WO2023209972A1 - R1インターフェースを通じた仮想化基盤情報の提供 - Google Patents

R1インターフェースを通じた仮想化基盤情報の提供 Download PDF

Info

Publication number
WO2023209972A1
WO2023209972A1 PCT/JP2022/019352 JP2022019352W WO2023209972A1 WO 2023209972 A1 WO2023209972 A1 WO 2023209972A1 JP 2022019352 W JP2022019352 W JP 2022019352W WO 2023209972 A1 WO2023209972 A1 WO 2023209972A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtualization infrastructure
infrastructure information
access network
interface
radio access
Prior art date
Application number
PCT/JP2022/019352
Other languages
English (en)
French (fr)
Inventor
パンケージ シェト
アウン ムハンマド
Original Assignee
楽天モバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天モバイル株式会社 filed Critical 楽天モバイル株式会社
Priority to PCT/JP2022/019352 priority Critical patent/WO2023209972A1/ja
Publication of WO2023209972A1 publication Critical patent/WO2023209972A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • This disclosure relates to providing virtualization infrastructure information through the R1 interface.
  • O-RAN provides a virtualization platform also called O-Cloud (hereinafter also referred to as O-Cloud for convenience) that virtually manages a collection of multiple radio access network nodes (RAN nodes).
  • O-Cloud a virtualization platform also called O-Cloud (hereinafter also referred to as O-Cloud for convenience) that virtually manages a collection of multiple radio access network nodes (RAN nodes).
  • the O-RAN control unit uses a Non-RT RIC (Non-Real Time RAN Intelligent Controller) that executes application software called rApp, which has a relatively long control cycle (for example, 1 second or more), and application software called xApp. It is equipped with a Near-RT RIC (Near-Real Time RAN Intelligent Controller) whose control cycle is relatively short (for example, less than 1 second). Among these, the Non-RT RIC is also responsible for the overall control of O-RAN. Regardless, in conventional O-RAN, the mechanism for providing information from the virtualization infrastructure (O-Cloud) to Non-RT RIC rApps was not sufficiently defined.
  • O-Cloud virtualization infrastructure
  • This disclosure was made in view of these circumstances, and the purpose is to provide a radio access network control device, etc. that can provide information from a virtualization platform to a Non-RT RIC rApp.
  • a radio access network control device has a virtualization infrastructure information acquisition unit that uses a virtualization infrastructure to virtually manage a set of a plurality of radio access network nodes. obtaining information, and providing virtualization infrastructure information to the rApp through the R1 interface in O-RAN's Non-RT RIC (Non-Real Time RAN Intelligent Controller) by the virtualization infrastructure information provision unit. at least one processor for executing.
  • virtualization infrastructure information from the virtualization infrastructure can be provided to the rApp through the R1 interface in the Non-RT RIC.
  • Another aspect of the present disclosure is a radio access network control method. This method involves acquiring virtualization infrastructure information from a virtualization infrastructure that virtually manages a collection of multiple radio access network nodes, and using O-RAN's Non-RT RIC (Non-Real Time RAN Intelligent Controller). providing virtualization infrastructure information to the rApp through the R1 interface;
  • O-RAN's Non-RT RIC Non-Real Time RAN Intelligent Controller
  • Yet another aspect of the present disclosure is a storage medium.
  • This storage medium is used to acquire virtualization infrastructure information from a virtualization infrastructure that virtually manages a collection of multiple radio access network nodes, and to use O-RAN's Non-RT RIC (Non-Real Time RAN Intelligent Controller).
  • O-RAN's Non-RT RIC Non-Real Time RAN Intelligent Controller
  • information from the virtualization infrastructure can be provided to the Non-RT RIC rApp.
  • FIG. 2 is a functional block diagram schematically showing a radio access network control device.
  • FIG. 1 schematically shows an overview of a radio access network control device according to this embodiment.
  • This radio access network control device is a RAN control device that controls a radio access network compliant with O-RAN.
  • SMO Service Management and Orchestration
  • SMO controls the entire RAN control device or O-RAN and causes each part to work together.
  • SMO is equipped with a Non-RT RIC (Non-Real Time RAN Intelligent Controller) that functions as an overall control processor responsible for overall control.
  • Non-RT RICs with relatively long control cycles (for example, 1 second or more) issue guidelines, policies, guidance, etc. regarding the operation of each RAN node (O-CU and/or O-DU, which will be described later).
  • the Non-RT RIC runs application software called rApp to issue operating guidelines for each RAN node to the Near-RT RIC (Near-Real Time RAN Intelligent Controller) through the A1 interface.
  • Near-RT RIC which has a relatively short control cycle (for example, less than 1 second), runs application software called xApp and controls each RAN node (O-CU/O-DU) itself and each RAN node through the E2 interface. Controls general-purpose hardware, etc. in the wireless unit (O-RU) connected to the
  • the illustrated RAN nodes include O-CU, which is an O-RAN-compliant central unit (CU), and/or O-DU, which is an O-RAN-compliant distributed unit (DU). Be prepared. Both O-CU and O-DU are responsible for baseband processing in O-RAN, but O-CU is provided on the core network side (not shown), and O-DU is an O-RAN-compliant radio unit (RU : Radio Unit) is installed on the O-RU side.
  • the O-CU may be divided into O-CU-CP, which constitutes a control plane (CP), and O-CU-UP, which constitutes a user plane (UP). Note that the O-CU and O-DU may be integrally configured as one baseband processing unit.
  • an O-eNB as a base station compliant with O-RAN and the fourth generation mobile communication system (4G) may be provided.
  • One or more O-RUs are connected to each RAN node (O-CU/O-DU), and are controlled by the Near-RT RIC via each RAN node.
  • Communication equipment (UE: User Equipment) in the communication cell provided by each O-RU can be connected to each O-RU, and a core (not shown) can be connected to each O-RU through each RAN node (O-CU/O-DU). Can perform network and mobile communication.
  • Each RAN node (O-CU/O-DU) and Near-RT RIC transmits the operating data of each RAN node, each O-RU, and each UE through the O1 interface, so-called FCAPS (Fault, Configuration, Accounting, Performance, security) provided to SMO.
  • FCAPS fault, Configuration, Accounting, Performance, security
  • the SMO updates the operation guidelines for each RAN node that the Non-RT RIC issues to the Near-RT RIC through the A1 interface as necessary.
  • the O-RU may be connected for SMO and FCAPS through the O1 interface or other interfaces (such as Open Fronthaul M-Plane).
  • O-Cloud which serves as a virtualization platform that virtually manages a collection of multiple RAN nodes (O-CU/O-DU), is connected to SMO via the O2 interface. Based on the operational status of multiple RAN nodes (O-CU/O-DU) obtained from O-Cloud through the O2 interface, SMO provides resource allocation guidelines and workload management for resource allocation of the multiple RAN nodes. ) and publish it to O-Cloud through the O2 interface.
  • FIG. 2 schematically shows various functions realized by SMO and/or Non-RT RIC and O-Cloud.
  • SMO mainly implements three functions: FOCOM (Federated O-Cloud Orchestration and Management), NFO (Network Function Orchestrator), and OAM Function.
  • O-Cloud mainly realizes two functions: IMS (Infrastructure Management Services) and DMS (Deployment Management Services).
  • FOCOM manages resources in O-Cloud while receiving services from O-Cloud's IMS through the O2 interface (O2ims).
  • NFO receives services from O-Cloud's DMS through the O2 interface (O2dms), and realizes the cooperative operation of a set of network functions (NFs) through multiple NF Deployments in O-Cloud.
  • NFOs may utilize OAM Functions to access deployed NFs through the O1 interface.
  • the OAM Function is responsible for FCAPS management of O-RAN managed entities such as RAN nodes.
  • the OAM Function in this embodiment monitors O2ims and/or O2dms procedures and provides callbacks to receive data regarding failures and operational status of multiple RAN nodes virtually managed by O-Cloud. It can be a provided functional block.
