WO2023207696A1 - 一种终端定位方法、终端、基站及lmf - Google Patents

一种终端定位方法、终端、基站及lmf Download PDF

Info

Publication number
WO2023207696A1
WO2023207696A1 PCT/CN2023/089168 CN2023089168W WO2023207696A1 WO 2023207696 A1 WO2023207696 A1 WO 2023207696A1 CN 2023089168 W CN2023089168 W CN 2023089168W WO 2023207696 A1 WO2023207696 A1 WO 2023207696A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
afa
ata
reference signal
time range
Prior art date
Application number
PCT/CN2023/089168
Other languages
English (en)
French (fr)
Inventor
任斌
达人
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023207696A1 publication Critical patent/WO2023207696A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a terminal positioning method, terminal, base station and LMF.
  • the crystal oscillators used in 5G base stations and terminals have frequency deviations. Therefore, the terminals will perform automatic timing deviation control (Autonomous Time Adjustment, ATA) and automatic frequency deviation control (Autonomous Frequency Adjustment, AFA) operations by default.
  • ATA Automatic Time Adjustment
  • AFA Automatic Frequency Adjustment
  • the Vehicle to Everything-UE V2X-UE will calculate the reception timing and transmission timing based on the received synchronization block (Synchronization Signal/PBCH Block, SSB).
  • SSB Synchronization Signal/PBCH Block
  • the terminal's ATA and AFA operations will affect the terminal's positioning accuracy.
  • Embodiments of the present disclosure provide a terminal positioning method, terminal, base station and LMF, which can make the location management function entity (Location Management Function, LMF) based on ATA and/or AFA
  • LMF Location Management Function
  • the time information is used to jointly process the positioning measurements to improve the terminal positioning accuracy.
  • embodiments of the present disclosure provide a terminal positioning method, which is applied to a terminal.
  • the method includes:
  • the notification signaling includes instruction information instructing the terminal to perform ATA and/or AFA;
  • the terminal performs ATA and/or AFA according to the notification signaling sent by the network side device, and sends the time information for performing ATA and/or AFA to the LMF.
  • the LMF can perform ATA and/or AFA according to the terminal
  • Each positioning measurement quantity obtained within the time range of two consecutive ATA and/or AFA operations is used to determine the position of the terminal, thereby improving the accuracy of the terminal positioning.
  • the method before performing ATA and/or AFA according to the notification signaling sent by the network side device, the method further includes:
  • the indication information contained in the notification signaling includes VAW configuration parameters; and performing ATA and/or AFA according to the notification signaling sent by the network side device includes:
  • the signal processing time range refers to the positioning reference signal. Processing time frame.
  • the indication information contained in the notification signaling also includes a priority type parameter; the priority type parameter is used to indicate the priority relationship between the VAW and the positioning reference signal; the network side Notification signaling sent by the device for ATA and/or AFA also includes:
  • the time range of the VAW indicated by the VAW configuration parameter is different from the signal processing time range, If the surroundings partially overlap or completely overlap, ATA and/or AFA will be performed within the time range where the VAW is located based on the priority relationship between the VAW and the positioning reference signal.
  • performing ATA and/or AFA within the time range of the VAW based on the priority relationship between the VAW and the positioning reference signal includes:
  • ATA and/or AFA are performed at the first moment, and the first moment is any moment within the time range where the VAW is located;
  • ATA and/or AFA will be performed at any time within the time range where the VAW is located except for the second time; the second time is when the terminal pair The moment at which the positioning reference signal is processed.
  • the indication information contained in the notification signaling includes predefined criteria; the predefined criteria instructs the terminal not to perform ATA and/or AFA within the signal processing time range. After the reference signal is processed, ATA and/or AFA are performed; the signal processing time range refers to the time range for processing the positioning reference signal.
  • the positioning reference signal is a positioning reference signal (Positioning Reference Signal, DL PRS), and the signal processing time range is a measurement gap determined according to the resource configuration parameters of the DL PRS sent by the LMF ( Measurement Gap, MG) or the time range of the downlink positioning reference signal execution window (PRS Processing Window, PPW); the processing of the positioning reference signal refers to receiving the DL PRS sent by the base station and performing measurements; or,
  • the positioning reference signal is an uplink positioning reference signal (Sounding Reference Signal for Positioning, UL SRS-Pos), and the signal processing time range is determined according to the resource configuration parameters of the UL SRS-Pos sent by the base station; the positioning reference The signal is processed by sending UL SRS-Pos to the base station; or,
  • the positioning reference signal is a direct link positioning reference signal SL PRS
  • the terminal is a receiving terminal
  • the signal processing time range is determined according to the time range of the MG or PPW indicated in the resource configuration parameter of the SL PRS sent by the LMF.
  • the processing of the positioning reference signal refers to receiving the SL PRS sent by the sending terminal and measuring it; or,
  • the positioning reference signal is SL PRS
  • the terminal is a sending terminal
  • the signal processing time The range is determined based on the resource configuration parameters of the SL PRS sent by the base station; the processing of the positioning reference signal means sending the SL PRS to the receiving terminal.
  • the notification signaling is Long Term Evolution Positioning Protocol (LTE Positioning Protocol, LPP) signaling sent by the LMF; or,
  • LTE Positioning Protocol LPP
  • the notification signaling is RRC (Radio Resource Control, Radio Resource Control) signaling, MAC CE (Media Access Control Control Element, Media Access Control Layer Control Unit) signaling or DCI signaling (Downlink Control Information) sent by the base station. , downlink control information).
  • RRC Radio Resource Control, Radio Resource Control
  • MAC CE Media Access Control Control Element, Media Access Control Layer Control Unit
  • DCI Downlink Control Information
  • embodiments of the present disclosure provide a terminal positioning method, which is applied to a base station.
  • the method includes:
  • the terminal capability report indicates that the first terminal supports performing ATA and/or AFA within the effective adjustment time window VAW, or supports performing the ATA and/or AFA according to predefined criteria. or AFA;
  • the notification signaling is used to instruct the first terminal to perform ATA and/or AFA.
  • the notification signaling includes configuration parameters and priority type parameters of the VAW; the priority type parameters are used to indicate the priority relationship between the VAW and the DL PRS; or,
  • the notification signaling includes predefined criteria, the predefined criteria instructs the first terminal not to perform ATA and/or AFA within the signal processing time range, and after processing the positioning reference signal, perform ATA and/or AFA.
  • the positioning reference signal is the downlink positioning reference signal DL PRS, the uplink positioning reference signal UL SRS-Pos or the direct link positioning reference signal SL PRS;
  • the signal processing time range refers to the time range for processing the positioning reference signal.
  • the base station includes a serving base station and a neighboring base station.
  • the notification signaling is radio resource control RRC signaling, media access control layer control unit MAC CE signaling or downlink control information DCI signaling.
  • embodiments of the present disclosure provide a terminal positioning method, which is applied to the positioning management function entity LMF.
  • the method includes:
  • the location of the first terminal is determined.
  • determining the location of the first terminal based on the time information of the ATA and/or AFA includes:
  • the position of the first terminal is determined according to each positioning measurement quantity of the first terminal obtained within the time range; the positioning measurement quantity is obtained by measuring the positioning reference signal corresponding to the first terminal. .
  • the method before receiving the time information sent by the first terminal for the first terminal to perform ATA and/or AFA, the method further includes:
  • the terminal capability report indicates that the first terminal supports performing ATA and/or AFA within the effective adjustment time window VAW, or supports performing the ATA and/or AFA according to predefined criteria. or AFA;
  • the notification signaling is used to instruct the first terminal to perform ATA and/or AFA.
  • the notification signaling is LPP signaling.
  • the notification signaling includes configuration parameters and priority type parameters of the VAW; the priority type parameters are used to indicate the priority relationship between the VAW and the DL PRS; or,
  • the notification signaling includes predefined criteria, the predefined criteria instructs the first terminal not to perform ATA and/or AFA within the signal processing time range, and after processing the positioning reference signal, perform ATA and/or AFA.
  • the signal processing time range refers to the time range for processing the positioning reference signal.
  • the positioning reference signal is a downlink positioning reference signal DL PRS
  • the positioning measurement quantity is a reference signal time difference (RSTD) sent by the first terminal, terminal transceiver Time difference, downlink arrival phase, that is, carrier phase measurement quantity POA (Phase Of Arrival, POA), or downlink carrier phase measurement difference value (Phase Difference Of Arrival, PDOA); or,
  • RSTD reference signal time difference
  • the positioning reference signal is the uplink positioning reference signal UL SRS-Pos, and the positioning measurement quantity is the uplink relative time of arrival (Relative Time Of Arrival, RTOA) sent by the base station, the base station sending and receiving time difference, the uplink POA, or the uplink PDOA; or,
  • RTOA Relative Time Of Arrival
  • the positioning reference signal is a direct link positioning reference signal SL PRS
  • the first terminal is a receiving terminal
  • the positioning measurement quantity is the arrival time difference TDOA sent by the first terminal, the sending and receiving time difference of the receiving terminal, SL POA, or SL PDOA; or,
  • the positioning reference signal is SL PRS
  • the first terminal is a sending terminal
  • the positioning measurement quantity is the sending and receiving time difference of the first terminal.
  • the method when the positioning reference signal is DL PRS, the method further includes:
  • the method further includes:
  • the quality information includes signal-to-noise ratio (SNR), signal-to-interference and noise ratio (SINR) or measurement error. variance.
  • SNR signal-to-noise ratio
  • SINR signal-to-interference and noise ratio
  • SINR signal-to-interference and noise ratio
  • an embodiment of the present disclosure provides a terminal, where the terminal includes:
  • the adjustment unit performs ATA and/or AFA according to the notification signaling sent by the network side device;
  • the notification signaling includes instruction information instructing the terminal to perform ATA and/or AFA;
  • the first sending unit is configured to send time information for the terminal to perform ATA and/or AFA; the time information for ATA and/or AFA is used to determine the location of the terminal.
  • an embodiment of the present disclosure provides a base station, where the base station includes:
  • the first receiving unit receives a terminal capability report sent by the first terminal; the terminal capability report It means that the first terminal supports performing ATA and/or AFA within the effective adjustment time window VAW, or supports performing the ATA and/or AFA according to predefined criteria;
  • the second sending unit sends notification signaling; the notification signaling is used to instruct the first terminal to perform ATA and/or AFA.
  • embodiments of the present disclosure provide a location management function entity LMF, where the LMF includes:
  • the second receiving unit receives the time information of the first terminal performing ATA and/or AFA sent by the first terminal;
  • the determining unit determines the location of the first terminal based on the time information of the ATA and/or AFA.
  • an embodiment of the present disclosure provides a terminal, where the terminal includes: a memory, a transceiver, and a processor;
  • the memory is used to store computer instructions
  • the transceiver is used to send and receive data under the control of the processor
  • the processor is used to read the computer program in the memory and perform the following steps:
  • the notification signaling includes instruction information instructing the terminal to perform ATA and/or AFA;
  • the transceiver is controlled to send time information for the terminal to perform ATA and/or AFA; the time information for ATA and/or AFA is used to determine the location of the terminal.
  • the transceiver can also be used for:
  • the indication information contained in the notification signaling includes VAW configuration parameters; the processor is specifically configured to:
  • the signal processing time range refers to the time range for processing the positioning reference signal.
  • the indication information contained in the notification signaling also includes a priority type parameter; the priority type parameter is used to indicate the priority relationship between the VAW and the positioning reference signal; the processor, Also available for:
  • ATA and/or AFA will be performed within the time range of the VAW according to the priority relationship between the VAW and the positioning reference signal. .
  • the processor is specifically configured to:
  • ATA and/or AFA are performed at the first moment, which is any moment within the time range where the VAW is located; the first moment The positioning reference signal is discarded;
  • ATA and/or AFA will be performed at any time within the time range where the VAW is located except for the second time; the second time is when the terminal pair The moment at which the positioning reference signal is processed.
  • the indication information contained in the notification signaling includes predefined criteria; the predefined criteria instructs the terminal not to perform ATA and/or AFA within the signal processing time range. After the reference signal is processed, ATA and/or AFA are performed; the signal processing time range refers to the time range for processing the positioning reference signal.
  • the positioning reference signal is a downlink positioning reference signal DL PRS
  • the signal processing time range is a measurement gap MG or a downlink positioning reference signal determined according to the resource configuration parameters of the DL PRS sent by the LMF.
  • the time range of the execution window PPW; the processing of the positioning reference signal refers to receiving the DL PRS sent by the base station and measuring it; or,
  • the positioning reference signal is the uplink positioning reference signal UL SRS-Pos.
  • the signal processing time range is determined according to the resource configuration parameters of the UL SRS-Pos sent by the base station; the processing of the positioning reference signal means sending UL to the base station. SRS-Pos; or,
  • the positioning reference signal is a direct link positioning reference signal SL PRS, and the terminal is a receiving terminal.
  • the signal processing time range is determined based on the time range of the MG or PPW indicated in the resource configuration parameters of the SL PRS sent by the LMF; the processing of the positioning reference signal refers to receiving the SL PRS sent by the sending terminal, and take measurements; or,
  • the positioning reference signal is SL PRS
  • the terminal is a sending terminal
  • the signal processing time range is determined according to the resource configuration parameters of the SL PRS sent by the base station; the processing of the positioning reference signal means sending SL to the receiving terminal. PRS.
  • the notification signaling is Long Term Evolution Positioning Protocol LPP signaling sent by the LMF; or,
  • the notification signaling is radio resource control RRC signaling, media access control layer control unit MAC CE signaling or downlink control information DCI signaling sent by the base station.
  • embodiments of the present disclosure provide a base station, which includes: a memory, a transceiver, and a processor;
  • the memory is used to store computer instructions
  • the transceiver is configured to receive a terminal capability report sent by the first terminal under the control of the processor; the terminal capability report indicates that the first terminal supports ATA and/or operations within the effective adjustment time window VAW. or AFA, alternatively, support the performance of said ATA and/or AFA according to predefined criteria;
  • the notification signaling is used to instruct the first terminal to perform ATA and/or AFA.
  • the notification signaling includes configuration parameters and priority type parameters of the VAW; the priority type parameters are used to indicate the priority relationship between the VAW and the DL PRS; or,
  • the notification signaling includes predefined criteria, the predefined criteria instructs the first terminal not to perform ATA and/or AFA within the signal processing time range, and after processing the positioning reference signal, perform ATA and/or AFA.
  • the positioning reference signal is the downlink positioning reference signal DL PRS, the uplink positioning reference signal UL SRS-Pos or the direct link positioning reference signal SL PRS;
  • the signal processing time range refers to the time range for processing the positioning reference signal.
  • the base station includes a serving base station and a neighboring base station.
  • the notification signaling is radio resource control RRC signaling, media Access control layer control unit MAC CE signaling or downlink control information DCI signaling.
  • embodiments of the present disclosure provide a location management function entity LMF, where the LMF includes: a memory, a transceiver, and a processor;
  • the memory is used to store computer instructions
  • the transceiver is used to send and receive data under the control of the processor
  • the processor is used to read the computer program in the memory and perform the following steps:
  • the location of the first terminal is determined.
  • the processor is specifically configured to:
  • the position of the first terminal is determined according to each positioning measurement quantity of the first terminal obtained within the time range; the positioning measurement quantity is obtained by measuring the positioning reference signal corresponding to the first terminal. .
  • the transceiver can also be used for:
  • the terminal capability report indicates that the first terminal supports performing ATA and/or AFA within the effective adjustment time window VAW, or supports performing the ATA and/or AFA according to predefined criteria. or AFA;
  • the notification signaling is used to instruct the first terminal to perform ATA and/or AFA.
  • the notification signaling is Long Term Evolution Positioning Protocol (LPP) signaling.
  • LPP Long Term Evolution Positioning Protocol
  • the notification signaling includes configuration parameters and priority type parameters of the VAW; the priority type parameters are used to indicate the priority relationship between the VAW and the DL PRS; or,
  • the notification signaling includes predefined criteria, the predefined criteria instructs the first terminal not to perform ATA and/or AFA within the signal processing time range, and after processing the positioning reference signal, perform ATA and/or AFA.
  • the signal processing time range refers to the processing time of the positioning reference signal. time limit.
  • the positioning reference signal is a downlink positioning reference signal DL PRS
  • the positioning measurement quantity is the reference signal time difference RSTD sent by the first terminal, the terminal transmission and reception time difference, and the downlink arrival carrier phase value.
  • POA or downlink carrier phase difference PDOA; or,
  • the positioning reference signal is the uplink positioning reference signal UL SRS-Pos, and the positioning measurement quantity is the uplink relative arrival time RTOA sent by the base station, the base station sending and receiving time difference, the uplink POA, or the uplink PDOA; or,
  • the positioning reference signal is a direct link positioning reference signal SL PRS
  • the first terminal is a receiving terminal
  • the positioning measurement quantity is the arrival time difference TDOA sent by the first terminal, the sending and receiving time difference of the receiving terminal, SL POA, or SL PDOA; or,
  • the positioning reference signal is SL PRS
  • the first terminal is a sending terminal
  • the positioning measurement quantity is the sending and receiving time difference of the first terminal.
  • the method when the positioning reference signal is DL PRS, the method further includes:
  • the method further includes:
  • the quality information includes signal-to-noise ratio SNR, signal-to-interference-to-noise ratio SINR, or variance of measurement errors.
  • inventions of the present disclosure provide a terminal positioning system.
  • the system includes a terminal, a base station and a positioning management function entity LMF.
  • the system is the terminal according to any one of the seventh aspects, and the base station is the The base station according to any one of the eight aspects; the LMF is the LMF described in the ninth aspect.
  • embodiments of the present disclosure provide a computer-readable storage medium, the storage medium
  • the mass stores computer instructions, which when executed by the processor implement the method described in any one of the first aspect, the second aspect or the third aspect.
  • Figure 1 is an application scenario diagram of the terminal positioning method applicable to the embodiment of the present disclosure
  • Figure 2 is a schematic interactive flow chart of a downlink positioning method provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram in which the time range of the VAW does not coincide with the time range of the MG or PPW provided by an embodiment of the present disclosure
  • Figure 4 is a schematic diagram in which the time range of the VAW partially overlaps with the time range of the MG or PPW provided by an embodiment of the present disclosure
  • Figure 5 is a schematic diagram of the relationship between the terminal performing ATA and/or AFA and the terminal calculating the terminal sending and receiving time difference in Multi-RTT positioning provided by an embodiment of the present disclosure
  • Figure 6 is a schematic interactive flow chart of an uplink positioning method provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram in which the time range of a VAW provided by an embodiment of the present disclosure does not coincide with the time range of the terminal sending UL SRS-Pos to the base station;
  • Figure 8 is a schematic interactive flow chart of a direct link positioning method provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic interactive flow chart of another direct link positioning method provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of the relationship between the terminal performing ATA and/or AFA and the terminal calculating the terminal sending and receiving time difference in another Multi-RTT positioning provided by an embodiment of the present disclosure
  • Figure 11 shows a sending terminal and a receiving terminal provided by an embodiment of the present disclosure for performing ATA and/or Schematic diagram of AFA
  • Figure 12 is a schematic flow chart of a terminal positioning method provided by an embodiment of the present disclosure.
  • Figure 13 is a schematic flowchart of a terminal positioning method provided by an embodiment of the present disclosure.
  • Figure 14 is a schematic flowchart of a terminal positioning method provided by an embodiment of the present disclosure.
  • Figure 15 is a structural block diagram of a terminal provided by an embodiment of the present disclosure.
  • Figure 16 is a structural block diagram of a base station provided by an embodiment of the present disclosure.
  • FIG. 17 is a structural block diagram of an LMF provided by an embodiment of the present disclosure.
  • Figure 18 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • Figure 19 is a schematic structural diagram of a base station provided by an embodiment of the present disclosure.
  • Figure 20 is a schematic structural diagram of an LMF provided by an embodiment of the present disclosure.
  • first and second in the embodiments of the present disclosure are used to distinguish similar objects, rather than describing a specific order or sequence.
  • “And/or” in the embodiment of the present disclosure describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone. these three situations.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • the network architecture and business scenarios described in the embodiments of the present disclosure are for the purpose of explaining the technical solutions of the embodiments of the present disclosure more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present disclosure.
  • Persons of ordinary skill in the art will know that as the network With the evolution of architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of the present disclosure are also applicable to similar technical problems.
  • the crystal oscillators used in 5G base stations and terminals have frequency deviations. Therefore, the terminals will perform ATA and AFA operations by default.
  • V2X-UE will adjust the reception timing and transmission timing based on the received SSB, or when switching from an in-coverage scenario to an out-of-coverage scenario, the V2X-UE will also perform ATA and/or AFA by default. .
  • the terminal's ATA and AFA operations will affect the terminal's positioning accuracy.
  • the terminal positioning method includes: the terminal performs ATA and/or AFA according to the notification signaling sent by the network side device; wherein the notification signaling includes instruction information instructing the terminal to perform ATA and/or AFA; the terminal sends the terminal to the LMF to perform ATA and/or AFA. /or AFA time information.
