graphs Df41 and Df51 shown in FIG. 8). etc.) can be generated.
  • FIG. 5 is a diagram illustrating an example of how the amount of received diffracted light changes depending on the arrangement of the suction nozzle 15 and the slit 14C.
  • FIG. 5 an example will be described in which the edge EG of the suction nozzle 15 does not have a tapered shape.
  • Each of the IV conversion graphs Op31, Op32, Op33, and Op34 shows a time-series change in the IV conversion value obtained by performing IV conversion on the amount of received diffracted light when the head 11 is moved in the direction of the arrow in the figure. It is a graph.
  • the vertical axis of each of the IV conversion graphs Op31 to Op34 indicates the IV conversion value.
  • the horizontal axis of each of the IV conversion graphs Op31 to Op34 indicates time.
  • the angle between the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C of the slit 14C is 0 (zero) degrees (that is, the angle between the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C). shows the amount of received diffracted light when (parallel).
  • the diffracted light is divided into high-intensity (bright) diffracted light and low-intensity (dark) diffracted light.
  • the light passes through the slit holes 141C alternately.
  • the amount of change in the amount of light received by the photoelectric conversion element 14D increases, so that the diffracted light appears as a large peak (differential value) in the differential graph obtained by the differential processing.
  • the IV conversion graph Op32 shows the amount of diffracted light received when the angle between the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C of the slit 14C is 5°.
  • the proportion of the diffracted light with low intensity (dark) increases, and the proportion occupied by the diffracted light with high intensity (bright) decreases. Therefore, the amount of change in the amount of received diffracted light when the angle between the suction nozzle 15 and the opening direction of the slit hole 141C is 5 degrees is the same as when the suction nozzle 15 and the opening direction of the slit hole 141C are parallel to each other. becomes smaller than
  • the IV conversion graph Op33 shows the amount of diffracted light received when the angle between the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C of the slit 14C is 20°.
  • the proportion of the diffracted light with low intensity (dark) further increases, and the proportion occupied by the diffracted light with high intensity (bright) further decreases.
  • the amount of change in the amount of received diffracted light is as follows:
  • the angle between the suction nozzle 15 and the opening direction of the slit hole 141C is 5 It will be smaller than in the case of °.
  • the IV conversion graph Op34 shows the amount of diffracted light received when the angle between the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C of the slit 14C is 30°.
  • the proportion of the diffracted light with low intensity (dark) further increases, and the proportion occupied by the diffracted light with high intensity (bright) further decreases. Therefore, when the angle between the suction nozzle 15 and the opening direction of the slit hole 141C is 30 degrees, the amount of change in the amount of received diffracted light is 20 degrees. It is even smaller than in the case of °.
  • the mounting machine 100 uses a differential graph because the more the edge EG of the suction nozzle 15 and the slit hole 141C of the slit 14C overlap in the height direction, the smaller the amount of change in the received amount of diffracted light becomes. It is possible to perform suction determination of the component P with higher accuracy.
  • FIG. 6 is a diagram illustrating a first example of relative positional relationship between the suction nozzle 15 and the slit hole 141C. Note that in FIG. 6, only the slit hole 141C is shown as the slit 14C to make the explanation easier to understand.
  • the shape of the suction nozzle 15 shown in FIG. 6 shows an example in which the entire shape is formed in a tapered shape
  • the shape is not limited to this.
  • the relative positional relationship between the suction nozzles 15, 15C and the slit hole 141C of the slit 14C is determined based on the thickness A of the component P to be suctioned by the suction nozzles 15, 15C.
  • the thickness A of the component here is the height (size) of the component P in the Z direction that is sucked and held by the suction nozzles 15 and 15C.
  • the slit 14C is arranged at a height such that the height H1 of one end of the slit hole 141C is less than the height B in the +Z direction from the tapered height H0 of the suction nozzle 15.
  • the slit 14C is arranged so that the opening direction of the slit hole 141C (Z direction in the example shown in FIG. 6) is approximately parallel to the extending direction of the suction nozzle 15 (arranged approximately parallel to the vertical direction of the suction nozzle 15).
  • taper formation height H0 here indicates the height of the intersection Pt1 of surfaces having two different taper angles ⁇ a and ⁇ b. Taper angle ⁇ a>taper angle ⁇ b.
  • the value of height B may be 0 (zero).
  • the slit hole 141C is arranged so that the height H1 of one end of the slit hole 141C is between the taper formation height H0 and the suction height of the component P (the tip height H2 of the suction nozzle 15).
  • the mounting machine 100 measures the overlapping height (that is, the height B) where the edge EG11 having the small taper angle ⁇ b among the edges of the suction nozzle 15 overlaps with the slit hole 141C in the Z direction.
  • the mounting machine 100 can more effectively remove the influence of diffracted light on the differential graph obtained by performing differential processing on the IV conversion output value. Therefore, in the differential graph obtained by the differential processing, the mounting machine 100 makes the differential value (peak) corresponding to the amount of change in the diffracted light smaller than the differential value (peak) corresponding to the thickness A of the component P. , it is possible to perform suction determination or suction posture determination of the part P based on the peak value of the differential graph.
  • FIG. 7 is a diagram illustrating a second example of relative positional relationship between the suction nozzle 15C and the slit hole 141C.
  • the suction nozzle 15C shown in FIG. 7 is a suction nozzle in which the boundary between the first and second tapered surfaces having two different taper angles (that is, the intersection point Pt1 shown in FIG. 6) is formed in an R shape.
  • the slit 14C is formed at one end of the slit hole 141C with reference to the height H3 of the intersection Pt2 between the tangent L2 along the edge EG13 of the first tapered surface and the tangent L1 along the edge EG14 of the second tapered surface. It is arranged at a height where the height H4 is less than the height B in the +Z direction from the height H3 of the intersection Pt2.
  • the slit hole 141C of the slit 14C is arranged non-parallel to both the tangent line L1 and the tangent line L2.
  • the slit hole 141C has a height H4 of one end of the slit hole 141C that is equal to the height H3 of the intersection point Pt2 and the suction height of the component P (that is, the tip of the suction nozzle 15). height H5).
  • the mounting machine 100 measures the overlapping height (that is, height B) where the edge EG11 having a small taper angle ⁇ b among the edges of the suction nozzle 15 overlaps with the slit hole 141C.
  • the mounting machine 100 can more effectively remove the influence of diffracted light on the differential graph obtained by performing differential processing on the IV conversion output value. Therefore, in the differential graph obtained by the differential processing, the mounting machine 100 makes the differential value (peak) corresponding to the amount of change in the diffracted light smaller than the differential value (peak) corresponding to the thickness A of the component P. , it is possible to perform suction determination or suction posture determination of the part P based on the peak value of the differential graph.
  • FIG. 8 is a diagram illustrating a comparative example of IV conversion graphs Op41, Op51 and differential graphs Df41, Df51 based on the relative positional relationship between the suction nozzle 15 and the slit hole 141C. Note that in the following explanation, an IV conversion graph and a differential graph based on the relative position between the suction nozzle 15 and the slit hole 141C will be explained, but the same applies to the suction nozzle 15C.
  • the vertical axis of each of the IV conversion graphs Op41 and Op51 indicates the IV conversion value.
  • the horizontal axis of each of the IV conversion graphs Op41 and Op51 indicates time.
  • the vertical axis of each of the differential graphs Df41 and Df51 indicates the differential value.
  • the horizontal axis of each of the differential graphs Df41 and Df51 indicates time.
  • the height B (see FIGS. 6 and 7) where the edges EG11, EG13 and the slit hole 141C overlap in the height direction is greater than or equal to the thickness A of the component P (thickness A ⁇ height It is a graph which shows the time series change of the IV conversion value in case B). Further, the level LV0D indicates that the light beam 14B is not blocked and the IV conversion value output from the current-voltage converter 14E is 0 (zero).
  • Point Pt41A indicates the timing before and after the suction nozzle 15 and the component P start blocking the light beam 14B.
  • the IV conversion value fluctuates in response to the amount of received diffracted light generated at the edge portion of the suction nozzle 15 at point Pt41A.
  • Point Pt42A indicates the timing before and after the suction nozzle 15 and the part P suctioned to the tip of the suction nozzle 15 start blocking the light beam 14B.
  • an IV conversion value corresponding to the tip height H2 of the suction nozzle 15 and the thickness A of the part P sucked to the tip of the suction nozzle 15 is output at a point Pt42A.
  • the level LV40 is an IV conversion value that is output from the current-voltage converter 14E and corresponds to the tip height H2 of the suction nozzle 15 and the thickness A of the component P sucked to the tip of the suction nozzle 15. .
  • Point Pt43A indicates the timing before and after the suction nozzle 15 and the component P suctioned to the tip of the suction nozzle 15 end blocking the light beam 14B.
  • an IV conversion value corresponding to the tip height H2 of the suction nozzle 15 and the thickness A of the part P sucked to the tip of the suction nozzle 15 is output at a point Pt43A.
  • Point Pt44A indicates the timing before and after the suction nozzle 15 and the component P finish blocking the light beam 14B.
  • the IV conversion value fluctuates in response to the amount of received diffracted light generated at the edge portion of the suction nozzle 15 at point Pt41A.
  • the differential graph Df41 is a graph showing a time-series change in the differential value obtained by differentially processing the IV conversion value of the IV conversion graph Op41. Further, level LV0E indicates that the amount of change in the IV conversion value is 0 (zero), and that the differential value output from the differential processing section 17A is 0 (zero).
  • the peak Pk41B is a peak corresponding to the point Pt41A of the IV conversion graph Op41.
  • Peak Pk42B is a peak corresponding to point Pt42A of IV conversion graph Op41.
  • Peak Pk43B is a peak corresponding to point Pt43A of IV conversion graph Op41.
  • Peak Pk44B is a peak corresponding to point Pt44A of IV conversion graph Op41.
  • each of the peaks Pk42B and Pk43B corresponding to the thickness A of the component P is smaller than each of the peaks Pk41B and Pk44B corresponding to the diffracted light of the suction nozzle 15. Therefore, when the thickness A of the component P is less than or equal to the height B of the slit hole 141C relative to the suction nozzle 15 (thickness A ⁇ height B), the determination unit 17B determines that the maximum negative value of the differential value is the peak Pk41B. , since the maximum positive value of the differential value is the peak Pk44B, the thickness of the component P is Another process is required to detect the differential value corresponding to the difference.
  • the height B (see FIGS. 6 and 7) where the edges EG11, EG13 and the slit hole 141C overlap in the height direction is less than the thickness A of the component P (thickness A>height It is a graph showing the time series change of the IV conversion value in case B). Note that the height B may be 0 (zero). In such a case, the slit hole 141C indicates that one end height H1 is located between the suction height of the component P (the tip height H2 of the suction nozzle 15) and the height H0.
  • Point Pt51A indicates the timing before and after the suction nozzle 15 and the component P start blocking the light beam 14B.
  • the IV conversion value fluctuates in response to the amount of received light of the diffracted light generated at the edge portion of the suction nozzle 15 at a point Pt51A.
  • Point Pt52A indicates the timing before and after the suction nozzle 15 and the part P suctioned to the tip of the suction nozzle 15 start blocking the light beam 14B.
  • an IV conversion value corresponding to the tip height H2 of the suction nozzle 15 and the thickness A of the part P sucked to the tip of the suction nozzle 15 is output at a point Pt52A.
  • the level LV40 is an IV conversion value that is output from the current-voltage converter 14E and corresponds to the tip height H2 of the suction nozzle 15 and the thickness A of the component P sucked to the tip of the suction nozzle 15. .
  • Point Pt53A indicates the timing before and after the suction nozzle 15 and the part P suctioned to the tip of the suction nozzle 15 end blocking the light beam 14B.
  • an IV conversion value corresponding to the tip height H2 of the suction nozzle 15 and the thickness A of the part P sucked to the tip of the suction nozzle 15 is output at a point Pt53A.
  • Point Pt54A indicates the timing before and after the suction nozzle 15 and the component P finish blocking the light beam 14B.
  • the IV conversion value fluctuates in response to the amount of received light of the diffracted light generated at the edge portion of the suction nozzle 15 at a point Pt51A.
  • the differential graph Df51 is a graph showing a time-series change in the differential value obtained by differentially processing the IV conversion value of the IV conversion graph Op51.
  • the peak Pk51B is a peak corresponding to the point Pt51A of the IV conversion graph Op51.
  • Peak Pk52B is a peak corresponding to point Pt52A of IV conversion graph Op51.
  • Peak Pk53B is a peak corresponding to point Pt53A of IV conversion graph Op51.
  • Peak Pk54B is a peak corresponding to point Pt54A of IV conversion graph Op51.
  • each of the peaks Pk52B and Pk53B corresponding to the thickness A of the component P is larger than each of the peaks Pk51B and Pk54B corresponding to the diffracted light of the suction nozzle 15. Therefore, in such a case, the determination unit 17B determines that the maximum negative value of the differential value is the peak Pk52B, and the maximum positive value of the differential value is the peak Pk53B, so that the maximum negative and positive values of the differential value, By comparing the threshold values ThA and ThB, it is possible to more easily determine whether or not the component P is being attracted to the suction nozzle 15.
  • the determination unit 17B determines that the maximum negative value of the differential value is equal to or less than the threshold ThB, and the maximum positive value of the differentiated value is equal to or greater than the threshold ThA, the determination unit 17B places the component P at the tip of the suction nozzle 15. is determined to be adsorbed. Further, when determining that the maximum negative value of the differential value is not more than the threshold ThB and the maximum positive value of the differential value is not more than the threshold ThA, the determining unit 17B determines that the component P is not normally placed at the tip of the suction nozzle 15. It is determined that it is not absorbed.
  • the determination unit 17B measures the width of the component P based on the time zone in which the differential value is less than or equal to the threshold ThB and greater than or equal to the threshold ThA in the differential graph. For example, the determination unit 17B determines whether the moving speed of the head 11, the maximum negative value of the differential value (that is, peak Pk52B), and the maximum positive value of the differential value (that is, peak Pk53B) are detected. Calculate time period T5. The determination unit 17B determines the suction posture, suction surface, etc. of the component P picked up by the suction nozzle 15 by comparing the time period T5 corresponding to the width of the component P with the threshold ThC for determining the suction posture of the component P. Determine whether or not it is normal.
  • the determination unit 17B determines that the time period T5 is less than the threshold ThC, it determines that the suction posture, suction surface, etc. of the component P are normal, and the time period T5 is less than the threshold ThC. If it is determined that this is not the case, it is determined that the suction posture, suction surface, etc. of the component P are defective.
  • the determining unit 17B determines that the time period T5 is equal to or greater than the threshold ThC, the component It may be determined that the suction posture, suction surface, etc. of P are normal.
  • the conveyance height between the component supply section 12 and the component mounting position of the component P by the head 11 is constant, and the height of the slit 14C relative to the suction nozzle 15 attached to the head 11 is constant.
  • the conveyance height may be variable.
  • the mounting machine 100 can move the component P based on the position (height) of one end height H1, H3 of the slit 14C. , the height of the suction nozzle 15 relative to the slit hole 141C of the slit 14C may be controlled so that the thickness A of the component P>height B.
  • the mounting machine 100 sucks the component P with the tip of at least one suction nozzle 15, 15C, and irradiates the head 11 that mounts the component onto the substrate 13 with the light source 14A and the light source 14A.