  • IMS is responsible for managing O-Cloud resources (hardware) and the software used to manage them, and primarily provides services to SMO's FOCOM.
  • DMSs are responsible for managing multiple NF Deployments in O-Cloud, specifically starting, monitoring, terminating, etc., and mainly provide services to NFOs in SMO.
  • FIG. 3 schematically shows the internal configuration and/or functions of SMO and/or Non-RT RIC.
  • SMO or SMO Framework includes Non-RT RIC.
  • Non-RT RIC is internally divided into the Non-RT Framework or Non-RT RIC Framework and rApp.
  • the solid lines in this diagram represent functional blocks and connections defined in O-RAN. Further, the broken lines in this figure represent functional blocks and connections that can be implemented in this embodiment.
  • the areas of the SMO framework excluding Non-RT RIC include O1 Termination, O1 Related Functions, O2 Termination, and O2 Related Functions. , Other SMO Framework Functions are provided.
  • the O1 termination is the termination of the O1 interface in the SMO framework.
  • Near-RT RIC and/or E2 nodes (RAN nodes such as O-CU/O-DU, O-RU, etc.) are connected to the O1 terminal via the O1 interface. .
  • O1-related functions that are directly connected to the O1 termination provide various functions related to the O1 interface, Near-RT RIC, E2 node, etc.
  • O2 termination is the termination of the O2 interface in the SMO framework.
  • O-Cloud is connected to the O2 terminal via the O2 interface.
  • O2-related functions that are directly connected to the O2 terminal provide various functions related to the O2 interface, O-Cloud, etc.
  • Other SMO framework functions provide other functions other than O1-related functions and O2-related functions.
  • Other SMO framework functions are connected via the A2 terminal and A2 interface described later in the Non-RT RIC.
  • Various functions of the SMO framework such as O1-related functions, O2-related functions, and other SMO framework functions, are connected to the main bus MB, which also extends inside the Non-RT RIC.
  • Each of these functional blocks can exchange data with other functional blocks inside and outside the SMO framework (or inside and outside the Non-RT RIC) via the main bus MB.
  • the Non-RT Framework which is the area of Non-RT RIC excluding rApp, includes A1 Termination, A1 Related Functions, and A2 Termination. , A2 Related Functions, R1 Termination, R1 Service Exposure Functions, External Terminations, Data Management & Exposure Functions), artificial intelligence/machine learning workflow functions (AI/ML Workflow Functions), and other Non-RT RIC Framework Functions.
  • A1 termination is the termination of the A1 interface in the Non-RT framework.
  • Near-RT RIC is connected to the A1 terminal via the A1 interface.
  • A1-related functions that are directly connected to the A1 termination provide various functions related to the A1 interface, Near-RT RIC, etc.
  • A2 termination is the termination of the A2 interface in the Non-RT framework.
  • the A2 terminal is connected to the SMO framework and other SMO framework functions via the A2 interface.
  • A2-related functions that are directly connected to the A2 termination provide various functions related to the A2 interface and other SMO framework functions.
  • R1 termination is the termination of the R1 interface in the Non-RT framework.
  • An rApp running on the Non-RT RIC is connected to the R1 end via the R1 interface.
  • the R1 interface constitutes the rApp API (Application Programming Interface).
  • the R1 service disclosure function provided along with the R1 terminal is a function to disclose data related to services such as the R1 interface and rApp to the main bus MB, etc., and/or a function to disclose data from the main bus MB etc. to the R1 interface, Provides a function to disclose to R1 terminal etc. for services such as rApp.
  • the external terminal is the terminal of various external interfaces (not shown) in the Non-RT framework.
  • the data management/disclosure function provides a function of managing various data on the main bus MB and disclosing it in a manner according to the access authority of each functional block.
  • Artificial intelligence/machine learning workflow functionality is performed using artificial intelligence (AI) and/or machine learning (ML) capabilities implemented in Non-RT RIC and/or Near RT RIC.
  • AI artificial intelligence
  • ML machine learning
  • Other Non-RT RIC framework features provide other functionality beyond the functionality of the various Non-RT frameworks listed above.
  • Various Non-RT frameworks such as A1-related functions, A2-related functions, R1 termination, R1 service disclosure function, external termination, data management/disclosure function, artificial intelligence/machine learning workflow function, and other Non-RT RIC framework functions.
  • This function is connected to the main bus MB, which also extends outside the Non-RT RIC.
  • Each of these functional blocks can exchange data with other functional blocks inside and outside the Non-RT RIC through the main bus MB.
  • FIG. 4 is a functional block diagram schematically showing the radio access network control device 1 according to the present embodiment.
  • the radio access network control device 1 is provided in the SMO framework and/or the Non-RT framework in FIG. 3. Note that some functional blocks in Figure 3 (specifically, external termination, data management/disclosure functions, artificial intelligence/machine learning workflow functions, and other Non-RT RIC framework functions) are omitted in this diagram. .
  • the radio access network control device 1 includes a virtualization infrastructure information acquisition unit 11 and a virtualization infrastructure information provision unit 12. These functional blocks are realized through the cooperation of hardware resources such as the computer's central processing unit (central processing unit), memory, input devices, output devices, and peripheral devices connected to the computer, and the software that is executed using them. Realized. Regardless of the type of computer or installation location, each of the above functional blocks may be realized using the hardware resources of a single computer, or may be realized by combining hardware resources distributed across multiple computers. . In particular, in this embodiment, part or all of the functional blocks of the radio access network control device 1 may be realized by a processor provided in the SMO and/or Non-RT RIC, or may be realized by a processor provided in the SMO and/or Non-RT RIC. It may also be implemented in a distributed or centralized manner using external computers and processors.
  • hardware resources such as the computer's central processing unit (central processing unit), memory, input devices, output devices, and peripheral devices connected to the computer, and the software that is executed using them.
  • the virtualization infrastructure information acquisition unit 11 acquires virtualization infrastructure information from O-Cloud as a virtualization infrastructure.
  • the virtualization infrastructure information acquisition unit 11 is provided in the SMO including Non-RT RIC, and acquires virtualization infrastructure information from O-Cloud through the O2 interface.
  • the virtualization infrastructure information includes at least one of the configuration of O-Cloud and information regarding telemetry.
  • the virtualization infrastructure information acquisition unit 11 in FIG. 4 is schematically shown so as to straddle the inside and outside of the Non-RT framework on the main bus MB.
  • the virtualization infrastructure information acquisition unit 11 may be provided in whole or in part within the SMO framework outside the Non-RT framework.
  • the virtualization infrastructure information acquisition unit 11 only needs to be able to access related functional blocks within the SMO, specifically, the O2 termination, O2 related functions, the virtualization infrastructure information provision unit 12, etc., and does not necessarily have to access the main bus MB directly. It does not have to be connected directly.
  • the most relevant O2-related functions within the SMO framework realize some or all of the functions of the virtualization infrastructure information acquisition unit 11. is preferred.
  • the virtualization infrastructure information providing unit 12 provides the virtualization infrastructure information acquired by the virtualization infrastructure information acquisition unit 11 to the rApp through the R1 interface in the Non-RT RIC.
