WO2023207855A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023207855A1
WO2023207855A1 PCT/CN2023/090114 CN2023090114W WO2023207855A1 WO 2023207855 A1 WO2023207855 A1 WO 2023207855A1 CN 2023090114 W CN2023090114 W CN 2023090114W WO 2023207855 A1 WO2023207855 A1 WO 2023207855A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
service
network element
flow
service flow
Prior art date
Application number
PCT/CN2023/090114
Other languages
English (en)
French (fr)
Inventor
朱强华
高国娟
周汉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023207855A1 publication Critical patent/WO2023207855A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • H04W28/0967Quality of Service [QoS] parameters

Definitions

  • the present application relates to the field of wireless communications, and in particular, to communication methods and devices.
  • the fifth-generation mobile communications (5th-generation, 5G) network can be simulated as a virtual bridge and integrated into a time-sensitive network (TSN).
  • the centralized network configuration (CNC) network element in TSN can collect 5G virtual bridge information through the application function (AF) network element, such as terminal-side port information, user plane function (user plane function) , UPF) side port information, neighbor node discovery information and transmission delay information between port pairs, etc. Therefore, the CNC network element can know the topology of the TSN user plane including the 5G virtual bridge. Subsequently, if the CNC network element determines that it is necessary to configure a 5G virtual bridge to schedule TSN flows based on the topology, the CNC network element can send configuration information to the AF network element.
  • AF application function
  • This configuration information includes flow-based filtering and policy (per-stream filtering and policing, PSFP) information and packet forwarding information.
  • the AF network element can determine whether the TSN flow is an end-to-end service flow based on the inbound port information and outbound port information in the packet forwarding information. If the TSN flow is an end-to-end service flow, the AF network element can perform quality of service (QoS) decomposition on the end-to-end service flow based on the configuration information, thereby achieving deterministic transmission of the service flow.
  • QoS quality of service
  • the AF network element can determine that the service flow is an end-to-end service flow. Subsequently, the AF network element decomposes the service flow into one upstream and one or more downstream flows, performs QoS decomposition based on the PSFP information, and configures corresponding QoS parameters for the upstream and downstream flows corresponding to the ingress terminal and egress terminal. Ultimately, the transmission of this service flow can meet end-to-end QoS requirements.
  • the above method is only applicable to TSN scenarios and cannot be applied to non-TSN scenarios (that is, scenarios where the 5G network is not integrated into TSN).
  • Embodiments of the present application provide communication methods and devices, which can perform service quality decomposition on end-to-end business flows and realize deterministic transmission of business flows.
  • a communication method in a first aspect, may be a first network element; it may also be a module applied in the first network element, such as a chip or a chip system.
  • the first network element may be a network opening function network element, a delay-sensitive communication time synchronization function network element, a policy control function network element or a new network element.
  • the following description takes the execution subject as the first network element as an example.
  • the method includes: receiving a first request message from an application function network element, the first request message being used to request Allocate resources to the service flow, for example, allocate resources that comply with the service quality information for the service flow between the target terminals, so as to ensure the end-to-end communication quality between the target terminals;
  • the first request message includes the type of the service flow information, the information of the target terminal set and the service quality information of the service flow; when the type information indicates that the service flow is an end-to-end service flow, the service quality decomposition information is obtained according to the information of the target terminal set, and the service quality decomposition information includes the entry Access information of the terminal and access information of the egress terminal; decompose the service quality information of the business flow according to the service quality decomposition information to obtain uplink service quality information and downlink service quality information; trigger the network to configure the entrance terminal according to the uplink service quality information session, and configure the session of the egress terminal according to the downlink quality of service information; wherein, the session of the ingress terminal includes
  • the first network element can obtain the service quality information of the service flow, the access information of the ingress terminal, and the access information of the egress terminal.
  • the access information of the ingress terminal and the access information of the egress terminal Decompose the service quality information of the business flow to obtain the uplink service quality information and downlink service quality information, and trigger the network to configure the corresponding session based on the uplink service quality information and downlink service quality information to achieve the service quality in the session of the entrance terminal.
  • the above method can perform service quality decomposition on end-to-end business flows and achieve deterministic transmission of business flows.
  • the first network element considers the access information of the ingress terminal and the access information of the egress terminal when doing service quality decomposition.
  • the above information can represent the topology of the network to which the ingress terminal and egress terminal belong. Therefore, this method can make the uplink service quality information and downlink service quality information determined by the first network element more reasonable, thereby making it easier for the transmission of the service flow to meet the service quality requirements.
  • triggering the network to configure the session of the ingress terminal according to the uplink quality of service information and configuring the session of the egress terminal according to the downlink quality of service information includes: sending a second request message, the second The request message includes the address of the ingress terminal and the uplink quality of service information; and a third request message is sent, the third request message includes the address of the egress terminal and the downlink quality of service information.
  • the first network element can configure the session of the ingress terminal through the second request message, and configure the session of the egress terminal through the third request message.
  • the second request message and the third request message also include local switching indication information.
  • the local switching indication information is used to indicate that the service flow adopts local switching or cross-user plane functional network element switching. transmission method.
  • the local switching or cross-N19 switching function of the user plane functional network element can be activated, and a specific packet detection rule (PDR) or forwarding action rule (forwarding action rule) can be configured on the user plane functional network element.
  • PDR packet detection rule
  • forwarding action rule forwarding action rule
  • FAR forwarding action rule
  • the user plane functional network element forwards packet to other user plane functional network elements through the N19 tunnel, so that other user plane functional network elements can send the packet to the connection PDU session to the user plane functional network element).
  • the access information of the entrance terminal includes: the location information of the entrance terminal and the identity of the anchor user plane function network element corresponding to the session of the entrance terminal; and the access information of the exit terminal.
  • the incoming information includes: the location information of the egress terminal and the identity of the anchor user plane functional network element corresponding to the session of the egress terminal.
  • the first network element can decompose the service quality information of the service flow according to the above information.
  • the location information of the ingress terminal, the identity of the anchor user plane functional network element corresponding to the session of the ingress terminal, the location information of the egress terminal, and the identity of the anchor user plane functional network element corresponding to the session of the egress terminal can reflect the network topology. situation, so the service quality decomposition based on the above information can make the decomposition results more reasonable, making it easier for the transmission of business flows to meet service quality requirements.
  • the service quality information of the service flow includes the delay requirement of the service flow; the uplink service quality information includes the delay in the upstream direction of the service flow; the downlink service quality information includes the downlink service flow of the service flow.
  • the delay in the upstream direction; and the sum of the delay in the upstream direction of the service flow and the delay in the downstream direction of the service flow is less than or equal to the delay requirement of the service flow.
  • the delay in the upstream direction of the service flow can be obtained according to the delay requirement of the service flow, and the delay in the downstream direction of the service flow can be obtained according to the delay requirement of the service flow and the delay in the upstream direction of the service flow, thereby achieving Decomposition of business flow delays.
  • the access information of the entrance terminal also includes: the residence time of the entrance terminal and the residence time of the anchor user plane function network element corresponding to the session of the entrance terminal; the egress terminal The access information also includes: the residence time of the egress terminal and the residence time of the anchor user plane functional network element corresponding to the session of the egress terminal.
  • the first network element can also combine the residence time of the entrance terminal, the residence time of the anchor user plane function network element corresponding to the session of the entrance terminal, the residence time of the egress terminal, and the session of the egress terminal.
  • the residence time of the corresponding anchor user plane functional network element is used to decompose the service quality information, making the decomposed service quality information more reasonable.
  • the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, the residence time of the entrance terminal, the residence time of the exit terminal and the session correspondence of the entrance terminal is less than or equal to the delay requirement of the service flow.
  • the delay in the upstream direction of the service flow can be obtained according to the delay requirements of the service flow, the delay in the upstream direction of the service flow, the residence time of the entrance terminal, and the delay of the egress terminal.
  • the dwell time and the dwell time of the anchor user plane functional network element corresponding to the session of the entrance terminal are used to obtain the delay of the service flow in the downstream direction, thereby realizing the decomposition of the delay of the service flow.
  • the service quality information of the service flow includes the packet arrival time of the service flow; the uplink service quality information includes the packet arrival time of the upstream direction of the service flow.
  • the packet arrival time is the same as the packet arrival time of the service flow;
  • the downlink quality of service information includes the packet arrival time in the downstream direction of the service flow, and the packet arrival time in the downstream direction of the service flow is determined by the packet arrival time in the upstream direction of the service flow.
  • the sum of the arrival time of the message and the delay in the upstream direction of the service flow is determined.
  • the packet arrival time in the upstream direction of the service flow can be obtained according to the packet arrival time of the service flow, and the packets in the downstream direction of the service flow can be obtained according to the delay requirements of the service flow and the delay in the upstream direction of the service flow. Arrival time, thereby achieving the decomposition of service quality information of business flows.
  • the service quality decomposition information also includes reports between the anchor user plane functional network element corresponding to the session of the ingress terminal and the anchor user plane functional network element corresponding to the session of the egress terminal. File transfer time.
  • the first network element can also be combined with the user plane function to transmit messages between network elements. Time is used to decompose service quality information, making the decomposition results more accurate.
  • the service quality information of the service flow includes the delay requirement of the service flow; the uplink service quality information includes the delay in the upstream direction of the service flow; the downlink service quality information includes the downlink service flow of the service flow.
  • the delay in the upstream direction; the sum of the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, and the packet transmission time is less than or equal to the delay requirement of the service flow.
  • the delay in the upstream direction of the service flow can be obtained according to the delay requirements of the service flow
  • the delay in the downstream direction of the service flow can be obtained according to the delay requirements of the service flow, the delay in the upstream direction of the service flow and the message transmission time. Delay, thereby realizing the decomposition of delay of business flow.
  • the service quality information of the service flow includes the packet arrival time of the service flow; the uplink service quality information includes the packet arrival time of the upstream direction of the service flow.
  • the packet arrival time is the same as the packet arrival time of the service flow;
  • the downlink quality of service information includes the packet arrival time in the downstream direction of the service flow, and the packet arrival time in the downstream direction of the service flow is determined by the packet arrival time in the upstream direction of the service flow. It is determined by the sum of the message arrival time, the upstream delay of the service flow and the message transmission time.
  • the packet arrival time in the upstream direction of the service flow can be obtained based on the packet arrival time of the service flow, and the downstream service flow can be obtained based on the delay requirements of the service flow, the delay in the upstream direction of the service flow and the message transmission time.
  • the packet arrival time in the row direction is used to decompose the service quality information of the business flow.
  • the first request message also includes first event indication information, and the first event indication information indicates at least one of the following: monitoring of average delay, service of packet delay budget Quality notification monitoring, quality of service notification monitoring for guaranteed bit rate or quality of service notification monitoring for packet error rate; the second request message also includes the first event indication information; the third request message also includes the first event Instructions.
  • the first network element can trigger the network element to monitor events related to service quality, so as to determine whether the decomposition of the service quality information is appropriate based on the information fed back by event monitoring.
  • the method further includes: receiving first notification information for the second request message, where the first notification information includes at least one of the following: an average delay in the upstream direction of the service flow, the Indication information that the packet delay budget in the upstream direction of the service flow is no longer met, that the guaranteed bit rate in the upstream direction of the service flow is no longer met, or that the packet error rate in the upstream direction of the service flow is no longer met; Receive second notification information for the third request message, where the second notification information includes at least one of the following: the average delay in the downstream direction of the service flow, and an indication that the packet delay budget in the downstream direction of the service flow is no longer met.
  • indication information that the guaranteed bit rate in the downstream direction of the service flow is no longer satisfied or indication information that the packet error rate in the downstream direction of the service flow is no longer satisfied adjust the uplink service quality information according to the first notification information; or, The downlink service quality information is adjusted according to the second notification information; or the uplink service quality information and the downlink service quality information are adjusted according to the first notification information and the second notification information.
  • the first network element can also adjust the uplink service quality information and downlink service quality information originally obtained by decomposing the service quality information according to the parameters obtained by the monitoring event, so that the adjusted service quality information is more appropriate. This further enables the transmission of business flows to meet service quality requirements.
  • the first request message also includes flow information of the service flow, and the flow information of the service flow includes an IP quintuple or an Ethernet packet header information address.
  • the first network element can determine the source of the service flow based on the flow information of the service flow. address and destination address in order to subsequently trigger the session of the network configuration entry terminal and the session of the exit terminal.
  • the second request message and the third request message also include flow information of the service flow, and the flow information of the service flow includes an IP quintuple or an Ethernet packet header information address.
  • the first network element can trigger the network to configure the session of the ingress terminal through the second request message, and configure the session of the egress terminal through the third request message.
  • a communication method in a second aspect, may be a first network element; it may also be a module applied in the first network element, such as a chip or a chip system.
  • the communication device that executes the method may be an application function network element; it may also be a module applied in the application function network element, such as a chip or a chip system.
  • the method includes: decomposing the service quality information of the business flow to obtain initial service quality information.
  • the business flow is an end-to-end service flow, wherein the initial service quality information includes uplink initial service quality information or downlink initial service quality information; Send a fourth request message.
  • the fourth request message includes the address of the first terminal, the initial quality of service information and second event indication information.
  • the second event indication information indicates monitoring of average delay and message delay. Budgeted service quality notification monitoring, wherein when the initial service information includes uplink initial service quality information, the first terminal is the entry terminal of the service flow, and when the initial service information includes downlink initial service quality information, the first terminal The terminal is the egress terminal of the service flow; receives third notification information for the fourth request message, and if the initial quality of service information includes uplink initial quality of service information, the third notification information includes the average time in the upstream direction of the business flow.
  • the third notification information includes indication information indicating that the average delay in the upstream direction of the service flow and the packet delay budget in the upstream direction of the service flow no longer meet, or, if the initial service quality information includes downlink initial service quality information, then the third notification information includes the average delay in the downstream direction of the service flow, or the third notification information includes the average delay in the downstream direction of the service flow and the packet delay budget in the downstream direction of the service flow. re-satisfied indication information; adjust the initial service quality information according to the third notification information to obtain target service quality information, where the target service quality information includes uplink target service quality information and downlink target service quality information.
  • the uplink initial service quality information or the downlink initial service quality information can be allocated first, triggering the network to configure the corresponding service quality flow, and also instructing to monitor events related to the service quality information. Therefore, suitable uplink target service quality information and suitable downlink target service quality information can also be allocated according to the parameters obtained from network monitoring events, and through dynamic adjustment, the transmission of the business flow can meet the service quality requirements.
  • the fourth request message further includes local switching indication information, and the local switching indication information is used to indicate that the service flow is transmitted in a local switching or cross-user plane functional network element switching manner.
  • the local switching or cross-N19 switching function of the user plane functional network element can be activated, and routing rules such as PDR or FAR can be configured on the user plane functional network element so that the user plane functional network element supports local forwarding (that is, without going through DN, the user plane functional network element directly forwards the message between two PDU sessions or multiple PDU sessions connected to this user plane functional network element) or forwards across N19 (that is, without going through the DN, the user plane functional network element directly forwards the message The message is forwarded to other user plane functional network elements through the N19 tunnel, so that other user plane functional network elements send the message to the PDU session connected to the user plane functional network element).
  • routing rules such as PDR or FAR can be configured on the user plane functional network element so that the user plane functional network element supports local forwarding (that is, without going through DN, the user plane functional network element directly forwards the message between two PDU sessions or multiple PDU sessions connected to this user plane functional network element) or forwards across N19 (that is, without going through the DN
  • the method before decomposing the service quality information of the business flow to obtain the initial service quality information, the method further includes: receiving a fifth request message from the application function network element, where the fifth request message includes The type information of the business flow, the service quality information of the business flow and the second event indication information, the business The flow type information indicates that the service flow is an end-to-end service flow.
  • the service flow can be determined to be an end-to-end service flow, and the service quality information can be obtained, so that the service quality information can be decomposed into service quality.
  • the service quality information of the service flow includes the delay requirement of the service flow; if the initial service quality information is uplink initial service quality information, the uplink initial service quality information includes the service flow The delay in the upstream direction, the delay in the upstream direction of the service flow is obtained according to the first preset rule and the delay requirement of the service flow; or, if the initial quality of service information is the initial downlink quality of service information, then the downlink The initial service quality information includes the downstream direction delay of the service flow, and the downstream direction delay of the service flow is obtained according to the second preset rule and the delay requirement of the service flow.
  • the delay in the upstream direction of the service flow can be obtained according to the first preset rule and the delay requirement of the service flow to achieve initial service quality decomposition.
  • the delay in the downstream direction of the service flow is obtained according to the second preset rule and the delay requirement of the service flow to achieve initial service quality decomposition.
  • the service quality information of the service flow also includes the packet arrival time of the service flow; the uplink initial service quality information also includes the packet arrival time of the upstream direction of the service flow.
  • the arrival time of packets in the upstream direction is the same as the packet arrival time of this service flow.
  • the packet arrival time in the upstream direction of the service flow can be determined based on the packet arrival time of the service flow to achieve initial service quality decomposition.
  • a communication device for implementing the above method.
  • the communication device may be the first network element in the first aspect, or a device including the first network element; or, the communication device may be the first network element/application function network element in the second aspect, or A device including the above-mentioned first network element/application function network element.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method.
  • the modules, units, or means can be implemented by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device may include a processing module and a transceiver module.
  • This processing module can be used to implement the processing functions in any of the above aspects and any possible implementation manner thereof.
  • the processing module may be, for example, a processor.
  • the transceiver module which may also be called a transceiver unit, is used to implement the sending and/or receiving functions in any of the above aspects and any possible implementation manner thereof.
  • the transceiver module can be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module includes a sending module and a receiving module, respectively used to implement the sending and receiving functions in any of the above aspects and any possible implementation thereof.
  • a fourth aspect provides a communication device, including: a processor; the processor is configured to be coupled to a memory, and after reading instructions in the memory, execute the method as described in any of the above aspects according to the instructions.
  • the communication device may be the first network element in the first aspect, or a device including the first network element; or, the communication device may be the first network element/application function network element in the second aspect, or A device including the above-mentioned first network element/application function network element.
  • the communication device further includes a memory, and the memory is used to store necessary program instructions and data.
  • the communication device is a chip or a chip system.
  • the communication device when it is a chip system, it may be composed of a chip, or may include a chip and other discrete devices. pieces.
  • a communication device including: a processor and an interface circuit; the interface circuit is used to receive a computer program or instructions and transmit them to the processor; the processor is used to execute the computer program or instructions to enable the communication
  • the device performs the method described in any of the above aspects.
  • the communication device is a chip or a chip system.
  • the communication device when it is a chip system, it may be composed of a chip, or may include a chip and other discrete devices.
  • a computer-readable storage medium In a sixth aspect, a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium, and when run on a computer, the computer can perform the method described in any of the above aspects.
  • a seventh aspect provides a computer program product containing instructions that, when run on a computer, enable the computer to perform the method described in any of the above aspects.
  • the technical effects brought by any possible implementation method in the third to seventh aspects can be referred to the technical effects brought by any one of the above first to second aspects or different possible implementation methods in any aspect. The technical effects will not be repeated here.
  • Figure 1A is a schematic diagram of the 5G communication system architecture
  • Figure 1B is a schematic diagram 2 of the 5G communication system architecture
  • Figure 2A is a schematic diagram of the user plane architecture of 5GLAN service
  • Figure 2B is a schematic diagram of the transmission process of end-to-end unicast service flow
  • Figure 2C is a schematic diagram of the transmission process of the end-to-end multicast service flow
  • Figure 3 is a schematic diagram of a user-level N4 session
  • Figure 4 is a schematic diagram of an N4 session at the group level
  • FIG. 5 is a schematic diagram of the communication system architecture provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram 2 of the communication system architecture provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart 1 of the communication method provided by the embodiment of the present application.
  • FIG. 9 is a schematic flowchart 2 of the communication method provided by the embodiment of the present application.
  • Figure 10 is a schematic flowchart three of the communication method provided by the embodiment of the present application.
  • FIG 11 is a schematic flowchart 4 of the communication method provided by the embodiment of the present application.
  • Figure 12 is a schematic flow chart 5 of the communication method provided by the embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 14 is a schematic second structural diagram of a communication device provided by an embodiment of the present application.
  • the terminal in the embodiment of the present application is a device with wireless transceiver function.
  • Terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal may also be called a terminal device, and the terminal device may be a user equipment (UE). Therefore, in the embodiment of the present application, the terminal and the UE may be replaced with each other.
  • UE includes handheld devices, vehicle-mounted devices, wearable devices or computing devices with wireless communication functions.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver functions.
  • the terminal device can also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in driverless driving, a wireless terminal in telemedicine, or a smart terminal.
  • VR virtual reality
  • AR augmented reality
  • the terminal may be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • a wearable device is not only a hardware device, but also a device that achieves powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include devices that are full-featured, large in size, and can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, as well as devices that only focus on a certain type of application function and need to be integrated with other devices such as Devices used with smartphones, such as various smart bracelets, smart jewelry, etc. for monitoring physical signs.
  • the terminal can be a terminal in the Internet of things (IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, thereby realizing the realization of human An intelligent network that interconnects machines and things.
  • the terminal in this application may be a terminal in machine type communication (MTC).
  • MTC machine type communication
  • the mobile networks that terminals can access include second-generation mobile communications (2th-generation, 2G), third-generation mobile communications (3th-generation, 3G), or fourth-generation mobile communications (4h-generation , 4G) networks, they provide business data transmission channels for terminal call services, video services, web page services, etc.
  • the 5G communication system architecture developed for the 3rd generation partnership project (3GPP) standard.
  • the 5G communication system shown in Figure 1A includes next-generation terminals (NextGen UE), next-generation access network (NextGen(R)AN) equipment that communicates with the next-generation terminal, and next-generation access network equipment that communicates with the next-generation access network equipment.
  • NextGen Core next-generation access network
  • DN data network
  • next-generation terminals, next-generation access network equipment and next-generation core network equipment are the main components of the 5G communication architecture. Logically, they can be divided into two parts: the user plane and the control plane.
  • the control plane is mainly responsible for the management of the mobile network
  • the user plane is mainly responsible for the transmission of business data.
  • the NG2 reference point is located at the next generation access
  • the NG3 reference point is between the control plane of the next-generation access network equipment and the control plane of the next-generation core network equipment.
  • the NG6 reference point is between the user plane of the next-generation access network equipment and the user plane of the next-generation core network equipment.
  • the NG6 reference point is located on the next-generation core network. Between the user plane of the device and the DN. Next generation terminals, next generation access network equipment, next generation core network equipment and DN are introduced.
  • the next generation terminal is the entrance for mobile users to interact with the network. It can provide basic computing capabilities and storage capabilities, display business windows to users, and accept user operation inputs. Next-generation terminals can use new air interface technology to establish signal connections and data connections with access network equipment, thereby transmitting control signals and business data to the mobile network.
  • the next-generation access network equipment is similar to the base station in the traditional network. It is deployed close to the terminal to provide network access functions for authorized users in specific areas, and can determine transmission tunnels of different qualities according to user levels, business needs, etc. User data. Next-generation access network equipment can manage its own resources, utilize them rationally, provide access services to terminals on demand, and is responsible for forwarding control signals and user data between terminals and the core network.
  • Next-generation core network equipment is responsible for maintaining mobile network subscription data, managing mobile network elements, and providing terminals with functions such as session management, mobility management, policy management, or security authentication. For example, when the terminal is attached, network access authentication is provided for the terminal; when the terminal has a service request, network resources are allocated to the terminal; when the terminal moves, network resources are updated for the terminal; when the terminal is idle, fast recovery is provided for the terminal mechanism; when the terminal detaches, it releases network resources for the terminal; when the terminal has service data, it provides data routing functions for the terminal, such as forwarding uplink data to the DN; or receiving the terminal's downlink data from the DN and forwarding it to the access network device, thereby sending it to the terminal.
  • data routing functions for the terminal such as forwarding uplink data to the DN; or receiving the terminal's downlink data from the DN and forwarding it to the access network device, thereby sending it to the terminal.
  • DN is a data network that provides business services to users.
  • the client is located in the terminal and the server is located in the DN.
  • DN can be a private network, such as a local area network, or an external network that is not controlled by the operator, such as the Internet. It can also be a proprietary network deployed by operators, such as providing an Internet protocol multimedia subsystem. subsystem, IMS) service network.
  • IMS Internet protocol multimedia subsystem. subsystem
  • the core network user plane network elements include UPF network elements.
  • the core network control plane network elements include authentication server function (AUSF) network elements, core network access and mobility management function (AMF) network elements, session management function, SMF) network element, network slice selection function (NSSF) network element, network exposure function (NEF) network element, network function repository function (NRF) network element, unified data management (unified data management, UDM) network element, policy control function (PCF) network element, AF network element, binding support function (BSF) network element and delay-sensitive communication time synchronization function (time sensitive communication and time synchronization function, TSCTSF) network element.
  • AUSF authentication server function
  • AMF core network access and mobility management function
  • SMF session management function
  • NEF network slice selection function
  • NEF network exposure function
  • NRF network function repository function
  • PCF policy control function
  • AF binding support function
  • BSF binding support function
  • TSCTSF delay-sensitive communication time synchronization function
  • control plane adopts a service-oriented architecture
  • the interaction between control plane network elements adopts service invocation to replace the point-to-point communication method in the traditional architecture.
  • point-to-point communication the communication interface between control plane network elements will have a specific set of messages, which can only be used by the control plane network elements at both ends of the interface during communication.
  • control plane network elements can open services to other control plane network elements for calls by other control plane network elements.
  • the functions of functional network elements in the core network are as follows:
  • the UPF network element can forward user data packets according to the routing rules of the SMF network element, such as sending uplink data to DN or other UPF network elements; forwarding downlink data to other UPF network elements or access network ((R)AN) equipment. .
  • AUSF network elements can perform security authentication of terminals.
  • AMF network elements can be responsible for terminal access management and mobility management. Responsible for terminal status maintenance, terminal reachability management, non-mobility management (MM) non-access stratum (NAS) message forwarding, session management (session management, SM) N2 message forwarding .
  • MM non-mobility management
  • NAS non-access stratum
  • SM session management
  • the SMF network element can be responsible for terminal session management, allocate resources for terminal sessions, and release resources.
  • resources include session QoS, session path or forwarding rules, etc.
  • NSSF network elements can be responsible for selecting network slices for terminals.
  • NEF network elements can open network functions to third parties in the form of northbound application programming interface (API).
  • API application programming interface
  • the NRF network element can be responsible for providing other network elements with the storage function and selection function of network function entity information.
  • UDM network elements can be responsible for user subscription context management.
  • the PCF network element can be responsible for user policy management.
  • the AF network element can be responsible for application management.
  • the BSF network element can be responsible for saving the binding relationship between the protocol data unit (PDU) session information and the PCF network element, and selects a single network slice based on the PDU session information such as the data network name (DNN) and the PCF network element.
  • PDU protocol data unit
  • DNN data network name
  • Auxiliary information single network slice selection assistance information, S-NSSAI
  • UE address feedback bound PCF network element information.
  • the TSCTSF network element can be responsible for processing delay-sensitive communication QoS requests and time synchronization function requests in non-TSN scenarios.
  • the 5G communication system architecture shown in Figure 1B also includes middle and access network ((R)AN) equipment and DN.
  • access equipment refers to equipment that accesses the core network, such as base stations, broadband network gateways (BNG), aggregation switches, non-3GPP access equipment, etc.
  • Base stations can include various forms of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, access points, etc.
  • base stations can include various forms of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, access points, etc.
  • the terminal accesses the 5G network through the access network device, and the terminal communicates with the AMF network element through the N1 interface (referred to as N1); the access network device communicates with the AMF network element through the N2 interface (referred to as N2); the access network The device communicates with the UPF network element through the N3 interface (referred to as N3); the SMF network element communicates with the UPF network element through the N4 interface (referred to as N4).
  • the UPF network element can communicate with the UPF network element through the N9 or N19 interface (referred to as N9 or N19, not shown in Figure 1B out) communicates with other UPF network elements, and the UPF network element accesses the DN through the N6 interface (referred to as N6).
  • Control plane network elements can also use service-based interfaces to interact.
  • the external service interface provided by the AUSF network element can be Nausf; the external service interface provided by the AMF network element can be Namf; the external service interface provided by the SMF network element can be Nsmf; the external service interface provided by the NSSF network element It can be Nnssf; the external service interface provided by NEF network element can be Nnef; the external service interface provided by NRF network element can be Nnrf; the external service interface provided by PCF network element can be Npcf; the external service provided by UDM network element
  • the service interface provided by the AF network element can be Nudm; the service interface provided by the AF network element can be Naf, the service interface provided by the BSF network element can be Nbsf, and the service interface provided by the TSCTSF network element can be Ntsctsf.
  • the 5GLAN service is a service provided by the 5G network.
  • This service can provide private communication of Internet Protocol (Internet Protocol, IP) type or non-IP type (such as Ethernet type) for two or more terminals in a group of terminals.
  • IP Internet Protocol
  • 5GLAN services are mainly used in home communications, corporate offices, factory manufacturing, Internet of Vehicles, power grid transformation and public security agencies, etc.
  • Terminals in a group of terminals join this group due to business requirements or proprietary attributes. Terminals in this group can communicate with each other using 5GLAN services.
  • the devices in the factory form a group, and the devices in the group can send Ethernet packets to each other; the office equipment (mobile phones, computers, laptops) of employees in a department in the enterprise form a group, and send IP data to each other. Bag. If two terminals are not in the same group, they cannot communicate with each other.
  • the terminal establishes a session to the UPF network element that provides 5GLAN services, thereby accessing the UPF network element of 5GLAN.
  • the UPF network element of 5GLAN can communicate with the existing local area network (LAN) in the data network through the N6 interface; it can also associate sessions of different terminals through the internal interface of the UPF network element or the N19 connection between UPF network elements. Enable private communication.
  • LAN local area network
  • the end-to-end service flow can refer to that the ingress device and the egress device of the service flow are both terminals connected to the UPF network element.
  • the end-to-end service flow can be applied in a unicast communication scenario, a multicast/broadcast communication scenario or a general flow scenario.
  • the following takes the user plane architecture of the 5GLAN service shown in Figure 2A as an example to introduce these three scenarios respectively.
  • unicast communication is a one-to-one communication method, which can be communication between a specific entrance terminal and a specific egress terminal.
  • a specific entrance terminal For example, communication between terminal 201 and terminal 202, or communication between terminal 201 and terminal 203.
  • the end-to-end service flow applied in the unicast communication scenario may be called an end-to-end unicast service flow.
  • the entry terminal can also be called the source terminal, and the exit terminal can also be called the destination terminal.
  • FIG. 2B is a schematic diagram of the transmission process of the end-to-end unicast service flow.
  • terminal 201 establishes PDU session 1 to the UPF network element 210
  • terminal 202 establishes PDU session 2 to the UPF network element 210.
  • the UPF network element is the anchor UPF network element corresponding to the terminal's PDU session. Therefore, the UPF network element 210 is the anchor UPF network element corresponding to the PDU session 1 of the terminal 201, and the UPF network element 210 is also the anchor UPF network element corresponding to the PDU session 2 of the terminal 202.
  • terminal 201 is an ingress terminal and terminal 202 is an egress terminal, then after the end-to-end unicast service flow reaches terminal 201, it can reach terminal 202 via PDU session 1, UPF network element 210 and PDU session 2.
  • the direction of the service flow from the terminal 201 to the UPF network element 201 is the upstream direction of the service flow, and the direction of the service flow from the UPF network element 210 to the terminal 202 is the downlink direction of the service flow.
  • multicast/broadcast communication is a one-to-many communication method, and one entry terminal can send messages to multiple exit terminals.
  • a terminal can send messages to terminals in the multicast group to which it belongs.
  • the terminal that sends the message can be called a multicast source, and the terminal that receives the message can be called a multicast member.
  • multicast is directional, and the direction is from the multicast source to the multicast members.
  • Members of the 5GLAN group shown in Figure 2A include terminals 201 to 205.
  • terminals 201 to 203 are a multicast group, in which terminal 201 is the multicast source, and terminal 202 and terminal 203 are multicast members, then the multicast packets sent by terminal 201 can pass through the access network device 206 and the UPF network element. 210 is transmitted to the terminal 202, and then transmitted to the terminal 203 via the access network equipment 206, UPF network element 210, UPF network element 209 and access network equipment 207, because the terminal 204 and the terminal 205 are not multicast members of the multicast group. member, so the multicast message will not be received.
  • FIG. 2C is a schematic diagram of the transmission process of the end-to-end multicast service flow.
  • terminal 201 establishes PDU session 1 to UPF network element 210
  • terminal 202 establishes PDU session 2 to UPF network element 210
  • terminal 203 establishes PDU session 3 to UPF network element 209.
  • UPF network element 210 is the anchor UPF network element corresponding to PDU session 1 of terminal 201.
  • UPF network element 210 is also the anchor UPF network element corresponding to PDU session 2 of terminal 202.
  • UPF network element 209 is the PDU session of terminal 203. 3 corresponds to the anchor point UPF network element.
  • terminal 201 is a multicast source, terminal 202 and terminal 203 are multicast members, then for the service flow, terminal 201 is the ingress terminal, terminal 202 and terminal 203 are both egress terminals, and the end-to-end multicast service flow arrives After terminal 201, terminal 202 can be reached via PDU session 1, UPF network element 210, and PDU session 2, and terminal 203 can be reached via PDU session 1, UPF network element 210, UPF network element 209, and PDU session 3.
  • the direction of the service flow from the terminal 201 to the UPF network element 201 is the upstream direction of the service flow
  • the direction of the service flow from the UPF network element 210 to the terminal 202 is the downlink direction of the service flow
  • the service flow is from the UPF network element 209 to the terminal 203
  • the direction is the downstream direction of business flow.
  • multicast communication can also be described as multicast communication, and accordingly, a multicast group can also be described as a multicast group.
  • the end-to-end service flow applied in multicast/broadcast communication scenarios can be called end-to-end multicast/broadcast service flow, or end-to-end multicast/broadcast service flow.
  • the general flow may be a service flow between a non-specific ingress terminal and a non-specific egress terminal.
  • the end-to-end service flow applied in the universal flow scenario can be called end-to-end universal service flow.
  • the service flow corresponding to a certain group is an end-to-end common service flow, then the communication between any two members of the group meets the QoS requirements corresponding to the common service flow.
  • the members of the 5GLAN group shown in Figure 2A include terminals 201 to 205.
  • any two members of the 5GLAN group (such as terminal 201 and terminal 202, Communication between terminal 201 and terminal 203, or terminal 202 and terminal 204, etc.) all meet the QoS requirements corresponding to the general service flow.
  • the N4 session includes a user-level N4 session and a group-level N4 session.
  • User-level N4 sessions can be used for communication between terminals accessing the same UPF network element.
  • the user-level N4 session may be created by the UPF network element that the SMF network element instructs the terminal to access when establishing the PDU session corresponding to the terminal.
  • Group-level N4 sessions can be used for communication between different UPF network elements, and/or communication between UPF network elements and DNs. This is explained in detail below.
  • the SMF network element can instruct the UPF network element to create a user-level N4 session corresponding to the PDU session. Afterwards, the UPF network element can receive messages (such as multicast messages) sent by the terminal through the PDU session, process the received messages using the routing rules in the user-level N4 session corresponding to the PDU session, and process the received messages through the PDU session.
  • the routing rules in the user-level N4 session corresponding to the session identify the packets sent to the terminal, and the packets (such as multicast packets) are sent to the terminal through the PDU session.
  • the SMF network element can trigger the UPF network element to delete the user-level N4 session corresponding to the PDU session.
  • a UPF network element can create one or more N4 sessions corresponding to PDU sessions. That is to say, when multiple terminals are connected to the same UPF network element, the SMF network element can instruct the UPF network element to create Create an N4 session corresponding to the PDU session of each terminal.
  • FIG. 3 it is a schematic diagram of a user-level N4 session.
  • the SMF network element connected to the UPF network element 303 can instruct the UPF network element 303 to create an N4 session 3031 corresponding to the PDU session of the terminal 301 when creating the PDU session of the terminal 301.
  • the SMF network element may instruct the UPF network element 303 to create the N4 session 3032 corresponding to the PDU session of the terminal 303.
  • the N4 session 3031 corresponding to the PDU session of the terminal 301 may also be referred to as the N4 session of the terminal 301
  • the N4 session 3032 corresponding to the PDU session of the terminal 302 may also be referred to as the N4 session of the terminal 302.
  • the SMF network element can instruct the UPF network element to create a group-level N4 session corresponding to the 5GLAN group when creating the first PDU session anchored to the UPF network element of the 5GLAN group; and, SMF The network element may instruct the UPF network element to delete the group-level N4 session corresponding to the 5GLAN group when releasing the last PDU session anchored to the UPF network element of the 5GLAN group.
  • a UPF network element may include one or more group-level N4 sessions. For example, if a UPF network element serves multiple 5GLAN groups, the UPF network element can create multiple group-level N4 sessions, and each group-level N4 session corresponds to a 5GLAN group. For a 5GLAN group, a group-level N4 session corresponding to the 5GLAN group can be created for one or more UPF network elements that provide services for the 5GLAN group.
  • FIG 4 it is a schematic diagram of an N4 session at the group level.
  • the SMF network element has instructed the UPF network element 306 to create the N4 session 3061 corresponding to the PDU session of the terminal 304 when the SMF network element creates the PDU session of the terminal 304, then when the SMF network element creates the PDU session of the terminal 305, The UPF network element 307 may be instructed to create an N4 session 3072 corresponding to the PDU session of the terminal 305.
  • the 5GLAN group includes terminal 304 and terminal 305.
  • the SMF network element can instruct the UPF network element 307 to create a group-level N4 session 3071 corresponding to the 5GLAN group; and, the SMF network element instructs the UPF network element 306 to create a group corresponding to the 5GLAN group Level N4 session 3062.
  • the SMF network element can also instruct the UPF network element 306 to create a group-level N4 session 3062 corresponding to the 5GLAN group, which is not specifically limited here.
  • the communication system can be a long term evolution (LTE) system, a 5G communication system, a WiFi system, a 3GPP-related communication system, a future evolved communication system, or a system integrating multiple systems, etc., without limitation.
  • LTE long term evolution
  • 5G can also be called new radio (NR).
  • NR new radio
  • FIG. 5 it is a schematic architectural diagram of a communication system 40 provided by an embodiment of the present application.
  • the communication system 40 may include a first network element 401, and an AF network element 402 communicatively connected to the first network element 401.
  • the two network elements connected by communication in Figure 5 can communicate directly or communicate through other network elements without restrictions.
  • Figure 5 is only a schematic diagram and does not constitute a limitation on the applicable scenarios of the technical solution provided by this application.
  • the AF network element 402 may send the first request message to the first network element 401.
  • first request The message includes the type information of the service flow, the information of the target terminal set and the QoS information of the service flow.
  • the first network element 401 may receive the first request message from the AF network element 402, and when the type information indicates that the service flow is an end-to-end service flow, obtain the access information including the ingress terminal and the egress according to the information of the target terminal set.
  • the QoS decomposition information of the terminal's access information decomposes the service quality information of the business flow to obtain the uplink QoS information and downlink QoS information, and triggers the network to configure the session of the entrance terminal according to the uplink QoS information, and according to the downlink QoS information.
  • QoS information configures the session for the egress terminal.
  • the AF network element 402 may send the fifth request message to the first network element 401.
  • the fifth request message includes service flow type information, service flow QoS information and second event indication information.
  • the service flow type information indicates that the service flow is an end-to-end service flow.
  • the first network element 401 can receive the fifth request message from the AF network element 402, decompose the QoS information of the service flow, obtain the initial QoS information, send the fourth request message, and receive the third notification information for the fourth request message. , adjust the initial QoS information according to the third notification information to obtain target QoS information, where the target QoS information includes uplink target QoS information and downlink target QoS information.
  • the initial QoS information may include uplink initial QoS information or downlink initial QoS information. If the initial information includes uplink initial QoS information, the fourth request message includes the address of the entrance terminal, the uplink initial QoS information and the second event indication information. If the initial information includes downlink initial QoS information, the fourth request message includes the address of the egress terminal, downlink initial QoS information and second event indication information.
  • the second event indication information indicates monitoring of average delay and packet delay. Budgeted QoS notification monitoring.
  • the AF network element 402 may send the fifth request message to the first network element 401.
  • the fifth request message includes service flow type information, service flow QoS information and second event indication information.
  • the service flow type information indicates that the service flow is an end-to-end service flow.
  • the first network element 401 can receive the fifth request message from the AF network element 402, decompose the QoS information of the service flow, obtain the initial QoS information, send the sixth request message and the seventh request message, and receive the sixth request message.
  • the fourth notification information and the fifth notification information for the seventh request message are received, and the initial QoS information is adjusted according to the fourth notification information and the fifth notification information to obtain the target QoS information.