  • the photoelectric conversion element 14D (an example of a light receiving element) is arranged between the light source and the photoelectric conversion element 14D to irradiate the tip of the suction nozzle 15, 15C with the light beam 14B.
  • a measurement system 14 (an example of a sensor) that receives the light beam 14B that has passed through the slit hole 141C by a photoelectric conversion element 14D and outputs the light intensity of the received light beam 14B; It includes a processor 17 (an example of a control unit) that determines, based on the intensity, whether the component P is attracted to the tips of the suction nozzles 15 and 15C through which the light beam 14B passes.
  • the suction nozzles 15, 15C are tapered toward their tips.
  • the slit hole 141C is arranged non-parallel to the taper.
  • the mounting machine 100 can reduce the amount of diffracted light that passes through the slit hole 141C and is received by the photoelectric conversion element 14D.
  • the differential value based on the increase/decrease in the amount of received light can be more effectively removed. Therefore, the mounting machine 100 can determine the suction state of the component P with higher precision using the differential value.
  • one end of the slit hole 141C in the mounting machine 100 according to the first embodiment is at the suction height of the component P to be suctioned at the tip (that is, the tip height H2 of the suction nozzle 15) in the height direction.
  • the suction height of the component P to be suctioned at the tip that is, the tip height H2 of the suction nozzle 15
  • it is arranged below the height B (an example of a predetermined height) from the taper formation height H0 with the edge EG12 and the tangent L1 or the height H3 of the intersection Pt2.
  • the mounting machine 100 has slit holes corresponding to the edges EG11 and EG12 of the suction nozzles 15 and 15C (in the example of the suction nozzle 15C, tangents L1 and L2 along the edges EG13 and EG14, respectively).
  • the amount of diffracted light received by photoelectric conversion element 14D can be more easily reduced.
  • the height B is the height A of the component.
  • the differential value obtained by differentiating the amount of variation in the amount of received diffracted light is the amount of variation in the amount of received light based on the blocking of the light beam 14B when the component P passes. Since it is smaller than the differential value obtained by differentiation, the suction determination of the component P can be performed based on the peak of the differential value.
  • the slit hole 141C of the mounting machine 100 according to the first embodiment is arranged substantially parallel to the suction nozzles 15, 15C.
  • the mounting machine 100 according to the first embodiment has slit holes corresponding to the edges EG11 and EG12 of the suction nozzles 15 and 15C (in the example of the suction nozzle 15C, tangents L1 and L2 along the edges EG13 and EG14, respectively).
  • the processor 17 in the mounting machine 100 has a differential value equal to or greater than the threshold ThA (an example of a first threshold) and a threshold ThB (an example of a second threshold) that is larger than the threshold ThA. If it is determined that the value is less than 1, it is determined that the component P is attracted to the tip portion through which the light beam 14B passes. Thereby, the mounting machine 100 can determine whether or not the component P is suctioned, and determine the suction posture of the component P, based on the thickness A (height) of the component P indicated by the differential value.
  • ThA an example of a first threshold
  • ThB an example of a second threshold
  • the processor 17 in the mounting machine 100 determines that the differential value is less than the threshold ThA, the processor 17 determines that the component P is not attracted to the tip portion passing through the light beam 14B. , generates and outputs a notification that the suction state of the component P is poor.
  • the mounting machine 100 determines that the suction posture (state) of the component P is defective based on the thickness A (height) of the component P indicated by the differential value, the mounting machine 100 notifies that the suction is defective. can be generated and output.
  • the processor 17 in the mounting machine 100 determines that the differential value is equal to or greater than the threshold ThB, the processor 17 generates and outputs a notification that the suction state of the component P is poor. .
  • the mounting machine 100 determines that the suction posture (state) of the component P is defective based on the thickness A (height) of the component P indicated by the differential value, the mounting machine 100 notifies that the suction is defective. can be generated and output.
  • the processor 17 in the mounting machine 100 measures the time period T5 in which the differential value is greater than or equal to the threshold ThA and less than the threshold ThB, and based on the measured time period T5, The suction posture of the part P is determined.
  • the mounting machine 100 selects the component P based on the width of the component P that corresponds to the length of the time period T5 in which the differential value indicating the state in which the component P is being sucked is greater than or equal to the threshold ThA and less than the threshold ThB.
  • the adsorption posture of P can be determined.
  • the processor 17 in the mounting machine 100 determines that the length of the time period T5 is equal to or greater than the threshold value ThC, the processor 17 determines that the suction posture of the component P is bad, and A notification indicating that the suction state of P is poor is generated and output.
  • the mounting machine 100 determines whether the suction posture, suction surface, etc. of the component P are normal based on the width of the component P, and if it is determined that the suction surface is not normal, a notification is sent that the suction is defective. can generate and output notifications.
  • the present disclosure is useful as a mounting machine that can more accurately determine the suction state of components suctioned by a nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

The mounting machine according to the present invention comprises: a head that has a suction nozzle and that suctions up a component at the tip of the suction nozzle to mount the component on a board; a light source that emits light, a slit with a slit hole through which light passes; a sensor that has a light receiving element that receives light that has passed through the slit hole, and that irradiates the tip of the suction nozzle with the light, receives, by using the light receiving element, the light that has passed through the slit hole, and outputs the light intensity of the received light; and a control unit that determines whether a component is suctioned at the tip of the suction nozzle through which light passes on the basis of a differentiated value obtained by differentiating the light intensity of the light. The suction nozzle has a taper that tapers toward the tip, and the slit hole is arranged non-parallel to the taper.

Description

実装機mounting machine
 本開示は、実装機に関する。 The present disclosure relates to a mounting machine.
 特許文献1には、被装着物上の部品装着装置情報の所定位置に先端部に部品を保持した吸着ノズルを位置決めし、吸着ノズルを所定位置から降下させて部品を部品装着位置に装着し、吸着ノズルによる部品の保持を解除して吸着ノズルを上昇させる部品装着方法が開示されている。部品装着方法は、吸着ノズルの昇降経路の所定高さ位置に測定位置を設定し、部品または吸着ノズルが所定位置から測定位置に至るまでの時間を吸着ノズルの下降時および/または上昇時に測定し、測定された時間に基づいて吸着ノズルによる部品の保持状態および/または装着状態の良否を判定する。 Patent Document 1 discloses that a suction nozzle holding a component at its tip is positioned at a predetermined position of component mounting device information on an object to be mounted, and the suction nozzle is lowered from the predetermined position to mount the component at the component mounting position. A component mounting method is disclosed in which the component is released from being held by a suction nozzle and the suction nozzle is raised. The component mounting method is to set a measurement position at a predetermined height position on the suction nozzle's lifting path, and measure the time it takes for the component or suction nozzle to reach the measurement position from the predetermined position when the suction nozzle is lowered and/or raised. Based on the measured time, the quality of the holding and/or mounting state of the component by the suction nozzle is determined.
特開2002-208800号公報Japanese Patent Application Publication No. 2002-208800
 本開示は、上述した従来の事情に鑑みて案出され、ノズルに吸着された部品の吸着状態をより高精度に取得する実装機を提供することを目的とする。 The present disclosure was devised in view of the above-mentioned conventional circumstances, and aims to provide a mounting machine that more accurately acquires the suction state of components suctioned by a nozzle.
 本開示に係る実装機は、吸着ノズルを有し、前記吸着ノズルの先端部で部品を吸着し、基板上に前記部品を実装するヘッドと、光線を照射する光源と、前記光線が通過するスリット孔を有するスリットと、前記スリット孔を通過した前記光線を受光する受光素子とを有し、前記吸着ノズルの先端部に前記光線を照射して、前記スリット孔を通過した前記光線を前記受光素子により受光し、受光された前記光線の光強度を出力するセンサと、前記センサから出力された前記光線の前記光強度を微分して微分値を取得し、前記微分値に基づいて、前記光線を通過する前記吸着ノズルの先端部に前記部品が吸着されているか否かを判定する制御部と、を備える。前記吸着ノズルは、前記先端部に向かって細くなるテーパを有し、前記スリット孔は、前記テーパに対して非平行に配置される。 A mounting machine according to the present disclosure includes a suction nozzle, a head that suctions a component with a tip of the suction nozzle and mounts the component on a substrate, a light source that irradiates a light beam, and a slit through which the light beam passes. It has a slit having a hole and a light-receiving element that receives the light beam that has passed through the slit hole. a sensor that outputs the light intensity of the received light beam; and a sensor that differentiates the light intensity of the light beam output from the sensor to obtain a differential value, and based on the differential value, the light beam is and a control unit that determines whether or not the component is being attracted to the tip of the suction nozzle passing through. The suction nozzle has a taper that becomes thinner toward the tip, and the slit hole is arranged non-parallel to the taper.
 本開示によれば、ノズルに吸着された部品の吸着状態をより高精度に判定できる。 According to the present disclosure, the suction state of a component suctioned by a nozzle can be determined with higher accuracy.
実施の形態1に係る実装機の内部構成例を示すブロック図Block diagram showing an example of internal configuration of a mounting machine according to Embodiment 1 実施の形態1に係る実装機の部分構成例を説明する図A diagram illustrating an example of a partial configuration of a mounting machine according to Embodiment 1. 実装機の要部拡大図Enlarged view of main parts of mounting machine IV変換処理の一例を説明する図Diagram explaining an example of IV conversion processing 吸着ノズルとスリットとの配置による回折光の受光量変化例を説明する図A diagram illustrating an example of how the amount of diffracted light received changes depending on the arrangement of the suction nozzle and slit. 吸着ノズルとスリット孔との第1相対位置関係例を説明する図A diagram illustrating a first example of relative positional relationship between the suction nozzle and the slit hole. 吸着ノズルとスリット孔との第2相対位置関係例を説明する図A diagram illustrating a second example of relative positional relationship between the suction nozzle and the slit hole. 吸着ノズルとスリット孔との相対位置関係によるIV変換グラフおよび微分グラフの比較例を説明する図A diagram illustrating a comparative example of an IV conversion graph and a differential graph based on the relative positional relationship between the suction nozzle and the slit hole. 回折光のIV変換グラフを説明する図Diagram explaining the IV conversion graph of diffracted light 回折発生時のIV変換グラフおよび微分グラフを説明する図Diagram explaining the IV conversion graph and differential graph when diffraction occurs
 (本開示に至る経緯)
 従来、光センサを用いて吸着ノズルの先端部に吸着された電子部品(以降、「部品」と表記)を検出して、部品の吸着状態の良否判定を行う実装機がある。特許文献1の部品装着方法およびその装置(以降、「実装機」と表記)は、回路基板(以降、「基板」と表記)上の部品装着位置に対応する範囲の吸着ノズルおよび部品を検出可能に配置された光センサを用いて、吸着ノズルおよび部品により遮光された下降時通過時間を演算する。また、実装機は、事前に記憶された吸着ノズルの下降速度、部品の厚さ、および吸着ノズルのオフセット量のそれぞれに基づいて、下降時通過時間の理論値を演算し、(下降時通過時間)≒(下降時通過時間の理論値)であると判定した場合、部品が正常に吸着されていると判定する。
(Circumstances leading to this disclosure)
2. Description of the Related Art Conventionally, there is a mounting machine that uses an optical sensor to detect an electronic component (hereinafter referred to as "component") sucked at the tip of a suction nozzle to determine whether the suction state of the component is good or bad. The component mounting method and its device (hereinafter referred to as "mounter") of Patent Document 1 can detect the suction nozzle and components in a range corresponding to the component mounting position on the circuit board (hereinafter referred to as "board"). Using an optical sensor placed in the area, the passage time during descent when light is blocked by the suction nozzle and parts is calculated. In addition, the mounting machine calculates the theoretical value of the passing time when descending based on the descending speed of the suction nozzle, the thickness of the component, and the offset amount of the suction nozzle that are stored in advance. )≒(theoretical value of descending passing time), it is determined that the parts are normally suctioned.
 しかし、上述した部品装着方法では、事前に記憶された吸着ノズルのオフセット量を用いて下降時通過時間の理論値を算出する。よって、実装機は、摩耗等の吸着ノズルの劣化がある場合には下降時通過時間が短くなり、部品の吸着姿勢の判定精度が低下する可能性があった。 However, in the above-described component mounting method, the theoretical value of the descending passage time is calculated using the offset amount of the suction nozzle that is stored in advance. Therefore, when the suction nozzle of the mounting machine has deteriorated due to wear or the like, the descending passage time becomes short, and the accuracy of determining the suction posture of the component may be reduced.
 また、光センサを用いて部品の吸着状態の良否判定を行う他の方法として、部品供給位置から部品装着位置までの部品の搬送経路に設けられた光センサにより、吸着ノズルにより搬送されている部品の吸着状態を判定する方法がある。実装機は、光センサを通過する吸着ノズルおよび部品により光源の光が遮光され、この遮光量に基づく部品の厚さを算出し、部品の吸着状態を判定する。 In addition, as another method for determining the quality of the suction state of parts using an optical sensor, the parts being transported by the suction nozzle can be detected using an optical sensor installed in the transport path of the parts from the parts supply position to the parts mounting position. There is a method to determine the adsorption state of. In the mounting machine, the light from the light source is blocked by the suction nozzle and the component that pass through the optical sensor, and the thickness of the component is calculated based on the amount of shielded light to determine the suction state of the component.
 このような方法では、搬送時の吸着ノズルの振動等の外乱により遮光量が変化するため、実装機は、取得された遮光量を微分処理することで外乱を除去し、微分処理された遮光値に基づいて、部品の厚さの測定を行っていた。しかし、遮光量には吸着ノズルのエッジで回折した回折光が含まれるため、実装機は、微分処理後の遮光量の波形を用いて部品の厚さを高精度に測定することが困難だった。 In this method, the amount of light shielding changes due to disturbances such as vibrations of the suction nozzle during transportation, so the mounting machine removes the disturbance by performing differential processing on the obtained light shielding amount, and calculates the differentially processed light shielding value. Based on this, the thickness of the parts was measured. However, because the amount of light shielding includes the diffracted light that is diffracted at the edge of the suction nozzle, it is difficult for the mounting machine to accurately measure the thickness of the component using the waveform of the amount of light shielding after differential processing. .
 ここで、図9および図10のそれぞれを参照して、光センサを用いた部品P0の吸着判定における回折光の影響について説明する。図9は、回折光のIV変換グラフOpAを説明する図である。図10は、回折発生時のIV変換グラフOpBおよび微分グラフDfBを説明する図である。 Here, with reference to FIGS. 9 and 10, the influence of the diffracted light on the adsorption determination of the component P0 using the optical sensor will be described. FIG. 9 is a diagram illustrating an IV conversion graph OpA of diffracted light. FIG. 10 is a diagram illustrating an IV conversion graph OpB and a differential graph DfB when diffraction occurs.
 光センサは、光源から照射される光を受光し、受光した光を電気信号に変換する。光センサは、電気信号(電流)を電圧に変換した変換値(以降、「IV変換値」と表記)を微分処理して得られた微分値の時系列変化に基づいて、吸着ノズル15Zの先端部に吸着された部品P0の厚さ(高さ)、幅、姿勢(角度)等を測定し、部品P0の吸着状態あるいは吸着姿勢に関する判定処理を実行する。 The optical sensor receives light emitted from a light source and converts the received light into an electrical signal. The optical sensor detects the tip of the suction nozzle 15Z based on the time-series changes in the differential value obtained by performing differential processing on a converted value (hereinafter referred to as "IV converted value") obtained by converting an electric signal (current) into a voltage. The thickness (height), width, posture (angle), etc. of the component P0 suctioned to the part are measured, and a determination process regarding the suction state or suction posture of the component P0 is executed.