  • the virtualization infrastructure information providing unit 12 in FIG. 4 is schematically shown on the main bus MB within the Non-RT framework.
  • the virtualization infrastructure information providing unit 12 may be provided entirely or partially within the Non-RT framework.
  • the virtualization infrastructure information providing unit 12 only needs to be able to access related functional blocks within the SMO, specifically, the virtualization infrastructure information acquisition unit 11, the R1 terminal, the R1 service disclosure function, etc., and does not necessarily need to access the main bus MB. It does not have to be directly connected.
  • the virtualization infrastructure information acquisition unit 11 in the SMO framework receives virtualization infrastructure information from O-Cloud through the O2 interface, O2 termination, O2 related functions, main bus MB, etc. get.
  • the virtualization infrastructure information providing unit 12 in the Non-RT framework provides the virtualization infrastructure information acquired by the virtualization infrastructure information acquisition unit 11 to the rApp through the main bus MB, R1 service disclosure function, R1 terminal, R1 interface, etc. provide.
  • virtualization infrastructure information from O-Cloud can be provided to the rApp through the R1 interface in the Non-RT RIC.
  • the virtualization infrastructure information acquisition unit 11 which is realized by O2-related functions within the SMO framework (outside the Non-RT framework), uses O- Obtain virtualization infrastructure information from the IMS by querying the Cloud IMS.
  • O2ims queries Query O2ims
  • the virtualization infrastructure information acquisition unit 11 can acquire virtualization infrastructure information regarding O-Cloud configuration and telemetry from IMS, and the virtualization infrastructure information provision unit 12 and can be provided to the rApp via the R1 interface.
  • the virtualization infrastructure information acquisition unit 11 receives information regarding O-Cloud's infrastructure resource inventory and management services through the O2 interface (O2ims). It can be obtained from O-Cloud's IMS. This virtualization infrastructure information relates to the configuration of O-Cloud.
  • the virtualization infrastructure information acquisition unit 11 can acquire information regarding telemetry reports from the O-Cloud IMS through the O2 interface (O2ims).
  • This virtualization infrastructure information relates to O-Cloud telemetry.
  • the virtualization infrastructure information acquisition unit 11 can acquire information regarding O-Cloud provisioning services from O-Cloud IMS through the O2 interface (O2ims).
  • This virtualization infrastructure information relates to the configuration of O-Cloud.
  • the virtualization infrastructure information acquisition unit 11 receives information regarding procedural support for automating O-Cloud lifecycle events through the O2 interface (O2ims). Can be obtained from IMS. This virtualization infrastructure information relates to the configuration of O-Cloud.
  • the virtualization infrastructure information acquisition unit 11 which is realized by O2-related functions within the SMO framework (outside the Non-RT framework), uses O- Obtain virtualization infrastructure information from the DMS by querying the Cloud DMS.
  • O2dms queries Query O2dms specifically illustrated below, the virtualization infrastructure information acquisition unit 11 can acquire virtualization infrastructure information related to O-Cloud configuration and telemetry from one or more DMS, and It can be provided to the rApp via the information providing unit 12 and the R1 interface.
  • the virtualization infrastructure information acquisition unit 11 can acquire information regarding inventory details of various NF Deployments from the O-Cloud DMS through the O2 interface (O2dms). This virtualization infrastructure information relates to the configuration of O-Cloud.
  • the virtualization infrastructure information acquisition unit 11 can acquire information regarding the telemetry report of each NF Deployment from the O-Cloud DMS through the O2 interface (O2dms). This virtualization infrastructure information relates to O-Cloud telemetry.
  • the virtualization infrastructure information acquisition unit 11 receives information related to procedural support for automating life cycle events of NF Deployment from O-Cloud's DMS through the O2 interface (O2dms). It can be obtained from This virtualization infrastructure information relates to the configuration of O-Cloud.
  • each device and each method described in the embodiments can be realized by hardware resources or software resources, or by cooperation of hardware resources and software resources.
  • hardware resources for example, a processor, ROM, RAM, and various integrated circuits can be used.
  • software resources for example, programs such as operating systems and applications can be used.
  • the present disclosure may be expressed as the following items.
  • Item 1 acquiring virtualization infrastructure information from a virtualization infrastructure that virtually manages a set of a plurality of radio access network nodes by a virtualization infrastructure information acquisition unit; providing the virtualization infrastructure information to the rApp by the virtualization infrastructure information provision unit through the R1 interface in the Non-RT RIC (Non-Real Time RAN Intelligent Controller) of O-RAN; A radio access network controller comprising at least one processor executing.
  • Item 2 The virtualization infrastructure information acquisition unit is provided in an SMO (Service Management and Orchestration) including the Non-RT RIC, and acquires the virtualization infrastructure information from the virtualization infrastructure through an O2 interface. Access network control equipment.
  • SMO Service Management and Orchestration
  • Item 3 The radio access network control device according to item 1 or 2, wherein the virtualization infrastructure information includes at least one of the configuration of the virtualization infrastructure and information regarding telemetry.
  • Item 4 The radio access network control device according to any one of items 1 to 3, wherein the virtualization infrastructure is O-Cloud of O-RAN.
  • Item 5 The radio access network control device according to item 4, wherein the virtualization infrastructure information acquisition unit acquires the virtualization infrastructure information from the IMS (Infrastructure Management Services) of the O-Cloud through an inquiry to the IMS.
  • Item 6 The radio access network control device according to item 4 or 5, wherein the virtualization infrastructure information acquisition unit acquires the virtualization infrastructure information from the DMS (Deployment Management Services) of the O-Cloud through an inquiry to the DMS.
  • Item 7 obtaining virtualization infrastructure information from a virtualization infrastructure that virtually manages a collection of multiple radio access network nodes; Providing the virtualization infrastructure information to the rApp through the R1 interface in the O-RAN Non-RT RIC (Non-Real Time RAN Intelligent Controller); A wireless access network control method comprising: Item 8: obtaining virtualization infrastructure information from a virtualization infrastructure that virtually manages a collection of multiple radio access network nodes; Providing the virtualization infrastructure information to the rApp through the R1 interface in the O-RAN Non-RT RIC (Non-Real Time RAN Intelligent Controller); A storage medium that stores a radio access network control program that causes a computer to execute.
  • This disclosure relates to providing virtualization infrastructure information through the R1 interface.
  • Radio access network control device 11.
  • Virtualization infrastructure information acquisition unit 11.
  • Virtualization infrastructure information provision unit 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線アクセスネットワーク制御装置1は、仮想化基盤情報取得部11によって、複数の無線アクセスネットワークノードの集合を仮想的に管理するO-Cloudから仮想化基盤情報を取得することと、仮想化基盤情報提供部12によって、O-RANのNon-RT RIC(Non-Real Time RAN Intelligent Controller)におけるR1インターフェースを通じて、仮想化基盤情報をrAppに提供することと、を実行する少なくとも一つのプロセッサを備える。仮想化基盤情報取得部11は、Non-RT RICを含むSMO(Service Management and Orchestration)に設けられ、O2インターフェースを通じてO-Cloudから仮想化基盤情報を取得する。仮想化基盤情報は、O-Cloudの構成およびテレメトリに関する情報の少なくともいずれかを含む(図4)。

