WO2023207494A1 - 一种太阳能电池组件的制备方法 - Google Patents

一种太阳能电池组件的制备方法 Download PDF

Info

Publication number
WO2023207494A1
WO2023207494A1 PCT/CN2023/084852 CN2023084852W WO2023207494A1 WO 2023207494 A1 WO2023207494 A1 WO 2023207494A1 CN 2023084852 W CN2023084852 W CN 2023084852W WO 2023207494 A1 WO2023207494 A1 WO 2023207494A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
substrate
layer
glue
sealant
Prior art date
Application number
PCT/CN2023/084852
Other languages
English (en)
French (fr)
Inventor
林长江
曹开银
Original Assignee
安徽华晟新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽华晟新能源科技有限公司 filed Critical 安徽华晟新能源科技有限公司
Priority to EP23794929.2A priority Critical patent/EP4350785A1/en
Publication of WO2023207494A1 publication Critical patent/WO2023207494A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1042Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material provided with means for heating or cooling the liquid or other fluent material in the supplying means upstream of the applying apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0204Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to the edges of essentially flat articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of solar cell manufacturing, and specifically to a method for preparing solar cell components.
  • the adhesive film ages and the adhesive force decreases, and moisture will gradually penetrate The adhesive film further affects the battery, resulting in low sealing and insulation properties of the solar cell module, which in turn causes the solar cell module to be susceptible to water vapor erosion when used for a long time in the air, resulting in power attenuation and short service life of the solar cell.
  • the technical problem to be solved by this application is to overcome the problem that the preparation method of solar cell modules in the prior art makes the sealing and insulation of solar cell modules low, and the solar cells are susceptible to water vapor erosion, resulting in the power attenuation and use of the solar cells. short-life defects, thereby providing a method for preparing solar cell components.
  • the present application provides a method for preparing a solar cell module, including: providing a first substrate, the first substrate including a first region and an edge region surrounding the first region; A solar cell group is provided on one side; after the solar cell group is provided on one side of the first area of the first substrate, a first encapsulating glue layer is provided on the surface of the solar cell group away from the first substrate; glue coating is used
  • the device heats the sealant material; wherein: during the process of heating the sealant material by the glue coating device, a sealant layer is coated on part of the surface on one side of the edge area of the first substrate, and the sealant layer surrounds
  • the sealant layer includes a central area and edge areas located on both sides of the central area in the width direction of the sealant layer, and the upper surface of the central area is not higher than the upper surface of the edge area;
  • a second substrate is provided on the side of the sealant layer and the solar cell group away from the first substrate to complete the stacked structure; the stacked structure is laminated.
  • the central area is recessed toward the first substrate relative to the edge area.
  • the width of the sealant layer in contact with the first substrate is 80%-100% of the maximum width of the sealant layer.
  • the glue application device includes a glue supply barrel, a glue supply pipe and a glue outlet.
  • the glue supply pipe has an opposite first end and a second end, and the first end is connected to the outlet of the glue supply barrel. , the second end is connected to the inlet of the glue outlet, and the glue outlet has a glue outlet;
  • the glue supply tube includes a circulation tube layer and a heating tube layer surrounding the circulation tube layer, and the circulation tube The layer is suitable for transmitting sealant material, and the heating tube layer is suitable for heating the sealant material in the circulation tube layer.
  • the cross-sectional shape of the glue outlet includes a rectangle, and during the process of applying the sealant layer, the long side of the glue outlet is perpendicular to the coating movement direction.
  • the glue supply pipe further includes: an insulation pipe layer surrounding the heating pipe layer, and a protective pipe layer surrounding the insulation pipe layer.
  • the glue discharging part is provided with a metering pump; during the process of applying the sealant layer, the pressure exerted by the metering pump is 6MPa-25MPa.
  • the glue outlet linear speed is 100mm/s-500mm/s.
  • the distance between the glue outlet and the first substrate is 0.3mm-2.2mm.
  • the glue application device further includes: a first heating unit and a second heating unit; the step of using the glue application device to heat the sealant material includes: using the first heating unit to heat the glue supply barrel. ; Use the second heating unit to heat the heating tube layer.
  • the temperature at which the first heating unit heats the glue supply barrel is 100°C-230°C.
  • the second heating unit heats the heating tube layer to a temperature of 100°C to 230°C.
  • the gluing device further includes a first booster pump; in the process of using the gluing device to heat the sealant material, the first booster pump is used to pump the sealant material in the glue supply barrel.
  • the pressure exerted by the first boosting pump is 6MPa-25MPa.
  • the gluing device also includes a second relay booster pump disposed on the pipeline supplying the glue pipe between the first end and the second end; in the process of heating the sealant material by the gluing device,
  • the pressure applied by the second relay booster pump is 6MPa-25MPa.
  • the gluing device further includes a third heating unit; during the process of using the gluing device to heat the sealant material, the third heating unit heats the sealant material that passes into the glue outlet. Heating, the temperature at which the third heating unit heats the sealant material in the glue outlet part is 100°C-230°C.
  • the glue coating device further includes a fourth heating unit, the fourth heating unit is suitable for heating the sealant material passed into the second relay booster pump, the fourth heating unit The sealant material passed into the second relay booster pump is heated to a temperature of 100°C to 230°C.
  • the method further includes: before setting the solar cell group on one side of the first area of the first substrate, setting a second encapsulating glue layer on the surface of the first area of the first substrate;
  • the step of arranging the solar cell group on one side of the first area of the substrate is: arranging the solar cell group on the side of the second encapsulating adhesive layer facing away from the first substrate, and the stacked structure further includes a second encapsulating adhesive layer;
  • the process of laminating the laminated structure also includes laminating the second encapsulant layer.
  • the inner side wall of the sealant layer and the side wall of the first encapsulation adhesive layer, the side wall of the solar cell group, the second encapsulation adhesive layer are spaced apart.
  • the interval setting distance is 0.1mm-5.0mm.
  • the thickness of the sealant layer is 0.5mm-2.0mm, and the width of the sealant layer is 5mm-12mm.
  • the material of the sealant layer includes butyl glue.
  • the parameters for laminating the laminated structure include: the temperature is 130°C-150°C, the lamination time is 10 minutes-20 minutes, the lamination pressure value is -50kPa-0kPa; the laminator used The vacuum degree in the chamber is 30Pa-200Pa.
  • a packaging frame is provided, and the packaging frame has a receiving cavity; the first substrate, the solar cell group, the first packaging glue layer, the second packaging glue layer and the second substrate are laminated to form Laminated structure; after the laminated structure is laminated to form a laminated structure: form a frame glue on the inner wall surface of the accommodation cavity; and place the edge area of the laminated structure in the accommodation cavity.
  • the material of the frame glue includes butyl glue.
  • the method further includes: before arranging the first encapsulating glue layer on the surface of the solar cell group facing away from the first substrate, and after arranging the solar cell group on one side of the first area of the first substrate, The solar cell group is subjected to defect detection.
  • a lead hole is formed, and the lead hole penetrates the second substrate and the first substrate.
  • Encapsulation glue layer; the solar cell group includes adjacent solar cell strings connected in parallel through bus bars, and the solar cell strings include adjacent solar cells connected in series through interconnection bars, and the bus bars pass through the leads.
  • the preparation method of the solar cell module further includes: in the step of arranging a second substrate on the side of the sealant layer and the solar cell group away from the first substrate, passing the bus bar through the lead The hole extends to a side of the second substrate away from the first encapsulant layer; on the first base After the solar cell group is disposed on one side of the first area of the board, and before the second substrate is disposed on the sealant layer and the solar cell group on the side facing away from the first substrate, the leads are A sealing filler is formed in the hole.
  • the material of the sealing filler includes butyl glue.
  • a sealant layer is applied to a part of the surface on one side of the edge area of the first substrate, and the sealant layer is The sealant layer in the heated state improves the adhesion between the sealant layer and the first substrate, and a glue coating device is used to directly apply sealant to part of the surface on one side of the edge area of the first substrate Layer, no need for many intermediate links, simplifying the process.
  • the sealant layer Before setting the second substrate, the sealant layer includes a central area and edge areas located on both sides of the central area in the width direction of the sealant layer, and the upper surface of the central area is not higher than the upper surface of the edge area, This avoids the formation of a gap between the edge area of the central area facing the side of the solar cell group and the side wall of the solar cell group.