 吸着ノズル15Zは、先端に部品P0を吸着した状態で光源から照射された光(光線)を通過する。吸着ノズル15Zおよび部品P0により遮光された光源の光は、障害物である吸着ノズル15Zおよび部品P0により回折する。図9に示す回折光DL1は、部品P0を吸着していない吸着ノズル15Zにより回折した場合の回折光を示す。回折光DL1は、エッジEG1に沿って発生し、発光強度が周期的に変化する光である。回折光DL2は、部品P0を吸着した状態の吸着ノズル15Zにより回折した場合の回折光を示す。回折光DL2は、エッジEG2に沿って発生し、発光強度が周期的に変化する光である。 The suction nozzle 15Z passes the light (ray) irradiated from the light source while the component P0 is suctioned at the tip. The light from the light source that is blocked by the suction nozzle 15Z and the component P0 is diffracted by the suction nozzle 15Z and the component P0, which are obstacles. The diffracted light DL1 shown in FIG. 9 is the diffracted light when the suction nozzle 15Z does not suction the component P0. Diffracted light DL1 is light that is generated along edge EG1 and whose emission intensity changes periodically. Diffracted light DL2 indicates diffracted light when diffracted by suction nozzle 15Z in a state of suctioning component P0. The diffracted light DL2 is light that is generated along the edge EG2 and whose emission intensity changes periodically.
 IV変換グラフOpAは、光センサにより受光され、吸着ノズル15Zの位置EG0を基準として、吸着ノズル15Aから遠ざかる方向の回折光DL2のIV変換値の時系列変化を示すグラフである。回折光DL2の発光強度は、障害物である吸着ノズル15Zおよび部品P0のエッジEG2から遠ざかるほど減衰する減衰波である。 The IV conversion graph OpA is a graph showing a time-series change in the IV conversion value of the diffracted light DL2 received by the optical sensor and moving away from the suction nozzle 15A with reference to the position EG0 of the suction nozzle 15Z. The emission intensity of the diffracted light DL2 is an attenuated wave that attenuates as it gets farther from the suction nozzle 15Z and the edge EG2 of the component P0, which are obstacles.
 図10に示すIV変換グラフOpBは、光センサにより受光された回折光DL2および光源のIV変換値の時系列変化を示すグラフである。なお、破線で示すIV変換グラフOpB1は、吸着ノズル15Zに部品P0が吸着されていない場合のIV変換値の時系列変化を示すグラフである。実線で示すIV変換グラフOpB2は、吸着ノズル15Zに部品P0が正しい姿勢で吸着されている場合のIV変換値の時系列変化を示すグラフである。一点鎖線で示すIV変換グラフOpBは、吸着ノズル15Zに部品P0が正しい姿勢で吸着されていない場合のIV変換値の時系列変化を示すグラフである。 The IV conversion graph OpB shown in FIG. 10 is a graph showing time-series changes in the diffracted light DL2 received by the optical sensor and the IV conversion value of the light source. Note that the IV conversion graph OpB1 indicated by a broken line is a graph showing a time-series change in the IV conversion value when the component P0 is not suctioned by the suction nozzle 15Z. The IV conversion graph OpB2 shown by a solid line is a graph showing a time-series change in the IV conversion value when the component P0 is sucked in the correct posture by the suction nozzle 15Z. The IV conversion graph OpB indicated by a dashed line is a graph showing a time-series change in the IV conversion value when the component P0 is not sucked in the correct posture by the suction nozzle 15Z.
 回折が発生した場合のIV変換グラフOpBは、ポイントPt11,Pt14で吸着ノズル15Zの回折光DL2に対応するIV変換値が現れ、ポイントPt12,Pt13で吸着ノズル15Zに吸着された部品P0の厚さ(つまり、部品P0による遮光量)に対応するIV変換値が現れる。 In the IV conversion graph OpB when diffraction occurs, the IV conversion values corresponding to the diffracted light DL2 of the suction nozzle 15Z appear at points Pt11 and Pt14, and the thickness of the component P0 sucked by the suction nozzle 15Z appears at points Pt12 and Pt13. (that is, the amount of light shielded by the component P0), an IV conversion value corresponding to the amount of light shielded by the component P0 appears.
 微分グラフDfBは、IV変換グラフOpBを微分して得られたIV変換値の微分値の時系列変化を示すグラフである。なお、破線で示す微分グラフDfB1は、吸着ノズル15Zに部品P0が吸着されていない場合の微分値の時系列変化を示すグラフである。実線で示す微分グラフDfB2は、吸着ノズル15Zに部品P0が正しい姿勢で吸着されている場合の微分値の時系列変化を示すグラフである。一点鎖線で示す微分グラフDfB3は、吸着ノズル15Zに部品P0が正しい姿勢で吸着されていない場合の微分値の時系列変化を示すグラフである。 The differential graph DfB is a graph showing a time-series change in the differential value of the IV conversion value obtained by differentiating the IV conversion graph OpB. Note that the differential graph DfB1 indicated by a broken line is a graph showing a time-series change in the differential value when the component P0 is not sucked by the suction nozzle 15Z. The differential graph DfB2 indicated by a solid line is a graph showing a time-series change in the differential value when the component P0 is sucked in the correct posture by the suction nozzle 15Z. The differential graph DfB3 indicated by a dashed-dotted line is a graph showing a time-series change in the differential value when the component P0 is not attracted to the suction nozzle 15Z in the correct posture.
 微分グラフDfBは、IV変換グラフOpAのポイントPt11,Pt14のそれぞれに対応する位置(時間)で回折光DL2によるピークPk11,Pk14が生じる。また、微分グラフDfBは、IV変換グラフOpAのポイントPt12,Pt13のそれぞれに対応する位置(時間)で部品P0によるピークPk12,Pk13が生じる。以上のように、回折光が発生する場合、微分グラフDfBは、部品P0の厚さを示すピークPk12,Pk13よりも回折光LD2の強度を示すピークPk11,Pk14が大きくなる。したがって、実装機は、微分グラフDfBにより得られた微分値のピークに基づいて、部品P0の厚さを計測することが困難だった。 In the differential graph DfB, peaks Pk11 and Pk14 due to the diffracted light DL2 occur at positions (times) corresponding to points Pt11 and Pt14 of the IV conversion graph OpA, respectively. Further, in the differential graph DfB, peaks Pk12 and Pk13 due to the component P0 occur at positions (times) corresponding to points Pt12 and Pt13 of the IV conversion graph OpA, respectively. As described above, when diffracted light is generated, in the differential graph DfB, peaks Pk11 and Pk14 indicating the intensity of the diffracted light LD2 are larger than peaks Pk12 and Pk13 indicating the thickness of the component P0. Therefore, it was difficult for the mounting machine to measure the thickness of the component P0 based on the peak of the differential value obtained from the differential graph DfB.
 以下、適宜図面を参照しながら、本開示に係る実装機の構成および作用を具体的に開示した実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるものであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, embodiments specifically disclosing the configuration and operation of the mounting machine according to the present disclosure will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted. This is to avoid unnecessary redundancy in the following description and to facilitate understanding by those skilled in the art. The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter recited in the claims.
 また、以下、各図において、X方向およびY方向は、水平面内で互いに直交する方向である。Z方向は、X方向およびY方向に直交する高さ方向(上下方向)である。 Furthermore, in the following figures, the X direction and the Y direction are directions perpendicular to each other within the horizontal plane. The Z direction is a height direction (vertical direction) orthogonal to the X direction and the Y direction.
 (実施の形態1)
 まず、図1~図3を参照して、実施の形態1に係る実装機100の内部構成について説明する。図1が、実施の形態1に係る実装機100の内部構成例を説明する図である。図2は、実施の形態1に係る実装機100の部分構成例を説明する図である。図3は、実装機100の要部拡大図である。
(Embodiment 1)
First, the internal configuration of mounting machine 100 according to the first embodiment will be described with reference to FIGS. 1 to 3. FIG. 1 is a diagram illustrating an example of the internal configuration of mounting machine 100 according to the first embodiment. FIG. 2 is a diagram illustrating a partial configuration example of the mounting machine 100 according to the first embodiment. FIG. 3 is an enlarged view of the main parts of the mounting machine 100.
 なお、図1に示す例において、管理コンピュータ21に接続された実装機の台数は1台であるが、複数台が同時に接続されていてよい。また、図1では、X軸レール10A、Y軸レール10B、部品供給部12および基板レール16のそれぞれの図示を省略している。 Note that in the example shown in FIG. 1, the number of mounting machines connected to the management computer 21 is one, but a plurality of mounting machines may be connected at the same time. Further, in FIG. 1, illustration of the X-axis rail 10A, the Y-axis rail 10B, the component supply section 12, and the board rail 16 is omitted.
 実施の形態1に係る実装機100は、一対の基板レール16のそれぞれを駆動させて基板13を搬入する。実装機100は、1以上の吸着ノズル15のそれぞれを備えるヘッド11を駆動させて、部品供給部12により供給された部品P(図3参照)を吸着ノズル15のそれぞれにより吸着する。実装機100は、吸着ノズル15により部品Pを吸着した後、基板13上にヘッド11を移動させて、基板13上まで部品Pを搬送した後、基板13上の各部品実装位置に部品Pを実装する。実装機100は、基板13上に実装対象であるすべての部品Pを実装(装着)することで実装基板を生産した後、一対の基板レール16のそれぞれを駆動させ、生産された実装基板を搬出する。 The mounting machine 100 according to the first embodiment drives each of the pair of board rails 16 to carry in the board 13. The mounting machine 100 drives the head 11 each having one or more suction nozzles 15, and causes each of the suction nozzles 15 to suction the component P (see FIG. 3) supplied by the component supply section 12. The mounting machine 100 sucks the component P with the suction nozzle 15, moves the head 11 onto the board 13, conveys the component P to the top of the board 13, and then places the component P at each component mounting position on the board 13. Implement. The mounting machine 100 produces a mounted board by mounting (installing) all the components P to be mounted on the board 13, and then drives each of the pair of board rails 16 to carry out the produced mounted board. do.
 実装機100は、ヘッド11と、部品供給部12と、測定系14と、1以上の吸着ノズル15と、一対の基板レール16と、プロセッサ17と、メモリ18と、出力部19と、を含んで構成される。なお、通信部20は必須構成ではなく、省略されてよい。また、実装機100は、通信部20を含んで構成される場合、管理コンピュータ21(つまり、外部装置)との間で通信可能に接続されて、データの送受信を実行可能であってよい。 The mounting machine 100 includes a head 11, a component supply section 12, a measurement system 14, one or more suction nozzles 15, a pair of board rails 16, a processor 17, a memory 18, and an output section 19. Consists of. Note that the communication unit 20 is not an essential component and may be omitted. Moreover, when the mounting machine 100 is configured to include the communication unit 20, it may be communicably connected to the management computer 21 (that is, an external device) and may be capable of transmitting and receiving data.
 一対のX軸レール10Aのそれぞれは、Y軸レール10Bと結合され、Y軸レール10BをX方向,-X方向に移動自在に支持する。Y軸レール10Bは、ヘッド11と結合され、ヘッド11をY方向,-Y方向に移動自在に支持する。一対のX軸レール10Aのそれぞれと、Y軸レール10Bとは、ヘッド11を移動させる移動機構を構成する。 Each of the pair of X-axis rails 10A is coupled to the Y-axis rail 10B, and supports the Y-axis rail 10B so as to be movable in the X direction and the −X direction. The Y-axis rail 10B is connected to the head 11 and supports the head 11 so as to be movable in the Y direction and the -Y direction. Each of the pair of X-axis rails 10A and the Y-axis rail 10B constitute a moving mechanism that moves the head 11.
 ヘッド11は、移動機構により制御されて、X軸方向、Y軸方向およびZ軸方向のそれぞれに駆動(移動)する。ヘッド11は、Y軸レール10Bに結合されて、部品供給部12と基板13上の所定の部品実装位置との間で部品Pを搬送する。 The head 11 is controlled by a movement mechanism and is driven (moved) in each of the X-axis direction, Y-axis direction, and Z-axis direction. The head 11 is coupled to the Y-axis rail 10B and transports the component P between the component supply section 12 and a predetermined component mounting position on the board 13.
 ヘッド11は、1以上の吸着ノズル15のそれぞれを備える。吸着ノズル15は、プロセッサ17により、Z軸方向に沿う方向(昇降方向)に、部品Pの搬送高さと、基板13上への部品Pの実装高さとの間で昇降される。ヘッド11は、プロセッサ17により吸着ノズル15のそれぞれによる部品Pの吸着、および吸着解除をそれぞれ実行する。ヘッド11は、部品供給部12により供給された部品Pを吸着ノズル15の先端部で吸着し、基板13上の所定の部品実装位置まで搬送した後、部品Pの吸着を解除することで基板13上に実装する。 The head 11 includes one or more suction nozzles 15. The suction nozzle 15 is raised and lowered by the processor 17 in the direction along the Z-axis direction (elevating direction) between the conveyance height of the component P and the mounting height of the component P onto the board 13 . In the head 11, the processor 17 causes each of the suction nozzles 15 to suck the component P, and to release the suction. The head 11 adsorbs the component P supplied by the component supply unit 12 with the tip of the suction nozzle 15, transports it to a predetermined component mounting position on the board 13, and then releases the adsorption of the component P to place the component P on the board 13. Implement on top.
 ここで、ヘッド11は、部品Pを吸着した後、吸着ノズル15の先端部に吸着された部品Pが、部品供給部12と基板13との間に配置され、光源14Aから照射されている光線14Bを通過するように移動する。これにより、実装機100は、光線14Bの遮光量(つまり、受光量の変動量)に基づいて、各吸着ノズル15の先端部に吸着された部品Pの厚さを測定し、部品Pの吸着状態を判定する。 Here, after the head 11 sucks the component P, the component P sucked to the tip of the suction nozzle 15 is placed between the component supply section 12 and the substrate 13, and the light beam irradiated from the light source 14A Move to pass 14B. Thereby, the mounting machine 100 measures the thickness of the component P sucked at the tip of each suction nozzle 15 based on the amount of light 14B blocked (that is, the amount of variation in the amount of received light), and Determine the condition.
 部品供給部12は、プロセッサ17により制御されて、基板13に実装される部品Pを供給する。なお、部品供給部12は、同時に異なる種類の部品Pのそれぞれを複数供給可能であってよい。また、図2に示す部品供給部12の配置は一例であってこれに限定されない。 The component supply unit 12 is controlled by the processor 17 and supplies components P to be mounted on the board 13. Note that the component supply unit 12 may be able to simultaneously supply a plurality of different types of components P. Further, the arrangement of the component supply section 12 shown in FIG. 2 is an example, and the arrangement is not limited thereto.
 センサの一例としての測定系14は、光源14Aと、スリット14Cと、光電変換素子14Dと、電流電圧変換部14Eと、を備える。スリット14Cは、スリット孔141Cを有し、光源14Aと対向する側の面に配置される。なお、図1~図3のそれぞれに示す測定系14の配置位置は一例であってこれに限定されない。 The measurement system 14 as an example of a sensor includes a light source 14A, a slit 14C, a photoelectric conversion element 14D, and a current-voltage conversion section 14E. The slit 14C has a slit hole 141C and is arranged on the surface facing the light source 14A. Note that the arrangement positions of the measurement system 14 shown in each of FIGS. 1 to 3 are merely examples, and the present invention is not limited thereto.