Description

R1インターフェースを通じた仮想化基盤情報の提供
 本開示は、R1インターフェースを通じた仮想化基盤情報の提供に関する。
 移動通信システムまたはモバイル通信システムにおける無線アクセスネットワーク(RAN: Radio Access Network)のいわゆるオープン化を目的として、「Open RAN」、「O-RAN」、「vRAN」等の検討が進められている。本明細書では、このような様々な「オープンな無線アクセスネットワーク」を包括的に表す用語として「O-RAN」を用いる。従って、本明細書における「O-RAN」は、O-RAN Allianceが策定する同名の規格や仕様に限定的に解釈されるものではない。O-RANでは、複数の無線アクセスネットワークノード(RANノード)の集合を仮想的に管理するO-Cloudとも呼ばれる仮想化基盤(以下では便宜的にO-Cloudともいう)が提供される。
特開2021-83058号公報
 O-RANの制御部は、rAppと呼ばれるアプリケーションソフトウェアを実行する制御周期が比較的長い(例えば1秒以上の)Non-RT RIC(Non-Real Time RAN Intelligent Controller)と、xAppと呼ばれるアプリケーションソフトウェアを実行する制御周期が比較的短い(例えば1秒未満の)Near-RT RIC((Near-Real Time RAN Intelligent Controller)を備える。このうち、Non-RT RICはO-RANの全体制御を担うにも関わらず、従来のO-RANでは仮想化基盤(O-Cloud)からの情報をNon-RT RICのrAppに提供する仕組みが十分に定義されていなかった。
 本開示はこうした状況に鑑みてなされたものであり、仮想化基盤からの情報をNon-RT RICのrAppに提供できる無線アクセスネットワーク制御装置等を提供することを目的とする。
 上記課題を解決するために、本開示のある態様の無線アクセスネットワーク制御装置は、仮想化基盤情報取得部によって、複数の無線アクセスネットワークノードの集合を仮想的に管理する仮想化基盤から仮想化基盤情報を取得することと、仮想化基盤情報提供部によって、O-RANのNon-RT RIC(Non-Real Time RAN Intelligent Controller)におけるR1インターフェースを通じて、仮想化基盤情報をrAppに提供することと、を実行する少なくとも一つのプロセッサを備える。
 この態様によれば、Non-RT RICにおけるR1インターフェースを通じて、仮想化基盤からの仮想化基盤情報をrAppに提供できる。
 本開示の別の態様は、無線アクセスネットワーク制御方法である。この方法は、複数の無線アクセスネットワークノードの集合を仮想的に管理する仮想化基盤から仮想化基盤情報を取得することと、O-RANのNon-RT RIC(Non-Real Time RAN Intelligent Controller)におけるR1インターフェースを通じて、仮想化基盤情報をrAppに提供することと、を備える。
 本開示の更に別の態様は、記憶媒体である。この記憶媒体は、複数の無線アクセスネットワークノードの集合を仮想的に管理する仮想化基盤から仮想化基盤情報を取得することと、O-RANのNon-RT RIC(Non-Real Time RAN Intelligent Controller)におけるR1インターフェースを通じて、仮想化基盤情報をrAppに提供することと、をコンピュータに実行させる無線アクセスネットワーク制御プログラムを記憶している。
 なお、以上の構成要素の任意の組合せや、これらの表現を方法、装置、システム、記録媒体、コンピュータプログラム等に変換したものも、本開示に包含される。
 本開示によれば、仮想化基盤からの情報をNon-RT RICのrAppに提供できる。
無線アクセスネットワーク制御装置の概要を模式的に示す。 SMOおよび/またはNon-RT RICとO-Cloudで実現される各種の機能を模式的に示す。 SMOおよび/またはNon-RT RICの内部の構成および/または機能を模式的に示す。 無線アクセスネットワーク制御装置を模式的に示す機能ブロック図である。
 以下では、O-RAN Allianceが策定する規格や仕様である「O-RAN」に沿って本実施形態を説明する。このため、本実施形態では「O-RAN」で規定された公知の用語を便宜的に用いるが、本開示に係る技術は「Open RAN」や「vRAN」等の他の既存の無線アクセスネットワークや、将来に開発されうる同種の無線アクセスネットワークにも適用できる。
 図1は、本実施形態に係る無線アクセスネットワーク制御装置の概要を模式的に示す。この無線アクセスネットワーク制御装置は、O-RANに準拠した無線アクセスネットワークを制御するRAN制御装置である。SMO(Service Management and Orchestration)は、RAN制御装置全体またはO-RAN全体を制御して各部を協調動作させる。SMOは、全体制御を担う全体制御プロセッサとして機能するNon-RT RIC(Non-Real Time RAN Intelligent Controller)を備える。制御周期が比較的長い(例えば1秒以上の)Non-RT RICは、各RANノード(後述するO-CUおよび/またはO-DU)の稼働に関する指針、ポリシー、ガイダンス等を発行する。具体的には、Non-RT RICは、rAppと呼ばれるアプリケーションソフトウェアを実行して、A1インターフェースを通じてNear-RT RIC(Near-Real Time RAN Intelligent Controller)に対する各RANノードの稼働指針を発行する。制御周期が比較的短い(例えば1秒未満の)Near-RT RICは、xAppと呼ばれるアプリケーションソフトウェアを実行して、E2インターフェースを通じて各RANノード(O-CU/O-DU)自体や当該各RANノードに接続されている無線ユニット(O-RU)における汎用ハードウェア等を制御する。
 図示のRANノードは、O-RANに準拠した集約ユニット(CU: Central Unit)であるO-CU、および/または、O-RANに準拠した分散ユニット(DU: Distributed Unit)であるO-DUを備える。O-CUおよびO-DUは、いずれもO-RANにおけるベースバンド処理を担うが、O-CUは不図示のコアネットワーク側に設けられ、O-DUはO-RANに準拠した無線ユニット(RU: Radio Unit)であるO-RU側に設けられる。O-CUは、制御プレーン(CP: Control Plane)を構成するO-CU-CPと、ユーザプレーン(UP: User Plane)を構成するO-CU-UPに分かれていてもよい。なお、O-CUおよびO-DUは、一つのベースバンド処理ユニットとして一体的に構成されてもよい。また、RANノードとして、O-RANおよび第4世代移動通信システム(4G)に準拠する基地局としてのO-eNBが設けられてもよい。各RANノード(O-CU/O-DU)には一または複数のO-RUが接続されており、当該各RANノードを介してNear-RT RICによって制御される。各O-RUが提供する通信セル内の通信機(UE: User Equipment)は当該各O-RUに接続可能であり、各RANノード(O-CU/O-DU)を介して不図示のコアネットワークとモバイル通信を行える。
