WO2023209931A1 - 複合アミン吸収液、除去装置及び除去方法 - Google Patents

複合アミン吸収液、除去装置及び除去方法 Download PDF

Info

Publication number
WO2023209931A1
WO2023209931A1 PCT/JP2022/019243 JP2022019243W WO2023209931A1 WO 2023209931 A1 WO2023209931 A1 WO 2023209931A1 JP 2022019243 W JP2022019243 W JP 2022019243W WO 2023209931 A1 WO2023209931 A1 WO 2023209931A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption liquid
component
chemical formula
diamine
cyclic compound
Prior art date
Application number
PCT/JP2022/019243
Other languages
English (en)
French (fr)
Inventor
裕士 田中
孝 上條
琢也 平田
達也 辻内
琢哉 杉浦
Original Assignee
三菱重工業株式会社
関西電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP22930134.6A priority Critical patent/EP4292692A4/en
Priority to PCT/JP2022/019243 priority patent/WO2023209931A1/ja
Priority to CN202280021302.XA priority patent/CN117062662A/zh
Priority to AU2022442104A priority patent/AU2022442104B2/en
Application filed by 三菱重工業株式会社, 関西電力株式会社 filed Critical 三菱重工業株式会社
Priority to US18/282,154 priority patent/US20240042377A1/en
Priority to MX2023010496A priority patent/MX2023010496A/es
Priority to CA3212395A priority patent/CA3212395A1/en
Priority to JP2022574834A priority patent/JP7321420B1/ja
Priority to BR112023018695A priority patent/BR112023018695A2/pt
Priority to TW112114051A priority patent/TWI835628B/zh
Priority to ARP230101037A priority patent/AR128185A1/es
Priority to CL2023002717A priority patent/CL2023002717A1/es
Publication of WO2023209931A1 publication Critical patent/WO2023209931A1/ja
Priority to CONC2024/0003906A priority patent/CO2024003906A2/es
Priority to ECSENADI202428293A priority patent/ECSP24028293A/es