  • the sealant Since the adhesion between the sealant layer and the first substrate is improved, and a gap is prevented from being formed between the edge area of the central area facing the solar cell group and the side wall of the solar cell group, the sealant is The first sealant layer can better prevent the material from the first sealant layer from overflowing, improve the sealing and insulation properties of the sealant layer, better prevent water vapor and leakage from entering the interior of the solar cell, and ensure the safety of the solar cell module. , can also reduce the probability of water vapor penetrating into solar cell components causing solar cell power attenuation, and extend the service life of solar cells.
  • the central area is recessed toward the first substrate relative to the edge area, thus reducing process difficulty.
  • the width of the sealant layer in contact with the first substrate is 80%-100% of the maximum width of the sealant layer, so the contact area of the sealant layer with the first substrate is larger, and the sealant layer Evenly attached to the first substrate, the pattern of the sealant layer is stable, and the glue coating device can continuously apply the sealant layer to ensure that the sealant layer is continuous and uninterrupted, which can improve the performance of the sealant layer after lamination.
  • the solar cell group is Defect detection can be performed on the solar cell group in advance before setting the second substrate. This operation reduces a large amount of repetitive rework workload, greatly improves the rework efficiency, helps reduce labor costs, and is beneficial to Improving production line utilization and production efficiency will also help reduce repair costs.
  • a packaging frame is provided with a receiving cavity in the packaging frame; the first substrate, the solar cell group and the second substrate are laminated to form a laminated structure; the preparation method of the solar cell module also includes : Form a frame glue on the inner wall surface of the accommodation cavity; cover the edge area of the laminated structure in the accommodation cavity; the material of the frame glue includes butyl glue. Because butyl rubber has good chemical stability, thermal stability and electrical insulation properties, and has strong Air tightness and water tightness. During the preparation process of the solar cell module, coating a certain thickness of butyl glue around the solar cell module can improve the water tightness of the solar cell module to form protection again, making the solar cell module Has good sealing and insulation properties.
  • a sealing filler is formed in the lead hole.
  • the material of the sealing filler includes butyl glue.
  • butyl glue Due to the good chemical stability, thermal stability and electrical insulation properties of butyl glue, , and has strong air tightness and water tightness, which can effectively prevent water vapor from entering the inside of the solar cell through the lead hole, which is beneficial to improving the sealing and insulation of the solar cell module.
  • Figure 1 is a flow chart of a method for preparing a solar cell module according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a solar cell module before lamination according to an embodiment of the present application
  • Figure 3 is a bottom view of the second substrate provided by an embodiment of the present application.
  • Figure 4 is a partial longitudinal cross-sectional view of the second substrate provided by an embodiment of the present application.
  • FIG. 5 is a schematic longitudinal cross-sectional view of an encapsulated laminated structure provided by an embodiment of the present application.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in this application can be understood on a case-by-case basis.
  • Step S1 Provide a first substrate 101, which includes a first area and an edge area surrounding the first area;
  • Step S2 Set the solar cell group 102 on one side of the first area of the first substrate 101;
  • Step S3 After setting the solar cell group 102 on one side of the first area of the first substrate 101, set the first encapsulating adhesive layer 104 on the surface of the solar cell group 102 facing away from the first substrate 101;
  • Step S4 Use a glue application device to heat the sealant material; wherein: during the process of using a glue application device to heat the sealant material, a sealant layer is simultaneously applied to part of the surface on one side of the edge area of the first substrate 101 200.
  • the sealant layer 200 surrounds the solar cell group 102.
  • the sealant layer includes a central area and edge areas located on both sides of the central area in the width direction of the sealant layer. The upper surface of the central area does not an upper surface higher than the edge region;
  • Step S5 Set the second substrate 103 on the side of the sealant layer 200 and the solar cell group 102 away from the first substrate 101 to complete the stacked structure;
  • Step S6 Laminate the laminated structure.
  • a sealant layer is applied to a portion of the surface on one side of the edge area of the first substrate 101.
  • the sealant layer The layer 200 is a sealant layer in a heated state, which improves the adhesion between the sealant layer 200 and the first substrate 101 , and a glue coating device is used on the edge area side of the first substrate 101
  • the sealant layer is directly applied to the surface without the need for many intermediate links, which reduces costs and simplifies the process.
  • the sealant layer 200 Before setting the second substrate 103, the sealant layer 200 includes a central area and edge areas located on both sides of the central area in the width direction of the sealant layer, and the upper surface of the central area is not higher than the edge area. This avoids the formation of a gap between the edge area of the central area facing the side of the solar cell group 102 and the side wall of the solar cell group 102 .
  • the sealant layer 200 can better prevent the material of the first encapsulation layer 104 from overflowing, improve the sealing and insulation properties of the sealant layer 200, and better prevent water vapor and leakage from entering the interior of the solar cell. Ensuring the safety of solar cell modules can also reduce the probability of water vapor penetrating into solar cell modules causing solar cell power attenuation, and extend the service life of solar cells.
  • the first area is suitable for placing the solar cell array 102 .
  • the stacked structure includes the first substrate 101, the solar cell group 102, the first encapsulating glue layer 104, the second substrate 103 and the sealing glue layer 200.
  • the width direction of the sealant layer 200 is parallel to the direction of the first substrate 101 and the second substrate 103 .
  • the central area is recessed toward the first substrate 101 relative to the edge area, which reduces process difficulty.
  • the central area of the sealant layer 200 is flush with the edge area of the sealant layer 200 .
  • the sealant layer 200 includes a central area, a first sub-edge area facing the solar cell group 102 and a second sub-edge area facing away from the solar cell group 102 .
  • the second sub-edge area surrounds the central area of the sealant layer 200
  • the central area of the sealant layer 200 surrounds the second sub-edge area of the sealant layer 200 .
  • the width of the sealant layer 200 in contact with the first substrate 101 is 80%-100%, such as 82%, of the maximum width of the sealant layer 200; therefore, the sealant layer 200 is in contact with the first substrate 101.
  • the substrate 101 has a large contact area, the sealant layer is evenly attached to the first substrate, the pattern of the sealant layer is stable, and the glue coating device can continuously apply the sealant layer to ensure that the sealant layer is
  • the layers are continuous and uninterrupted, which can improve the adhesion between the first substrate 101, the solar cell group 102, the first encapsulant layer 104 and the second substrate 103 after lamination.
  • the glue application device includes a glue supply barrel, a glue supply pipe and a glue outlet.
  • the glue supply pipe has an opposite first end and a second end, and the first end is connected to the glue supply barrel.
  • the outlet is connected, and the second end is connected with the inlet of the glue outlet, and the glue outlet has a glue outlet.
  • the method before applying the sealant layer 200 to a portion of the surface on the edge area side of the first substrate 101, the method further includes exhausting the glue coating device in order to discharge the glue coating device. bubbles and gaps in the sealant to prevent the sealant from breaking when it comes out.
  • two glue supply barrels are used, which are conducive to continuous glue supply.
  • the cross-sectional shape of the glue outlet is rectangular, and during the process of applying the sealant layer, the The long side of the glue outlet is perpendicular to the direction of coating movement, and the cross-sectional shape of the glue outlet is rectangular.
  • Such an arrangement can effectively control the pattern of the sealant layer, such as the straightness of the pattern of the sealant layer.
  • the glue outlet The sealant layer formed by a rectangular cross-sectional shape of the mouth is more conducive to connecting with the first sealant layer and the second sealant layer, and the appearance of the sealant layer is beautiful, and the height of the glue can be flexibly adjusted, which is more conducive Controlling the amount of glue produced is also beneficial to controlling the flatness of the glue coating.
  • the cross-sectional shape of the glue outlet may also include an oblate oval.
  • the glue supply pipe includes a flow pipe layer and a heating pipe layer surrounding the flow pipe layer.
  • the flow pipe layer is suitable for transporting sealant material
  • the heating pipe layer is suitable for convection with the flow pipe layer. The sealant material in the sealant is heated.
  • the glue supply pipe further includes: an insulation pipe layer surrounding the heating pipe layer, and a protective pipe layer surrounding the insulation pipe layer.
  • the insulation pipe layer is a multi-layer insulation structure, and the material of the insulation pipe layer is a high-temperature-resistant insulation material, which can improve heating efficiency and reduce heat loss.