  • LMF can determine the position of the terminal based on each positioning measurement obtained within the time range of two consecutive ATA and/or AFA operations on the terminal, thereby improving the accuracy of the terminal positioning.
  • FIG. 1 is a schematic structural diagram of a terminal positioning system applicable to embodiments of the present disclosure.
  • the embodiments of the present disclosure are applied to a terminal positioning system.
  • the terminal positioning system includes at least one terminal 101, a base station 102 and an LMF 103.
  • the base station 102 can be a service base station that provides services for the terminal 101, or it can be connected to the terminal 101.
  • the distance threshold may be 50 meters or 100 meters, and this disclosure does not limit this.
  • the base station 102 or the LMF 103 can send notification signaling to the terminal 101.
  • the notification signaling includes instruction information instructing the terminal 101 to perform ATA and/or AFA; after receiving the notification signaling, the terminal 101 can Perform ATA and/or AFA operations according to the notification signaling, and send the time information for ATA and/or AFA to LMF103.
  • LMF103 can perform various positioning measurements within the time range of ATA and/or AFA based on the terminal 101's two consecutive times. quantity to determine the position of the terminal.
  • the terminal positioning method provided by this disclosure includes a downlink positioning method, an uplink positioning method and a direct link positioning method. Different positioning methods will be described in detail below through specific embodiments.
  • FIG. 2 shows an interactive flow chart of a downlink positioning method provided by an embodiment of the present disclosure.
  • the downlink positioning method is suitable for downlink positioning or Multi-RTT positioning. As shown in Figure 2, this method is explained by taking network side equipment and terminal a as an example. Terminal a refers to any terminal. Specifically, the method includes the following steps:
  • Step S201 Terminal a sends a terminal capability report to the network side device.
  • the network side device can be a base station or an LMF.
  • the base station can provide terminal a with
  • the serving base station that provides services may also be an adjacent base station of terminal a; wherein, the LMF may be an LMF connected to terminal a or the base station.
  • the terminal capability report may be used to characterize that terminal a supports performing ATA and/or AFA within the VAW; or, the terminal capability report may also be used to characterize that terminal a supports performing the ATA and/or AFA according to predefined criteria.
  • Step S202 The network side device sends notification signaling to terminal a.
  • the notification signaling when the network side device is a base station, can be RRC signaling, MAC CE signaling or DCI signaling sent by the base station; when the network side device is an LMF, the notification signaling can be LMF. LPP signaling sent.
  • the notification signaling contains instruction information instructing terminal a to perform ATA and/or AFA;
  • the instruction information may include VAW configuration parameters and priority type parameters, and the priority type parameters are used to indicate the priority relationship between VAW and DL PRS;
  • the instruction information may also include predefined criteria, which are used to instruct terminal a not to perform ATA and/or AFA within the signal processing time range, and to perform ATA and/or AFA after processing the positioning reference signal, where , the signal processing time range refers to the time range for processing the positioning reference signal.
  • Step S203 Terminal a performs ATA and/or AFA according to the notification signaling sent by the network side device.
  • terminal a before terminal a performs ATA and/or AFA according to the notification signaling sent by the network side device, terminal a can also receive the resource configuration parameters of the DL PRS sent by the LMF, and configure the resource configuration parameters of the DL PRS according to the resource configuration of the DL PRS.
  • the configuration parameters determine the time range of the MG or PPW.
  • Terminal a can receive the DL PRS sent by the base station within this time range, measure the DL PRS, and obtain the downlink positioning measurement quantity.
  • the notification signaling contains VAW configuration parameters and priority type parameters that instruct terminal a to perform ATA and/or AFA.
  • terminal a can configure the VAW configuration parameters indicated by the VAW configuration parameters.
  • the time range of the VAW is compared with the time range of the MG or PPW determined based on the resource configuration parameters of DL PRS to determine whether the time range of the VAW overlaps with the time range of the MG or PPW.
  • the time range of the VAW is the same as that of the MG or PPW
  • the time ranges do not overlap.
  • L1 is the time range of VAW
  • T1 is the start time of VAW
  • T2 is the end time of VAW
  • L2 is the time range of MG or PPW
  • T3 is the start time of MG or PPW
  • T4 is the end time of MG or PPW.
  • Terminal a can perform ATA and/or AFA within the time range of VAW, that is, from T1 time to T2 time; within the time range of MG or PPW, that is, from T3 time to T4 At time point terminal a can receive the DL PRS sent by the base station, measure the DL PRS, and obtain the downlink positioning measurement amount.
  • the downlink positioning measurement quantity may include RSTD, terminal transmission and reception time difference, downlink POA, or downlink PDOA.
  • L3 is the time range of VAW
  • T5 is the starting time of VAW
  • T6 is The end time of VAW
  • L4 is the time range of MG or PPW
  • T7 is the start time of MG or PPW
  • T8 is the end time of MG or PPW
  • T5 ⁇ T7 ⁇ T6 ⁇ T8 that is, the time range of VAW is the same as that of MG or PPW.
  • terminal a can determine the priority relationship between VAW and DL PRS based on the priority type parameter, and perform ATA and/or AFA within the time range where VAW is located based on the priority relationship between VAW and DL PRS.
  • terminal a can arbitrarily select a moment as the first moment within the time range of VAW, and perform ATA at the first moment. and/or AFA, if at the first moment, terminal a receives the DL PRS sent by the base station, that is, the moment when terminal a performs ATA and/or AFA and processes DL PRS and/or Orthogonal Frequency Multiplexing (Orthogonal Frequency Division Multiplexing (OFDM) symbols collide, then terminal a can discard the DL PRS received at the first moment, that is, terminal a can treat the DL PRS as an invalid signal.
  • OFDM Orthogonal Frequency Multiplexing
  • the DL PRS is a valid signal, that is, terminal a can measure the received DL PRS and obtain the downlink positioning Measured quantity.
  • terminal a can respond to the DL PRS.
  • PRS performs measurements to obtain the downlink positioning measurement quantity.
  • the second moment is MG or PPW. any moment within the time range.
  • Terminal a can perform ATA and/or AFA at any time within the time range of the VAW except the second time.
  • the cycle is an invalid cycle.
  • terminal a after receiving the notification signaling, may first perform the received notification on the base station according to the predefined criteria.
  • the sent DL PRS is measured to obtain the downlink positioning measurement quantity, and then ATA and/or AFA are performed; that is, terminal a does not perform ATA and/or AFA within the time range of receiving and measuring the DL PRS sent by the base station.
  • the positioning method is Multi-RTT positioning
  • terminal a within the time range in which terminal a calculates the terminal sending and receiving time difference, that is, within the time range in which terminal a measures DL PRS and obtains the downlink positioning measurement, terminal a cannot perform ATA and / or AFA, for example, as shown in Figure 5, the time range for terminal a to calculate the terminal sending and receiving time difference is [t 1 - ⁇ t, t 2 + ⁇ t], ⁇ t represents the margin, t 3 represents terminal a performing ATA and/or Or the start time of the time range of AFA, t4 represents the end time of the time range of terminal a performing ATA and/or AFA.
  • Step S204 Terminal a sends the time information of ATA and/or AFA to LMF.
  • step S203 after terminal a performs ATA and/or AFA according to the notification signaling, terminal a can send the instruction information and time information for terminal a to perform ATA and/or AFA to the LMF, where the instruction information is used to instruct terminal a to perform ATA and/or AFA.
  • ATA and/or AFA ATA and/or AFA.
  • Step S205 LMF determines the location of terminal a.
  • LMF before LMF determines the location of terminal a, LMF can also receive the downlink positioning measurement quantity sent by terminal a.
  • the downlink positioning measurement quantity is after terminal a measures the DL PRS sent by the base station. , sent to LMF.
  • LMF may receive multiple downlink positioning measurements within the time range of terminal a performing ATA and/or AFA twice consecutively.
  • the LMF may also receive the quality information of downlink positioning measurements sent by terminal a and the base station location information sent by the base station.
  • the quality information of the downlink positioning measurement quantity may be one or more of SNR, SINR or variance of the measurement error.
  • LMF can receive the time information for performing ATA and/or AFA sent by terminal a after each time it performs ATA and/or AFA, and then determine the time when terminal a performs ATA and/or AFA twice consecutively.
  • the LMF can be based on the received downlink positioning measurement volume sent by terminal a, the quality information of the downlink positioning measurement volume, and the location information of each base station associated with terminal a within the time range in which terminal a performs ATA and/or AFA twice adjacently. , determine the location of terminal a.
  • the LMF may use Formula 1 and Formula 2 to determine the weighted downlink positioning measurement corresponding to time t k based on the received downlink positioning measurement and the quality information of the downlink positioning measurement.
  • the time t k may be any time within the time range in which terminal a performs ATA and/or AFA twice in a row.
  • x(k) f(x m (k),x m (k-1),x m (k-2),...x m (kM)) (Formula 1)
  • f(n) a 0 f m (n)+a 1 f m (n-1)+a 2 f m (n-2)+...+a M-1 f m (n-M+1)
  • Formula 1 and Formula 2 may be any time within the time range in which terminal a performs ATA and/or AFA twice in a row.
  • x(k) f(x m (k),x m (k-1),x m (k-2),...x m (kM)
  • x(k) represents the weighted downlink positioning measurement quantity at time t k , such as the difference between RSTD and terminal transmission and reception time
  • x m (i) represents the unweighted downlink positioning measurement quantity reported at time t i , the value of i can be k, k-1,..., kM
  • f(n) is a weighting function, depending on the weighting algorithm
  • M represents the time range reported by the terminal during two consecutive ATA and/or AFA
  • the number of downlink positioning measurements; ⁇ a 0 ,a 1 ,...,a M-1 ⁇ are weighter parameters, and
  • the weighting parameters can be determined based on different weighter algorithms and/or quality information of the positioning measurements.
  • the LMF can determine the weighted downlink positioning measurement volume corresponding to each time and each base station.
  • the location information of terminal a is determined.
  • Figure 6 shows an interactive flow chart of an uplink positioning method provided by an embodiment of the present disclosure.
  • the row positioning method is suitable for uplink positioning or Multi-RTT positioning; as shown in Figure 6, this method takes network side equipment and terminal a as an example.
  • Terminal a refers to any terminal.
  • the method includes the following steps:
  • Step S601 Terminal a sends a terminal capability report to the network side device.
  • Step S602 The network side device sends notification signaling to terminal a.
  • Step S603 Terminal a performs ATA and/or AFA according to the notification signaling sent by the network side device.
  • terminal a before terminal a performs ATA and/or AFA according to the notification signaling sent by the network side device, terminal a can also receive the resource configuration parameters of UL SRS-Pos sent by the base station, and perform ATA and/or AFA according to the UL The resource configuration parameters of SRS-Pos determine the time range for terminal a to send UL SRS-Pos to the base station.
  • the notification signaling contains VAW configuration parameters and priority type parameters that instruct terminal a to perform ATA and/or AFA.
  • terminal a can configure the VAW configuration parameters indicated by the VAW configuration parameters. Compare the time range in which VAW is located with the time range in which terminal a sends UL SRS-Pos to the base station determined based on the resource configuration parameters of UL SRS-Pos, and determine the time range in which VAW is located and the time range in which terminal a sends UL SRS-Pos to the base station. Whether the time range overlaps.
  • time slot #1 (slot#1) is the time range in which the VAW is located.
  • time slot #2 (slot#2) is the time range for terminal a to send UL SRS-Pos to the base station; terminal a can perform ATA and/or AFA within the time range of VAW, that is, slot #1; in terminal a UL SRS-Pos is sent to the base station within the time range of sending UL SRS-Pos to the base station, that is, within slot #2.
  • terminal a can determine the VAW and UL SRS-Pos according to the priority type parameter. Priority relationship between VAW and UL SRS-Pos, and based on the priority relationship between VAW and UL SRS-Pos, conduct ATA and/or AFA within the time range of VAW.
  • terminal a can arbitrarily select a moment within the time range of VAW as the first moment, And perform ATA and/or AFA at the first moment. If at the first moment, terminal a needs to send UL SRS-Pos to the base station, that is, the time when terminal a performs ATA and/or AFA and processes UL SRS-Pos and/ Or orthogonal frequency division multiplexing OFDM symbols collide, then terminal a treats the UL SRS-Pos as an invalid signal, that is, does not send UL SRS-Pos to the base station.
  • terminal a If terminal a performs ATA and/or AFA and compares UL SRS-Pos If there is no collision between the processing time and/or the orthogonal frequency division multiplexing OFDM symbols, the UL SRS-Pos is a valid signal, and the terminal a can send the UL SRS-Pos to the base station.
  • the priority of VAW is lower than the priority of UL SRS-Pos
  • terminal a sends UL SRS-Pos to the base station at the second moment within the time range in which terminal a sends UL SRS-Pos to the base station.
  • the second time is any time within the time range when terminal a sends UL SRS-Pos to the base station.
  • Terminal a can perform ATA and/or AFA at any time within the time range of the VAW except the second time.
  • the cycle is an invalid cycle.
  • terminal a may first send an UL SRS to the base station according to the predefined criteria. -Pos, and then perform ATA and/or AFA; that is, terminal a does not perform ATA and/or AFA when sending UL SRS-Pos to the base station.
  • Step S604 The base station measures the UL SRS-Pos to obtain the uplink positioning measurement quantity.
  • the base station can measure the UL SRS-Pos to obtain the uplink positioning measurement amount.
  • the uplink positioning measurement quantity may include RTOA, base station sending and receiving time difference, uplink POA, or uplink PDOA.
  • Step S605 The base station sends the uplink positioning measurement quantity to the LMF.
  • Step S606 Terminal a sends the time information of ATA and/or AFA to LMF.
  • step S603 after terminal a performs ATA and/or AFA according to the notification signaling, terminal a can send the instruction time information of terminal a to perform ATA and/or AFA to the LMF.
  • Step S607 LMF determines the location of terminal a.
  • the LMF may also receive base station location information sent by the base station.
  • LMF can receive the time information for performing ATA and/or AFA sent by terminal a after each time it performs ATA and/or AFA, and then determine the time when terminal a performs ATA and/or AFA twice consecutively.
  • LMF can determine the location of terminal a based on the received uplink positioning measurements sent by the base station and the location information of each base station associated with terminal a within the time range in which terminal a performs ATA and/or AFA twice.
  • the LMF can determine the position of terminal a according to Formula 1 and Formula 2.
  • the specific implementation is similar to the steps of the above downlink positioning method, and will not be described again here.
  • Figure 8 shows an interactive flow chart of a direct link positioning method provided by an embodiment of the present disclosure.
  • the method is illustrated by taking a network side device and a receiving terminal a as an example.
  • the receiving terminal a refers to any receiving terminal.
  • the method includes the following steps:
  • Step S801 The receiving terminal a sends a terminal capability report to the network side device.
  • Step S802 The network side device sends notification signaling to the receiving terminal a.
  • Step S803 The receiving terminal a performs ATA and/or AFA according to the notification signaling sent by the network side device.
  • receiving terminal a before receiving terminal a performs ATA and/or AFA according to the notification signaling sent by the network side device, receiving terminal a can also receive the resource configuration parameters of the SL PRS sent by the LMF, and configure the resource configuration parameters of the SL PRS according to the SL
  • the resource configuration parameters of the PRS determine the time range of the MG or PPW.
  • the receiving terminal a can receive the SL PRS sent by the sending terminal b within this time range, and measure the SL PRS to obtain the direct link positioning measurement quantity.
  • receiving terminal a can, after receiving the notification signaling, change the VAW configuration parameters to The indicated time range of the VAW is compared with the time range of the MG or PPW determined based on the resource configuration parameters of the SL PRS to determine whether the time range of the VAW overlaps with the time range of the MG or PPW.
  • receiving terminal a can perform ATA and/or AFA within the time range of VAW; within the time range of MG or PPW , receive the SL PRS sent by the sending terminal b, and perform the SL The PRS performs measurements and obtains the direct link positioning measurement quantity.
  • the direct link positioning measurement quantity may include TDOA, terminal transmission and reception time difference of the receiving terminal, SL POA, or SL PDOA.
  • the receiving terminal a can determine the priority relationship between the VAW and the DL PRS according to the priority type parameter, and determine the priority relationship between the VAW and the DL PRS according to the priority type parameter.
  • the priority relationship between VAW and SL PRS, ATA and/or AFA are performed within the time range of VAW.
  • the receiving terminal a can arbitrarily select a moment as the first moment within the time range of the VAW, and perform the operation at the first moment.
  • ATA and/or AFA if at the first moment, the receiving terminal a receives the DL PRS sent by the sending terminal b, that is, the time when the receiving terminal a performs ATA and/or AFA and processes the SL PRS and/or orthogonal frequency division If multiplexed OFDM symbols collide, the receiving terminal a can discard the SL PRS corresponding to the first moment, that is, the receiving terminal a can treat the SL PRS as an invalid signal.
  • the SL PRS is a valid signal, that is, the receiving terminal a can process the received
  • the SL PRS sent by the sending terminal b is measured to obtain the direct link positioning measurement quantity.
  • the priority of VAW is lower than the priority of SL PRS
  • receiving terminal a receives the SL PRS sent by sending terminal b at the second moment within the time range of MG or PPW
  • receiving terminal a The SL PRS can be measured to obtain the direct link positioning measurement quantity.
  • the second moment is any moment within the time range of the MG or PPW.
  • Receiving terminal a can perform ATA and/or AFA at any time within the time range of the VAW except the second time.
  • the cycle is an invalid cycle.
  • the receiving terminal a may first perform the received notification according to the predefined criteria.
  • SL PRS performs measurements to obtain the direct link positioning measurements, and then performs ATA and/or AFA; that is, the receiving terminal a does not perform ATA and/or AFA within the time range of receiving and measuring the SL PRS sent by the sending terminal b.
  • Step S804 The receiving terminal a sends the time information of ATA and/or AFA to the LMF.
  • receiving terminal a can send the instruction information and time information for receiving terminal a to perform ATA and/or AFA to the LMF, where the instruction information is used to indicate Receiving terminal a performs ATA and/or AFA.
  • Step S805 LMF determines the location of receiving terminal a.
  • the LMF may also receive the through-link positioning measurement quantity sent by the receiving terminal a.
  • the direct-link positioning measurement quantity is the direct link positioning measurement quantity sent by the receiving terminal a.
  • the SL PRS sent by terminal b is measured and sent to the LMF.
  • LMF may receive multiple direct link positioning measurements within the time range of two consecutive ATA and/or AFA operations at receiving terminal a.
  • the LMF may also receive the quality information of the direct link positioning measurement quantity sent by the receiving terminal a and the base station location information sent by the base station.
  • the quality information of the direct link positioning measurement quantity may be one or more of SNR, SINR or variance of the measurement error.
  • LMF can receive the time information for performing ATA and/or AFA sent by the receiving terminal a after each time it performs ATA and/or AFA, and then determine the time when the receiving terminal a performs ATA and/or AFA twice consecutively. .
  • the LMF can be based on the received downlink positioning measurement quantity sent by the receiving terminal a, the quality information of the downlink positioning measurement quantity, and each base station associated with the receiving terminal a within the time range in which the receiving terminal a performs ATA and/or AFA twice.
  • the location information of the receiving terminal a is determined.
  • the LMF can determine the position of terminal a according to Formula 1 and Formula 2.
  • the specific implementation is similar to the steps of the above downlink positioning method, and will not be described again here.
  • Figure 9 shows an interactive flow chart of another direct link positioning method provided by an embodiment of the present disclosure. This method is explained by taking the network side device and the sending terminal b as an example.
  • the sending terminal b refers to any sending terminal. As shown in Figure 9, the method includes the following steps:
  • Step S901 The sending terminal b sends a terminal capability report to the network side device.
  • Step S902 The network side device sends notification signaling to the sending terminal b.
  • Step S903 The sending terminal b performs ATA and/or AFA according to the notification signaling sent by the network side device.
  • the sending terminal b before the sending terminal b performs ATA and/or AFA according to the notification signaling sent by the network side device, the sending terminal b can also receive the resource configuration parameters of the SL PRS sent by the base station, and perform the ATA and/or AFA according to the SL
  • the resource configuration parameters of the PRS determine the time range within which the sending terminal b sends the SL PRS to the receiving terminal a.
  • the sending terminal b can change the VAW configuration parameters to Compare the time range in which the indicated VAW is located with the time range in which the sending terminal b sends the SL PRS to the receiving terminal a determined based on the resource configuration parameters of the SL PRS, and determine the time range in which the VAW is located and the time range in which the sending terminal b sends the SL to the receiving terminal a. Whether the time range of PRS overlaps.
  • the sending terminal b can perform ATA and/or AFA within the time range of the VAW; before sending Within the time range when terminal b sends SL PRS to receiving terminal a, it sends SL PRS to receiving terminal a.
  • the sending terminal b can determine the VAW and SL PRS according to the priority type parameter. Priority relationship between VAW and SL PRS, and based on the priority relationship between VAW and SL PRS, perform ATA and/or AFA within the time range of VAW.
  • the sending terminal b can arbitrarily select a time within the time range of the VAW as the first time, and perform the operation at the first time.
  • ATA and/or AFA if at the first moment, the sending terminal b needs to send SL PRS to the receiving terminal a, that is, the time when the sending terminal b performs ATA and/or AFA and processes the SL PRS and/or orthogonal frequency division multiplexing If a collision occurs with OFDM symbols, the sending terminal b can use the SL The PRS is used as an invalid signal, that is, SL PRS is not sent to the receiving terminal a.
  • the sending terminal b If the sending terminal b performs ATA and/or AFA and the time when the UL SRS-Pos is processed and/or the orthogonal frequency division multiplexing OFDM symbol does not collide, Then the SL PRS is a valid signal, that is, the sending terminal b can send the SL PRS to the receiving terminal a.
  • sending terminal b sends SL to receiving terminal a at the second moment within the time range of sending terminal b sending SL PRS to receiving terminal a.
  • the second time is any time within the time range when the sending terminal b sends the SL PRS to the receiving terminal a.
  • the sending terminal b can perform ATA and/or AFA at any time within the time range of the VAW except the second time.
  • the cycle is an invalid cycle.
  • the sending terminal b may first send a message to the receiving terminal according to the predefined criteria. a sends SL PRS, and then performs ATA and/or AFA; that is, the sending terminal b does not perform ATA and/or AFA when sending SL PRS to receiving terminal a.
  • Step S904 The receiving terminal a measures the SL PRS to obtain the direct link positioning measurement quantity.
  • step S903 after receiving the SL PRS sent by the sending terminal b, the receiving terminal a can measure the SL PRS to obtain the through-link positioning measurement amount.
  • Step S905 The receiving terminal a sends the direct link positioning measurement quantity to the LMF.