  • the initial QoS information includes uplink initial QoS information and downlink initial QoS information.
  • the target QoS information includes uplink target QoS information and downlink target QoS information.
  • the sixth request message includes the address of the entrance terminal, uplink initial QoS information and second event indication information.
  • the seventh request message includes the address of the egress terminal, downlink initial QoS information and second event indication information.
  • the second event indication information indicates monitoring of average delay and QoS notification monitoring of packet delay budget.
  • the communication system 40 shown in FIG. 5 is only used as an example and is not used to limit the technical solution of the present application. Those skilled in the art should understand that during specific implementation, the communication system 40 may also include other network elements, and the number of first network elements or AF network elements may also be determined according to specific needs without limitation.
  • the communication system 41 may include an AF network element 411.
  • the communication system 41 also includes a PCF network element 412 that is communicatively connected to the AF network element 411.
  • the two network elements connected by communication in Figure 6 can communicate directly or communicate through other network elements without restrictions.
  • the PCF network element if the PCF network element only provides services for the PDU session of the terminal, the PCF network element can also be replaced by a session management (session management, SM)-PCF network element.
  • picture 6 is only a schematic diagram and does not constitute a limitation on the applicable scenarios of the technical solution provided in this application.
  • the AF network element 411 can decompose the QoS information of the service flow to obtain the initial QoS information, send the fourth request message to the PCF network element 412, and receive the third notification information for the fourth request message.
  • the third notification information adjusts the initial QoS information to obtain target QoS information.
  • the target QoS information includes uplink target QoS information and downlink target QoS information.
  • the initial QoS information may include uplink initial QoS information or downlink initial QoS information. If the initial information includes uplink initial QoS information, the fourth request message includes the address of the entrance terminal, the uplink initial QoS information and the second event indication information.
  • the fourth request message includes the address of the egress terminal, downlink initial QoS information and second event indication information.
  • the second event indication information indicates monitoring of average delay and packet delay. Budgeted QoS notification monitoring.
  • the AF network element 411 decomposes the QoS information of the service flow to obtain the initial QoS information, sends the sixth request message and the seventh request message to the PCF network element 412, and receives the fourth request message for the sixth request message.
  • the notification information is received and the fifth notification information for the seventh request message is received, and the initial QoS information is adjusted according to the fourth notification information and the fifth notification information to obtain the target QoS information.
  • the initial QoS information includes uplink initial QoS information and downlink initial QoS information.
  • the target QoS information includes uplink target QoS information and downlink target QoS information.
  • the sixth request message includes the address of the entrance terminal, uplink initial QoS information and second event indication information.
  • the seventh request message includes the address of the egress terminal, downlink initial QoS information and second event indication information.
  • the second event indication information indicates monitoring of average delay and QoS notification monitoring of packet delay budget.
  • the communication system 41 shown in FIG. 6 is only used as an example and is not used to limit the technical solution of the present application. Those skilled in the art should understand that during specific implementation, the communication system 41 may also include other network elements, and the number of AF network elements or PCF network elements may also be determined according to specific needs without limitation.
  • the communication system 40 shown in Figure 5 or the communication system 41 shown in Figure 6 can be applied to the current 5G network, or other future networks, etc., and this is not specifically limited in the embodiment of the present application.
  • the communication system 40 shown in Figure 5 can be applied to the 5G network shown in Figure 1B.
  • the network element or entity corresponding to the first network element 401 in Figure 5 can be the NEF network element, TSCTSF network element or PCF network element in the 5G network architecture; the network element corresponding to the AF network element 402 Or the entity can be an AF network element in the 5G network architecture.
  • the first network element 401 can also be a new network element.
  • a control plane network element is added to the 5G network, such as the group PCF (group PCF, G-PCF) network element
  • the G-PCF network element can be implemented through the service-oriented interface provided by Ngpcf.
  • the communication system 41 shown in Figure 6 can be applied to the 5G network shown in Figure 1B.
  • the network element or entity corresponding to the AF network element 411 in Figure 6 may be an AF network element in the 5G network architecture
  • the network element or entity corresponding to the PCF network element 412 may be an AF network element in the 5G network architecture.
  • PCF network element may be an AF network element in the 5G network architecture.
  • each network element or device (such as the first network element, AF network element or PCF network element, etc.) in Figure 5 or Figure 6 in the embodiment of this application can also be called a communication device, which can be a general device. Or it may be a special device, which is not specifically limited in the embodiments of this application.
  • each network element or device may be implemented by one device, or may be implemented by multiple devices, or may be implemented by one or more functional modules in one device.
  • This is not specifically limited in the embodiments of this application. It can be understood that the above functions can be either network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or virtualization instantiated on a platform (for example, a cloud platform) Function.
  • each network element or device (such as the first network element, AF network element or PCF network element, etc.) in Figure 5 or Figure 6 in the embodiment of the present application can adopt the composition structure shown in Figure 7, or include The components shown in Figure 7.
  • FIG. 7 shows a schematic diagram of the hardware structure of a communication device applicable to embodiments of the present application.
  • the communication device 50 includes at least one processor 501 and at least one communication interface 504, used to implement the method provided by the embodiment of the present application.
  • the communication device 50 may also include a communication line 502 and a memory 503 .
  • the processor 501 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors used to control the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 502 may include a path, such as a bus, that carries information between the above-mentioned components.
  • Communication interface 504 is used to communicate with other devices or communication networks.
  • the communication interface 504 can be any device such as a transceiver, such as an Ethernet interface, a radio access network (RAN) interface, a wireless local area networks (WLAN) interface, a transceiver, and pins , bus, or transceiver circuit, etc.
  • a transceiver such as an Ethernet interface, a radio access network (RAN) interface, a wireless local area networks (WLAN) interface, a transceiver, and pins , bus, or transceiver circuit, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 503 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other medium for access, but not limited to this.
  • the memory may exist independently and be coupled to the processor 501 through a communication line 502 .
  • Memory 503 may also be integrated with processor 501.
  • the memory provided by the embodiment of the present application may generally be non-volatile.
  • the memory 503 is used to store computer execution instructions involved in executing the solutions provided by the embodiments of this application, and the processor 501 controls the execution.
  • the processor 501 is used to execute computer execution instructions stored in the memory 503, thereby implementing the method provided by the embodiment of the present application.
  • the processor 501 may also perform processing-related functions in the methods provided in the following embodiments of the present application, and the communication interface 504 is responsible for communicating with other devices or communication networks. This application implements The example does not specifically limit this.
  • the computer-executed instructions in the embodiments of the present application may also be called application codes, which are not specifically limited in the embodiments of the present application.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 501 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 7 .
  • the communication device 50 may include multiple processors, such as the processor 501 in Figure 7 and processor 507. Each of these processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication device 50 may also include an output device 505 and/or an input device 506.
  • Output device 505 is coupled to processor 501 and can display information in a variety of ways.
  • the output device 505 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector), etc.
  • Input device 506 is coupled to processor 501 and can receive user input in a variety of ways.
  • the input device 506 may be a mouse, a keyboard, a touch screen device, a sensing device, or the like.
  • composition structure shown in Figure 7 does not constitute a limitation on the communication device.
  • the communication device may include more or less components than shown in the figure, or a combination of certain components. components, or different component arrangements.
  • transmission can be understood as sending and/or receiving according to the specific context.
  • Transport can be a noun or a verb.
  • transmission is often used instead of sending and/or receiving.
  • the phrase “transmitting a message” can be understood as “sending a message” from the perspective of the sender, and as “receiving a message” from the perspective of the receiving end.
  • A/B may indicate A or B; "and/or” may be used to describe There are three relationships between associated objects.
  • a and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone.
  • a and B can be singular or plural.
  • expressions similar to "at least one of A, B and C" or "at least one of A, B or C” are often used to mean any of the following: A alone; B alone; alone C exists; A and B exist simultaneously; A and C exist simultaneously; B and C exist simultaneously; A, B, and C exist simultaneously.
  • the above is an example of three elements A, B and C to illustrate the optional items of this project. When there are more elements in the expression, the meaning of the expression can be obtained according to the aforementioned rules.
  • words such as “first” and “second” may be used to distinguish technical features with the same or similar functions.
  • the words “first”, “second” and other words do not limit the quantity and execution order, and the words “first” and “second” do not limit the number and execution order.
  • words such as “exemplary” or “for example” are used to express examples, illustrations or illustrations, and any embodiment or design solution described as “exemplary” or “for example” shall not be interpreted. To be more preferred or advantageous than other embodiments or designs.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • an embodiment means that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referred to the same embodiment throughout this specification. Furthermore, these specific features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It can be understood that in the various embodiments of the present application, the size of the sequence numbers of each process does not mean the order of execution. The execution order of each process should be determined by its functions and internal logic, and should not be determined by the execution order of the embodiments of the present application. The implementation process constitutes no limitation.
  • At the same time in this application can be understood as at the same point in time, within a period of time, or within the same cycle.
  • the first network element, and/or the AF network element, and/or the BSF network element, and/or the TSCTSF network element, and/or the PCF network element can execute the present application.
  • Some or all of the steps in the embodiments are only examples.
  • the embodiments of the present application may also perform other steps or variations of various steps.
  • various steps may be performed in a different order than those presented in the embodiments of the present application, and it may not be necessary to perform all the steps in the embodiments of the present application.
  • the current 5GS cannot support AF requests from AF for QoS requirements for UE-to-UE connections (UNU connections).
  • UNU connections UE-to-UE connections
  • the UNU connection consists of two parts. One part is the UL PDU Session, which provides the connection from the source UE to the user plane functional entity UPF. The other part is the DL PDU session that provides the user plane functional entity from the UPF to the target UE. .
  • the AF can initiate an AF request for UL UE-UE traffic and/or DL UE-UE traffic respectively.
  • the parameters in the request use the unmodified group information.
  • end-to-end latency In addition to end-to-end latency:
  • QNC QoS Notification Control
  • -AF adjusts the requested 5GS latency based on end-to-end latency and QoS Notification Control (QNC) or QoS monitoring reports of URLLC for UL UE-UE traffic and/or DL UE-UE traffic respectively.
  • QNC QoS Notification Control
  • the AF can indicate that the group-specific information is for UE-UE traffic, and then the 5GC NF (e.g. TSCTSF) can be set or later modified for UL UE-UE traffic. and/or QoS flow for DL UE-UE traffic, in addition to end-to-end delay, the parameters in the request use the information of the unmodified group:
  • the 5GC NF e.g. TSCTSF
  • -5GC NF is based on end-to-end delay, UE location, UPF location, UPF dwell time or between UPF Transmission delay, set the Requested 5GS Delay value, UE-DS-TT residence time, etc. for UL UE-UE traffic and/or DL UE-UE traffic respectively.
  • QNC QoS Notification Control
  • URLLC URLLC QoS monitoring for UL UE-UE traffic and/or DL UE-UE traffic respectively.
  • -5GC NF considers reporting of QoS Notification Control (QNC) or QoS monitoring of URLLC, respectively, for UL UE-UE traffic and/or DL UE-UE traffic adjustment requests, in addition to the 5GS delay. If the 5GC NF receives "PDB No Longer Guaranteed" for UL UE-UE traffic and/or DL UE-UE traffic and determines that the end-to-end latency cannot be met again through adjustments, the 5GC NF reports "For UE-UE to AF" Traffic,PDB is no longer guaranteed.
  • QNC QoS Notification Control
  • 5GC NF can take the sum of the average delays of UL UE-UE services and DL UE-UE services as the average delay UE-UE services and report it to the AF.
  • the 5GC NF may use "GFBR no longer guaranteed” reporting or "PER no longer guaranteed" for UL UE-UE traffic and/or DL UE-UE traffic as QNC notifications for UE-UE traffic and report to the AF.
  • the communication method may include the following steps:
  • the AF network element sends the first request message to the first network element.
  • the first network element receives the first request message from the AF network element.
  • the AF network element may be the AF network element 402 in Figure 5, and the first network element may be the first network element 401 in Figure 5.
  • One possible implementation method is that when there is a business requirement, the manager configures the information element (IE) in the first request message and triggers the AF network element to send the first request message to the first network element.
  • the AF network element executes a pre-stored program to configure the IE in the first request message and triggers the AF to send the first request message to the first network element.
  • the first request message may be used to request resource allocation for the service flow.
  • the first request message is used to allocate resources that meet QoS requirements for the service flow between the target terminals, so as to ensure the end-to-end communication quality between the target terminals.
  • the business flow is any end-to-end business flow.
  • the target terminal includes the ingress terminal and egress terminal of the service flow.
  • the exit terminal of the service flow can include one terminal or multiple terminals, without limitation.
  • the first request message is used to allocate resources that meet QoS requirements for the service flow between the ingress terminal and the egress terminal, so as to ensure end-to-end communication between the ingress terminal and the egress terminal. quality. If the egress terminal includes multiple terminals, the first request message is used to allocate resources that meet QoS requirements for the service flow between the ingress terminal and each egress terminal among the multiple egress terminals, so as to ensure the security between the ingress terminal and the egress terminal. end-to-end communication quality.
  • the administrator configures the IE
  • the AF network element configures the IE itself
  • the IE included in the first request message may be different.
  • Case 1 When there is a business requirement, the manager configures the IE in the first request message and triggers the AF network element to send the first request message to the first network element.
  • the first request message may include the type information of the service flow, the information of the target terminal set and QoS information of business flows.
  • the first request message also includes at least one of the following: flow information of the service flow or first event indication information.
  • flow information of the service flow or first event indication information.
  • the type information of the service flow may be used to indicate that the service flow is an end-to-end service flow.
  • the type information of the service flow includes 1 bit. If the value of the 1 bit is "0" or "1", the type information of the service flow indicates that the service flow is an end-to-end service flow.
  • the type information of the service flow may also indicate the end-to-end service flow in which scenario the service flow is applied. For end-to-end business flow application scenarios, please refer to the description in the previous explanation of technical terms.
  • the type information of the service flow includes 3 bits, of which the first bit is used to indicate that the service flow is an end-to-end service flow, and the last two bits are used to indicate which scenario the service flow is applied to.
  • End-to-end business flow For example, if the value of the last two bits is "00", the service flow is an end-to-end unicast service flow; if the value of the last two bits is "01”, the service flow is an end-to-end multicast/broadcast service flow, if the value of the last two bits is "10", the service flow is an end-to-end universal service flow.
  • the type information of the service flow may not indicate that the service flow is an end-to-end service flow, but directly indicate that the service flow is an end-to-end service flow applied in which scenario, so as to save signaling overhead.
  • the type information of the service flow includes 2 bits. These 2 bits are used to indicate the end-to-end service flow for which scenario the service flow is applied.
  • the information about the target terminal set is used to indicate multiple target terminals.
  • the information of the target terminal set includes at least one of the identification of the ingress terminal (Ingress UE ID), the identification of the egress terminal (Egress UE ID), the group identification (Group ID), the DNN associated with the target terminal or the S-NSSAI associated with the target terminal. information.
  • the information about the target terminal set includes the identity of the ingress terminal and the identity of the egress terminal.
  • the information about the target terminal set also includes the DNN associated with the entry terminal and/or the S-NSSAI associated with the entry terminal.
  • the service flow is an end-to-end multicast/broadcast service flow or an end-to-end universal service flow
  • the information about the target terminal set includes the group identifier.
  • the information about the target terminal set also includes at least one of the following: the entry terminal's The identifier, the DNN associated with the group identifier, or the S-NSSAI associated with the group identifier.
  • the QoS information of the service flow includes the delay requirement of the service flow.
  • the QoS information of the service flow also includes at least one of the following: packet priority information, packet size, maximum rate, guaranteed rate, packet error rate, period information, clock domain information, packet arrival time, or survival time.
  • the delay requirement can indicate the delay of the service flow.
  • the priority information of the packet can indicate the priority of the packet of the service flow.
  • the packet size may refer to the size of the packets of the service flow.
  • the maximum rate may refer to the maximum rate of packets transmitting service flows.
  • the guaranteed rate may refer to the minimum rate for transmitting packets of service flows.
  • the packet error rate can refer to the error rate of packets transmitting business flows.
  • Period information can indicate the transmission time interval between two adjacent packets in the service flow.
  • the clock domain information may indicate the clock domain of the service flow, for example, whether the service flow calculates time according to the 12-hour clock or the 24-hour clock.
  • the message arrival time may refer to the message arrival time of the service flow, that is, the time when the service flow message reaches the entrance terminal. Lifetime can characterize the reliability of business flows. For example, the survival time indicates how many packets can be lost continuously, or how long it takes to receive packets, etc.
  • the flow information of the service flow includes IP quintuple or Ethernet header information address.
  • the flow information of the service flow can be Includes the flow address of the ingress terminal and the flow address of at least one egress terminal.
  • the above-mentioned flow address can be an IP address or an Ethernet header information address (such as the media access control (MAC) address of the entrance terminal, and there is no restriction. It is understandable that if the above-mentioned address is an Ethernet header information address , then the flow information of the service flow also includes VLAN tag (tag) information.
  • VLAN tag VLAN tag
  • the flow information of the service flow includes a match all five-tuple, or the flow of the service flow The information is blanked or set to zero, or the first request message does not include the flow information of the service flow.
  • the flow address of a terminal may refer to the address of the terminal in the service flow corresponding to the terminal.
  • the flow address of the ingress terminal refers to the address of the ingress terminal in the service flow
  • the flow address of the egress terminal refers to the address of the egress terminal in the service flow.
  • the address of the terminal is also introduced.
  • the address of a terminal and the stream address of a terminal have different meanings.
  • the address of a terminal may refer to the address of the terminal in a communication network, such as a 5G network.
  • the stream address of the terminal and the address of the terminal may be the same or different. A unified explanation is given here and will not be repeated later.
  • the first event indication information is used to indicate at least one of the following: monitoring of average delay, QoS notification monitoring of packet delay budget (packet delay budget, PDB), and monitoring of guaranteed bit rate (guaranteed). Bit rate, GBR) QoS notification monitoring or packet error rate (packet error rate, PER) QoS notification monitoring.
  • the QoS notification monitoring for PDB, the QoS notification monitoring for GBR, or the QoS notification monitoring for PER may be based on the QoS notification control (QNC) mechanism.
  • QNC QoS notification control
  • the first event indication information may include at least one bit, each bit corresponds to an event, and the value of the bit may indicate whether to monitor the event.
  • Case 2 When there is a service requirement, the AF network element executes a pre-stored program to configure the IE in the first request message and triggers the AF to send the first request message to the first network element.
  • the first request message may include the information of the target terminal set and the QoS information of the service flow.
  • the first request message further includes at least one of the following: service flow type information, service flow flow information, or first event indication information.
  • the type information of the service flow, the information of the target terminal set, the QoS information of the service flow, the flow information of the service flow and the first event indication information are included in one message, that is, the first request The message is sent to the first network element.
  • the AF network element may also include the type information of the service flow, the information of the target terminal set, the QoS information of the service flow, the flow information of the service flow and the first event indication information in multiple messages and send them to the third party.
  • the first network element may be an NEF network element, a TSCTSF network element, a PCF network element or a new network element. If the first network element is an NEF network element, the AF network element directly sends the first request message to the first network element. If the first network element is a TSCTSF network element, the AF network element can send the first request message to the first network element through the NEF network element. For example, the first network element sends the first request message to the NEF network element. After receiving the first request message, the NEF network element includes the information in the first request message in the Ntsctsf service request message and sends it to the first network element, or , the NEF network element directly forwards the first request message to the first network element. If the first network element is a PCF network element or a new network element, the AF network element can send the first request message to the first network element through the NEF network element and the TSCTSF network element.
  • the first network element can determine the corresponding information according to the first request message. This is explained in detail below.
  • the first network element may determine that the service flow is an end-to-end service flow based on the type information of the service flow. Further, the first network element may also determine that the service flow is an end-to-end unicast service flow, an end-to-end multicast/broadcast service flow, or an end-to-end general service flow.
  • the first request message may not include the type information of the service flow.
  • the first network element can determine whether the service flow is an end-to-end service flow in at least the following three ways.
  • the first request message includes information about the target terminal set, QoS information of the service flow, and flow information of the service flow.
  • the first network element After receiving the first request message, the first network element sends a message including the identification of the target terminal to the BSF network element or PCF network element, and receives the address of the target terminal from the BSF network element or PCF network element.
  • the address of the target terminal is the address of the target terminal in the communication network, such as the 5G network.
  • the first network element can compare the address of the target terminal with the flow address of the target terminal in the flow information of the service flow to determine whether the service flow is an end-to-end service flow.
  • the flow address of the ingress terminal is the same as the address of the ingress terminal, and the flow address of the egress terminal is the same as the address of the egress terminal, it means that both the ingress terminal and the egress terminal are terminal devices, that is, the service flow is an end-to-end service flow. If the flow address of the ingress terminal is different from the address of the ingress terminal, and/or the flow address of the egress terminal is different from the address of the egress terminal, it means that at least one of the ingress terminal and the egress terminal may not be a terminal device, and the service flow It may not be an end-to-end business flow.
  • the first request message includes information about the target terminal set, QoS information of the service flow, and flow information of the service flow.
  • the network element that sends or forwards the first request message (such as AF network element, NFE network element or TSCTSF network element, etc.) can determine whether the service flow is an end-to-end service flow through method 1.
  • the network element determines whether the service flow is an end-to-end service flow.
  • the first request message is sent or forwarded to the first network element only when the end service flow is detected. Therefore, in mode 2, as long as the first network element receives the first request message, the first network element determines that the service flow is an end-to-end service flow.
  • the AF network element sends the first request message to the first network element through the NEF network element.
  • the NEF network element determines whether the service flow is an end-to-end service flow through the above method 1. . If the service flow is an end-to-end service flow, the NEF network element sends the first request message to the first network element. If the service flow is not an end-to-end service flow, the NEF network element does not send the first request message to the first network element. . It is understandable that in this case, the first network element is a newly added network element.
  • Method 3 The network element that sends or forwards the first request message can determine whether the service flow is an end-to-end service flow through Method 1, and then send the type information of the service flow to the first network element to indicate the service flow to the first network element. is the end-to-end business flow.
  • the first network element may determine the target terminal according to the information about the target terminal set. For example, if the service flow is an end-to-end unicast service flow, the first network element determines the ingress terminal according to the identifier of the ingress terminal, and determines the egress terminal according to the identifier of the egress terminal. If the service flow is an end-to-end multicast/broadcast service flow or an end-to-end universal service flow, the first network element determines the ingress terminal according to the identifier of the ingress terminal and determines the egress terminal according to the group identifier.
  • the process of the first network element determining the egress terminal based on the group identifier is as follows: the first network element sends the group identifier to the UDR network element or UDM network element. After the UDR network element or UDM network element receives the group identifier, it can determine the egress terminal according to the group identifier. The identifier queries the member information (such as a member list) of the group identified by the group identifier, and sends the member information to the first network element.
  • the member information such as a member list
  • the UDR network element or UDM network element can also query the DNN and S-NSSAI associated with the group identifier based on the group identifier, and send the DNN and S-NSSAI associated with the group identifier to the first network element.
  • the group identifies the associated DNN and S-NSSAI.
  • the first network element may determine the QoS requirements of the service flow according to the QoS information of the service flow. If the first request message includes flow information of the service flow, the first network element can determine the source address and destination address of the service flow according to the flow information of the service flow. If the first request message includes the first event indication information, the first network element may determine the performance to be monitored based on the first event indication information. For example, if the first event indication information indicates monitoring of average delay, the first network element determines to monitor the average delay of the service flow; if the first event indication information indicates QoS notification monitoring of PDB, then the first network element Determine the PDB to monitor the business flow.
  • end-to-end service flow can be applied in unicast communication scenarios, multicast/broadcast communication scenarios or general flow scenarios.
  • the following takes the user plane architecture of the 5GLAN service shown in Figure 2A as an example to introduce each information in the first request message when the end-to-end service flow is applied to the unicast communication scenario, the multicast/broadcast communication scenario or the general flow scenario. Specific content included.
  • Scenario 1 The service flow is an end-to-end unicast service flow.
  • Example 1 Take the entrance terminal as terminal 201 and the exit terminal as terminal 202.
  • the type information of the service flow indicates that the service flow is an end-to-end service flow.
  • the information of the target terminal set includes the identification of terminal 201, the identification of terminal 202, the DNN associated with terminal 201 and terminal 202, and the S-NSSAI associated with terminal 201 and terminal 202.
  • the QoS information of the service flow indicates that the delay of the service flow is 15 milliseconds (ms), and the packet arrival time of the service flow is 14:00.
  • the flow information of the service flow includes IP five-tuple information (such as: the IP address of terminal 201 in the service flow, the port number of terminal 201, the IP address of terminal 202 in the service flow and the port number of terminal 202, etc.).
  • the first event indication information indicates monitoring of average delay.
  • the first network element can determine that the service flow is an end-to-end service flow according to the type information of the service flow; the first network element can determine the entrance terminal according to the identification of the terminal 201 is terminal 201, and the egress terminal is determined to be terminal 202 according to the identifier of terminal 202; the first network element can determine that the delay of the service flow is 15ms according to the QoS information of the service flow, and the packet arrives at terminal 201 at 14:00; the first network element can determine according to the QoS information of the service flow
  • the first event indication information determines the average delay of the service flow to be monitored.
  • Example 2 Take the entrance terminal as terminal 201 and the exit terminal as terminal 203.
  • the type information of the service flow indicates that the service flow is an end-to-end service flow.
  • the information of the target terminal set includes the identity of the terminal 201, the identity of the terminal 203, the DNN associated with the terminal 201 and the terminal 203, and the S-NSSAI associated with the terminal 201 and the terminal 203.
  • the QoS information of the service flow indicates that the delay of the service flow is 20ms, the packet arrival time of the service flow is 14:00, and the guaranteed rate of the service flow is 100M bit rate.
  • the flow information of the service flow includes Ethernet flow information (such as: the MAC address of terminal 201 in the service flow, the MAC address of terminal 203 in the service flow, and VLAN tag information).
  • Ethernet flow information such as: the MAC address of terminal 201 in the service flow, the MAC address of terminal 203 in the service flow, and VLAN tag information.
  • the first event indication information indicates monitoring of average delay and QoS notification monitoring of PDB.
  • the first network element can determine that the service flow is an end-to-end service flow according to the type information of the service flow; the first network element can determine the entrance terminal according to the identification of the terminal 201 For terminal 201, the egress terminal is determined to be terminal 203 according to the identification of terminal 203; the first network element can determine that the delay of the service flow is 20ms according to the QoS information of the service flow.
  • the packet arrives at terminal 201 at 14:00, and the guaranteed rate of the service flow is is 100M bit rate; the first network element determines the average delay of the service flow and the PDB of the service flow to be monitored based on the first event indication information.
  • Scenario 2 The service flow is an end-to-end multicast service flow.
  • the members in the 5GLAN group include terminals 201 to 205, where the members in the 5GLAN group Any member can join or leave multicast group A.
  • the multicast address of multicast group A is Multicast Address A
  • terminal 201 is the multicast source.
  • the type information of the service flow indicates that the service flow is an end-to-end service flow.
  • the information of the target terminal set includes the group identifier of the 5GLAN group, the DNN associated with the group identifier, and the S-NSSAI associated with the group identifier.
  • the QoS information of the service flow indicates that the delay of the service flow is 20ms, and the guaranteed rate of the service flow is 100M bit rate.
  • the flow information of the service flow includes Multicast Address A.
  • the first event indication information indicates monitoring of average delay and QoS notification monitoring of PDB. If the AF network element wants to limit the messages of multicast group A sent by terminal 201, the information of the target terminal set also includes the identity of terminal 201, and the flow information of the service flow also includes the IP address of terminal 201 in the service flow.
  • the first network element can determine that the service flow is an end-to-end service flow according to the type information of the service flow; the first network element can determine the service flow in the UDM according to the group identifier of the 5GLAN group.
  • the members of the query group in the network element are terminals 201 to 205, and the multicast source is determined to be terminal 201 according to the identification of terminal 201; the first network element can determine that the delay of the service flow is 20ms according to the QoS information of the service flow, and the guarantee of the service flow The rate is 100M bit rate; the first network element determines the average delay of the service flow and the PDB of the service flow to be monitored based on the first event indication information.
  • Scenario 3 The business flow is an end-to-end general business flow.
  • Example 4 Take the members of the 5GLAN group including terminal 201 to terminal 205 as an example.
  • the type information of the service flow indicates that the service flow is an end-to-end service flow.
  • the information of the target terminal set includes the group identifier of the 5GLAN group, the DNN associated with the group identifier, and the S-NSSAI associated with the group identifier.
  • the QoS information of the service flow indicates that the delay of the service flow is 20ms, and the arrival time of the service flow packets is 14:00.
  • the flow information of the service flow includes fully matched IP quintuples.
  • the first event indication information indicates monitoring of average delay and QoS notification monitoring of PDB.
  • the first network element after receiving the first request message, can determine that the service flow is an end-to-end service flow according to the type information of the service flow; the first network element can determine the service flow in the UDM according to the group identifier of the 5GLAN group.
  • the members of the query group in the network element are terminal 201 to terminal 205; the first network element can determine that the delay of the service flow is 20ms based on the QoS information of the service flow, and the packet arrival time of the service flow is 14 o'clock; the first network element can determine based on the QoS information of the service flow
  • the flow information of the service flow determines that the service flow is a general service flow; the first network element determines the average delay of the service flow and the PDB of the service flow to be monitored based on the first event indication information.
  • the first network element obtains QoS decomposition information based on the information of the target terminal set.
  • the first network element obtains the QoS decomposition information according to the information of the target terminal set.
  • the QoS decomposition information includes access information of the ingress terminal and access information of the egress terminal.
  • the QoS decomposition information also includes the packet transmission time between the anchor UPF network element corresponding to the session of the ingress terminal and the anchor UPF network element corresponding to the session of the egress terminal.
  • the session of the ingress terminal may be a PDU session of the ingress terminal
  • the session of the egress terminal may be a PDU session of the egress terminal.
  • the message transmission time between the anchor UPF network element corresponding to the session of the ingress terminal and the anchor UPF network element corresponding to the session of the egress terminal is is the message transmission time between the UPF network element 210 and the UPF network element 209, that is, the time for the message to be transmitted from the UPF network element 210 to the UPF network element 209.
  • the access information of the entrance terminal includes at least one of the following: the location information of the entrance terminal, the residence time of the entrance terminal, the residence time of the anchor UPF network element corresponding to the session of the entrance terminal, or the residence time of the entrance terminal.
  • the location information of the entrance terminal may indicate the location of the entrance terminal.
  • the residence time of the portal terminal refers to the transmission time of the message from the incoming portal terminal to the outgoing portal terminal.
  • the residence time of the anchor UPF network element corresponding to the session of the portal terminal refers to the transmission time from the time the message is transmitted into the UPF network element to the time when the message is transmitted out of the UPF network element.
  • the UPF network element is the UPF network element that the entrance terminal accesses through the PDU session.
  • the access information of the egress terminal includes at least one of the following: the location information of the egress terminal, the residence time of the egress terminal, the residence time of the anchor UPF network element corresponding to the session of the egress terminal, or the egress terminal The identifier of the anchor UPF network element corresponding to the session.
  • the location information of the egress terminal may indicate the location of the egress terminal.
  • the residence time of the egress terminal refers to the transmission time of the message from the incoming egress terminal to the outgoing egress terminal.
  • the residence time of the anchor UPF network element corresponding to the session of the egress terminal refers to the transmission time from the time the message is transmitted into the UPF network element to the time when the message is transmitted out of the UPF network element.
  • the UPF network element is the UPF network element that the egress terminal accesses through the PDU session.
  • the following describes the process by which the first network element obtains the access information of the entrance terminal. It can be understood that the process of the first network element obtaining the access information of the egress terminal is similar to the process of the first network element obtaining the access information of the entrance terminal. You can refer to the introduction of the first network element obtaining the access information of the entrance terminal. Again.
  • the first network element obtains the location information of the entrance terminal and/or the residence time of the entrance terminal.
  • the first network element sends request information to the BSF network element.
  • the request information includes the identification of the entrance terminal, the DNN associated with the entrance terminal, and the S-NSSAI associated with the entrance terminal.
  • the BSF network element receives the request information and the portal terminal establishes the PDU session (if the portal terminal has not established the PDU session when the BSF network element receives the request information, the BSF network element waits for the portal terminal to establish the PDU session), obtain the first
  • the information is sent to the first network element, so that the first network element obtains the location information of the entrance terminal and/or the residence time of the entrance terminal according to the first information.
  • the first information includes the identification of the PCF network element or the address of the PCF network element (PCF ID/address).
  • the first network element After receiving the first information, the first network element sends the second information to the PCF network element.
  • the second information includes the identification of the entrance terminal.
  • the PCF network element After receiving the second information, the PCF network element sends the location information of the entrance terminal and/or the residence time of the entrance terminal to the first network element.
  • the first information includes the identifier of the TSCTSF network element or the address of the TSCTSF network element (TSCTSF ID/address).
  • the first network element After receiving the first information, the first network element sends the second information to the TSCTSF network element.
  • the second information includes the identification of the entrance terminal.
  • the TSCTSF network element After receiving the second information, the TSCTSF network element sends the location information of the entrance terminal and/or the residence time of the entrance terminal to the first network element.
  • the above first information also includes the address of the entrance terminal (that is, the address of the terminal in the communication network, such as the 5G network), so that the first network element determines that the service flow is an end-to-end service flow through the above method 1.
  • the above-mentioned second information may also include the address of the entrance terminal.
  • the first network element obtains the identity of the anchor UPF network element corresponding to the session of the portal terminal.
  • the first network element obtains the identity of the UPF network element from the BSF network element.
  • the identifier of the UPF network element is included in the first information in (1).
  • the first network element obtains the identity of the UPF network element from the PCF network element or the TSCTSF network element.
  • the identifier of the UPF network element is included in the second information in (1).
  • the first network element obtains the residence time of the anchor UPF network element corresponding to the session of the entrance terminal.
  • the residence time of the UPF network element is preset in the first network element based on experience, and the first network element obtains it locally.
  • the first network element sends the third information to the UPF network element.
  • the third information includes the identification of the UPF network element.
  • the UPF network element sends the fourth information to the first network element.
  • the fourth information includes the residence time of the UPF network element.
  • the ingress terminal and the egress terminal may be connected through one UPF network element or through multiple UPF network elements. That is to say, the anchor UPF network element corresponding to the session of the ingress terminal and the anchor UPF network element corresponding to the session of the egress terminal may be the same or different.
  • the anchor UPF network element corresponding to the session of the ingress terminal can also be described as the UPF network element accessed by the ingress terminal, and the anchor UPF network element corresponding to the session of the egress terminal can also be described as the UPF network element accessed by the egress terminal.
  • One possible implementation method is that if the UPF network element accessed by the ingress terminal is different from the UPF network element accessed by the egress terminal, the first network element obtains the message transmission time between UPF network elements.
  • the packet transmission time is the time for packet transmission between the anchor UPF network element corresponding to the session of the ingress terminal and the anchor UPF network element corresponding to the session of the egress terminal.
  • the message transmission time between UPF network elements is preset in the first network element based on experience, and the first network element obtains it locally.
  • the first network element obtains the message transmission time between UPF network elements from the PCF network element or the TSCTSF network element.
  • the message transmission time between the UPF network elements is included in the second information in (1).
  • the first network element decomposes the QoS information of the service flow according to the QoS decomposition information to obtain uplink QoS information and downlink QoS information.
  • the embodiments of the present application do not limit the amount of downlink QoS information. That is to say, the first network element decomposes the QoS of the service flow according to the QoS decomposition information, and can obtain uplink QoS information and at least one downlink QoS information.
  • the first network element can obtain one uplink QoS information and one downlink QoS information; if the service flow is an end-to-end multicast service flow, then the service flow corresponds to multiple In the downlink direction, the first network element can obtain an uplink QoS information and the QoS information of each downlink direction of the service flow in multiple downlink directions (that is, multiple downlink QoS information); if the service flow is an end-to-end universal service flow, Then the service flow corresponds to at least one downlink direction, and the first network element can obtain an uplink QoS information of the service flow and the QoS information of each downlink direction of the service flow in at least one downlink direction (ie, at least one downlink QoS information).
  • the first network element decomposes the QoS information of the service flow may mean that the first network element configures the uplink QoS of the service flow for the session corresponding to the entrance terminal (such as a PDU session).
  • Information configure the downlink QoS information of the service flow for the session (such as the PDU session) corresponding to each egress terminal in at least one egress terminal, so that the service flow meets the QoS information of the service flow in S801.
  • the first network element can allocate corresponding QoS information to the PDU session of terminal 201 and the PDU session of terminal 202, so that the delay of the service flow is less than or equal to 15ms, and the packet arrival time of the service flow It's 14 o'clock.
  • the first network element can decompose the QoS information of the service flow according to the access information of the ingress terminal and the access information of the egress terminal, and obtain uplink QoS information and downlink QoS information.
  • the first network element can decompose the QoS information of the service flow based on the access information of the ingress terminal, the access information of the egress terminal and the message transmission time between UPF network elements to obtain uplink QoS information and downlink QoS information. .
  • the first network element when the first network element performs QoS decomposition, it considers the topology that can characterize the network to which the ingress terminal and egress terminal belong.
  • Information about the flutter situation such as: the access information of the ingress terminal and the access information of the egress terminal, or the packet transmission time between the access information of the ingress terminal, the access information of the egress terminal and the UPF network element. Therefore, the QoS information allocated by the first network element to the PDU session can be made more reasonable, thereby making it easier for the transmission of the service flow to meet QoS requirements.
  • the QoS information of the service flow includes the delay requirement of the service flow.
  • the QoS information of the service flow also includes at least one of the following: packet priority information, packet size, maximum rate, guaranteed rate, packet error rate, period information, clock domain information, packet arrival time, or survival time.
  • the uplink QoS information and downlink QoS information obtained by the first network element may at least include the above information.
  • the uplink QoS information may include the delay in the upstream direction of the service flow
  • the downlink QoS information may include the delay in the downstream direction of the service flow.
  • the uplink QoS information may include the delay in the upstream direction of the service flow and the packet arrival time in the upstream direction of the service flow
  • the downlink QoS information may include The delay in the downstream direction of the service flow and the arrival time of the packets in the downstream direction of the service flow.
  • the following describes the specific process in which the first network element decomposes the QoS information of the service flow according to the QoS decomposition information to obtain the uplink QoS information and the downlink QoS information.
  • the first network element decomposes the QoS information of the service flow according to the access information of the ingress terminal and the access information of the egress terminal, and obtains uplink QoS information and downlink QoS information.
  • the access information of the entrance terminal includes various contents
  • the access information of the egress terminal also includes various contents.
  • the uplink QoS information and downlink QoS information obtained by the first network element may be different. .
  • the embodiments of this application are described by taking the following situations as examples.
  • the access information of the ingress terminal includes the location information of the ingress terminal and the identification of the anchor UPF network element (hereinafter referred to as the ingress UPF network element) corresponding to the session of the ingress terminal, and the access information of the egress terminal includes the location information of the egress terminal.
  • the identifier of the anchor UPF network element hereinafter referred to as the egress UPF network element corresponding to the session of the egress terminal.
  • the first network element can determine the distance between the entrance terminal and the entrance UPF network element based on the location of the entrance terminal and the identification of the entrance UPF network element, and based on the location of the exit terminal and the identification of the exit UPF network element , determine the distance between the egress terminal and the egress UPF network element, and then determine the uplink QoS information and downlink QoS information.
  • One possible design is that the sum of the delay in the upstream direction of the service flow and the delay in the downstream direction of the service flow is less than or equal to the delay requirement of the service flow.
  • the access information of the ingress terminal includes the residence time of the ingress UPF network element, and the access information of the egress terminal includes the residence time of the egress UPF network element.
  • the access information of the ingress terminal also includes the location information of the ingress terminal and the identity of the ingress UPF network element
  • the access information of the egress terminal also includes the location information of the egress terminal and the identity of the egress UPF network element.
  • the sum of the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, and the residence time of the ingress UPF network element is less than or equal to the delay requirement of the service flow; or, the time delay in the upstream direction of the service flow is The sum of the delay, the delay in the downstream direction of the service flow, and the residence time of the egress UPF network element is less than or equal to the delay requirement of the service flow.
  • the access information of the entrance terminal includes the residence time of the entrance terminal and the residence time of the entrance UPF network element.
  • the access information of the egress terminal includes the residence time of the egress UPF network element.
  • the access information of the ingress terminal also includes the location information of the ingress terminal and the identity of the ingress UPF network element
  • the access information of the egress terminal also includes the location information of the egress terminal and the identity of the egress UPF network element.
  • the sum of the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, the residence time of the entrance terminal and the residence time of the entrance UPF network element is less than or equal to the delay requirement of the service flow; or , the sum of the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, the residence time of the ingress terminal and the residence time of the egress UPF network element is less than or equal to the delay requirement of the service flow.