  • the glue supply pipe is also equipped with a temperature sensor to facilitate accurate temperature control of the sealant material in the glue supply pipe.
  • the glue discharging part is provided with a metering pump; the metering pump includes a pressure sensor, the pressure sensor can monitor the pressure of glue inlet and glue outlet, and the metering pump can also accurately control the amount of glue output. , the glue output accuracy is controlled at 0.5%-1.5%, such as 1%.
  • the glue discharging part may also include other devices capable of controlling the flow rate and monitoring the flow rate by changing the air pressure.
  • the pressure applied by the metering pump is 6MPa-25MPa, such as 15MPa; if the pressure applied by the metering pump is less than 6MPa, then The power provided to the sealant is too small, and the degree of continuous glue supply is too small; if the pressure exerted by the metering pump is greater than 25MPa, the power provided to the sealant is too large, and the fluidity of the sealant may be too high. As a result, it is difficult to control the speed at which the sealant is formed, and it is also difficult to control the shape of the sealant.
  • the glue outlet linear speed of the glue outlet is 100mm/s-500mm/s, such as 200mm/s; if the glue outlet linear speed is less than 100mm/s, the glue outlet If the glue dispensing speed of the sealant in the glue outlet is too slow, the thickness of the formed sealant layer will be too thick, and the glue will easily overflow during the lamination process, resulting in a waste of resources; if the linear speed of the glue outlet is greater than 500mm /s, if the sealant discharging speed in the glue outlet is too fast, the thickness of the formed sealant layer will be too thin, and the thickness of the sealant layer will be too thin, which may cause the final solar cell group to be in a completely closed environment. The degree is small and the effect of blocking water vapor is small.
  • the distance between the glue outlet and the first substrate is 0.3mm-2.2mm, such as 2.0mm; if the glue outlet The distance to the first substrate is less than 0.3mm, so that the upper surface of the central area of the sealant layer is not higher than the upper surface of the edge area to a small extent; if the If the distance between the glue opening and the first substrate is greater than 2.2 mm, the shape of the sealant layer will be difficult to control due to the influence of gravity.
  • the glue application device further includes: a first heating unit and a second heating unit; the step of using the glue application device to heat the sealant material includes: using the first heating unit to heat the glue supply barrel Perform heating; use the second heating unit to heat the heating tube layer.
  • the temperature at which the first heating unit heats the glue supply barrel is 100°C-230°C, such as 160°C; if the temperature at which the first heating unit heats the glue supply barrel is less than 100°C °C, then the temperature for heating the sealant in the glue supply barrel is too small, and the degree of improving the fluidity of the sealant is small; if the temperature of the first heating unit for heating the glue supply barrel is greater than 230°C , the fluidity of the sealant is too high, making it difficult to control the speed at which the sealant is formed, and the temperature is too high to form the shape of the sealant layer that is difficult to control; if it exceeds the use temperature of the sealant, the sealant The glue will degrade, causing the sealant to fail and fail to provide packaging protection.
  • the temperature at which the second heating unit heats the heating tube layer is 100°C-230°C, such as 160°C; if the temperature at which the second heating unit heats the heating tube layer is less than 100°C °C, then the temperature for heating the sealant in the rubber supply pipe is too small, and the degree of improving the fluidity of the sealant is small; if the temperature at which the second heating unit heats the heating pipe layer is greater than 230°C, Then the fluidity of the sealant is too high, making it difficult to control the speed at which the sealant is formed, and the temperature is too high to form the shape of the sealant layer that is difficult to control; if it exceeds the use temperature of the sealant, the sealant will Degradation will occur, causing the sealant to fail and fail to provide packaging protection.
  • the gluing device further includes a first booster pump.
  • the preparation method of the solar cell module also includes: during the process of heating the sealant material using the glue coating device, using the first booster pump to pressurize the sealant material in the glue supply barrel, the first booster pump
  • the pressure applied by the pressure pump is 6MPa-25MPa, such as 15MPa; if the pressure applied by the first boosting pump is less than 6MPa, the power provided to the sealant is too small, and the degree of continuous glue supply is too small; if If the pressure exerted by the first boosting pump is greater than 25 MPa, the power provided to the sealant is too large, and the fluidity of the sealant may be too high, making it difficult to control the speed at which the sealant is formed.
  • the glue application device further includes a second relay booster pump disposed on a pipeline supplying glue pipes between the first end and the second end.
  • the preparation method of the solar cell module also includes: during the process of heating the sealant material using a glue coating device, the pressure applied by the second relay boosting pump is 6MPa-25MPa, such as 15MPa; if the second relay booster pump If the pressure exerted by the second relay boosting pump is less than 6MPa, the power provided to the sealant is too small, and the degree of continuous glue supply is too small; if the pressure exerted by the second relay boosting pump is greater than 25MPa, then If too much power is provided to the sealant, the degree of fluidity of the sealant may be too great, making it difficult to control the speed at which the sealant is formed.
  • the pressure that the flow tube layer can withstand is greater than the pressure that the heating tube can withstand.
  • the pressure that the flow tube layer can withstand is 30MPa-35MPa, such as 32MPa; the pressure that the heating tube can withstand
  • the size is 6MPa-20MPa, such as 10MPa.
  • the gluing device further includes a third heating unit.
  • the preparation method of the solar cell module also includes: during the process of using the glue coating device to heat the sealant material, the third heating unit heats the sealant material that passes into the glue outlet part, and the third heating unit
  • the temperature at which the unit heats the sealant material in the glue outlet is 100°C-230°C, such as 160°C; if the temperature at which the third heating unit heats the sealant material in the glue outlet is less than 100°C , then the temperature for heating the sealant material in the glue outlet part is too small, and the degree of improving the fluidity of the sealant is small; if the third heating unit heats the sealant material in the glue outlet part If the temperature is greater than 230°C, the fluidity of the sealant is too high, making it difficult to control the speed at which the sealant is formed, and the shape of the sealant layer formed by excessive temperature is difficult to control; if it exceeds the use temperature of the sealant , the sealant will degrade, causing the sealant to fail and fail to provide packaging protection.
  • the glue application device further includes a fourth heating unit, the fourth heating unit is adapted to heat the sealant material passed into the second relay booster pump, and the fourth heating unit
  • the temperature at which the heating unit heats the sealant material flowing into the second relay boosting pump is 100°C-230°C, such as 160°C; if the fourth heating unit heats the sealant material flowing into the second relay boosting pump, If the temperature at which the sealant material in the pressure pump is heated is less than 100°C, the temperature at which the sealant material passed into the second relay booster pump is heated is too small, and the fluidity of the sealant is improved to a small extent; If the fourth heating unit heats the sealant material passed into the second relay booster pump to a temperature greater than 230°C, the fluidity of the sealant will be too high and it will be difficult to control the formation of the sealant. speed, and the temperature is too high to form the shape of the sealant layer that is difficult to control; if it exceeds the use temperature of the sealant, the sealant will degrade,
  • the method further includes: before arranging the solar cell group 102 on one side of the first area of the first substrate 101 , arranging a third solar cell group 102 on the surface of the first area of the first substrate 101 .
  • Second encapsulation glue layer 105 the step of arranging the solar cell group 102 on one side of the first area of the first substrate 101 is: arranging the solar cell group 102 on the side of the second encapsulation glue layer 105 away from the first substrate 101 Battery pack 102; the stacked structure further includes a second encapsulating glue layer 105.
  • the process of laminating the laminated structure also includes laminating the second encapsulant layer 105 .
  • the difference range between the width of the first encapsulating adhesive layer 104 and the width of the second encapsulating adhesive layer 105 is less than 2.0 mm;
  • the difference range of the width of the adhesive layer 105 is less than 1.0mm;
  • the difference range of the width of the first encapsulation adhesive layer 104 and the width of the solar cell group 102 is less than 2.0mm;
  • the width difference range of the second encapsulation adhesive layer 105 and the width of the solar cell group 102 The width difference range of the solar cell group 102 is less than 2.0 mm. So there is It is beneficial to improve the laying accuracy, the position stability of the sealant layer, and improve the sealing performance of the solar cell module.
  • the inner side wall of the sealant layer 200 and the side wall of the first encapsulation layer 104, the side wall of the solar cell group 102, the The side walls of the second encapsulant layer 105 are all spaced apart.