 各RANノード(O-CU/O-DU)およびNear-RT RICは、O1インターフェースを通じて各RANノード、各O-RU、各UEの稼働データ等を、いわゆるFCAPS(Fault, Configuration, Accounting, Performance, Security)のためにSMOに提供する。SMOは、O1インターフェースを通じて取得した稼働データに基づいて、Non-RT RICがA1インターフェースを通じてNear-RT RICに対して発行する各RANノードの稼働指針を必要に応じて更新する。なお、O1インターフェースや他のインターフェース(Open Fronthaul M-Plane等)によって、O-RUがSMOとFCAPSのために接続されていてもよい。
 複数のRANノード(O-CU/O-DU)の集合を仮想的に管理する仮想化基盤としてのO-Cloudは、O2インターフェースによってSMOと接続されている。SMOは、O2インターフェースを通じてO-Cloudから取得した複数のRANノード(O-CU/O-DU)の稼働状況に基づいて、当該複数のRANノードのリソース配分に関するリソース配分指針や負荷管理(workload management)に関する負荷管理指針を生成し、O2インターフェースを通じてO-Cloudに対して発行する。
 図2は、SMOおよび/またはNon-RT RICとO-Cloudで実現される各種の機能を模式的に示す。SMOでは、FOCOM(Federated O-Cloud Orchestration and Management)、NFO(Network Function Orchestrator)、OAM Functionの主に三つの機能が実現される。O-Cloudでは、IMS(Infrastructure Management Services)、DMS(Deployment Management Services)の主に二つの機能が実現される。
 FOCOMは、O2インターフェース(O2ims)を通じてO-CloudのIMSからサービスの提供を受けながら、O-Cloudにおけるリソースを管理する。NFOは、O2インターフェース(O2dms)を通じてO-CloudのDMSからサービスの提供を受けながら、ネットワーク機能(NF: Network Function)の集合の協調動作をO-Cloudにおける複数のNF Deploymentによって実現する。NFOは、展開済のNFにO1インターフェースを通じてアクセスするためにOAM Functionを利用してもよい。OAM Functionは、RANノード等のO-RAN管理エンティティ(O-RAN managed entity)のFCAPS管理を担う。本実施形態におけるOAM Functionは、O2imsおよび/またはO2dmsの手続または手順をモニタすることで、O-Cloudが仮想的に管理する複数のRANノードの障害や稼働状況に関するデータを受け取るためのコールバックが提供される機能ブロックとなりうる。IMSは、O-Cloudのリソース(ハードウェア)や、それらを管理するために使用されるソフトウェアの管理を担い、主にSMOのFOCOMに対してサービスを提供する。一または複数のDMSは、O-Cloudにおける複数のNF Deploymentの管理、具体的には開始、監視、終了等を担い、主にSMOのNFOに対してサービスを提供する。
 図3は、SMOおよび/またはNon-RT RICの内部の構成および/または機能を模式的に示す。SMOまたはSMOフレームワーク(SMO Framework)は、Non-RT RICを含む。Non-RT RICの内部は、Non-RTフレームワーク(Non-RT Framework)またはNon-RT RICフレームワーク(Non-RT RIC Framework)とrAppに分かれている。本図における実線は、O-RANで定義された機能ブロックや結線を表す。また、本図における破線は、本実施形態で実装可能な機能ブロックや結線を表す。
 SMOフレームワークのうちNon-RT RICを除く領域には、O1終端(O1 Termination)と、O1関連機能(O1 Related Functions)と、O2終端(O2 Termination)と、O2関連機能(O2 Related Functions)と、他SMOフレームワーク機能(Other SMO Framework Functions)が設けられる。O1終端は、SMOフレームワークにおけるO1インターフェースの終端である。図1にも示されるように、O1終端にはO1インターフェースを介して、Near-RT RICおよび/またはE2ノード(O-CU/O-DU等のRANノードやO-RU等)が接続される。O1終端と直接的に接続されるO1関連機能は、O1インターフェース、Near-RT RIC、E2ノード等に関連する各種の機能を提供する。O2終端は、SMOフレームワークにおけるO2インターフェースの終端である。図1にも示されるように、O2終端にはO2インターフェースを介してO-Cloudが接続される。O2終端と直接的に接続されるO2関連機能は、O2インターフェース、O-Cloud等に関連する各種の機能を提供する。他SMOフレームワーク機能は、O1関連機能およびO2関連機能以外の他の機能を提供する。他SMOフレームワーク機能は、Non-RT RICにおける後述するA2終端とA2インターフェースを介して接続される。O1関連機能、O2関連機能、他SMOフレームワーク機能等のSMOフレームワークの各種の機能は、Non-RT RICの内部にも延びるメインバスMBに接続される。これらの各機能ブロックは、メインバスMBを通じてSMOフレームワーク内外(あるいはNon-RT RIC内外)の他の機能ブロックとデータを交換できる。
 Non-RT RICのうちrAppを除く領域であるNon-RTフレームワーク(Non-RT Framework)には、A1終端(A1 Termination)と、A1関連機能(A1 Related Functions)と、A2終端(A2 Termination)と、A2関連機能(A2 Related Functions)と、R1終端(R1 Termination)と、R1サービス開示機能(R1 Service Exposure Functions)と、外部終端(External Terminations)と、データ管理/開示機能(Data Management & Exposure Functions)と、人工知能/機械学習ワークフロー機能(AI/ML Workflow Functions)と、他Non-RT RICフレームワーク機能(Other Non-RT RIC Framework Functions)が設けられる。