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • B01D53/526Mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/28Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/30Oxygen or sulfur atoms
    • C07D233/32One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/22Oxygen atoms attached in position 2 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to other ring carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20405Monoamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/2041Diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20426Secondary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20431Tertiary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20447Cyclic amines containing a piperazine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/205Other organic compounds not covered by B01D2252/00 - B01D2252/20494
    • B01D2252/2053Other nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/50Combinations of absorbents
    • B01D2252/504Mixtures of two or more absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present disclosure relates to a composite amine absorption liquid, a removal device, and a removal method.
  • Sources of CO 2 include all fields of human activity that burn fossil fuels, and there is a growing demand for reducing CO 2 emissions.
  • a method for removing and recovering CO 2 from combustion exhaust gas by bringing boiler combustion exhaust gas into contact with an amine-based CO 2 absorption liquid is being developed for power generation equipment such as thermal power plants that use large amounts of fossil fuels. Methods of storing captured CO 2 without releasing it into the atmosphere are being actively researched.
  • the combustion exhaust gas and the CO 2 absorption liquid are brought into contact in an absorption tower, and the absorption liquid that has absorbed CO 2 is transferred to a regeneration tower.
  • the absorption liquid is heated in the absorber to release CO 2 and the absorbent is regenerated and recycled to the absorption tower for reuse.
  • CO 2 absorption liquid for example, an absorption liquid containing an amine compound has been proposed (see Patent Documents 1 to 5).
  • an object of the present disclosure is to provide a composite amine absorption liquid, a removal device, and a removal method that have good absorption performance and can efficiently release captured CO 2 and H 2 S. .
  • the composite amine absorption liquid of the present disclosure for solving the above-mentioned problems is a composite amine absorption liquid that absorbs at least one of CO 2 and H 2 S in gas, and comprises (a) a chain monoamine, and (b) ) diamine; (c) a cyclic compound of the chemical formula; R 1 : Hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or a hydroxyalkyl group R 2 : Oxygen or NR 3 R 3 : Hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or a hydroxyalkyl group (d) Contains water.
  • a removal device of the present disclosure for solving the above-mentioned problems includes an absorption tower that removes at least one of CO 2 and H 2 S by bringing an absorption liquid into contact with a gas containing at least one of CO 2 and H 2 S. and an absorption liquid regeneration tower that regenerates a solution that has absorbed at least one of CO 2 and H 2 S, and a solution that is regenerated by removing at least one of CO 2 and H 2 S in the absorption liquid regeneration tower.
  • the removal method of the present disclosure for solving the above-mentioned problems involves contacting an absorption liquid with a gas containing at least one of CO 2 and H 2 S to remove at least one of CO 2 and H 2 S in an absorption tower.
  • the solution that has absorbed at least one of CO 2 and H 2 S is regenerated in an absorption liquid regeneration tower, and the solution that has been regenerated by removing at least one of CO 2 and H 2 S in the absorption liquid regeneration tower is
  • This is a removal method in which the above-mentioned composite amine absorption liquid is reused in an absorption tower.
  • the collected CO 2 and H 2 S can be efficiently released while maintaining the absorbability of CO 2 and/or H 2 S, and energy efficiency can be improved.
  • FIG. 1 is a schematic diagram showing the configuration of a CO 2 recovery device using the absorbent of the present disclosure.
  • FIG. 2 is a diagram showing the results of the reboiler heat amount reduction rate of the example and the first comparative example shown in Table 2.
  • FIG. 3 is a diagram showing the results of the reboiler heat amount reduction rate of the example and the first comparative example shown in Table 3.
  • FIG. 4 is a diagram showing the results of the reboiler heat amount reduction rate of the example and the second comparative example shown in Table 6.
  • the composite amine absorption liquid according to the present disclosure is a composite amine absorption liquid that absorbs at least one of CO 2 and H 2 S in gas, and includes (a) a chain monoamine, (b) a diamine, and (c) the following: It contains a cyclic compound having the chemical formula shown in "Chemical Formula 2" and (d) water.
  • R 1 Hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or a hydroxyalkyl group
  • R 2 Oxygen or NR 3
  • R 3 Hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or a hydroxyalkyl group, that is, (a) a chain monoamine, (b) a diamine, and (c) a cyclic compound of the above chemical formula, is water It is a liquid dissolved in In the present disclosure, (a) a chain monoamine, (b) a diamine, and (c) a cyclic compound of the above chemical formula are dissolved in water to form an absorption liquid, so that they are entangled in a complex manner, and their synergistic effect is achieved.
  • the gas containing at least one of CO 2 and H 2 S can be released well while maintaining the absorbability of CO 2 and/or H 2 S.
  • the amount of heat required for release in the reboiler can be reduced while maintaining a high reaction rate of the absorption liquid.
  • linear monoamine is a primary linear monoamine (component a1, primary linear monoalkanolamine), a secondary linear monoamine (component a2, secondary linear monoalkanolamine) , tertiary linear monoamine (a3 component, tertiary linear monoalkanolamine).
  • a primary linear monoamine component a1, primary linear monoalkanolamine
  • a secondary linear monoamine component a2, secondary linear monoalkanolamine
  • tertiary linear monoamine a3 component, tertiary linear monoalkanolamine.
  • combinations of two-component linear amines such as a primary linear monoamine and a secondary linear monoamine
  • combinations of two-component linear amines such as a primary linear monoamine and a tertiary linear monoamine, and furthermore, It may also be a combination of three component linear amines: a monoamine, a secondary linear monoamine, and a tertiary linear monoamine.
  • the primary linear monoamine may be a primary monoamine with low steric hindrance (a1L component) or a primary monoamine with high steric hindrance (a1H component). is preferred.
  • examples of primary monoamines (a1L component) with low steric hindrance include monoethanolamine (MEA), 3-amino-1-propanol, 4-amino-1-butanol, and At least one selected from glycolamines can be mentioned. Note that these may be combined.
  • the primary monoamine (a1H component) with high steric hindrance is preferably a compound represented by the chemical formula shown in "Chemical Formula 3" below.
  • primary monoamines with high steric hindrance include, for example, 2-amino-1-propanol (2A1P), 2-amino-1-butanol (2A1B), and 2-amino-3-methyl.
  • -1-butanol AMB
  • 1-amino-2-propanol 1A2P
  • 1-amino-2-butanol 1A2B
  • the present disclosure is not limited thereto. Note that these may be combined.
  • the secondary linear monoamine (a2) it is preferable that it is a compound represented by the chemical formula shown in "Chemical formula 4" below.
  • secondary linear monoamines include, for example, N-methylaminoethanol, N-ethylaminoethanol, N-propylaminoethanol, N-butylaminoethanol, etc. Examples include at least one type of compound, but the present disclosure is not limited thereto. Note that these may be combined.
  • tertiary linear monoamine (a3) is preferably a compound represented by the chemical formula shown in "Chemical Formula 5" below.
  • tertiary linear monoamines examples include N-methyldiethanolamine, N-ethyldiethanolamine, N-butyldiethanolamine, 4-dimethylamino-1-butanol, 2 -dimethylaminoethanol, 2-diethylaminoethanol, 2-di-n-butylaminoethanol, N-ethyl-N-methylethanolamine, 3-dimethylamino-1-propanol, 2-dimethylamino-2-methyl-1- Examples include compounds selected from at least one type of propanol, but the present disclosure is not limited thereto. Note that these may be combined.
  • the diamine (b component) in (b) includes at least one diamine having the same amino group.
  • the diamines having amino groups of the same grade preferably include at least one of a primary linear polyamine, a secondary linear polyamine, and a secondary cyclic polyamine.
  • examples of the primary linear polyamine group include compounds selected from at least one of ethylenediamine (EDA) and propanediamine (PDA), but the present disclosure is not limited thereto.
  • examples of the secondary linear polyamine group include at least one selected from N,N'-dimethylethylenediamine (DMEDA), N,N'-diethylethylenediamine (DEEDA), N,N'-dimethylpropanediamine (DMPDA), etc. The present disclosure is not limited thereto. Note that these may be combined.
  • examples of the secondary cyclic polyamine include compounds selected from at least one of piperazine (PZ), 2-methylpiperazine (2MPZ), 2,5-dimethylpiperazine (DMPZ), etc., but the present disclosure is not limited to this. Note that these may be combined.
  • the diamine (component b) includes (b1) at least one type of diamine having an amino group having the same grade, and (b2) at least one type of chain diamine containing an amino group having a different grade.
  • the diamine having an amino group having the same grade as (b1) the various diamines mentioned above can be used.
  • the chain diamine (b2) containing amino groups of different grades satisfies the chemical formula shown in [Chemical formula 6] below.
  • R 4 Hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or a hydroxyalkyl group
  • R 5 Hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or a hydroxyalkyl group
  • R 6 A hydroxyalkyl group R 4 If is not hydrogen, then R 5 is also not hydrogen
  • cyclic compound (component c) various compounds satisfying the following chemical formula can be used, as described above.
  • R 1 Hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or a hydroxyalkyl group
  • R 2 Oxygen or NR 3
  • R 3 Hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or a hydroxyalkyl group
  • R 1 in the above [Chemical formula 7] is hydrogen or the same hydrocarbon group as R 14 and R 16 to R 18 , R 2 is oxygen, or R 3 is R 14 and R 16 to R 18 It is preferable to use a cyclic compound which is the same hydrocarbon group as .
  • the total concentration of the linear monoamine (a) (component a), the diamine (component b) (b), and the cyclic compound satisfying the chemical formula (c) is 20% by weight or more and 80% by weight of the entire absorption liquid. It is preferably the following, more preferably 30% by weight or more and 75% by weight or less of the entire absorption liquid, and even more preferably 40% by weight or more and 70% by weight or less of the entire absorption liquid. By setting it as this range, it can be made to function well as an absorption liquid.
  • the linear monoamine (a component) in (a) is preferably 15% to 60% by weight of the entire absorption liquid, and more preferably 20% to 55% by weight of the entire absorption liquid. It is more preferable.
  • the diamine (b component) in (b) is preferably 1% to 25% by weight of the entire absorption liquid, and more preferably 2% to 20% by weight of the entire absorption liquid. More preferred.
  • the cyclic compound satisfying the chemical formula (c) preferably accounts for more than 1% by weight and less than 30% by weight of the entire absorption liquid, and more preferably more than 1% by weight and less than 20% by weight of the entire absorption liquid. It is more preferable to do so.
  • the blending ratio of the diamine (b) (component b) and the cyclic compound (component c) satisfying the chemical formula (c) to the linear monoamine (component a) in (a) is ((b) )
  • the weight ratio of diamine + cyclic compound satisfying the chemical formula (c))/(chain monoamine of (a)) is 0.033 or more and 3.7 or less, that is, 0.033 ⁇ (b+c)/a ⁇ 3
  • the ratio is preferably 0.067 ⁇ (b+c)/a ⁇ 0.75.
  • the blending ratio of the diamine (b) and the cyclic compound satisfying the chemical formula (c) is such that the weight ratio of the diamine (b)/the cyclic compound satisfying the chemical formula (c) is 0.033 or more and 18 or less. It is preferable that That is, it is preferable to set the ratio to 0.033 ⁇ b/c ⁇ 18, and more preferably to set the ratio to 0.20 ⁇ b/c ⁇ 5.0.
  • the blending ratio (wt%) of water (component d) is such that the remainder of the total weight of the linear monoamine (a), the diamine (b), and the cyclic compound satisfying the chemical formula (c) is The weight ratio is .
  • the absorption temperature of the absorption tower in the chemical absorption method during contact with exhaust gas containing CO 2 or the like is usually preferably in the range of 30 to 80°C.
  • a corrosion inhibitor, a deterioration inhibitor, and the like may be added to the absorption liquid used in the present disclosure, as necessary.
  • the CO 2 partial pressure at the inlet of the CO 2 absorption tower during absorption to absorb CO 2 in the gas to be processed should be set to a low CO 2 partial pressure (for example, 0.003 to 0.1 MPa). Preferable from the application of the law.