  • Step S906 The sending terminal b sends the time information of ATA and/or AFA to the LMF.
  • step S903 after the sending terminal b performs ATA and/or AFA according to the notification signaling, the sending terminal b can send the instruction time information of the sending terminal b to perform ATA and/or AFA to the LMF.
  • Step S907 LMF determines the location of sending terminal b.
  • the LMF may also receive the base station location information sent by the base station.
  • the LMF can receive the time information for performing ATA and/or AFA sent by the sending terminal b after each time it performs ATA and/or AFA, and then determine the time when the sending terminal b performs ATA and/or AFA twice consecutively. .
  • LMF can perform ATA based on two consecutive times at the sending terminal b. and/or within the time range of the AFA, the received uplink positioning measurement quantity sent by the receiving terminal a and the location information of each base station associated with the sending terminal b determine the location of the sending terminal b.
  • the LMF can determine the position of terminal a according to Formula 1 and Formula 2.
  • the specific implementation is similar to the steps of the above downlink positioning method, and will not be described again here.
  • the direct link positioning method shown in Figures 8 and 9 is also applicable to Multi-RTT positioning.
  • the positioning method is Multi-RTT positioning
  • the receiving terminal Neither a nor sending terminal b can perform ATA and/or AFA.
  • [t 5 - ⁇ t 1 , t 6 + ⁇ t 1 ] is the time range for the receiving terminal a to calculate the terminal sending and receiving time difference
  • t 9 represents the time range for the receiving terminal a to perform ATA and/or AFA.
  • the starting time of _ _ _ The time range for terminal b to calculate the terminal sending and receiving time difference, t 11 represents the start time of the time range for the sending terminal b to perform ATA and/or AFA, t 12 represents the end time of the time range for the sending terminal b to perform ATA and/or AFA, ⁇ t 2 represents the margin, and ⁇ t 2 ⁇ 0, the RTT of SL PRS between the receiving terminal a and the transmitting terminal b can be expressed by Formula 3.
  • the sending terminal b and the receiving terminal a are relative.
  • UE1 can send SL PRS to UE2, or it can Accept the SL PRS sent by UE2. Therefore, for UE2, UE1 can be either a sending terminal or a receiving terminal.
  • the sending terminal b can be regarded as the base station of the receiving terminal a.
  • UE2 when UE2 is the sending terminal and UE1 is the receiving terminal, assuming that the SL PRS period of 5 ms contains 4 consecutive SL slots, UE2 can instruct UE1 to enter the first SL slot, that is, slot #3 (time slot #3) performs ATA and/or AFA operations, UE2 can perform ATA and/or AFA operations in the second SL slot, slot #4 (time slot #4); UE1 can perform ATA and/or AFA operations in the third SL slot slot, that is, slot #5 (time slot #5), send SRS-Pos1 to UE2; UE2 can send SRS-Pos1 to UE2 in the fourth SL slot, that is, slot #6 (time slot Send SRS-Pos2 to UE1 in slot #6). Therefore, it can be realized that no ATA and/or AFA operations are performed within the time range when the terminal processes
  • a flow chart of a terminal positioning method is provided. This method is executed by the terminal, as shown in Figure 12. The method includes the following steps:
  • Step S1201 Perform ATA and/or AFA according to the notification signaling sent by the network side device.
  • the notification signaling includes instruction information instructing the terminal to perform ATA and/or AFA;
  • Step S1202 Send time information for the terminal to perform ATA and/or AFA.
  • the time information of the ATA and/or AFA is used to determine the location of the terminal.
  • a flow chart of a terminal positioning method is provided.
  • the method is executed by the base station, as shown in Figure 13.
  • the method includes the following steps:
  • Step S1301 Receive a terminal capability report sent by the first terminal.
  • the terminal capability report indicates that the first terminal supports performing ATA and/or AFA within the effective adjustment time window VAW, or supports performing the ATA and/or AFA according to predefined criteria;
  • Step S1302 Send notification signaling.
  • the notification signaling is used to instruct the first terminal to perform ATA and/or AFA.
  • a flow chart of a terminal positioning method is provided. This method is executed by LMF, as shown in Figure 14. The method includes the following steps:
  • Step S1401 Receive the time information of the first terminal performing ATA and/or AFA sent by the first terminal;
  • Step S1402 Determine the location of the first terminal based on the time information of the ATA and/or AFA.
  • a terminal is provided, as shown in Figure 15, including an adjustment unit 1501 and a first sending unit 1502; wherein:
  • the adjustment unit 1501 performs ATA and/or AFA according to the notification signaling sent by the network side device; the notification signaling includes instruction information instructing the terminal to perform ATA and/or AFA;
  • the first sending unit 1502 sends the time information of the terminal performing ATA and/or AFA to the LMF; the time information of the ATA and/or AFA is used to determine the location of the terminal.
  • a processing unit may also be included, The processing unit is specifically used for:
  • the adjustment unit 1501 is specifically used to:
  • the signal processing time range refers to the positioning reference signal. Processing time frame.
  • the adjustment unit 1501 is specifically used to:
  • ATA and/or AFA will be performed within the time range of the VAW according to the priority relationship between the VAW and the positioning reference signal. .
  • the adjustment unit 1501 is specifically used to:
  • ATA and/or AFA are performed at the first moment, which is any moment within the time range where the VAW is located; the first moment The positioning reference signal is discarded;
  • ATA and/or AFA will be performed at any time within the time range where the VAW is located except for the second time; the second time is when the terminal pair The moment at which the positioning reference signal is processed.
  • the indication information contained in the notification signaling includes predefined criteria; the predefined criteria instructs the terminal not to perform ATA and/or AFA within the signal processing time range. After the reference signal is processed, ATA and/or AFA are performed; the signal processing time range refers to the time range for processing the positioning reference signal.
  • the positioning reference signal is a downlink positioning reference signal DL PRS
  • the signal processing time range is a measurement gap MG or a downlink positioning reference signal determined according to the resource configuration parameters of the DL PRS sent by the LMF.
  • the time range of the execution window PPW; the positioning reference Signal processing refers to receiving the DL PRS sent by the base station and performing measurements; or,
  • the positioning reference signal is the uplink positioning reference signal UL SRS-Pos.
  • the signal processing time range is determined according to the resource configuration parameters of the UL SRS-Pos sent by the base station; the processing of the positioning reference signal means sending UL to the base station. SRS-Pos; or,
  • the positioning reference signal is a direct link positioning reference signal SL PRS
  • the terminal is a receiving terminal
  • the signal processing time range is determined according to the time range of the MG or PPW indicated in the resource configuration parameter of the SL PRS sent by the LMF.
  • the processing of the positioning reference signal refers to receiving the SL PRS sent by the sending terminal and measuring it; or,
  • the positioning reference signal is SL PRS
  • the terminal is a sending terminal
  • the signal processing time range is determined according to the resource configuration parameters of the SL PRS sent by the base station; the processing of the positioning reference signal means sending SL to the receiving terminal. PRS.
  • the notification signaling is Long Term Evolution Positioning Protocol LPP signaling sent by the LMF; or,
  • the notification signaling is radio resource control RRC signaling, media access control layer control unit MAC CE signaling or downlink control information DCI signaling sent by the base station.
  • the network side device may be, but is not limited to, a base station or an entity or device such as an LMF;
  • a base station including a first receiving unit 1601 and a second sending unit 1602; wherein:
  • the first receiving unit 1601 receives a terminal capability report sent by the first terminal; the terminal capability report indicates that the first terminal supports performing ATA and/or AFA within the effective adjustment time window VAW, or supports performing ATA and/or AFA according to predefined criteria. Carry out the ATA and/or AFA;
  • the second sending unit 1602 sends notification signaling to the first terminal; the notification signaling is used to instruct the first terminal to perform ATA and/or AFA.
  • the notification signaling includes configuration parameters and priority type parameters of the VAW; the priority type parameters are used to indicate the priority relationship between the VAW and the DL PRS; or,
  • the notification signaling includes a predefined criterion, and the predefined criterion indicates that the first terminal ATA and/or AFA are not performed within the number processing time range.
  • ATA and/or AFA are performed after the positioning reference signal is processed;
  • the positioning reference signal is the downlink positioning reference signal DL PRS and the uplink positioning reference signal UL SRS-Pos.
  • the signal processing time range refers to the time range for processing the positioning reference signal.
  • the base station includes a serving base station and a neighboring base station.
  • the notification signaling is radio resource control RRC signaling, media access control layer control unit MAC CE signaling or downlink control information DCI signaling.
  • an LMF is provided, as shown in Figure 17, including a second receiving unit 1701 and a determining unit 1702; wherein:
  • the second receiving unit 1701 receives the time information of the first terminal performing ATA and/or AFA sent by the first terminal;
  • the determining unit 1702 determines the location of the first terminal based on the time information of the ATA and/or AFA.
  • the determining unit 1702 is specifically used to:
  • the position of the first terminal is determined according to each positioning measurement quantity of the first terminal obtained within the time range; the positioning measurement quantity is obtained by measuring the positioning reference signal corresponding to the first terminal. .
  • a second processing unit may also be included, and the second processing unit is specifically used to:
  • the terminal capability report indicates that the first terminal supports performing ATA and/or AFA within the effective adjustment time window VAW, or supports performing the ATA and/or AFA according to predefined criteria. or AFA;
  • the notification signaling is used to instruct the first terminal to perform ATA and/or AFA.
  • the notification signaling is Long Term Evolution Positioning Protocol (LPP) signaling.
  • LPP Long Term Evolution Positioning Protocol
  • the notification signaling includes configuration parameters and priority type parameters of the VAW; the priority type parameters are used to indicate the priority relationship between the VAW and the DL PRS; or,
  • the notification signaling includes predefined criteria, the predefined criteria instructs the first terminal not to perform ATA and/or AFA within the signal processing time range, and after processing the positioning reference signal, perform ATA and/or AFA.
  • the signal processing time range refers to the time range for processing the positioning reference signal.
  • the positioning reference signal is DL PRS
  • the positioning measurement quantity is RSTD sent by the first terminal, terminal transmission and reception time difference, downlink POA, or downlink PDOA; or,
  • the positioning reference signal is UL SRS-Pos
  • the positioning measurement quantity is the uplink RTOA sent by the base station, the base station sending and receiving time difference, the uplink POA, or the uplink PDOA; or,
  • the positioning reference signal is a straight SL PRS
  • the first terminal is a receiving terminal
  • the positioning measurement quantity is the TDOA sent by the first terminal, the sending and receiving time difference of the receiving terminal, SL POA, or SL PDOA; or,
  • the positioning reference signal is SL PRS
  • the first terminal is a sending terminal
  • the positioning measurement quantity is the sending and receiving time difference of the first terminal.
  • the method when the positioning reference signal is DL PRS, the method further includes a third receiving unit, and the third receiving unit is specifically configured to:
  • the method further includes a fourth receiving unit, and the fourth receiving unit is specifically configured to:
  • the quality information includes SNR, SINR or variance of measurement error.
  • embodiments of the present disclosure also provide a terminal.
  • the terminal can perform any of the terminal positioning methods implemented in the above embodiments.
  • FIG. 18 shows a schematic structural diagram of the terminal provided by an embodiment of the present disclosure, that is, another schematic structural diagram of the terminal.
  • the terminal includes a processor 1801, a memory 1802 and a transceiver 1803.
  • the processor 1801 is responsible for managing the bus architecture and general processing, and the memory 1802 can store data used by the processor 1801 when performing operations.
  • Transceiver 1803 is used to receive and transmit data under the control of processor 1801.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked together by various circuits of one or more processors represented by processor 1801 and memory represented by memory 1802 .
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the processor 1801 is responsible for managing the bus architecture and general processing, and the memory 1802 can store data used by the processor 1801 when performing operations.
  • the process disclosed in the embodiment of this disclosure can be applied to the processor 1801 or implemented by the processor 1801. During the implementation process, each step of the signal processing flow can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 1801 .
  • the processor 1801 may be a general processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments of the present disclosure.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the methods disclosed in conjunction with the embodiments of the present disclosure can be directly implemented as executed by a hardware processor, or executed using a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 1802.
  • the processor 1801 reads the information in the memory 1802 and completes the steps of the signal processing process in combination with its hardware.
  • the processor 1801 is used to read the computer instructions in the memory 1802. When the processor When 1801 executes the computer instructions:
  • the notification signaling includes instruction information instructing the terminal to perform ATA and/or AFA;
  • the transceiver is controlled to send the time information of the terminal performing ATA and/or AFA to the LMF; the time information of the ATA and/or AFA is used to determine the location of the terminal.
  • the transceiver 1803 is specifically used for:
  • the processor 1801 is specifically used to:
  • the signal processing time range refers to the positioning reference signal. Processing time frame.
  • the processor 1801 is specifically used to:
  • ATA and/or AFA will be performed within the time range of the VAW according to the priority relationship between the VAW and the positioning reference signal. .
  • the processor 1801 is specifically used to:
  • ATA and/or AFA are performed at the first moment, and the first moment is any moment within the time range where the VAW is located;
  • ATA and/or AFA will be performed at any time within the time range where the VAW is located except for the second time; the second time is when the terminal pair The moment at which the positioning reference signal is processed.
  • the indication information contained in the notification signaling includes predefined criteria; the predefined criteria instructs the terminal not to perform ATA and/or AFA within the signal processing time range, After the positioning reference signal is processed, ATA and/or AFA are performed; the signal processing time range refers to the time range for processing the positioning reference signal.
  • the positioning reference signal is DL PRS
  • the signal processing time range is the time range of the MG or PPW determined according to the resource configuration parameters of the DL PRS sent by the LMF
  • the positioning reference signal Signal processing refers to receiving the DL PRS sent by the base station and measuring it; or,
  • the positioning reference signal is UL SRS-Pos, and the signal processing time range is determined according to the resource configuration parameters of the UL SRS-Pos sent by the base station; the processing of the positioning reference signal means sending UL SRS-Pos to the base station; or,
  • the positioning reference signal is SL PRS
  • the terminal is a receiving terminal
  • the signal processing time range is determined according to the time range of the MG or PPW indicated in the resource configuration parameter of the SL PRS sent by the LMF
  • the positioning Reference signal processing refers to receiving the SL PRS sent by the sending terminal and measuring it; or,
  • the positioning reference signal is SL PRS
  • the terminal is a sending terminal
  • the signal processing time range is determined according to the resource configuration parameters of the SL PRS sent by the base station; the processing of the positioning reference signal means sending SL to the receiving terminal. PRS.
  • the notification signaling is LPP signaling sent by the LMF; or,
  • the notification signaling is RRC signaling, meta-MAC CE signaling or DCI signaling sent by the base station.
  • the network side device may be, but is not limited to, a base station or an entity or device such as an LMF;
  • embodiments of the present disclosure also provide a base station.
  • the base station can perform any of the terminal positioning methods implemented in the above embodiments.
  • Figure 19 shows a schematic structural diagram of the base station provided by an embodiment of the present disclosure, that is, another schematic structural diagram of a network-side device.
  • the network side device includes a processor 1901, a memory 1902 and a transceiver 1903.
  • the processor 1901 is responsible for managing the bus architecture and general processing, and the memory 1902 can store the processing Data used by the processor 1901 when performing operations.
  • Transceiver 1903 is used to receive and transmit data under the control of processor 1901.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked together by various circuits of one or more processors represented by processor 1901 and memory represented by memory 1902 .
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the processor 1901 is responsible for managing the bus architecture and general processing, and the memory 1902 can store data used by the processor 1901 when performing operations.
  • the process disclosed in the embodiment of the present disclosure can be applied to the processor 1901 or implemented by the processor 1901.
  • each step of the signal processing flow can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 1901 .
  • the processor 1901 may be a general processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments of the present disclosure.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the methods disclosed in conjunction with the embodiments of the present disclosure can be directly implemented as executed by a hardware processor, or executed using a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 1902.
  • the processor 1901 reads the information in the memory 1902 and completes the steps of the signal processing process in combination with its hardware.
  • the processor 1901 is used to read the computer program in the memory 1902.
  • the processor 1901 executes the computer program, it implements:
  • the control transceiver 1903 receives a terminal capability report sent by the first terminal; the terminal capability report indicates that the first terminal supports performing ATA and/or AFA within the effective adjustment time window VAW, or supports performing all operations according to predefined criteria. Said ATA and/or AFA;
  • the notification signaling is used to instruct the first terminal to perform ATA and/or AFA.
  • the notification signaling includes configuration parameters and priority type parameters of the VAW; the priority type parameters are used to indicate the priority relationship between the VAW and the DL PRS; or,
  • the notification signaling includes predefined criteria, the predefined criteria instructs the first terminal not to perform ATA and/or AFA within the signal processing time range, and after processing the positioning reference signal, perform ATA and/or AFA.
  • the positioning reference signal is DL PRS, UL SRS-Pos or SL PRS.
  • the base station includes a serving base station and a neighboring base station.
  • the notification signaling is RRC signaling, MAC CE signaling or DCI signaling.
  • embodiments of the present disclosure also provide an LMF.
  • the LMF can perform any of the terminal positioning methods implemented in the above embodiments.
  • FIG. 20 shows a schematic structural diagram of the LMF provided by an embodiment of the present disclosure, that is, another schematic structural diagram of the LMF.
  • the LMF includes a processor 2001, a memory 2002 and a transceiver 2003.
  • the processor 2001 is responsible for managing the bus architecture and general processing, and the memory 2002 can store data used by the processor 2001 when performing operations.
  • the transceiver 2003 is used to receive and transmit data under the control of the processor 2001.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked together by various circuits of one or more processors represented by processor 2001 and memory represented by memory 2002.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the processor 2001 is responsible for managing the bus architecture and general processing, and the memory 2002 can store data used by the processor 2001 when performing operations.
  • the process disclosed in the embodiment of the present disclosure can be applied to the processor 2001 or implemented by the processor 2001.
  • each step of the signal processing flow can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 2001 .
  • the processor 2001 may be a general processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic.
  • Software, discrete gate or transistor logic devices, and discrete hardware components can implement or execute the disclosed methods, steps, and logical block diagrams in the embodiments of the present disclosure.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the methods disclosed in conjunction with the embodiments of the present disclosure can be directly implemented as executed by a hardware processor, or executed using a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 2002.
  • the processor 2001 reads the information in the memory 2002 and completes the steps of the signal processing process in combination with its hardware.
  • the processor 2001 is used to read the computer program in the memory 2002.
  • the processor 2001 executes the computer program, it implements:
  • the location of the first terminal is determined.
  • the processor 2001 is specifically used to:
  • the position of the first terminal is determined according to each positioning measurement quantity of the first terminal obtained within the time range; the positioning measurement quantity is obtained by measuring the positioning reference signal corresponding to the first terminal. .
  • the transceiver 2003 can also be used for:
  • the terminal capability report indicates that the first terminal supports performing ATA and/or AFA within the effective adjustment time window VAW, or supports performing the ATA and/or AFA according to predefined criteria. or AFA;
  • the notification signaling is used to instruct the first terminal to perform ATA and/or AFA.
  • the notification signaling is Long Term Evolution Positioning Protocol (LPP) signaling.
  • LPP Long Term Evolution Positioning Protocol
  • the notification signaling includes configuration parameters and priority type parameters of the VAW; the priority type parameters are used to indicate the priority relationship between the VAW and the DL PRS; or,
  • the notification signaling includes predefined criteria, the predefined criteria instructs the first terminal not to perform ATA and/or AFA within the signal processing time range, and after processing the positioning reference signal, perform ATA and/or AFA.
  • the signal processing time range refers to the time range for processing the positioning reference signal.
  • the positioning reference signal is a downlink positioning reference signal DL PRS
  • the positioning measurement quantity is the reference signal time difference RSTD sent by the first terminal, the terminal transmission and reception time difference, and the downlink arrival carrier phase value.
  • POA or downlink carrier phase difference PDOA; or,
  • the positioning reference signal is the uplink positioning reference signal UL SRS-Pos, and the positioning measurement quantity is the uplink relative arrival time RTOA sent by the base station, the base station sending and receiving time difference, the uplink POA, or the uplink PDOA; or,
  • the positioning reference signal is a direct link positioning reference signal SL PRS
  • the first terminal is a receiving terminal
  • the positioning measurement quantity is the arrival time difference TDOA sent by the first terminal, the sending and receiving time difference of the receiving terminal, SL POA, or SL PDOA; or,
  • the positioning reference signal is SL PRS
  • the first terminal is a sending terminal
  • the positioning measurement quantity is the sending and receiving time difference of the first terminal.
  • processor 2001 can also be used to:
  • processor 2001 can also be used to:
  • the quality information includes signal-to-noise ratio SNR, signal-to-interference-to-noise ratio SINR, or variance of measurement errors.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may be employed in one or more The form of a computer program product implemented on a computer-usable storage medium (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • a computer-usable storage medium including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本公开提供了一种终端定位方法、终端、基站及LMF,涉及无线通信技术领域。终端按照网络侧设备发送的通知信令进行ATA和/或AFA,通知信令包含指示终端进行ATA和/或AFA的指示信息;并发送终端进行ATA和/或AFA的时间信息,ATA和/或AFA的时间信息用于确定终端的位置。通过上述方法,LMF可以根据终端相邻两次进行ATA和/或AFA的时间范围内获取的各个定位测量量,确定出终端的位置,进而提高终端定位的精度。

