WO2023209796A1 - 撮像ユニット、および、内視鏡 - Google Patents

撮像ユニット、および、内視鏡 Download PDF

Info

Publication number
WO2023209796A1
WO2023209796A1 PCT/JP2022/018865 JP2022018865W WO2023209796A1 WO 2023209796 A1 WO2023209796 A1 WO 2023209796A1 JP 2022018865 W JP2022018865 W JP 2022018865W WO 2023209796 A1 WO2023209796 A1 WO 2023209796A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
imaging unit
electrodes
unit according
gate
Prior art date
Application number
PCT/JP2022/018865
Other languages
English (en)
French (fr)
Inventor
孝典 関戸
秀一 滝江
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to PCT/JP2022/018865 priority Critical patent/WO2023209796A1/ja
Publication of WO2023209796A1 publication Critical patent/WO2023209796A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances

Definitions

  • the present invention relates to an imaging unit equipped with a plurality of wiring boards, and an endoscope including the imaging unit equipped with a plurality of wiring boards.
  • Imaging signals output by the imaging device disposed at the distal end of the endoscope are transmitted via multiple wiring boards.
  • Japanese Patent No. 6013657 discloses an imaging unit in which a first wiring board is soldered to the back surface of an imaging element, and a plurality of signal cables are connected to a second wiring board to which the first wiring board is soldered. is disclosed.
  • the second wiring board is an irregularly shaped wiring board having a complicated shape in order to efficiently connect a plurality of signal cables.
  • MID molded interconnect device
  • Embodiments of the present invention aim to provide a highly reliable imaging unit equipped with an MID, and an endoscope including the highly reliable imaging unit equipped with an MID.
  • the imaging unit of the embodiment has a light-receiving surface located on the front side and a back surface located on the rear side, and includes an imaging element in which a plurality of external electrodes are arranged on the back surface, and a first light-receiving surface located on the front side. and a second surface located on the rear side, each of the plurality of first electrodes disposed on the first surface being joined to each of the plurality of external electrodes. and has a first wiring board in which a plurality of second electrodes are arranged on the second surface, a third surface located on the front side, and a fourth surface located on the rear side. , a second wiring board in which each of the plurality of third electrodes disposed on the third surface is joined to each of the plurality of second electrodes, and has a gate mark in a rear region; Be equipped.
  • An endoscope includes an insertion section that is inserted into a subject, and an imaging unit provided at a distal end of the insertion section, and the imaging unit has a light-receiving surface located on the front side and a light-receiving surface located on the rear side. a back surface located on the side, and a plurality of external electrodes are arranged on the back surface; a first surface located on the front side; and a second surface located on the rear side. each of the plurality of first electrodes arranged on the first surface is joined to each of the plurality of external electrodes, and the plurality of second electrodes are arranged on the second surface.
  • Each of the electrodes is connected to each of the plurality of second electrodes, and includes a second wiring board having a gate mark in a rear region.
  • FIG. 2 is a perspective view of the imaging unit of the first embodiment. 2 is a sectional view taken along line II-II in FIG. 1.
  • FIG. FIG. 2 is a perspective exploded view of the imaging unit of the first embodiment.
  • FIG. 3 is a diagram for explaining a method of manufacturing an MID of an imaging unit according to an embodiment.
  • FIG. 3 is a perspective view for explaining a method of manufacturing the MID of the imaging unit according to the embodiment.
  • FIG. 3 is a rear view for explaining a method of manufacturing the MID of the imaging unit according to the embodiment.
  • FIG. 7 is a perspective view of an imaging unit according to modification 2 of the first embodiment.
  • FIG. 3 is a perspective view of an imaging unit according to a second embodiment.
  • FIG. 3 is a configuration diagram of an endoscope system including an endoscope according to a third embodiment.
  • the imaging unit 1 of this embodiment shown in FIGS. 1 to 3 includes a first wiring board 10, a second wiring board 20, an imaging element 30, and a plurality of signal cables 60.
  • an image sensor 30, a first wiring board 10, and a second wiring board 20 are connected in this order from the front side to the rear side.
  • the image sensor 30 has a light-receiving surface 30SA located on the front side and a back surface 30SB located on the opposite side (rear side) of the light-receiving surface 30SA.
  • a light receiving circuit 31 made of, for example, a CCD or CMOS is formed on a light receiving surface 30SA of the image sensor 30 made of a semiconductor such as silicon.
  • the light receiving circuit 31 is connected to a plurality of external electrodes 32 on the back surface 30SB via a plurality of through electrodes (not shown).
  • the image sensor 30 may be either a front-illuminated image sensor or a back-illuminated image sensor.
  • a cover glass and an imaging optical system are disposed on the light receiving surface 30SA.
  • the first wiring board 10 has a first surface 10SA located on the front side and a second surface 10SB located on the opposite side (rear side) of the first surface 10SA.
  • the first wiring board 10 is a ceramic laminated wiring board that is manufactured by laminating a plurality of unfired ceramic sheets, each having surface wiring and through wiring, and then firing.
  • Each of the plurality of first electrodes 11 on the first surface 10SA is joined to each of the plurality of external electrodes 32 of the image sensor 30.
  • a plurality of second electrodes 12 are arranged on the second surface 10SB.
  • the second wiring board 20 has a third surface 20SA located on the front side and a fourth surface 20SB located on the opposite side (rear side) of the third surface 20SA.
  • the second wiring board 20 is an irregularly shaped wiring board in which the fourth surface 20SB is smaller than the third surface 20SA.