  • the regeneration temperature in the regeneration tower that releases CO 2 etc. from the absorption liquid that has absorbed CO 2 etc. is 110°C or higher. This is because regeneration at a temperature below 110° C. requires a large amount of absorption liquid to be circulated within the system, which is not preferable from the viewpoint of regeneration efficiency. More preferably, regeneration is performed at 115°C or higher.
  • gases treated according to the present disclosure include, but are not limited to, coal gasification gas, synthesis gas, coke oven gas, petroleum gas, natural gas, etc., and CO 2 and H 2 Any gas may be used as long as it contains an acidic gas such as S.
  • the process that can be adopted in the method of removing CO 2 and/or H 2 S from gas according to the present disclosure is not particularly limited, but an example of a removal apparatus for removing CO 2 will be described with reference to FIG. 1.
  • FIG. 1 is a schematic diagram showing the configuration of a CO 2 recovery device according to Example 1.
  • the CO 2 recovery device 12 cools exhaust gas 14 containing CO 2 and O 2 discharged from industrial combustion equipment 13 such as a boiler or a gas turbine using cooling water 15.
  • the exhaust gas cooling device 16 is brought into contact with the cooled exhaust gas 14 containing CO 2 and a CO 2 absorption liquid (hereinafter also referred to as "absorption liquid") 17 that absorbs CO 2 to remove CO 2 from the exhaust gas 14.
  • absorption liquid CO 2 absorption liquid
  • CO 2 is released from a CO 2 absorption tower 18 having a CO 2 recovery section 18A for removing CO 2 and a CO 2 absorption solution (hereinafter also referred to as "rich solution”) 19 that has absorbed CO 2 to regenerate the CO 2 absorption solution. and an absorption liquid regeneration tower 20.
  • the regenerated CO 2 absorption liquid (hereinafter also referred to as "lean solution”) 17 from which CO 2 has been removed in the absorption liquid regeneration tower 20 is recycled as a CO 2 absorption liquid in the CO 2 absorption tower 18 . Reuse.
  • symbol 13a is a flue
  • 13b is a chimney
  • 34 is steam condensed water.
  • the CO 2 recovery device 12 may be retrofitted to recover CO 2 from an existing exhaust gas source, or may be installed simultaneously with a new exhaust gas source. Note that a damper that can be opened and closed is installed in the exhaust gas line 14, and is opened when the CO 2 recovery device 12 is in operation. Further, although the exhaust gas source is in operation, it is set to be closed when the operation of the CO 2 recovery device 12 is stopped.
  • the exhaust gas 14 containing CO 2 from the industrial combustion equipment 13 such as a boiler or gas turbine is pressurized by the exhaust gas blower 22, and then transferred to the exhaust gas cooling device. 16 , where it is cooled by cooling water 15 and sent to a CO 2 absorption tower 18 .
  • the exhaust gas 14 comes into countercurrent contact with the CO 2 absorption liquid 17, which is an amine absorption liquid according to this embodiment, and the CO 2 in the exhaust gas 14 is absorbed by the CO 2 absorption liquid 17 through a chemical reaction. be done.
  • the CO 2 removed exhaust gas is passed through the water washing unit 18B in the CO 2 absorption tower 18 to the circulating cleaning water 21 containing the CO 2 absorption liquid supplied from the nozzle and gas liquid.
  • the CO 2 absorbing liquid 17 accompanying the CO 2 removed exhaust gas is recovered, and then the exhaust gas 23 from which CO 2 has been removed is discharged to the outside of the system.
  • the rich solution 19, which is a CO 2 absorption liquid that has absorbed CO 2 is pressurized by the rich solution pump 24, and in the rich/lean solution heat exchanger 25, the CO 2 absorption liquid 17 is regenerated by the absorption liquid regeneration tower 20. It is heated by a lean solution and supplied to the absorption liquid regeneration tower 20.
  • the rich solution 19 released into the interior from the upper part of the absorption liquid regeneration tower 20 undergoes an endothermic reaction with the water vapor supplied from the bottom, and releases most of the CO 2 .
  • the CO 2 absorption liquid from which a part or most of the CO 2 has been released in the absorption liquid regeneration tower 20 is called a semi-lean solution.
  • this semi-lean solution reaches the bottom of the absorption liquid regeneration tower 20, it becomes a CO 2 absorption liquid (lean solution) 17 from which almost all CO 2 has been removed.
  • a portion of this lean solution 17 is superheated by steam 27 in a reboiler 26 and supplies steam for CO 2 desorption into the absorption liquid regeneration tower 20 .
  • Reflux water 31 separated and refluxed from the CO 2 entrained gas 28 accompanied by water vapor in the separation drum 30 is supplied to the upper part of the absorption liquid regeneration tower 20 and the wash water 21 side by the reflux water circulation pump 35, respectively.
  • the regenerated CO 2 absorption liquid (lean solution) 17 is cooled by the rich solution 19 in the rich-lean solution heat exchanger 25 , then pressurized by the lean solution pump 32 , and further pressurized in the lean solution cooler 33 . After being cooled, it is fed into the CO 2 absorption tower 18 . Note that this embodiment is only intended to provide an overview, and some of the attached devices are omitted from the description.
  • Example 1-1 monoethanolamine and 2-amino-2-methyl-1-propanol were used as the linear monoamine (a component) in (a), and piperazine was used as the diamine (b component) in (b).
  • a cyclic compound having a combination of R 1 and R 2 of chemical formula I-6 in Table 1 is used as a cyclic compound (component c) that satisfies the chemical formula (c), and is dissolved and mixed in water (component d). It was used as an absorption liquid.
  • the concentration of component c was 30 wt% relative to the total amount.
  • Example 1-2 the same amine component as in Example 1-1 was used, and the concentration of component c was 15 wt% relative to the total amount.
  • Example 1-3 the same amine component as in Example 1-1 was used, and the concentration of component c was 5 wt% relative to the total amount.
  • Example 1-18 the amine component was changed from Example 1-1, and the concentration of component c was set to 15 wt% or more and 30 wt% or less based on the total amount. Further, when the c component is a cyclic compound satisfying a plurality of chemical formulas, the concentration of the c component relative to the total amount is the total concentration of the c component.
  • Example 1-4 an absorption liquid having the same composition as in Example 1-1 was used except that the diamine (b) (component b) was changed to propanediamine.
  • Example 1-5 in contrast to Example 1-1, as a cyclic compound (c component) satisfying the chemical formula (c), a cyclic compound with the combination of R 1 and R 2 as chemical formula I-7 in Table 1 was used. An absorption liquid having the same composition was used except that two cyclic compounds were used: a chemical compound and a cyclic compound having the chemical formula I-12.
  • Example 1-6 the linear monoamine (a component) in (a) is N-ethylaminoethanol, the diamine (b component) in (b) is 2-methylpiperazine, and the chemical formula (c) is satisfied.
  • Two cyclic compounds were used as the cyclic compound (component c): a cyclic compound in which the combination of R 1 and R 2 was represented by the chemical formula I-9 in Table 1, and a cyclic compound represented by the chemical formula I-1.
  • Example 1-7 in contrast to Example 1-6, the diamine (b) (component b) is piperazine, and the cyclic compound (component c) satisfying the chemical formula (c) is R 1 and R 2 Absorption liquids having the same composition were used except that two cyclic compounds were used: a cyclic compound having the chemical formula I-3 in Table 1 and a cyclic compound having the chemical formula I-9.
  • Example 1-8 in contrast to Example 1-6, N-butylaminoethanol was used as the linear monoamine (a component) in (a), and a cyclic compound (c component) satisfying the chemical formula in (c) was used. Absorption liquids having the same composition were used, except that two cyclic compounds were used: a cyclic compound having the combination of R 1 and R 2 of chemical formula I-11 in Table 1, and a cyclic compound having chemical formula I-1.
  • Example 1-9 in contrast to Example 1-7, N-butylaminoethanol was used as the linear monoamine (a component) in (a), and a cyclic compound (c component) satisfying the chemical formula in (c) was used. Absorption liquids having the same composition were used except that two cyclic compounds were used, a cyclic compound having a combination of R 1 and R 2 of chemical formula I-5 in Table 1, and a cyclic compound having chemical formula I-11.
  • the linear monoamine (a component) in (a) is N-ethylaminoethanol and 2-amino-2-methyl-1-propanol
  • the diamine (b) in (b) is piperazine.
  • a cyclic compound (component c) that satisfies the chemical formula (c) there are two cyclic compounds: a cyclic compound whose combination of R 1 and R 2 is represented by the chemical formula I-9 in Table 1, and a cyclic compound whose chemical formula I-1 is the combination of R 1 and R 2. Two cyclic compounds were used.
  • Example 1-11 the linear monoamine (a) in (a) was N-butylaminoethanol and 2-amino-2-methyl-1-propanol, and the diamine (b) in (b) was piperazine.
  • a cyclic compound (component c) that satisfies the chemical formula (c) a cyclic compound having the combination of R 1 and R 2 as chemical formula I-11 in Table 1, and a cyclic compound having the chemical formula I-1. Two cyclic compounds were used.
  • Example 1-12 the linear monoamine (a component) in (a) was N-methyldiethanolamine and 2-amino-2-methyl-1-propanol, and the diamine (b) in (b) was piperazine.
  • the cyclic compound (component c) satisfying the chemical formula of , (c) a cyclic compound having the combination of R 1 and R 2 as shown in the chemical formula I-8 in Table 1 was used.
  • the linear monoamine (a component) in (a) is N-methyldiethanolamine and N-ethylaminoethanol
  • the diamine (b component) in (b) is piperazine
  • the chemical formula (c) is Two cyclic compounds were used as the cyclic compound (component c) satisfying the following: a cyclic compound having the combination of R 1 and R 2 as shown in Chemical Formula I-8 in Table 1, and a cyclic compound having Chemical Formula I-9.
  • the linear monoamine (a component) in (a) is N-methyldiethanolamine and N-butylaminoethanol
  • the diamine (b component) in (b) is piperazine
  • the chemical formula (c) is Two cyclic compounds were used as the cyclic compound (component c) satisfying the following: a cyclic compound having the combination of R 1 and R 2 as shown in Chemical Formula I-8 in Table 1, and a cyclic compound having Chemical Formula I-11.
  • Example 1-15 the linear monoamine (a component) in (a) was N-ethyldiethanolamine and 2-amino-2-methyl-1-propanol, and the diamine (b) in (b) was piperazine.
  • the cyclic compound (component c) satisfying the chemical formula of , (c) a cyclic compound having a combination of R 1 and R 2 as shown in the chemical formula I-9 in Table 1 was used. .
  • the linear monoamine (a component) in (a) is N-ethyldiethanolamine and N-ethylaminoethanol
  • the diamine (b component) in (b) is piperazine
  • the chemical formula (c) is Two cyclic compounds were used as the cyclic compound (component c) satisfying the following: a cyclic compound having a combination of R 1 and R 2 of chemical formula I-3 in Table 1, and a cyclic compound having chemical formula I-9.
  • the linear monoamine (a component) in (a) is N-ethyldiethanolamine and N-butylaminoethanol
  • the diamine (b component) in (b) is piperazine
  • the chemical formula (c) is Two cyclic compounds were used as the cyclic compound (component c) satisfying the following: a cyclic compound having the combination of R 1 and R 2 as the chemical formula I-9 in Table 1, and a cyclic compound having the chemical formula I-5.
  • Example 1-18 4-dimethylamino-1-butanol and 2-amino-2-methyl-1-propanol were used as linear monoamines (a component) in (a), and diamines (b component) in (b) were used as 4-dimethylamino-1-butanol and 2-amino-2-methyl-1-propanol.
  • ) was used as piperazine, and as the cyclic compound satisfying the chemical formula (c) (component c), a cyclic compound having the combination of R 1 and R 2 as shown in the chemical formula I-2 in Table 1 was used.
  • the amount of heat in the reboiler during the treatment in which the absorbent releases CO 2 was measured.
  • the test conditions were absorption conditions of 40°C and 10 kPaCO 2 and regeneration conditions of 120°C.
  • the absorption liquid that has absorbed CO2 in the absorption tower is heated in the reboiler in the regeneration tower, and the ratio of the amount of water vapor supplied to the reboiler and the water vapor when the same amount of CO2 is released from the regeneration tower from the absorption liquid under each condition.
  • the amount of heat was calculated from enthalpy.
  • the cyclic compound of the chemical formula (c) was not included, and the total concentration of the linear monoamine (a) and the diamine (b) was the same as in each example, that is, component c
  • a similar reboiler heat reduction rate was calculated by creating an absorption liquid in which water was substituted for water.
  • the comparative example is set as 100%, and the reduction rate of the reboiler heat amount of the example, that is, ((reboiler heat amount of the comparative example - reboiler heat amount of the example) / reboiler heat amount of the comparative example) x 100 [%] is calculated.
  • the results are shown in Figure 2.
  • the amount of heat required to release the target gas from the absorption liquid is lower than that of the absorption liquid that does not contain the cyclic compound of chemical formula (c).
  • the amount of heat can be reduced by 5% or more. Furthermore, there was no difference in the efficiency of CO 2 absorption of the absorption liquid between the example and the comparative example.