  • the access information of the ingress terminal includes the residence time of the ingress UPF network element
  • the access information of the egress terminal includes the residence time of the egress terminal and the residence time of the egress UPF network element.
  • the access information of the ingress terminal also includes the location information of the ingress terminal and the identity of the ingress UPF network element
  • the access information of the egress terminal also includes the location information of the egress terminal and the identity of the egress UPF network element.
  • the sum of the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, the dwell time of the egress terminal and the dwell time of the egress UPF network element is less than or equal to the delay requirement of the service flow; or , the sum of the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, the dwell time of the egress terminal and the dwell time of the ingress UPF network element is less than or equal to the delay requirement of the service flow.
  • the access information of the ingress terminal includes the residence time of the ingress terminal and the residence time of the ingress UPF network element.
  • the access information of the egress terminal includes the residence time of the egress terminal and the residence time of the egress UPF network element.
  • the access information of the ingress terminal also includes the location information of the ingress terminal and the identity of the ingress UPF network element
  • the access information of the egress terminal also includes the location information of the egress terminal and the identity of the egress UPF network element.
  • a possible design is that the sum of the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, the residence time of the ingress terminal, the residence time of the egress terminal and the residence time of the ingress UPF network element is less than or equal to the service The delay requirement of the flow; or, the sum of the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, the dwell time of the ingress terminal, the dwell time of the egress terminal and the dwell time of the egress UPF network element is less than or Equal to the delay requirement of the business flow.
  • a possible implementation manner is that in the above scenarios 0 to 4, the ingress UPF network element and the egress UPF network element are the same network element.
  • the dwell time of the ingress UPF network element is the same as the dwell time of the egress UPF network element.
  • the first network element can also consider the UPF network when doing QoS decomposition.
  • the packet transmission time between elements that is to say, the first network element decomposes the QoS information of the service flow based on the access information of the ingress terminal, the access information of the egress terminal and the packet transmission time between UPF network elements. , obtain uplink QoS information and downlink QoS information. Specifically, there can be the following situations:
  • the access information of the ingress terminal includes the location information of the ingress terminal and the identity of the ingress UPF network element
  • the access information of the egress terminal includes the location information of the egress terminal and the identity of the egress UPF network element.
  • the sum of the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, and the packet transmission time between UPF network elements is less than or equal to the delay requirement of the service flow.
  • the access information of the ingress terminal includes the residence time of the ingress UPF network element, and the access information of the egress terminal includes the residence time of the egress UPF network element.
  • the access information of the entrance terminal also includes the location information of the entrance terminal and the identification of the entrance UPF network element.
  • the access information of the egress terminal also includes the location information of the egress terminal and the identity of the egress UPF network element.
  • a possible design includes the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, the residence time of the ingress UPF network element, the residence time of the egress UPF network element, and the message transmission time between UPF network elements.
  • the sum is less than or equal to the delay requirement of the service flow.
  • the access information of the ingress terminal includes the residence time of the ingress terminal and the residence time of the ingress UPF network element, and the access information of the egress terminal includes the residence time of the egress UPF network element.
  • the access information of the ingress terminal also includes the location information of the ingress terminal and the identity of the ingress UPF network element
  • the access information of the egress terminal also includes the location information of the egress terminal and the identity of the egress UPF network element.
  • a possible design includes the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, the residence time of the ingress UPF network element, the residence time of the egress UPF network element, the residence time of the ingress terminal and the UPF network element.
  • the sum of the packet transmission times is less than or equal to the delay requirement of the service flow.
  • the access information of the ingress terminal includes the residence time of the ingress UPF network element, and the access information of the egress terminal includes the residence time of the egress terminal and the residence time of the egress UPF network element.
  • the access information of the ingress terminal also includes the location information of the ingress terminal and the identity of the ingress UPF network element
  • the access information of the egress terminal also includes the location information of the egress terminal and the identity of the egress UPF network element.
  • a possible design includes the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, the residence time of the ingress UPF network element, the residence time of the egress UPF network element, the residence time of the egress terminal and the UPF network element.
  • the sum of the packet transmission times is less than or equal to the delay requirement of the service flow.
  • the access information of the ingress terminal includes the residence time of the ingress terminal and the residence time of the ingress UPF network element.
  • the access information of the egress terminal includes the residence time of the egress terminal and the residence time of the egress UPF network element.
  • the access information of the ingress terminal also includes the location information of the ingress terminal and the identity of the ingress UPF network element
  • the access information of the egress terminal also includes the location information of the egress terminal and the identity of the egress UPF network element.
  • a possible design includes the delay in the upstream direction of the service flow, the delay in the downstream direction of the service flow, the dwell time of the ingress UPF network element, the dwell time of the egress UPF network element, the dwell time of the ingress terminal, and the dwell time of the egress terminal.
  • the sum of the residence time and the packet transmission time between UPF network elements is less than or equal to the delay requirement of the service flow.
  • the first network element can also determine the packet arrival time in the upstream direction of the service flow and the packet arrival time in the downstream direction of the service flow.
  • the arrival time of packets in the upstream direction of the service flow is the same as the arrival time of the packets in the downstream direction of the service flow.
  • the arrival time of the packets in the downstream direction of the service flow is the sum of the arrival time of the packets in the upstream direction of the service flow and the delay in the upstream direction of the service flow.
  • the arrival time of the packets in the upstream direction of the service flow is the same as the arrival time of the packets in the service flow.
  • the arrival time of the packets in the downstream direction of the service flow is determined by the arrival time of the packets in the upstream direction of the service flow, the delay in the upstream direction of the service flow, and the UPF.
  • the sum of message transmission times between network elements is determined. Specifically, the following situations may occur:
  • the arrival time of packets in the downstream direction of the service flow is the sum of the arrival time of the packets in the upstream direction of the service flow and the delay in the upstream direction of the service flow.
  • the arrival time of packets in the upstream direction of the service flow is the arrival time of the packets in the QoS information of the service flow.
  • Scenario 11 If the ingress terminal and the egress terminal are connected to the same UPF network element, the arrival time of the packets in the downstream direction of the service flow is the arrival time of the packets in the upstream direction of the service flow, the delay in the upstream direction of the service flow and the station of the ingress terminal. Keep the sum of time.
  • the arrival time of packets in the upstream direction of the service flow is the arrival time of the packets in the QoS information of the service flow.
  • Scenario 12 If the ingress terminal and the egress terminal are connected to the same UPF network element, the arrival time of the packets in the downstream direction of the service flow is the arrival time of the packets in the upstream direction of the service flow, the delay in the upstream direction of the service flow and the location of the UPF network element. Keep the sum of time.
  • the arrival time of packets in the upstream direction of the service flow is the arrival time of the packets in the QoS information of the service flow.
  • the residence time of the UPF network element is the residence time of the ingress UPF network element and the residence time of the egress UPF network element.
  • Scenario 13 If the ingress terminal and the egress terminal are connected to the same UPF network element, the arrival time of the packets in the downstream direction of the service flow is the arrival time of the packets in the upstream direction of the service flow, the delay in the upstream direction of the service flow, and the resident time of the ingress terminal. The sum of the residence time and UPF network element residence time.
  • the arrival time of packets in the upstream direction of the service flow is the arrival time of the packets in the QoS information of the service flow.
  • the residence time of the UPF network element is the residence time of the ingress UPF network element and the residence time of the egress UPF network element.
  • the arrival time of packets in the downstream direction of the service flow is the combination of the arrival time of the packets in the upstream direction of the service flow, the delay in the upstream direction of the service flow, and the UPF network element. The sum of message transmission times.
  • Scenario 15 If the entrance terminal and the egress terminal are connected to different UPF network elements, the arrival time of the packets in the downstream direction of the service flow is the arrival time of the packets in the upstream direction of the service flow, the delay in the upstream direction of the service flow, and the resident time of the entrance terminal. The sum of the retention time and the packet transmission time between UPF network elements.
  • the arrival time of the packets in the downstream direction of the service flow is the arrival time of the packets in the upstream direction of the service flow, the delay in the upstream direction of the service flow, and the arrival time of the ingress UPF network element. The sum of the residence time and the message transmission time between UPF network elements.
  • Scenario 17 If the ingress terminal and the egress terminal are connected to different UPF network elements, the arrival time of the packets in the downstream direction of the service flow is the arrival time of the packets in the upstream direction of the service flow, the delay in the upstream direction of the service flow, and the egress UPF network element The sum of the residence time and the message transmission time between UPF network elements.
  • Scenario 18 If the entrance terminal and the egress terminal are connected to different UPF network elements, the arrival time of the packets in the downstream direction of the service flow is the arrival time of the packets in the upstream direction of the service flow, the delay in the upstream direction of the service flow, and the resident time of the entrance terminal. The sum of the residence time, the residence time of the ingress UPF network element, and the packet transmission time between UPF network elements.
  • the arrival time of the packets in the downstream direction of the service flow is the arrival time of the packets in the upstream direction of the service flow, the delay in the upstream direction of the service flow, and the arrival time of the ingress UPF network element.
  • the arrival time of the packets in the downstream direction of the service flow is the arrival time of the packets in the upstream direction of the service flow, the delay in the upstream direction of the service flow, and the resident time of the ingress terminal.
  • the guaranteed rate in the upstream direction of the service flow and the guaranteed rate in the downstream direction of the service flow can be configured as the guaranteed rate in the QoS information of the service flow.
  • Example 5 Combined with the above Example 1, after S802, the first network element obtains the access information of the terminal 201 and the access information of the terminal 202. If the access information of terminal 201 and the access information of terminal 202 are as shown in Table 1, and the first network element determines that the distance from terminal 201 to UPF network element 210 is 800 kilometers based on location 1 and identifier 1, based on location 2 and identifier 1. It is determined that the distance between the terminal 202 and the UPF network element 210 is 1000 kilometers. Then the first network element determines that the delay in the upstream direction of the service flow is less than the delay in the downstream direction of the service flow.
  • Example 6 Combined with the above example 2, after S802, the first network element obtains the access information of the terminal 201 and the access information of the terminal 203. The first network element also obtains the access information between the UPF network element 210 and the UPF network element 209. Message transmission time (2ms). If the access information of terminal 201 and the access information of terminal 203 are as shown in Table 2, and the first network element determines that the distance from terminal 201 to UPF network element 210 is 800 kilometers based on location 1 and identification 1, based on location 3 and identification 1. It is determined that the distance between the terminal 203 and the UPF network element 210 is 400 kilometers. Then the first network element determines that the delay in the upstream direction of the service flow is greater than the delay in the downstream direction of the service flow.
  • the first network element first determines that the delay in the upstream direction of the service flow is 9ms, and then determines the delay in the downstream direction of the service flow based on the above scenario 9 as the delay of the service flow (20ms) - the delay in the upstream direction of the service flow (9ms) ) - UPF network element 210 dwell time (1ms) - UPF network element 209 dwell time (1ms) - Terminal 201 dwell time (1ms) - Terminal 203 dwell time (1ms) - UPF network element 210 and UPF
  • the packet transmission time between network elements 209 (2ms) 5ms.
  • the arrival time of the packets in the downstream direction of the service flow is determined as the arrival time of the packets in the upstream direction of the service flow (14 o'clock) + the time in the upstream direction of the service flow.
  • Delay (9ms) + dwell time of terminal 201 (1ms) + dwell time of UPF network element 210 (1ms) + dwell time of UPF network element 209 (1ms) + report between UPF network element 210 and UPF network element 209 Text transmission time (2ms) 14:014ms.
  • the guaranteed rate in the upstream direction and the guaranteed rate in the downlink direction of the service flow are both 100M bit rate.
  • Example 7 Combined with the above Example 3, if the members of multicast group A include terminal 201 to terminal 203, in S802 Afterwards, the first network element obtains the access information of the terminal 201, the access information of the terminal 202 and the access information of the terminal 203. The first network element also obtains the messages between the UPF network element 210 and the UPF network element 209. Transmission time (2ms). If the access information of terminal 201, the PDU session of terminal 202, and the access information of terminal 203 are as shown in Table 3, the first network element first determines that the delay in the upstream direction of the service flow is 8ms, and then determines the service according to scenario 4 above.
  • the guaranteed rate in the upstream direction of the service flow and the guaranteed rate in the two downlink directions are both 100M bit rate.
  • Example 8 Combined with the above Example 4, if the entry terminal of the service flow is terminal 202 and the exit terminal is terminal 203, after S802, the first network element obtains the access information of terminal 202 and the access information of terminal 203. The first network element The network element also obtains the message transmission time (2ms) between the UPF network element 210 and the UPF network element 209. If the PDU session of terminal 202 and the access information of terminal 203 are as shown in Table 4, the first network element first determines that the delay in the upstream direction of the service flow is 9ms, and then determines that the delay in the downstream direction of the service flow is based on the above scenario 9.
  • the delay of the service flow (20ms) - the delay of the upstream direction of the service flow (9ms) - the dwell time of UPF network element 210 (1ms) - the dwell time of UPF network element 209 (1ms) - the dwell time of terminal 201 (1ms) ) - the residence time of terminal 203 (1ms) - the message transmission time between UPF network element 210 and UPF network element 209 (2ms) 5ms.
  • it is determined that the arrival time of the message in the downstream direction of the service flow is the service flow.
  • Upstream packet arrival time (14:00) + service flow upstream delay (9ms) + terminal 201 dwell time (1ms) + UPF network element 210 dwell time (1ms) + UPF network element 209 dwell time Time (1ms) + message transmission time (2ms) between UPF network element 210 and UPF network element 209 14:014ms.
  • the first network element first determines the delay in the upstream direction of the service flow, and then determines the downstream direction of the service flow. direction delay.
  • the first network element can also determine the delay in the downstream direction of the service flow first, and then determine the delay in the upstream direction of the service flow, without any restriction.
  • the first network element first determines the delay in the downstream direction of the service flow based on the distance between the ingress terminal and the ingress UPF network element, and the distance between the egress terminal and the egress UPF network element, and then based on the above scenarios 0 to 9 In any case, determine the delay in the upstream direction of the service flow.
  • the first network element triggers the network to configure the session of the ingress terminal according to the uplink QoS information, and configures the session of the egress terminal according to the downlink QoS information.
  • the session of the ingress terminal includes a first QoS flow (QoS Flow) used to transmit the service flow in the uplink direction
  • the session of the egress terminal includes a second QoS flow used to transmit the service flow in the downlink direction.
  • the first QoS flow is a QoS flow used in the session of the ingress terminal to transmit the service flow in the uplink direction
  • the second QoS flow is the QoS flow used in the session of the egress terminal to transmit the service flow in the downlink direction.
  • the first network element sends a second request message.
  • the second request message includes the address of the entrance terminal and the uplink QoS information.
  • the second request message also includes at least one of the following: local switching indication information, DNN associated with the portal terminal, S-NSSAI associated with the portal terminal, flow information of the service flow, or first event indication information.
  • Local switching indication information is used to instruct service flows to be transmitted in local switching or cross-UPF network element switching.
  • the first network element is an NEF network element, a TSCTSF network element, a PCF network element or a new network element.
  • the first network element can send a second request message to the PCF network element.
  • the second request message may be a creation request message (such as: Npcf_PolicyAuthorization_Create Request message) or an update request message (such as: Npcf_PolicyAuthorization_Update Request message).
  • Npcf_PolicyAuthorization_Create Request message a creation request message
  • Npcf_PolicyAuthorization_Update Request message such as: Npcf_PolicyAuthorization_Update Request message.
  • the PCF network element can generate a first policy control and charging (PCC) rule for configuring the first QoS flow in the session of the entrance terminal based on the uplink QoS information. , and sends the first PCC rule to the SMF network element, so that the SMF network element performs corresponding operations according to the first PCC rule.
  • PCC policy control and charging
  • the first network element can generate the first PCC rule based on the uplink QoS information, and send the second request including the first PCC rule to the SMF network element. message so that the SMF network element can perform corresponding operations according to the first PCC rule.
  • a process in which the first network element generates a first PCC rule based on the uplink QoS information, and sends a second request message including the first PCC rule to the SMF network element, so that the SMF network element performs corresponding operations according to the first PCC rule Referring to the embodiment shown in Figure 9 below, the PCF network element generates the first PCC rule according to the uplink QoS information, and sends the first PCC rule to the SMF network element, so that the SMF network element performs corresponding operations according to the first PCC rule.
  • the process will not be described in detail.
  • the process in which the first network element triggers the network to configure the session of the egress terminal based on the downlink QoS information is similar to the process in which the first network element triggers the network to configure the session of the ingress terminal based on the uplink QoS information. details as follows:
  • the first network element sends a third request message.
  • the third request message includes the address of the egress terminal and the downlink QoS information.
  • the third request message also includes at least one of the following: local switching indication information, DNN associated with the egress terminal, S-NSSAI associated with the egress terminal, flow information of the service flow or the third An event indication message.
  • Local switching indication information is used to instruct service flows to be transmitted in local switching or cross-UPF network element switching.
  • the first network element can send a third request message to the PCF network element.
  • the third request message may be a creation request message (such as: Npcf_PolicyAuthorization_Create Request message) or an update request message (such as: Npcf_PolicyAuthorization_Update Request message).
  • Npcf_PolicyAuthorization_Create Request message a creation request message
  • Npcf_PolicyAuthorization_Update Request message such as: Npcf_PolicyAuthorization_Update Request message.
  • the PCF network element can generate a second PCC rule for configuring the second QoS flow in the session of the egress terminal based on the downlink QoS information, and send the second PCC rule to the SMF network element. So that the SMF network element can perform corresponding operations according to the second PCC rules.
  • the SMF network element can perform corresponding operations according to the second PCC rules.
  • Another possible implementation method is that if the first network element is a PCF network element, the first network element can generate the second PCC rule based on the downlink QoS information, and send a third request including the second PCC rule to the SMF network element. message so that the SMF network element can perform corresponding operations according to the second PCC rules.
  • a process in which the first network element generates a second PCC rule based on the downlink QoS information, and sends a third request message including the second PCC rule to the SMF network element, so that the SMF network element performs corresponding operations according to the second PCC rule Referring to the embodiment shown in Figure 9 below, the PCF network element generates the second PCC rule according to the downlink QoS information, and sends the second PCC rule to the SMF network element, so that the SMF network element performs corresponding operations according to the second PCC rule.
  • the process will not be described in detail.
  • the actions of the first network element or the AF network element in the above-mentioned S801-S804 can be executed by the processor 501 in the communication device 50 shown in Figure 7 by calling the application code stored in the memory 503.
  • the embodiment of the present application is This does not impose any restrictions.
  • the first network element can obtain the QoS information of the service flow, the access information of the ingress terminal and the access information of the egress terminal, and perform business operations based on the access information of the ingress terminal and the access information of the egress terminal.
  • the QoS information of the flow is decomposed to obtain the uplink QoS information and downlink QoS information, and the network is triggered to generate corresponding PCC rules based on the uplink QoS information and downlink QoS information to realize the configuration of the QoS flow in the session of the ingress terminal and the configuration of the egress terminal. Configuration of QoS flows within the session.
  • the first network element can obtain the QoS information of the service flow, the access information of the ingress terminal, the access information of the egress terminal, and the message transmission time between the UPF network elements.
  • the access information of the egress terminal the access information of the egress terminal
  • the access information and the message transmission time between UPF network elements decompose the QoS information of the service flow to obtain the uplink QoS information and downlink QoS information, and trigger the network to generate corresponding PCC rules based on the uplink QoS information and downlink QoS information to Implement the configuration of the QoS flow in the session of the ingress terminal and the configuration of the QoS flow in the session of the egress terminal.
  • the above method can perform QoS decomposition of end-to-end business flows and achieve deterministic transmission of business flows.
  • the first network element considers the access information of the ingress terminal and the access information of the egress terminal, or considers the access information of the ingress terminal, the access information of the egress terminal and The packet transmission time between UPF network elements.
  • the above information can characterize the topology of the network to which the ingress terminal and egress terminal belong. Therefore, the method shown in Figure 8 can make the uplink QoS information and downlink QoS information determined by the first network element more reasonable, thereby making it easier for the transmission of the service flow to meet QoS requirements.
  • the following takes the first network element as a newly added network element as an example to introduce the method provided by the embodiment of the present application.
  • the communication method may include the following: step:
  • the AF network element sends the first request message to the first network element.
  • the first network element receives the first request message from the AF network element.
  • the first network element obtains QoS decomposition information based on the information of the target terminal set.
  • the first network element decomposes the QoS information of the service flow according to the QoS decomposition information to obtain uplink QoS information and downlink QoS information.
  • S904 The first network element sends the second request message to the PCF network element.
  • the PCF network element receives the second request message from the first network element.
  • the second request message includes the address of the entrance terminal and the uplink QoS information.
  • the second request message also includes at least one of the following: local switching indication information, DNN associated with the portal terminal, S-NSSAI associated with the portal terminal, flow information of the service flow, or first event indication information.
  • the second request message includes the flow information of the service flow. If the first request message in S901 does not include the flow information of the service flow (that is, in a general flow scenario), the second request message does not include the flow information of the service flow.
  • the AF network element can send the flow information of the service flow to the PCF network element, and trigger the first network element to send the second request message to the PCF network element.
  • the AF can carry the flow information of the service flow through the AFSessionWithQoS message and send it to the PCF network element through the NEF network element.
  • the AFSessionWithQoS message may also indicate at least one of the following: the service flow is an end-to-end service flow, the address of the ingress terminal, the DNN associated with the ingress terminal or the S-NSSAI associated with the ingress terminal.
  • the PCF network element can send query information including the address of the entrance terminal, the DNN associated with the entrance terminal, and the S-NSSAI associated with the entrance terminal to the first network element, so that the first network element A network element sends a second request message to the PCF network element.
  • the second request message includes the first event indication information. If the first request message in S901 does not include the first event indication information, the second request message does not include the first event indication information.
  • S905 The first network element sends the third request message to the PCF network element.
  • the PCF network element receives the third request message from the first network element.
  • the third request message includes the address of the egress terminal and the downlink QoS information.
  • the third request message also includes at least one of the following: local switching indication information, DNN associated with the egress terminal, S-NSSAI associated with the egress terminal, flow information of the service flow, or first event indication information.
  • S904 can be executed first and then S905, S905 can be executed first and then S904, or S904 and S905 can be executed at the same time, without limitation.
  • the information included in the second request message and the information included in the third request message may also be included and transmitted in one message, for example, transmitted through different fields of the one message, without limitation.
  • the PCF network element generates the first PCC rule according to the second request message, and generates the second PCC rule according to the third request message.
  • the PCF network element generates the QoS parameters in the first PCC rule based on the uplink QoS information, and sets the local switching indication information in the first PCC rule based on the local switching indication information. If the second request message also includes the first event indication information, the PCF network element also sets corresponding functions in the first PCC rule based on the first event indication information. For example, if the first event indication information indicates monitoring of average delay, the PCF network element sets the monitoring average delay in the upstream direction of the service flow or the average delay in the downstream direction of the service flow in the first PCC rule.
  • the PCF network element If the second update request message also includes the flow information of the service flow, or the PCF network element receives the flow information of the service flow from the AF network element, the PCF network element also configures the service in the first PCC rule according to the flow information of the service flow. Flow information for the flow.
  • the PCF network element generates QoS parameters in the second PCC rule based on the downlink QoS information, and sets the local switching indication information in the second PCC rule based on the local switching indication information. If the third update request message also includes the first event indication information, the PCF network element also sets corresponding functions in the second PCC rule based on the first event indication information. If the third update request message also includes the flow information of the service flow, or the PCF network element receives the flow information of the service flow from the AF network element, the PCF network element also configures the service in the second PCC rule according to the flow information of the service flow. Flow information for the flow.
  • the PCF network element sends the first PCC rule and the second PCC rule to the SMF network element.
  • the SMF network element receives the first PCC rule and the second PCC rule from the PCF network element.
  • the SMF network element can perform corresponding operations according to the first PCC rule.
  • the SMF network element sets the routing rules for local switching or cross-N19 switching on the UPF network element according to the local switching indication information in the first PCC rule, and the SMF network element generates the QoS flow according to the QoS parameters in the first PCC (that is, as mentioned above QoS Flow is configured according to the QoS parameters of QoS Flow. If event-related functions are set in the first PCC rule, the SMF network element also monitors the corresponding event, and after the event occurs, sends monitoring information to the PCF network element.
  • the SMF network element monitors the average delay in the upstream direction of the service flow and the PDB in the upstream direction of the service flow. , and sends event notification information to the PCF network element.
  • the event notification information includes the average delay in the upstream direction of the service flow.
  • the event notification information also includes an indication that the delay in the upstream direction of the service flow does not satisfy the PDB in the upstream direction of the service flow.
  • the SMF network element when the SMF network element configures routing rules for the UPF network element, it will send all the packets received from N6 to N3/N9 by default, and the packets received from N3/N9 will be sent to N6. Therefore, for end-to-end service flows, SMF network elements need to modify routing rules. For example, the SMF network element can activate the local switching or cross-N19 switching function of the UPF network element based on the local switching indication information in the first PCC rule, and configure specific packet detection rules (PDR) or forwarding action rules on the UPF network element.
  • PDR packet detection rules
  • forwarding action rule, FAR forwarding action rule
  • other routing rules so that the UPF network element supports local forwarding (that is, without going through the DN, the UPF network element directly forwards packets between two PDU sessions or multiple PDU sessions connected to this UPF network element. text) or cross-N19 forwarding (that is, without going through the DN, the UPF network element directly forwards the message to other UPF network elements through the N19 tunnel, so that other UPF network elements can send the message to the PDU session connected to the UPF network element) .
  • FAR forwarding action rule
  • the SMF network element determines that at least one terminal from terminal 202 to terminal 205 can receive the message of Multicast Address A, for example, the SMF network element receives the group joining message of terminal 203.
  • the SMF network element For the Internet Group Management Protocol (IGMP) Join (IGMP Join) message of the broadcast group or the N4 report of the UPF network element, the corresponding routing rules and corresponding QoS information can be configured on the user plane according to the first PCC rule. , and notify the PCF network element that the execution is successful.
  • the SMF network element does not receive the IGMP Join message or the N4 report of the UPF network element, the SMF network element can save the first PCC rule and wait for the terminal 203 to join the multicast group. Subsequently, the SMF network element configures the corresponding routing rules on the UPF network element according to the first PCC rule, configures the corresponding QoS information, and notifies the PCF network element that the execution is successful.
  • the SMF network element determines that the terminal 203 cannot receive the message of Multicast Address A, for example, the SMF network element receives the IGMP Quit message of the terminal 203 to exit the multicast group or the N4 report of the UPF network element, then The SMF network element can delete the corresponding routing rules and corresponding QoS information that have been installed on the user plane. At the same time, the SMF network element can also feedback to the PCF network element that the terminal 203 has exited the multicast group.
  • the PCF network element can require the SMF network element to report the event of the terminal joining/exiting multicast group A before configuring the first PCC rule to the SMF network element.
  • the PCF network element receives the information about the terminal group sent by the SMF network element. After broadcasting the group information, configure the relevant PCC rules to SMF.
  • the PCF network element can first send the first PCC rule to the SMF network element, and also require the SMF network element to report the event of the terminal joining/exiting multicast group A.
  • the PCF network element After receiving the information about the terminal multicast group sent by the SMF network element, the PCF network element After receiving the information, the first PCC rule can be updated, and after the terminal 203 exits the multicast group A, the SMF network element is triggered to delete the corresponding QoS Flow configuration.
  • the SMF network element can perform corresponding operations according to the second PCC rule. Specifically, reference may be made to the description of the SMF network element performing corresponding operations according to the first PCC rule, which will not be described again.
  • the PCF network element can send the above-mentioned first PCC and the second PCC to the SMF network element through one message, or can send the above-mentioned first PCC and the second PCC to the SMF network element through two messages respectively, without limitation.
  • the method shown in Figure 9 may also include S908 and/or S909:
  • the SMF network element sends the first notification information to the first network element.
  • the first network element receives the first notification information from the SMF network element.
  • the first notification information is information for the second request message.
  • the first notification information includes information reported by the SMF network element monitoring an event indicated by the first event indication information.
  • the first notification information includes at least one of the following: average delay in the upstream direction of the service flow, indication information that the PDB in the upstream direction of the service flow is no longer satisfied, and indication information that the GBR in the upstream direction of the service flow is no longer satisfied. Or the PER in the upstream direction of the service flow is no longer satisfied.
  • the SMF network element sends the first notification information to the first network element through the PCF network element.
  • the SMF network element sends the second notification information to the first network element.
  • the first network element receives the second notification information from the SMF network element.
  • the second notification information is information for the third request message.
  • the second notification information includes at least one of the following: average delay in the downstream direction of the service flow, indication information that the PDB in the downstream direction of the service flow is no longer satisfied, and indication information that the GBR in the downstream direction of the service flow is no longer satisfied. Or indication information that the PER in the downstream direction of the service flow is no longer satisfied.
  • the SMF network element sends the second notification information to the first network element through the PCF network element.
  • the SMF network element can send the above-mentioned first notification information and the second notification information to the first network element through one message, or can also send the above-mentioned first notification information and the second notification to the first network element through two messages respectively. information without restriction.
  • the first network element after receiving the first notification information and the second notification information, the first network element sends the first notification information and the second notification information to the AF network element.
  • the first network element further processes the information in the first notification information and the second notification information, and sends the processed information to the AF network element. For example, if the first notification information includes the average delay of the upstream direction of the service flow, and the second notification information includes the average delay of the downlink direction of the service flow, then the first network element sends the average delay of the service flow to the AF network element,
  • the average delay of a service flow is the sum of the average delay in the upstream direction of the service flow and the average delay in the downstream direction of the service flow.
  • the first network element can also adjust the uplink QoS information and/or the downlink QoS information according to the first notification information and/or the second notification information, and trigger the PCF network element Make corresponding configurations with the SMF network element. That is to say, the method shown in Figure 9 can also include the following steps:
  • the first network element adjusts the uplink QoS information and/or downlink QoS information, and obtains the adjusted QoS information.
  • the first network element adjusts the uplink QoS information according to the first notification information; or adjusts the downlink QoS information according to the second notification information; or adjusts the uplink QoS information according to the first notification information and the second notification information. Downlink QoS information.
  • the adjusted QoS information includes the adjusted uplink QoS information. If the first network element adjusts the downlink QoS information, the adjusted QoS information includes the adjusted downlink QoS information. If the first network element adjusts the uplink QoS information and the downlink QoS information, the adjusted QoS information includes the adjusted uplink QoS information and the adjusted downlink QoS information.
  • the uplink QoS information includes the delay in the upstream direction of the service flow (9ms) and the guaranteed rate in the upstream direction of the service flow (100M bit rate).
  • the downlink QoS information includes the delay in the downstream direction of the service flow (5ms), the downlink speed of the service flow.
  • the packet arrival time in the upstream direction 14:014ms and the guaranteed rate in the downstream direction of the service flow (100M bit rate).
  • the second notification information includes The average delay in the downstream direction of the business flow (4ms) means that the upstream direction delay configuration in the uplink QoS information is too large, and the downstream direction delay configuration in the downlink QoS information is too small. You can adjust the upstream direction delay. Small, increase the delay in the downstream direction.
  • the adjusted QoS information includes adjusted uplink QoS information and adjusted downlink QoS information, where the adjusted uplink QoS information includes the delay (7ms) in the upstream direction of the service flow, and the adjusted downlink QoS information includes the service flow
  • the delay in the downstream direction of the flow (6ms) and the time when the packet arrives at the terminal 202 are the packet arrival time (14:012ms).
  • the first notification information includes the average delay in the upstream direction of the service flow (7ms)
  • the second notification information includes the average delay in the downstream direction of the service flow (5ms)
  • the second notification information also indicates the average delay in the downstream direction of the service flow.
  • the adjusted QoS information includes the adjusted downlink QoS information, where the adjusted downlink QoS information includes the delay in the downstream direction of the service flow (6ms), and the time when the packet arrives at the terminal 202 is the packet arrival time (14 o'clock). zero 12ms).
  • the first network element after receiving the first notification information and the second notification information, the first network element sends the first notification information and the second notification information to the AF network element. Or, the first network element receives the first notification information and the second communication After receiving the information, the information in the first notification information and the second notification information is further processed, and the processed information is sent to the AF network element. However, if the adjusted QoS information can meet certain requirements, the first network element may not send the corresponding first notification information and second notification information to the AF network element, or send processed information.
  • the first network element may not send the average delay related information to the AF network element. If after adjustment, the PDB in the upstream direction of the service flow and/or the PDB in the downstream direction of the service flow do not meet the reporting conditions, the first network element does not send PDB-related information to the AF network element.
  • the first network element sends a first update request message to the PCF network element.
  • the PCF network element receives the first update request message from the first network element.
  • the first update request message includes adjusted uplink QoS information.
  • the first network element sends a second update request message to the PCF network element.
  • the PCF network element receives the second update request message from the first network element.
  • the second update request message includes adjusted downlink QoS information.
  • S911 may be executed first and then S912, S912 may be executed first and then S911, or S911 and S912 may be executed at the same time, without limitation.
  • the PCF network element generates a third PCC rule based on the first update request message, and generates a fourth PCC rule based on the second update request message.
  • the PCF network element generates QoS parameters in the third PCC rule based on the adjusted uplink QoS information, and generates QoS parameters in the fourth PCC rule based on the adjusted downlink QoS information.
  • the PCF network element sends the third PCC rule and the fourth PCC rule to the SMF network element.
  • the SMF network element receives the third PCC rule and the fourth PCC rule from the PCF network element.
  • the SMF network element can update the QoS Flow according to the third PCC rule. For example, the SMF network element updates the QoS parameters of the QoS Flow based on the QoS parameters in the third PCC rule, and configures the QoS Flow based on the updated QoS parameters.
  • the SMF network element can update the QoS Flow according to the fourth PCC rule. For example, the SMF network element updates the QoS parameters of QoS Flow based on the QoS parameters in the fourth PCC rule, and configures QoS Flow based on the updated QoS parameters.
  • the actions of the first network element, AF network element, PCF network element or SMF network element in the above-mentioned S901-S914 can be called by the processor 501 in the communication device 50 shown in Figure 7.
  • the first network element can obtain the QoS information of the service flow, the access information of the ingress terminal and the access information of the egress terminal, and perform business operations based on the access information of the ingress terminal and the access information of the egress terminal.
  • the QoS information of the flow is decomposed to obtain the uplink QoS information and downlink QoS information, and the network is triggered to generate corresponding PCC rules based on the uplink QoS information and downlink QoS information to realize the configuration of the QoS flow in the session of the ingress terminal and the configuration of the egress terminal. Configuration of QoS flows within a session.
  • the first network element can obtain the QoS information of the service flow, the access information of the ingress terminal, the access information of the egress terminal, and the message transmission time between the UPF network elements.
  • the access information of the egress terminal the access information of the egress terminal
  • the access information and the message transmission time between UPF network elements decompose the QoS information of the service flow, obtain the uplink QoS information and downlink QoS information, and trigger the network to
  • the upstream QoS information and the downlink QoS information generate corresponding PCC rules to implement the configuration of the QoS flow in the session of the ingress terminal and the configuration of the QoS flow in the session of the egress terminal.
  • the above method can perform QoS decomposition of end-to-end business flows and achieve deterministic transmission of business flows.
  • the first network element considers the access information of the ingress terminal and the access information of the egress terminal, or considers the access information of the ingress terminal, the access information of the egress terminal and The packet transmission time between UPF network elements.
  • the above information can characterize the topology of the network to which the ingress terminal and egress terminal belong. Therefore, the method shown in Figure 9 can make the uplink QoS information and downlink QoS information determined by the first network element more reasonable, thereby making it easier for the transmission of the service flow to meet QoS requirements.
  • the first network element can also obtain the first event indication information and trigger the SMF network element to monitor the corresponding event. Subsequently, the first network element can also adjust the uplink QoS information and/or downlink QoS information according to the parameters obtained from the network monitoring event, so that the adjusted QoS information is more appropriate, so as to further enable the transmission of the service flow to meet QoS requirements.
  • the first network element either performs QoS decomposition based on the access information of the entrance terminal and the access information of the exit terminal to obtain uplink QoS information and downlink QoS information, or it performs QoS decomposition based on the access information of the entrance terminal.
  • QoS decomposition is performed on the incoming information, the access information of the egress terminal and the packet transmission time between UPF network elements to obtain uplink QoS information and downlink QoS information.
  • the first network element may not perform QoS decomposition based on the above information, but first allocate uplink initial QoS information and/or downlink initial QoS information, and trigger the PCF network element to perform QoS decomposition based on the uplink initial QoS information and/or downlink initial QoS information.
  • the QoS information generates corresponding PCC rules
  • the SMF network element configures QoS Flow according to the corresponding PCC rules
  • the first network element also instructs the SMF network element to monitor events related to the QoS information.
  • the first network element can also allocate appropriate uplink QoS information and appropriate downlink QoS information based on the parameters obtained by the SMF through monitoring events, so that the transmission of the service flow meets QoS requirements. Specifically, you may refer to the method shown in Figure 10 below.
  • the communication method may include the following steps:
  • the AF network element sends the fifth request message to the first network element.
  • the first network element receives the fifth request message from the AF network element.
  • the AF network element may be the AF network element 402 in Figure 5, and the first network element may be the first network element 401 in Figure 5.
  • the manager when there is a business requirement, configures the IE in the fifth request message and triggers the AF network element to send the fifth request message to the first network element.
  • the AF network element executes a pre-stored program to configure the IE in the fifth request message and triggers the AF to send the fifth request message to the first network element.
  • the fifth request message may be used to request resource allocation for the service flow.
  • the fifth request message is used to allocate resources and QoS information for the service flow between the target terminals, so as to ensure the end-to-end communication quality between the target terminals.
  • the business flow is any end-to-end business flow.
  • the target terminal includes the ingress terminal and egress terminal of the service flow.
  • the exit terminal of the service flow can include one terminal or multiple terminals, without limitation. It can be understood that if the egress terminal includes one terminal, the fifth request message is used to allocate resources and QoS information for the service flow between the ingress terminal and the egress terminal, so as to ensure end-to-end communication between the ingress terminal and the egress terminal. quality.
  • the fifth request message is used to allocate resources and QoS information for the service flow between the ingress terminal and each egress terminal among the multiple egress terminals, so as to ensure the security between the ingress terminal and the egress terminal. between ends End-to-end communication quality.
  • the administrator configures the IE
  • the AF network element configures the IE itself
  • the IE included in the fifth request message may be different.
  • the fifth request message may include the type information of the service flow, the QoS information of the service flow, and the second event indication information.
  • the fifth request message also includes at least one of the following: flow information of the service flow or information of the target terminal set.
  • the fifth request message may include the QoS information of the service flow and the second event indication information.
  • the fifth request message also includes at least one of the following: service flow type information, service flow flow information, or target terminal set information.
  • the QoS information of the service flow For an introduction to the type information of the service flow, the QoS information of the service flow, the flow information of the service flow or the information of the target terminal set, please refer to the corresponding description in S801.
  • the second event indication information may indicate monitoring of average delay and QoS notification monitoring of PDB.
  • the second event indication information also indicates at least one of the following: QoS notification monitoring for GBR or QoS notification monitoring for PER.
  • QoS notification monitoring for PDB, QoS notification monitoring for GBR, or QoS notification monitoring for PER may be based on the QNC mechanism.
  • the first network element decomposes the QoS information of the service flow and obtains the initial QoS information.
  • the initial QoS information may include the initial QoS information of the service flow in the uplink direction (hereinafter referred to as the uplink initial QoS information) or the initial QoS information of the service flow in the downlink direction (hereinafter referred to as the downlink initial QoS information).
  • the QoS information of the service flow includes the delay requirement of the service flow.
  • the QoS information of the service flow also includes at least one of the following: packet priority information, packet size, maximum rate, guaranteed rate, packet error rate, period information, clock domain information, packet arrival time, or survival time.
  • the initial QoS information can at least include the above information.
  • the uplink initial QoS information may include the delay in the upstream direction of the service flow.
  • the upstream initial QoS information may include the delay in the upstream direction of the service flow and the packet arrival time in the upstream direction of the service flow.
  • the initial QoS information including the downlink initial QoS information as an example, if the QoS of the service flow includes the delay requirement of the service flow, the downlink initial QoS information may include the delay in the downstream direction of the service flow. If the QoS of the service flow includes the delay requirement of the service flow and the arrival time of the packet, the initial downstream QoS information may include the delay in the downstream direction of the service flow and the arrival time of the packet in the downstream direction of the service flow.
  • One possible implementation method is that the first network element obtains initial QoS information based on historical QoS decomposition.
  • the first network element can set the delay in the upstream direction of the service flow to 5 ms.
  • the first network element determines the initial QoS information according to the preset rules and the QoS information of the service flow.
  • the uplink initial QoS information includes the delay in the upstream direction of the service flow.