  • Each of the plurality of third electrodes 21 disposed on the third surface 20SA is joined to each of the plurality of second electrodes 12 of the first wiring board 10.
  • the image sensor 30, the first wiring board 10, and the second wiring board are electrically connected by, for example, a plurality of solders 50.
  • the image sensor 30 and the first wiring board 10 may be bonded to each other by a thermo-ultrasonic bonding method in which electrodes whose surfaces are made of gold are applied with ultrasound and heat.
  • a sealing resin 51 is disposed around the solder 50 on the joint surface.
  • the sealing resin 51 include epoxy resin, polyimide resin, fluororesin, polyamideimide, polyphenylene ether, polypropylene, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyetherimide, and fluorine-based heat. Plastic elastomer, butadiene rubber, etc. can be used.
  • the sealing resin 51 preferably has light blocking properties in order to prevent external light from entering from the side surfaces.
  • the second wiring board 20 has a recess C20 on the third surface 20SA.
  • a plurality of electronic components 40 for example, chip capacitors, are housed in the recess C20.
  • Each of the plurality of signal cables 60 is connected to each of the plurality of joining electrodes 22 provided on the rear side of the side surface 20SS of the second wiring board 20.
  • the imaging unit 1 has a gate mark 20G on the fourth surface 20SB located in the rear area BA of the second wiring board 20.
  • the rear area BA is the rear area when the front area FA and the rear area BA are defined with a plane equidistant (0.5L) between the third surface 20SA and the fourth surface 20SB as the border. It is.
  • the second wiring board 20 is a molded circuit device (MID) manufactured by injecting resin into a mold.
  • the second wiring board 20 has a gate mark (gate cut portion) 20G, which is a part of the gate G20 (see FIG. 4) into which resin is injected, in the center of the fourth surface 20SB, which is the rear region.
  • the second wiring board 20 is manufactured using an injection molding method.
  • MID resin is injected into a mold (not shown) containing the shape of the second wiring board 20 from the spool S20 via the gate G20.
  • the molded bodies removed from the mold, each forming a second wiring board 20, are connected by a spool S20 and a gate G20.
  • the second wiring board 20 has gate marks 20G on the fourth surface 20SB.
  • the molded body may be singulated and then subjected to laser irradiation and plating treatment.
  • the method for manufacturing the second wiring board 20 may be a so-called two-step molding method in which different resins (a resin that can form a plating film and a resin that cannot form a plating film) are molded using two molds, or a masking method may be used. Wiring may be formed by selective plating.
  • MID has anisotropy in which the structure, etc. is oriented depending on the direction in which the resin flows during molding (flow direction), and not only mechanical properties but also thermal expansion coefficient (linear expansion coefficient) differ depending on the orientation direction. It may have.
  • the coefficient of thermal expansion ⁇ 1 in the flow direction is larger than the coefficient of thermal expansion ⁇ 2 in the orthogonal direction.
  • the coefficient of thermal expansion ⁇ 0 of an isotropic body is 75 ppm
  • the coefficient of thermal expansion ⁇ 1 is 100 ppm/K
  • the coefficient of thermal expansion ⁇ 2 is 50 ppm/K.
  • LCP liquid crystal polymer
  • the coefficient of thermal expansion ⁇ 0 is 30 ppm
  • the coefficient of thermal expansion ⁇ 1 is 50 ppm/K
  • the coefficient of thermal expansion ⁇ 2 is 15 ppm/K. It is K.
  • the coefficient of thermal expansion is measured according to JIS R 1618.
  • the coefficient of thermal expansion of the first wiring board 10, which is a ceramic wiring board is, for example, 15 ppm/K.
  • the thermal expansion coefficient of the image sensor 30 made of silicon is, for example, 4 ppm/K.
  • the coefficient of thermal expansion of the second wiring board 20 is different from that of the first wiring board 10. Therefore, stress is applied to the joint surface (solder 50) between the second wiring board 20 and the first wiring board 10 when the temperature changes.
  • the second wiring board 20 has a gate G20 at the center of the fourth surface 20SB.
  • the gate mark G20 is arranged at a position farthest from the joint portions 50A-50D (solder 50) at the outermost four corners of the third surface 20SA. That is, the distances from the four corner joints 50A-50D of the third surface 20SA to the gate mark G20 are the same.
  • the outermost four The distances between the gate marks G20 in the joint portions 50A-50D are equal.
  • the second wiring board 20 having the gate G20 at the center of the fourth surface 20SB can minimize the anisotropy at the four corners of the third surface 20SA, where stress is most likely to act structurally. It is possible to reduce the variation in
  • the position of the gate during molding is set in consideration of anisotropy. That is, the coefficient of thermal expansion of the third surface 20SA, which is the joint surface with the first wiring board 10, does not increase or vary due to anisotropy.
  • the second wiring board 20 does not have anisotropy, the maximum value of the difference in coefficient of thermal expansion between the second wiring board 20 and the first wiring board 20 will be small.
  • the second wiring board 20 PEEK
  • the difference between the coefficient of thermal expansion ⁇ 1 of the second wiring board 20 and the coefficient of thermal expansion of the first wiring board 10 is the maximum It becomes 85 ppm/K.
  • the second wiring board 20 does not have anisotropy, the difference between the coefficient of thermal expansion ⁇ 0 of the second wiring board 20 and the coefficient of thermal expansion of the first wiring board 10 is 60 ppm/K. . Therefore, the stress applied to the bonding surface that occurs when the temperature changes is small, and the imaging unit 1 has high reliability.
  • the imaging unit 1 has high reliability.
  • Imaging units 1A and 1B of Modifications 1 and 2 of the first embodiment are similar to imaging unit 1 and have the same effects. Therefore, the same reference numerals are given to the components having the same function, and the explanation thereof will be omitted.