  • Figure 3 shows the results of calculating the reboiler heat reduction rate based on the comparison between the example and the comparative example. As shown in FIG. 3, by using the absorption liquid of this example, the amount of heat required to release the target gas from the absorption liquid is lower than that of the absorption liquid whose component (c) is a cyclic compound different from that of the present disclosure. The reboiler heat amount can be reduced by 2% to 6%.
  • Example 2 the diamine (component b) was mixed with an absorption liquid having (b1) a diamine containing amine groups of the same grade and (b2) a chain diamine having amino groups of different grades.
  • an absorption liquid having (b1) a diamine containing amine groups of the same grade
  • (b2) a chain diamine having amino groups of different grades.
  • Figure 4 shows the three-component composite amine absorption liquids in Examples 2-1 to 2-18 (linear monoamine (a component), diamine containing the same amino group (b1 component), amino group having a different grade). Results of measuring the relationship between the reboiler heat reduction rate between a chain diamine containing (b2 component), a cyclic compound represented by the chemical formula of Chemical Formula 2 (c component) dissolved in water (d component) and a comparative example.
  • Example 2-1 monoethanolamine and 2-amino-2-methyl-1-propanol were used as the linear monoamine (a component) in (a), and (b1) contained amino groups with the same grade.
  • the combination of R 4 , R 5 and R 6 is expressed by chemical formula II-1 in Table 5.
  • a cyclic compound (component c) satisfying the chemical formula (c) a cyclic compound having a combination of R 1 and R 2 as shown in the chemical formula I-6 in Table 4 was used.
  • the concentration of (component b) with respect to the total amount was 13 wt%
  • the concentration of (component c) with respect to the total amount was 20 wt%.
  • Example 2-2 the same amine component as in Example 2-1 was used, and the concentration of (b2 component) was 8 wt% relative to the total amount.
  • Example 2-3 the same amine component as in Example 2-1 was used, and the concentration of (component b) relative to the total amount was 1 wt%.
  • Example 2-4 the amine component was changed from Example 2-1, and the concentration of (component b) was 3 to 8 wt% relative to the total amount of component c). The concentration was 10 to 20 wt%.
  • Example 2-4 had the same composition as Example 2-1 except that propanediamine was used as the diamine containing the same amino group (b1 component) as in Example 2-1. It was used as an absorption liquid.
  • Example 2-5 in contrast to Example 2-1, combinations of linear diamines (b2 component) containing amino groups of different grades in (b2) with R 4 , R 5 , and R 6 are shown in Table 4.
  • a cyclic compound (component c) that satisfies the chemical formula of (c) a cyclic compound with the chemical formula I-7 in Table 4 in which the combination of R 1 and R 2 is The absorption liquids had the same composition except that a cyclic compound having chemical formula I-12 in Table 4 was used in combination.
  • Example 2-6 N-ethylaminoethanol was used as the linear monoamine (a component) in (a), and 2-methylpiperazine was used as the diamine containing the same amino group (b1 component) in (b1).
  • (b2) as a chain diamine containing amino groups of different grades (b2 component)
  • the combination of R 4 , R 5 and R 6 is given as chemical formula II-11 in Table 5
  • the chemical formula (c) is As a cyclic compound (component c) that satisfies the following, a cyclic compound having a combination of R 1 and R 2 as chemical formula I-9 in Table 4, and a cyclic compound having a combination of R 1 and R 2 as chemical formula I-1 in Table 4 The compound was used.
  • Example 2-7 N-ethylaminoethanol was used as the linear monoamine (a component) in (a), piperazine was used as the diamine containing the same amino group (b1 component) in (b1), As a chain diamine containing amino groups of different grades in (b2) (component b2), the combination of R 4 , R 5 , and R 6 is chemical formula II-3 in Table 5, and the chemical formula (c) is satisfied.
  • a cyclic compound in which the combination of R 1 and R 2 is represented by the chemical formula I-3 in Table 4
  • a cyclic compound in which the combination of R 1 and R 2 is represented by the chemical formula I-9 in Table 4 are used.
  • Example 2-8 N-butylaminoethanol was used as the linear monoamine (a component) in (a), and 2-methylpiperazine was used as the diamine containing the same amino group (b1 component) in (b1).
  • (b2) as a chain diamine containing amino groups of different grades (b2 component)
  • the combination of R 4 , R 5 and R 6 is given as chemical formula II-5 in Table 5
  • the chemical formula (c) is As a cyclic compound (component c) satisfying the following, a cyclic compound having the chemical formula I-11 in Table 4 in which the combination of R 1 and R 2 is combined, and a cyclic compound having the chemical formula I-1 in Table 4 in which the combination of R 1 and R 2 The compound was used.
  • Example 2-9 N-butylaminoethanol was used as the linear monoamine (a component) in (a), piperazine was used as the diamine containing the same amino group (b1 component) in (b1), As a chain diamine containing amino groups of different grades in (b2) (component b2), the combination of R 4 , R 5 , and R 6 is chemical formula II-1 in Table 5, and the chemical formula (c) is satisfied.
  • a cyclic compound in which the combination of R 1 and R 2 is represented by the chemical formula I-5 in Table 4
  • a cyclic compound in which the combination of R 1 and R 2 is represented by the chemical formula I-11 in Table 4 are used.
  • Example 2-10 N-ethylaminoethanol and 2-amino-2-methyl-1-propanol were used as the linear monoamine (a component) in (a), and amino groups with the same grade in (b1) were used.
  • piperazine as the diamine to be contained (component b1)
  • component b2 a chain diamine
  • the combination of R 4 , R 5 and R 6 is expressed by the chemical formula II in Table 5.
  • the combination of R 1 and R 2 is a cyclic compound with the chemical formula I-9 in Table 4, and the combination of R 1 and R 2 is shown.
  • a cyclic compound having the chemical formula I-1 of No. 4 was used.
  • Example 2-11 N-butylaminoethanol and 2-amino-2-methyl-1-propanol were used as the linear monoamine (a component) in (a), and amino groups with the same grade in (b1) were used.
  • piperazine as the diamine to be contained (component b1), and as a chain diamine (component b2) containing amino groups of different grades in (b2)
  • the combination of R 4 , R 5 and R 6 is expressed by the chemical formula II in Table 5.
  • the combination of R 1 and R 2 is a cyclic compound with the chemical formula I-11 in Table 4, and the combination of R 1 and R 2 is shown.
  • a cyclic compound having the chemical formula I-1 of No. 4 was used.
  • Example 2-12 N-methyldiethanolamine and 2-amino-2-methyl-1-propanol were used as the linear monoamine (a component) in (a), and (b1) contained amino groups with the same grade.
  • the combination of R 4 , R 5 , and R 6 is expressed by the chemical formula II- 9, and as a cyclic compound (component c) satisfying the chemical formula (c), a cyclic compound having a combination of R 1 and R 2 as shown in the chemical formula I-8 in Table 4 was used.
  • Example 2-13 N-methyldiethanolamine and N-ethylaminoethanol were used as the linear monoamine (a component) in (a), and diamines containing amino groups having the same grade in (b1) (b1 component) were used.
  • piperazine as (b2), as a linear diamine containing amino groups of different grades (b2 component)
  • the combination of R 4 , R 5 , and R 6 is shown as chemical formula II-7 in Table 5, and
  • component c As a cyclic compound (component c) that satisfies the chemical formula of A cyclic compound was used.
  • Example 2-14 N-methyldiethanolamine and N-butylaminoethanol were used as the linear monoamine (a component) in (a), and diamines containing amino groups having the same grade in (b1) (b1 component) were used.
  • piperazine as (b2), as a chain diamine containing amino groups of different grades (b2 component)
  • the combination of R 4 , R 5 and R 6 is given as chemical formula II-10 in Table 5, and
  • component c As a cyclic compound (component c) that satisfies the chemical formula of A cyclic compound was used.
  • Example 2-15 N-ethyldiethanolamine and 2-amino-2-methyl-1-propanol were used as the linear monoamine (a component) in (a), and (b1) contained amino groups with the same grade.
  • the combination of R 4 , R 5 , and R 6 is expressed by the chemical formula II- 3, and as a cyclic compound (component c) satisfying the chemical formula (c), a cyclic compound having a combination of R 1 and R 2 as shown in the chemical formula I-9 in Table 4 was used.
  • Example 2-16 N-ethyldiethanolamine and N-ethylaminoethanol were used as the linear monoamine (a component) in (a), and diamines containing amino groups having the same grade in (b1) (b1 component) were used.
  • piperazine as (b2), as a linear diamine containing amino groups of different grades (b2 component)
  • the combination of R 4 , R 5 and R 6 is shown as chemical formula II-3 in Table 4, and
  • component c As a cyclic compound (component c) that satisfies the chemical formula of A cyclic compound was used.
  • Example 2-17 N-ethyldiethanolamine and N-butylaminoethanol were used as the linear monoamine (a component) in (a), and diamines containing amino groups with the same grade in (b1) (b1 component) were used.
  • piperazine as (b2), as a chain diamine containing amino groups of different grades (b2 component)
  • the combination of R 4 , R 5 and R 6 is shown as chemical formula II-12 in Table 5, and
  • component c As a cyclic compound (component c ) that satisfies the chemical formula of A cyclic compound was used.
  • Example 2-18 4-dimethylamino-1-butanol and 2-amino-2-methyl-1-propanol were used as the linear monoamine (a component) of (a), and the grade of (b1) was A combination of R 4 , R 5 , and R 6 is shown using piperazine as the diamine containing the same amino group (component b1), and as a chain diamine (component b2) containing amino groups with different grades of (b2).
  • a cyclic compound having the combination of R 1 and R 2 as the chemical formula I-2 in Table 4 was used.
  • the weight of (b2) a chain diamine containing amino groups of different grades (b2 component) and a cyclic compound (c component) that satisfies the chemical formula of (c) was included.
  • FIG. 4 shows the results of calculating the reboiler heat amount reduction rate for each example, with the comparative example as 1.
  • the amount of heat of the reboiler can be reduced by 10% or more compared to the absorption liquid of the comparative example.
  • a composite amine absorption liquid containing (a) a chain monoamine, (b) a diamine, (c) a cyclic compound satisfying [Chemical formula 2], and (d) water was prepared.
  • CO 2 and H 2 S absorbed by the reboiler can be easily released, and the amount of heat required for release can be reduced. Thereby, the energy required for recovering CO 2 and H 2 S can be further reduced.
  • the reaction rate as an absorption liquid can also be maintained. Thereby, the performance as an absorbing liquid can be improved.
  • a composite amine absorption liquid that absorbs at least one of CO 2 and H 2 S in the gas (a) a chain monoamine; (b) a diamine; (c) a cyclic compound of the following chemical formula; R 2 : Oxygen or NR 3 R 3 : Hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or a hydroxyalkyl group
  • a composite amine absorption liquid containing water (a) a chain monoamine; (b) a diamine; (c) a cyclic compound of the following chemical formula; R 2 : Oxygen or NR 3 R 3 : Hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or a hydroxyalkyl group.
  • the diamine described in (1) or (2) includes at least one diamine containing amino groups of the same grade and at least one chain diamine containing amino groups of different grades. complex amine absorption liquid.
  • the composite amine absorption liquid according to (5), wherein the diamine containing amino groups of the same grade includes at least one of a primary chain polyamine, a secondary chain polyamine, and a secondary cyclic polyamine.
  • Chain diamine containing amino groups of different grades R 4 : Hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or a hydroxyalkyl group
  • R 5 Hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or a hydroxyalkyl group
  • R 6 A hydroxyalkyl group
  • the composite amine absorption liquid according to (5), which contains at least one compound satisfying the condition that when R is not hydrogen, R 5 is also not hydrogen.
  • the total concentration of the chain monoamine (a), the diamine (b), and the cyclic compound having the chemical formula (c) is 20% by weight or more and 80% by weight or less of the entire absorption liquid (1 ) to (7).
  • An absorption tower that removes at least one of CO 2 and H 2 S by contacting an absorption liquid with a gas containing at least one of CO 2 and H 2 S ;
  • An absorption liquid regeneration tower that regenerates the absorbed solution, and a removal device that reuses the regenerated solution in the absorption tower by removing at least one of CO 2 and H 2 S in the absorption liquid regeneration tower, , a removal device using the composite amine absorption liquid according to any one of (1) to (13).
  • the removal device according to (14) wherein the absorption tower has an absorption temperature of 30 to 80°C, and the absorption liquid regeneration tower has a regeneration temperature of 110°C or higher.
  • a gas containing at least one of CO 2 and H 2 S is brought into contact with an absorption liquid to remove at least one of CO 2 and H 2 S in an absorption tower, and at least one of CO 2 and H 2 S is removed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