 受光素子の一例としての光電変換素子14Dは、例えば、LED(Light Emitting Diode),LD(Laser Diode)等の光源14Aから照射され、スリット14Cのスリット孔141Cを通過した光(光線14B)を電気信号に変換して、電流電圧変換部14Eに出力する。電流電圧変換部14Eは、光電変換素子14Dから出力された電気信号(電流)を電圧に変換した変換値(以降、「IV変換値」と表記)をプロセッサ17における微分処理部17Aに出力する。なお、電流電圧変換部14Eは、所定の周期(例えば、kHzオーダーの周期)でIV変換値を微分処理部17Aに出力する。 The photoelectric conversion element 14D, which is an example of a light receiving element, converts light (ray 14B) emitted from a light source 14A such as an LED (Light Emitting Diode) or an LD (Laser Diode) and passed through the slit hole 141C of the slit 14C into electricity. The signal is converted into a signal and output to the current-voltage converter 14E. The current-voltage converter 14E converts the electric signal (current) output from the photoelectric conversion element 14D into a voltage and outputs a converted value (hereinafter referred to as "IV converted value") to the differential processor 17A in the processor 17. Note that the current-voltage conversion section 14E outputs the IV conversion value to the differential processing section 17A at a predetermined period (for example, a period on the order of kHz).
 スリット14Cは、吸着ノズル15に対して所定の位置(高さ)に、略矩形状に形成されたスリット孔141Cが位置するように配置される。具体的に、スリット14Cのスリット孔141Cは、Z方向における部品Pの厚さA(図6,図7参照)と、ヘッド11に装着された吸着ノズル15の先端高さH2,H5(図6,図7参照)とに基づいて、吸着ノズル15に対する配置高さの上限値(後述する高さB)が決定される。スリット14Cは、決定された吸着ノズル15に対する配置高さの上限値(後述する高さB)に基づいて、配置される。なお、スリット孔141Cの形状は、略矩形状に限定されない。スリット孔141Cは、少なくとも一部が吸着ノズル15のエッジEGと、スリット孔141Cの開口方向とが平行であればよく、例えば、スリット孔141Cの高さ方向における両端部が円弧形状に形成されていてもよい。 The slit 14C is arranged such that the substantially rectangular slit hole 141C is located at a predetermined position (height) relative to the suction nozzle 15. Specifically, the slit hole 141C of the slit 14C is formed by the thickness A of the component P in the Z direction (see FIGS. 6 and 7) and the tip heights H2 and H5 of the suction nozzle 15 attached to the head 11 (see FIG. 6). , see FIG. 7), the upper limit value of the placement height of the suction nozzle 15 (height B, which will be described later) is determined. The slit 14C is arranged based on the determined upper limit of the arrangement height for the suction nozzle 15 (height B described later). Note that the shape of the slit hole 141C is not limited to a substantially rectangular shape. At least a portion of the slit hole 141C may be parallel to the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C. For example, both ends of the slit hole 141C in the height direction may be formed in an arc shape. It's okay.
 制御部の一例としてのプロセッサ17は、例えばCPU(Central Processing Unit)、DSP(Digital Signal Processor)またはFPGA(Field Programmable Gate Array)を用いて構成され、プロセッサ17の各部の動作を制御する。プロセッサ17は、メモリ18と協働して、各種の処理および制御を統括的に行う。具体的には、プロセッサ17は、メモリ18に保持されたプログラムおよびデータを参照し、そのプログラムを実行することにより、各部の機能を実現する。なお、ここでいう各部は、微分処理部17Aおよび判定部17Bである。 The processor 17 as an example of a control unit is, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or an FPGA (Field Programmable Gate Arra). y), and controls the operation of each part of the processor 17. The processor 17 cooperates with the memory 18 to perform various types of processing and control in an integrated manner. Specifically, the processor 17 references programs and data held in the memory 18 and executes the programs to realize the functions of each section. Note that each section referred to here is a differential processing section 17A and a determination section 17B.
 微分処理部17Aは、電流電圧変換部14Eから出力された連続する2つのIV変換値のそれぞれの微分(差分)を演算し、IV変換値の変化量を示す微分値を取得する。微分処理部17Aは、取得された微分値のそれぞれを判定部17Bに出力する。 The differential processing unit 17A calculates the differential (difference) of each of the two consecutive IV converted values output from the current-voltage conversion unit 14E, and obtains a differential value indicating the amount of change in the IV converted value. The differential processing section 17A outputs each of the obtained differential values to the determining section 17B.
 判定部17Bは、微分処理部17Aから出力された微分値の時系列変化に基づいて、吸着ノズル15の先端部に吸着された部品PのZ方向の厚さ(高さ)、X方向の幅、姿勢(角度)等を測定し、部品Pの吸着状態あるいは吸着姿勢に関する判定処理を実行する。 The determination unit 17B determines the thickness (height) in the Z direction and the width in the , posture (angle), etc., and performs determination processing regarding the suction state or suction posture of the component P.
 判定部17Bは、微分処理部17Aから出力された微分値と、メモリ18に記憶された閾値18Aとに基づいて、各吸着ノズル15により吸着された部品Pの厚さが、部品Pが正常に吸着されている場合の部品Pの厚さであるか否かを判定する。また、判定部17Bは、微分処理部17Aから出力された微分値と、メモリ18に記憶された閾値18Aとに基づいて、各吸着ノズル15より吸着された部品Pの吸着姿勢(角度)が、部品Pが正常に吸着されている場合の部品Pの吸着姿勢であるか否かを判定する。 Based on the differential value output from the differential processing unit 17A and the threshold value 18A stored in the memory 18, the determination unit 17B determines whether the thickness of the component P sucked by each suction nozzle 15 is normal or not. It is determined whether the thickness of the part P is the same as when it is being sucked. Further, the determination unit 17B determines the suction posture (angle) of the component P suctioned by each suction nozzle 15 based on the differential value output from the differential processing unit 17A and the threshold value 18A stored in the memory 18. It is determined whether the suction posture of the component P is one in which the component P is normally suctioned.
 なお、ここでいう正常な姿勢(角度)は、基板13上に実装される部品Pの向きに対応して設定された部品Pの姿勢(角度)に関するデータであって、例えば、生産データに含まれる。ヘッド11は、生産データに含まれる部品Pの姿勢(角度)に基づいて、部品供給部12から部品Pを吸着して取り出し、基板13上に搬送して実装する。 Note that the normal posture (angle) referred to here is data regarding the posture (angle) of the component P that is set corresponding to the orientation of the component P mounted on the board 13, and is, for example, data that is included in production data. It will be done. The head 11 sucks and takes out the component P from the component supply section 12 based on the attitude (angle) of the component P included in the production data, and conveys and mounts it onto the board 13.
 判定部17Bは、判定結果を出力部19に出力する。なお、判定部17Bは、部品Pが正常に吸着されていない、あるいは正常な吸着姿勢でないと判定した場合にのみ判定結果を出力部19に出力してもよい。また、判定部17Bは、判定結果をメモリ18に記憶してもよい。さらに、判定部17Bは、実装機100が通信部20を介して管理コンピュータ21との間で通信可能に接続されている場合には、通信部20を介して管理コンピュータ21に判定結果を出力してもよい。 The determination unit 17B outputs the determination result to the output unit 19. Note that the determination unit 17B may output the determination result to the output unit 19 only when determining that the component P is not normally suctioned or is not in a normal suction posture. Further, the determination unit 17B may store the determination result in the memory 18. Further, when the mounting machine 100 is communicably connected to the management computer 21 via the communication unit 20, the judgment unit 17B outputs the judgment result to the management computer 21 via the communication unit 20. It's okay.
 なお、判定部17Bは、部品Pが正常に吸着されており、かつ、正常な吸着姿勢でないと判定した場合、測定された部品Pの吸着角度と、正常な吸着角度との角度差分を算出し、算出された角度差分に基づいて、対応する吸着ノズル15を回転させてもよい。これにより、実装機100は、部品Pの吸着姿勢(角度)を正常な吸着姿勢に補正できる。 Note that when determining that the component P is normally suctioned and is not in a normal suction posture, the determination unit 17B calculates the angular difference between the measured suction angle of the component P and the normal suction angle. , the corresponding suction nozzle 15 may be rotated based on the calculated angular difference. Thereby, the mounting machine 100 can correct the suction posture (angle) of the component P to a normal suction posture.
 メモリ18は、例えばプロセッサ17の各処理を実行する際に用いられるワークメモリとしてのRAM(Random Access Memory)と、プロセッサ17の動作を規定したプログラムおよびデータを格納するROM(Read Only Memory)とを有する。RAMには、プロセッサ17により生成あるいは取得されたデータもしくは情報が一時的に保存される。ROMには、プロセッサ17の動作を規定するプログラムが書き込まれている。メモリ18は、判定部17Bにより実行される各種判定に用いられる閾値18Aを記憶する。また、メモリ18は、生産対象である実装基板を生産するための生産データを記憶する。 The memory 18 includes, for example, a RAM (Random Access Memory) as a work memory used when executing each process of the processor 17, and a ROM (Read Only Memory) that stores programs and data that define the operations of the processor 17. have Data or information generated or acquired by the processor 17 is temporarily stored in the RAM. A program that defines the operation of the processor 17 is written in the ROM. The memory 18 stores a threshold value 18A used for various determinations performed by the determination unit 17B. Further, the memory 18 stores production data for producing a mounting board to be produced.
 ここでいう生産データは、実装機100により実装基板を生産するために用いられる情報である。生産データは、例えば基板13のサイズ、部品Pの大きさ,形状、吸着ノズルに関する情報、基板の生産枚数等を含む。なお、生産データは、上述した項目のデータに限定されなくてよい。生産データは、後述する部品Pごとの閾値18Aの情報を含んでもよい。 The production data here is information used to produce mounted boards by the mounting machine 100. The production data includes, for example, the size of the substrate 13, the size and shape of the component P, information regarding the suction nozzle, the number of substrates produced, and the like. Note that the production data does not need to be limited to the data of the items described above. The production data may include information on a threshold value 18A for each part P, which will be described later.
 閾値18Aは、部品Pの種類ごとに設定され、吸着ノズル15により部品Pが正常に吸着されているか否かを判定するための閾値である。具体的に、メモリ18に記憶された閾値18Aは、部品Pの厚さに基づいて、部品Pが正常に吸着されているか否かを判定するための閾値ThA、部品Pの厚さに基づいて、部品Pの吸着姿勢(角度)が正常であるか否かを判定するための閾値ThB、部品Pの幅に基づいて、部品Pの吸着姿勢(角度),吸着面が正常であるか否かを判定するための閾値ThC等を含む。なお、各判定に用いられる閾値は、少なくとも1つの閾値が設定されていればよい。 The threshold value 18A is set for each type of component P, and is a threshold value for determining whether the component P is normally suctioned by the suction nozzle 15. Specifically, the threshold value 18A stored in the memory 18 is a threshold value ThA for determining whether or not the component P is normally suctioned based on the thickness of the component P; , Threshold ThB for determining whether the suction posture (angle) of the part P is normal or not, Based on the width of the part P, the suction posture (angle) of the part P and whether the suction surface is normal or not. It includes a threshold value ThC for determining. Note that at least one threshold value may be set as the threshold value used for each determination.
 出力部19は、例えばLCD(Liquid Crystal Display)または有機EL(Electroluminescence)等のディスプレイを用いて構成される。出力部19は、判定部17Bから出力された部品Pの吸着状態あるいは吸着姿勢に関する判定結果を表示したり、音声出力したりする。 The output unit 19 is configured using a display such as an LCD (Liquid Crystal Display) or an organic EL (Electroluminescence). The output unit 19 displays the determination result regarding the suction state or suction posture of the component P output from the determination unit 17B, and outputs audio.
 通信部20は、管理コンピュータ21との間で無線あるいは有線通信可能に接続されて、データの送受信を行う。通信部20は、判定部17Bから出力された部品Pの吸着状態あるいは吸着姿勢に関する判定結果を管理コンピュータ21に送信する。また、通信部20は、管理コンピュータ21から送信された基板13の生産データ、部品Pごとの生産データ、あるいは部品Pごとの閾値等を取得して、プロセッサ17に出力する。なお、ここでいう無線通信は、Wi-Fi(登録商標)等の無線LAN(Local Area Network)を介した通信である。 The communication unit 20 is connected to the management computer 21 for wireless or wired communication, and transmits and receives data. The communication unit 20 transmits the determination result regarding the suction state or suction posture of the component P output from the determination unit 17B to the management computer 21. The communication unit 20 also acquires the production data of the board 13, the production data for each part P, or the threshold value for each part P transmitted from the management computer 21, and outputs it to the processor 17. Note that the wireless communication referred to here is communication via a wireless LAN (Local Area Network) such as Wi-Fi (registered trademark).
 なお、部品Pの吸着状態あるいは吸着姿勢(角度)に関する判定処理は、管理コンピュータ21により実行されてもよい。このような場合、実装機100におけるプロセッサ17は、電流電圧変換部14Eから出力されたIV変換値と、実装機100および吸着ノズル15を識別可能な識別情報と、を対応付けて管理コンピュータ21に送信してよいし、微分処理部17Aにより演算された微分値と、実装機100および吸着ノズル15を識別可能な識別情報とを対応付けて管理コンピュータ21に送信してもよい。また、このような場合、実装機100は、管理コンピュータ21から送信された部品Pの吸着状態あるいは吸着姿勢に関する判定結果を取得し、メモリ18に記憶するとともに、出力部19に出力してもよい。 Note that the determination process regarding the suction state or suction posture (angle) of the component P may be executed by the management computer 21. In such a case, the processor 17 in the mounter 100 associates the IV conversion value output from the current-voltage converter 14E with identification information that can identify the mounter 100 and the suction nozzle 15, and sends it to the management computer 21. Alternatively, the differential value calculated by the differential processing section 17A and identification information that can identify the mounting machine 100 and the suction nozzle 15 may be associated with each other and transmitted to the management computer 21. Further, in such a case, the mounting machine 100 may acquire the determination result regarding the suction state or suction posture of the component P transmitted from the management computer 21, store it in the memory 18, and output it to the output unit 19. .
 管理コンピュータ21は、例えば、PC(Personal Computer),ノートPC,タブレット端末等であって、作業者により操作される。管理コンピュータ21は、1台以上の実装機との間で通信可能に接続されて、作業者により予め入力あるいは設定された実装基板の生産工程に関する生産情報と、生産工程を実行させる実行指令を生成して各実装機に送信する。 The management computer 21 is, for example, a PC (Personal Computer), a notebook PC, a tablet terminal, etc., and is operated by a worker. The management computer 21 is communicably connected to one or more mounting machines, and generates production information related to the mounting board production process input or set in advance by an operator, and an execution command for executing the production process. and send it to each mounting machine.
 次に、図4を参照して、電流電圧変換部14Eにより実行されるIV(電流電圧)変換処理について説明する。図4は、IV変換処理の一例を説明する図である。なお、図4では、説明を分かり易くするためにヘッド11の図示を省略している。 Next, with reference to FIG. 4, the IV (current-voltage) conversion process executed by the current-voltage converter 14E will be described. FIG. 4 is a diagram illustrating an example of IV conversion processing. Note that in FIG. 4, illustration of the head 11 is omitted to make the explanation easier to understand.