Description

一种终端定位方法、终端、基站及LMF
相关申请的交叉引用
本公开要求在2022年04月27日提交中国专利局、申请号为202210459542.X、申请名称为“一种终端定位方法、终端、基站及LMF”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及无线通信技术领域,特别涉及一种终端定位方法、终端、基站及LMF。
背景技术
目前,在5G定位系统中,5G基站和终端采用的晶振存在频率偏差,因此,终端会默认进行自动定时偏差控制(Autonomous Time Adjustment,ATA)和自动频率偏差控制(Autonomous Frequency Adjustment,AFA)操作。在5G直通链路(SideLink,SL)定位系统中,车联网终端(Vehicle to Everything-UE,V2X-UE)会基于接收到的同步块(Synchronization Signal/PBCH Block,SSB)对接收定时和发送定时进行调整,或者发生覆盖内场景到覆盖外场景的切换时,V2X-UE也会默认进行ATA和/或AFA。
在下行到达时间差(DownLink-Time Difference of arrival,DL-TDOA)、上行到达时间差(UpLink-Time Difference of arrival,UL-TDOA)或多小区往返时延(Multiple cell-Round Trip Time,Multi-RTT)定位方法中,终端的ATA和AFA操作将会影响终端的定位精度。
发明内容
本公开实施例提供一种终端定位方法、终端、基站及LMF,可以使定位管理功能实体(Location Management Function,LMF)基于ATA和/或AFA 的时间信息,对定位测量量进行联合处理,提高终端定位精度。
第一方面,本公开实施例提供一种终端定位方法,应用于终端,所述方法包括:
按照网络侧设备发送的通知信令进行ATA和/或AFA;所述通知信令包含指示所述终端进行ATA和/或AFA的指示信息;
发送所述终端进行ATA和/或AFA的时间信息;所述ATA和/或AFA的时间信息用于确定所述终端的位置。
本公开实施例提供的终端定位方法,终端按照网络侧设备发送的通知信令进行ATA和/或AFA,并将进行ATA和/或AFA的时间信息发送至LMF,通过上述方法,LMF可以根据终端相邻两次进行ATA和/或AFA的时间范围内获取的各个定位测量量,确定出终端的位置,进而提高终端定位的精度。
在一种可选的实施例中,所述按照网络侧设备发送的通知信令进行ATA和/或AFA之前,所述方法还包括:
向所述网络侧设备发送所述终端支持在有效调整时间窗(Valid Adjustment Window,VAW)内,进行ATA和/或AFA的报告,并接收所述网络侧设备发送的所述通知信令;或者,
向所述网络侧设备发送所述终端支持按照预定义准则进行所述ATA和/或AFA的报告,并接收所述网络侧设备发送的所述通知信令。
在一种可选的实施例中,所述通知信令包含的指示信息包括VAW配置参数;所述按照网络侧设备发送的通知信令进行ATA和/或AFA,包括:
若所述VAW配置参数所指示的VAW所在的时间范围与信号处理时间范围不重合,则在VAW所在的时间范围内进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述通知信令包含的指示信息还包括优先级类型参数;所述优先级类型参数用于指示VAW与定位参考信号的优先级关系;所述按照网络侧设备发送的通知信令进行ATA和/或AFA,还包括:
若所述VAW配置参数所指示的VAW所在的时间范围与信号处理时间范 围部分重合或完全重合,则根据VAW与定位参考信号的优先级关系,在VAW所在的时间范围内进行ATA和/或AFA。
在一种可选的实施例中,所述根据VAW与定位参考信号的优先级关系,在VAW所在的时间范围内进行ATA和/或AFA,包括:
若VAW的优先级高于定位参考信号的优先级,则在第一时刻进行ATA和/或AFA,所述第一时刻为所述VAW所在的时间范围内的任一时刻;
若VAW的优先级低于定位参考信号的优先级,则在VAW所在的时间范围内除第二时刻之外的任一时刻,进行ATA和/或AFA;所述第二时刻为所述终端对定位参考信号进行处理的时刻。
在一种可选的实施例中,所述通知信令包含的指示信息包括预定义准则;所述预定义准则指示所述终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述定位参考信号为定位参考信号(Positioning Reference Signal,DL PRS),所述信号处理时间范围是根据LMF发送的DL PRS的资源配置参数确定的测量间隙(Measurement Gap,MG)或下行定位参考信号执行窗口(PRS Processing Window,PPW)的时间范围;所述对定位参考信号进行处理是指接收基站发送的DL PRS,并进行测量;或者,
所述定位参考信号为上行定位参考信号(Sounding Reference Signal for Positioning,UL SRS-Pos),所述信号处理时间范围是根据基站发送的UL SRS-Pos的资源配置参数确定的;所述对定位参考信号进行处理是指向基站发送UL SRS-Pos;或者,
所述定位参考信号为直通链路定位参考信号SL PRS,所述终端为接收终端,所述信号处理时间范围是根据LMF发送的SL PRS的资源配置参数中所指示的MG或PPW的时间范围确定的;所述对定位参考信号进行处理是指接收发送终端发送的SL PRS,并进行测量;或者,
所述定位参考信号为SL PRS,所述终端为发送终端,所述信号处理时间 范围是根据基站发送的SL PRS的资源配置参数确定的;所述对定位参考信号进行处理是指向接收终端发送SL PRS。
在一种可选的实施例中,所述通知信令为所述LMF发送的长期演进定位协议(LTE Positioning Protocol,LPP)信令;或者,
所述通知信令为所述基站发送的RRC(Radio Resource Control,无线资源控制)信令、MAC CE(Media Access ControlControl Element,媒体接入控制层控制单元)信令或DCI信令(Downlink Control Information,下行控制信息)。
第二方面,本公开实施例提供一种终端定位方法,应用于基站,所述方法包括:
接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在有效调整时间窗VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
在一种可选的实施例中,所述通知信令包括所述VAW的配置参数和优先级类型参数;所述优先级类型参数用于指示VAW与DL PRS的优先级关系;或者,
所述通知信令包括预定义准则,所述预定义准则指示所述第一终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述定位参考信号为下行定位参考信号DL PRS、上行定位参考信号UL SRS-Pos或直通链路定位参考信号SL PRS;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述基站包括服务基站和相邻基站。
在一种可选的实施例中,所述通知信令为无线资源控制RRC信令、媒体接入控制层控制单元MAC CE信令或下行控制信息DCI信令。
第三方面,本公开实施例提供一种终端定位方法,应用于定位管理功能实体LMF,所述方法包括:
接收第一终端发送的所述第一终端进行ATA和/或AFA的时间信息;
基于所述ATA和/或AFA的时间信息,确定所述第一终端的位置。
在一种可选的实施例中,所述基于所述ATA和/或AFA的时间信息,确定所述第一终端的位置,包括:
基于接收到的ATA和/或AFA的时间信息,确定所述第一终端相邻两次进行ATA和/或AFA的时间范围;
根据在所述时间范围内获取的所述第一终端的各个定位测量量,确定所述第一终端的位置;所述定位测量量是对所述第一终端对应的定位参考信号进行测量得到的。
在一种可选的实施例中,所述接收第一终端发送的所述第一终端进行ATA和/或AFA的时间信息之前,所述方法还包括:
接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在有效调整时间窗VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
在一种可选的实施例中,所述通知信令为LPP信令。
在一种可选的实施例中,所述通知信令包括所述VAW的配置参数和优先级类型参数;所述优先级类型参数用于指示VAW与DL PRS的优先级关系;或者,
所述通知信令包括预定义准则,所述预定义准则指示所述第一终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述定位参考信号为下行定位参考信号DL PRS,所述定位测量量为所述第一终端发送的参考信号时间差(Reference Signal Time Difference,RSTD)、终端收发时间差、下行到达相位,即载波相位测量量POA(Phase Of Arrival,POA)、或下行载波相位测量差分值(Phase Difference  Of Arrival,PDOA);或者,
所述定位参考信号为上行定位参考信号UL SRS-Pos,所述定位测量量为基站发送的上行相对到达时间(Relative Time Of Arrival,RTOA),基站收发时间差、上行POA、或上行PDOA;或者,
所述定位参考信号为直通链路定位参考信号SL PRS,所述第一终端为接收终端,所述定位测量量为第一终端发送的到达时间差TDOA、接收终端的收发时间差、SL POA、或SL PDOA;或者,
所述定位参考信号为SL PRS,所述第一终端为发送终端,所述定位测量量为第一终端的收发时间差。
在一种可选的实施例中,所述定位参考信号为DL PRS时,所述方法还包括:
接收所述第一终端发送的对DL PRS进行测量得到的定位测量量和定位测量量的质量信息。
在一种可选的实施例中,所述定位参考信号为SL PRS,所述第一终端为接收终端时,所述方法还包括:
接收所述第一终端发送的对SL PRS进行测量得到的定位测量量和定位测量量的质量信息。
在一种可选的实施例中,所述质量信息包括信噪比(Signal-to-Noise Ratio,SNR)、信号与干扰噪声比(Signal-to-Interference and Noise Ratio,SINR)或测量误差的方差。
第四方面,本公开实施例提供一种终端,所述终端包括:
调整单元,按照网络侧设备发送的通知信令进行ATA和/或AFA;所述通知信令包含指示所述终端进行ATA和/或AFA的指示信息;
第一发送单元,发送所述终端进行ATA和/或AFA的时间信息;所述ATA和/或AFA的时间信息用于确定所述终端的位置。
第五方面,本公开实施例提供一种基站,所述基站包括:
第一接收单元,接收第一终端发送的终端能力报告;所述终端能力报告 表征所述第一终端支持在有效调整时间窗VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
第二发送单元,发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
第六方面,本公开实施例提供一种定位管理功能实体LMF,所述LMF包括:
第二接收单元,接收第一终端发送的所述第一终端进行ATA和/或AFA的时间信息;
确定单元,基于所述ATA和/或AFA的时间信息,确定所述第一终端的位置。
第七方面,本公开实施例提供一种终端,所述终端包括:存储器、收发机以及处理器;
所述存储器,用于存储计算机指令;
所述收发机,用于在所述处理器的控制下收发数据;
所述处理器,用于读取所述存储器中的计算机程序并执行如下步骤:
按照网络侧设备发送的通知信令进行ATA和/或AFA;所述通知信令包含指示所述终端进行ATA和/或AFA的指示信息;
控制收发机发送所述终端进行ATA和/或AFA的时间信息;所述ATA和/或AFA的时间信息用于确定所述终端的位置。
在一种可选的实施例中,所述收发机,还可以用于:
向所述网络侧设备发送所述终端支持在有效调整时间窗VAW内,进行ATA和/或AFA的报告,并接收所述网络侧设备发送的所述通知信令;或者,
向所述网络侧设备发送所述终端支持按照预定义准则进行所述ATA和/或AFA的报告,并接收所述网络侧设备发送的所述通知信令。
在一种可选的实施例中,所述通知信令包含的指示信息包括VAW配置参数;所述处理器,具体用于:
若所述VAW配置参数所指示的VAW所在的时间范围与信号处理时间范 围不重合,则在VAW所在的时间范围内进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述通知信令包含的指示信息还包括优先级类型参数;所述优先级类型参数用于指示VAW与定位参考信号的优先级关系;所述处理器,还可以用于:
若所述VAW配置参数所指示的VAW所在的时间范围与信号处理时间范围部分重合或完全重合,则根据VAW与定位参考信号的优先级关系,在VAW所在的时间范围内进行ATA和/或AFA。
在一种可选的实施例中,所述处理器,具体用于:
若VAW的优先级高于定位参考信号的优先级,则在第一时刻进行ATA和/或AFA,所述第一时刻为所述VAW所在的时间范围内的任一时刻;所述第一时刻的定位参考信号被丢弃;
若VAW的优先级低于定位参考信号的优先级,则在VAW所在的时间范围内除第二时刻之外的任一时刻,进行ATA和/或AFA;所述第二时刻为所述终端对定位参考信号进行处理的时刻。
在一种可选的实施例中,所述通知信令包含的指示信息包括预定义准则;所述预定义准则指示所述终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述定位参考信号为下行定位参考信号DL PRS,所述信号处理时间范围是根据LMF发送的DL PRS的资源配置参数确定的测量间隙MG或下行定位参考信号执行窗口PPW的时间范围;所述对定位参考信号进行处理是指接收基站发送的DL PRS,并进行测量;或者,
所述定位参考信号为上行定位参考信号UL SRS-Pos,所述信号处理时间范围是根据基站发送的UL SRS-Pos的资源配置参数确定的;所述对定位参考信号进行处理是指向基站发送UL SRS-Pos;或者,
所述定位参考信号为直通链路定位参考信号SL PRS,所述终端为接收终 端,所述信号处理时间范围是根据LMF发送的SL PRS的资源配置参数中所指示的MG或PPW的时间范围确定的;所述对定位参考信号进行处理是指接收发送终端发送的SL PRS,并进行测量;或者,
所述定位参考信号为SL PRS,所述终端为发送终端,所述信号处理时间范围是根据基站发送的SL PRS的资源配置参数确定的;所述对定位参考信号进行处理是指向接收终端发送SL PRS。
在一种可选的实施例中,所述通知信令为所述LMF发送的长期演进定位协议LPP信令;或者,
所述通知信令为所述基站发送的无线资源控制RRC信令、媒体接入控制层控制单元MAC CE信令或下行控制信息DCI信令。
第八方面,本公开实施例提供一种基站,所述基站包括:存储器、收发机以及处理器;
所述存储器,用于存储计算机指令;
所述收发机,用于在所述处理器的控制下,接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在有效调整时间窗VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
在一种可选的实施例中,所述通知信令包括所述VAW的配置参数和优先级类型参数;所述优先级类型参数用于指示VAW与DL PRS的优先级关系;或者,
所述通知信令包括预定义准则,所述预定义准则指示所述第一终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述定位参考信号为下行定位参考信号DL PRS、上行定位参考信号UL SRS-Pos或直通链路定位参考信号SL PRS;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述基站包括服务基站和相邻基站。
在一种可选的实施例中,所述通知信令为无线资源控制RRC信令、媒体 接入控制层控制单元MAC CE信令或下行控制信息DCI信令。
第九方面,本公开实施例提供一种定位管理功能实体LMF,所述LMF包括:存储器、收发机以及处理器;
所述存储器,用于存储计算机指令;
所述收发机,用于在所述处理器的控制下收发数据;
所述处理器,用于读取所述存储器中的计算机程序并执行如下步骤:
控制所述收发机接收第一终端发送的所述第一终端进行ATA和/或AFA的时间信息;
基于所述ATA和/或AFA的时间信息,确定所述第一终端的位置。
在一种可选的实施例中,所述处理器,具体用于:
基于接收到的ATA和/或AFA的时间信息,确定所述第一终端相邻两次进行ATA和/或AFA的时间范围;
根据在所述时间范围内获取的所述第一终端的各个定位测量量,确定所述第一终端的位置;所述定位测量量是对所述第一终端对应的定位参考信号进行测量得到的。
在一种可选的实施例中,所述收发机,还可以用于:
接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在有效调整时间窗VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
在一种可选的实施例中,所述通知信令为长期演进定位协议LPP信令。
在一种可选的实施例中,所述通知信令包括所述VAW的配置参数和优先级类型参数;所述优先级类型参数用于指示VAW与DL PRS的优先级关系;或者,
所述通知信令包括预定义准则,所述预定义准则指示所述第一终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的 时间范围。
在一种可选的实施例中,所述定位参考信号为下行定位参考信号DL PRS,所述定位测量量为所述第一终端发送的参考信号时间差RSTD、终端收发时间差、下行到达载波相位值POA、或下行载波相位差PDOA;或者,
所述定位参考信号为上行定位参考信号UL SRS-Pos,所述定位测量量为基站发送的上行相对到达时间RTOA,基站收发时间差、上行POA、或上行PDOA;或者,
所述定位参考信号为直通链路定位参考信号SL PRS,所述第一终端为接收终端,所述定位测量量为第一终端发送的到达时间差TDOA、接收终端的收发时间差、SL POA、或SL PDOA;或者,
所述定位参考信号为SL PRS,所述第一终端为发送终端,所述定位测量量为第一终端的收发时间差。
在一种可选的实施例中,所述定位参考信号为DL PRS时,所述方法还包括:
接收所述第一终端发送的对DL PRS进行测量得到的定位测量量和定位测量量的质量信息。
在一种可选的实施例中,所述定位参考信号为SL PRS,所述第一终端为接收终端时,所述方法还包括:
接收所述第一终端发送的对SL PRS进行测量得到的定位测量量和定位测量量的质量信息。
在一种可选的实施例中,所述质量信息包括信噪比SNR、信号与干扰噪声比SINR或测量误差的方差。
第十方面,本公开实施例提供一种终端定位系统,所述系统包括终端、基站和定位管理功能实体LMF;所述系统为第七方面中任一项所述的终端、所述基站为第八方面中任一项所述的基站;所述LMF为第九方面中所述的LMF。
第十一方面,本公开实施例提供一种计算机可读存储介质,所述存储介 质存储有计算机指令,所述计算机指令被处理器执行时实现如第一方面、第二方面或第三方面中任一项所述的方法。
第二方面至第十一方面中任意一种实现方式所带来的技术效果可参见第一方面的实现方式所带来的技术效果,此处不再赘述。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例适用的终端定位方法的应用场景图;
图2为本公开实施例提供的一种下行定位方法的交互流程图示意图;
图3为本公开实施例提供的一种VAW所在的时间范围与MG或PPW的时间范围不重合的示意图;
图4为本公开实施例提供的一种VAW所在的时间范围与MG或PPW的时间范围部分重合的示意图;
图5为本公开实施例提供的一种Multi-RTT定位中终端进行ATA和/或AFA与终端计算终端收发时间差的关系示意图;
图6为本公开实施例提供的一种上行定位方法的交互流程图示意图;
图7为本公开实施例提供的一种VAW所在的时间范围与终端向基站发送UL SRS-Pos的时间范围不重合的示意图;
图8为本公开实施例提供的一种直通链路定位方法的交互流程图示意图;
图9为本公开实施例提供的另一种直通链路定位方法的交互流程图示意图;
图10为本公开实施例提供的另一种Multi-RTT定位中终端进行ATA和/或AFA与终端计算终端收发时间差的关系示意图;
图11为本公开实施例提供的一种发送终端和接收终端进行ATA和/或 AFA的示意图;
图12为本公开实施例提供的一种终端定位方法的流程示意图;
图13为本公开实施例提供的一种终端定位方法的流程示意图;
图14为本公开实施例提供的一种终端定位方法的流程示意图;
图15为本公开实施例提供的一种终端的结构框图;
图16为本公开实施例提供的一种基站的结构框图;
图17为本公开实施例提供的一种LMF的结构框图;
图18为本公开实施例提供的一种终端的结构示意图;
图19为本公开实施例提供的一种基站的结构示意图;
图20为本公开实施例提供的一种LMF的结构示意图。
具体实施方式
下面结合附图对本公开的具体实施方式进行详细的说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
需要说明的是,本公开实施例中的“第一”、“第二”用于区别类似的对象,而不是用于描述特定的顺序或先后次序。本公开实施例中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例描述的网络架构以及业务场景是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
目前,在5G定位系统中,5G基站和终端采用的晶振存在频率偏差,因此,终端会默认进行ATA和AFA操作。在5G SL定位系统中,V2X-UE会基于接收到的SSB对接收定时和发送定时进行调整,或者发生覆盖内场景到覆盖外场景的切换时,V2X-UE也会默认进行ATA和/或AFA。
在DL-TDOA、UL-TDOA或Multi-RTT定位方法中,终端的ATA和AFA操作将会影响终端的定位精度。
基于此,本公开实施例提供了一种终端定位方法、终端、基站及LMF。其中,终端定位方法包括:终端按照网络侧设备发送的通知信令进行ATA和/或AFA;其中,通知信令包含指示终端进行ATA和/或AFA的指示信息;终端向LMF发送终端进行ATA和/或AFA的时间信息。通过该方法,LMF可以根据终端相邻两次进行ATA和/或AFA的时间范围内获取的各个定位测量量,确定出终端的位置,进而提高终端定位的精度。