反応速度が速く、かつ、捕集したCO2、H2Sを効率よく放出できることを課題とする。複合アミン吸収液は、ガス中のCO2及びH2Sの少なくとも一方を吸収する複合アミン吸収液であって、(a)鎖状モノアミンと、(b)ジアミンと、(c)下記化学式の環状化合物と、 R1:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれかR2:酸素またはN-R3R3:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか(d)水と、を含む。

Description

複合アミン吸収液、除去装置及び除去方法
 本開示は、複合アミン吸収液、除去装置及び除去方法に関する。
 近年、地球の温暖化現象の原因の一つとして、CO2による温室効果が指摘され、地球環境を守る上で国際的にもその対策が急務となってきた。CO2の発生源としては化石燃料を燃焼させるあらゆる人間の活動分野に及び、その排出抑制への要求が一層強まる傾向にある。これに伴い大量の化石燃料を使用する火力発電所などの動力発生設備を対象に、ボイラの燃焼排ガスをアミン系CO2吸収液と接触させ、燃焼排ガス中のCO2を除去・回収する方法及び回収されたCO2を大気へ放出することなく貯蔵する方法が精力的に研究されている。また、アミン系CO2吸収液を用い、燃焼排ガスからCO2を除去・回収する工程としては、吸収塔において燃焼排ガスとCO2吸収液とを接触させ、CO2を吸収した吸収液を再生塔において加熱し、CO2を放出させると共に吸収液を再生して再び吸収塔に循環して再使用するものが採用されている。
 CO2吸収液としては、例えばアミン化合物を含む吸収液が提案されている(特許文献1から特許文献5参照)。
特開2018-183729号公報 特開2020-022933号公報 特開2020-044489号公報 特表2007-527791号公報 特開2018-122278号公報 特許第6841676号公報
 特許文献1から特許文献5に記載されている吸収液を用いることで、処理対象のガスに含まれるCO2、HSの少なくとも一方を吸収液でガスから分離させることができる。ここで、吸収液は、吸収性能が良好であるほど、吸収する対象のCO2、H2Sを効率よく回収することができる。ここで、吸収液は、吸収したCO2、H2Sを放出する性能が低いと、吸収液からCO2、H2Sを放出させるためのエネルギが多く必要となり、装置としての効率の向上に限界が生じる。
 本開示は、上記問題に鑑み、吸収性能が良好であり、かつ、捕集したCO2、H2Sを効率よく放出できる複合アミン吸収液、除去装置及び除去方法を提供することを課題とする。
 上述した課題を解決するための本開示の複合アミン吸収液は、ガス中のCO2及びH2Sの少なくとも一方を吸収する複合アミン吸収液であって、(a)鎖状モノアミンと、(b)ジアミンと、(c)化学式の環状化合物と、
Figure JPOXMLDOC01-appb-C000003
:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
:酸素またはN-R
:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
 (d)水と、を含む。
 上述した課題を解決するための本開示の除去装置は、CO2及びH2Sの少なくとも一方を含有するガスと吸収液とを接触させてCO2及びH2Sの少なくとも一方を除去する吸収塔と、CO2及びH2Sの少なくとも一方を吸収した溶液を再生する吸収液再生塔とを有し、前記吸収液再生塔でCO2及びH2Sの少なくとも一方を除去して再生した溶液を前記吸収塔で再利用する除去装置であって、上記に記載の複合アミン吸収液を用いる。
 上述した課題を解決するための本開示の除去方法は、CO2及びH2Sの少なくとも一方を含有するガスと吸収液とを接触させてCO2及びH2Sの少なくとも一方を吸収塔内で除去し、CO2及びH2Sの少なくとも一方を吸収した溶液を吸収液再生塔内で再生し、前記吸収液再生塔でCO2及びH2Sの少なくとも一方を除去して再生した溶液を前記吸収塔で再利用する除去方法であって、上記に記載の複合アミン吸収液を用いる。
 本開示によれば、(a)の直鎖モノアミンと、(b)のジアミンと、(c)の化学式を満足する環状化合物とを、水に溶解して吸収液とすることによって、複合的に絡み合い、これらの相乗効果により、CO2又はH2S又はその双方の吸収性を維持しつつ、捕集したCO2、H2Sを効率よく放出でき、エネルギ効率の向上を図ることができる。
図1は、本開示の吸収液を用いるCO2回収装置の構成を示す概略図である。 図2は、表2の実施例と第1比較例とのリボイラ熱量削減率の各結果を示す図である。 図3は、表3の実施例と第1比較例とのリボイラ熱量削減率の各結果を示す図である。 図4は、表6の実施例と第2比較例とのリボイラ熱量削減率の各結果を示す図である。
 以下に添付図面を参照して、本開示の好適な実施例を詳細に説明する。なお、この実施例により本開示が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 本開示による複合アミン吸収液は、ガス中のCO2及びH2Sの少なくとも一方を吸収する複合アミン吸収液であって、(a)鎖状モノアミンと、(b)ジアミンと、(c)下記「化2」に示す化学式の環状化合物と、(d)水と、を含む。
Figure JPOXMLDOC01-appb-C000004
:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
:酸素またはN-R
:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
つまり、(a)鎖状モノアミンと、(b)ジアミンと、(c)上記化学式の環状化合物と、が、水に溶解した液体である。本開示では、(a)鎖状モノアミンと、(b)ジアミンと、(c)上記化学式の環状化合物とを、水に溶解して吸収液とすることによって、複合的に絡み合い、これらの相乗効果により、CO2及びH2Sの少なくとも一方が含まれたガスに対するCO2又はH2S又はその双方の吸収性を維持しつつ、放出性が良好となる。つまり、吸収液の反応速度を高く維持しつつ、リボイラでの放出に必要な熱量を低減することができる。
 ここで、(a)直鎖モノアミン(a成分)は、1級直鎖モノアミン(a1成分、1級鎖状モノアルカノールアミン)、2級直鎖モノアミン(a2成分、2級鎖状モノアルカノールアミン)、3級直鎖モノアミン(a3成分、3級鎖状モノアルカノールアミン)の少なくとも一つを含むものである。また、1級直鎖モノアミンと2級直鎖モノアミンとの2成分直鎖アミンの組合せ、1級直鎖モノアミンと3級直鎖モノアミンとの2成分直鎖アミンの組合せ、さらには1級直鎖モノアミン、2級直鎖モノアミン及び3級直鎖モノアミンの3成分直鎖アミンの組合せとしてもよい。
 また、1級直鎖モノアミン(a1成分、1級鎖状モノアルカノールアミン)としては、立体障害性の低い1級モノアミン(a1L成分)又は立体障害性の高い1級モノアミン(a1H成分)とするのが好ましい。ここで、1級直鎖モノアミンにおいて、立体障害性の低い1級モノアミン(a1L成分)としては、例えばモノエタノールアミン(MEA)、3-アミノ-1-プロパノール、4-アミノ-1-ブタノール、ジグリコールアミンから選ばれる少なくとも一種を挙げることができる。なお、これらを組み合わせるようにしてもよい。
 また、1級直鎖モノアミンにおいて、立体障害性の高い1級モノアミン(a1H成分)としては、下記「化3」に示す化学式で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 具体的には、立体障害性の高い1級モノアミン(a1H成分)としては、例えば2-アミノ-1-プロパノール(2A1P)、2-アミノ-1-ブタノール(2A1B)、2-アミノ-3-メチル-1-ブタノール(AMB)、1-アミノ-2-プロパノール(1A2P)、1-アミノ-2-ブタノール(1A2B)、2-アミノ-2-メチル-1-プロパノール(AMP)等の少なくとも一種から選ばれた化合物を挙げることができるが本開示はこれに限定されるものではない。なお、これらを組み合わせるようにしてもよい。
 また、2級直鎖モノアミン(a2)としては、下記「化4」に示す化学式で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 具体的には、2級直鎖モノアミン(a2、2級鎖状モノアルカノールアミン)としては、例えばN-メチルアミノエタノール、N-エチルアミノエタノール、N-プロピルアミノエタノール、N-ブチルアミノエタノール等の少なくとも一種から選ばれた化合物を挙げることができるが本開示はこれに限定されるものではない。なお、これらを組み合わせるようにしてもよい。
 また、3級直鎖モノアミン(a3)としては、下記「化5」に示す化学式で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 具体的には、3級直鎖モノアミン(a3、3級鎖状モノアルカノールアミン)としては、例えばN-メチルジエタノールアミン、N-エチルジエタノールアミン、N-ブチルジエタノールアミン、4-ジメチルアミノ-1-ブタノール、2-ジメチルアミノエタノール、2-ジエチルアミノエタノール、2-ジ-n-ブチルアミノエタノール、N-エチル-N-メチルエタノールアミン、3-ジメチルアミノ-1-プロパノール、2-ジメチルアミノ-2-メチル-1-プロパノール等の少なくとも一種から選ばれた化合物を挙げることができるが本開示はこれに限定されるものではない。なお、これらを組み合わせるようにしてもよい。
 (b)のジアミン(b成分)としては、等級が同じアミノ基を有するジアミンを少なくとも一種含む。等級が同じアミノ基を有するジアミンとしては、1級直鎖ポリアミン、2級直鎖ポリアミン、2級環状ポリアミンの少なくとも一つを含むものであることが好ましい。
 ここで、1級直鎖ポリアミン群としては、例えばエチレンジアミン(EDA)、プロパンジアミン(PDA)等の少なくとも一種から選ばれた化合物を挙げることができるが本開示はこれに限定されるものではない。2級直鎖ポリアミン群としては、例えば、N,N’-ジメチルエチレンジアミン(DMEDA)、N,N’-ジエチルエチレンジアミン(DEEDA)、N,N’-ジメチルプロパンジアミン(DMPDA)等の少なくとも一種から選ばれた化合物を挙げることができるが本開示はこれに限定されるものではない。なお、これらを組み合わせるようにしてもよい。
 また、2級環状ポリアミンとしては、例えばピペラジン(PZ)、2-メチルピペラジン(2MPZ)、2,5-ジメチルピペラジン(DMPZ)、等の少なくとも一種から選ばれた化合物を挙げることができるが本開示はこれに限定されるものではない。なお、これらを組み合わせるようにしてもよい。
 また、ジアミン(b成分)としては、(b1)等級が同じアミノ基を有するジアミンを少なくとも一種と、(b2)等級が異なるアミノ基を含有する鎖状ジアミンを少なくとも一種と、を含む。(b1)の等級が同じアミノ基を有するジアミンとしては、上述した各種ジアミンを用いることができる。
 (b2)の等級が異なるアミノ基を含有する鎖状ジアミンは、下記[化6]に示す化学式を満足する。
Figure JPOXMLDOC01-appb-C000008
:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
:ヒドロキシアルキル基
が水素ではない場合、Rも水素ではない
 また、環状化合物(c成分)としては、上述したように、下記化学式を満足する各種化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000009
:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
:酸素またはN-R
:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
 ここで、環状化合物は、上記[化7]のRが水素又はR14及びR16からR18と同じ炭化水素基であり、Rが酸素又はRがR14及びR16からR18と同じ炭化水素基である環状化合物とすることが好ましい。
 次に、各成分(a成分、b成分、c成分)の配合割合については、以下のような規定することが好ましい。(a)の直鎖モノアミン(a成分)と、(b)のジアミン(b成分)と(c)の化学式を満足する環状化合物との濃度合計は、吸収液全体の20重量%以上80重量%以下であることが好ましく、吸収液全体の30重量%以上75重量%以下とすることがより好ましく、吸収液全体の40重量%以上70重量%以下とすることがさらに好ましい。この範囲とすることで吸収液として良好に機能させることができる。
 (a)の直鎖モノアミン(a成分)は、吸収液全体の15重量%以上60重量%以下であることが好ましく、さらに好適には、吸収液全体の20重量%以上55重量%以下とすることがより好ましい。(b)のジアミン(b成分)は、吸収液全体の1重量%以上25重量%以下であることが好ましく、さらに好適には、吸収液全体の2重量%以上20重量%以下とすることがより好ましい。(c)の化学式を満足する環状化合物は、吸収液全体の1重量%より多く30重量%以下であることが好ましく、さらに好適には、吸収液全体の1重量%より多く20重量%以下とすることがより好ましい。
 また、(a)の直鎖モノアミン(a成分)に対して、(b)のジアミン(b成分)及び(c)の化学式を満足する環状化合物(c成分)との配合割合は、((b)ジアミン+(c)の化学式を満足する環状化合物)/((a)の鎖状モノアミン)の重量比が0.033以上3.7以下、つまり、0.033≦(b+c)/a≦3.7の配合とすることが好ましく、0.067≦(b+c)/a≦0.75の配合とすることがより好ましい。
 また、(b)のジアミンと(c)の化学式を満足する環状化合物との配合割合は、(b)のジアミン/(c)の化学式を満足する環状化合物の重量比が0.033以上18以下であることが好ましい。つまり、0.033≦b/c≦18の配合とすることが好ましく、0.20≦b/c≦5.0の配合とすることがより好ましい。
 また、水分(d成分)の配合割合(重量%)は、(a)の直鎖モノアミンと、(b)のジアミンと、(c)の化学式を満足する環状化合物の合計重量の残りを、水の重量割合としている。
 本開示において、例えばCO2等を含有する排ガスとの接触時の化学吸収法の吸収塔の吸収温度は、通常30~80℃の範囲とするのが好ましい。また本開示で用いる吸収液には、必要に応じて腐食防止剤、劣化防止剤などが加えられる。
 また、処理されるガス中のCO2を吸収する吸収時のCO2吸収塔入口のCO2分圧としては、低CO2分圧(例えば0.003~0.1MPa)とするのが化学吸収法の適用から好ましい。
 本開示において、CO2等を吸収した吸収液から、CO2等を放出する再生塔での再生温度は、再生塔内圧力が130~200kPa(絶対圧)の場合、吸収液再生塔の塔底温度が110℃以上であることが好ましい。これは、110℃未満での再生では、システム内での吸収液の循環量を多くすることが必要となり、再生効率の点から好ましくないからである。より好適には115℃以上での再生が好ましい。