 A1終端は、Non-RTフレームワークにおけるA1インターフェースの終端である。図1にも示されるように、A1終端にはA1インターフェースを介してNear-RT RICが接続される。A1終端と直接的に接続されるA1関連機能は、A1インターフェース、Near-RT RIC等に関連する各種の機能を提供する。A2終端は、Non-RTフレームワークにおけるA2インターフェースの終端である。A2終端にはA2インターフェースを介してSMOフレームワークの他SMOフレームワーク機能が接続される。A2終端と直接的に接続されるA2関連機能は、A2インターフェース、他SMOフレームワーク機能等に関連する各種の機能を提供する。
 R1終端は、Non-RTフレームワークにおけるR1インターフェースの終端である。R1終端にはR1インターフェースを介してNon-RT RIC上で実行されるrAppが接続される。つまりR1インターフェースは、rAppのAPI(Application Programming Interface)を構成する。R1終端に付随して設けられるR1サービス開示機能は、R1インターフェース、rApp等のサービスに関連するデータをメインバスMB等に開示する機能、および/または、メインバスMB等からのデータをR1インターフェース、rApp等のサービスのためにR1終端等に開示する機能を提供する。外部終端は、Non-RTフレームワークにおける不図示の各種の外部インターフェースの終端である。
 データ管理/開示機能は、メインバスMB上の各種のデータを管理し、各機能ブロックのアクセス権限に応じた態様で開示する機能を提供する。人工知能/機械学習ワークフロー機能は、Non-RT RICおよび/またはNear RT RICに実装されている人工知能(AI: Artificial Intelligence)および/または機械学習(ML: Machine Learning)能力を利用して実行されるワークフローを管理する機能を提供する。他Non-RT RICフレームワーク機能は、以上の各種のNon-RTフレームワークの機能以外の他の機能を提供する。A1関連機能、A2関連機能、R1終端、R1サービス開示機能、外部終端、データ管理/開示機能、人工知能/機械学習ワークフロー機能、他Non-RT RICフレームワーク機能等のNon-RTフレームワークの各種の機能は、Non-RT RICの外部にも延びるメインバスMBに接続される。これらの各機能ブロックは、メインバスMBを通じてNon-RT RIC内外の他の機能ブロックとデータを交換できる。
 図4は、本実施形態に係る無線アクセスネットワーク制御装置1を模式的に示す機能ブロック図である。無線アクセスネットワーク制御装置1は、図3におけるSMOフレームワークおよび/またはNon-RTフレームワークに設けられる。なお、本図では図3におけるいくつかの機能ブロック(具体的には、外部終端、データ管理/開示機能、人工知能/機械学習ワークフロー機能、他Non-RT RICフレームワーク機能)の図示を省略した。
 無線アクセスネットワーク制御装置1は、仮想化基盤情報取得部11と、仮想化基盤情報提供部12を備える。これらの機能ブロックは、コンピュータの中央演算処理装置等のプロセッサ、メモリ、入力装置、出力装置、コンピュータに接続される周辺機器等のハードウェア資源と、それらを用いて実行されるソフトウェアの協働により実現される。コンピュータの種類や設置場所は問わず、上記の各機能ブロックは、単一のコンピュータのハードウェア資源で実現してもよいし、複数のコンピュータに分散したハードウェア資源を組み合わせて実現してもよい。特に本実施形態では、無線アクセスネットワーク制御装置1の機能ブロックの一部または全部を、SMOおよび/またはNon-RT RICに設けられるプロセッサで実現してもよいし、SMOおよび/またはNon-RT RIC外に設けられるコンピュータやプロセッサで分散的または集中的に実現してもよい。
 仮想化基盤情報取得部11は、仮想化基盤としてのO-Cloudから仮想化基盤情報を取得する。具体的には、仮想化基盤情報取得部11は、Non-RT RICを含むSMOに設けられ、O2インターフェースを通じてO-Cloudから仮想化基盤情報を取得する。具体例については後述するが、仮想化基盤情報は、O-Cloudの構成およびテレメトリに関する情報の少なくともいずれかを含む。図4における仮想化基盤情報取得部11は、メインバスMB上においてNon-RTフレームワーク内外に跨がるように模式的に示されている。しかし、仮想化基盤情報取得部11は、全体または一部がNon-RTフレームワーク外のSMOフレームワーク内に設けられればよい。また、仮想化基盤情報取得部11は、SMO内の関連する機能ブロック、具体的には、O2終端、O2関連機能、仮想化基盤情報提供部12等にアクセスできればよく、必ずしもメインバスMBに直接的に接続されなくてもよい。これらの関連する機能ブロックのうち、最も関連性が高いSMOフレームワーク内(Non-RTフレームワーク外)のO2関連機能において、仮想化基盤情報取得部11の一部または全部の機能を実現するのが好ましい。
 仮想化基盤情報提供部12は、Non-RT RICにおけるR1インターフェースを通じて、仮想化基盤情報取得部11が取得した仮想化基盤情報をrAppに提供する。図4における仮想化基盤情報提供部12は、Non-RTフレームワーク内のメインバスMB上に模式的に示されている。しかし、仮想化基盤情報提供部12は、全体または一部がNon-RTフレームワーク内に設けられればよい。また、仮想化基盤情報提供部12は、SMO内の関連する機能ブロック、具体的には、仮想化基盤情報取得部11、R1終端、R1サービス開示機能等にアクセスできればよく、必ずしもメインバスMBに直接的に接続されなくてもよい。これらの関連する機能ブロックのうち、最も関連性が高いNon-RTフレームワーク内のR1サービス開示機能において、仮想化基盤情報提供部12の一部または全部の機能を実現するのが好ましい。
 図4における矢印によって模式的に示されるように、SMOフレームワーク内の仮想化基盤情報取得部11は、O2インターフェース、O2終端、O2関連機能、メインバスMB等を通じてO-Cloudから仮想化基盤情報を取得する。Non-RTフレームワーク内の仮想化基盤情報提供部12は、メインバスMB、R1サービス開示機能、R1終端、R1インターフェース等を通じて、仮想化基盤情報取得部11が取得した仮想化基盤情報をrAppに提供する。このような本実施形態によれば、Non-RT RICにおけるR1インターフェースを通じて、O-Cloudからの仮想化基盤情報をrAppに提供できる。
 続いて、仮想化基盤情報取得部11がO2インターフェースを通じてO-Cloudから取得できる仮想化基盤情報の具体例を示す。
 第1の具体例では、SMOフレームワーク内(Non-RTフレームワーク外)のO2関連機能で実現される仮想化基盤情報取得部11が、O2インターフェース(図2における「O2ims」)を通じたO-CloudのIMSに対する問合せ(Query)によって当該IMSから仮想化基盤情報を取得する。以下に具体的に例示する各種のO2ims問合せ(Query O2ims)によって、仮想化基盤情報取得部11はO-Cloudの構成やテレメトリに関する仮想化基盤情報をIMSから取得でき、仮想化基盤情報提供部12およびR1インターフェースを介してrAppに提供できる。