  • the upstream side of this business flow The delay in the direction is obtained based on the first preset rule and the delay requirement of the service flow.
  • the delay in the upstream direction of the service flow may be preconfigured to be 7 ms in the first network element, and then the first network element may set the delay in the upstream direction of the service flow to 7 ms.
  • the first network element may multiply the delay indicated by the delay requirement of the service flow by a coefficient a, and use the delay multiplied by the coefficient as the delay in the upstream direction of the service flow. where a is greater than 0 and less than 1.
  • Example 9 The following is described in conjunction with the above Example 2.
  • the type information of the service flow indicates that the service flow is an end-to-end service flow.
  • the information of the target terminal set includes the identification of terminal 201, the identification of terminal 203, the DNN and S-NSSAI associated with terminal 201 and terminal 202.
  • the QoS information of the service flow indicates that the delay of the service flow is 20ms, the packet arrival time of the service flow is 14:00, and the guaranteed rate of the service flow is 100M bit rate.
  • the flow information of the service flow includes Ethernet flow information (such as: the MAC address of terminal 201 in the service flow, the MAC address of terminal 203 in the service flow, and VLAN tag information).
  • the first event indication information indicates monitoring of average delay and QoS notification monitoring of PDB.
  • the first network element can configure the delay of the upstream direction of the service flow to be half of the delay of the service flow, that is, the initial QoS information includes the uplink initial QoS information, and the uplink initial QoS information includes the delay of the upstream direction of the service flow, and the delay is 10 ms. .
  • the downlink initial QoS information includes the delay in the downstream direction of the service flow.
  • the delay in the downstream direction of the service flow is obtained based on the second preset rule and the delay requirement of the service flow.
  • the first preset rule and the second preset rule may be the same or different.
  • the packet arrival time in the upstream direction of the service flow can be set to the packet arrival time of the service flow. If the downlink initial QoS information includes the packet arrival time in the downstream direction of the service flow, the first network element can determine it according to the situation in S803 (such as situation 10).
  • S1003 The first network element sends a fourth request message.
  • the fourth request message includes the address of the entrance terminal, the uplink initial QoS information and the second event indication information.
  • the fourth request message also includes at least one of the following: local switching indication information, DNN associated with the portal terminal, S-NSSAI associated with the portal terminal, or flow information of the service flow.
  • Local switching indication information is used to instruct service flows to be transmitted in local switching or cross-UPF network element switching.
  • the first network element is an NEF network element, a TSCTSF network element, a PCF network element or a new network element.
  • the first network element can send a fourth request message to the PCF network element.
  • the fourth request message may be a create request message (such as: Npcf_PolicyAuthorization_Create Request message) or an update request message (such as: Npcf_PolicyAuthorization_Update Request message).
  • Npcf_PolicyAuthorization_Create Request message such as: Npcf_PolicyAuthorization_Update Request message.
  • the first network element performs QoS decomposition for the first time
  • the first network element sends a creation request message to the PCF network element.
  • the first network element performs QoS decomposition for the first time
  • the first network element sends an update request message to the PCF network element.
  • the PCF network element can generate the first PCC rule for configuring the first QoS flow in the session of the portal terminal based on the uplink QoS information, and send the first PCC rule to the SMF network element. So that the SMF network element performs corresponding operations according to the first PCC rule. For details, reference may be made to the corresponding description in the embodiment shown in FIG. 9 below.
  • the first network element can generate the first PCC rule based on the uplink QoS information, and send the fourth request including the first PCC rule to the SMF network element. information, So that the SMF network element performs corresponding operations according to the first PCC rule.
  • a process in which the first network element generates a first PCC rule based on the uplink QoS information, and sends a fourth request message including the first PCC rule to the SMF network element, so that the SMF network element performs corresponding operations according to the first PCC rule Referring to the embodiment shown in Figure 9 below, the PCF network element generates the first PCC rule according to the uplink QoS information, and sends the first PCC rule to the SMF network element, so that the SMF network element performs corresponding operations according to the first PCC rule.
  • the process will not be described in detail.
  • the fourth request message includes the address of the egress terminal, the downlink initial QoS information and the second event indication information.
  • the fourth request message also includes at least one of the following: local switching indication information, DNN associated with the egress terminal, S-NSSAI associated with the egress terminal, or flow information of the service flow.
  • Local switching indication information is used to instruct service flows to be transmitted in local switching or cross-UPF network element switching.
  • the first network element can send a fourth request message to the PCF network element.
  • the fourth request message may be a create request message (such as: Npcf_PolicyAuthorization_Create Request message) or an update request message (such as: Npcf_PolicyAuthorization_Update Request message).
  • Npcf_PolicyAuthorization_Create Request message such as: Npcf_PolicyAuthorization_Update Request message.
  • the first network element performs QoS decomposition for the first time
  • the first network element sends a creation request message to the PCF network element.
  • the first network element performs QoS decomposition for the first time
  • the first network element sends an update request message to the PCF network element.
  • the PCF network element can generate a second PCC rule for configuring the second QoS flow in the session of the entrance terminal based on the downlink QoS information, and send the second PCC rule to the SMF network element. So that the SMF network element can perform corresponding operations according to the second PCC rules. For details, reference may be made to the corresponding description in the embodiment shown in FIG. 9 below.
  • the first network element can generate a second PCC rule based on the downlink QoS information, and send a fourth request including the second PCC rule to the SMF network element. message so that the SMF network element can perform corresponding operations according to the second PCC rules.
  • the PCF network element generates the second PCC rule according to the downlink QoS information, and sends the second PCC rule to the SMF network element, so that the SMF network element performs corresponding operations according to the second PCC rule.
  • the process will not be described in detail.
  • the SMF network element can send the third notification information for the fourth request message to the first network element if the event reporting conditions are met.
  • S1004 The first network element receives the third notification information for the fourth request message.
  • the first network element receives the third notification information from the SMF network element through the PCF network element. If the first network element is a PCF network element, the first network element receives the third notification information from the SMF network element.
  • the third notification information includes the average delay in the upstream direction of the service flow, or the third notification information includes the average delay in the upstream direction of the service flow and the average delay in the upstream direction of the service flow.
  • Indication information indicating that the packet delay budget is no longer met, or, if the initial QoS information includes downlink initial QoS information, then the third notification information includes the average delay in the downstream direction of the service flow, or, the third notification information includes the downlink direction of the service flow. The average delay and the packet delay budget in the downstream direction of the service flow no longer meet the indication information.
  • the first network element adjusts the initial QoS information according to the third notification information and obtains the target QoS information.
  • the target QoS information includes uplink target QoS information and downlink target QoS information.
  • the third notification information can at least indicate the average delay in the upstream direction of the service flow.
  • the first network element can adjust the uplink initial QoS information according to the third notification information to obtain the uplink target QoS. information, and determine the downlink target QoS information based on the uplink target QoS information. For example, the first network element sets the delay of the service flow in the downstream direction to be less than or equal to the difference between the delay of the service flow and the delay of the service flow in the upstream direction.
  • the first network element can obtain the access information of the ingress terminal and the access information of the egress terminal.
  • the first network element can obtain the target QoS information based on the access information of the ingress terminal, the access information of the egress terminal, the third notification information and the initial QoS information. That is to say, when obtaining the target QoS information, the first network element may also consider the access information of the ingress terminal and the access information of the egress terminal. Or, before S1005, the first network element can obtain the access information of the ingress terminal, the access information of the egress terminal, and the message transmission time between UPF network elements.
  • the first network element can obtain the target QoS information based on the access information of the ingress terminal, the access information of the egress terminal, the message transmission time between UPF network elements, the event notification information and the initial QoS information. That is to say, when the first network element obtains the target QoS information, it can also consider the access information of the ingress terminal, the access information of the egress terminal and the message transmission time between UPF network elements. For example, the first network element may determine the target QoS information according to any situation in S803 above.
  • the first network element triggers the network to configure the session of the ingress terminal according to the uplink target QoS information, and configures the session of the egress terminal according to the downlink target QoS information.
  • the network For specific details, please refer to the corresponding description above and will not be repeated here.
  • the actions of the first network element or the AF network element in the above-mentioned S1001-S1005 can be executed by the processor 501 in the communication device 50 shown in Figure 7 by calling the application code stored in the memory 503.
  • the embodiment of the present application is This does not impose any restrictions.
  • the first network element can first allocate uplink initial QoS information or downlink initial QoS information, triggering the network to configure the corresponding QoS Flow, and the first network element also instructs to monitor events related to QoS information. Subsequently, the first network element can also allocate suitable uplink target QoS information and suitable downlink target QoS information based on the parameters obtained from the network monitoring event, so that the transmission of the service flow meets QoS requirements through dynamic adjustment.
  • the first network element first allocates uplink initial QoS information or downlink initial QoS information.
  • the first network element may also allocate uplink initial QoS information and downlink initial QoS information first.
  • the following introduction takes the first network element as the newly added network element as an example.
  • the communication method may include the following steps:
  • the AF network element sends the fifth request message to the first network element.
  • the first network element receives the fifth request message from the AF network element.
  • the first network element decomposes the QoS information of the service flow to obtain initial QoS information.
  • the initial QoS information may include the initial QoS information of the service flow in the uplink direction (hereinafter referred to as the uplink initial QoS information) and the initial QoS information of the service flow in the downlink direction (hereinafter referred to as the downlink initial QoS information).
  • the first network element obtains the uplink initial QoS information or the downlink initial QoS information
  • the first network element obtains the uplink initial QoS information and the downlink initial information
  • S1103 The first network element sends the sixth request message to the PCF network element.
  • the PCF network element receives the sixth request message from the first network element.
  • the sixth request message includes the address of the entrance terminal, uplink initial QoS information and second event indication information.
  • the sixth request message also includes at least one of the following: local switching indication information, DNN associated with the ingress terminal, S-NSSAI associated with the ingress terminal, or flow information of the service flow.
  • Local switching indication information is used to instruct service flows to be transmitted in local switching or cross-UPF network element switching.
  • the sixth request message may be a creation request message (such as: Npcf_PolicyAuthorization_Create Request message) or an update request message (such as: Npcf_PolicyAuthorization_Update Request message).
  • a creation request message such as: Npcf_PolicyAuthorization_Create Request message
  • an update request message such as: Npcf_PolicyAuthorization_Update Request message
  • S1104 The first network element sends the seventh request message to the PCF network element.
  • the PCF network element receives the seventh request message from the first network element.
  • the seventh request message includes the address of the egress terminal, downlink initial QoS information and second event indication information.
  • the seventh request message also includes at least one of the following: local switching indication information, DNN associated with the egress terminal, S-NSSAI associated with the egress terminal, or flow information of the service flow.
  • Local switching indication information is used to instruct service flows to be transmitted in local switching or cross-UPF network element switching.
  • the seventh request message may be a creation request message (such as: Npcf_PolicyAuthorization_Create Request message) or an update request message (such as: Npcf_PolicyAuthorization_Update Request message).
  • a creation request message such as: Npcf_PolicyAuthorization_Create Request message
  • an update request message such as: Npcf_PolicyAuthorization_Update Request message
  • the PCF network element generates the fifth PCC rule according to the sixth request message, and generates the sixth PCC rule according to the seventh request message.
  • the PCF network element generates the QoS parameters in the fifth PCC rule according to the uplink initial QoS information, sets the local switching indication information in the fifth PCC rule according to the local switching indication information, and sets the local switching indication information in the fifth PCC rule according to the second event indication information.
  • the PCF network element sets the corresponding functions in .
  • the PCF network element generates the QoS parameters in the sixth PCC rule according to the downlink initial QoS information, sets the local switching indication information in the sixth PCC rule according to the local switching indication information, and sets the local switching indication information in the sixth PCC rule according to the second event indication information. Set the corresponding functions.
  • the PCF network element sends the fifth PCC rule and the sixth PCC rule to the SMF network element.
  • the SMF network element receives the first PCC rule and the second PCC rule from the PCF network element.
  • the SMF network element sends the fourth notification information for the sixth request message to the first network element.
  • the first network element receives the fourth notification information for the sixth request message from the SMF network element.
  • S1108 The SMF network element sends the fifth notification information for the seventh request message to the first network element.
  • the first network element receives the fifth notification information for the seventh request message from the SMF network element.
  • the first network element adjusts the initial QoS information according to the fourth notification information and the fifth notification information to obtain the target QoS information.
  • the target QoS information includes uplink target QoS information and downlink target QoS information.
  • the fourth notification information can at least indicate the average delay in the upstream direction of the service flow, and the first network element can determine whether the uplink initial QoS information is appropriately set according to the fourth notification information.
  • the fifth notification information can at least indicate the average delay in the downstream direction of the service flow, and the first network element can determine whether the downlink initial QoS information is appropriately set based on the fifth notification information. Therefore, suitable uplink target QoS information and downlink target QoS information can be obtained according to the fourth notification information and the fifth notification information.
  • the initial uplink QoS information includes the delay in the upstream direction of the service flow (10ms), and the initial downlink QoS information includes the delay in the downstream direction of the service flow (10ms).
  • the fourth notification information It includes the average delay in the upstream direction of the service flow (9ms).
  • the fifth notification information includes the average delay in the downstream direction of the service flow (6ms).
  • the fourth notification information also indicates that the delay in the upstream direction of the service flow does not meet the requirements of the upstream direction of the service flow.
  • PDB it means that the upstream direction delay configuration in the uplink initial QoS information is small, and the upstream direction delay can be increased.
  • the uplink target QoS information includes the delay in the upstream direction of the service flow (11 ms), and the downlink target QoS information includes the delay in the downstream direction of the service flow (7 ms).
  • the first network element can obtain the access information of the ingress terminal and the access information of the egress terminal. In this way, the first network element can also determine the target QoS information by combining the access information of the ingress terminal and the access information of the egress terminal. Alternatively, before S1109, the first network element may obtain the access information of the ingress terminal, the access information of the egress terminal, and the message transmission time between UPF network elements. In this way, the first network element can also determine the target QoS information by combining the access information of the ingress terminal, the access information of the egress terminal and the message transmission time between UPF network elements.
  • S1110 The first network element sends a third update request message to the PCF network element.
  • the PCF network element receives the third update request message from the first network element.
  • the third update request message includes uplink target QoS information.
  • S1111 The first network element sends a fourth update request message to the PCF network element.
  • the PCF network element receives the fourth update request message from the first network element.
  • the fourth update request message includes downlink target QoS information.
  • S1110 can be executed first and then S1111, or S1110 can be executed first and then S1111, or S1110 and S1111 can be executed at the same time, without limitation.
  • the PCF network element generates a seventh PCC rule based on the third update request message, and generates an eighth PCC rule based on the fourth update request message.
  • the PCF network element generates the QoS parameters in the seventh PCC rule based on the uplink target QoS information, and generates the QoS parameters in the eighth PCC rule based on the downlink target QoS information.
  • the PCF network element sends the seventh PCC rule and the eighth PCC rule to the SMF network element.
  • the SMF network element receives the seventh PCC rule and the eighth PCC rule from the PCF network element.
  • the SMF network element can update the QoS Flow according to the seventh PCC rule. For example, the SMF network element updates the QoS parameters of QoS Flow based on the QoS parameters in the seventh PCC rule, and configures QoS Flow based on the updated QoS parameters.
  • the SMF network element can update the QoS Flow according to the eighth PCC rule. For example, the SMF network element updates the QoS parameters of QoS Flow according to the QoS parameters in the eighth PCC rule. The updated QoS parameters configure QoS Flow.
  • the actions of the first network element, AF network element, PCF network element or SMF network element in the above-mentioned S1101-S1113 can be called by the processor 501 in the communication device 50 shown in Figure 7.
  • the first network element can first allocate uplink initial QoS information and downlink initial QoS information, trigger the network to configure the corresponding QoS Flow, and the first network element also instructs to monitor events related to QoS information. Subsequently, the first network element can also allocate suitable uplink target QoS information and suitable downlink target QoS information based on the parameters obtained from the network monitoring event, so that the transmission of the service flow meets QoS requirements through dynamic adjustment.
  • the network elements that perform QoS decomposition are all the first network elements.
  • the network element that performs QoS decomposition may also be a network element other than the first network element. The following is explained by taking the network element that performs QoS decomposition is the AF network element as an example.
  • the communication method may include the following steps:
  • the AF network element decomposes the QoS information of the service flow and obtains the initial QoS information.
  • the AF network element may be the AF network element 411 in Figure 6.
  • the AF network element sends the fourth request message to the PCF network element.
  • the PCF network element receives the fourth request message from the AF network element.
  • the PCF network element may be the PCF network element 412 in Figure 6.
  • the fourth request message includes the address of the entrance terminal, the uplink initial QoS information and the second event indication information.
  • the fourth request message also includes at least one of the following: local switching indication information, DNN associated with the portal terminal, S-NSSAI associated with the portal terminal, or flow information of the service flow.
  • the local switching indication information is used to instruct the service flow to be transmitted in a local switching or cross-UPF network element switching manner.
  • the fourth request message includes the address of the egress terminal, the downlink initial QoS information and the second event indication information.
  • the fourth request message also includes at least one of the following: local switching indication information, DNN associated with the egress terminal, S-NSSAI associated with the egress terminal, or flow information of the service flow.
  • the AF network element sends the fourth request message to the PCF network element through the NEF network element and the TSCTSF network element.
  • the PCF network element generates the eighth PCC rule according to the fourth request message.
  • the PCF network element sends the eighth PCC rule to the SMF network element.
  • the SMF network element receives the eighth PCC rule from the PCF network element.
  • the SMF network element sends the third notification information to the AF network element.
  • the AF network element receives the third notification information from the SMF network element.
  • the AF network element obtains the target QoS information based on the third notification information and the initial QoS information.
  • the AF network element sends the fifth update request message to the PCF network element.
  • the PCF network element receives the fifth update request message from the AF network element.
  • S1208 The PCF network element generates the ninth PCC rule according to the fifth update request message.
  • the PCF network element sends the ninth PCC rule to the SMF network element.
  • the SMF network element receives the ninth PCC rule from the PCF network element.
  • the actions of the AF network element, PCF network element or SMF network element in the above-mentioned S1201-S1209 can be executed by the processor 501 in the communication device 50 shown in Figure 7 by calling the application program code stored in the memory 503.
  • This application The embodiment does not impose any restrictions on this.
  • the AF network element can first allocate uplink initial QoS information or downlink initial QoS information, and trigger the PCF network element to generate corresponding PCC rules based on the uplink initial QoS information or downlink initial QoS information.
  • the PCC rules configure QoS Flow, and the AF network element is also instructed to monitor events related to QoS information.
  • the AF network element can also allocate appropriate uplink QoS information and appropriate downlink QoS information according to time notifications, and dynamically adjust the service flow transmission to meet QoS requirements.
  • the AF network element first allocates uplink initial QoS information or downlink initial QoS information.
  • the AF network element can also first allocate uplink initial QoS information and downlink initial QoS information.
  • the AF network element decomposes the QoS information of the service flow to obtain the initial QoS information, sends the sixth request message and the seventh request message to the PCF network element, and receives the fourth notification information for the sixth request message and the fourth notification information for the sixth request message. 7. Request the fifth notification information of the message, adjust the initial QoS information according to the fourth notification information and the fifth notification information to obtain the target QoS information.
  • the initial QoS information includes uplink initial QoS information and downlink initial QoS information.
  • the target QoS information includes uplink target QoS information and downlink target QoS information.
  • the sixth request message includes the address of the entrance terminal, uplink initial QoS information and second event indication information.
  • the seventh request message includes the address of the egress terminal, downlink initial QoS information and second event indication information.
  • the second event indication information indicates monitoring of average delay and QoS notification monitoring of packet delay budget.
  • the methods and/or steps implemented by the first network element can also be implemented by components (such as chips or circuits) available for the first network element; the methods and/or steps implemented by the AF network element /or the steps may also be implemented by components (such as chips or circuits) that can be used in the AF network element.
  • embodiments of the present application also provide a communication device, which may be the first network element in the above method embodiment, or a device including the above first network element, or a component that can be used in the first network element;
  • the communication device may be the AF network element in the above method embodiment, or a device including the above AF network element, or a component that can be used for the AF network element.
  • the above-mentioned first network element or AF network element includes hardware structures and/or software modules corresponding to each function.
  • Embodiments of the present application can divide the first network element or the AF network element into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one process. in the module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It can be understood that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 13 shows a schematic structural diagram of a communication device 130.
  • the communication device 130 includes a transceiver module 1301 and a processing module 1302.
  • the transceiver module 1301 which may also be called a transceiver unit, is used to perform transceiver operations.
  • it may be a transceiver circuit, a transceiver, a transceiver, or a communication interface.
  • the communication device 130 may also include a storage module (not shown in FIG. 13) for storing program instructions and data.
  • the communication device 130 is used to implement the function of the first network element.
  • the communication device 130 is, for example, the first network element described in the embodiment shown in FIG. 8 or the embodiment shown in FIG. 9 .
  • the transceiver module 1301 is configured to receive a first request message from an application function network element.
  • the first request message includes service flow type information, target terminal set information, and service quality information of the service flow.
  • the transceiver module 1301 may be used to perform S801 or S901.
  • the processing module 1302 is configured to obtain the service quality decomposition information according to the information of the target terminal set when the type information indicates that the service flow is an end-to-end service flow.
  • the service quality decomposition information includes the access information of the ingress terminal and the access information of the egress terminal. Enter information.
  • the processing module 1302 may be used to perform S802 or S902.
  • the processing module 1302 is also used to decompose the service quality information of the business flow according to the service quality decomposition information to obtain uplink service quality information and downlink service quality information.
  • the processing module 1302 may be used to perform S803 or S903.
  • the processing module 1302 is also configured to trigger the network to configure the session of the ingress terminal according to the uplink quality of service information, and configure the session of the egress terminal according to the downlink quality of service information; wherein the session of the ingress terminal includes the first quality of service for transmitting the service flow. stream, the session of the egress terminal includes a second quality of service stream used to transmit the service stream.
  • the processing module 1302 may be used to perform S804.
  • the processing module 1302 is specifically configured to send a second request message through the transceiver module 1301.
  • the second request message includes the address of the entrance terminal and the uplink quality of service information; and the processing module 1302 is also specifically configured to use
  • a third request message is sent through the transceiver module 1301, where the third request message includes the address of the egress terminal and downlink service quality information.
  • the second request message and the third request message also include local switching indication information, and the local switching indication information is used to instruct the service flow to be transmitted in a local switching or cross-user plane functional network element switching manner.
  • the access information of the ingress terminal includes: the location information of the ingress terminal and the identity of the anchor user plane functional network element corresponding to the session of the ingress terminal; and the access information of the egress terminal includes: egress The location information of the terminal and the identity of the anchor user plane functional network element corresponding to the session of the egress terminal.
  • the service quality information of the service flow includes the delay requirement of the service flow; the uplink The quality of service information includes the delay in the upstream direction of the service flow; the downlink quality of service information includes the delay in the downstream direction of the service flow; and the sum of the delay in the upstream direction of the service flow and the delay in the downstream direction of the service flow is less than or equal to the time delay of the service flow. extension request.
  • the service quality information of the service flow includes the packet arrival time of the service flow;
  • the uplink service quality information includes the packet arrival time of the upstream direction of the service flow, and the packet arrival time of the upstream direction of the service flow is the same as the service flow.
  • the packet arrival time of the traffic flow is the same;
  • the downlink service quality information includes the packet arrival time in the downstream direction of the business flow, and the packet arrival time in the downstream direction of the business flow is determined by the packet arrival time in the upstream direction of the business flow and the delay in the upstream direction of the business flow. The sum is determined.
  • the service quality decomposition information also includes the packet transmission time between the anchor user plane functional network element corresponding to the session of the ingress terminal and the anchor user plane functional network element corresponding to the session of the egress terminal.
  • the service quality information of the service flow includes the delay requirement of the service flow;
  • the uplink service quality information includes the delay in the upstream direction of the service flow;
  • the downlink service quality information includes the delay in the downstream direction of the service flow;
  • the sum of the delay in the upstream direction of the flow, the delay in the downstream direction of the service flow, and the packet transmission time is less than or equal to the delay requirement of the service flow.
  • the service quality information of the service flow includes the packet arrival time of the service flow; the uplink service quality information includes the packet arrival time of the upstream direction of the service flow, and the packet arrival time of the upstream direction of the service flow is the same as the service flow.
  • the packet arrival time of the traffic flow is the same;
  • the downlink service quality information includes the packet arrival time in the downstream direction of the business flow.
  • the packet arrival time in the downstream direction of the business flow is determined by the packet arrival time in the upstream direction of the business flow and the delay in the upstream direction of the business flow. And the sum of message transmission times is determined.
  • the first request message further includes first event indication information, and the first event indication information indicates at least one of the following: monitoring of average delay, and monitoring of service quality notification of packet delay budget. , the service quality notification monitoring for guaranteed bit rate or the service quality notification monitoring for packet error rate; the second request message also includes the first event indication information; the third request message also includes the first event indication information.
  • the transceiver module 1301 is also configured to receive first notification information for the second request message.
  • the first notification information includes at least one of the following: average delay in the upstream direction of the service flow, The indication information that the packet delay budget in the direction is no longer met, the guaranteed bit rate in the upstream direction of the service flow is no longer met, or the packet error rate in the upstream direction of the business flow is no longer met;
  • the transceiver module 1301 also Used to receive second notification information for the third request message, where the second notification information includes at least one of the following: average delay in the downstream direction of the service flow, indication information that the packet delay budget in the downstream direction of the service flow is no longer satisfied, Indication information indicating that the guaranteed bit rate in the downstream direction of the service flow is no longer satisfied or that the packet error rate in the downstream direction of the service flow is no longer satisfied;
  • the processing module 1302 is also configured to adjust the uplink service quality information according to the first notification information; or , adjust the downlink service quality information according to the second notification information; or adjust the
  • the first request message also includes flow information of the service flow, and the flow information of the service flow includes an IP quintuple or an Ethernet packet header information address.
  • the second request message and the third request message also include flow information of the service flow, and the flow information of the service flow includes an IP quintuple or an Ethernet packet header information address.
  • the communication device 130 may take the form shown in FIG. 7 .
  • the processor 501 in Figure 7 can cause the communication device 130 to execute the method described in the above method embodiment by calling the computer execution instructions stored in the memory 503.
  • the functions/implementation processes of the transceiver module 1301 and the processing module 1302 in Figure 13 can be implemented by the processor 501 in Figure 7 calling computer execution instructions stored in the memory 503.
  • the function/implementation process of the processing module 1302 in Figure 13 can be implemented by the processor 501 in Figure 7 calling the computer execution instructions stored in the memory 503, and the function/implementation process of the transceiver module 1301 in Figure 13 can be implemented through Figure It is implemented by the communication interface 504 in 7.
  • FIG. 14 shows a schematic structural diagram of a communication device 140.
  • the communication device 140 includes a processing module 1401 and a transceiver module 1402.
  • the processing module 1401 which may also be called a processing unit, is used to perform operations other than sending and receiving operations, and may be, for example, a processing circuit or a processor.
  • the communication device 140 may also include a storage module (not shown in Figure 14) for storing program instructions and data.
  • the communication device 140 is used to implement the functions of the first network element/AF network element.
  • the communication device 140 is, for example, the first network element described in the embodiment shown in FIG. 10 , or the communication device 140 is, for example, the AF network element described in the embodiment shown in FIG. 12 .
  • the processing module 1401 is used to decompose the service quality information of the business flow to obtain the initial service quality information.
  • the service flow is an end-to-end service flow, in which the initial service quality information includes uplink initial service quality information or downlink initial service quality information.
  • the processing module 1401 may be used to perform S1002 or S1201.
  • Transceiver module 1402 used to send the fourth request message.
  • the fourth request message includes the address of the first terminal, initial service quality information and second event indication information.
  • the second event indication information indicates monitoring of average delay and quality of service notification monitoring of message delay budget, wherein, when the initial service information includes uplink initial service quality information, the first terminal is the ingress terminal of the service flow; when the initial service information includes downlink initial service quality information, the first terminal is the egress terminal of the service flow.
  • the transceiver module 1402 may be used to perform S1003 or S1202.
  • the transceiver module 1402 is also configured to receive third notification information for the fourth request message. If the initial service quality information includes uplink initial service quality information, the third notification information includes the average delay in the upstream direction of the service flow, or the third The notification information includes indication information indicating that the average delay in the upstream direction of the service flow and the packet delay budget in the upstream direction of the service flow are no longer met, or, if the initial service quality information includes downlink initial service quality information, the third notification information includes the service The average delay in the downstream direction of the service flow, or the third notification information includes the average delay in the downstream direction of the service flow and the indication information that the packet delay budget in the downstream direction of the service flow is no longer satisfied.
  • the transceiver module 1402 may be used to perform the above S1004 or the above S1205.
  • the processing module 1401 is also configured to adjust the initial service quality information according to the third notification information to obtain target service quality information.
  • the target service quality information includes uplink target service quality information and downlink target service quality information.
  • the processing module 1401 may be used to perform S1005 or S1206.
  • the fourth request message further includes local switching indication information, and the local switching indication information is used to instruct the service flow to be transmitted in a local switching or cross-user plane functional network element switching manner.
  • the transceiver module 1402 is also configured to receive a fifth request message from the application function network element.
  • the fifth request message includes the type information of the service flow, the service quality information of the service flow and the second event indication.
  • Information, the type information of the service flow indicates that the service flow is an end-to-end service flow.
  • the service quality information of the service flow includes the delay requirement of the service flow; if the initial service quality information is the uplink initial service quality information, the uplink initial service quality information includes the delay in the upstream direction of the service flow, The delay in the upstream direction of the service flow is obtained according to the first preset rule and the delay requirement of the service flow; or, if the initial service quality information is the downlink initial service quality information, the downlink initial service quality information includes the downlink direction of the service flow. Delay, the delay in the downstream direction of the service flow is obtained based on the second preset rule and the delay requirement of the service flow.
  • the service quality information of the service flow also includes the packet arrival time of the service flow;
  • the uplink initial service quality information also includes the packet arrival time of the upstream direction of the service flow, and the packet arrival time of the upstream direction of the service flow. The time is the same as the packet arrival time of the service flow.
  • the communication device 140 may take the form shown in FIG. 7 .
  • the processor 501 in Figure 7 can cause the communication device 140 to execute the method described in the above method embodiment by calling the computer execution instructions stored in the memory 503.
  • the functions/implementation processes of the processing module 1401 and the transceiver module 1402 in Figure 14 can be implemented by the processor 501 in Figure 7 calling computer execution instructions stored in the memory 503.
  • the function/implementation process of the processing module 1401 in Figure 14 can be implemented by the processor 501 in Figure 7 calling the computer execution instructions stored in the memory 503, and the function/implementation process of the transceiver module 1402 in Figure 14 can be implemented through Figure It is implemented by the communication interface 504 in 7.
  • the above modules or units can be implemented in software, hardware, or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory.
  • the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built into an SoC (System on a Chip) or ASIC, or it can be an independent semiconductor chip.
  • the processor can further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (programmable logic device) , or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be a CPU, a microprocessor, a digital signal processing (DSP) chip, a microcontroller unit (MCU), an artificial intelligence processor, an ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuits, hardware accelerators or non-integrated discrete devices, which can run the necessary software or not rely on software to perform the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • embodiments of the present application also provide a chip system, including: at least one processor and an interface.
  • the at least one processor is coupled to the memory through the interface.
  • the at least one processor executes the computer program or instructions in the memory
  • the chip system also includes memory.
  • the chip system may be composed of chips, or may include chips and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • embodiments of the present application also provide a computer-readable storage medium. All or part of the processes in the above method embodiments can be completed by instructing relevant hardware through a computer program.
  • the program can be stored in the above computer-readable storage medium. When executed, the program can include the processes of the above method embodiments. .
  • the computer-readable storage medium may be an internal storage unit of the communication device of any of the aforementioned embodiments, such as a hard disk or memory of the communication device.
  • the above-mentioned computer-readable storage medium may also be an external storage device of the above-mentioned communication device, such as a plug-in hard disk, a smart media card (SMC), a secure digital (SD) card equipped on the above-mentioned communication device, Flash card, etc.
  • SMC smart media card
  • SD secure digital
  • the computer-readable storage medium may also include both an internal storage unit of the communication device and an external storage device.
  • the above computer-readable storage medium is used to store the above computer program and other programs and data required by the above communication device.
  • the above-mentioned computer-readable storage media can also be used to temporarily store data that has been output or is to be output.
  • the embodiment of the present application also provides a computer program product. All or part of the processes in the above method embodiments can be completed by instructing relevant hardware through a computer program.
  • the program can be stored in the above computer program product. When executed, the program can include the processes of the above method embodiments.
  • the embodiment of the present application also provides a computer instruction. All or part of the processes in the above method embodiments can be completed by computer instructions to instruct related hardware (such as computers, processors, access network equipment, mobility management network elements or session management network elements, etc.).