  • the distance L1 between the inner side wall of the sealant layer 200 and the side wall of the first encapsulant layer 104 is 0.1mm-5.0mm, such as 2.5mm, 3.5mm, 4.5mm; if the distance L1 between the inner wall of the sealant layer 200 and the side wall of the first encapsulation layer 104 is less than 2.0mm, then During the lamination process, the sealant layer may overflow onto the first encapsulation adhesive layer; if the distance L1 between the inner side wall of the sealant layer 200 and the side wall of the first encapsulation adhesive layer 104 is greater than 5.0mm, in the final solar cell module, there may be gaps between the sealant layer and the first encapsulating glue layer, which can easily form bubbles, affecting the appearance and weather resistance of the solar cell module.
  • the distance L1 between the inner side wall of the sealant layer 200 and the side wall of the solar cell group is 0.1 mm. -5.0mm, such as 2.5mm, 3.5mm, 4.5mm; if the distance L1 between the inner wall of the sealant layer 200 and the side wall of the solar cell group is greater than 5.0mm, the final solar cell module will , there may be gaps between the sealant layer and the solar cell group, which can easily form bubbles, affecting the appearance and weather resistance of the solar cell module.
  • the distance L1 between the inner side wall of the sealant layer 200 and the side wall of the second encapsulant layer 105 is 0.1mm-5.0mm, such as 2.5mm, 3.5mm, 4.5mm; if the distance L1 between the inner wall of the sealant layer 200 and the side wall of the second encapsulation layer 105 is greater than 5.0mm, then the final In the formed solar cell module, there may be gaps between the sealant layer and the second encapsulating glue layer, which can easily form bubbles, affecting the appearance and weather resistance of the solar cell module.
  • the distance L2 between the outer side wall of the sealant layer 200 and the side wall of the first substrate 101 is 0.1 mm-5.0mm, such as 2.5mm, 3.5mm, 4.5mm; if the distance L2 between the outer wall of the sealant layer 200 and the side wall of the first substrate 101 is less than 0.1mm, it will easily overflow after lamination.
  • the solar cell module formed after lamination will The presence of voids at the edges of the module results in a smaller improvement in sealing and insulation of the solar array.
  • the thickness T of the sealant layer 200 is 0.5mm-2.0mm, such as 1.0mm, 1.2mm, 1.5mm, If the thickness of the sealant layer If the thickness of the sealant layer is less than 0.5mm, the thickness of the sealant layer is too small, which may cause the solar cell group to be in a completely closed environment and have a small effect in blocking water vapor; if the thickness of the sealant layer is greater than 2.0mm, then If the thickness of the sealant layer is too large, it will easily overflow during the lamination process, resulting in a waste of resources.
  • the width W of the sealant layer 200 is 5.0mm-12.0mm, such as 6.5mm, 7.5mm, 8.5mm, If the width of the sealant layer is less than 5.0 mm, the sealant layer has a weak effect of preventing water vapor and dust in the environment from penetrating into the solar cell group through the sealant layer; If the width of the adhesive layer is greater than 12.0 mm, the width of the sealant layer is too large, which may cause the sealant layer to overflow during lamination, resulting in waste.
  • the sealant layer 200 includes butyl glue.
  • the material of the butyl glue includes isobutylene and a small amount of isoprene.
  • the butyl glue has good chemical stability and thermal stability, and has high air tightness and water tightness.
  • the side methyl groups in the butyl rubber molecular chain in the butyl rubber are densely arranged, which limits the thermal activity of the polymer molecules. Therefore, the butyl rubber has low air permeability and good air tightness.
  • the air permeability of the butyl rubber is only 1/7 of natural rubber and 1/5 of styrene-butadiene rubber.
  • the steam permeability of butyl rubber is 1/200 of natural rubber. 1/140.
  • Table 1 shows a comparison of the water vapor transmittance of the butyl glue in this embodiment and the solar cell module encapsulating material in the prior art. See Table 1 for details.
  • the water vapor transmission rate of butyl rubber is much lower than existing solar cell module encapsulation materials.
  • the butyl rubber vulcanized rubber in the butyl rubber has excellent heat resistance stability, and the application temperature of resin vulcanized butyl rubber can reach 150°C ⁇ 200°C. Therefore, the butyl rubber has good thermal stability.
  • the butyl rubber molecular structure in the butyl rubber lacks double bonds and has a high distribution density of side chain methyl groups.
  • the butyl rubber molecular chain spatial structure is spiral-shaped. Therefore, it has more methyl groups and has strong elasticity, so it has excellent characteristics of absorbing vibration and impact energy.
  • the rebound characteristics of butyl rubber within a wide temperature range do not exceed 20%, so the butyl rubber It has a high ability to withstand mechanical force and has good low temperature resistance.
  • the high saturation of the butyl rubber molecular chain in the butyl rubber makes it highly resistant to ozone and weather aging.
  • the butyl rubber has high resistance to ozone and weather aging.
  • the ozone resistance and weather aging resistance of the base rubber are 10 times that of styrene-butadiene rubber.
  • the highly saturated structure of the butyl rubber in the butyl rubber makes the butyl rubber have high chemical stability, butyl rubber has excellent corrosion resistance, and the butyl rubber has excellent electrical insulation and corona resistance. Strong, volume resistivity is 10 to 100 times higher than ordinary rubber.
  • the butyl rubber in the butyl rubber is compounded with silica as filler and sulfur or insoluble sulfur as vulcanizing agent. Physical properties and resistance to UV, heat aging and The performance such as moisture and heat has been greatly improved.
  • the butyl glue has extremely low water permeability, strong physical properties, ultraviolet resistance, heat aging resistance, and moisture and heat resistance.
  • the solar cell group 102 includes a plurality of solar cell strings connected in parallel, and the solar cell strings include a plurality of solar cells connected in series.
  • the solar cells may be of various types, including but not limited to TOPCon (tunnel oxide passivated contact solar cells), PERC (emitter and rear passivated solar cells), perovskite cells, or HJT (heterojunction solar cell) can also be shingled, which is not limited here.
  • TOPCon tunnel oxide passivated contact solar cells
  • PERC emitter and rear passivated solar cells
  • perovskite cells perovskite cells
  • HJT heterojunction solar cell
  • the thickness of the first encapsulating glue layer 104 is 0.2mm-1.0mm, such as 0.7mm; the thickness of the second encapsulating glue layer 105 is 0.2mm-1.0mm, such as 0.7mm; The thickness of the solar cell group 102 is 0.10mm-0.20mm, such as 0.15mm.
  • the first substrate 101 has a single-layer structure, and the material of the first substrate 101 includes glass; in other embodiments, the first substrate has a multi-layer structure, and the first substrate includes laminated protective layer, insulating layer and adhesive layer, the insulating layer is located between the adhesive layer and the protective layer, the adhesive layer is bonded to the first encapsulating glue layer, the protective layer
  • the material includes polyvinylidene fluoride, the material of the insulating layer includes polyethylene terephthalate, and the material of the adhesive layer includes polyolefin.
  • the first substrate has a protective and supporting role for the solar cell group.
  • the material of the second substrate 103 includes glass; in other embodiments, the material of the second substrate may also include other flexible backsheets or light-transmissive materials.
  • the method for preparing a solar cell module further includes: before arranging the solar cell group 102 on one side of the first region of the first substrate 101, A second encapsulating glue layer 105 is provided on the surface of Including other adhesive and optically transparent materials such as EPE/POE/PVB, etc.
  • the step of arranging the solar cell group 102 on one side of the first area of the first substrate 101 is: arranging the solar cell group on the side of the first encapsulant layer 104 facing away from the first substrate 101 102; After setting the solar cell group 102 on one side of the first area of the first substrate 101, a first encapsulating glue layer 104 is provided on the surface of the solar cell group 102 facing away from the first substrate 101.
  • the material of the first encapsulating adhesive layer 104 includes ethylene and vinyl acetate copolymer such as EVA film; in other embodiments, the material of the second encapsulating adhesive layer may also include other adhesive and optically transparent materials such as EPE. /POE/PVB etc.
  • the first encapsulating glue layer 104 and the second substrate 103 is laminated.
  • the parameters for laminating the laminated structure include: the lamination temperature is 130°C-150°C, such as 140°C; if the lamination temperature is lower than 130°C, the sealant layer is increased The degree of cross-linking with the first substrate and the second substrate is insufficient; if the lamination temperature is higher than 150°C, the sealant layer will easily become fluid and flow out of the solar cell module. Secondly, the temperature may be too high. Affecting the performance of the first substrate, solar cell array and second substrate.