 ヘッド11が備える複数の吸着ノズル15のそれぞれは、製造誤差、経年劣化等によって、部品Pを吸着する先端部までの長さ、先端部の形状等に個体差を有することがある。以下、吸着ノズル15の個体差に起因するIV変換出力値の変化について具体的に説明する。 Each of the plurality of suction nozzles 15 included in the head 11 may have individual differences in the length to the tip that suctions the component P, the shape of the tip, etc. due to manufacturing errors, deterioration over time, etc. Hereinafter, changes in the IV conversion output value due to individual differences in the suction nozzles 15 will be specifically explained.
 ここで、図4に示す例では、説明を分かり易くするために同一の部品Pを吸着した2本の吸着ノズル15A,15Bのそれぞれが、光線14Bの照射方向(Y方向)に沿って並んで配置される例を示す。しかし、実際の複数の吸着ノズル15のそれぞれは、図2および図3に示すように光線14Bの照射方向(Y方向)と異なる方向に、測定系14により同時に2本以上の吸着ノズルのそれぞれが検出されないように配置されている。これにより、実装機100は、吸着ノズル15ごとの部品Pの吸着状態(あるいは吸着姿勢)を検出可能となる。 Here, in the example shown in FIG. 4, in order to make the explanation easier to understand, two suction nozzles 15A and 15B that suction the same part P are lined up along the irradiation direction (Y direction) of the light beam 14B. An example of placement is shown below. However, in reality, each of the plurality of suction nozzles 15 is simultaneously detected by the measurement system 14 in a direction different from the irradiation direction (Y direction) of the light beam 14B, as shown in FIGS. 2 and 3. Placed so as not to be detected. Thereby, the mounting machine 100 can detect the suction state (or suction posture) of the component P for each suction nozzle 15.
 図4に示す例において、吸着ノズル15Aは、高さHAで部品Pを吸着している。吸着ノズル15Bは、高さHBで部品Pを吸着している。吸着ノズル15Aにより遮光される光線14Bの遮光量は、吸着ノズル15Bにより遮光される光線14Bの遮光量よりも大きい。 In the example shown in FIG. 4, the suction nozzle 15A is suctioning the component P at a height HA. The suction nozzle 15B suctions the component P at a height HB. The amount of light ray 14B blocked by suction nozzle 15A is larger than the amount of light ray 14B blocked by suction nozzle 15B.
 IV変換グラフOp1は、吸着ノズル15Aが光線14Bを通過した時に得られるIV変換値の時系列変化を示すグラフである。IV変換グラフOp2は、吸着ノズル15Bが光線14Bを通過した時に得られるIV変換値の時系列変化を示すグラフである。IV変換グラフOp1,Op2のそれぞれの縦軸は、電流電圧変換部14Eから出力されたIV変換値を示す。IV変換グラフOp1,Op2のそれぞれの横軸は時間を示す。IV変換グラフOp1,Op2のそれぞれのIV変換値は、光線14Bの遮光量に比例して大きくなる。遮光レベルLV0Aは、光線14Bが吸着ノズルにより遮光されていないことを示すIV変換値である。 The IV conversion graph Op1 is a graph showing a time-series change in the IV conversion value obtained when the suction nozzle 15A passes the light beam 14B. The IV conversion graph Op2 is a graph showing a time-series change in the IV conversion value obtained when the suction nozzle 15B passes the light beam 14B. The vertical axis of each of the IV conversion graphs Op1 and Op2 indicates the IV conversion value output from the current-voltage converter 14E. The horizontal axis of each of the IV conversion graphs Op1 and Op2 indicates time. The respective IV conversion values of the IV conversion graphs Op1 and Op2 increase in proportion to the amount of light ray 14B blocked. The light blocking level LV0A is an IV conversion value indicating that the light beam 14B is not blocked by the suction nozzle.
 このような場合、吸着ノズル15Aに対応するIV変換グラフOp1は、時間帯T11において吸着ノズル15Aと部品Pとが光線14Bを通過することにより遮光量が最大となり、IV変換値が最大値V11となる。また、同様にIV変換グラフOp2は、時間帯T12において吸着ノズル15Aと部品Pとが光線14Bを通過することにより遮光量が最大となり、IV変換値が最大値V12となる。このように、吸着ノズル15A,15Bの個体差により光線14Bの遮光量が異なる場合、実装機100は、IV変換グラフOp1,Op2のそれぞれが示す部品Pの吸着時のIV変換値が異なるため、部品Pの吸着状態をより正確に判定することが困難となる。 In such a case, in the IV conversion graph Op1 corresponding to the suction nozzle 15A, the amount of light shielding becomes maximum as the suction nozzle 15A and the component P pass the light beam 14B in the time period T11, and the IV conversion value reaches the maximum value V11. Become. Similarly, in the IV conversion graph Op2, when the suction nozzle 15A and the component P pass the light beam 14B in the time period T12, the amount of light shielding becomes maximum, and the IV conversion value becomes the maximum value V12. In this way, when the amount of shielding of the light beam 14B differs due to individual differences between the suction nozzles 15A and 15B, the mounting machine 100 has different IV conversion values when picking up the component P indicated by the IV conversion graphs Op1 and Op2. It becomes difficult to determine the suction state of the component P more accurately.
 そこで、実施の形態1に係る実装機100は、微分処理部17Aにより電流電圧変換部14Eから出力された連続する2つのIV変換値のそれぞれを微分する。これにより、実装機100は、IV変換値から吸着ノズルごとの個体差を除外したIV変換値の変化量を示す微分値(差分)の時系列データ(例えば、図8に示す微分グラフDf41,Df51等)を生成できる。 Therefore, in the mounting machine 100 according to the first embodiment, the differentiation processing section 17A differentiates each of the two consecutive IV conversion values output from the current-voltage conversion section 14E. As a result, the mounting machine 100 generates time-series data of differential values (differences) indicating the amount of change in the IV converted value excluding individual differences between suction nozzles from the IV converted value (for example, the differential graphs Df41 and Df51 shown in FIG. 8). etc.) can be generated.
 ここで、図5を参照して、吸着ノズル15とスリット14Cとの配置による回折光の受光量変化について説明する。図5は、吸着ノズル15とスリット14Cとの配置による回折光の受光量変化例を説明する図である。なお、図5では、吸着ノズル15のエッジEGがテーパ形状でない例について説明する。 Here, with reference to FIG. 5, a change in the amount of received diffracted light due to the arrangement of the suction nozzle 15 and the slit 14C will be explained. FIG. 5 is a diagram illustrating an example of how the amount of received diffracted light changes depending on the arrangement of the suction nozzle 15 and the slit 14C. In addition, in FIG. 5, an example will be described in which the edge EG of the suction nozzle 15 does not have a tapered shape.
 回折光は、吸着ノズル15のエッジEGに沿って発生する。IV変換グラフOp31,Op32,Op33,Op34のそれぞれは、ヘッド11を図中の矢印方向に移動させた場合の回折光の受光量をIV変換して得られたIV変換値の時系列変化を示すグラフである。IV変換グラフOp31~Op34それぞれの縦軸は、IV変換値を示す。IV変換グラフOp31~Op34それぞれの横軸は、時間を示す。 The diffracted light is generated along the edge EG of the suction nozzle 15. Each of the IV conversion graphs Op31, Op32, Op33, and Op34 shows a time-series change in the IV conversion value obtained by performing IV conversion on the amount of received diffracted light when the head 11 is moved in the direction of the arrow in the figure. It is a graph. The vertical axis of each of the IV conversion graphs Op31 to Op34 indicates the IV conversion value. The horizontal axis of each of the IV conversion graphs Op31 to Op34 indicates time.
 IV変換グラフOp31は、吸着ノズル15のエッジEGと、スリット14Cのスリット孔141Cの開口方向とがなす角度が0(ゼロ)°(つまり、吸着ノズル15のエッジEGと、スリット孔141Cの開口方向とが平行)の場合の回折光の受光量を示す。このような場合、回折光は、吸着ノズル15のエッジEGと、スリット14Cのスリット孔141Cの開口方向とが平行である場合、強度が大きい(明るい)回折光と、強度が小さい(暗い)回折光とがそれぞれ交互にスリット孔141Cを通過する。これにより、回折光は、光電変換素子14Dにより受光される受光量の変化量が大きくなるため、微分処理により得られる微分グラフにおいて大きなピーク(微分値)として現れる。 In the IV conversion graph Op31, the angle between the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C of the slit 14C is 0 (zero) degrees (that is, the angle between the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C). shows the amount of received diffracted light when (parallel). In such a case, when the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C of the slit 14C are parallel, the diffracted light is divided into high-intensity (bright) diffracted light and low-intensity (dark) diffracted light. The light passes through the slit holes 141C alternately. As a result, the amount of change in the amount of light received by the photoelectric conversion element 14D increases, so that the diffracted light appears as a large peak (differential value) in the differential graph obtained by the differential processing.
 IV変換グラフOp32は、吸着ノズル15のエッジEGと、スリット14Cのスリット孔141Cの開口方向とがなす角度が5°の場合の回折光の受光量を示す。このような場合、スリット孔141Cを通過する回折光は、強度が小さい(暗い)回折光が増えて、強度が大きい(明るい)回折光が占める割合が減る。よって、吸着ノズル15と、スリット孔141Cの開口方向とがなす角度が5°の場合の回折光の受光量の変化量は、吸着ノズル15と、スリット孔141Cの開口方向とが平行である場合よりも小さくなる。 The IV conversion graph Op32 shows the amount of diffracted light received when the angle between the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C of the slit 14C is 5°. In such a case, in the diffracted light passing through the slit hole 141C, the proportion of the diffracted light with low intensity (dark) increases, and the proportion occupied by the diffracted light with high intensity (bright) decreases. Therefore, the amount of change in the amount of received diffracted light when the angle between the suction nozzle 15 and the opening direction of the slit hole 141C is 5 degrees is the same as when the suction nozzle 15 and the opening direction of the slit hole 141C are parallel to each other. becomes smaller than
 また、IV変換グラフOp33は、吸着ノズル15のエッジEGと、スリット14Cのスリット孔141Cの開口方向とがなす角度が20°の場合の回折光の受光量を示す。このような場合、スリット孔141Cを通過する回折光は、強度が小さい(暗い)回折光がさらに増えて、強度が大きい(明るい)回折光が占める割合がさらに減る。よって、吸着ノズル15と、スリット孔141Cの開口方向とがなす角度が20°の場合の回折光の受光量の変化量は、吸着ノズル15と、スリット孔141Cの開口方向とがなす角度が5°の場合よりも小さくなる。 Further, the IV conversion graph Op33 shows the amount of diffracted light received when the angle between the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C of the slit 14C is 20°. In such a case, in the diffracted light passing through the slit hole 141C, the proportion of the diffracted light with low intensity (dark) further increases, and the proportion occupied by the diffracted light with high intensity (bright) further decreases. Therefore, when the angle between the suction nozzle 15 and the opening direction of the slit hole 141C is 20 degrees, the amount of change in the amount of received diffracted light is as follows: The angle between the suction nozzle 15 and the opening direction of the slit hole 141C is 5 It will be smaller than in the case of °.
 同様に、IV変換グラフOp34は、吸着ノズル15のエッジEGと、スリット14Cのスリット孔141Cの開口方向とがなす角度が30°の場合の回折光の受光量を示す。このような場合、スリット孔141Cを通過する回折光は、強度が小さい(暗い)回折光がさらに増えて、強度が大きい(明るい)回折光が占める割合がさらに減る。よって、吸着ノズル15と、スリット孔141Cの開口方向とがなす角度が30°の場合の回折光の受光量の変化量は、吸着ノズル15と、スリット孔141Cの開口方向とがなす角度が20°の場合よりもさらに小さくなる。 Similarly, the IV conversion graph Op34 shows the amount of diffracted light received when the angle between the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C of the slit 14C is 30°. In such a case, in the diffracted light passing through the slit hole 141C, the proportion of the diffracted light with low intensity (dark) further increases, and the proportion occupied by the diffracted light with high intensity (bright) further decreases. Therefore, when the angle between the suction nozzle 15 and the opening direction of the slit hole 141C is 30 degrees, the amount of change in the amount of received diffracted light is 20 degrees. It is even smaller than in the case of °.
 以上により、実装機100は、吸着ノズル15のエッジEGと、スリット14Cのスリット孔141Cの開口方向とがなす角度が小さければ小さいほど、回折光の受光量の変化量が大きくなり、微分グラフを用いた部品Pの吸着判定が困難になる。また、実装機100は、吸着ノズル15のエッジEGと、スリット14Cのスリット孔141Cとが高さ方向での配置が重複するほど、回折光の受光量の変化量が小さくなり、微分グラフを用いた部品Pの吸着判定をより高精度に実行できる。 As described above, in the mounting machine 100, the smaller the angle between the edge EG of the suction nozzle 15 and the opening direction of the slit hole 141C of the slit 14C, the larger the amount of change in the amount of received diffracted light becomes. It becomes difficult to judge whether the used part P is adsorbed. In addition, the mounting machine 100 uses a differential graph because the more the edge EG of the suction nozzle 15 and the slit hole 141C of the slit 14C overlap in the height direction, the smaller the amount of change in the received amount of diffracted light becomes. It is possible to perform suction determination of the component P with higher accuracy.
 以降、本実施の形態における吸着ノズル15,15Cとスリット14Cのスリット孔141Cとの配置について説明する。 Hereinafter, the arrangement of the suction nozzles 15, 15C and the slit hole 141C of the slit 14C in this embodiment will be explained.
 次に、図6を参照して、吸着ノズル15,15Cとスリット14Cのスリット孔141Cとの相対位置関係について説明する。図6は、吸着ノズル15とスリット孔141Cとの第1相対位置関係例を説明する図である。なお、図6では説明を分かりやすくするために、スリット14Cはスリット孔141Cのみを図示する。 Next, with reference to FIG. 6, the relative positional relationship between the suction nozzles 15, 15C and the slit hole 141C of the slit 14C will be described. FIG. 6 is a diagram illustrating a first example of relative positional relationship between the suction nozzle 15 and the slit hole 141C. Note that in FIG. 6, only the slit hole 141C is shown as the slit 14C to make the explanation easier to understand.
 また、図6に示す吸着ノズル15の形状は、全体がテーパ形状で形成される例を示すが、これに限定されない。例えば、吸着ノズル15は、部品Pを吸着する先端部のみがテーパ形状に形成されてもよい(つまり、テーパ角度θb=0(ゼロ)°)。すなわち、図6に示す吸着ノズル15は、先端部に向かって細くなるテーパを有している。 Further, although the shape of the suction nozzle 15 shown in FIG. 6 shows an example in which the entire shape is formed in a tapered shape, the shape is not limited to this. For example, only the tip of the suction nozzle 15 that suctions the component P may be formed into a tapered shape (that is, the taper angle θb=0 (zero) degree). That is, the suction nozzle 15 shown in FIG. 6 has a taper that becomes narrower toward the tip.
 吸着ノズル15,15Cとスリット14Cのスリット孔141Cとの相対位置関係は、吸着ノズル15,15Cにより吸着される部品Pの厚さAに基づいて決定される。なお、ここでいう部品の厚さAは、吸着ノズル15,15Cにより吸着保持されたZ方向における部品Pの高さ(大きさ)である。 The relative positional relationship between the suction nozzles 15, 15C and the slit hole 141C of the slit 14C is determined based on the thickness A of the component P to be suctioned by the suction nozzles 15, 15C. Note that the thickness A of the component here is the height (size) of the component P in the Z direction that is sucked and held by the suction nozzles 15 and 15C.