图1为本公开实施例适用的一种终端定位系统的结构示意图。本公开实施例应用于终端定位系统中,该终端定位系统至少包含一个终端101、一个基站102和一个LMF103;其中,基站102可以是为终端101提供服务的服务基站,也可以是与终端101的距离小于距离阈值的相邻基站,距离阈值可以是50米,也可以是100米,本公开对此不做限定。
在一种实施例中,基站102或LMF103可以向终端101发送通知信令,该通知信令中包含指示终端101进行ATA和/或AFA的指示信息;终端101在接收到通知信令后,可以按照通知信令进行ATA和/或AFA操作,并将进行ATA和/或AFA的时间信息发送至LMF103,LMF103可以根据终端101相邻两次进行ATA和/或AFA的时间范围内的各个定位测量量,确定终端的位置。
本公开提供的终端定位方法包括下行定位方法、上行定位方法和直通链路定位方法,下述将分别通过具体的实施例对不同的定位方法进行详细说明。
图2示出了本公开实施例提供的一种下行定位方法的交互流程图,该下行定位方法适用于下行定位或Multi-RTT定位。如图2所示,该方法以网络侧设备和终端a为例进行说明,终端a指代任意一个终端。具体地,该方法包括以下步骤:
步骤S201,终端a向网络侧设备发送终端能力报告。
其中,网络侧设备可以是基站,也可以是LMF,基站可以是为终端a提 供服务的服务基站,也可以是终端a的相邻基站;其中,LMF可以是与终端a或基站连接的LMF。
终端能力报告可以用于表征终端a支持在VAW内进行ATA和/或AFA;或者,终端能力报告也可以用于表征终端a支持按照预定义准则进行所述ATA和/或AFA。
步骤S202,网络侧设备向终端a发送通知信令。
在一种实施例中,当网络侧设备为基站时,通知信令可以为基站发送的RRC信令、MAC CE信令或DCI信令;当网络侧设备为LMF时,通知信令可以为LMF发送的LPP信令。
其中,通知信令中包含指示终端a进行ATA和/或AFA的指示信息;指示信息中可以包括VAW配置参数和优先级类型参数,优先级类型参数用于指示VAW与DL PRS的优先级关系;指示信息中也可以包括预定义准则,该预定义准则用于指示终端a在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA,其中,信号处理时间范围是指对定位参考信号进行处理的时间范围。
步骤S203,终端a按照网络侧设备发送的通知信令进行ATA和/或AFA。
在一种可选的实施方式中,终端a按照网络侧设备发送的通知信令进行ATA和/或AFA之前,终端a还可以接收LMF发送的DL PRS的资源配置参数,并根据DL PRS的资源配置参数确定出MG或PPW的时间范围。终端a可以在该时间范围内接收基站发送的DL PRS,并对DL PRS进行测量,得到下行定位测量量。
在一种实施例中,假设通知信令中包含指示终端a进行ATA和/或AFA的VAW配置参数和优先级类型参数,终端a在接收到通知信令后,可以将VAW配置参数所指示的VAW所在的时间范围与根据DL PRS的资源配置参数确定的MG或PPW的时间范围进行比对,判断VAW所在的时间范围与MG或PPW的时间范围是否存在重合。
示例性地,在一种实施例中,若VAW所在的时间范围与MG或PPW的 时间范围不重合,如图3所示,L1为VAW所在的时间范围,T1为VAW的开始时刻,T2为VAW的结束时刻,L2为MG或PPW的时间范围,T3为MG或PPW的开始时刻,T4为MG或PPW的结束时刻,终端a可以在VAW所在的时间范围内,即从T1时刻到T2时刻进行ATA和/或AFA;在MG或PPW的时间范围内,即从T3时刻到T4时刻终端a可以对基站发送的DL PRS进行接收,并对DL PRS进行测量,得到下行定位测量量。
在本公开实施例中,下行定位测量量可以包括RSTD、终端收发时间差、下行POA、或下行PDOA。
在另一种实施例中,若VAW所在的时间范围与MG或PPW的时间范围部分重合或完全重合,如图4所示,L3为VAW所在的时间范围,T5为VAW的开始时刻,T6为VAW的结束时刻,L4为MG或PPW的时间范围,T7为MG或PPW的开始时刻,T8为MG或PPW的结束时刻,T5<T7<T6<T8,即VAW所在的时间范围与MG或PPW的时间范围部分重合,终端a可以根据优先级类型参数,确定VAW与DL PRS的优先级关系,并根据VAW与DL PRS的优先级关系,在VAW所在的时间范围内进行ATA和/或AFA。
示例性地,在一种实施例中,若VAW的优先级高于DL PRS的优先级,终端a可以在VAW所在的时间范围内任意选择一个时刻作为第一时刻,并在第一时刻进行ATA和/或AFA,若在第一时刻,终端a接收到基站发送的DL PRS,即终端a进行ATA和/或AFA与对DL PRS进行处理的时刻和/或正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号发生碰撞,则终端a可以将第一时刻接收到的DL PRS进行丢弃,即终端a可以将该DL PRS作为无效信号。若终端a进行ATA和/或AFA与对DL PRS进行处理的时刻和/或OFDM符号没有发生碰撞,则该DL PRS为有效信号,即终端a可以对接收到的DL PRS进行测量,得到下行定位测量量。
在另一种实施例中,若VAW的优先级低于DL PRS的优先级,假设终端a在MG或PPW的时间范围内的第二时刻接收到基站发送的DL PRS,终端a可以对该DL PRS进行测量,得到下行定位测量量,第二时刻为MG或PPW 的时间范围内的任一时刻。终端a可以在VAW所在的时间范围内除第二时刻之外的任一时刻,进行ATA和/或AFA。在本公开实施例中,当一个DL PRS周期内没有可以进行ATA和/或AFA的时刻时,则该周期为无效周期。
在另一种实施例中,假设通知信令中包含指示终端a进行ATA和/或AFA的预定义准则,终端a在接收到通知信令后,可以根据预定义准则,先对接收到的基站发送的DL PRS进行测量,得到下行定位测量量,然后进行ATA和/或AFA;即终端a在对基站发送的DL PRS进行接收并测量的时间范围内不进行ATA和/或AFA。
示例性地,当定位方法为Multi-RTT定位时,在终端a计算终端收发时间差的时间范围,即终端a对DL PRS进行测量,得到下行定位测量量的时间范围内,终端a不能进行ATA和/或AFA,示例性地,如图5所示,终端a计算终端收发时间差的时间范围为[t1-Δt,t2+Δt],Δt表示余量,t3表示终端a进行ATA和/或AFA的时间范围的开始时刻,t4表示终端a进行ATA和/或AFA的时间范围的结束时刻。
步骤S204,终端a向LMF发送ATA和/或AFA的时间信息。
通过步骤S203,终端a按照通知信令进行ATA和/或AFA后,终端a可以将终端a进行ATA和/或AFA的指示信息和时间信息发送至LMF,其中,指示信息用于指示终端a进行了ATA和/或AFA。
步骤S205,LMF确定终端a的位置。
在一种实施例中,在LMF在对终端a的位置进行确定之前,LMF还可以接收到终端a发送的下行定位测量量,下行定位测量量是终端a在对基站发送的DL PRS进行测量后,发送至LMF的。LMF在终端a相邻两次进行ATA和/或AFA的时间范围内,可能会接收到多个下行定位测量量。
在一种实施例中,在LMF在对终端a的位置进行确定之前,LMF还可以接收到终端a发送的下行定位测量量的质量信息和基站发送的基站位置信息。其中,下行定位测量量的质量信息可以是SNR、SINR或测量误差的方差中的一种或多种。
通过上述方式,LMF可以接收到终端a每次进行ATA和/或AFA之后,发送的进行ATA和/或AFA的时间信息,进而确定终端a相邻两次进行ATA和/或AFA的时间。LMF可以根据在终端a相邻两次进行ATA和/或AFA的时间范围内,接收到的终端a发送的下行定位测量量、下行定位测量量的质量信息和终端a关联的各个基站的位置信息,确定出终端a的位置。
具体地,在一种实施例中,LMF可以根据接收到的下行定位测量量和下行定位测量量的质量信息,采用公式1和公式2确定tk时刻对应的加权处理后的下行定位测量量。其中,tk时刻可以是终端a相邻两次进行ATA和/或AFA的时间范围内的任一时刻。
x(k)=f(xm(k),xm(k-1),xm(k-2),…xm(k-M))  (公式1)
f(n)=a0fm(n)+a1fm(n-1)+a2fm(n-2)+…+aM-1fm(n-M+1)  
(公式2)
其中,x(k)表示在tk时刻加权处理后的下行定位测量量,例如:RSTD和终端收发时间差;xm(i)表示在时刻ti上报的、未经过加权处理的下行定位测量量,i的取值可以为k,k-1,……,k-M;f(n)为加权函数,取决于加权算法;M表示终端相邻两次进行ATA和/或AFA的时间范围内上报的下行定位测量量的个数;{a0,a1,…,aM-1}为加权器参数,且
加权参数可以根据不同的加权器算法和/或定位测量量的质量信息进行确定。例如,当加权器算法为平均值加权算法时,加权参数可以为a0=a1=…=aM-1=1/M;或者加权参数可以为a0=1,a1=…=aM-1=0;或者加权参数可以为aM-1=1,a0=…=aM-2=0;或者加权参数可以为an=1,a0=…=aM-1=0,其中,an对应的下行定位测量量的测量质量最高。
确定在终端a相邻两次进行ATA和/或AFA的时间范围内的各个时刻对应的加权处理后的下行定位测量量之后,LMF可以各个时刻对应的加权处理后的下行定位测量量和各个基站的位置信息,确定出终端a的位置。
图6示出了本公开实施例提供的一种上行定位方法的交互流程图,该上 行定位方法适用于上行定位或Multi-RTT定位;如图6所示,该方法以网络侧设备和终端a为例进行说明,终端a指代任意一个终端。具体地,该方法包括以下步骤:
步骤S601,终端a向网络侧设备发送终端能力报告。
步骤S602,网络侧设备向终端a发送通知信令。
步骤S603,终端a按照网络侧设备发送的通知信令进行ATA和/或AFA。
在一种可选的实施方式中,终端a按照网络侧设备发送的通知信令进行ATA和/或AFA之前,终端a还可以接收到基站发送的UL SRS-Pos的资源配置参数,并根据UL SRS-Pos的资源配置参数确定出终端a向基站发送UL SRS-Pos的时间范围。
在一种实施例中,假设通知信令中包含指示终端a进行ATA和/或AFA的VAW配置参数和优先级类型参数,终端a在接收到通知信令后,可以将VAW配置参数所指示的VAW所在的时间范围与根据UL SRS-Pos的资源配置参数确定出终端a向基站发送UL SRS-Pos的时间范围进行比对,判断VAW所在的时间范围与终端a向基站发送UL SRS-Pos的时间范围是否存在重合。
在一种实施例中,若VAW所在的时间范围与终端a向基站发送UL SRS-Pos的时间范围不重合,如图7所示,时隙#1(slot#1)为VAW所在的时间范围,时隙#2(slot#2)为终端a向基站发送UL SRS-Pos的时间范围;终端a可以在VAW所在的时间范围内,即slot#1内进行ATA和/或AFA;在终端a向基站发送UL SRS-Pos的时间范围内,即slot#2内向基站发送UL SRS-Pos。
在另一种实施例中,若VAW所在的时间范围与终端a向基站发送UL SRS-Pos的时间范围部分重合或完全重合,则终端a可以根据优先级类型参数,确定VAW与UL SRS-Pos的优先级关系,并根据VAW与UL SRS-Pos的优先级关系,在VAW所在的时间范围内进行ATA和/或AFA。
示例性地,在一种实施例中,若VAW的优先级高于UL SRS-Pos的优先级,终端a可以在VAW所在的时间范围内任意选择一个时刻作为第一时刻, 并在第一时刻进行ATA和/或AFA,若在第一时刻,终端a需要向基站发送UL SRS-Pos,即终端a进行ATA和/或AFA与对UL SRS-Pos进行处理的时刻和/或正交频分复用OFDM符号发生碰撞,则终端a将该UL SRS-Pos作为无效信号,即不向基站发送UL SRS-Pos,若终端a进行ATA和/或AFA与对UL SRS-Pos进行处理的时刻和/或正交频分复用OFDM符号没有发生碰撞,则该UL SRS-Pos为有效信号,终端a可以向基站发送UL SRS-Pos。
在另一种实施例中,若VAW的优先级低于UL SRS-Pos的优先级,假设终端a在终端a向基站发送UL SRS-Pos的时间范围内的第二时刻向基站发送UL SRS-Pos,第二时刻为终端a向基站发送UL SRS-Pos的时间范围内的任一时刻。终端a可以在VAW所在的时间范围内除第二时刻之外的任一时刻,进行ATA和/或AFA。在本公开实施例中,当一个UL SRS-Pos周期内没有可以进行ATA和/或AFA的时刻时,则该周期为无效周期。
在另一种实施例中,假设通知信令中包含指示终端a进行ATA和/或AFA的预定义准则,终端a在接收到通知信令后,可以根据预定义准则,先向基站发送UL SRS-Pos,然后进行ATA和/或AFA;即终端a在向基站发送UL SRS-Pos的时刻不进行ATA和/或AFA。
步骤S604,基站对UL SRS-Pos进行测量,得到上行定位测量量。
通过步骤S603,基站在接收到终端a发送的UL SRS-Pos后,可以对UL SRS-Pos进行测量,得到上行定位测量量。上行定位测量量可以包括RTOA,基站收发时间差、上行POA、或上行PDOA。
步骤S605,基站向LMF发送上行定位测量量。
步骤S606,终端a向LMF发送ATA和/或AFA的时间信息。
通过步骤S603,终端a按照通知信令进行ATA和/或AFA后,终端a可以将终端a进行ATA和/或AFA的指示信息时间信息发送至LMF。
步骤S607,LMF确定终端a的位置。
在一种实施例中,在LMF在对终端a的位置进行确定之前,LMF还可以接收到基站发送的基站位置信息。
通过上述方式,LMF可以接收到终端a每次进行ATA和/或AFA之后,发送的进行ATA和/或AFA的时间信息,进而确定终端a相邻两次进行ATA和/或AFA的时间。LMF可以根据在终端a相邻两次进行ATA和/或AFA的时间范围内,接收到的基站发送的上行定位测量量和终端a关联的各个基站的位置信息,确定出终端a的位置。
示例性地,LMF可以根据公式1和公式2确定出终端a的位置,具体实施方式与上述下行定位方法的步骤相似,此处不再赘述。
图8示出了本公开实施例提供的一种直通链路定位方法的交互流程图,该方法以网络侧设备和接收终端a为例进行说明,接收终端a指代任意一个接收终端。如图8所示,该方法包括以下步骤:
步骤S801,接收终端a向网络侧设备发送终端能力报告。
步骤S802,网络侧设备向接收终端a发送通知信令。
步骤S803,接收终端a按照网络侧设备发送的通知信令进行ATA和/或AFA。
在一种可选的实施方式中,接收终端a按照网络侧设备发送的通知信令进行ATA和/或AFA之前,接收终端a还可以接收到LMF发送的SL PRS的资源配置参数,并根据SL PRS的资源配置参数确定出MG或PPW的时间范围。接收终端a可以在该时间范围内接收发送终端b发送的SL PRS,并对SL PRS进行测量,得到直通链路定位测量量。
在一种实施例中,假设通知信令中包含指示接收终端a进行ATA和/或AFA的VAW配置参数和优先级类型参数,接收终端a在接收到通知信令后,可以将VAW配置参数所指示的VAW所在的时间范围与根据SL PRS的资源配置参数确定的MG或PPW的时间范围进行比对,判断VAW所在的时间范围与MG或PPW的时间范围是否存在重合。
在一种实施例中,若VAW所在的时间范围与MG或PPW的时间范围不重合,接收终端a可以在VAW所在的时间范围内,进行ATA和/或AFA;在MG或PPW的时间范围内,对发送终端b发送的SL PRS进行接收,并对SL  PRS进行测量,测到直通链路定位测量量。
在本公开实施例中,直通链路定位测量量可以包括TDOA、接收终端的终端收发时间差、SL POA、或SL PDOA。
在另一种实施例中,若VAW所在的时间范围与MG或PPW的时间范围部分重合或完全重合,则接收终端a可以根据优先级类型参数,确定VAW与DL PRS的优先级关系,并根据VAW与SL PRS的优先级关系,在VAW所在的时间范围内进行ATA和/或AFA。
示例性地,在一种实施例中,若VAW的优先级高于SL PRS的优先级,接收终端a可以在VAW所在的时间范围内任意选择一个时刻作为第一时刻,并在第一时刻进行ATA和/或AFA,若在第一时刻,接收终端a接收到发送终端b发送的DL PRS,即接收终端a进行ATA和/或AFA与对SL PRS进行处理的时刻和/或正交频分复用OFDM符号发生碰撞,则接收终端a可以将第一时刻对应的SL PRS进行丢弃,即接收终端a可以将该SL PRS作为无效信号。若接收终端a进行ATA和/或AFA与对SL PRS进行处理的时刻和/或正交频分复用OFDM符号没有发生碰撞,则该SL PRS为有效信号,即接收终端a可以对接收到的发送终端b发送的SL PRS进行测量,得到直通链路定位测量量。
在另一种实施例中,若VAW的优先级低于SL PRS的优先级,假设接收终端a在MG或PPW的时间范围内的第二时刻接收到发送终端b发送的SL PRS,接收终端a可以对该SL PRS进行测量,得到直通链路定位测量量,第二时刻为MG或PPW的时间范围内的任一时刻。接收终端a可以在VAW所在的时间范围内除第二时刻之外的任一时刻,进行ATA和/或AFA。在本公开实施例中,当一个SL PRS周期内没有可以进行ATA和/或AFA的时刻时,则该周期为无效周期。
在另一种实施例中,假设通知信令中包含指示接收终端a进行ATA和/或AFA的预定义准则,接收终端a在接收到通知信令后,可以根据预定义准则,先对接收的SL PRS进行测量,得到直通链路定位测量量,然后进行ATA 和/或AFA;即接收终端a在对发送终端b发送的SL PRS进行接收并测量的时间范围内不进行ATA和/或AFA。
步骤S804,接收终端a向LMF发送ATA和/或AFA的时间信息。
通过步骤S803,接收终端a按照通知信令进行ATA和/或AFA后,接收终端a可以将接收终端a进行ATA和/或AFA的指示信息和时间信息发送至LMF,其中,指示信息用于指示接收终端a进行了ATA和/或AFA。
步骤S805,LMF确定接收终端a的位置。
在一种实施例中,在LMF在对接收终端a的位置进行确定之前,LMF还可以接收到接收终端a发送的直通链路定位测量量,直通链路定位测量量是接收终端a在对发送终端b发送的SL PRS进行测量后,发送至LMF的。LMF在接收终端a相邻两次进行ATA和/或AFA的时间范围内,可能会接收到多个直通链路定位测量量。
在一种实施例中,在LMF在对接收终端a的位置进行确定之前,LMF还可以接收到接收终端a发送的直通链路定位测量量的质量信息和基站发送的基站位置信息。其中,直通链路定位测量量的质量信息可以是SNR、SINR或测量误差的方差中的一种或多种。
通过上述方式,LMF可以接收到接收终端a每次进行ATA和/或AFA之后,发送的进行ATA和/或AFA的时间信息,进而确定接收终端a相邻两次进行ATA和/或AFA的时间。LMF可以根据在接收终端a相邻两次进行ATA和/或AFA的时间范围内,接收到的接收终端a发送的下行定位测量量、下行定位测量量的质量信息和接收终端a关联的各个基站的位置信息,确定出接收终端a的位置。
示例性地,LMF可以根据公式1和公式2确定出终端a的位置,具体实施方式与上述下行定位方法的步骤相似,此处不再赘述。
图9示出了本公开实施例提供的另一种直通链路定位方法的交互流程图,该方法以网络侧设备和发送终端b为例进行说明,发送终端b指代任意一个发送终端。如图9所示,该方法包括以下步骤:
步骤S901,发送终端b向网络侧设备发送终端能力报告。
步骤S902,网络侧设备向发送终端b发送通知信令。
步骤S903,发送终端b按照网络侧设备发送的通知信令进行ATA和/或AFA。
在一种可选的实施方式中,发送终端b按照网络侧设备发送的通知信令进行ATA和/或AFA之前,发送终端b还可以接收到基站发送的SL PRS的资源配置参数,并根据SL PRS的资源配置参数确定出发送终端b向接收终端a发送SL PRS的时间范围。
在一种实施例中,假设通知信令中包含指示发送终端b进行ATA和/或AFA的VAW配置参数和优先级类型参数,发送终端b在接收到通知信令后,可以将VAW配置参数所指示的VAW所在的时间范围与根据SL PRS的资源配置参数确定出发送终端b向接收终端a发送SL PRS的时间范围进行比对,判断VAW所在的时间范围与发送终端b向接收终端a发送SL PRS的时间范围是否存在重合。
在一种实施例中,若VAW所在的时间范围与发送终端b向接收终端a发送SL PRS的时间范围不重合,发送终端b可以在VAW所在的时间范围内进行ATA和/或AFA;在发送终端b向接收终端a发送SL PRS的时间范围内,向接收终端a发送SL PRS。
在另一种实施例中,若VAW所在的时间范围与发送终端b向接收终端a发送SL PRS的时间范围部分重合或完全重合,则发送终端b可以根据优先级类型参数,确定VAW与SL PRS的优先级关系,并根据VAW与SL PRS的优先级关系,在VAW所在的时间范围内进行ATA和/或AFA。
示例性地,在一种实施例中,若VAW的优先级高于SL PRS的优先级,发送终端b可以在VAW所在的时间范围内任意选择一个时刻作为第一时刻,并在第一时刻进行ATA和/或AFA,若在第一时刻,发送终端b需要向接收终端a发送SL PRS,即发送终端b进行ATA和/或AFA与对SL PRS进行处理的时刻和/或正交频分复用OFDM符号发生碰撞,则发送终端b可以将该SL  PRS作为无效信号,即不向接收终端a发送SL PRS,若发送终端b进行ATA和/或AFA与对UL SRS-Pos进行处理的时刻和/或正交频分复用OFDM符号没有发生碰撞,则该SL PRS为有效信号,即发送终端b可以向接收终端a发送SL PRS。
在另一种实施例中,若VAW的优先级低于SL PRS的优先级,假设发送终端b在发送终端b向接收终端a发送SL PRS的时间范围内的第二时刻向接收终端a发送SL PRS,第二时刻为发送终端b向接收终端a发送SL PRS的时间范围内的任一时刻。发送终端b可以在VAW所在的时间范围内除第二时刻之外的任一时刻,进行ATA和/或AFA。在本公开实施例中,当一个SL PRS周期内没有可以进行ATA和/或AFA的时刻时,则该周期为无效周期。
在另一种实施例中,假设通知信令中包含指示发送终端b进行ATA和/或AFA的预定义准则,发送终端b在接收到通知信令后,可以按照预定义准则,先向接收终端a发送SL PRS,然后进行ATA和/或AFA;即发送终端b在向接收终端a发送SL PRS的时刻不进行ATA和/或AFA。
步骤S904,接收终端a对SL PRS进行测量,得到直通链路定位测量量。
通过步骤S903,接收终端a在接收到发送终端b发送的SL PRS后,可以对SL PRS进行测量,得到直通链路定位测量量。
步骤S905,接收终端a向LMF发送直通链路定位测量量。
步骤S906,发送终端b向LMF发送ATA和/或AFA的时间信息。
通过步骤S903,发送终端b按照通知信令进行ATA和/或AFA后,发送终端b可以将发送终端b进行ATA和/或AFA的指示信息时间信息发送至LMF。
步骤S907,LMF确定发送终端b的位置。
在一种实施例中,在LMF在对发送终端b的位置进行确定之前,LMF还可以接收到基站发送的基站位置信息。