  • the parameters for laminating the laminated structure include: the lamination time is 10 minutes to 20 minutes, such as 15 minutes; if the lamination time is less than 10 minutes, the lamination time is not enough, which may cause The degree of improving the adhesive force between the sealant layer and the first substrate and the second substrate is low; if the lamination time exceeds 20 minutes, the lamination time is too long, and the preparation of the solar cell module is improved. Efficiency is reduced.
  • the parameters for laminating the laminated structure include: the lamination pressure value is -50kPa-0kPa, such as -10kPa; if the lamination pressure value is less than -50kPa, the pressure is too high and may cause This causes cracks in the solar cells in the solar cell group; if the lamination pressure value is greater than 0 kPa, the lamination pressure is not enough, which may lead to increased adhesion between the sealant layer and the first substrate and the second substrate. The degree of knot strength is low.
  • the parameters for laminating the laminated structure include: the vacuum degree of lamination is 20Pa-200Pa, such as 100Pa; if the vacuum degree of lamination is less than 20Pa, the gas in the solar cell module is extracted If it is not thorough enough, it is easy to cause bubbles to exist between the sealant layer and the first substrate and the second substrate, affecting the appearance and weather resistance of the solar cell module.
  • equipment for laminating the first substrate 101, the solar cell group 102, the first encapsulating glue layer 104, the second encapsulating glue layer 105 and the second substrate 103 to form a laminate structure includes: Laminator.
  • the lead holes K are formed, The lead hole K penetrates the second substrate 103 and the first encapsulation glue layer 104 .
  • the solar cell group 102 includes adjacent solar cell strings connected in parallel through bus bars, and the solar cell strings include adjacent solar cells connected in series through interconnection bars, and the bus bars pass through the lead holes K.
  • the preparation method of the solar cell module also includes: in the step of arranging the second substrate 103 on the side of the sealant layer 200 and the solar cell group 102 away from the first substrate 101, passing the bus bar through The lead hole K extends to the side of the second substrate 103 away from the first encapsulation glue layer 104; after the solar cell group 102 is installed on one side of the first area of the first substrate 101, and Before the sealant layer 200 and the second substrate 103 are disposed on the side of the solar cell group 102 facing away from the first substrate 101 , a sealing filler 300 is formed in the lead hole K.
  • the material of the sealing filler 300 includes butyl glue; in other embodiments, the material of the sealing filler 300 may also include other materials with good chemical stability, thermal stability and electrical insulation properties. and have stronger Air-tight and water-tight materials.
  • the manufacturing method of the solar cell module further includes: before setting the first encapsulant layer 104 on the surface of the solar cell group 102 facing away from the first substrate 101, and on the first substrate. After the solar cell group 102 is installed on one side of the first area of 101, the solar cell group 102 is inspected for defects.
  • the Defect detection of the solar cell group can be carried out in advance before setting the second substrate. This operation reduces a large amount of repetitive rework workload, greatly improves the rework efficiency, is conducive to reducing labor costs, and has It is conducive to improving production line utilization and production efficiency, and is conducive to reducing repair costs.
  • Defect detection of the solar cell group includes: one or more of appearance detection, crack detection and soldering detection.
  • the appearance detection is to detect whether the solar cell group is damaged.
  • the hidden crack detection is to detect whether there are cracks in the solar cells in the solar cell group, and the virtual soldering detection is to detect whether there is a virtual soldering between the solar cells in the solar cell group and the soldering strips.