 吸着ノズル15がテーパ形状を有する場合、スリット14Cは、スリット孔141Cの一端高さH1が吸着ノズル15のテーパ形成高さH0から+Z方向に高さB未満となる高さに配置される。また、スリット14Cは、スリット孔141Cの開口方向(図6に示す例ではZ方向)が吸着ノズル15の延伸方向に略平行に配置される(吸着ノズル15の昇降方向に対して略平行に配置される)。 When the suction nozzle 15 has a tapered shape, the slit 14C is arranged at a height such that the height H1 of one end of the slit hole 141C is less than the height B in the +Z direction from the tapered height H0 of the suction nozzle 15. In addition, the slit 14C is arranged so that the opening direction of the slit hole 141C (Z direction in the example shown in FIG. 6) is approximately parallel to the extending direction of the suction nozzle 15 (arranged approximately parallel to the vertical direction of the suction nozzle 15). ).
 なお、ここでいうテーパ形成高さH0は、異なる2つのテーパ角度θa,θbを有する面の交点Pt1の高さを示す。テーパ角度θa>テーパ角度θbである。 Note that the taper formation height H0 here indicates the height of the intersection Pt1 of surfaces having two different taper angles θa and θb. Taper angle θa>taper angle θb.
 なお、高さBの値が0(ゼロ)であってよい。このような場合、スリット孔141Cは、スリット孔141Cの一端高さH1がテーパ形成高さH0と、部品Pの吸着高さ(吸着ノズル15の先端高さH2)との間に配置される。 Note that the value of height B may be 0 (zero). In such a case, the slit hole 141C is arranged so that the height H1 of one end of the slit hole 141C is between the taper formation height H0 and the suction height of the component P (the tip height H2 of the suction nozzle 15).
 以上により、スリット孔141Cが吸着ノズル15の延伸方向に対して略平行に配置される場合、スリット孔141Cの開口方向と、吸着ノズル15のエッジEG11,EG12とがなす角度は、それぞれテーパ角度θa,θbに略等しくなる。つまり、実装機100は、Z方向において、吸着ノズル15のエッジのうち小さいテーパ角度θbを有するエッジEG11と、スリット孔141Cとが重複する重複高さ(つまり、高さB)を、計測対象である部品Pの厚さAより小さくすることで、スリット孔141Cを通過し、光電変換素子14Dにより受光される回折光の変化量を小さくすることができる。 As described above, when the slit hole 141C is arranged approximately parallel to the extending direction of the suction nozzle 15, the angle between the opening direction of the slit hole 141C and the edges EG11 and EG12 of the suction nozzle 15 is the taper angle θa. , θb. In other words, the mounting machine 100 measures the overlapping height (that is, the height B) where the edge EG11 having the small taper angle θb among the edges of the suction nozzle 15 overlaps with the slit hole 141C in the Z direction. By making the thickness smaller than the thickness A of a certain component P, the amount of change in the diffracted light that passes through the slit hole 141C and is received by the photoelectric conversion element 14D can be reduced.
 これにより、実装機100は、IV変換出力値を微分処理して得られた微分グラフにおける回折光の影響をより効果的に除去できる。したがって、実装機100は、微分処理により得られる微分グラフにおいて、部品Pの厚さAに対応する微分値(ピーク)よりも回折光の変化量に対応する微分値(ピーク)を小さくすることで、微分グラフのピーク値に基づく部品Pの吸着判定あるいは吸着姿勢判定を実行できる。 Thereby, the mounting machine 100 can more effectively remove the influence of diffracted light on the differential graph obtained by performing differential processing on the IV conversion output value. Therefore, in the differential graph obtained by the differential processing, the mounting machine 100 makes the differential value (peak) corresponding to the amount of change in the diffracted light smaller than the differential value (peak) corresponding to the thickness A of the component P. , it is possible to perform suction determination or suction posture determination of the part P based on the peak value of the differential graph.
 また、図7を参照して、吸着ノズル15,15Cとスリット14Cのスリット孔141Cとの相対位置関係について説明する。図7は、吸着ノズル15Cとスリット孔141Cとの第2相対位置関係例を説明する図である。 Further, with reference to FIG. 7, the relative positional relationship between the suction nozzles 15, 15C and the slit hole 141C of the slit 14C will be described. FIG. 7 is a diagram illustrating a second example of relative positional relationship between the suction nozzle 15C and the slit hole 141C.
 図7に示す吸着ノズル15Cは、2つの異なるテーパ角度を有する第1,第2テーパ面同士の境界(つまり、図6に示す交点Pt1)がR形状に形成された吸着ノズルである。このような場合、スリット14Cは、第1テーパ面のエッジEG13に沿う接線L2と,第2テーパ面のエッジEG14に沿う接線L1との交点Pt2の高さH3を基準として、スリット孔141Cの一端高さH4が交点Pt2の高さH3から+Z方向に高さB未満となる高さに配置される。また、図7に示すように、スリット14Cのスリット孔141Cは、接線L1および接線L2のいずれに対しても非平行に配置されている。 The suction nozzle 15C shown in FIG. 7 is a suction nozzle in which the boundary between the first and second tapered surfaces having two different taper angles (that is, the intersection point Pt1 shown in FIG. 6) is formed in an R shape. In such a case, the slit 14C is formed at one end of the slit hole 141C with reference to the height H3 of the intersection Pt2 between the tangent L2 along the edge EG13 of the first tapered surface and the tangent L1 along the edge EG14 of the second tapered surface. It is arranged at a height where the height H4 is less than the height B in the +Z direction from the height H3 of the intersection Pt2. Further, as shown in FIG. 7, the slit hole 141C of the slit 14C is arranged non-parallel to both the tangent line L1 and the tangent line L2.
 なお、高さBが0(ゼロ)である場合、スリット孔141Cは、スリット孔141Cの一端高さH4が交点Pt2の高さH3と、部品Pの吸着高さ(つまり、吸着ノズル15の先端高さH5)との間に配置されてもよい。 Note that when the height B is 0 (zero), the slit hole 141C has a height H4 of one end of the slit hole 141C that is equal to the height H3 of the intersection point Pt2 and the suction height of the component P (that is, the tip of the suction nozzle 15). height H5).
 以上により、スリット孔141Cが吸着ノズル15の延伸方向に対して略平行に配置される場合、スリット孔141Cの開口方向と、吸着ノズル15のエッジEG13,EG14のそれぞれに沿う接線L1,L2とがなす角度は、それぞれテーパ角度θa,θbに近しい値になる。つまり、実装機100は、Z方向において、吸着ノズル15のエッジのうち小さいテーパ角度θbを有するエッジEG11と、スリット孔141Cとが重複する重複高さ(つまり、高さB)が、計測対象である部品Pの厚さAより小さくすることで、スリット孔141Cを通過し、光電変換素子14Dにより受光される回折光の変化量を小さくすることができる。 As described above, when the slit hole 141C is arranged approximately parallel to the extending direction of the suction nozzle 15, the opening direction of the slit hole 141C and the tangents L1, L2 along the edges EG13, EG14 of the suction nozzle 15, respectively. The angles formed have values close to the taper angles θa and θb, respectively. In other words, in the Z direction, the mounting machine 100 measures the overlapping height (that is, height B) where the edge EG11 having a small taper angle θb among the edges of the suction nozzle 15 overlaps with the slit hole 141C. By making the thickness smaller than the thickness A of a certain component P, the amount of change in the diffracted light that passes through the slit hole 141C and is received by the photoelectric conversion element 14D can be reduced.
 これにより、実装機100は、IV変換出力値を微分処理して得られた微分グラフにおける回折光の影響をより効果的に除去できる。したがって、実装機100は、微分処理により得られる微分グラフにおいて、部品Pの厚さAに対応する微分値(ピーク)よりも回折光の変化量に対応する微分値(ピーク)を小さくすることで、微分グラフのピーク値に基づく部品Pの吸着判定あるいは吸着姿勢判定を実行できる。 Thereby, the mounting machine 100 can more effectively remove the influence of diffracted light on the differential graph obtained by performing differential processing on the IV conversion output value. Therefore, in the differential graph obtained by the differential processing, the mounting machine 100 makes the differential value (peak) corresponding to the amount of change in the diffracted light smaller than the differential value (peak) corresponding to the thickness A of the component P. , it is possible to perform suction determination or suction posture determination of the part P based on the peak value of the differential graph.
 図8を参照して、吸着ノズル15とスリット孔141Cとの相対位置に基づくIV変換グラフおよび微分グラフの比較例について説明する。図8は、吸着ノズル15とスリット孔141Cとの相対位置関係によるIV変換グラフOp41,Op51および微分グラフDf41,Df51の比較例を説明する図である。なお、以下の説明では、吸着ノズル15とスリット孔141Cとの相対位置に基づくIV変換グラフおよび微分グラフについて説明するが、吸着ノズル15Cでも同様である。 With reference to FIG. 8, a comparative example of an IV conversion graph and a differential graph based on the relative positions of the suction nozzle 15 and the slit hole 141C will be described. FIG. 8 is a diagram illustrating a comparative example of IV conversion graphs Op41, Op51 and differential graphs Df41, Df51 based on the relative positional relationship between the suction nozzle 15 and the slit hole 141C. Note that in the following explanation, an IV conversion graph and a differential graph based on the relative position between the suction nozzle 15 and the slit hole 141C will be explained, but the same applies to the suction nozzle 15C.
 IV変換グラフOp41,Op51それぞれの縦軸は、IV変換値を示す。IV変換グラフOp41,Op51それぞれの横軸は、時間を示す。微分グラフDf41,Df51それぞれの縦軸は、微分値を示す。微分グラフDf41,Df51それぞれの横軸は、時間を示す。 The vertical axis of each of the IV conversion graphs Op41 and Op51 indicates the IV conversion value. The horizontal axis of each of the IV conversion graphs Op41 and Op51 indicates time. The vertical axis of each of the differential graphs Df41 and Df51 indicates the differential value. The horizontal axis of each of the differential graphs Df41 and Df51 indicates time.
 IV変換グラフOp41は、高さ方向において、エッジEG11,EG13とスリット孔141Cとが重複する高さB(図6,図7参照)が、部品Pの厚さA以上(厚さA≦高さB)である場合のIV変換値の時系列変化を示すグラフである。また、レベルLV0Dは、光線14Bが遮光されておらず、電流電圧変換部14Eから出力されたIV変換値が0(ゼロ)であることを示す。 In the IV conversion graph Op41, the height B (see FIGS. 6 and 7) where the edges EG11, EG13 and the slit hole 141C overlap in the height direction is greater than or equal to the thickness A of the component P (thickness A≦height It is a graph which shows the time series change of the IV conversion value in case B). Further, the level LV0D indicates that the light beam 14B is not blocked and the IV conversion value output from the current-voltage converter 14E is 0 (zero).
 ポイントPt41Aは、吸着ノズル15および部品Pによる光線14Bの遮光開始前後のタイミングを示す。IV変換グラフOp41は、ポイントPt41Aで吸着ノズル15のエッジ部分で発生した回折光を受光量に対応してIV変換値が変動する。 Point Pt41A indicates the timing before and after the suction nozzle 15 and the component P start blocking the light beam 14B. In the IV conversion graph Op41, the IV conversion value fluctuates in response to the amount of received diffracted light generated at the edge portion of the suction nozzle 15 at point Pt41A.
 ポイントPt42Aは、吸着ノズル15と、吸着ノズル15の先端に吸着された部品Pによる光線14Bの遮光開始前後のタイミングを示す。IV変換グラフOp41は、ポイントPt42Aで吸着ノズル15の先端高さH2と、吸着ノズル15の先端に吸着された部品Pの厚さAとに対応するIV変換値が出力される。ここで、レベルLV40は、電流電圧変換部14Eから出力され、吸着ノズル15の先端高さH2と、吸着ノズル15の先端に吸着された部品Pの厚さAとに対応するIV変換値である。 Point Pt42A indicates the timing before and after the suction nozzle 15 and the part P suctioned to the tip of the suction nozzle 15 start blocking the light beam 14B. In the IV conversion graph Op41, an IV conversion value corresponding to the tip height H2 of the suction nozzle 15 and the thickness A of the part P sucked to the tip of the suction nozzle 15 is output at a point Pt42A. Here, the level LV40 is an IV conversion value that is output from the current-voltage converter 14E and corresponds to the tip height H2 of the suction nozzle 15 and the thickness A of the component P sucked to the tip of the suction nozzle 15. .
 ポイントPt43Aは、吸着ノズル15と、吸着ノズル15の先端に吸着された部品Pによる光線14Bの遮光終了前後のタイミングを示す。IV変換グラフOp41は、ポイントPt43Aで吸着ノズル15の先端高さH2と、吸着ノズル15の先端に吸着された部品Pの厚さAとに対応するIV変換値が出力される。 Point Pt43A indicates the timing before and after the suction nozzle 15 and the component P suctioned to the tip of the suction nozzle 15 end blocking the light beam 14B. In the IV conversion graph Op41, an IV conversion value corresponding to the tip height H2 of the suction nozzle 15 and the thickness A of the part P sucked to the tip of the suction nozzle 15 is output at a point Pt43A.
 ポイントPt44Aは、吸着ノズル15および部品Pによる光線14Bの遮光終了前後のタイミングを示す。IV変換グラフOp41は、ポイントPt41Aで吸着ノズル15のエッジ部分で発生した回折光を受光量に対応してIV変換値が変動する。 Point Pt44A indicates the timing before and after the suction nozzle 15 and the component P finish blocking the light beam 14B. In the IV conversion graph Op41, the IV conversion value fluctuates in response to the amount of received diffracted light generated at the edge portion of the suction nozzle 15 at point Pt41A.
 微分グラフDf41は、IV変換グラフOp41のIV変換値を微分処理して得られた微分値の時系列変化を示すグラフである。また、レベルLV0Eは、IV変換値の変化量が0(ゼロ)であって、微分処理部17Aから出力された微分値が0(ゼロ)であることを示す。 The differential graph Df41 is a graph showing a time-series change in the differential value obtained by differentially processing the IV conversion value of the IV conversion graph Op41. Further, level LV0E indicates that the amount of change in the IV conversion value is 0 (zero), and that the differential value output from the differential processing section 17A is 0 (zero).
 ピークPk41Bは、IV変換グラフOp41のポイントPt41Aに対応するピークである。ピークPk42Bは、IV変換グラフOp41のポイントPt42Aに対応するピークである。ピークPk43Bは、IV変換グラフOp41のポイントPt43Aに対応するピークである。ピークPk44Bは、IV変換グラフOp41のポイントPt44Aに対応するピークである。 The peak Pk41B is a peak corresponding to the point Pt41A of the IV conversion graph Op41. Peak Pk42B is a peak corresponding to point Pt42A of IV conversion graph Op41. Peak Pk43B is a peak corresponding to point Pt43A of IV conversion graph Op41. Peak Pk44B is a peak corresponding to point Pt44A of IV conversion graph Op41.