  • the bonding electrode 22 of the second wiring board 20A extends from the side surface 20SS to the fourth surface 20SB.
  • the signal cable 60 is not illustrated.
  • the fourth surface 20SB of the second wiring board 20A has a recess R20.
  • the gate mark 20G is located on the bottom surface of the recess R20.
  • the height HG20 of the gate mark 20G from the bottom of the recess R20 is smaller than the depth DR20 of the recess R20.
  • the rear side of the gate mark 20G is located in the recess R20.
  • the depth DR20 of the recess R20 is 0.2 mm
  • the height HG20 of the gate mark 20G is 0.1 mm.
  • the second wiring board 20A does not have the gate mark 20G protruding from the fourth surface 20SB.
  • the imaging unit 1A is easier to handle than the imaging unit 1, it is easier to manufacture.
  • the gate G20 may be completely removed and a notch may be formed in a part of the fourth main surface 20SB. That is, the gate mark 20G may be a trace (an intangible object) where the gate G20 was, instead of a part of the gate G20 (a tangible object).
  • the image pickup element 30B is a stacked image pickup element in which two semiconductor circuit elements 35A and 35B each having a semiconductor circuit for signal processing are bonded to a semiconductor image pickup element 30 having a light receiving circuit. It is 30B.
  • the electrode on the back surface of the rear semiconductor circuit element 35B is an external electrode.
  • the second wiring board 20B is a substantially rectangular parallelepiped, and is not an irregularly shaped wiring board. Electronic components 40 are mounted on the side surface 20SS of the second wiring board 20B. Furthermore, the MID resin of the second wiring board 20B contains a filler having a higher thermal conductivity than the base material resin. Examples of the non-conductive filler having a higher thermal conductivity than the resin include SiO 2 , SiC, AlN, ZnO, Si 3 N 4 , BN, and Al 2 O 3 .
  • Resins that contain fillers may exhibit greater anisotropy in thermal expansion coefficient depending on the flow direction than resins that do not contain fillers.
  • the second wiring board 20B does not have anisotropy because it has the gate mark 20G at the center of the second wiring board 20 and the fourth surface 20SB.
  • the second wiring board 20B of the imaging unit 1B contains a filler with high thermal conductivity, it is easy to radiate heat generated by the imaging element 30 and the like via the cable 60 and the like.
  • the imaging unit 1B has higher reliability than the imaging unit 1.
  • the second wiring board 20B had a gate mark 20G at the center of the fourth surface 20SB.
  • the second wiring board 20B may have a gate mark 20G in the center area CA of the fourth surface 20SB.
  • the central area CA means an area located more centrally than a line formed by a plurality of points bisecting each of a plurality of straight lines connecting the center and the outer edge of the fourth surface 20SB.
  • the second wiring boards 20, 20A may also have gate marks 20G in the center area CA of the fourth surface 20SB.
  • the second wiring boards 20, 20A, 20B had the gate mark 20G approximately at the center of the fourth surface 20SB so as to prevent anisotropy from occurring.
  • the imaging unit 1C of this embodiment has a gate mark 20G in the rear region BA of the side surface 20ST of the second wiring board 20C.
  • the side surface 20ST is perpendicular to the side surface 20SS.
  • the rear area BA is the rear area when the front area FA and the rear area BA are defined with a plane equidistant (0.5L) between the third surface 20SA and the fourth surface 20SB as the border. It is.
  • the second wiring board 20C Since the second wiring board 20C has the gate marks 20G in the rear region BA, thermal expansion anisotropy is less likely to occur than in the second wiring board which has the gate marks 20G on the front side. Therefore, the difference in thermal expansion coefficient between the second wiring board 20C and the first wiring board 10 is prevented from increasing.
  • the imaging unit 1C having the gate mark 20G in the rear area BA of the second wiring board 20C has higher reliability than the imaging unit having the gate mark 20G on the front side of the second wiring board 20. is high.
  • the second wiring board may have a recess in the rear area BA of the side surface, and may have gate marks 20G on the bottom surface of the recess like the second wiring board 20A.
  • the endoscope system 8 shown in FIG. 10 includes the endoscope 9 of this embodiment, a processor 80, a light source device 81, and a monitor 82.
  • the endoscope 9 has an insertion section 90, an operation section 91, and a universal cord 92.
  • an insertion section 90 is inserted into a body cavity of a subject, photographs an in-vivo image of the subject, and outputs an image signal.
  • the insertion section 90 includes a distal end section 90A in which the imaging unit 1-1C is disposed, a bendable curved section 90B connected to the distal end section 90A, and a flexible section 90C connected to the curved section 90B. configured.
  • the bending portion 90B is bent by operating the operating portion 91.
  • an operating section 91 is provided with various buttons for operating the endoscope 9.
  • the light source device 81 includes, for example, a white LED. Illumination light emitted by the light source device 81 is guided to the distal end portion 90A via a universal cord 92 and a light guide (not shown) that passes through the insertion portion 90, and illuminates the subject.
  • the universal cord 92 is connected to the processor 80.
  • the processor 80 controls the entire endoscope system 8, and performs signal processing on the imaging signal output from the imaging unit 1, and outputs it as an image signal.
  • the monitor 82 displays the image signal output by the processor 80 as an endoscopic image.
  • the imaging unit 1 (1A-1C) has high reliability. Therefore, the endoscope 9 (9A-9C) having the imaging unit 1-1C has high reliability.
  • the endoscope 9 is a flexible endoscope for medical use
  • the endoscope of the present invention may be a rigid endoscope, and its use may be for industrial use.
  • the endoscope 9 may be an industrial endoscope in which the insertion section 90 and the monitor 82 are directly connected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