  • the program may be stored in the above-mentioned computer-readable storage medium or in the above-mentioned computer program product.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be The combination can either be integrated into another device, or some features can be omitted, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请公开了通信方法及装置,涉及无线通信领域。该方法可以接收来自应用功能网元的第一请求消息,在第一请求消息中的业务流的类型信息指示业务流为端到端的业务流的情况下,根据第一请求消息中的目标终端集合的信息获取入口终端的接入信息和出口终端的接入信息;根据入口终端的接入信息和出口终端的接入信息对第一请求消息中的业务流的服务质量信息进行分解,得到上行服务质量信息和下行服务质量信息,并触发网络根据上行服务质量信息配置入口终端的会话,以及根据下行服务质量信息配置出口终端的会话。上述方法能够对端到端业务流做服务质量分解,实现业务流的确定性传输。

Description

通信方法及装置
“本申请要求于2022年4月29日提交国家知识产权局、申请号为202210475137.7、发明名称为“通信方法及装置”的专利申请的优先权,其全部内容通过引用结合在本申请中”。
技术领域
本申请涉及无线通信领域,尤其涉及通信方法及装置。
背景技术
在无线通信中,第五代移动通信(5th-generation,5G)网络可以模拟为虚拟网桥,集成到时延敏感网络(time sensitive networking,TSN)中。TSN中的集中式网络配置(centralized network configuration,CNC)网元可以通过应用功能(application function,AF)网元收集5G虚拟网桥的信息,例如终端侧的端口信息,用户面功能(user plane function,UPF)侧的端口信息,邻居节点发现信息和端口对之间的传输时延信息等。所以,CNC网元能够知道包括5G虚拟网桥在内的TSN用户面的拓扑情况。后续,若CNC网元根据拓扑情况确定需要配置5G虚拟网桥对TSN流进行调度,CNC网元可以向AF网元发送配置信息。该配置信息包括基于流的过滤和策略(per-stream filtering and policing,PSFP)信息和报文转发信息。AF网元接收到该配置信息后,可以根据报文转发信息中的入端口信息和出端口信息,确定TSN流是否是端到端业务流。若TSN流是端到端业务流,则AF网元能够根据该配置信息对端到端业务流做服务质量(quality of service,QoS)分解,进而实现业务流的确定性传输。
例如,若报文转发信息中的入端口信息和出端口信息指示的业务流的入口(ingress)和业务流的出口(egress)都是设备侧TSN转换器(device side TSN translator,DS-TT)端口(port),则AF网元可确定该业务流是端到端的业务流。后续,AF网元把该业务流分解为一个上行流和一个或多个下行流,并根据PSFP信息做QoS分解,为入口终端和出口终端对应的上行流和下行流分别配置相应的QoS参数,最终使得该业务流的传输能够满足端到端的QoS需求。然而,上述方法只适用于TSN场景,无法适用到非TSN的场景(即5G网络没有集成到TSN中的场景)。
发明内容
本申请实施例提供通信方法及装置,能够对端到端业务流做服务质量分解,实现业务流的确定性传输。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种通信方法,执行该方法的通信装置可以为第一网元;也可以为应用于第一网元中的模块,例如芯片或芯片系统。第一网元可以是网络开放功能网元、时延敏感通信时间同步功能网元、策略控制功能网元或新增网元。下面以执行主体为第一网元为例进行描述。
该方法包括:接收来自应用功能网元的第一请求消息,该第一请求消息用于请求 为业务流分配资源,例如,用于为目标终端之间的业务流分配符合服务质量信息的资源,以用于保障目标终端之间端到端的通信质量;该第一请求消息包括业务流的类型信息、目标终端集合的信息和业务流的服务质量信息;在类型信息指示业务流为端到端的业务流的情况下,根据目标终端集合的信息获取服务质量分解信息,该服务质量分解信息包括入口终端的接入信息以及出口终端的接入信息;根据服务质量分解信息,对业务流的服务质量信息进行分解,得到上行服务质量信息和下行服务质量信息;触发网络根据上行服务质量信息配置入口终端的会话,以及根据下行服务质量信息配置出口终端的会话;其中,入口终端的会话中包括用于传输业务流的第一服务质量流,出口终端的会话中包括用于传输业务流的第二服务质量流。
基于上述第一方面提供的方法,第一网元可以获取业务流的服务质量信息、入口终端的接入信息和出口终端的接入信息,根据入口终端的接入信息和出口终端的接入信息对业务流的服务质量信息进行分解,得到上行服务质量信息和下行服务质量信息,并触发网络根据上行服务质量信息和下行服务质量信息配置对应的会话,以实现对入口终端的会话中的服务质量流的配置以及出口终端的会话中的服务质量流的配置。上述方法能够对端到端业务流做服务质量分解,实现业务流的确定性传输。另外,在上述过程中,第一网元在做服务质量分解时,考虑了入口终端的接入信息和出口终端的接入信息,上述信息能够表征入口终端和出口终端所属网络的拓扑情况。因此,该方法可以使得第一网元确定的上行服务质量信息和下行服务质量信息更为合理,进而使得业务流的传输更加容易满足服务质量需求。
在第一种可能的实现方式中,触发网络根据该上行服务质量信息配置该入口终端的会话,以及根据该下行服务质量信息配置该出口终端的会话,包括:发送第二请求消息,该第二请求消息包括该入口终端的地址和该上行服务质量信息;以及发送第三请求消息,该第三请求消息包括该出口终端的地址和该下行服务质量信息。
基于上述可能的实现方式,第一网元可以通过第二请求消息配置入口终端的会话,通过第三请求消息配置出口终端的会话。
在第一种可能的实现方式中,该第二请求消息和该第三请求消息还包括本地交换指示信息,该本地交换指示信息用于指示该业务流采用本地交换或跨用户面功能网元交换的方式进行传输。
基于上述可能的实现方式,可以激活用户面功能网元本地交换或跨N19交换功能,在用户面功能网元配置特定的报文检测规则(packet detection rule,PDR)或转发动作规则(forwarding action rule,FAR)等路由规则,以使用户面功能网元支持本地转发(即不经过数据网络,用户面功能网元直接在连接到此用户面功能网元的两个PDU会话或多个PDU会话之间转发报文)或跨N19转发(即不经过DN,用户面功能网元直接把报文通过N19隧道转发到其他用户面功能网元,以使其他用户面功能网元把报文发送给连接到该用户面功能网元的PDU会话)。
在第一种可能的实现方式中,该入口终端的接入信息包括:该入口终端的位置信息和该入口终端的会话对应的锚点用户面功能网元的标识;以及,该出口终端的接入信息包括:该出口终端的位置信息和该出口终端的会话对应的锚点用户面功能网元的标识。
基于上述可能的实现方式,第一网元可以根据上述信息对业务流的服务质量信息进行分解。其中,入口终端的位置信息、入口终端的会话对应的锚点用户面功能网元的标识、出口终端的位置信息和出口终端的会话对应的锚点用户面功能网元的标识可以反映网络的拓扑情况,所以根据上述信息进行服务质量分解,可以使得分解结果更为合理,从而使得业务流的传输更加容易满足服务质量需求。
在第一种可能的实现方式中,该业务流的服务质量信息包括该业务流的时延要求;该上行服务质量信息包括该业务流上行方向的时延;该下行服务质量信息包括该业务流下行方向的时延;且该业务流上行方向的时延与该业务流下行方向的时延之和小于或等于该业务流的时延要求。
基于上述可能的实现方式,能够根据业务流的时延要求得到业务流上行方向的时延,根据业务流的时延要求和业务流上行方向的时延得到业务流下行方向的时延,从而实现业务流的时延的分解。
在第一种可能的实现方式中,该入口终端的接入信息还包括:该入口终端的驻留时间和该入口终端的会话对应的锚点用户面功能网元的驻留时间;该出口终端的接入信息还包括:该出口终端的驻留时间和该出口终端的会话对应的锚点用户面功能网元的驻留时间。
基于上述可能的实现方式,第一网元还可以结合入口终端的驻留时间、入口终端的会话对应的锚点用户面功能网元的驻留时间、出口终端的驻留时间以及出口终端的会话对应的锚点用户面功能网元的驻留时间进行服务质量信息分解,使得分解后的服务质量信息更加的合理。
在第一种可能的实现方式中,该业务流上行方向的时延、该业务流下行方向的时延、该入口终端的驻留时间、该出口终端的驻留时间以及该入口终端的会话对应的锚点用户面功能网元的驻留时间之和小于或等于该业务流的时延要求。
基于上述可能的实现方式,能够根据业务流的时延要求得到业务流上行方向的时延,根据业务流的时延要求、业务流上行方向的时延、入口终端的驻留时间、出口终端的驻留时间以及入口终端的会话对应的锚点用户面功能网元的驻留时间得到业务流下行方向的时延,从而实现业务流的时延的分解。
在第一种可能的实现方式中,该业务流的服务质量信息包括该业务流的报文到达时间;该上行服务质量信息包括该业务流上行方向的报文到达时间,该业务流上行方向的报文到达时间与该业务流的报文到达时间相同;该下行服务质量信息包括该业务流下行方向的报文到达时间,该业务流下行方向的报文到达时间由该业务流上行方向的报文到达时间以及该业务流上行方向的时延之和确定。
基于上述可能的实现方式,能够根据业务流的报文到达时间得到业务流上行方向的报文到达时间,根据业务流的时延要求和业务流上行方向的时延得到业务流下行方向的报文到达时间,从而实现业务流的服务质量信息的分解。
在第一种可能的实现方式中,该服务质量分解信息还包括该入口终端的会话对应的锚点用户面功能网元和该出口终端的会话对应的锚点用户面功能网元之间的报文传输时间。
基于上述可能的实现方式,第一网元还可以结合用户面功能网元之间的报文传输 时间做服务质量信息分解,使得分解结果更为准确。
在第一种可能的实现方式中,该业务流的服务质量信息包括该业务流的时延要求;该上行服务质量信息包括该业务流上行方向的时延;该下行服务质量信息包括该业务流下行方向的时延;该业务流上行方向的时延、该业务流下行方向的时延以及该报文传输时间之和小于或等于该业务流的时延要求。
基于上述可能的实现方式,能够根据业务流的时延要求得到业务流上行方向的时延,根据业务流的时延要求、业务流上行方向的时延和报文传输时间得到业务流下行方向的时延,从而实现业务流的时延的分解。
在第一种可能的实现方式中,该业务流的服务质量信息包括该业务流的报文到达时间;该上行服务质量信息包括该业务流上行方向的报文到达时间,该业务流上行方向的报文到达时间与该业务流的报文到达时间相同;该下行服务质量信息包括该业务流下行方向的报文到达时间,该业务流下行方向的报文到达时间由该业务流上行方向的报文到达时间、该业务流上行方向的时延以及该报文传输时间之和确定。
基于上述可能的实现方式,能够根据业务流的报文到达时间得到业务流上行方向的报文到达时间,根据业务流的时延要求、业务流上行方向的时延和报文传输时间得到业务流下行方向的报文到达时间,从而实现业务流的服务质量信息的分解。
在第一种可能的实现方式中,该第一请求消息还包括第一事件指示信息,该第一事件指示信息指示以下至少一项:针对平均时延的监控,针对报文时延预算的服务质量通知监控,针对保证比特速率的服务质量通知监控或针对报文出错率的服务质量通知监控;该第二请求消息还包括该第一事件指示信息;该第三请求消息还包括该第一事件指示信息。
基于上述可能的实现方式,第一网元可以触发网元对与服务质量相关的事件进行监控,以便根据事件监控反馈的信息确定服务质量信息的分解是否合适。
在第一种可能的实现方式中,该方法还包括:接收针对该第二请求消息的第一通知信息,该第一通知信息包括以下至少一项:该业务流上行方向的平均时延,该业务流上行方向的报文时延预算不再满足的指示信息,该业务流上行方向的保证比特速率不再满足的指示信息或该业务流上行方向的报文出错率不再满足的指示信息;接收针对该第三请求消息的第二通知信息,该第二通知信息包括以下至少一项:该业务流下行方向的平均时延,该业务流下行方向的报文时延预算不再满足的指示信息,该业务流下行方向的保证比特速率不再满足的指示信息或该业务流下行方向的报文出错率不再满足的指示信息;根据该第一通知信息调整该上行服务质量信息;或者,根据该第二通知信息调整该下行服务质量信息;或者,根据该第一通知信息和该第二通知信息调整该上行服务质量信息和该下行服务质量信息。
基于上述可能的实现方式,第一网元还可以根据监控事件获取的参数,调整原先经过服务质量信息分解得到的上行服务质量信息和下行服务质量信息,使得调整后的服务质量信息更加合适,以进一步使得业务流的传输满足服务质量需求。
在第一种可能的实现方式中,该第一请求消息还包括该业务流的流信息,该业务流的流信息包括IP五元组或以太报文头信息地址。
基于上述可能的实现方式,第一网元可以根据业务流的流信息确定业务流的源地 址和目的地址,以便后续触发网络配置入口终端的会话和出口终端的会话。
在第一种可能的实现方式中,该第二请求消息和该第三请求消息还包括该业务流的流信息,该业务流的流信息包括IP五元组或以太报文头信息地址。
基于上述可能的实现方式,第一网元可以通过第二请求消息触发网络配置入口终端的会话,通过第三请求消息配置出口终端的会话。
第二方面,提供了一种通信方法,执行该方法的通信装置可以为第一网元;也可以为应用于第一网元中的模块,例如芯片或芯片系统。或者,执行该方法的通信装置可以为应用功能网元;也可以为应用于应用功能网元中的模块,例如芯片或芯片系统。该方法包括:对业务流的服务质量信息进行分解,得到初始服务质量信息,该业务流为端到端业务流,其中,该初始服务质量信息包括上行初始服务质量信息或下行初始服务质量信息;发送第四请求消息,该第四请求消息包括第一终端的地址、该初始服务质量信息和第二事件指示信息,该第二事件指示信息指示针对平均时延的监控,以及针对报文时延预算的服务质量通知监控,其中,当该初始服务信息包括上行初始服务质量信息时,该第一终端为该业务流的入口终端,当该初始服务信息包括下行初始服务质量信息时,该第一终端为该业务流的出口终端;接收针对该第四请求消息的第三通知信息,若该初始服务质量信息包括上行初始服务质量信息,则该第三通知信息包括该业务流上行方向的平均时延,或者,该第三通知信息包括该业务流上行方向的平均时延和该业务流上行方向的报文时延预算不再满足的指示信息,或者,若该初始服务质量信息包括下行初始服务质量信息,则该第三通知信息包括该业务流下行方向的平均时延,或者,该第三通知信息包括该业务流下行方向的平均时延和该业务流下行方向的报文时延预算不再满足的指示信息;根据该第三通知信息调整该初始服务质量信息,得到目标服务质量信息,该目标服务质量信息包括上行目标服务质量信息和下行目标服务质量信息。
基于上述第二方面提供的方法,可以先分配上行初始服务质量信息或下行初始服务质量信息,触发网络配置相应的服务质量流,并且还指示监控与服务质量信息相关的事件。因此,还可以根据网络监控事件获取的参数,分配适合的上行目标服务质量信息和适合的下行目标服务质量信息,通过动态调整,使得业务流的传输满足服务质量需求。
在第一种可能的实现方式中,该第四请求消息还包括本地交换指示信息,该本地切换指示信息用于指示该业务流采用本地交换或跨用户面功能网元交换方式进行传输。
基于上述可能的实现方式,可以激活用户面功能网元本地交换或跨N19交换功能,在用户面功能网元配置PDR或FAR等路由规则,以使用户面功能网元支持本地转发(即不经过DN,用户面功能网元直接在连接到此用户面功能网元的两个PDU会话或多个PDU会话之间转发报文)或跨N19转发(即不经过DN,用户面功能网元直接把报文通过N19隧道转发到其他用户面功能网元,以使其他用户面功能网元把报文发送给连接到该用户面功能网元的PDU会话)。
在第一种可能的实现方式中,对业务流的服务质量信息进行分解,得到初始服务质量信息之前,该方法还包括:接收来自应用功能网元的第五请求消息,该第五请求消息包括业务流的类型信息、该业务流的服务质量信息和该第二事件指示信息,业务 流的类型信息指示该业务流为端到端业务流。
基于上述可能的实现方式,可以确定业务流为端到端业务流,并获取到服务质量信息,从而可以对服务质量信息进行服务质量分解。
在第一种可能的实现方式中,该业务流的服务质量信息包括该业务流的时延要求;若该初始服务质量信息为上行初始服务质量信息,则该上行初始服务质量信息包括该业务流上行方向的时延,该业务流上行方向的时延是根据第一预设规则和该业务流的时延要求得到的;或者,若该初始服务质量信息为下行初始服务质量信息,则该下行初始服务质量信息包括该业务流下行方向的时延,该业务流下行方向的时延是根据第二预设规则和该业务流的时延要求得到的。
基于上述可能的实现方式,可以根据第一预设规则和业务流的时延要求得到业务流上行方向的时延,以实现初始服务质量分解。或者,根据第二预设规则和业务流的时延要求得到业务流下行方向的时延,以实现初始服务质量分解。
在第一种可能的实现方式中,该业务流的服务质量信息还包括该业务流的报文到达时间;该上行初始服务质量信息还包括该业务流上行方向的报文到达时间,该业务流上行方向的报文到达时间与该业务流的报文到达时间相同。
基于上述可能的实现方式,可以根据业务流的报文到达时间确定业务流上行方向的报文到达时间,以实现初始服务质量分解。
第三方面,提供了一种通信装置用于实现上述方法。该通信装置可以为上述第一方面中的第一网元,或者包含上述第一网元的装置;或者,该通信装置可以为上述第二方面中的第一网元/应用功能网元,或者包含上述第一网元/应用功能网元的装置。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第三方面,在一种可能的实现方式中,该通信装置可以包括处理模块和收发模块。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。该处理模块例如可以为处理器。该收发模块,也可以称为收发单元,用以实现上述任一方面及其任意可能的实现方式中的发送和/或接收功能。该收发模块可以由收发电路,收发机,收发器或者通信接口构成。
结合上述第三方面,在一种可能的实现方式中,收发模块包括发送模块和接收模块,分别用于实现上述任一方面及其任意可能的实现方式中的发送和接收功能。
第四方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中的指令之后,根据该指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中的第一网元,或者包含上述第一网元的装置;或者,该通信装置可以为上述第二方面中的第一网元/应用功能网元,或者包含上述第一网元/应用功能网元的装置。
结合上述第四方面,在一种可能的实现方式中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。
结合上述第四方面,在一种可能的实现方式中,该通信装置为芯片或芯片系统。可选的,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器 件。
第五方面,提供了一种通信装置,包括:处理器和接口电路;接口电路,用于接收计算机程序或指令并传输至处理器;处理器用于执行所述计算机程序或指令,以使该通信装置执执行如上述任一方面所述的方法。
结合上述第五方面,在一种可能的实现方式中,该通信装置为芯片或芯片系统。可选的,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
其中,第三方面至第七方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面至第二方面中任一方面或任一方面中不同可能的实现方式所带来的技术效果,此处不再赘述。
可以理解的是,在方案不矛盾的前提下,上述各个方面中的方案均可以结合。
附图说明
图1A为5G通信系统架构示意图一;
图1B为5G通信系统架构示意图二;
图2A为5GLAN服务的用户面架构示意图;
图2B为端到端单播业务流的传输过程示意图;
图2C为端到端多播业务流的传输过程示意图;
图3为用户级别的N4会话的示意图;
图4为组级别的N4会话的示意图;
图5为本申请实施例提供的通信系统架构示意图一;
图6为本申请实施例提供的通信系统架构示意图二;
图7为本申请实施例提供的通信装置的硬件结构示意图;
图8为本申请实施例提供的通信方法的流程示意图一;
图9为本申请实施例提供的通信方法的流程示意图二;
图10为本申请实施例提供的通信方法的流程示意图三;
图11为本申请实施例提供的通信方法的流程示意图四;
图12为本申请实施例提供的通信方法的流程示意图五;
图13为本申请实施例提供的通信装置的结构示意图一;
图14为本申请实施例提供的通信装置的结构示意图二。
具体实施方式
在介绍本申请实施例之前,对本申请实施例涉及的相关技术进行解释说明。可以理解的是,这些解释说明是为了让本申请实施例更容易被理解,而不应该视为对本申请实施例所要求的保护范围的限定。
1、终端
本申请实施例中的终端是一种具有无线收发功能的设备。终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端还可以称为终端设备,终端设备可以是用户设备(user equipment,UE),因此,本申请实施例中,终端和UE可以相互替换。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等等。
作为示例而非限定,在本申请中,终端可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。例如,可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能的设备。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能的设备,例如:智能手表或智能眼镜等,以及包括只专注于某一类应用功能,需要和其它设备如智能手机配合使用的设备,如各类进行体征监测的智能手环、智能首饰等。
在本申请中,终端可以是物联网(internet of things,IoT)系统中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请中的终端可以是机器类型通信(machine type communication,MTC)中的终端。
2、5G通信系统架构
在5G网络应用之前,终端可接入的移动网络包括第二代移动通信(2th-generation,2G),第三代移动通信(3th-generation,3G),或第四代移动通信(4h-generation,4G)网络,他们为终端的通话业务,视频业务,网页业务等提供业务数据传输的通道。但是,车联网,虚拟现实,移动办公,物联网等新型业务的爆发式发展,要求移动网络提供光纤般的接入速率,“零”时延的使用体验,千亿设备的连接能力,超高流量密度、超高连接数密度和超高移动性等多场景的一致服务,业务及用户感知的智能优化,和超百倍的能效提升和超百倍的比特成本降低,这些都是传统网络的软肋,不能够为未来业务的高速发展保驾护航。因此,5G网络应运而生。
如图1A所示,为第三代合作伙伴计划(3rd generation partnership project,3GPP)标准制定的5G的通信系统架构。图1A所示的5G通信系统包括下一代终端(NextGen UE)、与下一代终端通信连接的下一代接入网(NextGen(R)AN)设备,与下一代接入网设备通信连接的下一代核心网(NextGen Core)设备,以及与下一代核心网设备通信连接的数据网络(data network,DN)。
其中,下一代终端,下一代接入网设备和下一代核心网设备是构成5G通信架构的主要成分,逻辑上它们可以分为用户面和控制面两部分。控制面主要负责移动网络的管理,用户面主要负责业务数据的传输。在图1A中,NG2参考点位于下一代接入 网设备的控制面和下一代核心网设备的控制面之间,NG3参考点位于下一代接入网设备的用户面和下一代核心网设备的用户面之间,NG6参考点位于下一代核心网设备的用户面和DN之间。下面对下一代终端,下一代接入网设备,下一代核心网设备和DN进行介绍。
下一代终端是移动用户与网络交互的入口,能够提供基本的计算能力,存储能力,向用户显示业务窗口,接受用户操作输入。下一代终端可以采用新空口技术,与接入网设备建立信号连接和数据连接,从而传输控制信号和业务数据到移动网络。
下一代接入网设备类似于传统网络里面的基站,部署在靠近终端的位置,为特定区域的授权用户提供入网功能,并能够根据用户的级别,业务的需求等确定不同质量的传输隧道来传输用户数据。下一代接入网设备能够管理自身的资源,合理利用,按需为终端提供接入服务,并负责把控制信号和用户数据在终端和核心网之间转发。
下一代核心网设备负责维护移动网络的签约数据,管理移动网络的网元,为终端提供会话管理,移动性管理,策略管理或安全认证等功能。例如,在终端附着的时候,为终端提供入网认证;在终端有业务请求时,为终端分配网络资源;在终端移动的时候,为终端更新网络资源;在终端空闲的时候,为终端提供快恢复机制;在终端去附着的时候,为终端释放网络资源;在终端有业务数据时,为终端提供数据路由功能,如转发上行数据到DN;或者从DN接收终端的下行数据,转发到接入网设备,从而发送给终端。
DN是为用户提供业务服务的数据网络。一般客户端位于终端,服务端位于DN。DN可以是私有网络,如局域网,也可以是不受运营商管控的外部网络,如因特网(Internet),还可以是运营商共同部署的专有网络,如提供互联网协议多媒体子系统(internet protocol multimedia subsystem,IMS)服务的网络。
3GPP标准还对图1A所示的5G通信系统架构做了进一步细化,具体的,如图1B所示。在图1B中,核心网用户面网元包括UPF网元。核心网控制面网元包括认证服务器功能(authentication server function,AUSF)网元,核心网接入和移动性管理功能(core access and mobility management function,AMF)网元,会话管理功能(session management function,SMF)网元,网络切片选择功能(network slice selection function,NSSF)网元,网络开放功能(network exposure function,NEF)网元,网络功能仓储功能(NF repository function,NRF)网元,统一数据管理(unified data management,UDM)网元,策略控制功能(policy control function,PCF)网元,AF网元,绑定支持功能(binding support function,BSF)网元和时延敏感通信时间同步功能(time sensitive communication and time synchronization function,TSCTSF)网元。
可以理解的,核心网控制面采用服务化架构,控制面网元之间的交互采用服务调用的方式,来替换传统架构中的点对点通信方式。在点对点通信中,控制面网元之间的通信接口会存在一套特定的消息,只能由接口两端的控制面网元在通信时使用。而在服务化架构中,控制面网元可以向其他控制面网元开放服务,供其他控制面网元调用。核心网中的功能网元的功能如下:
UPF网元可以根据SMF网元的路由规则执行用户数据包转发,如将上行数据发送到DN或其他UPF网元;将下行数据转发到其他UPF网元或者接入网((R)AN)设备。
AUSF网元可以执行终端的安全认证。
AMF网元可以负责终端的接入管理和移动性管理。负责终端的状态维护,终端的可达性管理,非移动性管理(mobility management,MM)非接入层(non access stratum,NAS)消息的转发,会话管理(session management,SM)N2消息的转发。
SMF网元可以负责终端会话管理,为终端的会话分配资源,释放资源。其中,资源包括会话QoS,会话路径或转发规则等。
NSSF网元可以负责为终端选择网络切片。
NEF网元可以以北向应用程序接口(application programming interface,API)的方式向第三方开放网络功能。
NRF网元可以负责为其他网元提供网络功能实体信息的存储功能和选择功能。
UDM网元可以负责用户签约上下文管理。
PCF网元可以负责用户策略管理。
AF网元可以负责应用管理。
BSF网元可以负责保存协议数据单元(protocol data unit,PDU)会话(session)信息和PCF网元的绑定关系,根据PDU会话信息如数据网络名称(data network name,DNN)、单个网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI)或UE地址反馈绑定的PCF网元信息。
TSCTSF网元可以负责处理在非TSN的场景下的时延敏感通信QoS请求和时间同步功能请求。
图1B所示的5G通信系统架构还包括中、接入网((R)AN)设备和DN。其中,接入设备指的是接入核心网的设备,例如可以是基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机,非3GPP接入设备等。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。终端和DN的介绍可以参考前文所述。
在图1B中,终端通过接入网设备接入5G网络,终端通过N1接口(简称N1)与AMF网元通信;接入网设备通过N2接口(简称N2)与AMF网元通信;接入网设备通过N3接口(简称N3)与UPF网元通信;SMF网元通过N4接口(简称N4)与UPF网元通信,UPF网元可以通过N9或N19接口(简称N9或N19,图1B中未示出)与其他UPF网元通信,UPF网元通过N6接口(简称N6)接入DN。此外,图1B所示的AUSF网元、AMF网元、SMF网元、NSSF网元、NEF网元、NRF网元、PCF网元、UDM网元、AF网元、BSF网元或者TSCTSF网元等控制面网元也可以采用服务化接口进行交互。比如,AUSF网元对外提供的服务化接口可以为Nausf;AMF网元对外提供的服务化接口可以为Namf;SMF网元对外提供的服务化接口可以为Nsmf;NSSF网元对外提供的服务化接口可以为Nnssf;NEF网元对外提供的服务化接口可以为Nnef;NRF网元对外提供的服务化接口可以为Nnrf;PCF网元对外提供的服务化接口可以为Npcf;UDM网元对外提供的服务化接口可以为Nudm;AF网元对外提供的服务化接口可以为Naf,BSF网元对外提供的服务化接口可以为Nbsf,TSCTSF网元对外提供的服务化接口可以为Ntsctsf。
3、5G本地局域网(5G Local Area Network,5GLAN)服务
5GLAN服务是5G网络提供的一个服务,此服务能够为一组终端中的两个或者多个终端提供互联网协议(Internet Protocol,IP)类型或者非IP类型(如:以太类型)的私有通信。5GLAN服务主要应用于家庭通信,企业办公,工厂制造,车联网,电网改造和公安机关等。其中的一组终端中的终端由于业务需求或者专有属性加入到这个组,在这个组中的终端可以使用5GLAN服务相互通信。例如,工厂中的设备组成一个组,组中的设备之间可以相互发送以太数据包;企业中一个部门中的雇员的办公设备(手机,计算机,笔记本电脑)等组成一个组,互相发送IP数据包。如果两个终端不在同一个组,则相互之间不能够通信。
如图2A所示,为5GLAN服务的用户面架构。在图2A中,终端建立到提供5GLAN服务的UPF网元的会话,从而接入到5GLAN的UPF网元。5GLAN的UPF网元可以通过N6接口与数据网络之中现存的本地局域网(local area network,LAN)互通;也可以通过UPF网元内部接口或UPF网元之间的N19连接关联不同终端的会话,实现私有通信。
4、端到端业务流
端到端业务流可以指该业务流的入口设备和出口设备都是接入到UPF网元的终端。本申请实施例中,端到端业务流可以应用于单播通信场景,多播/广播通信场景或通用流场景中。下面以图2A所示的5GLAN服务的用户面架构为例,分别介绍这三种场景。
本申请实施例中,单播通信是一对一的通信方式,可以是一个特定入口终端和一个特定出口终端之间的通信。例如,终端201与终端202之间的通信,或者,终端201与终端203之间的通信。本申请实施例中,应用于单播通信场景中的端到端业务流可以称为端到端单播业务流。入口终端还可以称为源终端,出口终端还可以称为目的终端。
请参考图2B,为端到端单播业务流的传输过程示意图。在图2B中,终端201建立到UPF网元210的PDU会话1,终端202建立到UPF网元210的PDU会话2。通常,一个终端通过PDU会话接入到一个UPF网元上,则该UPF网元为该终端的PDU会话对应的锚点UPF网元。所以,UPF网元210为终端201的PDU会话1对应的锚点UPF网元,UPF网元210也是终端202的PDU会话2对应的锚点UPF网元。若终端201为入口终端,终端202为出口终端,则该端到端单播业务流到达终端201后,可以经PDU会话1、UPF网元210和PDU会话2到达终端202。其中,业务流从终端201到UPF网元201的方向为业务流的上行方向,业务流从UPF网元210到终端202的方向为业务流的下行方向。
本申请实施例中,多播/广播通信是一对多的通信方式,一个入口终端可以向多个出口终端发送报文。以多播通信为例,一个终端可以向其所属多播组内的终端发送报文。发送报文的终端可以称为多播源,接收报文的终端可以称为多播成员。也就是说,多播是有方向的,方向是从多播源到多播成员。图2A所示的5GLAN组中的成员包括终端201至终端205。若终端201至终端203为一个多播组,其中,终端201为多播源,终端202和终端203为多播成员,则终端201发送的多播报文可以经接入网设备206和UPF网元210传输到终端202,经接入网设备206、UPF网元210、UPF网元209和接入网设备207传输到终端203,因为终端204和终端205不是多播组的多播成 员,所以不会接收该多播报文。
请参考图2C,为端到端多播业务流的传输过程示意图。在图2C中,终端201建立到UPF网元210的PDU会话1,终端202建立到UPF网元210的PDU会话2,终端203建立到UPF网元209的PDU会话3。其中,UPF网元210为终端201的PDU会话1对应的锚点UPF网元,UPF网元210也是终端202的PDU会话2对应的锚点UPF网元,UPF网元209为终端203的PDU会话3对应的锚点UPF网元。若终端201为多播源,终端202和终端203为多播成员,则对于业务流来说,终端201为入口终端,终端202和终端203都为出口终端,该端到端多播业务流到达终端201后,可以经PDU会话1、UPF网元210和PDU会话2到达终端202,并且经PDU会话1、UPF网元210、UPF网元209和PDU会话3到达终端203。其中,业务流从终端201到UPF网元201的方向为业务流的上行方向,业务流从UPF网元210到终端202的方向为业务流的下行方向,业务流从UPF网元209到终端203的方向为业务流的下行方向。
本申请实施例中,多播通信也可以描述为组播通信,相应的,多播组也可以描述为组播组。应用于多播/广播通信场景中的端到端业务流可以称为端到端多播/广播业务流,或者端到端组播/广播业务流。
本申请实施例中,通用流可以是非特定入口终端与非特定出口终端之间的业务流。在通用流场景中,不限制入口终端是哪个设备,也不限制出口终端是哪个设备。应用于通用流场景中的端到端业务流可以称为端到端通用业务流。在具体应用中,若某个组对应的业务流为端到端通用业务流,则该组中任意两个成员之间的通信都满足该通用业务流对应的QoS需求。例如,图2A所示的5GLAN组中的成员包括终端201至终端205,若5GLAN组对应的业务流为端到端通用业务流,则5GLAN组中任意两个成员(如终端201和终端202,终端201和终端203,或终端202和终端204等等)之间的通信都满足该通用业务流对应的QoS需求。
5、N4会话
本申请实施例中,N4会话包括用户级别的N4会话和组(group)级别的N4会话。用户级别的N4会话可以用于接入同一个UPF网元的终端之间的通信。用户级别的N4会话可以是SMF网元在建立终端对应的PDU会话时,指示该终端所接入的UPF网元创建的。组级别的N4会话可以用于不同UPF网元之间的通信,和/或,UPF网元和DN之间的通信。下面进行具体阐述。
5.1、用户级别的N4会话
一种可能的实现方式,在终端建立PDU会话时,SMF网元可以指示UPF网元创建该PDU会话对应的用户级别的N4会话。之后,UPF网元可以通过该PDU会话接收终端发送的报文(例如组播报文),使用该PDU会话对应的用户级别的N4会话中的路由规则处理收到的报文,并且通过该PDU会话对应的用户级别的N4会话中的路由规则识别发送给终端的报文,通过该PDU会话向该终端发送报文(例如组播报文)。当SMF网元接收到该终端的PDU会话释放请求时,SMF网元可以触发UPF网元删除该PDU会话对应的用户级别的N4会话。
可以理解的,一个UPF网元可以创建一个或多个PDU会话对应的N4会话。也就是说,在多个终端与同一个UPF网元连接的情况下,SMF网元可以指示UPF网元创 建每个终端的PDU会话对应的N4会话。
示例性地,如图3所示,为用户级别的N4会话的示意图。在图3中,与UPF网元303连接的SMF网元可以在创建终端301的PDU会话时,指示UPF网元303创建与终端301的PDU会话对应的N4会话3031。类似的,该SMF网元可以在创建终端302的PDU会话时,指示UPF网元303创建与终端303的PDU会话对应的N4会话3032。其中,与终端301的PDU会话对应的N4会话3031还可以简称为终端301的N4会话,与终端302的PDU会话对应的N4会话3032还可以简称为终端302的N4会话。
5.2、组级别的N4会话
一种可能的实现方式,SMF网元可以在创建第一个锚定到5GLAN组的UPF网元的PDU会话时,指示UPF网元创建与该5GLAN组对应的组级别的N4会话;以及,SMF网元可以在释放最后一个锚定在该5GLAN组的UPF网元的PDU会话时,指示UPF网元删除与该5GLAN组对应的组级别的N4会话。本申请实施例中,一个UPF网元可以包括一个或多个组级别的N4会话。例如,若一个UPF网元为多个5GLAN组服务,则该UPF网元可以创建多个组级别的N4会话,每个组级别的N4会话对应到一个5GLAN组。而对于一个5GLAN组,可以针对为该5GLAN组提供服务的一个或多个UPF网元分别创建一个该5GLAN组对应的组级别的N4会话。
示例性地,如图4所示,为组级别的N4会话的示意图。在图4中,假设SMF网元在创建终端304的PDU会话时,已经指示UPF网元306创建与终端304的PDU会话对应的N4会话3061,则SMF网元在创建终端305的PDU会话时,可以指示UPF网元307创建与终端305的PDU会话对应的N4会话3072。此外,5GLAN组包括终端304和终端305,由于5GLAN组内的终端304已经接入UPF网元306,现在终端305接入UPF网元307,存在多个UPF网元为5GLAN组提供服务,需要不同UPF网元之间的通信,因此SMF网元可以指示UPF网元307创建与该5GLAN组对应的组级别的N4会话3071;以及,SMF网元指示UPF网元306创建与该5GLAN组对应的组级别的N4会话3062。或者,可选的,若该5GLAN组需要和DN 308通信,则SMF网元也可以指示UPF网元306创建与该5GLAN组对应的组级别的N4会话3062,在此不作具体限定。
下面结合附图对本申请实施例的实施方式进行详细描述。
本申请实施例提供的方法可用于各种通信系统。例如该通信系统可以为长期演进(long term evolution,LTE)系统、5G通信系统、WiFi系统、3GPP相关的通信系统、未来演进的通信系统、或多种系统融合的系统等,不予限制。其中,5G还可以称为新无线(new radio,NR)。下面以图5所示通信系统40,图6所示的通信系统41为例,对本申请实施例提供的方法进行描述。
如图5所示,为本申请实施例提供的一种通信系统40的架构示意图。图5中,通信系统40可以包括第一网元401,以及与第一网元401通信连接的AF网元402。图5中通信连接的两个网元之间可以直接通信,也可以通过其他网元通信,不予限制。图5仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
在一些实施例中,AF网元402可以向第一网元401发送第一请求消息。第一请求 消息包括业务流的类型信息、目标终端集合的信息和业务流的QoS信息。第一网元401可以接收来自AF网元402的第一请求消息,在类型信息指示业务流为端到端的业务流的情况下,根据目标终端集合的信息获取包括入口终端的接入信息以及出口终端的接入信息的QoS分解信息,根据QoS分解信息,对业务流的服务质量信息进行分解,得到上行QoS信息和下行QoS信息,并触发网络根据上行QoS信息配置入口终端的会话,以及根据下行QoS信息配置出口终端的会话。上述过程将在下述图8和图9所示实施例中进行介绍,在此不做赘述。
在一些实施例中,AF网元402可以向第一网元401发送第五请求消息。第五请求消息包括业务流的类型信息、业务流的QoS信息和第二事件指示信息,业务流的类型信息指示业务流为端到端业务流。第一网元401可以接收来自AF网元402的第五请求消息,对业务流的QoS信息进行分解,得到初始QoS信息,发送第四请求消息,并接收针对第四请求消息的第三通知信息,根据第三通知信息调整初始QoS信息,得到目标QoS信息,目标QoS信息包括上行目标QoS信息和下行目标QoS信息。在上述实施例中,初始QoS信息可以包括上行初始QoS信息或下行初始QoS信息。若初始信息包括上行初始QoS信息,则第四请求消息包括入口终端的地址、上行初始QoS信息和第二事件指示信息。若初始信息包括下行初始QoS信息,则第四请求消息包括出口终端的地址、下行初始QoS信息和第二事件指示信息,第二事件指示信息指示针对平均时延的监控,以及针对报文时延预算的QoS通知监控。上述过程将在下述图10所示实施例中进行介绍,在此不做赘述。
在一些实施例中,AF网元402可以向第一网元401发送第五请求消息。第五请求消息包括业务流的类型信息、业务流的QoS信息和第二事件指示信息,业务流的类型信息指示业务流为端到端业务流。第一网元401可以接收来自AF网元402的第五请求消息,对业务流的QoS信息进行分解,得到初始QoS信息,发送第六请求消息和第七请求消息,并接收针对第六请求消息的第四通知信息和接收针对第七请求消息的第五通知信息,根据第四通知信息和第五通知信息调整初始QoS信息,得到目标QoS信息。初始QoS信息包括上行初始QoS信息和下行初始QoS信息。目标QoS信息包括上行目标QoS信息和下行目标QoS信息。第六请求消息包括入口终端的地址、上行初始QoS信息和第二事件指示信息。第七请求消息包括出口终端的地址、下行初始QoS信息和第二事件指示信息。第二事件指示信息指示针对平均时延的监控,以及针对报文时延预算的QoS通知监控。上述过程将在下述图11所示实施例中进行介绍,在此不做赘述。
图5所示的通信系统40仅用于举例,并非用于限制本申请的技术方案。本领域的技术人员应当明白,在具体实现过程中,通信系统40还可以包括其他网元,同时也可根据具体需要来确定第一网元或AF网元的数量,不予限制。
如图6所示,为本申请实施例提供的又一种通信系统41的架构示意图。图6中,通信系统41可以包括AF网元411。可选的,通信系统41还包括与AF网元411通信连接的PCF网元412。图6中通信连接的两个网元之间可以直接通信,也可以通过其他网元通信,不予限制。本申请实施例中,若PCF网元只为终端的PDU会话提供服务,则该PCF网元也可以替换为会话管理(session management,SM)-PCF网元。图 6仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
在一些实施例中,AF网元411可以对业务流的QoS信息进行分解,得到初始QoS信息,向PCF网元412发送第四请求消息,并接收针对第四请求消息的第三通知信息,根据第三通知信息调整初始QoS信息,得到目标QoS信息,目标QoS信息包括上行目标QoS信息和下行目标QoS信息。在上述实施例中,初始QoS信息可以包括上行初始QoS信息或下行初始QoS信息。若初始信息包括上行初始QoS信息,则第四请求消息包括入口终端的地址、上行初始QoS信息和第二事件指示信息。若初始信息包括下行初始QoS信息,则第四请求消息包括出口终端的地址、下行初始QoS信息和第二事件指示信息,第二事件指示信息指示针对平均时延的监控,以及针对报文时延预算的QoS通知监控。上述过程将在下述图12所示实施例中进行介绍,在此不做赘述。
在一些实施例中,AF网元411对业务流的QoS信息进行分解,得到初始QoS信息,向PCF网元412发送第六请求消息和第七请求消息,并接收针对第六请求消息的第四通知信息和接收针对第七请求消息的第五通知信息,根据第四通知信息和第五通知信息调整初始QoS信息,得到目标QoS信息。初始QoS信息包括上行初始QoS信息和下行初始QoS信息。目标QoS信息包括上行目标QoS信息和下行目标QoS信息。第六请求消息包括入口终端的地址、上行初始QoS信息和第二事件指示信息。第七请求消息包括出口终端的地址、下行初始QoS信息和第二事件指示信息。第二事件指示信息指示针对平均时延的监控,以及针对报文时延预算的QoS通知监控。