通过上述方式,LMF可以接收到发送终端b每次进行ATA和/或AFA之后,发送的进行ATA和/或AFA的时间信息,进而确定发送终端b相邻两次进行ATA和/或AFA的时间。LMF可以根据在发送终端b相邻两次进行ATA 和/或AFA的时间范围内,接收到的接收终端a发送的上行定位测量量和发送终端b关联的各个基站的位置信息,确定出发送终端b的位置。
示例性地,LMF可以根据公式1和公式2确定出终端a的位置,具体实施方式与上述下行定位方法的步骤相似,此处不再赘述。
在本公开实施例中,图8和图9所示的直通链路定位方法,也适用于Multi-RTT定位。当定位方法为Multi-RTT定位时,在接收终端a和发送终端b计算终端收发时间差的时间范围,即接收终端a对SL PRS进行测量,得到直通链路定位测量量的时间范围内,接收终端a和发送终端b均不能进行ATA和/或AFA。示例性地,如图10所示,[t5-Δt1,t6+Δt1]为接收终端a计算终端收发时间差的时间范围,t9表示接收终端a进行ATA和/或AFA的时间范围的开始时刻,t10表示接收终端a进行ATA和/或AFA的时间范围的结束时刻,Δt1表示余量,且Δt1≥0;[t7-Δt2,t8+Δt2]为发送终端b计算终端收发时间差的时间范围,t11表示发送终端b进行ATA和/或AFA的时间范围的开始时刻,t12表示发送终端b进行ATA和/或AFA的时间范围的结束时刻,Δt2表示余量,且Δt2≥0,接收终端a和发送终端b之间SL PRS的RTT可以用公式3表示。
RTT=T1+T2=(t5-t7)+(t8-t6)=(t5-t6)+(t8-t7)  (公式3)
在一种实施例中,在图8和图9所示的直通链路定位方法中,发送终端b和接收终端a是相对而言的,示例性地,UE1可以向UE2发送SL PRS,也可以接受UE2发送的SL PRS,因此,对于UE2而言,UE1既可以是发送终端,也可以是接收终端。
在该实施例中,可以将发送终端b看作接收终端a的基站。示例性地,如图11所示,当UE2为发送终端,UE1为接收终端时,假设5ms的SL PRS周期内包含4个连续的SL slot,UE2可以指示UE1在第一个SL slot,即slot#3(时隙#3)进行ATA和/或AFA操作,UE2可以在第二个SL slot,即slot#4(时隙#4)进行ATA和/或AFA操作;UE1可以在第三个SL slot,即slot#5(时隙#5)内向UE2发送SRS-Pos1;UE2可以在第四个SL slot,即slot#6(时 隙#6)内向UE1发送SRS-Pos2。从而可以实现在终端对SL PRS进行处理的时间范围内,不进行ATA和/或AFA操作。
基于同一发明构思,本公开提供的实施例中,提供了一种终端定位方法的流程图。该方法由终端执行,如图12所示,该方法包括以下步骤:
步骤S1201,按照网络侧设备发送的通知信令进行ATA和/或AFA。
通知信令包含指示终端进行ATA和/或AFA的指示信息;
步骤S1202,发送终端进行ATA和/或AFA的时间信息。
ATA和/或AFA的时间信息用于确定终端的位置。
基于同一发明构思,本公开提供的实施例中,提供了一种终端定位方法的流程图。该方法由基站执行,如图13所示,该方法包括以下步骤:
步骤S1301,接收第一终端发送的终端能力报告。
终端能力报告表征第一终端支持在有效调整时间窗VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
步骤S1302,发送通知信令。
通知信令用于指示第一终端进行ATA和/或AFA。
基于同一发明构思,本公开提供的实施例中,提供了一种终端定位方法的流程图。该方法由LMF执行,如图14所示,该方法包括以下步骤:
步骤S1401,接收第一终端发送的第一终端进行ATA和/或AFA的时间信息;
步骤S1402,基于ATA和/或AFA的时间信息,确定第一终端的位置。
基于同一发明构思,本公开提供的实施例中,提供了一种终端,如图15所示,包括调整单元1501和第一发送单元1502;其中:
调整单元1501,按照网络侧设备发送的通知信令进行ATA和/或AFA;所述通知信令包含指示所述终端进行ATA和/或AFA的指示信息;
第一发送单元1502,向所述LMF发送所述终端进行ATA和/或AFA的时间信息;所述ATA和/或AFA的时间信息用于确定所述终端的位置。
在一种可选的实施例中,在调整单元1501之前,还可以包括处理单元, 所述处理单元,具体用于:
向所述网络侧设备发送所述终端支持在有效调整时间窗VAW内,进行ATA和/或AFA的报告,并接收所述网络侧设备发送的所述通知信令;或者,
向所述网络侧设备发送所述终端支持按照预定义准则进行所述ATA和/或AFA的报告,并接收所述网络侧设备发送的所述通知信令。
在一种可选的实施例中,所述调整单元1501,具体用于:
若所述VAW配置参数所指示的VAW所在的时间范围与信号处理时间范围不重合,则在VAW所在的时间范围内进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述调整单元1501,具体用于:
若所述VAW配置参数所指示的VAW所在的时间范围与信号处理时间范围部分重合或完全重合,则根据VAW与定位参考信号的优先级关系,在VAW所在的时间范围内进行ATA和/或AFA。
在一种可选的实施例中,所述调整单元1501,具体用于:
若VAW的优先级高于定位参考信号的优先级,则在第一时刻进行ATA和/或AFA,所述第一时刻为所述VAW所在的时间范围内的任一时刻;所述第一时刻的定位参考信号被丢弃;
若VAW的优先级低于定位参考信号的优先级,则在VAW所在的时间范围内除第二时刻之外的任一时刻,进行ATA和/或AFA;所述第二时刻为所述终端对定位参考信号进行处理的时刻。
在一种可选的实施例中,所述通知信令包含的指示信息包括预定义准则;所述预定义准则指示所述终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述定位参考信号为下行定位参考信号DL PRS,所述信号处理时间范围是根据LMF发送的DL PRS的资源配置参数确定的测量间隙MG或下行定位参考信号执行窗口PPW的时间范围;所述对定位参考 信号进行处理是指接收基站发送的DL PRS,并进行测量;或者,
所述定位参考信号为上行定位参考信号UL SRS-Pos,所述信号处理时间范围是根据基站发送的UL SRS-Pos的资源配置参数确定的;所述对定位参考信号进行处理是指向基站发送UL SRS-Pos;或者,
所述定位参考信号为直通链路定位参考信号SL PRS,所述终端为接收终端,所述信号处理时间范围是根据LMF发送的SL PRS的资源配置参数中所指示的MG或PPW的时间范围确定的;所述对定位参考信号进行处理是指接收发送终端发送的SL PRS,并进行测量;或者,
所述定位参考信号为SL PRS,所述终端为发送终端,所述信号处理时间范围是根据基站发送的SL PRS的资源配置参数确定的;所述对定位参考信号进行处理是指向接收终端发送SL PRS。
在一种可选的实施例中,所述通知信令为所述LMF发送的长期演进定位协议LPP信令;或者,
所述通知信令为所述基站发送的无线资源控制RRC信令、媒体接入控制层控制单元MAC CE信令或下行控制信息DCI信令。
示例性地,网络侧设备可以但不限于是基站或者是LMF等实体或设备;
基于同一发明构思,本公开提供的实施例中,提供了一种基站,如图16所示,包括第一接收单元1601和第二发送单元1602;其中:
第一接收单元1601,接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在有效调整时间窗VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
第二发送单元1602,向第一终端发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
在一种可选的实施例中,所述通知信令包括所述VAW的配置参数和优先级类型参数;所述优先级类型参数用于指示VAW与DL PRS的优先级关系;或者,
所述通知信令包括预定义准则,所述预定义准则指示所述第一终端在信 号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述定位参考信号为下行定位参考信号DL PRS、上行定位参考信号UL SRS-Pos或直通链路定位参考信号SL PRS;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述基站包括服务基站和相邻基站。
在一种可选的实施例中,所述通知信令为无线资源控制RRC信令、媒体接入控制层控制单元MAC CE信令或下行控制信息DCI信令。
基于同一发明构思,本公开提供的实施例中,提供了一种LMF,如图17所示,包括第二接收单元1701和确定单元1702;其中:
第二接收单元1701,接收第一终端发送的所述第一终端进行ATA和/或AFA的时间信息;
确定单元1702,基于所述ATA和/或AFA的时间信息,确定所述第一终端的位置。
在一种可选的实施例中,所述确定单元1702,具体用于:
基于接收到的ATA和/或AFA的时间信息,确定所述第一终端相邻两次进行ATA和/或AFA的时间范围;
根据在所述时间范围内获取的所述第一终端的各个定位测量量,确定所述第一终端的位置;所述定位测量量是对所述第一终端对应的定位参考信号进行测量得到的。
在一种可选的实施例中,所述第二接收单元1701之前,还可以包括第二处理单元,所述第二处理单元具体用于:
接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在有效调整时间窗VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
向所述第一终端发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
在一种可选的实施例中,所述通知信令为长期演进定位协议LPP信令。
在一种可选的实施例中,所述通知信令包括所述VAW的配置参数和优先级类型参数;所述优先级类型参数用于指示VAW与DL PRS的优先级关系;或者,
所述通知信令包括预定义准则,所述预定义准则指示所述第一终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述定位参考信号为DL PRS,所述定位测量量为所述第一终端发送的RSTD、终端收发时间差、下行POA、或下行PDOA;或者,
所述定位参考信号为UL SRS-Pos,所述定位测量量为基站发送的上行RTOA,基站收发时间差、上行POA、或上行PDOA;或者,
所述定位参考信号为直SL PRS,所述第一终端为接收终端,所述定位测量量为第一终端发送的TDOA、接收终端的收发时间差、SL POA、或SL PDOA;或者,
所述定位参考信号为SL PRS,所述第一终端为发送终端,所述定位测量量为第一终端的收发时间差。
在一种可选的实施例中,所述定位参考信号为DL PRS时,所述方法还包括第三接收单元,所述第三接收单元具体用于:
接收所述第一终端发送的对DL PRS进行测量得到的定位测量量和定位测量量的质量信息。
在一种可选的实施例中,所述定位参考信号为SL PRS时,所述方法还包括第四接收单元,所述第四接收单元具体用于:
接收所述第一终端发送的对SL PRS进行测量得到的定位测量量和定位测量量的质量信息。
在一种可选的实施例中,所述质量信息包括SNR、SINR或测量误差的方差。
基于相同的技术构思,本公开实施例还提供了一种终端。该终端能够执行上述实施例中实现的任一项终端定位方法。
图18示出了本公开实施例提供的该终端的结构示意图,即示出了终端的另一结构示意图。如图18所示,该终端包括处理器1801、存储器1802和收发机1803。
处理器1801负责管理总线架构和通常的处理,存储器1802可以存储处理器1801在执行操作时所使用的数据。收发机1803用于在处理器1801的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1801代表的一个或多个处理器和存储器1802代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1801负责管理总线架构和通常的处理,存储器1802可以存储处理器1801在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器1801中,或者由处理器1801实现。在实现过程中,信号处理流程的各步骤可以通过处理器1801中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1801可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1802,处理器1801读取存储器1802中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1801,用于读取存储器1802中的计算机指令,当处理器 1801执行所述计算机指令时实现:
按照网络侧设备发送的通知信令进行ATA和/或AFA;所述通知信令包含指示所述终端进行ATA和/或AFA的指示信息;
控制收发机向所述LMF发送所述终端进行ATA和/或AFA的时间信息;所述ATA和/或AFA的时间信息用于确定所述终端的位置。
在一种可选的实施例中,所述收发机1803,具体用于:
向所述网络侧设备发送所述终端支持在有效调整时间窗VAW内,进行ATA和/或AFA的报告;或者,
向所述网络侧设备发送所述终端支持按照预定义准则进行所述ATA和/或AFA的报告;
接收所述网络侧设备发送的所述通知信令。
在一种可选的实施例中,所述处理器1801,具体用于:
若所述VAW配置参数所指示的VAW所在的时间范围与信号处理时间范围不重合,则在VAW所在的时间范围内进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述处理器1801,具体用于:
若所述VAW配置参数所指示的VAW所在的时间范围与信号处理时间范围部分重合或完全重合,则根据VAW与定位参考信号的优先级关系,在VAW所在的时间范围内进行ATA和/或AFA。
在一种可选的实施例中,所述处理器1801,具体用于:
若VAW的优先级高于定位参考信号的优先级,则在第一时刻进行ATA和/或AFA,所述第一时刻为所述VAW所在的时间范围内的任一时刻;
若VAW的优先级低于定位参考信号的优先级,则在VAW所在的时间范围内除第二时刻之外的任一时刻,进行ATA和/或AFA;所述第二时刻为所述终端对定位参考信号进行处理的时刻。
在一种可选的实施例中,所述通知信令包含的指示信息包括预定义准则;所述预定义准则指示所述终端在信号处理时间范围内不进行ATA和/或AFA, 在对定位参考信号进行处理之后,进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述定位参考信号为DL PRS,所述信号处理时间范围是根据LMF发送的DL PRS的资源配置参数确定的MG或PPW的时间范围;所述对定位参考信号进行处理是指接收基站发送的DL PRS,并进行测量;或者,
所述定位参考信号为UL SRS-Pos,所述信号处理时间范围是根据基站发送的UL SRS-Pos的资源配置参数确定的;所述对定位参考信号进行处理是指向基站发送UL SRS-Pos;或者,
所述定位参考信号为SL PRS,所述终端为接收终端,所述信号处理时间范围是根据LMF发送的SL PRS的资源配置参数中所指示的MG或PPW的时间范围确定的;所述对定位参考信号进行处理是指接收发送终端发送的SL PRS,并进行测量;或者,
所述定位参考信号为SL PRS,所述终端为发送终端,所述信号处理时间范围是根据基站发送的SL PRS的资源配置参数确定的;所述对定位参考信号进行处理是指向接收终端发送SL PRS。
在一种可选的实施例中,所述通知信令为所述LMF发送的LPP信令;或者,
所述通知信令为所述基站发送的RRC信令、元MAC CE信令或DCI信令。
示例性地,网络侧设备可以但不限于是基站或者是LMF等实体或设备;
基于相同的技术构思,本公开实施例还提供了一种基站。该基站能够执行上述实施例中实现的任一项终端定位方法。
图19示出了本公开实施例提供的该基站的结构示意图,即示出了网络侧设备的另一结构示意图。如图19所示,该网络侧设备包括处理器1901、存储器1902和收发机1903。
处理器1901负责管理总线架构和通常的处理,存储器1902可以存储处 理器1901在执行操作时所使用的数据。收发机1903用于在处理器1901的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1901代表的一个或多个处理器和存储器1902代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1901负责管理总线架构和通常的处理,存储器1902可以存储处理器1901在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器1901中,或者由处理器1901实现。在实现过程中,信号处理流程的各步骤可以通过处理器1901中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1901可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1902,处理器1901读取存储器1902中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1901,用于读取存储器1902中的计算机程序,当处理器1901执行所述计算机程序时实现:
控制收发机1903接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在有效调整时间窗VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
向第一终端发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
在一种可选的实施例中,所述通知信令包括所述VAW的配置参数和优先级类型参数;所述优先级类型参数用于指示VAW与DL PRS的优先级关系;或者,
所述通知信令包括预定义准则,所述预定义准则指示所述第一终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述定位参考信号为DL PRS、UL SRS-Pos或SL PRS。
在一种可选的实施例中,所述基站包括服务基站和相邻基站。
在一种可选的实施例中,所述通知信令为RRC信令、MAC CE信令或DCI信令。
基于相同的技术构思,本公开实施例还提供了一种LMF。该LMF能够执行上述实施例中实现的任一项终端定位方法。
图20示出了本公开实施例提供的该LMF的结构示意图,即示出了LMF的另一结构示意图。如图20所示,该LMF包括处理器2001、存储器2002和收发机2003。
处理器2001负责管理总线架构和通常的处理,存储器2002可以存储处理器2001在执行操作时所使用的数据。收发机2003用于在处理器2001的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器2001代表的一个或多个处理器和存储器2002代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器2001负责管理总线架构和通常的处理,存储器2002可以存储处理器2001在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器2001中,或者由处理器2001实现。在实现过程中,信号处理流程的各步骤可以通过处理器2001中的硬件的集成逻辑电路或者软件形式的指令完成。处理器2001可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器 件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2002,处理器2001读取存储器2002中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器2001,用于读取存储器2002中的计算机程序,当处理器2001执行所述计算机程序时实现:
控制所述收发机2003接收第一终端发送的所述第一终端进行ATA和/或AFA的时间信息;
基于所述ATA和/或AFA的时间信息,确定所述第一终端的位置。
在一种可选的实施例中,所述处理器2001,具体用于:
基于接收到的ATA和/或AFA的时间信息,确定所述第一终端相邻两次进行ATA和/或AFA的时间范围;
根据在所述时间范围内获取的所述第一终端的各个定位测量量,确定所述第一终端的位置;所述定位测量量是对所述第一终端对应的定位参考信号进行测量得到的。
在一种可选的实施例中,所述收发机2003,还可以用于:
接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在有效调整时间窗VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
在一种可选的实施例中,所述通知信令为长期演进定位协议LPP信令。
在一种可选的实施例中,所述通知信令包括所述VAW的配置参数和优先级类型参数;所述优先级类型参数用于指示VAW与DL PRS的优先级关系; 或者,
所述通知信令包括预定义准则,所述预定义准则指示所述第一终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
在一种可选的实施例中,所述定位参考信号为下行定位参考信号DL PRS,所述定位测量量为所述第一终端发送的参考信号时间差RSTD、终端收发时间差、下行到达载波相位值POA、或下行载波相位差PDOA;或者,
所述定位参考信号为上行定位参考信号UL SRS-Pos,所述定位测量量为基站发送的上行相对到达时间RTOA,基站收发时间差、上行POA、或上行PDOA;或者,
所述定位参考信号为直通链路定位参考信号SL PRS,所述第一终端为接收终端,所述定位测量量为第一终端发送的到达时间差TDOA、接收终端的收发时间差、SL POA、或SL PDOA;或者,
所述定位参考信号为SL PRS,所述第一终端为发送终端,所述定位测量量为第一终端的收发时间差。
在一种可选的实施例中,所述处理器2001,还可以用于:
接收所述第一终端发送的对DL PRS进行测量得到的定位测量量和定位测量量的质量信息。
在一种可选的实施例中,所述处理器2001,还可以用于:
接收所述第一终端发送的对SL PRS进行测量得到的定位测量量和定位测量量的质量信息。
在一种可选的实施例中,所述质量信息包括信噪比SNR、信号与干扰噪声比SINR或测量误差的方差。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (48)