 本開示により処理されるガスとしては、例えば石炭ガス化ガス、合成ガス、コークス炉ガス、石油ガス、天然ガス等を挙げることができるが、これらに限定されるものではなく、CO2やH2S等の酸性ガスを含むガスであれば、いずれのガスでもよい。
 本開示のガス中のCO2又はH2S又はその双方を除去する方法で採用できるプロセスは、特に限定されないが、CO2を除去する除去装置の一例について図1を参照しつつ説明する。
 図1は、実施例1に係るCO2回収装置の構成を示す概略図である。図1に示すように、実施例1に係るCO2回収装置12は、ボイラやガスタービン等の産業燃焼設備13から排出されたCO2とO2とを含有する排ガス14を冷却水15によって冷却する排ガス冷却装置16と、冷却されたCO2を含有する排ガス14とCO2を吸収するCO2吸収液(以下、「吸収液」ともいう。)17とを接触させて排ガス14からCO2を除去するCO2回収部18Aを有するCO2吸収塔18と、CO2を吸収したCO2吸収液(以下、「リッチ溶液」ともいう。)19からCO2を放出させてCO2吸収液を再生する吸収液再生塔20と、を有する。そして、このCO2回収装置12では、吸収液再生塔20でCO2を除去した再生CO2吸収液(以下、「リーン溶液」ともいう。)17はCO2吸収塔18でCO2吸収液として再利用する。
 なお、図1中、符号13aは煙道、13bは煙突、34はスチーム凝縮水である。前記CO2回収装置12は、既設の排ガス源からCO2を回収するために後付で設けられる場合と、新設排ガス源に同時付設される場合とがある。なお、排ガス14のラインには開閉可能なダンパを設置し、CO2回収装置12の運転時は開放する。また排ガス源は稼動しているが、CO2回収装置12の運転を停止した際は閉止するように設定する。
 このCO2回収装置12を用いたCO2回収方法では、まず、CO2を含んだボイラやガスタービン等の産業燃焼設備13からの排ガス14は、排ガス送風機22により昇圧された後、排ガス冷却装置16に送られ、ここで冷却水15により冷却され、CO2吸収塔18に送られる。
 前記CO2吸収塔18において、排ガス14は本実施例に係るアミン吸収液であるCO2吸収液17と向流接触し、排ガス14中のCO2は、化学反応によりCO2吸収液17に吸収される。CO2回収部18AでCO2が除去された後のCO2除去排ガスは、CO2吸収塔18内の水洗部18Bでノズルから供給されるCO2吸収液を含む循環する洗浄水21と気液接触して、CO2除去排ガスに同伴するCO2吸収液17が回収され、その後CO2が除去された排ガス23は系外に放出される。また、CO2を吸収したCO2吸収液であるリッチ溶液19は、リッチ溶液ポンプ24により昇圧され、リッチ・リーン溶液熱交換器25において、吸収液再生塔20で再生されたCO2吸収液17であるリーン溶液により加熱され、吸収液再生塔20に供給される。
 吸収液再生塔20の上部から内部に放出されたリッチ溶液19は、底部から供給される水蒸気により吸熱反応を生じて、大部分のCO2を放出する。吸収液再生塔20内で一部または大部分のCO2を放出したCO2吸収液はセミリーン溶液と呼称される。このセミリーン溶液は、吸収液再生塔20の底部に至る頃には、ほぼ全てのCO2が除去されたCO2吸収液(リーン溶液)17となる。このリーン溶液17はその一部がリボイラ26で水蒸気27により過熱され、吸収液再生塔20内部にCO2脱離用の水蒸気を供給している。
 一方、吸収液再生塔20の塔頂部からは、塔内においてリッチ溶液19およびセミリーン溶液から放出された水蒸気を伴ったCO2同伴ガス28が導出され、コンデンサ29により水蒸気が凝縮され、分離ドラム30にて水が分離され、CO2ガス40が系外に放出されて、別途圧縮器41により圧縮され、回収される。この圧縮・回収されたCO2ガス42は、分離ドラム43を経由した後、石油増進回収法(EOR:Enhanced Oil Recovery)を用いて油田中に圧入するか、帯水層へ貯留し、温暖化対策を図っている。水蒸気を伴ったCO2同伴ガス28から分離ドラム30にて分離・還流された還流水31は還流水循環ポンプ35にて吸収液再生塔20の上部と洗浄水21側に各々供給される。再生されたCO2吸収液(リーン溶液)17は、リッチ・リーン溶液熱交換器25にて、リッチ溶液19により冷却され、つづいてリーン溶液ポンプ32にて昇圧され、さらにリーン溶液クーラ33にて冷却された後、CO2吸収塔18内に供給される。なお、この実施の形態では、あくまでその概要を説明するものであり、付属する機器を一部省略して説明している。
 以下、本開示の効果を示す好適な実施例について説明するが、本開示はこれに限定されるものではない。
[実施例]
 図示しない吸収試験装置を用いて、CO2の吸収を行った。図2は、実施例1-1から1-18における3成分系の複合アミン吸収液(直鎖モノアミン(a成分)、ジアミン(b成分)、化学式を満足する環状化合物(c成分)を水(d成分)に溶解したもの)と比較例とのリボイラ熱量削減率の関係を計測した結果を示す図である。化学式を満足する環状化合物のRとRとの組み合わせを下記[表1]に示し、実施例の成分一覧を下記[表2]に示す。下記実施例では、全量に対する(直鎖モノアミン(a成分)+ジアミン(b成分))の濃度を47w%~60wt%とした。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
[実施例1-1から1-3]
 実施例1-1では、(a)の直鎖モノアミン(a成分)として、モノエタノールアミン及び2-アミノ-2-メチル-1-プロパノールを用い、(b)のジアミン(b成分)としてピペラジンを用い、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-6とした環状化合物を用い、水(d成分)に溶解混合させて吸収液とした。実施例1-1では、全量に対するc成分の濃度を30wt%とした。
 実施例1-2では、実施例1-1と同様のアミン成分を用い、全量に対するc成分の濃度を15wt%とした。実施例1-3では、実施例1-1と同様のアミン成分を用い、全量に対するc成分の濃度を5wt%とした。
 次に、実施例1-4から1-18では、実施例1-1に対してアミン成分を変更し、全量に対するc成分の濃度を15wt%以上30wt%以下とした。また、c成分が複数の化学式を満足する環状化合物である場合、全量に対するc成分の濃度は、c成分の合計濃度である。
 実施例1-4では、実施例1-1に対して、(b)のジアミン(b成分)をプロパンジアミンとした以外は実施例1-1と同様の組成の吸収液とした。
 実施例1-5では、実施例1-1に対して、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-7とした環状化合物と、化学式I-12とした環状化合物との2つの環状化合物を用いた以外は同様の組成の吸収液とした。
 実施例1-6では、(a)の直鎖モノアミン(a成分)をN-エチルアミノエタノールとし、(b)のジアミン(b成分)を2-メチルピペラジンとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-9とした環状化合物と、化学式I-1とした環状化合物との2つの環状化合物を用いた。
 実施例1-7では、実施例1-6に対して、(b)のジアミン(b成分)をピペラジンとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-3とした環状化合物と、化学式I-9とした環状化合物との2つの環状化合物を用いた以外は同様の組成の吸収液とした。
 実施例1-8では、実施例1-6に対して、(a)の直鎖モノアミン(a成分)をN-ブチルアミノエタノールとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-11とした環状化合物と、化学式I-1とした環状化合物との2つの環状化合物を用いた以外は同様の組成の吸収液とした。
 実施例1-9では、実施例1-7に対して、(a)の直鎖モノアミン(a成分)をN-ブチルアミノエタノールとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-5とした環状化合物と、化学式I-11とした環状化合物との2つの環状化合物を用いた以外は同様の組成の吸収液とした。
 実施例1-10では、(a)の直鎖モノアミン(a成分)をN-エチルアミノエタノールと、2-アミノ-2-メチル-1-プロパノールとし、(b)のジアミン(b成分)をピペラジンとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-9とした環状化合物と、化学式I-1とした環状化合物との2つの環状化合物を用いた。
 実施例1-11では、(a)の直鎖モノアミン(a成分)をN-ブチルアミノエタノールと、2-アミノ-2-メチル-1-プロパノールとし、(b)のジアミン(b成分)をピペラジンとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-11とした環状化合物と、化学式I-1とした環状化合物との2つの環状化合物を用いた。
 実施例1-12では、(a)の直鎖モノアミン(a成分)をN-メチルジエタノールアミンと、2-アミノ-2-メチル-1-プロパノールとし、(b)のジアミン(b成分)をピペラジンとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-8とした環状化合物を用いた。
 実施例1-13では、(a)の直鎖モノアミン(a成分)をN-メチルジエタノールアミンと、N-エチルアミノエタノールとし、(b)のジアミン(b成分)をピペラジンとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-8とした環状化合物と、化学式I-9とした環状化合物との2つの環状化合物を用いた。
 実施例1-14では、(a)の直鎖モノアミン(a成分)をN-メチルジエタノールアミンと、N-ブチルアミノエタノールとし、(b)のジアミン(b成分)をピペラジンとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-8とした環状化合物と、化学式I-11とした環状化合物との2つの環状化合物を用いた。
 実施例1-15では、(a)の直鎖モノアミン(a成分)をN-エチルジエタノールアミンと、2-アミノ-2-メチル-1-プロパノールとし、(b)のジアミン(b成分)をピペラジンとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-9とした環状化合物を用いた。。
 実施例1-16では、(a)の直鎖モノアミン(a成分)をN-エチルジエタノールアミンと、N-エチルアミノエタノールとし、(b)のジアミン(b成分)をピペラジンとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-3とした環状化合物と、化学式I-9とした環状化合物との2つの環状化合物を用いた。
 実施例1-17では、(a)の直鎖モノアミン(a成分)をN-エチルジエタノールアミンと、N-ブチルアミノエタノールとし、(b)のジアミン(b成分)をピペラジンとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-9とした環状化合物と、化学式I-5とした環状化合物との2つの環状化合物を用いた。
 実施例1-18では、(a)の直鎖モノアミン(a成分)を4-ジメチルアミノ-1-ブタノールと、2-アミノ-2-メチル-1-プロパノールとし、(b)のジアミン(b成分)をピペラジンとし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表1の化学式I-2とした環状化合物を用いた。
 上記実施例のそれぞれについて吸収液がCOを放出する処理時のリボイラの熱量を測定した。試験条件は、吸収条件が40℃、10kPaCO、再生条件が120℃である。吸収塔においてCOを吸収した吸収液を、再生塔においてリボイラで加熱し、各条件において,吸収液から同量のCO2が再生塔から放出される際のリボイラへの供給水蒸気量と水蒸気の比エンタルピーから熱量を求めた。比較例として、それぞれの実施例について、(c)の化学式の環状化合物を含まず、(a)の直鎖モノアミンと(b)のジアミンの合計濃度がそれぞれの実施例と同じ、つまり、c成分を水に置換した吸収液を作成して、同様のリボイラ熱量削減率を算出した。各実施例について、比較例を100%として、実施例のリボイラ熱量の削減率、つまり((比較例のリボイラ熱量-実施例のリボイラ熱量)/比較例のリボイラ熱量)×100[%]を算出した結果を図2に示す。
 図2に示すように、本実施例の吸収液を用いることで、(c)の化学式の環状化合物を含まない吸収液よりも、吸収液から対象ガスを放出するために必要な熱量であるリボイラ熱量を、5%以上削減することができる。また、吸収液のCOの吸収の効率については、実施例と比較例で差は生じなかった。
 次に、実施例1-5、1-13、1-14と同じ、下記表3の実施例1-5´、1-13´、1-14´について、(c成分)の環状化合物を比較例の環状化合物とした場合とについて、リボイラ熱量削減率の測定を行った。下記実施例1-5´、1-13´、1-14´では、全量に対する(直鎖モノアミン(a成分)+ジアミン(b成分))の濃度を47w%~55wt%とした。
Figure JPOXMLDOC01-appb-T000012
 比較例では、(c)成分の環状化合物に代えて、下記[化8]に示す1-(2-アミノエチル)-イミダゾリジン-2-オンを、実施例と同じ濃度分含む吸収液とした。
Figure JPOXMLDOC01-appb-C000013
 実施例と比較例との比較に基づいてリボイラ熱量削減率を算出した結果を図3に示す。図3に示すように、本実施例の吸収液を用いることで、(c)成分に本開示と異なる環状化合物の吸収液よりも、吸収液から対象ガスを放出するために必要な熱量であるリボイラ熱量を、2%から6%削減することができる。
 次に、実施例2として、(b成分)のジアミンを、(b1)等級が同じアミン基を含有するジアミンと、(b2)等級が異なるアミノ基を有する鎖状ジアミンと、を有する吸収液とした実施例について説明する。図4は、実施例2-1から2-18における3成分系の複合アミン吸収液(直鎖モノアミン(a成分)、等級が同じアミノ基を含有するジアミン(b1成分)、等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)、化2の化学式で示される環状化合物(c成分)を水(d成分)に溶解したもの)と比較例とのリボイラ熱量削減率の関係を計測した結果を示す図である。(c成分)の[化2]の化学式を満足する環状化合物のRとRとの組み合わせを下記[表4]に示し、(b2成分)の等級が異なるアミノ基を有する鎖状ジアミンの[化6]のRとRとのRとの組み合わせを下記[表5]に示し、実施例の成分一覧を下記[表6]に示す。下記実施例では、全量に対する(直鎖モノアミン(a成分)+ジアミン(b成分))の濃度を47w%~60wt%とした。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
[実施例2-1から2-3]