撮像ユニット1は、撮像素子30と、前記撮像素子30と接合された第1の配線板10と、前記第1の配線板10と接合され、後領域BAにゲート痕20Gを有する第2の配線板20と、を具備する。

Description

撮像ユニット、および、内視鏡
 本発明は、複数の配線板を具備する撮像ユニット、および、複数の配線板を具備する撮像ユニットを含む内視鏡に関する。
 内視鏡の先端部に配設された撮像素子が出力する撮像信号は、複数の配線板を経由して伝送される。
 日本国特許6013657号には、撮像素子の裏面に第1の配線板が半田接合され、第1の配線板が半田接合された第2の配線板に複数の信号ケーブルが接続されている撮像ユニットが開示されている。第2の配線板は複数の信号ケーブルを効率良く接続するために、複雑な形状を有している異形配線板である。
 成形回路デバイス(MID:Molded Interconnect Device)を用いることで、異形配線板を容易に作製できる。しかし、MIDは成形時の金型内における樹脂の流れによって、異方性が生じることがある。例えば、MIDを具備する撮像ユニットは、異方性によって、MIDと他の配線板との熱膨張率の差が大きくなって接合信頼性が低下するおそれがあった。
特許6013657号
 本発明の実施形態は、MIDを具備する信頼性の高い撮像ユニット、および、MIDを具備する信頼性の高い撮像ユニットを含む内視鏡を提供することを目的とする。
 実施形態の撮像ユニットは、前側に位置する受光面と、後側に位置する裏面と、を有し、前記裏面に複数の外部電極が配設されている撮像素子と、前側に位置する第1の面と、後側に位置する第2の面と、を有し、前記第1の面に配設されている複数の第1電極のそれぞれが、前記複数の外部電極のそれぞれと接合されており、前記第2の面に複数の第2電極が配設されている第1の配線板と、前側に位置する第3の面と、後側に位置する第4の面と、を有し、前記第3の面に配設されている複数の第3電極のそれぞれが、前記複数の第2電極のそれぞれと接合されており、後領域にゲート痕を有する第2の配線板と、を具備する。
 実施形態の内視鏡は、被検体に挿入される挿入部と、前記挿入部の先端部に設けられた撮像ユニットと、を有し、前記撮像ユニットは、前側に位置する受光面と、後側に位置する裏面と、を有し、前記裏面に複数の外部電極が配設されている撮像素子と、前側に位置する第1の面と、後側に位置する第2の面と、を有し、前記第1の面に配設されている複数の第1電極のそれぞれが、前記複数の外部電極のそれぞれと接合されており、前記第2の面に複数の第2電極が配設されている第1の配線板と、前側に位置する第3の面と、後側に位置する第4の面と、を有し、前記第3の面に配設されている複数の第3電極のそれぞれが、前記複数の第2電極のそれぞれと接合されており、後領域にゲート痕を有する第2の配線板と、を具備する。
 本発明の実施形態によれば、MIDを具備する信頼性の高い撮像ユニット、および、MIDを具備する信頼性の高い撮像ユニットを含む内視鏡を提供できる。
第1実施形態の撮像ユニットの斜視図である。 図1のII-II線にそった断面図である。 第1実施形態の撮像ユニットの斜視分解図である。 実施形態の撮像ユニットのMIDの製造方法を説明するための図である。 実施形態の撮像ユニットのMIDの製造方法を説明するための斜視図である。 実施形態の撮像ユニットのMIDの製造方法を説明するための背面図である。 第1実施形態の変形例1の撮像ユニットの斜視図である。 図6のVII-VII線にそった断面図である。 第1実施形態の変形例2の撮像ユニットの斜視図である。 第2実施形態の撮像ユニットの斜視図である。 第3実施形態の内視鏡を含む内視鏡システムの構成図である。
<第1実施形態>
 図1ー図3に示す本実施形態の撮像ユニット1は、第1の配線板10と第2の配線板20と撮像素子30と、複数の信号ケーブル60と、を具備する。
 なお、各実施形態に基づく図面は、模式的なものである。各部分の厚さと幅との関係、夫々の部分の厚さの比率および相対角度などは現実のものとは異なる。図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、一部の構成要素の図示および符号の付与を省略する。また、撮像素子30の受光面30SAが向く方向を前といい、前と反対の方向を後という。内視鏡で被写体を撮像するときには、被写体の方向が前になり、前と反対の方向が後になる。
 図1ー図3に示す本実施形態の撮像ユニット1は、前側から後側にかけて、撮像素子30、第1の配線板10、第2の配線板20の順で接続されている。
 撮像素子30は、前側に位置する受光面30SAと、受光面30SAの反対側(後側)に位置する裏面30SBと、を有する。シリコン等の半導体からなる撮像素子30の受光面30SAには、例えば、CCDまたはCMOSからなる受光回路31が形成されている。受光回路31は、複数の貫通電極(不図示)を経由して裏面30SBの複数の外部電極32と接続されている。撮像素子30は、表面照射型イメージセンサおよび裏面照射型イメージセンサのいずれでもよい。図示しないが、受光面30SAには、カバーガラスおよび撮像光学系が配設されている。
 第1の配線板10は、前側に位置する第1の面10SAと、第1の面10SAの反対側(後側)に位置する第2の面10SBと、を有する。第1の配線板10は、それぞれが表面配線および貫通配線を有する未焼成の複数のセラミックシートを積層してから焼成することによって作製されるセラミック積層配線板である。
 第1の面10SAの複数の第1電極11のそれぞれは、撮像素子30の複数の外部電極32のそれぞれと接合されている。第2の面10SBには複数の第2電極12が配設されている。
 第2の配線板20は、前側に位置する第3の面20SAと、第3の面20SAの反対側(後側)に位置する第4の面20SBと、を有する。第2の配線板20は、第4の面20SBが第3の面20SAよりも小さい異形配線板である。第3の面20SAに配設されている複数の第3電極21のそれぞれが、第1の配線板10の複数の第2電極12のそれぞれと接合されている。
 撮像素子30と第1の配線板10と第2の配線板とは、例えば、複数の半田50によって電気的に接続されている。撮像素子30と第1の配線板10とは、表面が金からなる電極が、超音波印加とともに熱を印加する熱超音波接合法によって、接合されていてもよい。