 ここで、部品Pの厚さAに対応するピークPk42B,Pk43Bのそれぞれは、吸着ノズル15の回折光に対応するピークPk41B,Pk44Bのそれぞれよりも小さい。よって、部品Pの厚さAが、吸着ノズル15に対するスリット孔141Cが高さB以下(厚さA≦高さB)である場合、判定部17Bは、微分値の負の最大値がピークPk41B、微分値の正の最大値がピークPk44Bとなるため、微分値の負および正のそれぞれのピークPk41B,Pk44B(最大値)に基づいて部品Pの吸着判定を実行するために、部品Pの厚さに対応する微分値を検出するための別の処理が必要となる。 Here, each of the peaks Pk42B and Pk43B corresponding to the thickness A of the component P is smaller than each of the peaks Pk41B and Pk44B corresponding to the diffracted light of the suction nozzle 15. Therefore, when the thickness A of the component P is less than or equal to the height B of the slit hole 141C relative to the suction nozzle 15 (thickness A≦height B), the determination unit 17B determines that the maximum negative value of the differential value is the peak Pk41B. , since the maximum positive value of the differential value is the peak Pk44B, the thickness of the component P is Another process is required to detect the differential value corresponding to the difference.
 IV変換グラフOp51は、高さ方向において、エッジEG11,EG13とスリット孔141Cとが重複する高さB(図6,図7参照)が、部品Pの厚さA未満(厚さA>高さB)場合のIV変換値の時系列変化を示すグラフである。なお、高さBは、0(ゼロ)であってもよい。このような場合、スリット孔141Cは、一端高さH1が部品Pの吸着高さ(吸着ノズル15の先端高さH2)と、高さH0との間に位置することを示す。 In the IV conversion graph Op51, the height B (see FIGS. 6 and 7) where the edges EG11, EG13 and the slit hole 141C overlap in the height direction is less than the thickness A of the component P (thickness A>height It is a graph showing the time series change of the IV conversion value in case B). Note that the height B may be 0 (zero). In such a case, the slit hole 141C indicates that one end height H1 is located between the suction height of the component P (the tip height H2 of the suction nozzle 15) and the height H0.
 ポイントPt51Aは、吸着ノズル15および部品Pによる光線14Bの遮光開始前後のタイミングを示す。IV変換グラフOp51は、ポイントPt51Aで吸着ノズル15のエッジ部分で発生した回折光を受光量に対応してIV変換値が変動している。 Point Pt51A indicates the timing before and after the suction nozzle 15 and the component P start blocking the light beam 14B. In the IV conversion graph Op51, the IV conversion value fluctuates in response to the amount of received light of the diffracted light generated at the edge portion of the suction nozzle 15 at a point Pt51A.
 ポイントPt52Aは、吸着ノズル15と、吸着ノズル15の先端に吸着された部品Pによる光線14Bの遮光開始前後のタイミングを示す。IV変換グラフOp51は、ポイントPt52Aで吸着ノズル15の先端高さH2と、吸着ノズル15の先端に吸着された部品Pの厚さAとに対応するIV変換値が出力される。ここで、レベルLV40は、電流電圧変換部14Eから出力され、吸着ノズル15の先端高さH2と、吸着ノズル15の先端に吸着された部品Pの厚さAとに対応するIV変換値である。 Point Pt52A indicates the timing before and after the suction nozzle 15 and the part P suctioned to the tip of the suction nozzle 15 start blocking the light beam 14B. In the IV conversion graph Op51, an IV conversion value corresponding to the tip height H2 of the suction nozzle 15 and the thickness A of the part P sucked to the tip of the suction nozzle 15 is output at a point Pt52A. Here, the level LV40 is an IV conversion value that is output from the current-voltage converter 14E and corresponds to the tip height H2 of the suction nozzle 15 and the thickness A of the component P sucked to the tip of the suction nozzle 15. .
 ポイントPt53Aは、吸着ノズル15と、吸着ノズル15の先端に吸着された部品Pによる光線14Bの遮光終了前後のタイミングを示す。IV変換グラフOp51は、ポイントPt53Aで吸着ノズル15の先端高さH2と、吸着ノズル15の先端に吸着された部品Pの厚さAとに対応するIV変換値が出力される。 Point Pt53A indicates the timing before and after the suction nozzle 15 and the part P suctioned to the tip of the suction nozzle 15 end blocking the light beam 14B. In the IV conversion graph Op51, an IV conversion value corresponding to the tip height H2 of the suction nozzle 15 and the thickness A of the part P sucked to the tip of the suction nozzle 15 is output at a point Pt53A.
 ポイントPt54Aは、吸着ノズル15および部品Pによる光線14Bの遮光終了前後のタイミングを示す。IV変換グラフOp51は、ポイントPt51Aで吸着ノズル15のエッジ部分で発生した回折光を受光量に対応してIV変換値が変動している。 Point Pt54A indicates the timing before and after the suction nozzle 15 and the component P finish blocking the light beam 14B. In the IV conversion graph Op51, the IV conversion value fluctuates in response to the amount of received light of the diffracted light generated at the edge portion of the suction nozzle 15 at a point Pt51A.
 微分グラフDf51は、IV変換グラフOp51のIV変換値を微分処理して得られた微分値の時系列変化を示すグラフである。 The differential graph Df51 is a graph showing a time-series change in the differential value obtained by differentially processing the IV conversion value of the IV conversion graph Op51.
 ピークPk51Bは、IV変換グラフOp51のポイントPt51Aに対応するピークである。ピークPk52Bは、IV変換グラフOp51のポイントPt52Aに対応するピークである。ピークPk53Bは、IV変換グラフOp51のポイントPt53Aに対応するピークである。ピークPk54Bは、IV変換グラフOp51のポイントPt54Aに対応するピークである。 The peak Pk51B is a peak corresponding to the point Pt51A of the IV conversion graph Op51. Peak Pk52B is a peak corresponding to point Pt52A of IV conversion graph Op51. Peak Pk53B is a peak corresponding to point Pt53A of IV conversion graph Op51. Peak Pk54B is a peak corresponding to point Pt54A of IV conversion graph Op51.
 ここで、部品Pの厚さAに対応するピークPk52B,Pk53Bのそれぞれは、吸着ノズル15の回折光に対応するピークPk51B,Pk54Bのそれぞれよりも大きい。よって、このような場合、判定部17Bは、微分値の負の最大値がピークPk52B、微分値の正の最大値がピークPk53Bとなるため、微分値の負および正のそれぞれの最大値と、閾値ThA,ThBのそれぞれとを比較することで、吸着ノズル15に部品Pが吸着されているか否かをより容易に判定できる。 Here, each of the peaks Pk52B and Pk53B corresponding to the thickness A of the component P is larger than each of the peaks Pk51B and Pk54B corresponding to the diffracted light of the suction nozzle 15. Therefore, in such a case, the determination unit 17B determines that the maximum negative value of the differential value is the peak Pk52B, and the maximum positive value of the differential value is the peak Pk53B, so that the maximum negative and positive values of the differential value, By comparing the threshold values ThA and ThB, it is possible to more easily determine whether or not the component P is being attracted to the suction nozzle 15.
 具体的に、判定部17Bは、微分値の負の最大値が閾値ThB以下、かつ、微分値の正の最大値が閾値ThA以上であると判定した場合、吸着ノズル15の先端部に部品Pが吸着されていると判定する。また、判定部17Bは、微分値の負の最大値が閾値ThB以下、かつ、微分値の正の最大値が閾値ThA以上でないと判定した場合、吸着ノズル15の先端部に部品Pが正常に吸着されていないと判定する。 Specifically, if the determination unit 17B determines that the maximum negative value of the differential value is equal to or less than the threshold ThB, and the maximum positive value of the differentiated value is equal to or greater than the threshold ThA, the determination unit 17B places the component P at the tip of the suction nozzle 15. is determined to be adsorbed. Further, when determining that the maximum negative value of the differential value is not more than the threshold ThB and the maximum positive value of the differential value is not more than the threshold ThA, the determining unit 17B determines that the component P is not normally placed at the tip of the suction nozzle 15. It is determined that it is not absorbed.
 さらに、判定部17Bは、微分グラフにおいて微分値が閾値ThB以下、かつ、閾値ThA以上である時間帯に基づいて、部品Pの幅を計測する。例えば、判定部17Bは、ヘッド11の移動速度と、微分値の負の最大値(つまり、ピークPk52B)と、微分値の正の最大値(つまり、ピークPk53B)とがそれぞれ検出される間の時間帯T5を算出する。判定部17Bは、部品Pの幅に対応する時間帯T5と、部品Pの吸着姿勢を判定するための閾値ThCとの比較により、吸着ノズル15により吸着された部品Pの吸着姿勢,吸着面等が正常であるか否かを判定する。 Furthermore, the determination unit 17B measures the width of the component P based on the time zone in which the differential value is less than or equal to the threshold ThB and greater than or equal to the threshold ThA in the differential graph. For example, the determination unit 17B determines whether the moving speed of the head 11, the maximum negative value of the differential value (that is, peak Pk52B), and the maximum positive value of the differential value (that is, peak Pk53B) are detected. Calculate time period T5. The determination unit 17B determines the suction posture, suction surface, etc. of the component P picked up by the suction nozzle 15 by comparing the time period T5 corresponding to the width of the component P with the threshold ThC for determining the suction posture of the component P. Determine whether or not it is normal.
 図8に示す例において、判定部17Bは、時間帯T5が閾値ThC未満であると判定した場合、部品Pの吸着姿勢,吸着面等が正常であると判定し、時間帯T5が閾値ThC未満でないと判定した場合、部品Pの吸着姿勢,吸着面等が不良であると判定する。 In the example shown in FIG. 8, if the determination unit 17B determines that the time period T5 is less than the threshold ThC, it determines that the suction posture, suction surface, etc. of the component P are normal, and the time period T5 is less than the threshold ThC. If it is determined that this is not the case, it is determined that the suction posture, suction surface, etc. of the component P are defective.
 なお、閾値ThCが、部品Pが正常に吸着された場合の部品Pの幅に対応する閾値である場合には、判定部17Bは、時間帯T5が閾値ThC以上であると判定した場合、部品Pの吸着姿勢,吸着面等が正常であると判定してもよい。 Note that when the threshold ThC is a threshold corresponding to the width of the component P when the component P is normally picked up, the determining unit 17B determines that the time period T5 is equal to or greater than the threshold ThC, the component It may be determined that the suction posture, suction surface, etc. of P are normal.
 なお、上述した本実施の形態では、ヘッド11による部品供給部12と部品Pの部品実装位置との間の搬送高さが一定であって、ヘッド11に装着された吸着ノズル15に対するスリット14Cの配置位置について説明したが、搬送高さが可変であってもよい。 In the present embodiment described above, the conveyance height between the component supply section 12 and the component mounting position of the component P by the head 11 is constant, and the height of the slit 14C relative to the suction nozzle 15 attached to the head 11 is constant. Although the arrangement position has been described, the conveyance height may be variable.
 ヘッド11による部品供給部12と部品Pの部品実装位置との間の搬送高さが可変である場合、実装機100は、スリット14Cの一端高さH1,H3の位置(高さ)に基づいて、スリット14Cのスリット孔141Cに対する吸着ノズル15の高さを、部品Pの厚さA>高さBとなるように制御してもよい。 When the conveyance height between the component supply unit 12 and the component mounting position of the component P by the head 11 is variable, the mounting machine 100 can move the component P based on the position (height) of one end height H1, H3 of the slit 14C. , the height of the suction nozzle 15 relative to the slit hole 141C of the slit 14C may be controlled so that the thickness A of the component P>height B.
 以上により、実施の形態1に係る実装機100は、少なくとも1本の吸着ノズル15,15Cの先端部で部品Pを吸着し、基板13上に実装するヘッド11と、光源14Aと光源14Aから照射された光線14Bを受光する光電変換素子14D(受光素子の一例)とを有し、吸着ノズル15,15Cの先端部に光線14Bを照射して、光源と光電変換素子14Dとの間に配置されたスリット孔141Cを通過した光線14Bを光電変換素子14Dにより受光し、受光された光線14Bの光強度を出力する測定系14(センサの一例)と、測定系14から出力された光線14Bの光強度に基づいて、光線14Bを通過する吸着ノズル15,15Cの先端部に部品Pが吸着されているか否かを判定するプロセッサ17(制御部の一例)と、を備える。吸着ノズル15,15Cは、先端部に向かってテーパが形成される。スリット孔141Cは、テーパに対して非平行に配置される。 As described above, the mounting machine 100 according to the first embodiment sucks the component P with the tip of at least one suction nozzle 15, 15C, and irradiates the head 11 that mounts the component onto the substrate 13 with the light source 14A and the light source 14A. The photoelectric conversion element 14D (an example of a light receiving element) is arranged between the light source and the photoelectric conversion element 14D to irradiate the tip of the suction nozzle 15, 15C with the light beam 14B. A measurement system 14 (an example of a sensor) that receives the light beam 14B that has passed through the slit hole 141C by a photoelectric conversion element 14D and outputs the light intensity of the received light beam 14B; It includes a processor 17 (an example of a control unit) that determines, based on the intensity, whether the component P is attracted to the tips of the suction nozzles 15 and 15C through which the light beam 14B passes. The suction nozzles 15, 15C are tapered toward their tips. The slit hole 141C is arranged non-parallel to the taper.
 これにより、実施の形態1に係る実装機100は、スリット孔141Cを通過し、光電変換素子14Dにより受光される回折光の受光量を減少させることができるため、部品Pの吸着判定において回折光の受光量の増減に基づく微分値をより効果的に除去することができる。したがって、実装機100は、微分値を用いて部品Pの吸着状態をより高精度に実行できる。 As a result, the mounting machine 100 according to the first embodiment can reduce the amount of diffracted light that passes through the slit hole 141C and is received by the photoelectric conversion element 14D. The differential value based on the increase/decrease in the amount of received light can be more effectively removed. Therefore, the mounting machine 100 can determine the suction state of the component P with higher precision using the differential value.
 また、以上により、実施の形態1に係る実装機100におけるスリット孔141Cの一端は、高さ方向において、先端部に吸着される部品Pの吸着高さ(つまり、吸着ノズル15の先端高さH2,H5)以上、かつ、吸着ノズル15,15CのエッジEG11~EG14の接線(第1の接線の一例であって、例えばエッジEG11、接線L2)と第2の接線(第2の接線の一例であって、例えばエッジEG12、接線L1)とのテーパ形成高さH0あるいは交点Pt2の高さH3から高さB(所定高さの一例)未満に配置される。これにより、実施の形態1に係る実装機100は、吸着ノズル15,15CのエッジEG11,EG12のそれぞれ(吸着ノズル15Cの例では、エッジEG13,EG14のそれぞれに沿う接線L1,L2)に対するスリット孔141Cの高さを規定するだけで、光電変換素子14Dにより受光される回折光の受光量をより容易に減少させることができる。 Furthermore, as described above, one end of the slit hole 141C in the mounting machine 100 according to the first embodiment is at the suction height of the component P to be suctioned at the tip (that is, the tip height H2 of the suction nozzle 15) in the height direction. . For example, it is arranged below the height B (an example of a predetermined height) from the taper formation height H0 with the edge EG12 and the tangent L1 or the height H3 of the intersection Pt2. As a result, the mounting machine 100 according to the first embodiment has slit holes corresponding to the edges EG11 and EG12 of the suction nozzles 15 and 15C (in the example of the suction nozzle 15C, tangents L1 and L2 along the edges EG13 and EG14, respectively). By simply defining the height of 141C, the amount of diffracted light received by photoelectric conversion element 14D can be more easily reduced.