图6所示的通信系统41仅用于举例,并非用于限制本申请的技术方案。本领域的技术人员应当明白,在具体实现过程中,通信系统41还可以包括其他网元,同时也可根据具体需要来确定AF网元或PCF网元的数量,不予限制。
可选的,图5所示的通信系统40或图6所示的通信系统41可以应用于目前的5G网络中,或者未来的其他网络等,本申请实施例对此不作具体限定。
示例性的,图5所示的通信系统40可以应用于图1B所示的5G网络。在这种情况下,图5中的第一网元401所对应的网元或者实体可以为5G网络架构中的NEF网元、TSCTSF网元或PCF网元;AF网元402所对应的网元或者实体可以为5G网络架构中的AF网元。
可以理解的,第一网元401除了可以是5G网络中的已有网元(如:NEF网元TSCTSF网元或PCF网元)之外,还可以是一个新的网元。例如,在5G网络中新增一个控制面网元,如群组PCF(group PCF,G-PCF)网元,该G-PCF网元可以通过Ngpcf对外提供的服务化接口,以实现本申请实施例中第一网元的功能。应理解,第一网元还可以有其他命名,本申请实施例不做具体限定。
示例性的,图6所示的通信系统41可以应用于图1B所示的5G网络。在这种情况下,图6中的AF网元411所对应的网元或者实体可以为5G网络架构中的AF网元,PCF网元412所对应的网元或者实体可以为5G网络架构中的PCF网元。
可选的,本申请实施例图5或图6中的各网元或设备(例如第一网元、AF网元或PCF网元等)也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,本申请实施例图5或图6中的各网元或设备(例如第一网元、AF网元或 PCF网元等)的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者硬件与软件的结合,或者平台(例如,云平台)上实例化的虚拟化功能。
在具体实现时,本申请实施例图5或图6中的各网元或设备(例如第一网元、AF网元或PCF网元等)都可以采用图7所示的组成结构,或者包括图7所示的部件。图7所示为可适用于本申请实施例的通信装置的硬件结构示意图。该通信装置50包括至少一个处理器501和至少一个通信接口504,用于实现本申请实施例提供的方法。该通信装置50还可以包括通信线路502和存储器503。
处理器501可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路502可包括一通路,在上述组件之间传送信息,例如总线。
通信接口504,用于与其他设备或通信网络通信。通信接口504可以是任何收发器一类的装置,如可以是以太网接口、无线接入网(radio access network,RAN)接口、无线局域网(wireless local area networks,WLAN)接口、收发器、管脚、总线、或收发电路等。
存储器503可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路502与处理器501相耦合。存储器503也可以和处理器501集成在一起。本申请实施例提供的存储器通常可以具有非易失性。
其中,存储器503用于存储执行本申请实施例提供的方案所涉及的计算机执行指令,并由处理器501来控制执行。处理器501用于执行存储器503中存储的计算机执行指令,从而实现本申请实施例提供的方法。或者,可选的,本申请实施例中,也可以是处理器501执行本申请下述实施例提供的方法中的处理相关的功能,通信接口504负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
作为一种实施例,处理器501可以包括一个或多个CPU,例如图7中的CPU0和CPU1。
作为一种实施例,通信装置50可以包括多个处理器,例如图7中的处理器501 和处理器507。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
作为一种实施例,通信装置50还可以包括输出设备505和/或输入设备506。输出设备505和处理器501耦合,可以以多种方式来显示信息。例如,输出设备505可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备506和处理器501耦合,可以以多种方式接收用户的输入。例如,输入设备506可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的,图7中示出的组成结构并不构成对该通信装置的限定,除图7所示部件之外,该通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面将结合附图,对本申请实施例提供的方法进行描述。下述实施例中的各网元可以具备图7所示部件,不予赘述。
可以理解的是,本申请实施例中,“传输”可以根据具体的上下文理解为发送和/或接收。“传输”可以是名词,也可以是动词。在不强调动作的执行主体时,常常用“传输”代替发送和/或接收。例如,短语“传输报文”,从发送端的角度来看,可以理解为“发送报文”,而从接收端的角度来看,可以理解为“接收报文”。
可以理解的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
可以理解的是,在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。此外,类似于“A、B和C中的至少一项”或“A、B或C中的至少一项”的表述通常用于表示如下中任一项:单独存在A;单独存在B;单独存在C;同时存在A和B;同时存在A和C;同时存在B和C;同时存在A、B和C。以上是以A、B和C共三个元素进行举例来说明该项目的可选用条目,当表述中具有更多元素时,该表述的含义可以按照前述规则获得。
为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在 一个或多个实施例中。可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“当…时”和“若”均指在某种客观情况下会做出相应的处理,并非是限定时间,且也不要求实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中的“同时”可以理解为在相同的时间点,也可以理解为在一段时间段内,还可以理解为在同一个周期内。
可以理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
可以理解的,本申请实施例中同一个步骤或者具有相同功能的步骤或者技术特征在不同实施例之间可以互相参考借鉴。
可以理解的,本申请实施例中,第一网元,和/或,AF网元,和/或,BSF网元,和/或,TSCTSF网元,和/或,PCF网元可以执行本申请实施例中的部分或全部步骤,这些步骤仅是示例,本申请实施例还可以执行其它步骤或者各种步骤的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部步骤。
首先,本申请实施例提供以下方案
1.介绍/讨论
目前的5GS不能支持来自AF的针对UE到UE连接(UNU连接)的QoS要求的AF请求。从5GS看来,UNU连接由两部分组成,一部分是UL PDU Session,它提供从源UE到用户面功能实体UPF的连接,另一部分是提供从UPF到目标UE的用户面功能实体的DL PDU会话。
如果针对组的信息是针对两个UE之间的用户连接,则AF可以分别针对UL UE-UE流量和/或DL UE-UE流量发起AF请求,请求中的参数使用的未修改组的信息,除了端到端延迟:
-AF分别为UL UE-UE流量和/或DL UE-UE流量设置1/2端到端延迟作为Requested 5GS Delay。
-AF分别为UL UE-UE流量和/或DL UE-UE流量订阅URLLC的QoS监控或QoS通知控制(QNC)。
-AF根据端到端延迟和QoS通知控制(QNC)或URLLC的QoS监控报告分别为UL UE-UE流量和/或DL UE-UE流量调整请求的5GS延迟。
如果针对组的信息用于两个UE之间的用户连接,则AF可以指示组的信息是针对UE-UE流量,然后5GC NF(例如TSCTSF)可以设置或稍后修改用于UL UE-UE流量和/或DL UE-UE流量的QoS流,除了端到端延迟之外,请求中的参数使用的未修改组的信息:
-5GC NF根据端到端延迟、UE位置、UPF位置、UPF停留时间或UPF之间 的传输延迟,分别为UL UE-UE流量和/或DL UE-UE流量设置Requested 5GS Delay的值,UE-DS-TT停留时间等。
-5GC NF分别针对UL UE-UE流量和/或DL UE-UE流量订阅QoS通知控制(QNC)或URLLC的QoS监控。
-5GC NF考虑对URLLC的QoS通知控制(QNC)或QoS监控的报告,分别为UL UE-UE流量和/或DL UE-UE流量调整请求的5GS延迟,另外。如果5GC NF收到UL UE-UE流量和/或DL UE-UE流量的“PDB无法再保证”,并确定无法通过调整再次满足端到端延迟,则5GC NF报告“对于到AF的UE-UE流量,PDB不再得到保证。
-另外,5GC NF可以将UL UE-UE业务和DL UE-UE业务的平均延迟之和作为平均延迟UE-UE业务,并报告给AF。5GC NF可以使用UL UE-UE流量和/或DL UE-UE流量的“GFBR不能再保证”报告或“PER不能再保证”作为UE-UE流量的QNC通知并报告给AF。
下面以本申请实施例提供的方法应用于现有5G通信系统为例进行阐述。
请参考图8,为本申请实施例提供的一种通信方法,该通信方法可以包括如下步骤:
S801:AF网元向第一网元发送第一请求消息。相应的,第一网元接收来自AF网元的第一请求消息。
其中,AF网元可以是图5中的AF网元402,第一网元可以是图5中的第一网元401。
一种可能的实现方式,在有业务需求的情况下,管理人员配置第一请求消息中的信元(information element,IE)并触发AF网元向第一网元发送第一请求消息。或者,在有业务需求的情况下,AF网元执行预先存储的程序来配置第一请求消息中的IE并触发AF向第一网元发送第一请求消息。
其中,第一请求消息可以用于请求为业务流分配资源。例如,第一请求消息用于为目标终端之间的业务流分配满足QoS要求的资源,以用于保障目标终端之间端到端的通信质量。
其中,业务流为任意一个端到端业务流。目标终端包括业务流的入口终端和出口终端。业务流的出口终端可以包括一个终端也可以是多个终端,不予限制。
可以理解的,若出口终端包括一个终端,第一请求消息用于为入口终端和出口终端之间的业务流分配满足QoS要求的资源,以用于保障入口终端和出口终端之间端到端的通信质量。若出口终端包括多个终端,第一请求消息用于为入口终端和多个出口终端中的每个出口终端之间的业务流分配满足QoS要求的资源,以用于保障入口终端和出口终端之间端到端的通信质量。
可以理解的,在管理人员配置IE的情况下,以及AF网元自己配置IE的情况下,第一请求消息包括的IE可能不同。具体的,可以参考下述情况1和情况2中的描述。
情况1:在有业务需求的情况下,管理人员配置第一请求消息中的IE并触发AF网元向第一网元发送第一请求消息。
对于情况1,第一请求消息可以包括业务流的类型信息、目标终端集合的信息和 业务流的QoS信息。可选的,第一请求消息还包括以下至少一项:业务流的流信息或第一事件指示信息。下面对第一请求消息包括的各种信息进行介绍。
本申请实施例中,业务流的类型信息可以用于指示业务流是端到端业务流。例如,业务流的类型信息包括1比特,若该1比特的值为“0”或“1”,则业务流的类型信息指示业务流是端到端业务流。进一步的,业务流的类型信息还可以指示业务流是应用于哪种场景的端到端业务流。端到端业务流的应用场景可以参考前文对技术术语的解释说明中的描述。
作为一种示例,业务流的类型信息包括3个比特,其中,第一个比特用于指示业务流是端到端业务流,最后两个比特用于指示业务流是应用于哪种场景的端到端业务流。例如,若最后两个比特的值为“00”,则业务流是端到端单播业务流,若最后两个比特的值为“01”,则业务流是端到端多播/广播业务流,若最后两个比特的值为“10”,则业务流是端到端通用业务流。
可以理解的,业务流的类型信息也可以不指示业务流是端到端业务流,而是直接指示业务流是应用于哪种场景的端到端业务流,以节约信令开销。例如,业务流的类型信息包括2个比特。该2个比特用于指示业务流是应用于哪种场景的端到端业务流。
本申请实施例中,目标终端集合的信息用于指示多个目标终端。目标终端集合的信息包括入口终端的标识(Ingress UE ID)、出口终端的标识(Egress UE ID)、组标识(Group ID)、目标终端关联的DNN或目标终端关联的S-NSSAI中的至少一个信息。
可以理解的,业务流的应用场景不同,目标终端集合的信息包括的内容不同。例如,若业务流为端到端单播业务流,则目标终端集合的信息包括入口终端的标识和出口终端的标识。可选的,目标终端集合的信息还包括入口终端关联的DNN和/或入口终端关联的S-NSSAI。若业务流为端到端多播/广播业务流或者端到端通用业务流,则目标终端集合的信息包括组标识,可选的,目标终端集合的信息还包括以下至少一项:入口终端的标识、该组标识关联的DNN或该组标识关联的S-NSSAI。
本申请实施例中,业务流的QoS信息包括业务流的时延要求。可选的,业务流的QoS信息还包括以下至少一项:报文的优先级信息、报文大小、最大速率、保证速率、报文出错率、周期信息、时钟域信息、报文到达时间或生存时间。
其中,时延要求可以指示业务流的时延。报文的优先级信息可以指示业务流的报文的优先级。报文大小可以指业务流的报文的大小。最大速率可以指传输业务流的报文的最大速率。保证速率可以指传输业务流的报文的最低速率。报文出错率可以指传输业务流的报文的出错率。周期信息可以指示业务流中相邻两个报文的传输时间间隔。时钟域信息可以指示业务流的时钟域,例如,业务流是按照12小时制计算时间还是按照24小时制计算时间。报文到达时间可以指业务流的报文到达时间,即业务流的报文到达入口终端的时间。生存时间可以表征业务流的可靠性。例如,生存时间指示最多连续丢几个报文,或者,多长时间内要收到报文等。
本申请实施例中,业务流的流信息包括IP五元组或以太报文头信息地址。
可以理解的,业务流的应用场景不同,业务流的流信息包括的内容不同。例如,若业务流为端到端的单播业务流或端到端的多播/广播业务流,则业务流的流信息可以 包括入口终端的流地址和至少一个出口终端的流地址。上述流地址可以是IP地址或以太报文头信息地址(如入口终端的媒体接入控制(media access control,MAC)地址,不予限制。可以理解的,若上述地址是以太报文头信息地址,则业务流的流信息还包括VLAN标签(tag)的信息。若业务流为端到端的通用业务流,则业务流的流信息包括全匹配(match all)五元组,或者业务流的流信息被置空或被置零,或者,第一请求消息不包括业务流的流信息。
本申请中,一个终端的流地址可以指该终端在该终端对应的业务流中的地址。例如,入口终端的流地址是指入口终端在业务流中的地址,出口终端的流地址是指出口终端在业务流中的地址。在下述情况2中,还引入了终端的地址,一个终端的地址和一个终端的流地址表示的含义不同。一个终端的地址可以指该终端在通信网络,如5G网络中的地址。对于同一个终端,该终端的流地址和该终端的地址可能相同也可能不同,在此做出统一说明,后面不再赘述。
本申请实施例中,第一事件指示信息用于指示以下至少一项:针对平均时延的监控、针对报文时延预算(packet delay budget,PDB)的QoS通知监控、针对保证比特速率(guaranteed bit rate,GBR)的QoS通知监控或针对报文出错率(packet error rate,PER)的QoS通知监控。其中,针对PDB的QoS通知监控、针对GBR的QoS通知监控或针对PER的QoS通知监控可以是基于QoS通知控制(QoS notification control,QNC)机制的。
示例性的,第一事件指示信息可以包括至少一个比特,每个比特与一个事件对应,该比特的值可以指示是否监控该事件。
情况2:在有业务需求的情况下,AF网元执行预先存储的程序来配置第一请求消息中的IE并触发AF向第一网元发送第一请求消息。
对于情况2,第一请求消息可以包括目标终端集合的信息和业务流的QoS信息。可选的,第一请求消息还包括以下至少一项:业务流的类型信息、业务流的流信息或第一事件指示信息。上述信息的具体介绍可以参考情况1中对应的描述,不予赘述。
可以理解的,在上面的描述中,业务流的类型信息、目标终端集合的信息、业务流的QoS信息、业务流的流信息和第一事件指示信息是包括在一条消息中,即第一请求消息中发送给第一网元的。在具体应用中,AF网元也可以将业务流的类型信息、目标终端集合的信息、业务流的QoS信息、业务流的流信息和第一事件指示信息包括在多条消息中,发送给第一网元,不予限制。
如前文所述,第一网元可以是NEF网元、TSCTSF网元、PCF网元或新增网元。若第一网元为NEF网元,则AF网元直接向第一网元发送第一请求消息。若第一网元为TSCTSF网元,则AF网元可以通过NEF网元向第一网元发送第一请求消息。例如,第一网元向NEF网元发送第一请求消息,NEF网元接收到第一请求消息后,把第一请求消息中的信息包括在Ntsctsf服务请求消息中发送给第一网元,或者,NEF网元直接把第一请求消息转发给第一网元。若第一网元为PCF网元或新增网元,则AF网元可以通过NEF网元和TSCTSF网元向第一网元发送第一请求消息。
可以理解的,第一网元接收到来自AF网元的第一请求消息后,可以根据第一请求消息确定相应的信息。下面进行具体阐述。
示例性的,若第一请求消息包括业务流的类型信息,则第一网元可以根据业务流的类型信息,确定业务流为端到端的业务流。进一步,第一网元还可以确定业务流为端到端单播业务流、端到端多播/广播业务流或端到端通用业务流。
如前文所述,在情况2中,第一请求消息中可能不包括业务流的类型信息。在这种情况下,第一网元可以至少通过以下三种方式确定业务流是否是端到端的业务流。
方式1,第一请求消息包括目标终端集合的信息、业务流的QoS信息和业务流的流信息。第一网元接收到第一请求消息后,向BSF网元或PCF网元发送包括目标终端的标识的消息,并接收来自BSF网元或PCF网元目标终端的地址。目标终端的地址为目标终端在通信网络,如5G网络中的地址。后续,第一网元可以对比目标终端的地址与业务流的流信息中目标终端的流地址,以确定业务流是否是端到端的业务流。例如,若入口终端的流地址与入口终端的地址相同,出口终端的流地址与出口终端的地址相同,则说明入口终端和出口终端都是终端设备,即业务流为端到端业务流。若入口终端的流地址与入口终端的地址不相同,和/或,出口终端的流地址与出口终端的地址不相同,则说明入口终端和出口终端中可能有至少一个不是终端设备,则业务流有可能不是端到端业务流。
方式2,第一请求消息包括目标终端集合的信息、业务流的QoS信息和业务流的流信息。发送或转发第一请求消息的网元(如AF网元、NFE网元或TSCTSF网元等)可以通过方式1确定业务流是否为端到端业务流,在该网元确定业务流是端到端业务流的情况,才向第一网元发送或转发第一请求消息。因此,在方式2中,只要第一网元接收到第一请求消息,第一网元就确定业务流为端到端业务流。
示例性的,以AF网元通过NEF网元向第一网元发送第一请求消息为例,NEF网元接收到第一请求消息后,通过上述方式1确定业务流是否是端到端业务流。若业务流是端到端业务流,则NEF网元向第一网元发送第一请求消息,若业务流不是端到端业务流,则NEF网元不向第一网元发送第一请求消息。可以理解的,在这种情况下,第一网元为新增网元。
方式3,发送或转发第一请求消息的网元可以通过方式1确定业务流是否为端到端业务流,然后发送业务流的类型信息给第一网元,以向第一网元指示业务流为端到端业务流。
示例性的,若第一请求消息包括目标终端集合的信息,则第一网元可以根据目标终端集合的信息确定目标终端。例如,若业务流为端到端单播业务流,则第一网元根据入口终端的标识确定入口终端,根据出口终端的标识确定出口终端。若业务流为端到端多播/广播业务流或者端到端通用业务流,则第一网元根据入口终端的标识确定入口终端,根据组标识确定出口终端。
其中,第一网元根据组标识确定出口终端的过程如下:第一网元向UDR网元或UDM网元发送组标识,UDR网元或UDM网元接收到该组标识后,可以根据该组标识查询该组标识所标识的组的成员信息(如成员列表),并向第一网元发送该成员信息。若目标终端集合的信息不包括组标识关联的DNN和S-NSSAI,UDR网元或UDM网元还可以根据组标识查询该组标识关联的DNN和S-NSSAI,并向第一网元发送该组标识关联的DNN和S-NSSAI。
示例性的,若第一请求消息包括业务流的QoS信息,则第一网元可以根据业务流的QoS信息确定业务流的QoS需求。若第一请求消息包括业务流的流信息,则第一网元可以根据业务流的流信息确定业务流的源地址和目的地址。若第一请求消息包括第一事件指示信息,则第一网元可以根据第一事件指示信息确定要监控的性能。例如,若第一事件指示信息指示针对平均时延的监控,则第一网元确定要监控业务流的平均时延;若第一事件指示信息指示针对PDB的QoS通知监控,则第一网元确定要监控业务流的PDB。
如前文所述,端到端业务流可以应用于单播通信场景,多播/广播通信场景或通用流场景中。下面以图2A所示的5GLAN服务的用户面架构为例,分别介绍端到端业务流应用于单播通信场景,多播/广播通信场景或通用流场景中,第一请求消息中每个信息包括的具体内容。
场景1:业务流为端到端单播业务流。
示例1,以入口终端为终端201,出口终端为终端202为例。业务流的类型信息指示业务流为端到端业务流。目标终端集合的信息包括终端201的标识、终端202的标识、终端201和终端202关联的DNN以及终端201和终端202关联的S-NSSAI。业务流的QoS信息指示业务流的时延为15毫秒(ms),业务流的报文到达时间是14点。业务流的流信息包括IP五元组信息(如:终端201在业务流中的IP地址,终端201的端口号,终端202的在业务流中的IP地址和终端202的端口号等)。第一事件指示信息指示针对平均时延的监控。
可以理解的,对于示例1,第一网元接收到第一请求消息后,可以根据业务流的类型信息确定业务流为端到端的业务流;第一网元可以根据终端201的标识确定入口终端为终端201,根据终端202的标识确定出口终端为终端202;第一网元可以根据业务流的QoS信息确定业务流的时延为15ms,报文在14点到达终端201;第一网元根据第一事件指示信息确定要监控业务流的平均时延。
示例2,以入口终端为终端201,出口终端为终端203为例。业务流的类型信息指示业务流为端到端业务流。目标终端集合的信息包括终端201的标识、终端203的标识、终端201和终端203关联的DNN以及终端201和终端203关联的S-NSSAI。业务流的QoS信息指示业务流的时延为20ms,业务流的报文到达时间是14点,业务流的保证速率是100M比特速率。业务流的流信息包括以太流信息(如:终端201在业务流中的MAC地址、终端203在业务流中的MAC地址以及VLAN标签的信息)。第一事件指示信息指示针对平均时延的监控和针对PDB的QoS通知监控。
可以理解的,对于示例2,第一网元接收到第一请求消息后,可以根据业务流的类型信息确定业务流为端到端的业务流;第一网元可以根据终端201的标识确定入口终端为终端201,根据终端203的标识确定出口终端为终端203;第一网元可以根据业务流的QoS信息确定业务流的时延为20ms,报文在14点到达终端201,业务流的保证速率是100M比特速率;第一网元根据第一事件指示信息确定要监控业务流的平均时延和业务流的PDB。
场景2:业务流为端到端多播业务流。
示例3,以5GLAN组中的成员包括终端201至终端205,其中,5GLAN组中的 任意成员都可以加入或退出组播组A,该组播组A的组播地址为Multicast Address A,终端201为组播源为例。业务流的类型信息指示业务流为端到端业务流。目标终端集合的信息包括5GLAN组的组标识、该组标识关联的DNN和该组标识关联的S-NSSAI。业务流的QoS信息指示业务流的时延为20ms,业务流的保证速率是100M比特速率。业务流的流信息包括Multicast Address A。第一事件指示信息指示针对平均时延的监控和针对PDB的QoS通知监控。若AF网元想要限定是终端201发出的组播组A的报文,则目标终端集合的信息还包括终端201的标识,业务流的流信息还包括终端201在业务流中的IP地址。
可以理解的,对于示例3,第一网元接收到第一请求消息后,可以根据业务流的类型信息确定业务流为端到端的业务流;第一网元可以根据5GLAN组的组标识在UDM网元中查询组成员为终端201至终端205,根据终端201的标识确定组播源为终端201;第一网元可以根据业务流的QoS信息确定业务流的时延为20ms,业务流的保证速率是100M比特速率;第一网元根据第一事件指示信息确定要监控业务流的平均时延和业务流的PDB。
场景3:业务流为端到端通用业务流。
示例4,以5GLAN组中的成员包括终端201至终端205为例。业务流的类型信息指示业务流为端到端业务流。目标终端集合的信息包括5GLAN组的组标识、该组标识关联的DNN和该组标识关联的S-NSSAI。业务流的QoS信息指示业务流的时延为20ms,业务流的报文到达时间是14点。业务流的流信息包括全匹配IP五元组。第一事件指示信息指示针对平均时延的监控和针对PDB的QoS通知监控。
可以理解的,对于示例4,第一网元接收到第一请求消息后,可以根据业务流的类型信息确定业务流为端到端的业务流;第一网元可以根据5GLAN组的组标识在UDM网元中查询组成员为终端201至终端205;第一网元可以根据业务流的QoS信息确定业务流的时延为20ms,业务流的报文达到时间为14点;第一网元可以根据业务流的流信息确定业务流为通用业务流;第一网元根据第一事件指示信息确定要监控业务流的平均时延和业务流的PDB。
S802:第一网元根据目标终端集合的信息获取QoS分解信息。
一种可能的实现方式,在类型信息指示业务流为端到端业务流的情况下,第一网元根据目标终端集合的信息获取QoS分解信息。
其中,QoS分解信息包括入口终端的接入信息以及出口终端的接入信息。可选的,QoS分解信息还包括入口终端的会话对应的锚点UPF网元和出口终端的会话对应的锚点UPF网元之间的报文传输时间。入口终端的会话可以是入口终端的PDU会话,出口终端的会话可以是出口终端的PDU会话。
以图2C为例,若入口终端为终端201,出口终端为终端203,则入口终端的会话对应的锚点UPF网元和出口终端的会话对应的锚点UPF网元之间的报文传输时间为UPF网元210与UPF网元209之间的报文传输时间,即报文从UPF网元210传出到传入UPF网元209的时间。
一种可能的设计,入口终端的接入信息包括以下至少一项:入口终端的位置信息、入口终端的驻留时间,入口终端的会话对应的锚点UPF网元的驻留时间,或者入口终 端的会话对应的锚点UPF网元的标识。
其中,入口终端的位置信息可以指示入口终端的位置。入口终端的驻留时间指报文从传入入口终端到传出入口终端的传输时间。入口终端的会话对应的锚点UPF网元的驻留时间指报文从传入该UPF网元到传出该UPF网元的传输时间。该UPF网元为入口终端通过PDU会话所接入的UPF网元。
一种可能的设计,出口终端的接入信息包括以下至少一项:出口终端的位置信息、出口终端的驻留时间,出口终端的会话对应的锚点UPF网元的驻留时间,或者出口终端的会话对应的锚点UPF网元的标识。
其中,出口终端的位置信息可以指示出口终端的位置。出口终端的驻留时间指报文从传入出口终端到传出出口终端的传输时间。出口终端的会话对应的锚点UPF网元的驻留时间指报文从传入该UPF网元到传出该UPF网元的传输时间。该UPF网元为出口终端通过PDU会话所接入的UPF网元。
下面介绍第一网元获取入口终端的接入信息的过程。可以理解的,第一网元获取出口终端的接入信息的过程,与第一网元获取入口终端的接入信息的过程类似,可以参考第一网元获取入口终端接入信息的介绍,不再赘述。
(一)第一网元获取入口终端的位置信息和/或入口终端的驻留时间。
一种可能的实现方式,第一网元向BSF网元发送请求信息。其中,请求信息包括入口终端的标识、入口终端关联的DNN和入口终端关联的S-NSSAI。BSF网元接收到请求信息,并且入口终端建立PDU会话后(若BSF网元接收到请求信息的时候,入口终端还未建立PDU会话,则BSF网元等待入口终端建立PDU会话),获取第一信息,并发送给第一网元,以便第一网元根据第一信息获取入口终端的位置信息和/或入口终端的驻留时间。
一种可能的设计,第一信息包括PCF网元的标识或PCF网元的地址(PCF ID/address),第一网元接收到第一信息后,向PCF网元发送第二信息。第二信息包括入口终端的标识。PCF网元接收到第二信息后,向第一网元发送入口终端的位置信息,和/或,入口终端的驻留时间。
另一种可能的设计,第一信息包括TSCTSF网元的标识或TSCTSF网元的地址(TSCTSF ID/address),第一网元接收到第一信息后,向TSCTSF网元发送第二信息。第二信息包括入口终端的标识。TSCTSF网元接收到第二信息后,向第一网元发送入口终端的位置信息,和/或,入口终端的驻留时间。
可选的,上述第一信息还包括入口终端的地址(即该终端在通信网络,如5G网络中的地址),以便第一网元通过上述方式1确定业务流为端到端业务流。在这种情况下,上述第二信息也可以包括入口终端的地址。
(二)第一网元获取入口终端的会话对应的锚点UPF网元的标识。
一种可能的实现方式,第一网元从BSF网元获取UPF网元的标识。例如,该UPF网元的标识包括在(一)中的第一信息中。
另一种可能的实现方式,第一网元从PCF网元或TSCTSF网元获取UPF网元的标识。例如,该UPF网元的标识包括在(一)中的第二信息中。
(三)第一网元获取入口终端的会话对应的锚点UPF网元的驻留时间。
一种可能的实现方式,该UPF网元的驻留时间是根据经验预设置在第一网元中,第一网元从本地获取。
另一种可能的实现方式,采用上述(二)中的方式获取到UPF网元的标识后,第一网元向该UPF网元发送第三信息。第三信息包括UPF网元的标识。UPF网元接收到第三信息后,向第一网元发送第四信息。该第四信息包括该UPF网元的驻留时间。
本申请实施例中,入口终端和出口终端之间可以通过一个UPF网元连接,也可以通过多个UPF网元连接。也就是说,入口终端的会话对应的锚点UPF网元与出口终端的会话对应的锚点UPF网元可以相同也可以不同。入口终端的会话对应的锚点UPF网元也可以描述为入口终端接入的UPF网元,出口终端的会话对应的锚点UPF网元也可以描述为出口终端接入的UPF网元。
一种可能的实现方式,若入口终端接入的UPF网元与出口终端接入的UPF网元不同,则第一网元获取UPF网元之间的报文传输时间。该报文传输时间为入口终端的会话对应的锚点UPF网元和出口终端的会话对应的锚点UPF网元之间传输报文的时间。
示例性的,UPF网元之间的报文传输时间是根据经验预设置在第一网元中,第一网元从本地获取。或者,第一网元从PCF网元或TSCTSF网元获取UPF网元之间的报文传输时间。例如,该UPF网元之间的报文传输时间包括在(一)中的第二信息中。
S803:第一网元根据QoS分解信息对业务流的QoS信息进行分解,得到上行QoS信息和下行QoS信息。
可以理解的,本申请实施例不限制下行QoS信息的数量,也就是说,第一网元根据QoS分解信息对业务流的QoS进行分解,可以得到上行QoS信息和至少一个下行QoS信息。
例如,若业务流为端到端单播业务流,则第一网元可以得到一个上行QoS信息和一个下行QoS信息;若业务流为端到端多播业务流,则业务流对应有多个下行方向,第一网元可以得到一个上行QoS信息和业务流在多个下行方向中、每个下行方向的QoS信息(即多个下行QoS信息);若业务流为端到端通用业务流,则业务流对应至少一个下行方向,第一网元可以得到业务流一个上行QoS信息和业务流在至少一个下行方向中、每个下行方向的QoS信息(即至少一个下行QoS信息)。也就是说,第一网元对业务流的QoS信息进行分解(以下简称第一网元进行QoS分解)可以指第一网元为入口终端对应的会话(如PDU会话)配置业务流的上行QoS信息,为至少一个出口终端中的每个出口终端对应的会话(如PDU会话)配置业务流的下行QoS信息,使得业务流满足S801中的业务流的QoS信息。例如,对于上述示例1,第一网元可以分别为终端201的PDU会话和终端202的PDU会话分配相应的QoS信息,使得业务流的时延小于或等于15ms,并且业务流的报文到达时间是14点。
可以理解的,第一网元可以根据入口终端的接入信息以及出口终端的接入信息,对业务流的QoS信息进行分解,得到上行QoS信息和下行QoS信息。或者,第一网元可以根据入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间,对业务流的QoS信息进行分解,得到上行QoS信息和下行QoS信息。在上述过程中,第一网元在做QoS分解时,考虑了能够表征入口终端和出口终端所属网络的拓 扑情况的信息,如:入口终端的接入信息和出口终端的接入信息,或者入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间。因此,可以使得第一网元为PDU会话分配的QoS信息更为合理,进而使得业务流的传输更加容易满足QoS需求。
在S801中介绍了:业务流的QoS信息包括业务流的时延要求。可选的,业务流的QoS信息还包括以下至少一项:报文的优先级信息、报文大小、最大速率、保证速率、报文出错率、周期信息、时钟域信息、报文到达时间或生存时间。那么,第一网元得到的上行QoS信息和下行QoS信息至少可以包括上述信息。例如,若业务流的QoS包括业务流的时延要求,则上行QoS信息可以包括业务流上行方向的时延,下行QoS信息可以包括业务流下行方向时延。又例如,若业务流的QoS包括业务流的时延要求和报文到达时间,则上行QoS信息可以包括业务流上行方向的时延和业务流上行方向的报文到达时间,下行QoS信息可以包括业务流下行方向的时延和业务流下行方向的报文到达时间。
下面对第一网元根据QoS分解信息对业务流的QoS信息进行分解,得到上行QoS信息和下行QoS信息的具体过程进行阐述。
一种可能的实现方式,第一网元根据入口终端的接入信息以及出口终端的接入信息,对业务流的QoS信息进行分解,得到上行QoS信息和下行QoS信息。
如前文所述,入口终端的接入信息包括的内容有多种形式,出口终端的接入信息包括的内容也有多种,不同形式下,第一网元得到上行QoS信息和下行QoS信息可能不同。本申请实施例以下述几种情形为例进行阐述。
情形0:入口终端的接入信息包括入口终端的位置信息和入口终端的会话对应的锚点UPF网元(以下简称入口UPF网元)的标识,出口终端的接入信息包括出口终端的位置信息和出口终端的会话对应的锚点UPF网元(以下简称出口UPF网元)的标识。
一种可能的实现方式,第一网元可以根据入口终端的位置和入口UPF网元的标识,确定入口终端与入口UPF网元之间的距离,根据出口终端的位置和出口UPF网元的标识,确定出口终端与出口UPF网元之间的距离,进而确定上行QoS信息和下行QoS信息。
一种可能的设计,业务流上行方向的时延、业务流下行方向的时延之和小于或等于业务流的时延要求。
情形1:入口终端的接入信息包括入口UPF网元的驻留时间,出口终端的接入信息包括出口UPF网元的驻留时间。
可选的,入口终端的接入信息还包括入口终端的位置信息和入口UPF网元的标识,出口终端的接入信息还包括出口终端的位置信息和出口UPF网元的标识。
一种可能的设计,业务流上行方向的时延、业务流下行方向的时延以及入口UPF网元的驻留时间之和小于或等于业务流的时延要求;或者,业务流上行方向的时延、业务流下行方向的时延以及出口UPF网元的驻留时间之和小于或等于业务流的时延要求。
情形2:入口终端的接入信息包括入口终端的驻留时间和入口UPF网元的驻留时 间,出口终端的接入信息包括出口UPF网元的驻留时间。
可选的,入口终端的接入信息还包括入口终端的位置信息和入口UPF网元的标识,出口终端的接入信息还包括出口终端的位置信息和出口UPF网元的标识。
一种可能的设计,业务流上行方向的时延、业务流下行方向的时延、入口终端的驻留时间以及入口UPF网元的驻留时间之和小于或等于业务流的时延要求;或者,业务流上行方向的时延、业务流下行方向的时延、入口终端的驻留时间以及出口UPF网元的驻留时间之和小于或等于业务流的时延要求。
情形3:入口终端的接入信息包括入口UPF网元的驻留时间,出口终端的接入信息包括出口终端的驻留时间和出口UPF网元的驻留时间。
可选的,入口终端的接入信息还包括入口终端的位置信息和入口UPF网元的标识,出口终端的接入信息还包括出口终端的位置信息和出口UPF网元的标识。
一种可能的设计,业务流上行方向的时延、业务流下行方向的时延、出口终端的驻留时间以及出口UPF网元的驻留时间之和小于或等于业务流的时延要求;或者,业务流上行方向的时延、业务流下行方向的时延、出口终端的驻留时间以及入口UPF网元的驻留时间之和小于或等于业务流的时延要求。
情形4:入口终端的接入信息包括入口终端的驻留时间和入口UPF网元的驻留时间,出口终端的接入信息包括出口终端的驻留时间和出口UPF网元的驻留时间。
可选的,入口终端的接入信息还包括入口终端的位置信息和入口UPF网元的标识,出口终端的接入信息还包括出口终端的位置信息和出口UPF网元的标识。
一种可能的设计,业务流上行方向的时延、业务流下行方向的时延、入口终端的驻留时间、出口终端的驻留时间以及入口UPF网元的驻留时间之和小于或等于业务流的时延要求;或者,业务流上行方向的时延、业务流下行方向的时延、入口终端的驻留时间、出口终端的驻留时间以及出口UPF网元的驻留时间之和小于或等于业务流的时延要求。
一种可能的实现方式,上述情形0-情形4中,入口UPF网元和出口UPF网元是同一个网元。在这种情况下,入口UPF网元的驻留时间与出口UPF网元的驻留时间相同。
可以理解的,若入口终端和出口终端接入不同的UPF网元,即入口UPF网元与出口UPF网元不是同一个网元,则第一网元在做QoS分解时,还可以考虑UPF网元之间的报文传输时间,也就是说,第一网元根据入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间对业务流的QoS信息进行分解,得到上行QoS信息和下行QoS信息。具体的,可以有以下几种情形:
情形5:入口终端的接入信息包括入口终端的位置信息和入口UPF网元的标识,出口终端的接入信息包括出口终端的位置信息和出口UPF网元的标识。
一种可能的设计,业务流上行方向的时延、业务流下行方向的时延以及UPF网元之间的报文传输时间之和小于或等于业务流的时延要求。
情形6:入口终端的接入信息包括入口UPF网元的驻留时间,出口终端的接入信息包括出口UPF网元的驻留时间。
可选的,入口终端的接入信息还包括入口终端的位置信息和入口UPF网元的标识, 出口终端的接入信息还包括出口终端的位置信息和出口UPF网元的标识。
一种可能的设计,业务流上行方向的时延、业务流下行方向的时延、入口UPF网元的驻留时间、出口UPF网元的驻留时间以及UPF网元之间的报文传输时间之和小于或等于业务流的时延要求。
情形7:入口终端的接入信息包括入口终端的驻留时间和入口UPF网元的驻留时间,出口终端的接入信息包括出口UPF网元的驻留时间。
可选的,入口终端的接入信息还包括入口终端的位置信息和入口UPF网元的标识,出口终端的接入信息还包括出口终端的位置信息和出口UPF网元的标识。
一种可能的设计,业务流上行方向的时延、业务流下行方向的时延、入口UPF网元的驻留时间、出口UPF网元的驻留时间、入口终端的驻留时间以及UPF网元之间的报文传输时间之和小于或等于业务流的时延要求。
情形8:入口终端的接入信息包括入口UPF网元的驻留时间,出口终端的接入信息包括出口终端的驻留时间和出口UPF网元的驻留时间。
可选的,入口终端的接入信息还包括入口终端的位置信息和入口UPF网元的标识,出口终端的接入信息还包括出口终端的位置信息和出口UPF网元的标识。
一种可能的设计,业务流上行方向的时延、业务流下行方向的时延、入口UPF网元的驻留时间、出口UPF网元的驻留时间、出口终端的驻留时间以及UPF网元之间的报文传输时间之和小于或等于业务流的时延要求。
情形9:入口终端的接入信息包括入口终端的驻留时间和入口UPF网元的驻留时间,出口终端的接入信息包括出口终端的驻留时间和出口UPF网元的驻留时间。
可选的,入口终端的接入信息还包括入口终端的位置信息和入口UPF网元的标识,出口终端的接入信息还包括出口终端的位置信息和出口UPF网元的标识。
一种可能的设计,业务流上行方向的时延、业务流下行方向的时延、入口UPF网元的驻留时间、出口UPF网元的驻留时间、入口终端的驻留时间、出口终端的驻留时间以及UPF网元之间的报文传输时间之和小于或等于业务流的时延要求。
可以理解的,若业务流的QoS信息包括报文到达时间,第一网元还可以确定业务流上行方向的报文到达时间和业务流下行方向的报文到达时间。例如,业务流上行方向的报文到达时间与业务流的报文到达时间相同,业务流下行方向的报文到达时间由业务流上行方向的报文到达时间以及业务流上行方向的时延之和确定。或者,业务流上行方向的报文到达时间与业务流的报文到达时间相同,业务流下行方向的报文到达时间由业务流上行方向的报文到达时间、业务流上行方向的时延以及UPF网元之间的报文传输时间之和确定。具体的,可以有以下情形:
情形10:若入口终端和出口终端接入相同的UPF网元,则业务流下行方向的报文到达时间是业务流上行方向的报文到达时间以及业务流上行方向的时延之和。
其中,业务流上行方向的报文到达时间为业务流的QoS信息中的报文到达时间。
情形11:若入口终端和出口终端接入相同的UPF网元,则业务流下行方向的报文到达时间是业务流上行方向的报文到达时间、业务流上行方向的时延以及入口终端的驻留时间之和。
其中,业务流上行方向的报文到达时间为业务流的QoS信息中的报文到达时间。
情形12:若入口终端和出口终端接入相同的UPF网元,则业务流下行方向的报文到达时间是业务流上行方向的报文到达时间、业务流上行方向的时延以及UPF网元驻留时间之和。
其中,业务流上行方向的报文到达时间为业务流的QoS信息中的报文到达时间。该UPF网元的驻留时间是入口UPF网元的驻留时间,也是出口UPF网元的驻留时间。
情形13:若入口终端和出口终端接入相同的UPF网元,则业务流下行方向的报文到达时间是业务流上行方向的报文到达时间、业务流上行方向的时延、入口终端的驻留时间以及UPF网元驻留时间之和。
其中,业务流上行方向的报文到达时间为业务流的QoS信息中的报文到达时间。该UPF网元的驻留时间是入口UPF网元的驻留时间,也是出口UPF网元的驻留时间。
情形14:若入口终端和出口终端接入不同的UPF网元,则业务流下行方向的报文到达时间是业务流上行方向的报文到达时间、业务流上行方向的时延以及UPF网元之间的报文传输时间之和。
情形15:若入口终端和出口终端接入不同的UPF网元,则业务流下行方向的报文到达时间是业务流上行方向的报文到达时间、业务流上行方向的时延、入口终端的驻留时间以及UPF网元之间的报文传输时间之和。
情形16:若入口终端和出口终端接入不同的UPF网元,则业务流下行方向的报文到达时间是业务流上行方向的报文到达时间、业务流上行方向的时延、入口UPF网元的驻留时间以及UPF网元之间的报文传输时间之和。
情形17:若入口终端和出口终端接入不同的UPF网元,则业务流下行方向的报文到达时间是业务流上行方向的报文到达时间、业务流上行方向的时延、出口UPF网元的驻留时间以及UPF网元之间的报文传输时间之和。
情形18:若入口终端和出口终端接入不同的UPF网元,则业务流下行方向的报文到达时间是业务流上行方向的报文到达时间、业务流上行方向的时延、入口终端的驻留时间、入口UPF网元的驻留时间以及UPF网元之间的报文传输时间之和。
情形19:若入口终端和出口终端接入不同的UPF网元,则业务流下行方向的报文到达时间是业务流上行方向的报文到达时间、业务流上行方向的时延、入口UPF网元的驻留时间、出口UPF网元的驻留时间以及UPF网元之间的报文传输时间之和。
情形20:若入口终端和出口终端接入不同的UPF网元,则业务流下行方向的报文到达时间是业务流上行方向的报文到达时间、业务流上行方向的时延、入口终端的驻留时间、入口UPF网元的驻留时间、出口UPF网元的驻留时间以及UPF网元之间的报文传输时间之和。
可以理解的,在具体应用中,还可以有其他情形,在此不一一列举。
可选的,对于除时延和报文到达时间之外的参数,可以将业务流上行方向上的参数和下行方向上的参数都设置成业务流的QoS信息中相关参数的值。示例性的,以保证速率为例,可以将业务流上行方向上的保证速率,以及业务流下行方向上的保证速率配置为业务流的QoS信息中的保证速率。
下面以上述情形4、情形9、情形13和情形20为例,并结合上述示例1-示例4对第一网元进行QoS分解的过程进行阐述。