  1. 一种终端定位方法,其中,应用于终端,所述方法包括:
    按照网络侧设备发送的通知信令进行自动定时偏差控制ATA和/或自动定时偏差控制AFA;所述通知信令包含指示所述终端进行ATA和/或AFA的指示信息;
    发送所述终端进行ATA和/或AFA的时间信息;所述ATA和/或AFA的时间信息用于确定所述终端的位置。
  2. 根据权利要求1所述的方法,其中,所述按照网络侧设备发送的通知信令进行自动定时偏差控制ATA和/或自动定时偏差控制AFA之前,所述方法还包括:
    向所述网络侧设备发送所述终端支持在有效调整时间窗VAW内,进行ATA和/或AFA的报告,并接收所述网络侧设备发送的所述通知信令;或者,
    向所述网络侧设备发送所述终端支持按照预定义准则进行所述ATA和/或AFA的报告,并接收所述网络侧设备发送的所述通知信令。
  3. 根据权利要求2所述的方法,其中,所述通知信令包含的指示信息包括VAW配置参数;所述按照网络侧设备发送的通知信令进行ATA和/或AFA,包括:
    若所述VAW配置参数所指示的VAW所在的时间范围与信号处理时间范围不重合,则在VAW所在的时间范围内进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
  4. 根据权利要求3所述的方法,其中,所述通知信令包含的指示信息还包括优先级类型参数;所述优先级类型参数用于指示VAW与定位参考信号的优先级关系;所述按照网络侧设备发送的通知信令进行ATA和/或AFA,还包括:
    若所述VAW配置参数所指示的VAW所在的时间范围与所述信号处理时间范围部分重合或完全重合,则根据VAW与定位参考信号的优先级关系,在 VAW所在的时间范围内进行ATA和/或AFA。
  5. 根据权利要求4所述的方法,其中,所述根据VAW与定位参考信号的优先级关系,在VAW所在的时间范围内进行ATA和/或AFA,包括:
    若VAW的优先级高于定位参考信号的优先级,则在第一时刻进行ATA和/或AFA,所述第一时刻为所述VAW所在的时间范围内的任一时刻;
    若VAW的优先级低于定位参考信号的优先级,则在VAW所在的时间范围内除第二时刻之外的任一时刻,进行ATA和/或AFA;所述第二时刻为所述终端对定位参考信号进行处理的时刻。
  6. 根据权利要求2所述的方法,其中,所述通知信令包含的指示信息包括预定义准则;所述预定义准则指示所述终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
  7. 根据权利要求3~6中任一项所述的方法,其中,所述定位参考信号为下行定位参考信号DL PRS,所述信号处理时间范围是根据LMF发送的DL PRS的资源配置参数确定的测量间隙MG或下行定位参考信号执行窗口PPW的时间范围;所述对定位参考信号进行处理是指接收基站发送的DL PRS,并进行测量;或者,
    所述定位参考信号为上行定位参考信号UL SRS-Pos,所述信号处理时间范围是根据基站发送的UL SRS-Pos的资源配置参数确定的;所述对定位参考信号进行处理是指向基站发送UL SRS-Pos;或者,
    所述定位参考信号为直通链路定位参考信号SL PRS,所述终端为接收终端,所述信号处理时间范围是根据LMF发送的SL PRS的资源配置参数中所指示的MG或PPW的时间范围确定的;所述对定位参考信号进行处理是指接收发送终端发送的SL PRS,并进行测量;或者,
    所述定位参考信号为SL PRS,所述终端为发送终端,所述信号处理时间范围是根据基站发送的SL PRS的资源配置参数确定的;所述对定位参考信号进行处理是指向接收终端发送SL PRS。
  8. 根据权利要求1~6中任一项所述的方法,其中,所述通知信令为定位管理功能实体LMF发送的长期演进定位协议LPP信令;或者,
    所述通知信令为所述基站发送的无线资源控制RRC信令、媒体接入控制层控制单元MAC CE信令或下行控制信息DCI信令。
  9. 一种终端定位方法,其中,应用于基站,所述方法包括:
    接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
    发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
  10. 根据权利要求9所述的方法,其中,所述通知信令包括所述VAW的配置参数和优先级类型参数;所述优先级类型参数用于指示VAW与DL PRS的优先级关系;或者,
    所述通知信令包括预定义准则,所述预定义准则指示所述第一终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述定位参考信号为DL PRS、UL SRS-Pos或SL PRS;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
  11. 根据权利要求9或10所述的方法,其中,所述基站包括服务基站和相邻基站。
  12. 根据权利要求9或10所述的方法,其中,所述通知信令为RRC信令、MAC CE信令或DCI信令。
  13. 一种终端定位方法,其中,应用于LMF,所述方法包括:
    接收第一终端发送的所述第一终端进行ATA和/或AFA的时间信息;
    基于所述ATA和/或AFA的时间信息,确定所述第一终端的位置。
  14. 根据权利要求13所述的方法,其中,所述基于所述ATA和/或AFA的时间信息,确定所述第一终端的位置,包括:
    基于接收到的ATA和/或AFA的时间信息,确定所述第一终端相邻两次进行ATA和/或AFA的时间范围;
    根据在所述时间范围内获取的所述第一终端的各个定位测量量,确定所述第一终端的位置;所述定位测量量是对所述第一终端对应的定位参考信号进行测量得到的。
  15. 根据权利要求13所述的方法,其中,所述接收第一终端发送的所述第一终端进行ATA和/或AFA的时间信息之前,所述方法还包括:
    接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
    发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
  16. 根据权利要求15所述的方法,其中,所述通知信令为LPP信令。
  17. 根据权利要求15所述的方法,其中,所述通知信令包括所述VAW的配置参数和优先级类型参数;所述优先级类型参数用于指示VAW与DL PRS的优先级关系;或者,
    所述通知信令包括预定义准则,所述预定义准则指示所述第一终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
  18. 根据权利要求17所述的方法,其中,所述定位参考信号为DL PRS,所述定位测量量为所述第一终端发送的参考信号时间差RSTD、终端收发时间差、下行到达载波相位值POA、或下行载波相位差PDOA;或者,
    所述定位参考信号为UL SRS-Pos,所述定位测量量为基站发送的上行相对到达时间RTOA,基站收发时间差、上行POA、或上行PDOA;或者,
    所述定位参考信号为SL PRS,所述第一终端为接收终端,所述定位测量量为第一终端发送的到达时间差TDOA、接收终端的收发时间差、SL POA、或SL PDOA;或者,
    所述定位参考信号为SL PRS,所述第一终端为发送终端,所述定位测量量为第一终端的收发时间差。
  19. 根据权利要求18所述的方法,其中,所述定位参考信号为DL PRS时,所述方法还包括:
    接收所述第一终端发送的对DL PRS进行测量得到的定位测量量和定位测量量的质量信息。
  20. 根据权利要求18所述的方法,其中,所述定位参考信号为SL PRS,所述第一终端为接收终端时,所述方法还包括:
    接收所述第一终端发送的对SL PRS进行测量得到的定位测量量和定位测量量的质量信息。
  21. 根据权利要求19或20所述的方法,其中,所述质量信息包括信噪比SNR、信号与干扰噪声比SINR或测量误差的方差。
  22. 一种终端,其中,所述终端包括:
    调整单元,按照网络侧设备发送的通知信令进行ATA和/或AFA;所述通知信令包含指示所述终端进行ATA和/或AFA的指示信息;
    第一发送单元,发送所述终端进行ATA和/或AFA的时间信息;所述ATA和/或AFA的时间信息用于确定所述终端的位置。
  23. 一种基站,其中,所述基站包括:
    第一接收单元,接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
    第二发送单元,发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
  24. 一种LMF,其中,所述LMF包括:
    第二接收单元,接收第一终端发送的所述第一终端进行ATA和/或AFA的时间信息;
    确定单元,基于所述ATA和/或AFA的时间信息,确定所述第一终端的位置。
  25. 一种终端,其中,所述终端包括:存储器、收发机以及处理器;
    所述存储器,用于存储计算机指令;
    所述收发机,用于在所述处理器的控制下收发数据;
    所述处理器,用于读取所述存储器中的计算机程序并执行如下步骤:
    按照网络侧设备发送的通知信令进行ATA和/或AFA;所述通知信令包含指示所述终端进行ATA和/或AFA的指示信息;
    控制收发机发送所述终端进行ATA和/或AFA的时间信息;所述ATA和/或AFA的时间信息用于确定所述终端的位置。
  26. 根据权利要求25所述的终端,其中,所述收发机,还可以用于:
    向所述网络侧设备发送所述终端支持在VAW内,进行ATA和/或AFA的报告,并接收所述网络侧设备发送的所述通知信令;或者,
    向所述网络侧设备发送所述终端支持按照预定义准则进行所述ATA和/或AFA的报告,并接收所述网络侧设备发送的所述通知信令。
  27. 根据权利要求26所述的终端,其中,所述通知信令包含的指示信息包括VAW配置参数;所述处理器,具体用于:
    若所述VAW配置参数所指示的VAW所在的时间范围与信号处理时间范围不重合,则在VAW所在的时间范围内进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
  28. 根据权利要求27所述的终端,其中,所述通知信令包含的指示信息还包括优先级类型参数;所述优先级类型参数用于指示VAW与定位参考信号的优先级关系;所述处理器,还可以用于:
    若所述VAW配置参数所指示的VAW所在的时间范围与信号处理时间范围部分重合或完全重合,则根据VAW与定位参考信号的优先级关系,在VAW所在的时间范围内进行ATA和/或AFA。
  29. 根据权利要求28所述的终端,其中,所述处理器,具体用于:
    若VAW的优先级高于定位参考信号的优先级,则在第一时刻进行ATA和/或AFA,所述第一时刻为所述VAW所在的时间范围内的任一时刻;
    若VAW的优先级低于定位参考信号的优先级,则在VAW所在的时间范 围内除第二时刻之外的任一时刻,进行ATA和/或AFA;所述第二时刻为所述终端对定位参考信号进行处理的时刻。
  30. 根据权利要求26所述的终端,其中,所述通知信令包含的指示信息包括预定义准则;所述预定义准则指示所述终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
  31. 根据权利要求27~30中任一项所述的终端,其中,所述定位参考信号为DL PRS,所述信号处理时间范围是根据LMF发送的DL PRS的资源配置参数确定的MG或PPW的时间范围;所述对定位参考信号进行处理是指接收基站发送的DL PRS,并进行测量;或者,
    所述定位参考信号为UL SRS-Pos,所述信号处理时间范围是根据基站发送的UL SRS-Pos的资源配置参数确定的;所述对定位参考信号进行处理是指向基站发送UL SRS-Pos;或者,
    所述定位参考信号为SL PRS,所述终端为接收终端,所述信号处理时间范围是根据LMF发送的SL PRS的资源配置参数中所指示的MG或PPW的时间范围确定的;所述对定位参考信号进行处理是指接收发送终端发送的SL PRS,并进行测量;或者,
    所述定位参考信号为SL PRS,所述终端为发送终端,所述信号处理时间范围是根据基站发送的SL PRS的资源配置参数确定的;所述对定位参考信号进行处理是指向接收终端发送SL PRS。
  32. 根据权利要求25~30中任一项所述的终端,其中,所述通知信令为LMF发送的LPP信令;或者,
    所述通知信令为所述基站发送的RRC信令、MAC CE信令或DCI信令。
  33. 一种基站,其中,所述基站包括:存储器、收发机以及处理器;
    所述存储器,用于存储计算机指令;
    所述收发机,用于在所述处理器的控制下,接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在VAW内,进行ATA和/ 或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
    发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
  34. 根据权利要求33所述的基站,其中,所述通知信令包括所述VAW的配置参数和优先级类型参数;所述优先级类型参数用于指示VAW与DL PRS的优先级关系;或者,
    所述通知信令包括预定义准则,所述预定义准则指示所述第一终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述定位参考信号为DL PRS、UL SRS-Pos或SL PRS;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
  35. 根据权利要求33或34所述的基站,其中,所述基站包括服务基站和相邻基站。
  36. 根据权利要求33或34所述的基站,其中,所述通知信令为RRC信令、MAC CE信令或DCI信令。
  37. 一种LMF,其中,所述LMF包括:存储器、收发机以及处理器;
    所述存储器,用于存储计算机指令;
    所述收发机,用于在所述处理器的控制下收发数据;
    所述处理器,用于读取所述存储器中的计算机程序并执行如下步骤:
    控制所述收发机接收第一终端发送的所述第一终端进行ATA和/或AFA的时间信息;
    基于所述ATA和/或AFA的时间信息,确定所述第一终端的位置。
  38. 根据权利要求37所述的LMF,其中,所述处理器,具体用于:
    基于接收到的ATA和/或AFA的时间信息,确定所述第一终端相邻两次进行ATA和/或AFA的时间范围;
    根据在所述时间范围内获取的所述第一终端的各个定位测量量,确定所述第一终端的位置;所述定位测量量是对所述第一终端对应的定位参考信号进行测量得到的。
  39. 根据权利要求37所述的LMF,其中,所述收发机,还可以用于:
    接收第一终端发送的终端能力报告;所述终端能力报告表征所述第一终端支持在VAW内,进行ATA和/或AFA,或者,支持按照预定义准则进行所述ATA和/或AFA;
    发送通知信令;所述通知信令用于指示所述第一终端进行ATA和/或AFA。
  40. 根据权利要求39所述的LMF,其中,所述通知信令为LPP信令。
  41. 根据权利要求39所述的LMF,其中,所述通知信令包括所述VAW的配置参数和优先级类型参数;所述优先级类型参数用于指示VAW与DL PRS的优先级关系;或者,
    所述通知信令包括预定义准则,所述预定义准则指示所述第一终端在信号处理时间范围内不进行ATA和/或AFA,在对定位参考信号进行处理之后,进行ATA和/或AFA;所述信号处理时间范围是指对定位参考信号进行处理的时间范围。
  42. 根据权利要求41所述的LMF,其中,所述定位参考信号为DL PRS,所述定位测量量为所述第一终端发送的RSTD、终端收发时间差、下行POA、或下行PDOA;或者,
    所述定位参考信号为UL SRS-Pos,所述定位测量量为基站发送的上行RTOA,基站收发时间差、上行POA、或上行PDOA;或者,
    所述定位参考信号为SL PRS,所述第一终端为接收终端,所述定位测量量为第一终端发送的TDOA、接收终端的收发时间差、SL POA、或SL PDOA;或者,
    所述定位参考信号为SL PRS,所述第一终端为发送终端,所述定位测量量为第一终端的收发时间差。
  43. 根据权利要求42所述的LMF,其中,所述处理器,还可以用于:
    接收所述第一终端发送的对DL PRS进行测量得到的定位测量量和定位测量量的质量信息。
  44. 根据权利要求42所述的LMF,其中,所述处理器,还可以用于:
    接收所述第一终端发送的对SL PRS进行测量得到的定位测量量和定位 测量量的质量信息。
  45. 根据权利要求43或44所述的LMF,其中,所述质量信息包括SNR、SINR或测量误差的方差。
  46. 一种计算机可读存储介质,其中,所述存储介质存储有计算机指令,所述计算机指令被处理器执行时实现如权利要求1至8中任一项所述的方法。
  47. 一种计算机可读存储介质,其中,所述存储介质存储有计算机指令,所述计算机指令被处理器执行时实现如权利要求9至12中任一项所述的方法。
  48. 一种计算机可读存储介质,其中,所述存储介质存储有计算机指令,所述计算机指令被处理器执行时实现如权利要求13至21中任一项所述的方法。
PCT/CN2023/089168 2022-04-27 2023-04-19 一种终端定位方法、终端、基站及lmf WO2023207696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210459542.X 2022-04-27
CN202210459542.XA CN117014788A (zh) 2022-04-27 2022-04-27 一种终端定位方法、终端、基站及lmf