 第1のO2ims問合せ「Query O2ims_Infrastructure Inventory related Services」によれば、O-Cloudのインフラストラクチャリソースインベントリ(infrastructure resource inventory)および管理サービスに関する情報を、仮想化基盤情報取得部11がO2インターフェース(O2ims)を通じてO-CloudのIMSから取得できる。この仮想化基盤情報はO-Cloudの構成に関する。
 第2のO2ims問合せ「Query O2ims_InfrastructureMonitoring related Services」によれば、テレメトリ報告に関する情報を、仮想化基盤情報取得部11がO2インターフェース(O2ims)を通じてO-CloudのIMSから取得できる。この仮想化基盤情報はO-Cloudのテレメトリに関する。
 第3のO2ims問合せ「Query O2ims_InfrastructureProvisioning Services」によれば、O-Cloudのプロビジョニングサービスに関する情報を、仮想化基盤情報取得部11がO2インターフェース(O2ims)を通じてO-CloudのIMSから取得できる。この仮想化基盤情報はO-Cloudの構成に関する。
 第4のO2ims問合せ「Query O2ims_InfrastructureLifecycleManagement Services」によれば、O-Cloudのライフサイクルイベントの自動化のための手続サポートに関する情報を、仮想化基盤情報取得部11がO2インターフェース(O2ims)を通じてO-CloudのIMSから取得できる。この仮想化基盤情報はO-Cloudの構成に関する。
 第2の具体例では、SMOフレームワーク内(Non-RTフレームワーク外)のO2関連機能で実現される仮想化基盤情報取得部11が、O2インターフェース(図2における「O2dms」)を通じたO-CloudのDMSに対する問合せ(Query)によって当該DMSから仮想化基盤情報を取得する。以下に具体的に例示する各種のO2dms問合せ(Query O2dms)によって、仮想化基盤情報取得部11はO-Cloudの構成やテレメトリに関する仮想化基盤情報を一または複数のDMSから取得でき、仮想化基盤情報提供部12およびR1インターフェースを介してrAppに提供できる。
 第1のO2dms問合せ「Query O2dms_Deployment Inventory related Services」によれば、各種のNF Deploymentのインベントリ詳細に関する情報を、仮想化基盤情報取得部11がO2インターフェース(O2dms)を通じてO-CloudのDMSから取得できる。この仮想化基盤情報はO-Cloudの構成に関する。
 第2のO2dms問合せ「Query O2dms_Deployment Monitoring related Services」によれば、各NF Deploymentのテレメトリ報告に関する情報を、仮想化基盤情報取得部11がO2インターフェース(O2dms)を通じてO-CloudのDMSから取得できる。この仮想化基盤情報はO-Cloudのテレメトリに関する。
 第3のO2dms問合せ「Query O2dms_InfrastructureLifecycleManagement Services」によれば、NF Deploymentのライフサイクルイベントの自動化のための手続サポートに関する情報を、仮想化基盤情報取得部11がO2インターフェース(O2dms)を通じてO-CloudのDMSから取得できる。この仮想化基盤情報はO-Cloudの構成に関する。
 以上、本開示を実施形態に基づいて説明した。例示としての実施形態における各構成要素や各処理の組合せには様々な変形例が可能であり、そのような変形例が本開示の範囲に含まれることは当業者にとって自明である。
 なお、実施形態で説明した各装置や各方法の構成、作用、機能は、ハードウェア資源またはソフトウェア資源によって、あるいは、ハードウェア資源とソフトウェア資源の協働によって実現できる。ハードウェア資源としては、例えば、プロセッサ、ROM、RAM、各種の集積回路を利用できる。ソフトウェア資源としては、例えば、オペレーティングシステム、アプリケーション等のプログラムを利用できる。
 本開示は以下の項目のように表現してもよい。
 項目1:
 仮想化基盤情報取得部によって、複数の無線アクセスネットワークノードの集合を仮想的に管理する仮想化基盤から仮想化基盤情報を取得することと、
 仮想化基盤情報提供部によって、O-RANのNon-RT RIC(Non-Real Time RAN Intelligent Controller)におけるR1インターフェースを通じて、前記仮想化基盤情報をrAppに提供することと、
 を実行する少なくとも一つのプロセッサを備える無線アクセスネットワーク制御装置。
 項目2:
 前記仮想化基盤情報取得部は、前記Non-RT RICを含むSMO(Service Management and Orchestration)に設けられ、O2インターフェースを通じて前記仮想化基盤から前記仮想化基盤情報を取得する、項目1に記載の無線アクセスネットワーク制御装置。
 項目3:
 前記仮想化基盤情報は、前記仮想化基盤の構成およびテレメトリに関する情報の少なくともいずれかを含む、項目1または2に記載の無線アクセスネットワーク制御装置。
 項目4:
 前記仮想化基盤はO-RANのO-Cloudである、項目1から3のいずれかに記載の無線アクセスネットワーク制御装置。
 項目5:
 前記仮想化基盤情報取得部は、前記O-CloudのIMS(Infrastructure Management Services)に対する問合せを通じて当該IMSから前記仮想化基盤情報を取得する、項目4に記載の無線アクセスネットワーク制御装置。
 項目6:
 前記仮想化基盤情報取得部は、前記O-CloudのDMS(Deployment Management Services)に対する問合せを通じて当該DMSから前記仮想化基盤情報を取得する、項目4または5に記載の無線アクセスネットワーク制御装置。
 項目7:
 複数の無線アクセスネットワークノードの集合を仮想的に管理する仮想化基盤から仮想化基盤情報を取得することと、
 O-RANのNon-RT RIC(Non-Real Time RAN Intelligent Controller)におけるR1インターフェースを通じて、前記仮想化基盤情報をrAppに提供することと、
 を備える無線アクセスネットワーク制御方法。
 項目8:
 複数の無線アクセスネットワークノードの集合を仮想的に管理する仮想化基盤から仮想化基盤情報を取得することと、
 O-RANのNon-RT RIC(Non-Real Time RAN Intelligent Controller)におけるR1インターフェースを通じて、前記仮想化基盤情報をrAppに提供することと、
 をコンピュータに実行させる無線アクセスネットワーク制御プログラムを記憶している記憶媒体。
 本開示は、R1インターフェースを通じた仮想化基盤情報の提供に関する。
 1 無線アクセスネットワーク制御装置、11 仮想化基盤情報取得部、12 仮想化基盤情報提供部。