示例5:结合上述示例1,在S802之后,第一网元获取到终端201的接入信息和终端202的接入信息。若终端201的接入信息和终端202的接入信息如表1所示,并且第一网元根据位置1和标识1确定终端201到UPF网元210的距离为800公里,根据位置2和标识1确定终端202到UPF网元210的距离为1000公里,则第一网元确定业务流上行方向的时延小于业务流下行方向的时延。后续,第一网元先确定业务流上行方向的时延为5ms,再根据上述情形4确定业务流下行方向的时延为业务流的时延(15ms)-业务流上行方向的时延(5ms)-终端201的驻留时间(1ms)-终端202的驻留时间(1ms)-UPF网元210驻留时间(1ms)=7ms,根据情形13确定业务流下行方向的报文到达时间为业务流上行方向的报文到达时间(14点)+业务流上行方向的时延(5ms)+终端201的驻留时间(1ms)+UPF网元210驻留时间(2ms)=14点零8ms。
表1
示例6:结合上述示例2,在S802之后,第一网元获取到终端201的接入信息和终端203的接入信息,第一网元还获取了UPF网元210和UPF网元209之间的报文传输时间(2ms)。若终端201的接入信息以及终端203的接入信息如表2所示,并且第一网元根据位置1和标识1确定终端201到UPF网元210的距离为800公里,根据位置3和标识1确定终端203到UPF网元210的距离为400公里,则第一网元确定业务流上行方向的时延大于业务流下行方向的时延。后续,第一网元先确定业务流上行方向的时延为9ms,再根据上述情形9确定业务流下行方向的时延为业务流的时延(20ms)-业务流上行方向的时延(9ms)-UPF网元210驻留时间(1ms)-UPF网元209驻留时间(1ms)-终端201的驻留时间(1ms)-终端203的驻留时间(1ms)-UPF网元210和UPF网元209之间的报文传输时间(2ms)=5ms,根据情形20确定业务流下行方向的报文到达时间为业务流上行方向的报文到达时间(14点)+业务流上行方向的时延(9ms)+终端201的驻留时间(1ms)+UPF网元210驻留时间(1ms)+UPF网元209驻留时间(1ms)+UPF网元210和UPF网元209之间的报文传输时间(2ms)=14点零14ms,业务流上行方向的保证速率和下行方向的保证速率都是100M比特速率。
表2
示例7:结合上述示例3,若组播组A的成员包括终端201至终端203,在S802 之后,第一网元获取到终端201的接入信息,终端202的接入信息和终端203的接入信息,第一网元还获取了UPF网元210和UPF网元209之间的报文传输时间(2ms)。若终端201的接入信息、终端202的PDU会话以及终端203的接入信息如表3所示,则第一网元先确定业务流上行方向的时延为8ms,再根据上述情形4确定业务流下行方向的时延为业务流的时延(20ms)-业务流上行方向的时延(8ms)-终端201的驻留时间(1ms)-终端202的驻留时间(1ms)-UPF网元210驻留时间(1ms)=9ms,根据上述情形9确定业务流下行方向的时延为业务流的时延(20ms)-业务流上行方向的时延(8ms)-UPF网元210驻留时间(1ms)-UPF网元209驻留时间(1ms)-终端201的驻留时间(1ms)-终端203的驻留时间(1ms)-UPF网元210和UPF网元209之间的报文传输时间(2ms)=6ms,业务流上行方向的保证速率和两个下行方向(终端202对应的下行方向和终端203对应的下行方向)的保证速率都是100M比特速率。
表3
示例8:结合上述示例4,若业务流的入口终端为终端202,出口终端为终端203,在S802之后,第一网元获取到终端202的接入信息和终端203的接入信息,第一网元还获取了UPF网元210和UPF网元209之间的报文传输时间(2ms)。若终端202的PDU会话以及终端203的接入信息如表4所示,则第一网元先确定业务流上行方向的时延为9ms,再根据上述情形9确定业务流下行方向的时延为业务流的时延(20ms)-业务流上行方向的时延(9ms)-UPF网元210驻留时间(1ms)-UPF网元209驻留时间(1ms)-终端201的驻留时间(1ms)-终端203的驻留时间(1ms)-UPF网元210和UPF网元209之间的报文传输时间(2ms)=5ms,根据情形20确定业务流下行方向的报文到达时间为业务流上行方向的报文到达时间(14点)+业务流上行方向的时延(9ms)+终端201的驻留时间(1ms)+UPF网元210驻留时间(1ms)+UPF网元209驻留时间(1ms)+UPF网元210和UPF网元209之间的报文传输时间(2ms)=14点零14ms。
表4
在上述示例中,第一网元是先确定了业务流上行方向的时延,再确定业务流下行 方向的时延。在具体应用中,第一网元也可以先确定业务流下行方向的时延,再确定业务流上行方向的时延,不予限制。例如,第一网元先根据入口终端与入口UPF网元之间的距离,以及出口终端与出口UPF网元之间的距离,确定业务流下行方向的时延,再根据上述情形0-情形9中的任意一种情形,确定业务流上行方向的时延。
S804:第一网元触发网络根据上行QoS信息配置入口终端的会话,以及根据下行QoS信息配置出口终端的会话。
其中,入口终端的会话中包括用于在上行方向传输业务流的第一QoS流(QoS Flow),出口终端的会话中包括用于在下行方向传输业务流的第二QoS流。第一QoS流为入口终端的会话中用于在上行方向传输业务流的QoS流;第二QoS流为出口终端的会话中用于在下行方向传输业务流的QoS流。
首先,介绍第一网元触发网络根据上行QoS信息配置入口终端的会话的具体过程。
一种可能的实现方式,第一网元发送第二请求消息。其中,第二请求消息包括入口终端的地址和上行QoS信息。可选的,第二请求消息还包括以下至少一项:本地切换指示信息、入口终端关联的DNN、入口终端关联的S-NSSAI、业务流的流信息或第一事件指示信息。本地交换指示信息用于指示业务流采用本地交换或跨UPF网元交换的方式进行传输。
如前文所述,第一网元为NEF网元、TSCTSF网元、PCF网元或新增网元。
一种可能的实现方式,若第一网元为NEF网元、TSCTSF网元或新增网元,则第一网元可以向PCF网元发送第二请求消息。该第二请求消息可以是创建请求消息(如:Npcf_PolicyAuthorization_Create Request消息)或更新请求消息(如:Npcf_PolicyAuthorization_Update Request消息)。例如,若第一网元是第一次进行QoS分解,则第一网元向PCF网元发送创建请求消息。若第一网元不是第一次进行QoS分解,则第一网元向PCF网元发送更新请求消息。后续,PCF网元接收到第二请求消息后,可以根据上行QoS信息,生成用于配置入口终端的会话中的第一QoS流的第一策略控制和计费(policy control and charging,PCC)规则,并向SMF网元发送第一PCC规则,以便SMF网元根据第一PCC规则执行相应的操作。具体的,可以参考下述图9所示实施例中所述。
另一种可能的实现方式,若第一网元为PCF网元,则第一网元可以根据上行QoS信息,生成第一PCC规则,并向SMF网元发送包括第一PCC规则的第二请求消息,以便SMF网元根据第一PCC规则执行相应的操作。其中,第一网元根据上行QoS信息,生成第一PCC规则,并向SMF网元发送包括第一PCC规则的第二请求消息,以便SMF网元根据第一PCC规则执行相应的操作的过程,可以参考下述图9所示实施例中,PCF网元根据上行QoS信息,生成第一PCC规则,并向SMF网元发送第一PCC规则,以便SMF网元根据第一PCC规则执行相应的操作的过程,不予赘述。
可以理解的,第一网元触发网络根据下行QoS信息配置出口终端的会话的过程,与第一网元触发网络根据上行QoS信息配置入口终端的会话的过程类似。具体如下:
一种可能的实现方式,第一网元发送第三请求消息。其中,第三请求消息包括出口终端的地址和下行QoS信息。可选的,第三请求消息还包括以下至少一项:本地切换指示信息、出口终端关联的DNN、出口终端关联的S-NSSAI,业务流的流信息或第 一事件指示信息。本地交换指示信息用于指示业务流采用本地交换或跨UPF网元交换的方式进行传输。
一种可能的设计,若第一网元为NEF网元、TSCTSF网元或新增网元,则第一网元可以向PCF网元发送第三请求消息。该第三请求消息可以是创建请求消息(如:Npcf_PolicyAuthorization_Create Request消息)或更新请求消息(如:Npcf_PolicyAuthorization_Update Request消息)。例如,若第一网元是第一次进行QoS分解,则第一网元向PCF网元发送创建请求消息。若第一网元不是第一次进行QoS分解,则第一网元向PCF网元发送更新请求消息。后续,PCF网元接收到第三请求消息后,可以根据下行QoS信息,生成用于配置出口终端的会话中的第二QoS流的第二PCC规则,并向SMF网元发送第二PCC规则,以便SMF网元根据第二PCC规则执行相应的操作。具体的,可以参考下述图9所示实施例中所述。
另一种可能的实现方式,若第一网元为PCF网元,则第一网元可以根据下行QoS信息,生成第二PCC规则,并向SMF网元发送包括第二PCC规则的第三请求消息,以便SMF网元根据第二PCC规则执行相应的操作。其中,第一网元根据下行QoS信息,生成第二PCC规则,并向SMF网元发送包括第二PCC规则的第三请求消息,以便SMF网元根据第二PCC规则执行相应的操作的过程,可以参考下述图9所示实施例中,PCF网元根据下行QoS信息,生成第二PCC规则,并向SMF网元发送第二PCC规则,以便SMF网元根据第二PCC规则执行相应的操作的过程,不予赘述。
其中,上述S801-S804中的第一网元或AF网元的动作可以由图7所示的通信装置50中的处理器501调用存储器503中存储的应用程序代码来执行,本申请实施例对此不做任何限制。
基于图8所示的方法,第一网元可以获取业务流的QoS信息、入口终端的接入信息和出口终端的接入信息,根据入口终端的接入信息和出口终端的接入信息对业务流的QoS信息进行分解,得到上行QoS信息和下行QoS信息,并触发网络根据上行QoS信息和下行QoS信息生成对应的PCC规则,以实现对入口终端的会话中的QoS流的配置以及出口终端的会话中的QoS流的配置。或者,第一网元可以获取业务流的QoS信息、入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间,根据入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间对业务流的QoS信息进行分解,得到上行QoS信息和下行QoS信息,并触发网络根据上行QoS信息和下行QoS信息生成对应的PCC规则,以实现对入口终端的会话中的QoS流的配置以及出口终端的会话中的QoS流的配置。上述方法能够对端到端业务流做QoS分解,实现业务流的确定性传输。另外,在上述过程中,第一网元在做QoS分解时,考虑了入口终端的接入信息和出口终端的接入信息,或者考虑了入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间,上述信息能够表征入口终端和出口终端所属网络的拓扑情况。因此,图8所示方法可以使得第一网元确定的上行QoS信息和下行QoS信息更为合理,进而使得业务流的传输更加容易满足QoS需求。
下面以第一网元为新增网元为例,介绍本申请实施例提供的方法。
如图9所示,为本申请实施例提供的又一种通信方法,该通信方法可以包括如下 步骤:
S901:AF网元向第一网元发送第一请求消息。相应的,第一网元接收来自AF网元的第一请求消息。
S902:第一网元根据目标终端集合的信息获取QoS分解信息。
S903:第一网元根据QoS分解信息对业务流的QoS信息进行分解,得到上行QoS信息和下行QoS信息。
可以理解的,上述S901-S903的过程可以参考上述S801-S803中对应的描述,不予赘述。
S904:第一网元向PCF网元发送第二请求消息。相应的,PCF网元接收来自第一网元的第二请求消息。
其中,第二请求消息包括入口终端的地址和上行QoS信息。可选的,第二请求消息还包括以下至少一项:本地切换指示信息、入口终端关联的DNN、入口终端关联的S-NSSAI,业务流的流信息或第一事件指示信息。
可以理解的,若S901中的第一请求消息包括业务流的流信息,则第二请求消息包括业务流的流信息。若S901中的第一请求消息不包括业务流的流信息(即在通用流场景中),则第二请求消息不包括业务流的流信息。在这种情况下,AF网元可以把业务流的流信息发送给PCF网元,并触发第一网元向PCF网元发送第二请求消息。
例如,AF可以通过AFSessionWithQoS消息携带业务流的流信息,并通过NEF网元发送给PCF网元。AFSessionWithQoS消息还可以指示以下至少一项:业务流为端到端业务流,入口终端的地址,入口终端关联的DNN或入口终端关联的S-NSSAI。后续,在PCF网元生成业务流的PCC规则之前,PCF网元可以向第一网元发送包括入口终端的地址、入口终端关联的DNN和入口终端关联的S-NSSAI的查询信息,以使得第一网元向PCF网元发送第二请求消息。
可以理解的,若S901中的第一请求消息包括第一事件指示信息,则第二请求消息包括第一事件指示信息。若S901中的第一请求消息不包括第一事件指示信息,则第二请求消息不包括第一事件指示信息。
S905:第一网元向PCF网元发送第三请求消息。相应的,PCF网元接收来自第一网元的第三请求消息。
其中,第三请求消息包括出口终端的地址和下行QoS信息。可选的,第三请求消息还包括以下至少一项:本地切换指示信息、出口终端关联的DNN、出口终端关联的S-NSSAI,业务流的流信息或第一事件指示信息。
S905中的其他介绍可以参考上述S904中对应的描述,不予赘述。
可以理解的,本申请不限制S904与S905的执行顺序。例如,本申请实施例可以先执行S904再执行S905,也可以先执行S905再执行S904,还可以同时执行S904和S905,不予限制。
可以理解的,在具体应用中,第二请求消息包括的信息和第三请求消息包括的信息也可以包括在一条消息中传输,例如,通过该一条消息的不同字段传输,不予限制。
S906:PCF网元根据第二请求消息生成第一PCC规则,根据第三请求消息生成第二PCC规则。
示例性的,PCF网元根据上行QoS信息生成第一PCC规则中的QoS参数,根据本地切换指示信息设置第一PCC规则中的本地切换指示信息。若第二请求消息还包括第一事件指示信息,则PCF网元还根据第一事件指示信息在第一PCC规则中设置相应的功能。例如,若第一事件指示信息指示针对平均时延的监控,则PCF网元在第一PCC规则中设置监控业务流的上行方向的平均时延或业务流的下行方向的平均时延。若第二更新请求消息还包括业务流的流信息,或者PCF网元接收到了来自AF网元的业务流的流信息,则PCF网元还根据业务流的流信息在第一PCC规则中配置业务流的流信息。
类似的,PCF网元根据下行QoS信息生成第二PCC规则中的QoS参数,根据本地切换指示信息设置第二PCC规则中的本地切换指示信息。若第三更新请求消息还包括第一事件指示信息,则PCF网元还根据第一事件指示信息在第二PCC规则中设置相应的功能。若第三更新请求消息还包括业务流的流信息,或者PCF网元接收到了来自AF网元的业务流的流信息,则PCF网元还根据业务流的流信息在第二PCC规则中配置业务流的流信息。
S907:PCF网元向SMF网元发送第一PCC规则和第二PCC规则。相应的,SMF网元接收来自PCF网元的第一PCC规则和第二PCC规则。
可以理解的,SMF网元接收到第一PCC规则后,可以根据第一PCC规则执行相应的操作。
例如,SMF网元根据第一PCC规则中的本地切换指示信息设置UPF网元上的本地交换或跨N19交换的路由规则,SMF网元根据第一PCC中的QoS参数生成QoS流(即前文所述的第一QoS流)的QoS参数,根据QoS Flow的QoS参数配置QoS Flow。若第一PCC规则中设置事件的相关功能,SMF网元还监控对应的事件,并在事件发生后,向PCF网元发送监控的信息。例如,若第一PCC规则中设置监控业务流的上行方向的平均时延、业务流的上行方向的PDB,则SMF网元监控业务流的上行方向的平均时延、业务流的上行方向的PDB,并向PCF网元发送事件通知信息。该事件通知信息包括业务流的上行方向的平均时延。在业务流的上行方向的时延大于业务流的上行方向的PDB的情况下,该事件通知信息还包括指示业务流的上行方向的时延不满足业务流的上行方向的PDB。
可以理解的,SMF网元在为UPF网元配置路由规则时,会默认把从N6收到报文都发送给N3/N9,从N3/N9收到的报文发送给N6。所以,对于端到端的业务流,SMF网元需要修改路由规则。例如,SMF网元可以根据第一PCC规则中本地切换指示信息激活UPF网元本地交换或跨N19交换功能,在UPF网元配置特定的报文检测规则(packet detection rule,PDR)或转发动作规则(forwarding action rule,FAR)等路由规则,以使UPF网元支持本地转发(即不经过DN,UPF网元直接在连接到此UPF网元的两个PDU会话或多个PDU会话之间转发报文)或跨N19转发(即不经过DN,UPF网元直接把报文通过N19隧道转发到其他UPF网元,以使其他UPF网元把报文发送给连接到该UPF网元的PDU会话)。
示例性的,以上述示例3为例,当SMF网元确定终端202至终端205中的至少一个终端能够接收Multicast Address A的消息,例如,SMF网元收到终端203的加入组 播组的网络组管理协议(internet group management protocol,IGMP)加入(IGMP Join)消息或UPF网元的N4报告,可以根据第一PCC规则在用户面上配置对应的路由规则,配置对应的QoS信息,并通知PCF网元执行成功。若SMF网元没有收到如果没有收到IGMP Join消息或UPF网元的N4报告,则SMF网元可以保存第一PCC规则,等待终端203加入组播组。后续,SMF网元再根据第一PCC规则在UPF网元配置对应的路由规则,配置对应的QoS信息,并通知PCF网元执行成功。
可以理解的,若SMF网元确定终端203不能够接收Multicast Address A的消息,例如,SMF网元收到终端203的退出组播组的IGMP退出(Quit)消息或UPF网元的N4报告,则SMF网元可以删除已经安装在用户面上的对应的路由规则和对应的QoS信息。同时,SMF网元也可以向PCF网元反馈终端203已经退出组播组。
可以理解的,PCF网元可以在向SMF网元配置第一PCC规则之前,要求SMF网元上报终端加入/退出组播组A的事件,PCF网元在收到SMF网元发送的关于终端组播组的信息后,再配置相关的PCC规则给SMF。或者,PCF网元可以先向SMF网元发送第一PCC规则,还要求SMF网元上报终端加入/退出组播组A的事件,PCF网元在收到SMF网元发送的关于终端组播组的信息后,可以更新第一PCC规则,在终端203退出组播组A后,触发SMF网元删除对应的QoS Flow配置。
可以理解的,SMF网元接收到第二PCC规则后,可以根据第二PCC规则执行相应的操作。具体的,可以参考SMF网元根据第一PCC规则执行相应的操作的描述,不予赘述。
可以理解的,PCF网元可以通过一条消息向SMF网元发送上述第一PCC和第二PCC,也可以通过两条消息分别向SMF网元发送上述第一PCC和第二PCC,不予限制。
可选的,若第一请求消息包括第一事件指示信息,则图9所示的方法还可以包括S908和/或S909:
S908:SMF网元向第一网元发送第一通知信息。相应的,第一网元接收来自SMF网元的第一通知信息。
其中,第一通知信息为针对第二请求消息的信息。第一通知信息包括SMF网元监控第一事件指示信息指示监控的事件所上报的信息。
一种可能的设计,第一通知信息包括以下至少一项:业务流上行方向的平均时延,业务流上行方向的PDB不再满足的指示信息,业务流上行方向的GBR不再满足的指示信息或业务流上行方向的PER不再满足的指示信息。
一种可能的实现方式,SMF网元通过PCF网元向第一网元发送第一通知信息。
S909:SMF网元向第一网元发送第二通知信息。相应的,第一网元接收来自SMF网元的第二通知信息。
其中,第二通知信息为针对第三请求消息的信息。
一种可能的设计,第二通知信息包括以下至少一项:业务流下行方向的平均时延,业务流下行方向的PDB不再满足的指示信息,业务流下行方向的GBR不再满足的指示信息或业务流下行方向的PER不再满足的指示信息。
一种可能的实现方式,SMF网元通过PCF网元向第一网元发送第二通知信息。
可以理解的,SMF网元可以通过一条消息向第一网元发送上述第一通知信息和第二通知信息,也可以通过两条消息分别向第一网元发送上述第一通知信息和第二通知信息,不予限制。
可以理解的,第一网元接收到第一通知信息和第二通知信息后,向AF网元发送该第一通知信息和第二通知信息。或者,第一网元接收到第一通知信息和第二通知信息后,对该第一通知信息和第二通知信息中的信息进一步处理,将处理后的信息发送给AF网元。例如,若第一通知信息包括业务流的上行方向的平均时延,第二通知信息包括业务流的下行方向的平均时延,则第一网元向AF网元发送业务流的平均时延,业务流的平均时延为业务流的上行方向的平均时延和业务流的下行方向的平均时延之和。
可选的,为了使得上行QoS信息和下行QoS更为合适,第一网元还可以根据第一通知信息和/或第二通知信息调整上行QoS信息和/或下行QoS信息,并触发PCF网元和SMF网元做相应的配置。也就是说,图9所示的方法还可以包括如下步骤:
S910:第一网元调整上行QoS信息和/或下行QoS信息,得到调整后的QoS信息。
一种可能的实现方式,第一网元根据第一通知信息调整上行QoS信息;或者,根据第二通知信息调整下行QoS信息;或者,根据第一通知信息和第二通知信息调整上行QoS信息和下行QoS信息。
可以理解的,若第一网元调整了上行QoS信息,则调整后的QoS信息包括调整后的上行QoS信息。若第一网元调整了下行QoS信息,则调整后的QoS信息包括调整后的下行QoS信息。若第一网元调整了上行QoS信息和下行QoS信息,则调整后的QoS信息包括调整后的上行QoS信息和调整后的下行QoS信息。
下面结合上述示例6进行描述。在示例6中,上行QoS信息包括业务流上行方向的时延(9ms)和业务流上行方向的保证速率(100M比特速率),下行QoS信息包括业务流下行方向的时延(5ms)、业务流下行方向的报文到达时间(14点零14ms)和业务流下行方向的保证速率(100M比特速率),若第一通知信息包括业务流上行方向的平均时延(9ms),第二通知信息包括业务流下行方向的平均时延(4ms),则说明上行QoS信息中的上行方向的时延配置大了,下行QoS信息中的下行方向的时延配置小了,可以将上行方向的时延调小,将下行方向的时延调大。例如,调整后的QoS信息包括调整后的上行QoS信息和调整后的下行QoS信息,其中,调整后的上行QoS信息包括业务流上行方向的时延(7ms),调整后的下行QoS信息包括业务流下行方向的时延(6ms)、报文到达终端202的时间为报文到达时间(14点零12ms)。又例如,若第一通知信息包括业务流上行方向的平均时延(7ms),第二通知信息包括业务流下行方向的平均时延(5ms),第二通知信息还指示业务流的下行方向的时延不满足业务流的下行方向的PDB,则说明下行QoS信息中的下行方向的时延配置小了,可以将下行方向的时延调大。例如,调整后的QoS信息包括调整后的下行QoS信息,其中,调整后的下行QoS信息包括业务流下行方向的时延(6ms)、报文到达终端202的时间为报文到达时间(14点零12ms)。
在S909中介绍了,第一网元接收到第一通知信息和第二通知信息后,向AF网元发送该第一通知信息和第二通知信息。或者,第一网元接收到第一通知信息和第二通 知信息后,对该第一通知信息和第二通知信息中的信息进一步处理,将处理后的信息发送给AF网元。然而,若调整后的QoS信息可以满足一定的要求,则第一网元可以不向AF网元发送相应的第一通知信息和第二通知信息,或者发送理后的信息。
例如,若调整后,对于入口终端和出口终端接入相同的UPF网元的情况,业务流上行方向的时延、业务流下行方向的时延、入口终端的驻留时间、出口终端的驻留时间以及UPF网元的驻留时间之和小于或等于业务流的时延要求,则第一网元可以不向AF网元发送平均时延的相关信息。若调整后,业务流的上行方向的PDB和/或业务流的下行方向的PDB不满足上报条件,则第一网元不向AF网元发送PDB相关的信息。
S911:若调整后的QoS信息包括调整后的上行QoS信息,第一网元向PCF网元发送第一更新请求消息。相应的,PCF网元接收来自第一网元的第一更新请求消息。
一种可能的实现方式,第一更新请求消息包括调整后的上行QoS信息。
S912:若调整后的QoS信息包括调整后的下行QoS信息,第一网元向PCF网元发送第二更新请求消息。相应的,PCF网元接收来自第一网元的第二更新请求消息。
一种可能的实现方式,第二更新请求消息包括调整后的下行QoS信息。
可以理解的,本申请不限制S911与S912的执行顺序。例如,本申请实施例可以先执行S911再执行S912,也可以先执行S912再执行S911,还可以同时执行S911和S912,不予限制。
S913:PCF网元根据第一更新请求消息生成第三PCC规则,根据第二更新请求消息生成第四PCC规则。
示例性的,PCF网元根据调整后的上行QoS信息生成第三PCC规则中的QoS参数,根据调整后的下行QoS信息生成第四PCC规则中的QoS参数。
S914:PCF网元向SMF网元发送第三PCC规则和第四PCC规则。相应的,SMF网元接收来自PCF网元的第三PCC规则和第四PCC规则。
可以理解的,SMF网元接收到第三PCC规则后,可以根据第三PCC规则更新QoS Flow。例如,SMF网元根据第三PCC规则中的QoS参数更新QoS Flow的QoS参数,根据更新后的QoS参数配置QoS Flow。类似的,SMF网元接收到第四PCC规则后,可以根据第四PCC规则更新QoS Flow。例如,SMF网元根据第四PCC规则中的QoS参数更新QoS Flow的QoS参数,根据更新后的QoS参数配置QoS Flow。
其中,上述S901-S914中的第一网元、AF网元、PCF网元或SMF网元的动作可以由图7所示的通信装置50中的处理器501调用存储器503中存储的应用程序代码来执行,本申请实施例对此不做任何限制。
基于图9所示的方法,第一网元可以获取业务流的QoS信息、入口终端的接入信息和出口终端的接入信息,根据入口终端的接入信息和出口终端的接入信息对业务流的QoS信息进行分解,得到上行QoS信息和下行QoS信息,并触发网络根据上行QoS信息和下行QoS信息生成对应的PCC规则,以实现对入口终端的会话中的QoS流的配置以及出口终端的会话中的QoS流的配置。或者,第一网元可以获取业务流的QoS信息、入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间,根据入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间对业务流的QoS信息进行分解,得到上行QoS信息和下行QoS信息,并触发网络根据上 行QoS信息和下行QoS信息生成对应的PCC规则,以实现对入口终端的会话中的QoS流的配置以及出口终端的会话中的QoS流的配置。上述方法能够对端到端业务流做QoS分解,实现业务流的确定性传输。另外,在上述过程中,第一网元在做QoS分解时,考虑了入口终端的接入信息和出口终端的接入信息,或者考虑了入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间,上述信息能够表征入口终端和出口终端所属网络的拓扑情况。因此,图9所示方法可以使得第一网元确定的上行QoS信息和下行QoS信息更为合理,进而使得业务流的传输更加容易满足QoS需求。除此之外,第一网元还可以获取第一事件指示信息,并触发SMF网元监控对应的事件。后续,第一网元还可以根据网络监控事件获取的参数,调整上行QoS信息和/或下行QoS信息,使得调整后的QoS信息更加合适,以进一步使得业务流的传输满足QoS需求。
在图8或图9所示的方法中,第一网元要么根据入口终端的接入信息和出口终端的接入信息进行QoS分解,得到上行QoS信息和下行QoS信息,要么根据入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间进行QoS分解,得到上行QoS信息和下行QoS信息。在具体应用中,第一网元也可以不根据上述信息进行QoS分解,而是先分配上行初始QoS信息和/或下行初始QoS信息,并触发PCF网元根据上行初始QoS信息和/或下行初始QoS信息生成对应的PCC规则,SMF网元根据对应的PCC规则配置QoS Flow,并且第一网元还指示SMF网元监控与QoS信息相关的事件。后续,第一网元还可以根据SMF通过监控事件获取的参数,分配适合的上行QoS信息和适合的下行QoS信息,使得业务流的传输满足QoS需求。具体的,可以参考下述图10所示的方法。
如图10所示,为本申请实施例提供的又一种通信方法,该通信方法可以包括如下步骤:
S1001:AF网元向第一网元发送第五请求消息。相应的,第一网元接收来自AF网元的第五请求消息。
其中,AF网元可以是图5中的AF网元402,第一网元可以是图5中的第一网元401。
一种可能的实现方式,在有业务需求的情况下,管理人员配置第五请求消息中的IE并触发AF网元向第一网元发送第五请求消息。或者,在有业务需求的情况下,AF网元执行预先存储的程序来配置第五请求消息中的IE并触发AF向第一网元发送第五请求消息。
其中,第五请求消息可以用于请求为业务流分配资源。例如,第五请求消息用于为目标终端之间的业务流分配和QoS信息的资源,以用于保障目标终端之间端到端的通信质量。业务流为任意一个端到端业务流。目标终端包括业务流的入口终端和出口终端。业务流的出口终端可以包括一个终端也可以是多个终端,不予限制。可以理解的,若出口终端包括一个终端,第五请求消息用于为入口终端和出口终端之间的业务流分配和QoS信息的资源,以用于保障入口终端和出口终端之间端到端的通信质量。若出口终端包括多个终端,第五请求消息用于为入口终端和多个出口终端中的每个出口终端之间的业务流分配和QoS信息的资源,以用于保障入口终端和出口终端之间端 到端的通信质量。
可以理解的,在管理人员配置IE的情况下,以及AF网元自己配置IE的情况下,第五请求消息包括的IE可能不同。
一种可能的实现方式,在管理人员配置IE的情况下,第五请求消息可以包括业务流的类型信息、业务流的QoS信息和第二事件指示信息。可选的,第五请求消息还包括以下至少一项:业务流的流信息或目标终端集合的信息。
另一种可能的实现方式,AF网元自己配置IE的情况下,第五请求消息可以包括业务流的QoS信息和第二事件指示信息。可选的,第五请求消息还包括以下至少一项:业务流的类型信息、业务流的流信息或目标终端集合的信息。
其中,业务流的类型信息、业务流的QoS信息、业务流的流信息或目标终端集合的信息的介绍可以参考S801中对应的描述。
本申请实施例中,第二事件指示信息可以指示针对平均时延的监控和针对PDB的QoS通知监控。
可选的,第二事件指示信息还指示以下至少一项:针对GBR的QoS通知监控或针对PER的QoS通知监控。针对PDB的QoS通知监控、针对GBR的QoS通知监控或针对PER的QoS通知监控可以是基于QNC机制的。
可以理解的,S1001中的其他介绍可以参考上述S801中对应的描述,此处不做赘述。
S1002:第一网元对业务流的QoS信息进行分解,得到初始QoS信息。
其中,初始QoS信息可以包括业务流在上行方向的初始QoS信息(以下简称上行初始QoS信息)或业务流在下行方向的初始QoS信息(以下简称下行初始QoS信息)。
在S1001中介绍了:业务流的QoS信息包括业务流的时延要求。可选的,业务流的QoS信息还包括以下至少一项:报文的优先级信息、报文大小、最大速率、保证速率、报文出错率、周期信息、时钟域信息、报文到达时间或生存时间。那么,若初始QoS信息至少可以包括上述信息。以初始QoS信息包括上行初始QoS信息为例,若业务流的QoS包括业务流的时延要求,则上行初始QoS信息可以包括业务流上行方向的时延。若业务流的QoS包括业务流的时延要求和报文到达时间,则上行初始QoS信息可以包括业务流上行方向的时延和业务流上行方向的报文到达时间。以初始QoS信息包括下行初始QoS信息为例,若业务流的QoS包括业务流的时延要求,则下行初始QoS信息可以包括业务流下行方向的时延。若业务流的QoS包括业务流的时延要求和报文到达时间,则下行初始QoS信息可以包括业务流下行方向的时延和业务流下行方向的报文到达时间。
一种可能的实现方式,第一网元根据历史上的QoS分解情况,得到初始QoS信息。
例如,若初始QoS信息包括上行初始QoS信息,历史上业务流上行方向的时延为5ms,则第一网元可以将业务流上行方向的时延设置为5ms。
另一种可能的实现方式,第一网元根据预设规则和业务流的QoS信息,确定初始QoS信息。
作为一种示例,若业务流的QoS信息包括业务流的时延要求,初始QoS信息为上行初始QoS信息,则上行初始QoS信息包括业务流上行方向的时延。该业务流上行方 向的时延是根据第一预设规则和业务流的时延要求得到的。例如,可以在第一网元中预配置业务流上行方向的时延为7ms,则第一网元可以将业务流上行方向的时延设置为7ms。又例如,第一网元可以为业务流的时延要求指示的时延乘以一个系数a,将乘以系数后的时延作为业务流上行方向的时延。其中,a大于0并且小于1。
示例9:下面结合上述示例2进行描述。在示例2中,业务流的类型信息指示业务流为端到端业务流。目标终端集合的信息包括终端201的标识、终端203的标识、终端201和终端202关联的DNN和S-NSSAI。业务流的QoS信息指示业务流的时延为20ms,业务流的报文到达时间是14点,业务流的保证速率是100M比特速率。业务流的流信息包括以太流信息(如:终端201在业务流中的MAC地址、终端203在业务流中的MAC地址以及VLAN标签的信息)。第一事件指示信息指示针对平均时延的监控和针对PDB的QoS通知监控。第一网元可以配置业务流上行方向的时延为业务流的时延的一半,即初始QoS信息包括上行初始QoS信息,上行初始QoS信息包括业务流上行方向的时延,该时延为10ms。
类似的,若业务流的QoS信息包括业务流的时延要求,初始QoS信息为下行初始QoS信息,则下行初始QoS信息包括业务流下行方向的时延。该业务流下行方向的时延是根据第二预设规则和业务流的时延要求得到的。第一预设规则和第二预设规则可以相同也可以不同。
可以理解的,若上行初始QoS信息包括业务流上行方向的报文到达时间,可以将业务流上行方向的报文到达时间设置为业务流的报文到达时间。若下行初始QoS信息包括业务流下行方向的报文到达时间,则第一网元可以根据S803中的情形(如:情形10)确定。
S1003:第一网元发送第四请求消息。
对于初始QoS信息包括上行初始QoS信息的情况:第四请求消息包括入口终端的地址、上行初始QoS信息和第二事件指示信息。
可选的,第四请求消息还包括以下至少一项:本地切换指示信息、入口终端关联的DNN、入口终端关联的S-NSSAI或业务流的流信息。本地交换指示信息用于指示业务流采用本地交换或跨UPF网元交换的方式进行传输。
如前文所述,第一网元为NEF网元、TSCTSF网元、PCF网元或新增网元。
一种可能的实现方式,若第一网元为NEF网元、TSCTSF网元或新增网元,则第一网元可以向PCF网元发送第四请求消息。该第四请求消息可以是创建请求消息(如:Npcf_PolicyAuthorization_Create Request消息)或更新请求消息(如:Npcf_PolicyAuthorization_Update Request消息)。例如,若第一网元是第一次进行QoS分解,则第一网元向PCF网元发送创建请求消息。若第一网元不是第一次进行QoS分解,则第一网元向PCF网元发送更新请求消息。后续,PCF网元接收到第四请求消息后,可以根据上行QoS信息,生成用于配置入口终端的会话中的第一QoS流的第一PCC规则,并向SMF网元发送第一PCC规则,以便SMF网元根据第一PCC规则执行相应的操作。具体的,可以参考下述图9所示实施例中对应的描述所述。
另一种可能的实现方式,若第一网元为PCF网元,则第一网元可以根据上行QoS信息,生成第一PCC规则,并向SMF网元发送包括第一PCC规则的第四请求消息, 以便SMF网元根据第一PCC规则执行相应的操作。其中,第一网元根据上行QoS信息,生成第一PCC规则,并向SMF网元发送包括第一PCC规则的第四请求消息,以便SMF网元根据第一PCC规则执行相应的操作的过程,可以参考下述图9所示实施例中,PCF网元根据上行QoS信息,生成第一PCC规则,并向SMF网元发送第一PCC规则,以便SMF网元根据第一PCC规则执行相应的操作的过程,不予赘述。
对于初始QoS信息包括下行初始QoS信息的情况:第四请求消息包括出口终端的地址、下行初始QoS信息和第二事件指示信息。
可选的,第四请求消息还包括以下至少一项:本地切换指示信息、出口终端关联的DNN、出口终端关联的S-NSSAI或业务流的流信息。本地交换指示信息用于指示业务流采用本地交换或跨UPF网元交换的方式进行传输。
一种可能的实现方式,若第一网元为NEF网元、TSCTSF网元或新增网元,则第一网元可以向PCF网元发送第四请求消息。该第四请求消息可以是创建请求消息(如:Npcf_PolicyAuthorization_Create Request消息)或更新请求消息(如:Npcf_PolicyAuthorization_Update Request消息)。例如,若第一网元是第一次进行QoS分解,则第一网元向PCF网元发送创建请求消息。若第一网元不是第一次进行QoS分解,则第一网元向PCF网元发送更新请求消息。后续,PCF网元接收到第四请求消息后,可以根据下行QoS信息,生成用于配置入口终端的会话中的第二QoS流的第二PCC规则,并向SMF网元发送第二PCC规则,以便SMF网元根据第二PCC规则执行相应的操作。具体的,可以参考下述图9所示实施例中对应的描述所述。
另一种可能的实现方式,若第一网元为PCF网元,则第一网元可以根据下行QoS信息,生成第二PCC规则,并向SMF网元发送包括第二PCC规则的第四请求消息,以便SMF网元根据第二PCC规则执行相应的操作。其中,第一网元根据下行QoS信息,生成第二PCC规则,并向SMF网元发送包括第二PCC规则的第四请求消息,以便SMF网元根据第二PCC规则执行相应的操作的过程,可以参考下述图9所示实施例中,PCF网元根据下行QoS信息,生成第二PCC规则,并向SMF网元发送第二PCC规则,以便SMF网元根据第二PCC规则执行相应的操作的过程,不予赘述。
可以理解的,因为S1001中的第五请求消息中包括第二事件指示信息,所以在满足事件上报条件下,SMF网元可以向第一网元发送针对第四请求消息的第三通知信息。
S1004:第一网元接收针对第四请求消息的第三通知信息。
可以理解的,若第一网元为NEF网元、TSCTSF网元或新增网元,则第一网元通过PCF网元接收来自SMF网元的第三通知信息。若第一网元为PCF网元,则第一网元接收来自SMF网元的第三通知信息。
示例性的,若初始QoS信息包括上行初始QoS信息,则第三通知信息包括业务流上行方向的平均时延,或者,第三通知信息包括业务流上行方向的平均时延和业务流上行方向的报文时延预算不再满足的指示信息,或者,若初始QoS信息包括下行初始QoS信息,则第三通知信息包括业务流下行方向的平均时延,或者,第三通知信息包括业务流下行方向的平均时延和业务流下行方向的报文时延预算不再满足的指示信息。
S1005:第一网元根据第三通知信息调整初始QoS信息,得到目标QoS信息。
其中,目标QoS信息包括上行目标QoS信息和下行目标QoS信息。
可以理解的,若初始QoS信息包括上行初始QoS信息,第三通知信息至少可以指示业务流上行方向的平均时延,第一网元可以根据第三通知信息调整上行初始QoS信息,得到上行目标QoS信息,根据上行目标QoS信息确定下行目标QoS信息。例如,第一网元设置业务流下行方向的时延小于或等于业务流的时延与业务流上行方向的时延之差。
可以理解的,在S1005之前,第一网元可以获取入口终端的接入信息和出口终端的接入信息。这样,第一网元可以根据入口终端的接入信息、出口终端的接入信息、第三通知信息和初始QoS信息,得到目标QoS信息。也就是说,第一网元在得到目标QoS信息时,也可以考虑入口终端的接入信息和出口终端的接入信息。或者,在S1005之前,第一网元可以获取入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间。这样,第一网元可以根据入口终端的接入信息、出口终端的接入信息、UPF网元之间的报文传输时间、事件通知信息和初始QoS信息,得到目标QoS信息。也就是说,第一网元在得到目标QoS信息时,也可以考虑入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间。例如,第一网元可以根据上述S803中的任意一种情形确定目标QoS信息。
可以理解的,S1005之后,第一网元触发网络根据上行目标QoS信息配置入口终端的会话,以及根据下行目标QoS信息配置出口终端的会话。具体的,可以参考前文对应的描述,在此不做赘述。
其中,上述S1001-S1005中的第一网元或AF网元的动作可以由图7所示的通信装置50中的处理器501调用存储器503中存储的应用程序代码来执行,本申请实施例对此不做任何限制。
基于图10所示的方法,第一网元可以先分配上行初始QoS信息或下行初始QoS信息,触发网络配置相应的QoS Flow,并且第一网元还指示监控与QoS信息相关的事件。后续,第一网元还可以根据网络监控事件获取的参数,分配适合的上行目标QoS信息和适合的下行目标QoS信息,通过动态调整,使得业务流的传输满足QoS需求。
在上述图10所示的方法中,第一网元先分配的是上行初始QoS信息或下行初始QoS信息。在具体应用中,第一网元也可以先分配上行初始QoS信息和下行初始QoS信息。下面以第一网元为新增网元为例进行介绍。
如图11所示,为本申请实施例提供的又一种通信方法,该通信方法可以包括如下步骤:
S1101:AF网元向第一网元发送第五请求消息。相应的,第一网元接收来自AF网元的第五请求消息。
上述S1101的具体过程可以参考上述S1001中对应的描述,此处不做赘述。
S1102:第一网元对业务流的QoS信息进行分解,得到初始QoS信息。
其中,初始QoS信息可以包括业务流在上行方向的初始QoS信息(以下简称上行初始QoS信息)和业务流在下行方向的初始QoS信息(以下简称下行初始QoS信息)。
上述S1102的具体过程可以参考上述S1002中对应的描述。不同的是,在S1002中,第一网元得到的是上行初始QoS信息或下行初始QoS信息,而在S1102中,第一网元得到的是上行初始QoS信息和下行初始信息。
S1103:第一网元向PCF网元发送第六请求消息。相应的,PCF网元接收来自第一网元的第六请求消息。
其中,第六请求消息包括入口终端的地址、上行初始QoS信息和第二事件指示信息。
可选的,第六请求消息还包括以下至少一项:本地切换指示信息、入口终端关联的DNN、入口终端关联的S-NSSAI或业务流的流信息。本地交换指示信息用于指示业务流采用本地交换或跨UPF网元交换的方式进行传输。
可以理解的,第六请求消息可以是创建请求消息(如:Npcf_PolicyAuthorization_Create Request消息)或更新请求消息(如:Npcf_PolicyAuthorization_Update Request消息)。
S1104:第一网元向PCF网元发送第七请求消息。相应的,PCF网元接收来自第一网元的第七请求消息。
其中,第七请求消息包括出口终端的地址、下行初始QoS信息和第二事件指示信息。
可选的,第七请求消息还包括以下至少一项:本地切换指示信息、出口终端关联的DNN、出口终端关联的S-NSSAI或业务流的流信息。本地交换指示信息用于指示业务流采用本地交换或跨UPF网元交换的方式进行传输。
可以理解的,第七请求消息可以是创建请求消息(如:Npcf_PolicyAuthorization_Create Request消息)或更新请求消息(如:Npcf_PolicyAuthorization_Update Request消息)。
上述S1103-S1104中的其他介绍可以参考上述S904-S905中对应的描述。
S1105:PCF网元根据第六请求消息生成第五PCC规则,根据第七请求消息生成第六PCC规则。
示例性的,PCF网元根据上行初始QoS信息生成第五PCC规则中的QoS参数,根据本地切换指示信息设置第五PCC规则中的本地切换指示信息,根据第二事件指示信息在第五PCC规则中设置相应的功能。
类似的,PCF网元根据下行初始QoS信息生成第六PCC规则中的QoS参数,根据本地切换指示信息设置第六PCC规则中的本地切换指示信息,根据第二事件指示信息在第六PCC规则中设置相应的功能。
上述S1105中的其他介绍可以参考上述S906中对应的描述。
S1106:PCF网元向SMF网元发送第五PCC规则和第六PCC规则。相应的,SMF网元接收来自PCF网元的第一PCC规则和第二PCC规则。
S1107:SMF网元向第一网元发送针对第六请求消息的第四通知信息。相应的,第一网元接收来自SMF网元的针对第六请求消息的第四通知信息。
S1108:SMF网元向第一网元发送针对第七请求消息的第五通知信息。相应的,第一网元接收来自SMF网元的针对第七请求消息的第五通知信息。
上述S1106-S1108的具体过程可以参考上述S907-S909中对应的描述。
S1109:第一网元根据第四通知信息和第五通知信息调整初始QoS信息,得到目标QoS信息。
其中,目标QoS信息包括上行目标QoS信息和下行目标QoS信息。