 接合面の半田50の周囲には、封止樹脂51が配設されている。封止樹脂51としては、例えば、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、ポリアミドイミド、ポリフェニレンエーテル、ポリプロピレン、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルイミド、フッ素系の熱可塑性エラストマー、ブタジエン系のゴム等を用いることができる。封止樹脂51は、側面から外光が進入するのを防止するため、遮光性を有することが好ましい。
 第2の配線板20は、第3の面20SAに、凹部C20を有する。凹部C20には、複数の電子部品40、例えば、チップコンデンサが収容されている。第2の配線板20の側面20SSの後側に設けられた複数の接合電極22のそれぞれには、複数の信号ケーブル60のそれぞれが接合されている。
 図1に示すように、撮像ユニット1は、第2の配線板20の後領域BAに位置する第4の面20SBにゲート痕20Gを有している。後領域BAは、第3の面20SAと第4の面20SBとの間隔Lに等距離(0.5L)の面を境にして、前領域FAと後領域BAとに定義したときの後領域である。
 第2の配線板20は、金型に樹脂を注入して作製される成形回路デバイス(MID)である。第2の配線板20は、後領域である第4の面20SBの中央に、樹脂が注入されたゲートG20(図4参照)の一部であるゲート痕(ゲートカット部)20Gを有する。
 図4に示すように、第2の配線板20は射出成形法を用いて作製される。第2の配線板20の形状を含む金型(不図示)に、スプールS20からゲートG20を経由して、MID樹脂が注入される。金型から外された、それぞれが第2の配線板20となる成形体は、スプールS20およびゲートG20によってつながっている。
 例えば、MID樹脂からなる成形体の表面に、レーザを照射することよって、無電解めっきの触媒活性を有する領域が形成される。その後、無電解めっき処理を行うことによって、成形体は第3電極21および接合電極22が配設された第2の配線板20となる。ゲートG20によってつながっている複数の第2の配線板20は、それぞれのゲートG20において切断されることによって、第2の配線板20に個片化される。このため、第2の配線板20は、第4の面20SBにゲート痕20Gを有する。
 なお、第2の配線板20の作製においては、成形体が、個片化されてから、レーザ照射、めっき処理が行われてもよい。また、第2の配線板20の製造方法は、2つの金型で異なる樹脂(めっきが成膜できる樹脂とめっきが成膜できない樹脂を)を成形する、いわゆる2回成形法でもよいし、マスキングと選択めっきによって配線形成を行ってもよい。
 既に説明したように、MIDは、成形時の樹脂が流れる方向(流動方向)によって構造等が配向し、機械的特性だけでなく、熱膨張率(線膨張係数)が配向方向で異なる異方性を有することがある。
 MIDの樹脂は、例えば、流動方向の熱膨張率α1が、直交方向の熱膨張率α2よりも大きい。例えば、PEEK(ポリエーテルエーテルケトン)樹脂の場合、等方体の熱膨張率α0は、75ppmであり、熱膨張率α1は,100ppm/Kであり、熱膨張率α2は,50ppm/Kである。また、パラヒドロキシ安息香酸を基本とした構造のLCP(液晶ポリマー)の場合、熱膨張率α0は、30ppmであり、熱膨張率α1は,50ppm/Kであり、熱膨張率α2は,15ppm/Kである。熱膨張率は、JIS R 1618にて測定される。
 これに対して、セラミック配線板である第1の配線板10の熱膨張率は例えば、15ppm/Kである。なお、シリコンからなる撮像素子30の熱膨張率は、例えば、4ppm/Kである。
 第2の配線板20の熱膨張率は、第1の配線板10の熱膨張率と異なる。このため、温度変化時に第2の配線板20と第1の配線板10との接合面(半田50)には応力が印加される。
 図5Aおよび図5Bに示すように、第2の配線板20は、第4の面20SBの中央にゲートG20を有する。言い替えれば、ゲート痕G20は、第3の面20SAの最外周の四隅の接合部50A-50D(半田50)から最も離れた位置に配置される。すなわち、第3の面20SAの四隅の接合部50A-50Dからゲート痕G20までの距離は同じである。言い替えれば、第1の配線板10の複数の第2電極12と第2の配線板20の複数の第3電極21との複数の接合部(半田50)のうち、最も外側に配置される4ヶ所の接合部50A-50Dは、ゲート痕G20の間の距離が等しい。
 第3の面20SAの四隅の接合部50A-50Dには、構造上最も応力が作用しやすい。しかし、ゲート痕G20は、第3の面20SAの四隅から離れているため、射出成形時に樹脂にかかる圧力が小さく、かつ、樹脂が冷えるのに時間がかかる。このため、第3の面20SAは、熱膨張率の異方性が小さくなる。
 第4の面20SBの中央にゲートG20を有する第2の配線板20は、構造上最も応力が作用しやすい第3の面20SAの四隅の異方性を最も小さくでき、また四隅の異方性のバラツキを低減することができる。
 第2の配線板20は、異方性を考慮して成形時のゲートの位置が設定されている。すなわち、第1の配線板10との接合面である第3の面20SAの熱膨張率が、異方性によって大きくなったり、ばらついたりすることはない。
 第2の配線板20が異方性を有していないと、第2の配線板20は、第1の配線板20との熱膨張率の差の最大値が小さくなる。例えば、第2の配線板20(PEEK)に異方性がある場合は、第2の配線板20の熱膨張率α1と第1の配線板10(セラミック)の熱膨張率の差は、最大で85ppm/Kになる。これに対して、第2の配線板20に異方性がない場合は、第2の配線板20の熱膨張率α0と第1の配線板10の熱膨張率の差は60ppm/Kである。このため、温度変化時に発生する接合面にかかる応力は小さく、撮像ユニット1は、信頼性が高い。
 なお、異方性を有していないとは、例えば、第3の面20SAの面内方向の熱膨張率に対して、第3の面20SAに垂直方向の熱膨張率が、70%超130%未満であることをいう。第2の配線板20の異方性が前記範囲内であれば、撮像ユニット1は、信頼性が高い。
<第1実施形態の変形例>
 第1実施形態の変形例1、2の撮像ユニット1A、1Bは、撮像ユニット1と類似し同じ効果を有する。このため、同じ機能の構成要素には同じ符号を付し説明は省略する。
<第1実施形態の変形例1>
 図6および図7に示す本変形の撮像ユニット1Aでは、第2の配線板20Aの接合電極22は、側面20SSから第4の面20SBまで延設されている。なお、図6では、信号ケーブル60は図示していない。また、第2の配線板20Aの第4の面20SBは、凹部R20を有する。そして、ゲート痕20Gは、凹部R20の底面に位置している。