Claims (8)

  1.  仮想化基盤情報取得部によって、複数の無線アクセスネットワークノードの集合を仮想的に管理する仮想化基盤から仮想化基盤情報を取得することと、
     仮想化基盤情報提供部によって、O-RANのNon-RT RIC(Non-Real Time RAN Intelligent Controller)におけるR1インターフェースを通じて、前記仮想化基盤情報をrAppに提供することと、
     を実行する少なくとも一つのプロセッサを備える無線アクセスネットワーク制御装置。
  2.  前記仮想化基盤情報取得部は、前記Non-RT RICを含むSMO(Service Management and Orchestration)に設けられ、O2インターフェースを通じて前記仮想化基盤から前記仮想化基盤情報を取得する、請求項1に記載の無線アクセスネットワーク制御装置。
  3.  前記仮想化基盤情報は、前記仮想化基盤の構成およびテレメトリに関する情報の少なくともいずれかを含む、請求項1に記載の無線アクセスネットワーク制御装置。
  4.  前記仮想化基盤はO-RANのO-Cloudである、請求項1に記載の無線アクセスネットワーク制御装置。
  5.  前記仮想化基盤情報取得部は、前記O-CloudのIMS(Infrastructure Management Services)に対する問合せを通じて当該IMSから前記仮想化基盤情報を取得する、請求項4に記載の無線アクセスネットワーク制御装置。
  6.  前記仮想化基盤情報取得部は、前記O-CloudのDMS(Deployment Management Services)に対する問合せを通じて当該DMSから前記仮想化基盤情報を取得する、請求項4に記載の無線アクセスネットワーク制御装置。
  7.  複数の無線アクセスネットワークノードの集合を仮想的に管理する仮想化基盤から仮想化基盤情報を取得することと、
     O-RANのNon-RT RIC(Non-Real Time RAN Intelligent Controller)におけるR1インターフェースを通じて、前記仮想化基盤情報をrAppに提供することと、
     を備える無線アクセスネットワーク制御方法。
  8.  複数の無線アクセスネットワークノードの集合を仮想的に管理する仮想化基盤から仮想化基盤情報を取得することと、
     O-RANのNon-RT RIC(Non-Real Time RAN Intelligent Controller)におけるR1インターフェースを通じて、前記仮想化基盤情報をrAppに提供することと、
     をコンピュータに実行させる無線アクセスネットワーク制御プログラムを記憶している記憶媒体。
PCT/JP2022/019352 2022-04-28 2022-04-28 R1インターフェースを通じた仮想化基盤情報の提供 WO2023209972A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019352 WO2023209972A1 (ja) 2022-04-28 2022-04-28 R1インターフェースを通じた仮想化基盤情報の提供

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019352 WO2023209972A1 (ja) 2022-04-28 2022-04-28 R1インターフェースを通じた仮想化基盤情報の提供

Publications (1)

Publication Number Publication Date
WO2023209972A1 true WO2023209972A1 (ja) 2023-11-02

Family

ID=88518167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019352 WO2023209972A1 (ja) 2022-04-28 2022-04-28 R1インターフェースを通じた仮想化基盤情報の提供

Country Status (1)

Country Link
WO (1) WO2023209972A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021048831A1 (en) * 2019-09-12 2021-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Data sharing between a non-rt-ric and a nearrt-ric for radio resource management

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021048831A1 (en) * 2019-09-12 2021-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Data sharing between a non-rt-ric and a nearrt-ric for radio resource management

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
O-RAN WORKING GROUP 2: "Non-RT RIC: Functional Architecture (O-RAN.WG2.Non-RT-RIC-ARCH-TR-v01.01)", O-RAN TECHNICAL REPORT, O-RAN ALLIANCE, vol. O-RAN.WG2.Non-RT-RIC-ARCH-TR-v01.01, 30 June 2021 (2021-06-30), pages 1 - 52, XP009542573 *

Similar Documents

Publication Publication Date Title
CN112313906B (zh) 用于数据分析管理的方法和相关设备
US9838483B2 (en) Methods, systems, and computer readable media for a network function virtualization information concentrator
Lamaazi et al. Challenges of the internet of things: IPv6 and network management
US9461877B1 (en) Aggregating network resource allocation information and network resource configuration information
US20150215228A1 (en) Methods, systems, and computer readable media for a cloud-based virtualization orchestrator
EP3869855A1 (en) Information transmission method and apparatus thereof
WO2015172362A1 (zh) 一种网络功能虚拟化网络系统、数据处理方法及装置
EP3099011B1 (en) Interface management service entity, functional service entity and network element management method
US20060120384A1 (en) Method and system for information gathering and aggregation in dynamic distributed environments
JP2016511451A (ja) ネットワーク機能を開くためのシステムおよび方法、ならびに関連するネットワーク要素
Wang et al. Design of a network management system for 5g open ran
CN111309691A (zh) 基于总线架构的数据共享交换系统和交换方法
WO2022007908A1 (zh) 网元设备间业务协同的方法和网元设备
Al-Kasassbeh et al. Analysis of mobile agents in network fault management
WO2023209972A1 (ja) R1インターフェースを通じた仮想化基盤情報の提供
CN111447077B (zh) 一种网元配置方法、装置和存储介质
CN102904739A (zh) 一种实现事件转发的方法及通用信息模型cim服务器
WO2019184801A1 (zh) 网络管理方法和装置
CN109274715A (zh) 车载多通道通信系统的平台资源管理系统
WO2023139809A1 (ja) O-ranにおけるo-ruのインターネットプロトコルのバージョンの設定および/または検知
KR20240071399A (ko) O-ran에 있어서의 o-ru의 인터넷 프로토콜의 버전 설정 및/또는 검지
WO2023100385A1 (ja) 仮想化基盤および無線アクセスネットワークノードによる無線アクセスネットワーク制御
Donertasli et al. Disaggregated Near-RT RIC Control Plane with Unified 5G DB for NS, MEC and NWDAF Integration
Hassan et al. Architecture of network management tools for heterogeneous system
WO2023139806A1 (ja) O-RANのNear-RT RICのシステムおよび/またはデータの構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18289917

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940246

Country of ref document: EP

Kind code of ref document: A1