可以理解的,第四通知信息至少可以指示业务流上行方向的平均时延,第一网元可以根据第四通知信息确定上行初始QoS信息设置的是否合适。第五通知信息至少可以指示业务流下行方向的平均时延,第一网元可以根据第五通知信息确定下行初始QoS信息设置的是否合适。因此,根据第四通知信息和第五通知信息可以得到适合的上行目标QoS信息和下行目标QoS信息。
作为一种示例,若业务流的时延为20ms,上行初始QoS信息包括业务流上行方向的时延(10ms),下行初始QoS信息包括业务流下行方向的时延(10ms),第四通知信息包括业务流上行方向的平均时延(9ms),第五通知信息包括业务流下行方向的平均时延(6ms),第四通知信息还指示业务流上行方向的时延不满足业务流上行方向的PDB,则说明上行初始QoS信息中的上行方向的时延配置小了,可以将上行方向的时延调大。例如,上行目标QoS信息包括业务流上行方向的时延(11ms),下行目标QoS信息包括业务流下行方向的时延(7ms)。
可以理解的,在S1109之前,第一网元可以获取入口终端的接入信息和出口终端的接入信息。这样,第一网元还可以结合入口终端的接入信息和出口终端的接入信息,确定目标QoS信息。或者,在S1109之前,第一网元可以获取入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间。这样,第一网元还可以结合入口终端的接入信息、出口终端的接入信息和UPF网元之间的报文传输时间,确定目标QoS信息。
S1110:第一网元向PCF网元发送第三更新请求消息。相应的,PCF网元接收来自第一网元的第三更新请求消息。
一种可能的实现方式,第三更新请求消息包括上行目标QoS信息。
S1111:第一网元向PCF网元发送第四更新请求消息。相应的,PCF网元接收来自第一网元的第四更新请求消息。
一种可能的实现方式,第四更新请求消息包括下行目标QoS信息。
可以理解的,本申请不限制S1110与S1111的执行顺序。例如,本申请实施例可以先执行S1110再执行S1111,也可以先执行S1110再执行S1111,还可以同时执行S1110和S1111,不予限制。
S1112:PCF网元根据第三更新请求消息生成第七PCC规则,根据第四更新请求消息生成第八PCC规则。
示例性的,PCF网元根据上行目标QoS信息生成第七PCC规则中的QoS参数,根据下行目标QoS信息生成第八PCC规则中的QoS参数。
S1113:PCF网元向SMF网元发送第七PCC规则和第八PCC规则。相应的,SMF网元接收来自PCF网元的第七PCC规则和第八PCC规则。
可以理解的,SMF网元接收到第七PCC规则后,可以根据第七PCC规则更新QoS Flow。例如,SMF网元根据第七PCC规则中的QoS参数更新QoS Flow的QoS参数,根据更新后的QoS参数配置QoS Flow。
类似的,SMF网元接收到第八PCC规则后,可以根据第八PCC规则更新QoS Flow。例如,SMF网元根据第八PCC规则中的QoS参数更新QoS Flow的QoS参数,根据 更新后的QoS参数配置QoS Flow。
其中,上述S1101-S1113中的第一网元、AF网元、PCF网元或SMF网元的动作可以由图7所示的通信装置50中的处理器501调用存储器503中存储的应用程序代码来执行,本申请实施例对此不做任何限制。
基于图11所示的方法,第一网元可以先分配上行初始QoS信息和下行初始QoS信息,触发网络配置相应的QoS Flow,并且第一网元还指示监控与QoS信息相关的事件。后续,第一网元还可以根据网络监控事件获取的参数,分配适合的上行目标QoS信息和适合的下行目标QoS信息,通过动态调整,使得业务流的传输满足QoS需求。
在上述图8-图11所示的方法中,执行QoS分解的网元都是第一网元。在具体应用中,执行QoS分解的网元还可以是除第一网元之外的网元。下面以执行QoS分解的网元是AF网元为例进行阐述。
如图12所示,为本申请实施例提供的又一种通信方法,该通信方法可以包括如下步骤:
S1201:AF网元对业务流的QoS信息进行分解,得到初始QoS信息。
其中,AF网元可以是图6中的AF网元411。
其中,第一业务流的QoS信息的介绍可以参考S801中对应的描述。S1201的过程可以参考上述S1002中对应的描述。
S1202:AF网元向PCF网元发送第四请求消息。相应的,PCF网元接收来自AF网元的第四请求消息。
其中,PCF网元可以是图6中的PCF网元412。
若初始QoS信息包括上行初始QoS信息,则第四请求消息包括入口终端的地址、上行初始QoS信息和第二事件指示信息。可选的,第四请求消息还包括以下至少一项:本地切换指示信息、入口终端关联的DNN、入口终端关联的S-NSSAI或业务流的流信息。其中,本地交换指示信息用于指示业务流采用本地交换或跨UPF网元交换的方式进行传输。
若初始QoS信息包括下行初始QoS信息,则第四请求消息包括出口终端的地址、下行初始QoS信息和第二事件指示信息。可选的,第四请求消息还包括以下至少一项:本地切换指示信息、出口终端关联的DNN、出口终端关联的S-NSSAI或业务流的流信息。
一种可能的实现方式,AF网元通过NEF网元和TSCTSF网元向PCF网元发送第四请求消息。
S1203:PCF网元根据第四请求消息生成第八PCC规则。
S1204:PCF网元向SMF网元发送第八PCC规则。相应的,SMF网元接收来自PCF网元的第八PCC规则。
S1205:SMF网元向AF网元发送第三通知信息。相应的,AF网元接收来自SMF网元的第三通知信息。
S1206:AF网元根据第三通知信息和初始QoS信息,得到目标QoS信息。
S1207:AF网元向PCF网元发送第五更新请求消息。相应的,PCF网元接收来自AF网元的第五更新请求消息。
S1208:PCF网元根据第五更新请求消息生成第九PCC规则。
S1209:PCF网元向SMF网元发送第九PCC规则。相应的,SMF网元接收来自PCF网元的第九PCC规则。
上述S1203-S1209的过程可以参考前文对应的描述,不予赘述。
其中,上述S1201-S1209中的AF网元、PCF网元或SMF网元的动作可以由图7所示的通信装置50中的处理器501调用存储器503中存储的应用程序代码来执行,本申请实施例对此不做任何限制。
基于图12所示的方法,AF网元可以先分配上行初始QoS信息或下行初始QoS信息,并触发PCF网元根据上行初始QoS信息或下行初始QoS信息生成对应的PCC规则,SMF网元根据对应的PCC规则配置QoS Flow,并且AF网元还指示监控与QoS信息相关的事件。后续,AF网元还可以根据时间通知,分配适合的上行QoS信息和适合的下行QoS信息,通过动态调整,使得业务流的传输满足QoS需求。
在上述图12所示的方法中,AF网元先分配的是上行初始QoS信息或下行初始QoS信息。在具体应用中,AF网元也可以先分配上行初始QoS信息和下行初始QoS信息。例如,AF网元对业务流的QoS信息进行分解,得到初始QoS信息,向PCF网元发送第六请求消息和第七请求消息,并接收针对第六请求消息的第四通知信息和接收针对第七请求消息的第五通知信息,根据第四通知信息和第五通知信息调整初始QoS信息,得到目标QoS信息。其中,初始QoS信息包括上行初始QoS信息和下行初始QoS信息。目标QoS信息包括上行目标QoS信息和下行目标QoS信息。第六请求消息包括入口终端的地址、上行初始QoS信息和第二事件指示信息。第七请求消息包括出口终端的地址、下行初始QoS信息和第二事件指示信息。第二事件指示信息指示针对平均时延的监控,以及针对报文时延预算的QoS通知监控。上述过程与上述S1102-S1113的过程类似,因此,可以参考图11所示实施例中对应的描述,在此不做赘述。
本申请上文中提到的各个实施例之间在方案不矛盾的情况下,均可以进行结合,不作限制。
可以理解的,以上各个实施例中,由第一网元实现的方法和/或步骤,也可以由可用于第一网元的部件(例如芯片或者电路)实现;由AF网元实现的方法和/或步骤,也可以由可用于AF网元的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置可以为上述方法实施例中的第一网元,或者包含上述第一网元的装置,或者为可用于第一网元的部件;或者,该通信装置可以为上述方法实施例中的AF网元,或者包含上述AF网元的装置,或者为可用于AF网元的部件。可以理解的是,上述第一网元或者AF网元等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法操作,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出 本申请的范围。
本申请实施例可以根据上述方法示例对第一网元或AF网元进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,图13示出了一种通信装置130的结构示意图。通信装置130包括收发模块1301和处理模块1302。收发模块1301,也可以称为收发单元用于执行收发操作,例如可以是收发电路,收发机,收发器或者通信接口等。处理模块1302,也可以称为处理单元用于执行除了收发操作之外的操作,例如可以是处理电路或者处理器等。
在一些实施例中,该通信装置130还可以包括存储模块(图13中未示出),用于存储程序指令和数据。
示例性地,通信装置130用于实现第一网元的功能。通信装置130例如为图8所示的实施例或图9所示的实施例所述的第一网元。
其中,收发模块1301,用于接收来自应用功能网元的第一请求消息,第一请求消息包括业务流的类型信息、目标终端集合的信息和业务流的服务质量信息。例如,收发模块1301可以用于执行S801或S901。
处理模块1302,用于在类型信息指示业务流为端到端的业务流的情况下,根据目标终端集合的信息获取服务质量分解信息,服务质量分解信息包括入口终端的接入信息以及出口终端的接入信息。例如,处理模块1302可以用于执行S802或S902。
处理模块1302,还用于根据服务质量分解信息,对业务流的服务质量信息进行分解,得到上行服务质量信息和下行服务质量信息。例如,处理模块1302可以用于执行S803或S903。
处理模块1302,还用于触发网络根据上行服务质量信息配置入口终端的会话,以及根据下行服务质量信息配置出口终端的会话;其中,入口终端的会话中包括用于传输业务流的第一服务质量流,出口终端的会话中包括用于传输业务流的第二服务质量流。例如,处理模块1302可以用于执行S804。
在一种可能的实现方式中,处理模块1302,具体用于通过收发模块1301发送第二请求消息,第二请求消息包括入口终端的地址和上行服务质量信息;以及,处理模块1302,还具体用于通过收发模块1301发送第三请求消息,第三请求消息包括出口终端的地址和下行服务质量信息。
在一种可能的实现方式中,第二请求消息和第三请求消息还包括本地交换指示信息,本地交换指示信息用于指示业务流采用本地交换或跨用户面功能网元交换的方式进行传输。
在一种可能的实现方式中,入口终端的接入信息包括:入口终端的位置信息和入口终端的会话对应的锚点用户面功能网元的标识;以及,出口终端的接入信息包括:出口终端的位置信息和出口终端的会话对应的锚点用户面功能网元的标识。
在一种可能的实现方式中,业务流的服务质量信息包括业务流的时延要求;上行 服务质量信息包括业务流上行方向的时延;下行服务质量信息包括业务流下行方向的时延;且业务流上行方向的时延与业务流下行方向的时延之和小于或等于业务流的时延要求。
在一种可能的实现方式中,业务流的服务质量信息包括业务流的报文到达时间;上行服务质量信息包括业务流上行方向的报文到达时间,业务流上行方向的报文到达时间与业务流的报文到达时间相同;下行服务质量信息包括业务流下行方向的报文到达时间,业务流下行方向的报文到达时间由业务流上行方向的报文到达时间以及业务流上行方向的时延之和确定。
在一种可能的实现方式中,服务质量分解信息还包括入口终端的会话对应的锚点用户面功能网元和出口终端的会话对应的锚点用户面功能网元之间的报文传输时间。
在一种可能的实现方式中,业务流的服务质量信息包括业务流的时延要求;上行服务质量信息包括业务流上行方向的时延;下行服务质量信息包括业务流下行方向的时延;业务流上行方向的时延、业务流下行方向的时延以及报文传输时间之和小于或等于业务流的时延要求。
在一种可能的实现方式中,业务流的服务质量信息包括业务流的报文到达时间;上行服务质量信息包括业务流上行方向的报文到达时间,业务流上行方向的报文到达时间与业务流的报文到达时间相同;下行服务质量信息包括业务流下行方向的报文到达时间,业务流下行方向的报文到达时间由业务流上行方向的报文到达时间、业务流上行方向的时延以及报文传输时间之和确定。
在一种可能的实现方式中,第一请求消息还包括第一事件指示信息,第一事件指示信息指示以下至少一项:针对平均时延的监控,针对报文时延预算的服务质量通知监控,针对保证比特速率的服务质量通知监控或针对报文出错率的服务质量通知监控;第二请求消息还包括第一事件指示信息;第三请求消息还包括第一事件指示信息。
在一种可能的实现方式中,收发模块1301,还用于接收针对第二请求消息的第一通知信息,第一通知信息包括以下至少一项:业务流上行方向的平均时延,业务流上行方向的报文时延预算不再满足的指示信息,业务流上行方向的保证比特速率不再满足的指示信息或业务流上行方向的报文出错率不再满足的指示信息;收发模块1301,还用于接收针对第三请求消息的第二通知信息,第二通知信息包括以下至少一项:业务流下行方向的平均时延,业务流下行方向的报文时延预算不再满足的指示信息,业务流下行方向的保证比特速率不再满足的指示信息或业务流下行方向的报文出错率不再满足的指示信息;处理模块1302,还用于根据第一通知信息调整上行服务质量信息;或者,根据第二通知信息调整下行服务质量信息;或者,根据第一通知信息和第二通知信息调整上行服务质量信息和下行服务质量信息。
在一种可能的实现方式中,第一请求消息还包括业务流的流信息,业务流的流信息包括IP五元组或以太报文头信息地址。
在一种可能的实现方式中,第二请求消息和第三请求消息还包括业务流的流信息,业务流的流信息包括IP五元组或以太报文头信息地址。
当用于实现第一网元的功能时,关于通信装置130所能实现的其他功能,可参考图8所示的实施例或图9所示的实施例的相关介绍,不多赘述。
在一个简单的实施例中,本领域的技术人员可以想到通信装置130可以采用图7所示的形式。比如,图7中的处理器501可以通过调用存储器503中存储的计算机执行指令,使得通信装置130执行上述方法实施例中所述的方法。
示例性的,图13中的收发模块1301和处理模块1302的功能/实现过程可以通过图7中的处理器501调用存储器503中存储的计算机执行指令来实现。或者,图13中的处理模块1302的功能/实现过程可以通过图7中的处理器501调用存储器503中存储的计算机执行指令来实现,图13中的收发模块1301的功能/实现过程可以通过图7中的通信接口504来实现。
比如,以采用集成的方式划分各个功能模块的情况下,图14示出了一种通信装置140的结构示意图。通信装置140包括处理模块1401和收发模块1402。处理模块1401,也可以称为处理单元用于执行除了收发操作之外的操作,例如可以是处理电路或者处理器等。收发模块1402,也可以称为收发单元用于执行收发操作,例如可以是收发电路,收发机,收发器或者通信接口等。
在一些实施例中,该通信装置140还可以包括存储模块(图14中未示出),用于存储程序指令和数据。
示例性地,通信装置140用于实现第一网元/AF网元的功能。通信装置140例如为图10所示的实施例所述的第一网元,或者,通信装置140例如为图12所示的实施例所述的AF网元。
其中,处理模块1401,用于对业务流的服务质量信息进行分解,得到初始服务质量信息。业务流为端到端业务流,其中,初始服务质量信息包括上行初始服务质量信息或下行初始服务质量信息。例如,处理模块1401可以用于执行S1002或S1201。
收发模块1402,用于发送第四请求消息。其中,第四请求消息包括第一终端的地址、初始服务质量信息和第二事件指示信息,第二事件指示信息指示针对平均时延的监控,以及针对报文时延预算的服务质量通知监控,其中,当初始服务信息包括上行初始服务质量信息时,第一终端为业务流的入口终端,当初始服务信息包括下行初始服务质量信息时,第一终端为业务流的出口终端。例如,收发模块1402可以用于执行S1003或S1202。
收发模块1402,还用于接收针对第四请求消息的第三通知信息,若初始服务质量信息包括上行初始服务质量信息,则第三通知信息包括业务流上行方向的平均时延,或者,第三通知信息包括业务流上行方向的平均时延和业务流上行方向的报文时延预算不再满足的指示信息,或者,若初始服务质量信息包括下行初始服务质量信息,则第三通知信息包括业务流下行方向的平均时延,或者,第三通知信息包括业务流下行方向的平均时延和业务流下行方向的报文时延预算不再满足的指示信息。例如,收发模块1402可以用于执行上述S1004或上述S1205。
处理模块1401,还用于根据第三通知信息调整初始服务质量信息,得到目标服务质量信息,目标服务质量信息包括上行目标服务质量信息和下行目标服务质量信息。例如,处理模块1401可以用于执行S1005或S1206。
在一种可能的实现方式中,第四请求消息还包括本地交换指示信息,本地切换指示信息用于指示业务流采用本地交换或跨用户面功能网元交换方式进行传输。
在一种可能的实现方式中,收发模块1402,还用于接收来自应用功能网元的第五请求消息,第五请求消息包括业务流的类型信息、业务流的服务质量信息和第二事件指示信息,业务流的类型信息指示业务流为端到端业务流。
在一种可能的实现方式中,业务流的服务质量信息包括业务流的时延要求;若初始服务质量信息为上行初始服务质量信息,则上行初始服务质量信息包括业务流上行方向的时延,业务流上行方向的时延是根据第一预设规则和业务流的时延要求得到的;或者,若初始服务质量信息为下行初始服务质量信息,则下行初始服务质量信息包括业务流下行方向的时延,业务流下行方向的时延是根据第二预设规则和业务流的时延要求得到的。
在一种可能的实现方式中,业务流的服务质量信息还包括业务流的报文到达时间;上行初始服务质量信息还包括业务流上行方向的报文到达时间,业务流上行方向的报文到达时间与业务流的报文到达时间相同。
当用于实现第一网元的功能时,关于通信装置140所能实现的其他功能,可参考图10所示的实施例的相关介绍,不多赘述。
当用于实现AF网元的功能时,关于通信装置140所能实现的其他功能,可参考图12所示的实施例的相关介绍,不多赘述。
在一个简单的实施例中,本领域的技术人员可以想到通信装置140可以采用图7所示的形式。比如,图7中的处理器501可以通过调用存储器503中存储的计算机执行指令,使得通信装置140执行上述方法实施例中所述的方法。
示例性的,图14中的处理模块1401和收发模块1402的功能/实现过程可以通过图7中的处理器501调用存储器503中存储的计算机执行指令来实现。或者,图14中的处理模块1401的功能/实现过程可以通过图7中的处理器501调用存储器503中存储的计算机执行指令来实现,图14中的收发模块1402的功能/实现过程可以通过图7中的通信接口504来实现。
可以理解的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片系统,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器执行存储器中的计算机程序或指令时,使得上述任一方法实施例中的方法被执行。在一种可能的实现方式 中,该芯片系统还包括存储器。可选的,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
可选的,本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机可读存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的通信装置的内部存储单元,例如通信装置的硬盘或内存。上述计算机可读存储介质也可以是上述通信装置的外部存储设备,例如上述通信装置上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述通信装置的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述通信装置所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
可选的,本申请实施例还提供了一种计算机程序产品。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机程序产品中,该程序在执行时,可包括如上述各方法实施例的流程。
可选的,本申请实施例还提供了一种计算机指令。上述方法实施例中的全部或者部分流程可以由计算机指令来指令相关的硬件(如计算机、处理器、接入网设备、移动性管理网元或会话管理网元等)完成。该程序可被存储于上述计算机可读存储介质中或上述计算机程序产品中。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收来自应用功能网元的第一请求消息,所述第一请求消息包括业务流的类型信息、目标终端集合的信息和所述业务流的服务质量信息;
    在所述类型信息指示所述业务流为端到端的业务流的情况下,根据所述目标终端集合的信息获取服务质量分解信息,所述服务质量分解信息包括入口终端的接入信息以及出口终端的接入信息;
    根据所述服务质量分解信息,对所述业务流的服务质量信息进行分解,得到上行服务质量信息和下行服务质量信息;
    触发网络根据所述上行服务质量信息配置所述入口终端的会话,以及根据所述下行服务质量信息配置所述出口终端的会话;其中,所述入口终端的会话中包括用于传输所述业务流的第一服务质量流,所述出口终端的会话中包括用于传输所述业务流的第二服务质量流。
  2. 根据权利要求1所述的方法,其特征在于,所述触发网络根据所述上行服务质量信息配置所述入口终端的会话,以及根据所述下行服务质量信息配置所述出口终端的会话,包括:
    发送第二请求消息,所述第二请求消息包括所述入口终端的地址和所述上行服务质量信息;以及
    发送第三请求消息,所述第三请求消息包括所述出口终端的地址和所述下行服务质量信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第二请求消息和所述第三请求消息还包括本地交换指示信息,所述本地交换指示信息用于指示所述业务流采用本地交换或跨用户面功能网元交换的方式进行传输。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述入口终端的接入信息包括:所述入口终端的位置信息和所述入口终端的会话对应的锚点用户面功能网元的标识;以及,
    所述出口终端的接入信息包括:所述出口终端的位置信息和所述出口终端的会话对应的锚点用户面功能网元的标识。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,
    所述业务流的服务质量信息包括所述业务流的时延要求;
    所述上行服务质量信息包括所述业务流上行方向的时延;
    所述下行服务质量信息包括所述业务流下行方向的时延;
    且所述业务流上行方向的时延与所述业务流下行方向的时延之和小于或等于所述业务流的时延要求。
  6. 根据权利要求5所述的方法,其特征在于,
    所述业务流的服务质量信息包括所述业务流的报文到达时间;
    所述上行服务质量信息包括所述业务流上行方向的报文到达时间,所述业务流上行方向的报文到达时间与所述业务流的报文到达时间相同;
    所述下行服务质量信息包括所述业务流下行方向的报文到达时间,所述业务流下 行方向的报文到达时间由所述业务流上行方向的报文到达时间以及所述业务流上行方向的时延之和确定。
  7. 根据权利要求4所述的方法,其特征在于,所述服务质量分解信息还包括所述入口终端的会话对应的锚点用户面功能网元和所述出口终端的会话对应的锚点用户面功能网元之间的报文传输时间。
  8. 根据权利要求7所述的方法,其特征在于,
    所述业务流的服务质量信息包括所述业务流的时延要求;
    所述上行服务质量信息包括所述业务流上行方向的时延;
    所述下行服务质量信息包括所述业务流下行方向的时延;
    所述业务流上行方向的时延、所述业务流下行方向的时延以及所述报文传输时间之和小于或等于所述业务流的时延要求。
  9. 根据权利要求8所述的方法,其特征在于,
    所述业务流的服务质量信息包括所述业务流的报文到达时间;
    所述上行服务质量信息包括所述业务流上行方向的报文到达时间,所述业务流上行方向的报文到达时间与所述业务流的报文到达时间相同;
    所述下行服务质量信息包括所述业务流下行方向的报文到达时间,所述业务流下行方向的报文到达时间由所述业务流上行方向的报文到达时间、所述业务流上行方向的时延以及所述报文传输时间之和确定。
  10. 根据权利要求2-9中任一项所述的方法,其特征在于,
    所述第一请求消息还包括第一事件指示信息,所述第一事件指示信息指示以下至少一项:针对平均时延的监控,针对报文时延预算的服务质量通知监控,针对保证比特速率的服务质量通知监控或针对报文出错率的服务质量通知监控;
    所述第二请求消息还包括所述第一事件指示信息;
    所述第三请求消息还包括所述第一事件指示信息。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    接收针对所述第二请求消息的第一通知信息,所述第一通知信息包括以下至少一项:所述业务流上行方向的平均时延,所述业务流上行方向的报文时延预算不再满足的指示信息,所述业务流上行方向的保证比特速率不再满足的指示信息或所述业务流上行方向的报文出错率不再满足的指示信息;
    接收针对所述第三请求消息的第二通知信息,所述第二通知信息包括以下至少一项:所述业务流下行方向的平均时延,所述业务流下行方向的报文时延预算不再满足的指示信息,所述业务流下行方向的保证比特速率不再满足的指示信息或所述业务流下行方向的报文出错率不再满足的指示信息;
    根据所述第一通知信息调整所述上行服务质量信息;或者,根据所述第二通知信息调整所述下行服务质量信息;或者,根据所述第一通知信息和所述第二通知信息调整所述上行服务质量信息和所述下行服务质量信息。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述第一请求消息还包括所述业务流的流信息,所述业务流的流信息包括IP五元组或以太报文头信息地址。
  13. 根据权利要求2-12中任一项所述的方法,其特征在于,
    所述第二请求消息和所述第三请求消息还包括所述业务流的流信息,所述业务流的流信息包括IP五元组或以太报文头信息地址。
  14. 一种通信方法,其特征在于,所述方法包括:
    对业务流的服务质量信息进行分解,得到初始服务质量信息,所述业务流为端到端业务流,其中,所述初始服务质量信息包括上行初始服务质量信息或下行初始服务质量信息;
    发送第四请求消息,所述第四请求消息包括第一终端的地址、所述初始服务质量信息和第二事件指示信息,所述第二事件指示信息指示超高可靠低时延通信的服务质量监控,或针对报文时延预算的服务质量通知监控,其中,当所述初始服务信息包括上行初始服务质量信息时,所述第一终端为所述业务流的入口终端,当所述初始服务信息包括下行初始服务质量信息时,所述第一终端为所述业务流的出口终端;
    接收针对所述第四请求消息的第三通知信息,若所述初始服务质量信息包括上行初始服务质量信息,则所述第三通知信息包括所述业务流上行方向的平均时延或所述业务流上行方向的报文时延预算不再满足的指示信息,或者,若所述初始服务质量信息包括下行初始服务质量信息,则所述第三通知信息包括所述业务流下行方向的平均时延或所述业务流下行方向的报文时延预算不再满足的指示信息;
    根据所述第三通知信息调整所述初始服务质量信息,得到目标服务质量信息,所述目标服务质量信息包括上行目标服务质量信息和下行目标服务质量信息。
  15. 根据权利要求14所述的方法,其特征在于,所述第四请求消息还包括本地交换指示信息,所述本地切换指示信息用于指示所述业务流采用本地交换或跨用户面功能网元交换方式进行传输。
  16. 根据权利要求14或15所述的方法,其特征在于,所述对业务流的服务质量信息进行分解,得到初始服务质量信息之前,所述方法还包括:
    接收来自应用功能网元的第五请求消息,所述第五请求消息包括业务流的类型信息、所述业务流的服务质量信息和所述第二事件指示信息,业务流的类型信息指示所述业务流为端到端业务流。
  17. 根据权利要求14-16中任一项所述的方法,其特征在于,
    所述业务流的服务质量信息包括所述业务流的时延要求;
    若所述初始服务质量信息为上行初始服务质量信息,则所述上行初始服务质量信息包括所述业务流上行方向的时延,所述业务流上行方向的时延是根据第一预设规则和所述业务流的时延要求得到的;或者,
    若所述初始服务质量信息为下行初始服务质量信息,则所述下行初始服务质量信息包括所述业务流下行方向的时延,所述业务流下行方向的时延是根据第二预设规则和所述业务流的时延要求得到的。
  18. 根据权利要求17所述的方法,其特征在于,
    所述业务流的服务质量信息还包括所述业务流的报文到达时间;
    所述上行初始服务质量信息还包括所述业务流上行方向的报文到达时间,所述业务流上行方向的报文到达时间与所述业务流的报文到达时间相同。
  19. 一种通信装置,其特征在于,所述通信装置包括:收发模块和处理模块;
    所述收发模块,用于接收来自应用功能网元的第一请求消息,所述第一请求消息包括业务流的类型信息、目标终端集合的信息和所述业务流的服务质量信息;
    所述处理模块,用于在所述类型信息指示所述业务流为端到端的业务流的情况下,根据所述目标终端集合的信息获取服务质量分解信息,所述服务质量分解信息包括入口终端的接入信息以及出口终端的接入信息;
    所述处理模块,还用于根据所述服务质量分解信息,对所述业务流的服务质量信息进行分解,得到上行服务质量信息和下行服务质量信息;
    所述处理模块,还用于触发网络根据所述上行服务质量信息配置所述入口终端的会话,以及根据所述下行服务质量信息配置所述出口终端的会话;其中,所述入口终端的会话中包括用于传输所述业务流的第一服务质量流,所述出口终端的会话中包括用于传输所述业务流的第二服务质量流。
  20. 根据权利要求19所述的通信装置,其特征在于,
    所述处理模块,具体用于通过所述收发模块发送第二请求消息,所述第二请求消息包括所述入口终端的地址和所述上行服务质量信息;以及
    所述处理模块,还具体用于通过所述收发模块发送第三请求消息,所述第三请求消息包括所述出口终端的地址和所述下行服务质量信息。
  21. 根据权利要求20所述的通信装置,其特征在于,所述第二请求消息和所述第三请求消息还包括本地交换指示信息,所述本地交换指示信息用于指示所述业务流采用本地交换或跨用户面功能网元交换的方式进行传输。
  22. 根据权利要求19-21中任一项所述的通信装置,其特征在于,所述入口终端的接入信息包括:所述入口终端的位置信息和所述入口终端的会话对应的锚点用户面功能网元的标识;以及,
    所述出口终端的接入信息包括:所述出口终端的位置信息和所述出口终端的会话对应的锚点用户面功能网元的标识。
  23. 根据权利要求19-22中任一项所述的通信装置,其特征在于,
    所述业务流的服务质量信息包括所述业务流的时延要求;
    所述上行服务质量信息包括所述业务流上行方向的时延;
    所述下行服务质量信息包括所述业务流下行方向的时延;
    且所述业务流上行方向的时延与所述业务流下行方向的时延之和小于或等于所述业务流的时延要求。
  24. 根据权利要求23所述的通信装置,其特征在于,
    所述业务流的服务质量信息包括所述业务流的报文到达时间;
    所述上行服务质量信息包括所述业务流上行方向的报文到达时间,所述业务流上行方向的报文到达时间与所述业务流的报文到达时间相同;
    所述下行服务质量信息包括所述业务流下行方向的报文到达时间,所述业务流下行方向的报文到达时间由所述业务流上行方向的报文到达时间以及所述业务流上行方向的时延之和确定。
  25. 根据权利要求22所述的通信装置,其特征在于,所述服务质量分解信息还包括所述入口终端的会话对应的锚点用户面功能网元和所述出口终端的会话对应的锚点 用户面功能网元之间的报文传输时间。
  26. 根据权利要求25所述的通信装置,其特征在于,
    所述业务流的服务质量信息包括所述业务流的时延要求;
    所述上行服务质量信息包括所述业务流上行方向的时延;
    所述下行服务质量信息包括所述业务流下行方向的时延;
    所述业务流上行方向的时延、所述业务流下行方向的时延以及所述报文传输时间之和小于或等于所述业务流的时延要求。
  27. 根据权利要求26所述的通信装置,其特征在于,
    所述业务流的服务质量信息包括所述业务流的报文到达时间;
    所述上行服务质量信息包括所述业务流上行方向的报文到达时间,所述业务流上行方向的报文到达时间与所述业务流的报文到达时间相同;
    所述下行服务质量信息包括所述业务流下行方向的报文到达时间,所述业务流下行方向的报文到达时间由所述业务流上行方向的报文到达时间、所述业务流上行方向的时延以及所述报文传输时间之和确定。
  28. 根据权利要求20-27中任一项所述的通信装置,其特征在于,
    所述第一请求消息还包括第一事件指示信息,所述第一事件指示信息指示以下至少一项:针对平均时延的监控,针对报文时延预算的服务质量通知监控,针对保证比特速率的服务质量通知监控或针对报文出错率的服务质量通知监控;
    所述第二请求消息还包括所述第一事件指示信息;
    所述第三请求消息还包括所述第一事件指示信息。
  29. 根据权利要求28所述的通信装置,其特征在于,
    所述收发模块,还用于接收针对所述第二请求消息的第一通知信息,所述第一通知信息包括以下至少一项:所述业务流上行方向的平均时延,所述业务流上行方向的报文时延预算不再满足的指示信息,所述业务流上行方向的保证比特速率不再满足的指示信息或所述业务流上行方向的报文出错率不再满足的指示信息;
    所述收发模块,还用于接收针对所述第三请求消息的第二通知信息,所述第二通知信息包括以下至少一项:所述业务流下行方向的平均时延,所述业务流下行方向的报文时延预算不再满足的指示信息,所述业务流下行方向的保证比特速率不再满足的指示信息或所述业务流下行方向的报文出错率不再满足的指示信息;
    所述处理模块,还用于根据所述第一通知信息调整所述上行服务质量信息;或者,根据所述第二通知信息调整所述下行服务质量信息;或者,根据所述第一通知信息和所述第二通知信息调整所述上行服务质量信息和所述下行服务质量信息。
  30. 根据权利要求19-29中任一项所述的通信装置,其特征在于,所述第一请求消息还包括所述业务流的流信息,所述业务流的流信息包括IP五元组或以太报文头信息地址。
  31. 根据权利要求20-30中任一项所述的通信装置,其特征在于,
    所述第二请求消息和所述第三请求消息还包括所述业务流的流信息,所述业务流的流信息包括IP五元组或以太报文头信息地址。
  32. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于对业务流的服务质量信息进行分解,得到初始服务质量信息,所述业务流为端到端业务流,其中,所述初始服务质量信息包括上行初始服务质量信息或下行初始服务质量信息;
    所述收发模块,用于发送第四请求消息,所述第四请求消息包括第一终端的地址、所述初始服务质量信息和第二事件指示信息,所述第二事件指示信息指示超高可靠低时延通信的服务质量监控,或针对报文时延预算的服务质量通知监控,其中,当所述初始服务信息包括上行初始服务质量信息时,所述第一终端为所述业务流的入口终端,当所述初始服务信息包括下行初始服务质量信息时,所述第一终端为所述业务流的出口终端;
    所述收发模块,还用于接收针对所述第四请求消息的第三通知信息,若所述初始服务质量信息包括上行初始服务质量信息,则所述第三通知信息包括所述业务流上行方向的平均时延或所述业务流上行方向的报文时延预算不再满足的指示信息,或者,若所述初始服务质量信息包括下行初始服务质量信息,则所述第三通知信息包括所述业务流下行方向的平均时延或所述业务流下行方向的报文时延预算不再满足的指示信息;
    所述处理模块,还用于根据所述第三通知信息调整所述初始服务质量信息,得到目标服务质量信息,所述目标服务质量信息包括上行目标服务质量信息和下行目标服务质量信息。
  33. 根据权利要求32所述的通信装置,其特征在于,所述第四请求消息还包括本地交换指示信息,所述本地切换指示信息用于指示所述业务流采用本地交换或跨用户面功能网元交换方式进行传输。
  34. 根据权利要求32或33所述的通信装置,其特征在于,
    所述收发模块,还用于接收来自应用功能网元的第五请求消息,所述第五请求消息包括业务流的类型信息、所述业务流的服务质量信息和所述第二事件指示信息,业务流的类型信息指示所述业务流为端到端业务流。
  35. 根据权利要求32-34中任一项所述的通信装置,其特征在于,
    所述业务流的服务质量信息包括所述业务流的时延要求;
    若所述初始服务质量信息为上行初始服务质量信息,则所述上行初始服务质量信息包括所述业务流上行方向的时延,所述业务流上行方向的时延是根据第一预设规则和所述业务流的时延要求得到的;或者,
    若所述初始服务质量信息为下行初始服务质量信息,则所述下行初始服务质量信息包括所述业务流下行方向的时延,所述业务流下行方向的时延是根据第二预设规则和所述业务流的时延要求得到的。
  36. 根据权利要求35所述的通信装置,其特征在于,
    所述业务流的服务质量信息还包括所述业务流的报文到达时间;
    所述上行初始服务质量信息还包括所述业务流上行方向的报文到达时间,所述业务流上行方向的报文到达时间与所述业务流的报文到达时间相同。
  37. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装 置执行如权利要求1至13中任一项所述的方法,或者执行如权利要求14至18中任一项所述的方法。
  38. 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至13中任一项所述的方法或者如权利要求14至18中任一项所述的方法。
  39. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现权利要求1至13中任一项所述的方法或者实现权利要求14至18中任一项所述的方法。
PCT/CN2023/090114 2022-04-29 2023-04-23 通信方法及装置 WO2023207855A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210475137.7A CN117042036A (zh) 2022-04-29 2022-04-29 通信方法及装置
CN202210475137.7 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023207855A1 true WO2023207855A1 (zh) 2023-11-02

Family

ID=88517730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090114 WO2023207855A1 (zh) 2022-04-29 2023-04-23 通信方法及装置

Country Status (2)

Country Link
CN (1) CN117042036A (zh)
WO (1) WO2023207855A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
US20190215729A1 (en) * 2018-03-15 2019-07-11 Intel Corporation Session description protocol mechanisms for signaling radio access network capabilities in multimedia telephony sessions
CN111770531A (zh) * 2019-04-01 2020-10-13 华为技术有限公司 获取数据包延迟参数的方法、系统和装置
CN114205878A (zh) * 2020-09-18 2022-03-18 华为技术有限公司 通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
US20190215729A1 (en) * 2018-03-15 2019-07-11 Intel Corporation Session description protocol mechanisms for signaling radio access network capabilities in multimedia telephony sessions
US20190373511A1 (en) * 2018-03-15 2019-12-05 Intel Corporation Session description protocol mechanisms for signaling radio access network capabilities in multimedia telephony sessions
CN111770531A (zh) * 2019-04-01 2020-10-13 华为技术有限公司 获取数据包延迟参数的方法、系统和装置
CN114205878A (zh) * 2020-09-18 2022-03-18 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN117042036A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
US11950127B2 (en) 5G system support for virtual TSN bridge management, QoS mapping and TSN Qbv scheduling
KR102667780B1 (ko) 사이드링크 통신방법, 장치 및 저장매체
WO2020073919A1 (zh) 报文传输方法及装置
WO2020224556A1 (zh) 一种路由规则的管理方法及通信装置
CN111200791B (zh) 群组通信方法、设备及系统
US11956157B2 (en) Activation of PDU session and QOS flows in 3GPP-based ethernet bridges
EP2378720B1 (en) Extranet networking method, system and device for multicast virtual private network
WO2022048505A1 (zh) 多流关联传输的方法、装置及系统
CN109478179A (zh) IoT设备连接、发现和联网
WO2013166950A1 (zh) 宽带数字集群业务的实现方法及集群调度管理中心
WO2021089018A1 (zh) 一种通信方法、装置及系统
CN112105088A (zh) 多播通信方法、装置及系统
US20230019215A1 (en) TSC-5G QoS MAPPING WITH CONSIDERATION OF ASSISTANCE TRAFFIC INFORMATION AND PCC RULES FOR TSC TRAFFIC MAPPING AND 5G QoS FLOWS BINDING
WO2013082941A1 (zh) 一种动态重组业务的实现方法及宽带数字集群系统
US20190380063A1 (en) Method of selecting user plane gateway and device of selecting user plane gateway
WO2021037271A1 (zh) 通信方法、设备及系统
WO2017070838A1 (zh) 资源调度方法、基站、调度器、节目源服务器和系统
WO2023207855A1 (zh) 通信方法及装置
WO2021174376A1 (zh) 一种通信方法及装置
WO2021057342A1 (zh) 一种网络切片的计费方法及装置
Liu et al. Software defined network based 5G and time-sensitive network fusion for power services with ultra-low latency requirements
CN112511403A (zh) 一种虚拟局域网通信方法、设备及存储介质
WO2021062826A1 (zh) 数据传输方法、装置、系统和存储介质
CN113938985A (zh) 一种通信方法及装置
WO2022222666A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795288

Country of ref document: EP

Kind code of ref document: A1