Publications (1)

Publication Number Publication Date
WO2023207696A1 true WO2023207696A1 (zh) 2023-11-02

Family

ID=88517629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089168 WO2023207696A1 (zh) 2022-04-27 2023-04-19 一种终端定位方法、终端、基站及lmf

Country Status (2)

Country Link
CN (1) CN117014788A (zh)
WO (1) WO2023207696A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229285A (ja) * 2005-02-15 2006-08-31 Seiko Epson Corp 測位システム、端末装置、通信基地局、端末装置の制御方法、端末装置の制御プログラム
CN102045839A (zh) * 2009-10-16 2011-05-04 大唐移动通信设备有限公司 一种确定用户终端的位置信息的方法、系统和装置
CN110113122A (zh) * 2018-02-01 2019-08-09 华为技术有限公司 一种定时的方法及装置
CN113141648A (zh) * 2020-01-17 2021-07-20 大唐移动通信设备有限公司 一种定时信息上报方法、终端和网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229285A (ja) * 2005-02-15 2006-08-31 Seiko Epson Corp 測位システム、端末装置、通信基地局、端末装置の制御方法、端末装置の制御プログラム
CN102045839A (zh) * 2009-10-16 2011-05-04 大唐移动通信设备有限公司 一种确定用户终端的位置信息的方法、系统和装置
CN110113122A (zh) * 2018-02-01 2019-08-09 华为技术有限公司 一种定时的方法及装置
CN113141648A (zh) * 2020-01-17 2021-07-20 大唐移动通信设备有限公司 一种定时信息上报方法、终端和网络侧设备

Also Published As

Publication number Publication date
CN117014788A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
CN109257810B (zh) 一种功率控制方法和终端设备
CN115103433B (zh) 一种实现网络同步的方法及装置
EP4277176A2 (en) Methods and apparatuses for transmitting and receiving control signaling, and method for determining information
EP3996412A1 (en) Signal transmission method and apparatus
CN112615703B (zh) 一种信息发送、接收方法、设备及装置
WO2021159337A1 (en) Method for tracking reference signal (trs) enhancement
WO2019037506A1 (zh) 一种测量间隙确定方法、用户终端和网络侧设备
US20220264478A1 (en) Methods for communication, terminal devices, and computer readable medium
US20240072966A1 (en) Methods and apparatus for configuring a reference signal
CN117083946A (zh) 用于报告多个测量报告的系统和方法
CN110830202A (zh) 通信方法、装置和通信系统
CN111867029B (zh) 上行开环功率控制方法及装置、通信设备
US20230189201A1 (en) Information transmission method and related device
WO2023207696A1 (zh) 一种终端定位方法、终端、基站及lmf
US20230209387A1 (en) Transmission delay compensation method and apparatus, device, and storage medium
WO2023052197A1 (en) Positioning measurement and interruption events
WO2017193395A1 (zh) 传输上行数据的方法、终端设备和网络侧设备
WO2018196449A1 (zh) 一种导频发送、接收方法及装置
WO2023050060A1 (zh) 信息配置方法、装置、设备及存储介质
WO2018032243A1 (zh) 数据传输方法、装置和系统
EP4395440A1 (en) Information indication method, information receiving method, and electronic device and storage medium
WO2024103393A1 (en) Integrated sensing and communication (isac) configuration design
WO2024098581A1 (en) Systems and methods for positioning enhancement of wireless devices
US20240284407A1 (en) Sidelink response time value selection
US20240057006A1 (en) Method for performing pdc and computer device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795129

Country of ref document: EP

Kind code of ref document: A1