 このため、ゲートG20から第2の配線板20Aを切り離すとき、すなわち、ゲートカットするときに、接合電極22にまで切り離す力が働いたとしても、凹部R20の壁に守られ、接合電極22は損傷されるおそれがない。
 図7に示すように、凹部R20の深さDR20に対して、ゲート痕20Gの凹部R20の底面からの高さHG20は、小さい。言い替えれば、ゲート痕20Gの後側は、凹部R20の中に位置している。例えば、凹部R20の深さDR20は、0.2mmであり、ゲート痕20Gの高さHG20は、0.1mmである。言い替えれば、第2の配線板20Aは、第4の面20SBから突出しているゲート痕20Gを有していない。
 このため、撮像ユニット1Aはハンドリングの際に、ハンドリングツール、治具、工具がゲート痕20Gと接触することがない。よって、撮像ユニット1Aは撮像ユニット1よりも、ハンドリングが容易であるため、製造が容易である。
 なお、ゲートカット時に、ゲートG20が完全に除去され、第4の主面20SBの一部に切り欠きが形成されていてもよい。すなわち、ゲート痕20Gは、ゲートG20の一部(有体物)ではなく、ゲートG20があった痕跡(無体物)でもよい。
<第1実施形態の変形例2>
 図8に示す本変形の撮像ユニット1Bでは、撮像素子30Bは、受光回路を有する半導体撮像素子30に信号処理を行う半導体回路を有する2つの半導体回路素子35A、35Bが接合された、積層撮像素子30Bである。積層撮像素子30Bでは、後側の半導体回路素子35Bの裏面の電極が外部電極である。
 また、第2の配線板20Bは、略直方体であり、異形配線板ではない。第2の配線板20Bの側面20SSに電子部品40が実装されている。さらに、第2の配線板20BのMID樹脂は、母材である樹脂よりも熱伝導率の高いフィラーが含まれている。樹脂よりも高い熱伝導率の非導電性フィラーとしては、SiO、SiC、AlN、ZnO、Si、BN、Alを、例示できる。
 フィラーが含まれている樹脂は、フィラーが含まれていない樹脂よりも、流動方向によって大きな熱膨張率の異方性が発生することがある。しかし、第2の配線板20Bは、第2の配線板20と第4の面20SBの中央にゲート痕20Gを有しているため、異方性を有していない。
 撮像ユニット1Bの第2の配線板20Bは、熱伝導率の高いフィラーが含まれているため、撮像素子30等が発生した熱を、ケーブル60等を経由して放熱しやすい。
 このため、撮像ユニット1Bは、撮像ユニット1よりも信頼性が高い。
 第2の配線板20Bは、第4の面20SBの中央にゲート痕20Gを有していた。しかし、図8に示すように、第2の配線板20Bは、第4の面20SBの中心領域CAにゲート痕20Gを有していてもよい。中心領域CAとは、第4の面20SBの中央と外縁とを結ぶ複数の直線のそれぞれを2等分する複数の点によって構成される線よりも、中央に位置する領域を意味する。第2の配線板20、20Aも第4の面20SBの中心領域CAにゲート痕20Gを有していてもよい。
<第2実施形態>
 以上の説明のように、第2の配線板20、20A、20Bは、異方性が生じないようにゲート痕20Gを第4の面20SBの略中央に有していた。
 図9に示すように、本実施形態の撮像ユニット1Cは、第2の配線板20Cの側面20STの後領域BAにゲート痕20Gを有している。側面20STは側面20SSと直交している。後領域BAは、第3の面20SAと第4の面20SBとの間隔Lに等距離(0.5L)の面を境にして、前領域FAと後領域BAとに定義したときの後領域である。
 第2の配線板20Cは、後領域BAにゲート痕20Gを有しているため、前側にゲート痕20Gを有している第2の配線板よりも、熱膨張率異方性が生じにくい。このため、第2の配線板20Cは、第1の配線板10との熱膨張率差が大きくなることが防止されている。
 このため、第2の配線板20Cの後領域BAにゲート痕20Gを有している撮像ユニット1Cは、第2の配線板20の前側にゲート痕20Gを有している撮像ユニットよりも信頼性が高い。
 なお、第2の配線板が側面の後領域BAに凹部を有し、第2の配線板20Aのように、凹部の底面にゲート痕20Gを有していてもよいことは言うまでも無い。
<第3実施形態>
 図10に示す内視鏡システム8は、本実施形態の内視鏡9と、プロセッサ80と、光源装置81と、モニタ82と、を具備する。内視鏡9は、挿入部90と操作部91とユニバーサルコード92とを有する。内視鏡9は、挿入部90が被検体の体腔内に挿入されて、被検体の体内画像を撮影し画像信号を出力する。
 挿入部90は、撮像ユニット1-1Cが配設されている先端部90Aと、先端部90Aに連設された湾曲自在な湾曲部90Bと、湾曲部90Bに連設された軟性部90Cとによって構成される。湾曲部90Bは、操作部91の操作によって湾曲する。
 内視鏡9の挿入部90の基端部には、内視鏡9を操作する各種ボタン類が設けられた操作部91が配設されている。
 光源装置81は、例えば、白色LEDを有する。光源装置81が出射する照明光は、ユニバーサルコード92および挿入部90を挿通するライトガイド(不図示)を経由することによって先端部90Aに導光され、被写体を照明する。
 ユニバーサルコード92はプロセッサ80に接続される。プロセッサ80は内視鏡システム8の全体を制御するとともに、撮像ユニット1が出力する撮像信号に信号処理を行い画像信号として出力する。モニタ82は、プロセッサ80が出力する画像信号を内視鏡画像として表示する。
 すでに説明したように、撮像ユニット1(1A-1C)は、信頼性が高い。このため、撮像ユニット1-1Cを有する内視鏡9(9A-9C)は、信頼性が高い。
 なお、内視鏡9は医療用の軟性内視鏡であるが、本発明の内視鏡は硬性内視鏡でもよいし、その用途は工業用でもよい。内視鏡9は、挿入部90とモニタ82とが直結されている工業用内視鏡でもよい。
 本発明は上述した実施形態等に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等ができる。
1、1A-1C・・・撮像ユニット
8・・・内視鏡システム
9、9A-9C・・・内視鏡
10・・・第1の配線板
20・・・第2の配線板
20G・・・ゲート痕
22・・・接合電極
30・・・撮像素子
31・・・受光回路
32・・・外部電極
40・・・電子部品
50・・・半田(接合部)
51・・・封止樹脂
60・・・信号ケーブル
80・・・プロセッサ
81・・・光源装置
82・・・モニタ
90・・・挿入部
90A・・・先端部
90B・・・湾曲部
90C・・・軟性部
91・・・操作部
92・・・ユニバーサルコード
G20・・・ゲート
S20・・・スプール