 また、以上により、実施の形態1に係る実装機100において、高さBは、部品の高さAである。これにより、実施の形態1に係る実装機100は、回折光の受光量の変動量を微分して得られる微分値が、部品Pの通過時の光線14Bの遮光に基づく受光量の変動量を微分して得られる微分値よりも小さくなるため、微分値のピークに基づいて、部品Pの吸着判定を実行できる。 Furthermore, as described above, in the mounting machine 100 according to the first embodiment, the height B is the height A of the component. As a result, in the mounting machine 100 according to the first embodiment, the differential value obtained by differentiating the amount of variation in the amount of received diffracted light is the amount of variation in the amount of received light based on the blocking of the light beam 14B when the component P passes. Since it is smaller than the differential value obtained by differentiation, the suction determination of the component P can be performed based on the peak of the differential value.
 また、以上により、実施の形態1に係る実装機100のスリット孔141Cは、吸着ノズル15,15Cに対して略平行に配置される。これにより、実施の形態1に係る実装機100は、吸着ノズル15,15CのエッジEG11,EG12のそれぞれ(吸着ノズル15Cの例では、エッジEG13,EG14のそれぞれに沿う接線L1,L2)に対するスリット孔141Cの高さを規定するだけで、光電変換素子14Dにより受光される回折光の受光量をより容易に減少させることができる。 Furthermore, as described above, the slit hole 141C of the mounting machine 100 according to the first embodiment is arranged substantially parallel to the suction nozzles 15, 15C. As a result, the mounting machine 100 according to the first embodiment has slit holes corresponding to the edges EG11 and EG12 of the suction nozzles 15 and 15C (in the example of the suction nozzle 15C, tangents L1 and L2 along the edges EG13 and EG14, respectively). By simply defining the height of 141C, the amount of diffracted light received by photoelectric conversion element 14D can be more easily reduced.
 また、以上により、実施の形態1に係る実装機100におけるプロセッサ17は、微分値が閾値ThA(第1の閾値の一例)以上、かつ、閾値ThAより大きい閾値ThB(第2の閾値の一例)未満であると判定した場合、光線14Bを通過する先端部に部品Pが吸着されていると判定する。これにより、実装機100は、微分値が示す部品Pの厚さA(高さ)に基づいて、部品Pが吸着されているか否かの吸着判定と、部品Pの吸着姿勢とを判定できる。 Further, as described above, the processor 17 in the mounting machine 100 according to the first embodiment has a differential value equal to or greater than the threshold ThA (an example of a first threshold) and a threshold ThB (an example of a second threshold) that is larger than the threshold ThA. If it is determined that the value is less than 1, it is determined that the component P is attracted to the tip portion through which the light beam 14B passes. Thereby, the mounting machine 100 can determine whether or not the component P is suctioned, and determine the suction posture of the component P, based on the thickness A (height) of the component P indicated by the differential value.
 また、以上により、実施の形態1に係る実装機100におけるプロセッサ17は、微分値が閾値ThA未満であると判定した場合、光線14Bを通過する先端部に部品Pが吸着されていないと判定し、部品Pの吸着状態が不良である旨の通知を生成して出力する。これにより、実装機100は、微分値が示す部品Pの厚さA(高さ)に基づいて、部品Pの吸着姿勢(状態)が不良であると判定した場合、吸着不良である旨の通知を生成して出力できる。 Furthermore, as described above, when the processor 17 in the mounting machine 100 according to the first embodiment determines that the differential value is less than the threshold ThA, the processor 17 determines that the component P is not attracted to the tip portion passing through the light beam 14B. , generates and outputs a notification that the suction state of the component P is poor. As a result, when the mounting machine 100 determines that the suction posture (state) of the component P is defective based on the thickness A (height) of the component P indicated by the differential value, the mounting machine 100 notifies that the suction is defective. can be generated and output.
 また、以上により、実施の形態1に係る実装機100におけるプロセッサ17は、微分値が閾値ThB以上であると判定した場合、部品Pの吸着状態が不良である旨の通知を生成して出力する。これにより、実装機100は、微分値が示す部品Pの厚さA(高さ)に基づいて、部品Pの吸着姿勢(状態)が不良であると判定した場合、吸着不良である旨の通知を生成して出力できる。 Further, as described above, when the processor 17 in the mounting machine 100 according to the first embodiment determines that the differential value is equal to or greater than the threshold ThB, the processor 17 generates and outputs a notification that the suction state of the component P is poor. . As a result, when the mounting machine 100 determines that the suction posture (state) of the component P is defective based on the thickness A (height) of the component P indicated by the differential value, the mounting machine 100 notifies that the suction is defective. can be generated and output.
 また、以上により、実施の形態1に係る実装機100におけるプロセッサ17は、微分値が閾値ThA以上、かつ、閾値ThB未満である時間帯T5を測定し、測定された時間帯T5に基づいて、部品Pの吸着姿勢を判定する。これにより、実装機100は、部品Pが吸着されている状態を示す微分値が閾値ThA以上、かつ、閾値ThB未満である時間帯T5の長さに対応する部品Pの幅に基づいて、部品Pの吸着姿勢を判定できる。 Further, as described above, the processor 17 in the mounting machine 100 according to the first embodiment measures the time period T5 in which the differential value is greater than or equal to the threshold ThA and less than the threshold ThB, and based on the measured time period T5, The suction posture of the part P is determined. As a result, the mounting machine 100 selects the component P based on the width of the component P that corresponds to the length of the time period T5 in which the differential value indicating the state in which the component P is being sucked is greater than or equal to the threshold ThA and less than the threshold ThB. The adsorption posture of P can be determined.
 また、以上により、実施の形態1に係る実装機100におけるプロセッサ17は、時間帯T5の長さが閾値ThC以上であると判定した場合、部品Pの吸着姿勢が不良であると判定し、部品Pの吸着状態が不良である旨の通知を生成して出力する。これにより、実装機100は、部品Pの幅に基づいて、部品Pの吸着姿勢,吸着面等が正常であるか否かを判定し、正常でないと判定した場合には、吸着不良である旨の通知を生成して出力できる。 Further, as described above, when the processor 17 in the mounting machine 100 according to the first embodiment determines that the length of the time period T5 is equal to or greater than the threshold value ThC, the processor 17 determines that the suction posture of the component P is bad, and A notification indicating that the suction state of P is poor is generated and output. As a result, the mounting machine 100 determines whether the suction posture, suction surface, etc. of the component P are normal based on the width of the component P, and if it is determined that the suction surface is not normal, a notification is sent that the suction is defective. can generate and output notifications.
 以上、添付図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても本開示の技術的範囲に属すると了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the accompanying drawings, the present disclosure is not limited to such examples. It is clear that those skilled in the art can come up with various changes, modifications, substitutions, additions, deletions, and equivalents within the scope of the claims, and It is understood that it falls within the technical scope of the present disclosure. Further, each of the constituent elements in the various embodiments described above may be arbitrarily combined without departing from the spirit of the invention.
 本開示は、ノズルに吸着された部品の吸着状態をより高精度に判定できる実装機の提示として有用である。 The present disclosure is useful as a mounting machine that can more accurately determine the suction state of components suctioned by a nozzle.
11 ヘッド
12 部品供給部
13 基板
14 測定系
14A 光源
14B 光線
14C スリット
14D 光電変換素子
14E 電流電圧変換部
15,15A,15B,15C 吸着ノズル
17 プロセッサ
17A 微分処理部
17B 判定部
18 メモリ
18A 閾値
19 出力部
21 管理コンピュータ
100 実装機
EG,EG11,EG12,EG13,EG14 エッジ
P,P0 部品
11 Head 12 Component supply section 13 Substrate 14 Measurement system 14A Light source 14B Light beam 14C Slit 14D Photoelectric conversion element 14E Current-voltage conversion section 15, 15A, 15B, 15C Suction nozzle 17 Processor 17A Differential processing section 17B Judgment section 18 Memory 18A Threshold 19 Output Part 21 Management computer 100 Mounting machine EG, EG11, EG12, EG13, EG14 Edge P, P0 Parts

Claims (9)

  1.  吸着ノズルを有し、前記吸着ノズルの先端部で部品を吸着し、基板上に前記部品を実装するヘッドと、
     光線を照射する光源と、前記光線が通過するスリット孔を有するスリットと、前記スリット孔を通過した前記光線を受光する受光素子とを有し、前記吸着ノズルの先端部に前記光線を照射して、前記スリット孔を通過した前記光線を前記受光素子により受光し、受光された前記光線の光強度を出力するセンサと、
     前記センサから出力された前記光線の前記光強度を微分して微分値を取得し、前記微分値に基づいて、前記光線を通過する前記吸着ノズルの先端部に前記部品が吸着されているか否かを判定する制御部と、を備え、
     前記吸着ノズルは、前記先端部に向かって細くなるテーパを有し、
     前記スリット孔は、前記テーパに対して非平行に配置される、
     実装機。
    a head having a suction nozzle, suctioning a component with a tip of the suction nozzle, and mounting the component on a substrate;
    A light source that irradiates a light beam, a slit having a slit hole through which the light beam passes, and a light receiving element that receives the light beam that has passed through the slit hole, and irradiates the tip of the suction nozzle with the light beam. , a sensor that receives the light beam passing through the slit hole with the light receiving element and outputs the light intensity of the received light beam;
    Differentiating the light intensity of the light beam output from the sensor to obtain a differential value, and based on the differential value, determining whether or not the component is attracted to the tip of the suction nozzle through which the light beam passes. a control unit that determines the
    The suction nozzle has a taper that becomes narrower toward the tip,
    the slit hole is arranged non-parallel to the taper;
    mounting machine.
  2.  前記吸着ノズルは、第1エッジと第2エッジを有し、
     前記スリット孔の一端は、高さ方向において、前記先端部に吸着される前記部品の吸着高さ以上、かつ、前記第1エッジの第1の接線と前記第2エッジの第2の接線との交点から所定高さ未満に配置される、
     請求項1に記載の実装機。
    The suction nozzle has a first edge and a second edge,
    One end of the slit hole has a height in the height direction that is greater than or equal to the suction height of the component to be suctioned to the tip, and that is between a first tangent of the first edge and a second tangent of the second edge. located less than a predetermined height from the intersection,
    The mounting machine according to claim 1.
  3.  前記所定高さは、前記部品の高さである、
     請求項2に記載の実装機。
    the predetermined height is the height of the component;
    The mounting machine according to claim 2.
  4.  前記スリット孔は、前記吸着ノズルに対して略平行に配置される、
     請求項1に記載の実装機。
    The slit hole is arranged substantially parallel to the suction nozzle,
    The mounting machine according to claim 1.
  5.  前記制御部は、前記微分値が第1の閾値以上、かつ、前記第1の閾値より大きい第2の閾値未満であると判定した場合、前記光線を通過する前記先端部に前記部品が吸着されていると判定する、
     請求項1に記載の実装機。
    If the control unit determines that the differential value is greater than or equal to a first threshold and less than a second threshold that is larger than the first threshold, the control unit may cause the component to be attracted to the tip through which the light beam passes. It is determined that
    The mounting machine according to claim 1.
  6.  前記制御部は、前記微分値が前記第1の閾値未満であると判定した場合、前記光線を通過する前記先端部に前記部品が吸着されていないと判定し、前記部品の吸着状態が不良である旨の通知を生成して出力する、
     請求項5に記載の実装機。
    If the control unit determines that the differential value is less than the first threshold, the control unit determines that the component is not suctioned at the tip through which the light beam passes, and that the suction state of the component is poor. Generate and output a notification to that effect,
    The mounting machine according to claim 5.
  7.  前記制御部は、前記微分値が前記第2の閾値以上であると判定した場合、前記部品の吸着状態が不良である旨の通知を生成して出力する、
     請求項5に記載の実装機。
    When the control unit determines that the differential value is equal to or greater than the second threshold, the control unit generates and outputs a notification that the suction state of the component is poor.
    The mounting machine according to claim 5.
  8.  前記制御部は、前記微分値が前記第1の閾値以上、かつ、前記第2の閾値未満である時間帯を測定し、測定された前記時間帯に基づいて、前記部品の吸着姿勢を判定する、
     請求項5に記載の実装機。
    The control unit measures a time period in which the differential value is greater than or equal to the first threshold value and less than the second threshold value, and determines a suction posture of the component based on the measured time period. ,
    The mounting machine according to claim 5.
  9.  前記制御部は、前記時間帯の長さが第3の閾値以上であると判定した場合、前記部品の前記吸着姿勢が不良であると判定し、前記部品の吸着状態が不良である旨の通知を生成して出力する、
     請求項8に記載の実装機。
    If the control unit determines that the length of the time period is equal to or greater than a third threshold, the control unit determines that the suction posture of the component is poor, and sends a notification that the suction state of the component is poor. generate and output,
    The mounting machine according to claim 8.
PCT/JP2023/005912 2022-04-28 2023-02-20 Mounting machine WO2023210126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-075297 2022-04-28
JP2022075297 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210126A1 true WO2023210126A1 (en) 2023-11-02

Family

ID=88518556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005912 WO2023210126A1 (en) 2022-04-28 2023-02-20 Mounting machine

Country Status (1)

Country Link
WO (1) WO2023210126A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290097A (en) * 1997-02-17 1998-10-27 Tenryu Technic:Kk Method for mounting component
JP2004319854A (en) * 2003-04-17 2004-11-11 Yamagata Casio Co Ltd Component packaging apparatus and suction state detecting method
JP2010092901A (en) * 2008-10-03 2010-04-22 Yamatake Corp Suction posture determining device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290097A (en) * 1997-02-17 1998-10-27 Tenryu Technic:Kk Method for mounting component
JP2004319854A (en) * 2003-04-17 2004-11-11 Yamagata Casio Co Ltd Component packaging apparatus and suction state detecting method
JP2010092901A (en) * 2008-10-03 2010-04-22 Yamatake Corp Suction posture determining device

Similar Documents

Publication Publication Date Title
JP6411028B2 (en) Management device
JP4912246B2 (en) Electronic component mounting method and electronic component mounting apparatus
JPWO2007063763A1 (en) Working device and working method for circuit board
KR20010085492A (en) Apparatus and method for mounting electronic component
US10893639B2 (en) Component mounting using feedback correction
JP5052302B2 (en) Component mounting method and apparatus
WO2023210126A1 (en) Mounting machine
JP2006061854A (en) Substrate processing apparatus
US20160255754A1 (en) Component mounting apparatus
JP3320815B2 (en) Electronic component inspection method and device
JP2007043076A (en) Mounting device for electronic component
WO2018216132A1 (en) Measurement position determination device
JP2916447B2 (en) IC package lead pin inspection method and apparatus
EP3937598B1 (en) Correction amount calculating device and correction amount calculating method
WO2023053616A1 (en) Mounting machine and suction state determination method
US9457977B2 (en) Tape feeder and tape feeder cabinet
US20220159886A1 (en) Correction amount calculation device, component mounting machine, and correction amount calculation method
JP2014022633A (en) Component mounting machine
JPH08181493A (en) Parts mounting method and apparatus
US11304351B2 (en) Mounting device, information processing device, and mounting method
JP6752706B2 (en) Judgment device and surface mounter
WO2023079606A1 (en) Component mounting device and component mounting positional deviation determination method
US20240244816A1 (en) Mounting machine
JP2007273520A (en) Method of recognizing position of object to be recognized
JP2024014297A (en) Component mounting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024517860

Country of ref document: JP

Kind code of ref document: A