  • the appearance of the solar cell group when the appearance of the solar cell group is inspected, it is detected that the appearance of the solar cell group is damaged. For example, if the solar cell group is damaged, it needs to be replaced with a new solar cell group. Until the solar cell group is inspected and passed.
  • the solar cell group with the cracks needs to be repaired until all the cracks are repaired.
  • the above-mentioned solar battery pack has passed the inspection.
  • the virtual soldering detection on the solar cell group when performing the virtual soldering detection on the solar cell group, if it is detected that there is a virtual soldering between the solar cells and the soldering ribbons in the solar cell group, it is necessary to detect the virtual soldering of the solar cells. If there is a weak welding position between the welding strip, re-solder it until the solar cell group passes the inspection.
  • the rework rate of solar cell modules is 15%-20%, requiring a large amount of manpower to perform rework operations; the preparation method of solar cell modules provided in this embodiment can reduce a large amount of repeated rework workload and greatly improve The rework efficiency can reduce the number of operating personnel by 1-2 and reduce labor costs.
  • the method for manufacturing a solar cell module further includes: providing a packaging frame 400 with a receiving cavity; The first encapsulant layer 104 and the second substrate 103 are laminated to form a laminated structure 100 .
  • the packaging frame 400 includes an alloy aluminum frame. In other embodiments, the packaging frame may also include packaging frames of other materials that can play a sealing role.
  • frame glue 401 is formed on the inner wall surface of the accommodation cavity; and the edge area of the laminated structure 100 is placed in the accommodation cavity.
  • the material of the frame glue 401 includes butyl glue. In other embodiments, the material of the frame glue may also include other materials with good chemical stability, thermal stability and electrical insulation properties, as well as strong air tightness and water tightness.
  • the sealing and insulation of the solar cell module can not only ensure the safety of the solar cell module, but also help reduce the power attenuation of the solar cell caused by the penetration of water vapor into the solar cell module, avoid the reduction of the power generation of the solar cell, and help extend the solar energy Battery life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能电池组件的制备方法,包括:提供第一基板;在第一基板的第一区的一侧设置太阳能电池组;在第一基板的第一区的一侧设置太阳能电池组之后,在太阳能电池组背离第一基板的表面设置第一封装胶层;采用涂胶装置对密封胶材料加热;其中:涂胶装置对密封胶材料加热的过程中,同时在第一基板的边缘区一侧的部分表面涂敷密封胶层;在密封胶层和太阳能电池组背离第一基板的一侧设置第二基板,完成层叠结构;对层叠结构进行层压。太阳能电池组件的制备方法工艺简单,且提高对太阳能电池组的密封性和绝缘性,降低水汽渗入太阳能电池组件导致太阳能电池功率衰减的几率,延长了太阳能电池的使用寿命。

Description

一种太阳能电池组件的制备方法
相关申请的交叉引用
本申请要求在2022年4月28日提交中国专利局、申请号为202210484042.1、发明名称为“一种太阳能电池组件的制备方法”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及太阳能电池制造领域,具体涉及一种太阳能电池组件的制备方法。
背景技术
近年来,由于传统能源问题日渐突出,新能源发展迅速,尤其以太阳能作为主要发展的能源之一,采用现有技术中的太阳能电池组件的制备方法所形成的太阳能电池组件存在层压玻璃形变产生的应力存在,胶膜粘合强度不足,以及封边硅胶和胶膜水汽透过率较大,同时太阳能电池组件长期在户外使用的过程中胶膜老化、粘结力下降,湿气会逐步渗透胶膜进而影响电池,从而使太阳能电池组件的密封性和绝缘性低,进而导致太阳能电池组件在空气中长期使用使太阳能电池易遭受水汽侵蚀而导致太阳能电池的功率衰减及使用寿命短。
可见,现有技术中的太阳能电池组件的制备方法有待提高。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中的太阳能电池组件的制备方法存在使太阳能电池组件的密封性和绝缘性低,太阳能电池易遭受水汽侵蚀而导致太阳能电池的功率衰减及使用寿命短的缺陷,从而提供一种太阳能电池组件的制备方法。
本申请提供一种太阳能电池组件的制备方法,包括:提供第一基板,所述第一基板包括第一区和环绕所述第一区的边缘区;在所述第一基板的第一区的一侧设置太阳能电池组;在所述第一基板的第一区的一侧设置太阳能电池组之后,在所述太阳能电池组背离所述第一基板的表面设置第一封装胶层;采用涂胶装置对密封胶材料加热;其中:采用涂胶装置对密封胶材料加热的过程中,同时在所述第一基板的边缘区一侧的部分表面涂敷密封胶层,所述密封胶层环绕所述太阳能电池组,所述密封胶层在密封胶层的宽度方向上包括中心区和位于中心区两侧的边缘区,所述中心区的上表面不高于所述边缘区的上表面;在所述密封胶层和所述太阳能电池组背离所述第一基板的一侧设置第二基板,完成层叠结构;对所述层叠结构进行层压。
可选的,所述中心区相对于所述边缘区朝向所述第一基板凹陷。
可选的,所述密封胶层与所述第一基板接触的宽度为所述密封胶层最大宽度的80%-100%。
可选的,所述涂胶装置包括供胶桶、供胶管和出胶部,所述供胶管具有相对的第一端和第二端,所述第一端与所述供胶桶的出口连通,所述第二端与所述出胶部的进口连通,所述出胶部具有出胶口;所述供胶管包括流通管层和环绕所述流通管层的加热管层,所述流通管层中适于传输密封胶材料,所述加热管层适于对流通管层中的密封胶材料进行加热。
可选的,所述出胶口的横截面形状包括长方形,在涂敷密封胶层的过程中,所述出胶口的长边与涂敷移动方向垂直。
可选的,所述供胶管还包括:环绕所述加热管层的保温管层、以及环绕所述保温管层的防护管层。
可选的,所述出胶部设置有计量泵;所述在涂敷所述密封胶层的过程中,所述计量泵施压的压强大小为6MPa-25MPa。
可选的,所述出胶口的出胶线速度为100mm/s-500mm/s。
可选的,在涂敷所述密封胶层的过程中,所述出胶口至所述第一基板之间的距离为0.3mm-2.2mm。
可选的,所述涂胶装置还包括:第一加热单元和第二加热单元;采用涂胶装置对密封胶材料加热的步骤包括:采用所述第一加热单元给所述供胶桶进行加热;采用所述第二加热单元给所述加热管层进行加热。
可选的,所述第一加热单元给所述供胶桶加热的温度为100℃-230℃。
可选的,所述第二加热单元给所述加热管层加热的温度为100℃-230℃。
可选的,所述涂胶装置还包括第一增压泵;在采用涂胶装置对密封胶材料加热的过程中,采用所述第一增压泵给所述供胶桶中的密封胶材料施压,所述第一增压泵施压的压强大小为6MPa-25MPa。