 実施例2-1では、(a)の直鎖モノアミン(a成分)として、モノエタノールアミンと2-アミノ-2-メチル-1-プロパノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)としてピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-1とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-6とした環状化合物を用いた。実施例2-1では、(b2成分)の全量に対する濃度を13wt%とし、(c成分)の全量に対する濃度を20wt%とした。
 実施例2-2では、実施例2-1と同様のアミン成分を用い、(b2成分)の全量に対する濃度を8wt%とした。実施例2-3では、実施例2-1と同様のアミン成分を用い、(b2成分)の全量に対する濃度を1wt%とした。
 次に、実施例2-4から2-18では、実施例2-1に対してアミン成分を変更し、(b2成分)の全量に対する濃度を3~8wt%とし、(c成分)の全量に対する濃度を10~20wt%とした。
 実施例2-4では、実施例2-1に対して、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)をプロパンジアミンとした以外は実施例2-1と同様の組成の吸収液とした。
 実施例2-5では、実施例2-1に対して、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)をRとRとRとの組み合わせを表4の化学式I-6とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-7とした環状化合物と、RとRの組み合わせを表4の化学式I-12とした環状化合物とを用いたとした以外は同様の組成の吸収液とした。
 実施例2-6では、(a)の直鎖モノアミン(a成分)として、N-エチルアミノエタノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)として2-メチルピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-11とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-9とした環状化合物と、RとRの組み合わせを表4の化学式I-1とした環状化合物とを用いた。
 実施例2-7では、(a)の直鎖モノアミン(a成分)として、N-エチルアミノエタノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)としてピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-3とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-3とした環状化合物と、RとRの組み合わせを表4の化学式I-9とした環状化合物とを用いた。
 実施例2-8では、(a)の直鎖モノアミン(a成分)として、N-ブチルアミノエタノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)として2-メチルピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-5とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-11とした環状化合物と、RとRの組み合わせを表4の化学式I-1とした環状化合物とを用いた。
 実施例2-9では、(a)の直鎖モノアミン(a成分)として、N-ブチルアミノエタノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)としてピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-1とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-5とした環状化合物と、RとRの組み合わせを表4の化学式I-11とした環状化合物とを用いた。
 実施例2-10では、(a)の直鎖モノアミン(a成分)として、N-エチルアミノエタノールと2-アミノ-2-メチル-1-プロパノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)としてピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-8とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-9とした環状化合物と、RとRの組み合わせを表4の化学式I-1とした環状化合物とを用いた。
 実施例2-11では、(a)の直鎖モノアミン(a成分)として、N-ブチルアミノエタノールと2-アミノ-2-メチル-1-プロパノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)としてピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-1とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-11とした環状化合物と、RとRの組み合わせを表4の化学式I-1とした環状化合物とを用いた。
 実施例2-12では、(a)の直鎖モノアミン(a成分)として、N-メチルジエタノールアミンと2-アミノ-2-メチル-1-プロパノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)としてピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-9とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-8とした環状化合物を用いた。
 実施例2-13では、(a)の直鎖モノアミン(a成分)として、N-メチルジエタノールアミンとN-エチルアミノエタノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)としてピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-7とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-8とした環状化合物と、RとRの組み合わせを表4の化学式I-9とした環状化合物とを用いた。
 実施例2-14では、(a)の直鎖モノアミン(a成分)として、N-メチルジエタノールアミンとN-ブチルアミノエタノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)としてピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-10とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-8とした環状化合物と、RとRの組み合わせを表4の化学式I-11とした環状化合物とを用いた。
 実施例2-15では、(a)の直鎖モノアミン(a成分)として、N-エチルジエタノールアミンと2-アミノ-2-メチル-1-プロパノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)としてピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-3とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-9とした環状化合物とを用いた。
 実施例2-16では、(a)の直鎖モノアミン(a成分)として、N-エチルジエタノールアミンとN-エチルアミノエタノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)としてピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表4の化学式II-3とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-3とした環状化合物と、RとRの組み合わせを表4の化学式I-9とした環状化合物とを用いた。
 実施例2-17では、(a)の直鎖モノアミン(a成分)として、N-エチルジエタノールアミンとN-ブチルアミノエタノールを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)としてピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-12とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-9とした環状化合物と、RとRの組み合わせを表4の化学式I-5とした環状化合物とを用いた。
 実施例2-18では、(a)の直鎖モノアミン(a成分)として、4-ジメチルアミノ-1-ブタノールと2-アミノ-2-メチル-1-プロパノールとを用い、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)としてピペラジンを用い、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)として、RとRとRとの組み合わせを表5の化学式II-2とし、(c)の化学式を満足する環状化合物(c成分)として、RとRの組み合わせを表4の化学式I-2とした環状化合物とを用いた。
 比較例として、それぞれの実施例について、(b2)の等級が異なるアミノ基を含有する鎖状ジアミン(b2成分)と、(c)の化学式を満足する環状化合物(c成分)の重量分を含まず、(a)の直鎖モノアミン(a成分)と、(b1)の等級が同じアミノ基を含有するジアミン(b1成分)の重量が実施例と同じ吸収液を作成して、同様のリボイラ熱量を算出した。各実施例について、比較例を1として、実施例のリボイラ熱量削減率を算出した結果を図4に示す。
 図4に示すように、実施例の吸収液を用いることで、比較例の吸収液よりもリボイラの熱量を10%以上削減することができる。
 以上の実施例に示すように、(a)鎖状モノアミンと、(b)ジアミンと、(c)[化2]を満足する環状化合物と、(d)水と、を含む複合アミン吸収液を用いることで、リボイラで吸収したCO2、H2Sを放出させやすくすることができ、放出に必要な熱量を削減することができる。これにより、CO2、H2Sの回収に必要なエネルギをより低減することができる。また、吸収液としての反応速度も維持することができる。これにより、吸収液としての性能を高くすることができる。
 本開示は、以下の発明を開示している。なお、下記に限定されない。
(1)ガス中のCO2及びH2Sの少なくとも一方を吸収する複合アミン吸収液であって、
 (a)鎖状モノアミンと、
 (b)ジアミンと、
 (c)下記化学式の環状化合物と、
Figure JPOXMLDOC01-appb-C000017
:酸素またはN-R
:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
 (d)水と、を含む複合アミン吸収液。
(2)(a)の鎖状モノアミンは、1級鎖状モノアルカノールアミン、2級鎖状モノアルカノールアミンまたは3級鎖状モノアルカノールアミンの少なくとも一種を含む(1)に記載の複合アミン吸収液。
(3)(b)ジアミンは、等級が同じアミノ基を含有するジアミンを少なくとも一種含む(1)または(2)に記載の複合アミン吸収液。
(4)等級が同じアミノ基を含有するジアミンが、1級鎖状ポリアミン、2級鎖状ポリアミン、2級環状ポリアミンの少なくとも一種を含む(3)に記載の複合アミン吸収液。
(5)(b)ジアミンは、等級が同じアミノ基を含有するジアミンを少なくとも一種と、等級が異なるアミノ基を含有する鎖状ジアミンを少なくとも一種と、を含む(1)または(2)に記載の複合アミン吸収液。
(6)等級が同じアミノ基を含有するジアミンが、1級鎖状ポリアミン、2級鎖状ポリアミン、2級環状ポリアミンの少なくとも一種を含む(5)に記載の複合アミン吸収液。
(7)等級が異なるアミノ基を含有する鎖状ジアミンが、
Figure JPOXMLDOC01-appb-C000018
:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
:水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
:ヒドロキシアルキル基
が水素ではない場合、Rも水素ではない
を満たす化合物を少なくとも一種含む(5)に記載の複合アミン吸収液。
(8)(a)の鎖状モノアミンと、(b)のジアミンと、(c)の化学式の環状化合物と、の合計濃度は、吸収液全体の20重量%以上80重量%以下である(1)から(7)のいずれか一つに記載の複合アミン吸収液。
(9)(a)の鎖状モノアミンの濃度は、吸収液全体の15重量%以上60重量%以下である(1)から(8)のいずれか一つに記載の複合アミン吸収液。
(10)(b)のジアミンの濃度は、吸収液全体の1重量%以上25重量%以下である(1)から(9)のいずれか一つに記載の複合アミン吸収液。
(11)(c)の化学式の環状化合物の濃度は、吸収液全体の1重量%以上30重量%以下である(1)から(10)のいずれか一つに記載の複合アミン吸収液。
(12)((b)のジアミン+(c)の化学式の環状化合物)/((a)の鎖状モノアミン)の重量比が0.033≦(b+c)/a≦3.7である(1)から(11)のいずれか一つに記載の複合アミン吸収液。
(13)(b)のジアミン/(c)の化学式の環状化合物の重量比が0.033≦b/c≦18の配合である(1)から(12)のいずれか一つに記載の複合アミン吸収液。
(14)CO2及びH2Sの少なくとも一方を含有するガスと吸収液とを接触させてCO2及びH2Sの少なくとも一方を除去する吸収塔と、CO2及びH2Sの少なくとも一方を吸収した溶液を再生する吸収液再生塔とを有し、前記吸収液再生塔でCO2及びH2Sの少なくとも一方を除去して再生した溶液を前記吸収塔で再利用する除去装置であって、(1)から(13)のいずれか一つに記載の複合アミン吸収液を用いる除去装置。
(15)前記吸収塔は、吸収温度が、30~80℃であり、前記吸収液再生塔は、再生温度が、110℃以上である(14)に記載の除去装置。
(16)CO2及びH2Sの少なくとも一方を含有するガスと吸収液とを接触させてCO2及びH2Sの少なくとも一方を吸収塔内で除去し、CO2及びH2Sの少なくとも一方を吸収した溶液を吸収液再生塔内で再生し、前記吸収液再生塔でCO2及びH2Sの少なくとも一方を除去して再生した溶液を前記吸収塔で再利用する除去方法であって、(1)から(13)のいずれか一つに記載の複合アミン吸収液を用いる除去方法。
(17)前記吸収塔の吸収温度が、30~80℃であり、前記吸収液再生塔の再生温度が、110℃以上である(16)に記載の除去方法。
 12 CO2回収装置
 13 産業燃焼設備
 14 排ガス
 16 排ガス冷却装置
 17 CO2吸収液(リーン溶液)
 18 CO2吸収塔
 19 CO2を吸収したCO2吸収液(リッチ溶液)
 20 吸収液再生塔
 21 洗浄水