Claims (13)

  1.  前側に位置する受光面と、後側に位置する裏面と、を有し、前記裏面に複数の外部電極が配設されている撮像素子と、
     前側に位置する第1の面と、後側に位置する第2の面と、を有し、前記第1の面に配設されている複数の第1電極のそれぞれが、前記複数の外部電極のそれぞれと接合されており、前記第2の面に複数の第2電極が配設されている第1の配線板と、
     前側に位置する第3の面と、後側に位置する第4の面と、を有し、前記第3の面に配設されている複数の第3電極のそれぞれが、前記複数の第2電極のそれぞれと接合されており、後領域にゲート痕を有する第2の配線板と、を具備することを特徴とする撮像ユニット。
  2.  前記第2の配線板の後領域は、前記第3の面および前記第4の面と等距離の面を境にして、前側と後側とに定義したときの後側の領域であることを特徴とする請求項1に記載の撮像ユニット。
  3.  前記ゲート痕は、前記第3の面と平行な前記第4の面の中心領域に位置することを特徴とする請求項2に記載の撮像ユニット。
  4.  前記第1の配線板の前記複数の第2電極と前記第2の配線板の前記複数の第3電極との複数の接合部のうち、最も外側に配置される4ヶ所の接合部は、前記ゲート痕との間の距離が等しいことを特徴とする請求項2に記載の撮像ユニット。
  5.  前記第4の面は、凹部を有し、
     前記ゲート痕は、前記凹部の底面に位置することを特徴とする請求項3に記載の撮像ユニット。
  6.  前記ゲート痕の後側は、前記凹部の中に位置することを特徴とする請求項5に記載の撮像ユニット。
  7.  前記第2の配線板は、前記第4の面と交わる第5の面を有し、
     前記ゲート痕は、前記第5の面に位置することを特徴とする請求項2に記載の撮像ユニット。
  8.  前記第2の配線板は、成形回路デバイスであることを特徴とする請求項2に記載の撮像ユニット。
  9.  前記複数の第3電極のそれぞれが、前記複数の第2電極のそれぞれと、半田接合されていることを特徴とする請求項2に記載の撮像ユニット。
  10.  前記第2の配線板は、前記第4の面が前記第3の面よりも小さい異形配線板であることを特徴とする請求項2に記載の撮像ユニット。
  11.  前記第2の配線板の熱膨張率が、前記第1の配線板の熱膨張率と異なることを特徴とする請求項2に記載の撮像ユニット。
  12.  前記第2の配線板は、熱膨張率が異方性を有していないことを特徴とする請求項11に記載の撮像ユニット。
  13.  被検体に挿入される挿入部と、前記挿入部の先端部に設けられた撮像ユニットと、を有し、
     前記撮像ユニットは、
     前側に位置する受光面と、後側に位置する裏面と、を有し、前記裏面に複数の外部電極が配設されている撮像素子と、
     前側に位置する第1の面と、後側に位置する第2の面と、を有し、前記第1の面に配設されている複数の第1電極のそれぞれが、前記複数の外部電極のそれぞれと接合されており、前記第2の面に複数の第2電極が配設されている第1の配線板と、
     前側に位置する第3の面と、後側に位置する第4の面と、を有し、前記第3の面に配設されている複数の第3電極のそれぞれが、前記複数の第2電極のそれぞれと接合されており、後領域にゲート痕を有する第2の配線板と、を具備することを特徴とする内視鏡。
PCT/JP2022/018865 2022-04-26 2022-04-26 撮像ユニット、および、内視鏡 WO2023209796A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018865 WO2023209796A1 (ja) 2022-04-26 2022-04-26 撮像ユニット、および、内視鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018865 WO2023209796A1 (ja) 2022-04-26 2022-04-26 撮像ユニット、および、内視鏡