可选的,所述涂胶装置还包括设置在第一端至第二端之间供胶管的管路上的第二中继增压泵;在采用涂胶装置对密封胶材料加热的过程中,采用所述第二中继增压泵施压的压强大小为6MPa-25MPa。
可选的,所述涂胶装置还包括第三加热单元;在采用涂胶装置对密封胶材料加热的过程中,所述第三加热单元对通入所述出胶部中的密封胶材料进加热,所述第三加热单元对所述出胶部中的密封胶材料加热的温度为100℃-230℃。
可选的,所述涂胶装置还包括第四加热单元,所述第四加热单元适于对通入所述第二中继增压泵中的密封胶材料进加热,所述第四加热单元对通入所述第二中继增压泵中的密封胶材料加热的温度为100℃-230℃。
可选的,还包括:在所述第一基板的第一区的一侧设置太阳能电池组之前,在所述第一基板的第一区的表面设置第二封装胶层;在所述第一基板的第一区的一侧设置太阳能电池组的步骤为:在第二封装胶层背离所述第一基板的一侧设置所述太阳能电池组,所述层叠结构还包括第二封装胶层;对所述层叠结构进行层压的过程中,还包括对所述第二封装胶层进行层压。
可选的,对所述层叠结构进行层压之前,所述密封胶层的内侧壁与所述第一封装胶层的侧壁、所述太阳能电池组的侧壁、所述第二封装胶层的侧壁均间隔设置。
可选的,间隔设置的距离为0.1mm-5.0mm。
可选的,对所述层叠结构进行层压之前,所述密封胶层的厚度为0.5mm-2.0mm,所述密封胶层的宽度为5mm-12mm。
可选的,所述密封胶层的材料包括丁基胶。
可选的,对所述层叠结构进行层压的参数包括:温度为130℃-150℃,层压时间为10分钟-20分钟,层压的压强值为-50kPa-0kPa;采用的层压机的腔室内的真空度为30Pa-200Pa。
可选的,提供封装框,所述封装框中具有容纳腔;对所述第一基板、太阳能电池组、第一封装胶层、第二封装胶层和所述第二基板进行层压以形成层压结构;在所述层叠结构完成层压形成层压结构后:在所述容纳腔的内壁表面形成边框胶;将所述层压结构的边缘区域套在所述容纳腔中。
可选的,所述边框胶的材料包括丁基胶。
可选的,还包括:在所述太阳能电池组背离所述第一基板的表面设置第一封装胶层之前,且在所述第一基板的第一区的一侧设置太阳能电池组之后,对所述太阳能电池组进行缺陷检测。
可选的,在所述密封胶层和所述太阳能电池组背离所述第一基板的一侧设置第二基板之前,形成引线孔,所述引线孔贯穿所述第二基板和所述第一封装胶层;所述太阳能电池组包括通过汇流条并联连接相邻的太阳能电池串,所述太阳能电池串包括通过互联条依次串联连接相邻所述太阳能电池,所述汇流条穿过所述引线孔;所述太阳能电池组件的制备方法还包括:在所述密封胶层和所述太阳能电池组背离所述第一基板的一侧设置第二基板的步骤中,将汇流条穿过所述引线孔延伸至所述第二基板背离所述第一封装胶层的一侧;在所述第一基 板的第一区的一侧设置所述太阳能电池组之后,且在所述密封胶层和所述太阳能电池组背离所述第一基板的一侧设置所述第二基板之前,在所述引线孔中形成密封填充件。
可选的,所述密封填充件的材料包括丁基胶。
本申请的技术方案具有以下有益效果:
本申请提供的太阳能电池组件的制备方法,采用涂胶装置对密封胶材料加热的过程中,在所述第一基板的边缘区一侧的部分表面涂敷密封胶层,所述密封胶层为加热状态下的密封胶层,提高了所述密封胶层与所述第一基板之间的粘结性,且采用涂胶装置在第一基板的边缘区一侧的部分表面直接涂敷密封胶层,无需较多的中间环节,简化了工艺。设置第二基板之前,所述密封胶层在密封胶层的宽度方向上包括中心区和位于中心区两侧的边缘区,所述中心区的上表面不高于所述边缘区的上表面,这样避免中心区朝向太阳能电池组一侧的边缘区与太阳能电池组的侧壁之间形成间隙。由于提高了所述密封胶层与所述第一基板之间的粘结性,且避免中心区朝向太阳能电池组一侧的边缘区与太阳能电池组的侧壁之间形成间隙,因此使得密封胶层能更好的阻挡第一封装胶层的材料溢出,提高了密封胶层的密封性和绝缘性,更好的阻止水汽和防止漏电进入太阳能电池的内部,既可保证太阳能电池组件的安全性,也可以降低水汽渗入太阳能电池组件导致太阳能电池功率衰减的几率,延长了太阳能电池的使用寿命。
进一步,所述中心区相对于所述边缘区朝向所述第一基板凹陷,这样降低了工艺难度。
进一步,所述密封胶层与所述第一基板接触的宽度为所述密封胶层最大宽度的80%-100%,因此密封胶层与第一基板的接触面积较多,所述密封胶层均匀附着在所述第一基板上,所述密封胶层的图形稳定,所述涂胶装置可以连续涂敷密封胶层,保证所述密封胶层连续不间断,可以提高在层压之后所述第一基板、太阳能电池组、第一封装胶层和所述第二基板之间的粘结性。
进一步,在所述太阳能电池组背离所述第一基板的表面设置第二封装胶层之前,且在所述第一基板的第一区的一侧设置太阳能电池组之后,对所述太阳能电池组进行缺陷检测,缺陷检测在设置第二基板之前可以提前对所述太阳能电池组进行缺陷检测,这样操作减少了大量的重复返工工作量,极大提高了返修效率,有利于减少人工成本,有利于提高生产线利用率和生产效率,也有利于降低返修成本。
进一步,提供封装框,所述封装框中具有容纳腔;对所述第一基板、太阳能电池组和所述第二基板进行层压以形成层压结构;所述太阳能电池组件的制备方法还包括:在所述容纳腔的内壁表面形成边框胶;将所述层压结构的边缘区域套在所述容纳腔中;所述边框胶的材料包括丁基胶。由于丁基胶具有良好的化学稳定性、热稳定性和电绝缘性能,且具有较强的 气密性和水密性,在太阳能电池组件的制备过程中在太阳能电池组件的周边涂覆一定厚度的丁基胶,可以提高所述太阳能电池组件的水密性,以再次形成保护,使太阳能电池组件具有良好的密封性和绝缘性。
进一步,在所述密封胶层和所述太阳能电池组背离所述第一基板的一侧设置第二基板之前,形成引线孔,所述引线孔贯穿所述第二基板和所述第一封装胶层;在所述密封胶层和所述太阳能电池组背离所述第一基板的一侧设置第二基板的步骤中,将汇流条穿过所述引线孔延伸至所述第二基板背离所述第一封装胶层的一侧;在所述第一基板的第一区的一侧设置所述太阳能电池组之后,且在所述密封胶层和所述太阳能电池组背离所述第一基板的一侧设置所述第二基板之前,在所述引线孔中形成密封填充件,所述密封填充件的材料包括丁基胶,由于丁基胶良好的化学稳定性、热稳定性和电绝缘性能,且具有较强的气密性和水密性,可以有效的阻止水汽通过所述引线孔进入太阳能电池的内部,有利于提高所述太阳能电池组件的密封性和绝缘性。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的太阳能电池组件的制备方法的流程图;
图2为本申请一实施例提供的太阳能电池组件层压前的结构示意图;
图3为本申请一实施例提供的第二基板的仰视图;
图4为本申请一实施例提供的第二基板的部分纵截面示意图;
图5为本申请一实施例提供的封装后的层压结构的纵截面示意图。
附图标记说明:
101-第一基板;102-太阳能电池组;103-第二基板;104-第一封装胶层;105-第二封装胶层;200-密封胶层;W-宽度;T-厚度;L1-距离;L2-距离;K-引线孔;300-密封填充件;100-层压结构;400-封装框;401-边框胶。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本申请提供的太阳能电池组件的制备方法,结合参考图1与图2,包括:
步骤S1:提供第一基板101,所述第一基板101包括第一区和环绕所述第一区的边缘区;
步骤S2:在所述第一基板101的第一区的一侧设置太阳能电池组102;
步骤S3:在所述第一基板101的第一区的一侧设置太阳能电池组102之后,在所述太阳能电池组102背离所述第一基板101的表面设置第一封装胶层104;
步骤S4:采用涂胶装置对密封胶材料加热;;其中:采用涂胶装置对密封胶材料加热的过程中,同时在所述第一基板101的边缘区一侧的部分表面涂敷密封胶层200,所述密封胶层200环绕所述太阳能电池组102,所述密封胶层在密封胶层的宽度方向上包括中心区和位于中心区两侧的边缘区,所述中心区的上表面不高于所述边缘区的上表面;
步骤S5:在所述密封胶层200和所述太阳能电池组102背离所述第一基板101的一侧设置第二基板103,完成层叠结构;
步骤S6:对所述层叠结构进行层压。
本实施例提供的太阳能电池组件的制备方法,采用涂胶装置对密封胶材料加热的过程中,在所述第一基板101的边缘区一侧的部分表面涂敷密封胶层,所述密封胶层200为加热状态下的密封胶层,提高了所述密封胶层200与所述第一基板101之间的粘结性,且采用涂胶装置在第一基板101的边缘区一侧的部分表面直接涂敷密封胶层,无需较多的中间环节,在降低了成本的同时简化了工艺。设置所述第二基板103之前,所述密封胶层200在密封胶层的宽度方向上包括中心区和位于中心区两侧的边缘区,所述中心区的上表面不高于所述边缘区 的上表面,这样避免中心区朝向太阳能电池组102一侧的边缘区与太阳能电池组102的侧壁之间形成间隙。由于提高了所述密封胶层200与所述第一基板101之间的粘结性,且避免中心区朝向太阳能电池组102一侧的边缘区与太阳能电池组102的侧壁之间形成间隙,因此使得密封胶层200能更好的阻挡第一封装胶层104的材料溢出,提高了密封胶层200的密封性和绝缘性,更好的阻止水汽和防止漏电进入太阳能电池的内部,既可保证太阳能电池组件的安全性,也可以降低水汽渗入太阳能电池组件导致太阳能电池功率衰减的几率,延长了太阳能电池的使用寿命。
所述第一区适于放置所述太阳能电池组102。
此时的所述层叠结构包括所述第一基板101、太阳能电池组102、第一封装胶层104、所述第二基板103和密封胶层200。
所述密封胶层200的宽度方向为平行于所述第一基板101和所述第二基板103的方向。
在一个实施例中,所述中心区相对于所述边缘区朝向所述第一基板101凹陷,这样降低了工艺难度。
在其他实施例中,所述密封胶层200的中心区与所述密封胶层200的边缘区齐平。
所述密封胶层200包括中心区、朝向所述太阳能电池组102第一子边缘区和背向所述太阳能电池组102的第二子边缘区。所述第二子边缘区环绕所述密封胶层200的中心区,密封胶层200的中心区环绕密封胶层200的第二子边缘区。