Claims (17)

  1.  ガス中のCO2及びH2Sの少なくとも一方を吸収する複合アミン吸収液であって、
     (a)鎖状モノアミンと、
     (b)ジアミンと、
     (c)下記化学式の環状化合物と、
    Figure JPOXMLDOC01-appb-C000001
    :水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
    :酸素またはN-R
    :水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
     (d)水と、を含む複合アミン吸収液。
  2.  (a)の鎖状モノアミンは、1級鎖状モノアルカノールアミン、2級鎖状モノアルカノールアミンまたは3級鎖状モノアルカノールアミンの少なくとも一種を含む請求項1に記載の複合アミン吸収液。
  3.  (b)ジアミンは、等級が同じアミノ基を含有するジアミンを少なくとも一種含む請求項1に記載の複合アミン吸収液。
  4.  等級が同じアミノ基を含有するジアミンが、1級鎖状ポリアミン、2級鎖状ポリアミン、2級環状ポリアミンの少なくとも一種を含む請求項3に記載の複合アミン吸収液。
  5.  (b)ジアミンは、等級が同じアミノ基を含有するジアミンを少なくとも一種と、等級が異なるアミノ基を含有する鎖状ジアミンを少なくとも一種と、を含む請求項1に記載の複合アミン吸収液。
  6.  等級が同じアミノ基を含有するジアミンが、1級鎖状ポリアミン、2級鎖状ポリアミン、2級環状ポリアミンの少なくとも一種を含む請求項5に記載の複合アミン吸収液。
  7.  等級が異なるアミノ基を含有する鎖状ジアミンが、
    Figure JPOXMLDOC01-appb-C000002
    :水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
    :水素,炭素数1~4の炭化水素基,ヒドロキシアルキル基のいずれか
    :ヒドロキシアルキル基
    が水素ではない場合、Rも水素ではない
    を満たす化合物を少なくとも一種含む請求項5に記載の複合アミン吸収液。
  8.  (a)の鎖状モノアミンと、(b)のジアミンと、(c)の化学式の環状化合物と、の合計濃度は、吸収液全体の20重量%以上80重量%以下である請求項1に記載の複合アミン吸収液。
  9.  (a)の鎖状モノアミンの濃度は、吸収液全体の15重量%以上60重量%以下である請求項1に記載の複合アミン吸収液。
  10.  (b)のジアミンの濃度は、吸収液全体の1重量%以上25重量%以下である請求項1に記載の複合アミン吸収液。
  11.  (c)の化学式の環状化合物の濃度は、吸収液全体の1重量%以上30重量%以下である請求項1に記載の複合アミン吸収液。
  12.  ((b)のジアミン+(c)の化学式の環状化合物)/((a)の鎖状モノアミン)の重量比が0.033≦(b+c)/a≦3.7のである請求項1に記載の複合アミン吸収液。
  13.  (b)のジアミン/(c)の化学式の環状化合物の重量比が0.033≦b/c≦18の配合である請求項1に記載の複合アミン吸収液。
  14.  CO2及びH2Sの少なくとも一方を含有するガスと吸収液とを接触させてCO2及びH2Sの少なくとも一方を除去する吸収塔と、CO2及びH2Sの少なくとも一方を吸収した溶液を再生する吸収液再生塔とを有し、前記吸収液再生塔でCO2及びH2Sの少なくとも一方を除去して再生した溶液を前記吸収塔で再利用する除去装置であって、
     請求項1から請求項13のいずれか一項に記載の複合アミン吸収液を用いる除去装置。
  15.  前記吸収塔は、吸収温度が、30~80℃であり、
     前記吸収液再生塔は、再生温度が、110℃以上である請求項14に記載の除去装置。
  16.  CO2及びH2Sの少なくとも一方を含有するガスと吸収液とを接触させてCO2及びH2Sの少なくとも一方を吸収塔内で除去し、CO2及びH2Sの少なくとも一方を吸収した溶液を吸収液再生塔内で再生し、前記吸収液再生塔でCO2及びH2Sの少なくとも一方を除去して再生した溶液を前記吸収塔で再利用する除去方法であって、
     請求項1から請求項13のいずれか一項に記載の複合アミン吸収液を用いる除去方法。
  17.  前記吸収塔の吸収温度が、30~80℃であり、
     前記吸収液再生塔の再生温度が、110℃以上である請求項16に記載の除去方法。
PCT/JP2022/019243 2022-04-28 2022-04-28 複合アミン吸収液、除去装置及び除去方法 WO2023209931A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
MX2023010496A MX2023010496A (es) 2022-04-28 2022-04-28 Absorbente de amina combinado, unidad de remocion y metodo de remocion.
CN202280021302.XA CN117062662A (zh) 2022-04-28 2022-04-28 复合胺吸收液、除去装置及除去方法
AU2022442104A AU2022442104B2 (en) 2022-04-28 2022-04-28 Composite amine absorbent, removal unit, and removal method
JP2022574834A JP7321420B1 (ja) 2022-04-28 2022-04-28 複合アミン吸収液、除去装置及び除去方法
US18/282,154 US20240042377A1 (en) 2022-04-28 2022-04-28 Composite amine absorbent, removal unit, and removal method
PCT/JP2022/019243 WO2023209931A1 (ja) 2022-04-28 2022-04-28 複合アミン吸収液、除去装置及び除去方法
CA3212395A CA3212395A1 (en) 2022-04-28 2022-04-28 Composite amine absorbent, removal unit, and removal method
EP22930134.6A EP4292692A4 (en) 2022-04-28 2022-04-28 ABSORPTION SOLUTION BASED ON COMPOSITE AMINE, DISPOSAL DEVICE AND DISPOSAL METHOD
BR112023018695A BR112023018695A2 (pt) 2022-04-28 2022-04-28 Absorvente de amina composta, unidade de remoção e método de remoção
TW112114051A TWI835628B (zh) 2022-04-28 2023-04-14 複合胺吸收液、除去裝置及除去方法
ARP230101037A AR128185A1 (es) 2022-04-28 2023-04-28 Absorbente de aminas compuesto, unidad de eliminación y método de eliminación
CL2023002717A CL2023002717A1 (es) 2022-04-28 2023-09-12 Absorbente de amina compuesto, unidad de eliminación y método de eliminación
CONC2024/0003906A CO2024003906A2 (es) 2022-04-28 2024-03-27 Absorbente de amina de composite, unidad de eliminación y método de eliminación
ECSENADI202428293A ECSP24028293A (es) 2022-04-28 2024-04-12 COMPUESTO ABSORBENTE DE AMINA UNIDAD y MÉTODO DE REMOCIÓN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019243 WO2023209931A1 (ja) 2022-04-28 2022-04-28 複合アミン吸収液、除去装置及び除去方法

Publications (1)

Publication Number Publication Date
WO2023209931A1 true WO2023209931A1 (ja) 2023-11-02

Family

ID=87519603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019243 WO2023209931A1 (ja) 2022-04-28 2022-04-28 複合アミン吸収液、除去装置及び除去方法

Country Status (14)

Country Link
US (1) US20240042377A1 (ja)
EP (1) EP4292692A4 (ja)
JP (1) JP7321420B1 (ja)
CN (1) CN117062662A (ja)
AR (1) AR128185A1 (ja)
AU (1) AU2022442104B2 (ja)
BR (1) BR112023018695A2 (ja)
CA (1) CA3212395A1 (ja)
CL (1) CL2023002717A1 (ja)
CO (1) CO2024003906A2 (ja)
EC (1) ECSP24028293A (ja)
MX (1) MX2023010496A (ja)
TW (1) TWI835628B (ja)
WO (1) WO2023209931A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541676B2 (ja) 1984-03-30 1993-06-24 Oji Paper Co
JP2007527791A (ja) 2004-03-09 2007-10-04 ビーエーエスエフ アクチェンゲゼルシャフト 煙道ガスから二酸化炭素を除去するための方法
JP2017507771A (ja) * 2013-12-19 2017-03-23 シー−キャプチャー リミテッドC−Capture Ltd 酸性ガス回収および放出システム
JP2017104775A (ja) * 2015-12-07 2017-06-15 国立研究開発法人産業技術総合研究所 二酸化炭素吸収液および二酸化炭素分離回収方法
JP2017534437A (ja) * 2014-08-25 2017-11-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 流体流からの二酸化炭素の除去
JP2018122278A (ja) 2017-02-03 2018-08-09 株式会社東芝 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
JP2018183729A (ja) 2017-04-25 2018-11-22 株式会社東芝 酸性ガス吸収液、酸性ガスの除去方法および酸性ガス除去装置
JP2019520201A (ja) * 2016-06-10 2019-07-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ガススクラビング用のシクロヘキサンジアミン
JP2020022933A (ja) 2018-08-07 2020-02-13 株式会社東芝 酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置
JP2020044489A (ja) 2018-09-18 2020-03-26 株式会社東芝 酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597678A (en) * 1994-04-18 1997-01-28 Ocg Microelectronic Materials, Inc. Non-corrosive photoresist stripper composition
US7056482B2 (en) * 2003-06-12 2006-06-06 Cansolv Technologies Inc. Method for recovery of CO2 from gas streams
WO2012097449A1 (en) * 2011-01-19 2012-07-26 University Of Regina Reactive extraction process for regeneration of amine-based solvents used for carbon dioxide capture
US20150125372A1 (en) * 2011-05-13 2015-05-07 Ion Engineering Compositions and methods for gas capture processes
JP6841676B2 (ja) * 2017-01-31 2021-03-10 三菱重工エンジニアリング株式会社 複合アミン吸収液、co2又はh2s又はその双方の除去装置及び方法
CN109420409B (zh) * 2017-08-22 2021-08-06 中国石油化工股份有限公司 从气流中选择性除去含有h2s和co2的酸性气的吸收剂及方法
CN107983089B (zh) * 2017-11-29 2019-09-13 苏州绿碳环保科技有限公司 一种工厂电厂炼厂烟气捕获、转化和应用全量资源化系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541676B2 (ja) 1984-03-30 1993-06-24 Oji Paper Co
JP2007527791A (ja) 2004-03-09 2007-10-04 ビーエーエスエフ アクチェンゲゼルシャフト 煙道ガスから二酸化炭素を除去するための方法
JP2017507771A (ja) * 2013-12-19 2017-03-23 シー−キャプチャー リミテッドC−Capture Ltd 酸性ガス回収および放出システム
JP2017534437A (ja) * 2014-08-25 2017-11-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 流体流からの二酸化炭素の除去
JP2017104775A (ja) * 2015-12-07 2017-06-15 国立研究開発法人産業技術総合研究所 二酸化炭素吸収液および二酸化炭素分離回収方法
JP2019520201A (ja) * 2016-06-10 2019-07-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ガススクラビング用のシクロヘキサンジアミン
JP2018122278A (ja) 2017-02-03 2018-08-09 株式会社東芝 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
JP2018183729A (ja) 2017-04-25 2018-11-22 株式会社東芝 酸性ガス吸収液、酸性ガスの除去方法および酸性ガス除去装置
JP2020022933A (ja) 2018-08-07 2020-02-13 株式会社東芝 酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置
JP2020044489A (ja) 2018-09-18 2020-03-26 株式会社東芝 酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4292692A4

Also Published As

Publication number Publication date
US20240042377A1 (en) 2024-02-08
MX2023010496A (es) 2024-05-23
CL2023002717A1 (es) 2023-12-29
CO2024003906A2 (es) 2024-05-10
EP4292692A1 (en) 2023-12-20
CA3212395A1 (en) 2023-10-28
EP4292692A4 (en) 2024-05-01
AU2022442104A1 (en) 2023-11-16
AU2022442104B2 (en) 2024-02-22
BR112023018695A2 (pt) 2023-12-05
TWI835628B (zh) 2024-03-11
ECSP24028293A (es) 2024-05-31
JP7321420B1 (ja) 2023-08-07
CN117062662A (zh) 2023-11-14
TW202348301A (zh) 2023-12-16
AR128185A1 (es) 2024-04-10
JPWO2023209931A1 (ja) 2023-11-02

Similar Documents

Publication Publication Date Title
JP6172884B2 (ja) 3成分吸収液、co2又はh2s又はその双方の除去装置及び方法
JP2013086079A5 (ja)
CA3032652C (en) Composite amine absorbing solution, and device and method for removing co2 or h2s or both
JP5984776B2 (ja) 複合アミン吸収液、co2又はh2s又はその双方の除去装置及び方法
WO2023209931A1 (ja) 複合アミン吸収液、除去装置及び除去方法
JP5986796B2 (ja) 複合アミン吸収液、co2又はh2s又はその双方の除去装置及び方法
JP2013236987A5 (ja)
WO2023027105A1 (ja) 複合アミン吸収液、除去装置及び除去方法
RU2819610C2 (ru) Композитный аминный абсорбент, установка для удаления и способ удаления
AU2019423879B2 (en) Composite amine absorption solution, and device and method both for removing CO2 or H2S or both of them
JP7336245B2 (ja) Co2、h2s又はそれら双方の吸収液並びにco2又はh2s又はその双方の除去装置及び方法
RU2778305C1 (ru) Композитный аминовый абсорбент, способ и устройство для удаления co2 или h2s, либо и co2, и h2s
AU2012327104B9 (en) 3-component absorbent solution, and CO2 and/or H2S removal device and method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022574834

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022442104

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/010496

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 202280021302.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022930134

Country of ref document: EP

Effective date: 20230912

ENP Entry into the national phase

Ref document number: 2022442104

Country of ref document: AU

Date of ref document: 20220428

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023018695

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023018695

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230914

WWE Wipo information: entry into national phase

Ref document number: A20240065

Country of ref document: AZ