Publications (1)

Publication Number Publication Date
WO2023209796A1 true WO2023209796A1 (ja) 2023-11-02

Family

ID=88518204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018865 WO2023209796A1 (ja) 2022-04-26 2022-04-26 撮像ユニット、および、内視鏡

Country Status (1)

Country Link
WO (1) WO2023209796A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157253A (ja) * 2003-10-30 2005-06-16 Hitachi Maxell Ltd 光学素子の光軸検出方法、光学ユニットの組み立て方法、光学ユニット、光軸検出装置、光学ユニットの組立装置
JP2011111242A (ja) * 2009-11-24 2011-06-09 Fuji It Co Ltd 旋回クレーンの振れ止め制御方法及び制御装置
WO2011111242A1 (ja) * 2010-03-09 2011-09-15 オリンパス株式会社 樹脂成形品の製造方法と、樹脂成形品と、内視鏡用の樹脂成形品と、樹脂成形品を用いた内視鏡およびその樹脂成形品の製造装置
WO2018180554A1 (ja) * 2017-03-31 2018-10-04 オリンパス株式会社 内視鏡の先端カバーおよびこれを成型する成型用金型
WO2019207650A1 (ja) * 2018-04-24 2019-10-31 オリンパス株式会社 内視鏡用撮像装置、内視鏡、および内視鏡用撮像装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157253A (ja) * 2003-10-30 2005-06-16 Hitachi Maxell Ltd 光学素子の光軸検出方法、光学ユニットの組み立て方法、光学ユニット、光軸検出装置、光学ユニットの組立装置
JP2011111242A (ja) * 2009-11-24 2011-06-09 Fuji It Co Ltd 旋回クレーンの振れ止め制御方法及び制御装置
WO2011111242A1 (ja) * 2010-03-09 2011-09-15 オリンパス株式会社 樹脂成形品の製造方法と、樹脂成形品と、内視鏡用の樹脂成形品と、樹脂成形品を用いた内視鏡およびその樹脂成形品の製造装置
WO2018180554A1 (ja) * 2017-03-31 2018-10-04 オリンパス株式会社 内視鏡の先端カバーおよびこれを成型する成型用金型
WO2019207650A1 (ja) * 2018-04-24 2019-10-31 オリンパス株式会社 内視鏡用撮像装置、内視鏡、および内視鏡用撮像装置の製造方法

Similar Documents

Publication Publication Date Title
US20200337539A1 (en) Image pickup apparatus, endoscope, and method of manufacturing image pickup apparatus
US9462933B2 (en) Image pickup unit for endoscope
US10574866B2 (en) Imaging unit and endoscope apparatus
US11627240B2 (en) Image pickup apparatus for endoscope, endoscope, and method of producing image pickup apparatus for endoscope
US11323598B2 (en) Image pickup apparatus, method of manufacturing image pickup apparatus, and endoscope
US11000184B2 (en) Image pickup module, fabrication method for image pickup module, and endoscope
US10356907B2 (en) Endoscope, electronic unit and method for manufacturing electronic unit
US20170255001A1 (en) Imaging unit, endoscope, and method of manufacturing imaging unit
CN113490449A (zh) 内窥镜的前端单元及内窥镜
WO2019207650A1 (ja) 内視鏡用撮像装置、内視鏡、および内視鏡用撮像装置の製造方法
WO2023209796A1 (ja) 撮像ユニット、および、内視鏡
US20230291988A1 (en) Image pickup unit, method of manufacturing image pickup unit, and endoscope
US10838194B2 (en) Optical transmission module and endoscope
US11133341B2 (en) Image pickup apparatus and manufacturing method of image pickup apparatus
WO2022264337A1 (ja) 撮像ユニット、および、内視鏡
US11876107B2 (en) Image pickup apparatus for endoscope and endoscope
WO2023243271A1 (ja) 半導体装置
JP7430294B2 (ja) 撮像ユニット、内視鏡、および、撮像ユニットの製造方法
JP7149489B2 (ja) 固体撮像装置
WO2021152658A1 (ja) 撮像装置、および、内視鏡
JP7270225B2 (ja) 固体撮像装置
JP2019076358A (ja) 撮像モジュール、内視鏡、撮像モジュールの製造方法
WO2023228372A1 (ja) 撮像ユニット及び内視鏡
WO2023021669A1 (ja) 撮像モジュール、内視鏡、および、撮像モジュールの製造方法
WO2020115813A1 (ja) 半導体装置、内視鏡、および、半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940076

Country of ref document: EP

Kind code of ref document: A1