在一个实施例中,所述密封胶层200与所述第一基板101接触的宽度为所述密封胶层200最大宽度的80%-100%,例如82%;因此密封胶层200与第一基板101的接触面积较多,所述密封胶层均匀附着在所述第一基板上,所述密封胶层的图形稳定,所述涂胶装置可以连续涂敷密封胶层,保证所述密封胶层连续不间断,可以提高在层压之后所述第一基板101、太阳能电池组102、第一封装胶层104和所述第二基板103之间的粘结性。
在一个实施例中,所述涂胶装置包括供胶桶、供胶管和出胶部,所述供胶管具有相对的第一端和第二端,所述第一端与所述供胶桶的出口连通,所述第二端与所述出胶部的进口连通,所述出胶部具有出胶口。
在一个实施例中,在所述第一基板101的边缘区一侧的部分表面涂敷密封胶层200前,还包括,对所述涂胶装置进行排气,目的是排出所述涂胶装置中的气泡和空隙,以防止密封胶出胶时出现断胶的现象。
本实施例中,采用两个供胶桶,两个供胶桶有利于实现连续供胶。
在一个实施例中,所述出胶口的横截面形状为长方形,在涂敷密封胶层的过程中,所述 出胶口的长边与涂敷移动方向垂直,所述出胶口的横截面形状为长方形,这样设置可以有效控制密封胶层的图形,比如密封胶层的图形的直线度,所述出胶口的横截面形状为长方形所形成的密封胶层更有利于与第一封装胶层和第二封装胶层相互衔接,且形成密封胶层的外观美观,可以灵活调整涂胶的高度更有利于控制出胶量,也有利于控制涂胶的平整度。在其他实施例中,所述出胶口的横截面形状还可以包括扁椭圆形。在一个实施例中,所述供胶管包括流通管层和环绕所述流通管层的加热管层,所述流通管层中适于传输密封胶材料,所述加热管层适于对流通管层中的密封胶材料进行加热。
在一个实施例中,所述供胶管还包括:环绕所述加热管层的保温管层、以及环绕所述保温管层的防护管层。所述保温管层为多层保温结构,所述保温管层的材料为耐高温隔热材料,这样可以提高加热效率,减少热量损耗。
所述供胶管中还配置有温度传感器,以便于对所述供胶管中的密封胶材料实现准确的温度控制。
在一个实施例中,所述出胶部设置有计量泵;所述计量泵包括压力传感器,所述压力传感器可以实现监测进胶和出胶的压力,所述计量泵还能够精确控制出胶量,出胶量精度控制在0.5%-1.5%,例如1%。
在其他实施例中,所述出胶部还可以包括其他具备可通过改变气压大小来控制流量及监控流量功能的装置。
在一个实施例中,所述在涂敷所述密封胶层的过程中,所述计量泵施压的压强大小为6MPa-25MPa,例如15MPa;若所述计量泵施压的压强小于6MPa,则给密封胶提供的动力过小,实现连续供胶的程度过小;若所述计量泵施压的压强大于25MPa,则给密封胶提供的动力过大,密封胶的流动性程度可能过大,导致不易控制形成所述密封胶的速度,也不易控制形成密封胶的形状。
在一个实施例中,所述出胶口的出胶线速度为100mm/s-500mm/s,例如200mm/s;若所述出胶口的出胶线速度小于100mm/s,则所述出胶口中的密封胶的出胶速度过慢会导致形成的密封胶层的厚度过于厚,在层压过程中容易溢胶,造成资源浪费;;若所述出胶口的出胶线速度大于500mm/s,则所述出胶口中的密封胶的出胶速度过快会导致形成的密封胶层的厚度过于薄,密封胶层的厚度过于薄可能使最终形成的太阳能电池组处于完全封闭的环境的程度较小,起到阻挡水汽的作用较小。
在一个实施例中,在涂敷所述密封胶层的过程中,所述出胶口至所述第一基板之间的距离为0.3mm-2.2mm,例如2.0mm;若所述出胶口至所述第一基板之间的距离小于0.3mm,则使得所述密封胶层的中心区的上表面不高于所述边缘区的上表面的程度较小;若所述出 胶口至所述第一基板之间的距离大于2.2mm,则由于重力的影响,形成所述密封胶层的形状不易控制。
在一个实施例中,所述涂胶装置还包括:第一加热单元和第二加热单元;采用涂胶装置对密封胶材料加热的步骤包括:采用所述第一加热单元给所述供胶桶进行加热;采用所述第二加热单元给所述加热管层进行加热。
在一个实施例中,所述第一加热单元给所述供胶桶加热的温度为100℃-230℃,例如160℃;若所述第一加热单元给所述供胶桶加热的温度小于100℃,则对所述供胶桶中的密封胶加热的温度过小,提高所述密封胶的流动性程度较小;若所述第一加热单元给所述供胶桶加热的温度大于230℃,则所述密封胶的流动性程度过大,不易控制形成所述密封胶的速度,且温度过大形成所述密封胶层的形状不易控制;若超过密封胶的使用温度,则所述密封胶会发生降解,导致密封胶失效不能起到封装保护作用。
在一个实施例中,所述第二加热单元给所述加热管层加热的温度为100℃-230℃,例如160℃;若所述第二加热单元给所述加热管层加热的温度小于100℃,则对所述供胶管中的密封胶加热的温度过小,提高所述密封胶的流动性程度较小;若所述第二加热单元给所述加热管层加热的温度大于230℃,则所述密封胶的流动性程度过大,不易控制形成所述密封胶的速度,且温度过大形成所述密封胶层的形状不易控制;若超过密封胶的使用温度,则所述密封胶会发生降解,导致密封胶失效不能起到封装保护作用。
在一个实施例中,所述涂胶装置还包括第一增压泵。
太阳能电池组件的制备方法还包括:在采用涂胶装置对密封胶材料加热的过程中,采用所述第一增压泵给所述供胶桶中的密封胶材料施压,所述第一增压泵施压的压强大小为6MPa-25MPa,例如15MPa;若所述第一增压泵施压的压强小于6MPa,则给密封胶提供的动力过小,实现连续供胶的程度过小;若所述第一增压泵施压的压强大于25MPa,则给密封胶提供的动力过大,密封胶的流动性程度可能过大,导致不易控制形成所述密封胶的速度。
在一个实施例中,所述涂胶装置还包括设置在第一端至第二端之间供胶管的管路上的第二中继增压泵。
太阳能电池组件的制备方法还包括:在采用涂胶装置对密封胶材料加热的过程中,采用所述第二中继增压泵施压的压强大小为6MPa-25MPa,例如15MPa;若所述第二中继增压泵施压的压强小于6MPa,则给密封胶提供的动力过小,实现连续供胶的程度过小;若所述第二中继增压泵施压的压强大于25MPa,则给密封胶提供的动力过大,密封胶的流动性程度可能过大,导致不易控制形成所述密封胶的速度。
在一个实施例中,所述流通管层可承受的压强大于所述加热管可承受的压强,所述流通层可承受的压强大小为30MPa-35MPa,例如32MPa;所述加热管可承受的压强大小为6MPa-20MPa,例如10MPa。
在一个实施例中,所述涂胶装置还包括第三加热单元。
太阳能电池组件的制备方法还包括:在采用涂胶装置对密封胶材料加热的过程中,所述第三加热单元对通入所述出胶部中的密封胶材料进加热,所述第三加热单元对所述出胶部中的密封胶材料加热的温度为100℃-230℃,例如160℃;若所述第三加热单元对所述出胶部中的密封胶材料加热的温度小于100℃,则对所述出胶部中的密封胶材料加热的温度过小,提高所述密封胶的流动性程度较小;若所述第三加热单元对所述出胶部中的密封胶材料加热的温度大于230℃,则所述密封胶的流动性程度过大,不易控制形成所述密封胶的速度,且温度过大形成所述密封胶层的形状不易控制;若超过密封胶的使用温度,则所述密封胶会发生降解,导致密封胶失效不能起到封装保护作用。
在一个实施例中,所述涂胶装置还包括第四加热单元,所述第四加热单元适于对通入所述第二中继增压泵中的密封胶材料进加热,所述第四加热单元对通入所述第二中继增压泵中的密封胶材料加热的温度为100℃-230℃,例如160℃;若所述第四加热单元对通入所述第二中继增压泵中的密封胶材料加热的温度小于100℃,则对通入所述第二中继增压泵中的密封胶材料加热的温度过小,提高所述密封胶的流动性程度较小;若所述第四加热单元对通入所述第二中继增压泵中的密封胶材料加热的温度大于230℃,则所述密封胶的流动性程度过大,不易控制形成所述密封胶的速度,且温度过大形成所述密封胶层的形状不易控制;若超过密封胶的使用温度,则所述密封胶会发生降解,导致密封胶失效不能起到封装保护作用。
在一个实施例中,继续参考图2,还包括:在所述第一基板101的第一区的一侧设置太阳能电池组102之前,在所述第一基板101的第一区的表面设置第二封装胶层105;在所述第一基板101的第一区的一侧设置太阳能电池组102的步骤为:在第二封装胶层105背离所述第一基板101的一侧设置所述太阳能电池组102;所述层叠结构还包括第二封装胶层105。
在一个实施例中,对所述层叠结构进行层压的过程中,还包括对所述第二封装胶层105进行层压。
在一个实施例中,所述第一封装胶层104的宽度与所述第二封装胶层105的宽度差值范围小于2.0mm;所述第一封装胶层104的宽度与所述第二封装胶层105的宽度差值范围小于1.0mm;所述第一封装胶层104的宽度与所述太阳能电池组102的宽度差值范围小于2.0mm;所述第二封装胶层105的宽度与所述太阳能电池组102的宽度差值范围小于2.0mm。这样有 利于提高所述铺设精度,有利于所述密封胶层的位置稳定性,提高所述太阳能电池组件的密封性。
在一个实施例中,对所述层叠结构进行层压之前,所述密封胶层200的内侧壁与所述第一封装胶层104的侧壁、所述太阳能电池组102的侧壁、所述第二封装胶层105的侧壁均间隔设置。
在一个实施例中,继续参考图2,具体的,对所述层叠结构进行层压之前,所述密封胶层200的内侧壁与所述第一封装胶层104的侧壁之间的距离L1为0.1mm-5.0mm,例如2.5mm、3.5mm、4.5mm;若所述密封胶层200的内侧壁与所述第一封装胶层104的侧壁之间的距离L1小于2.0mm,则在层压过程中,所述密封胶层可能溢到所述第一封装胶层上;若所述密封胶层200的内侧壁与所述第一封装胶层104的侧壁之间的距离L1大于5.0mm,则最终形成的太阳能电池组件中,所述密封胶层与所述第一封装胶层之间可能会存在空隙容易形成气泡,影响太阳能电池组件的外观和耐候性能。
在一个实施例中,继续参考图2,具体的,对所述层叠结构进行层压之前,所述密封胶层200的内侧壁与所述太阳能电池组的侧壁之间的距离L1为0.1mm-5.0mm,例如2.5mm、3.5mm、4.5mm;若所述密封胶层200的内侧壁与所述太阳能电池组的侧壁之间的距离L1大于5.0mm,则最终形成的太阳能电池组件中,所述密封胶层与所述太阳能电池组之间可能会存在空隙容易形成气泡,影响太阳能电池组件的外观和耐候性能。
在一个实施例中,继续参考图2,具体的,对所述层叠结构进行层压之前,所述密封胶层200的内侧壁与所述第二封装胶层105的侧壁之间的距离L1为0.1mm-5.0mm,例如2.5mm、3.5mm、4.5mm;若所述密封胶层200的内侧壁与所述第二封装胶层105的侧壁之间的距离L1大于5.0mm,则最终形成的太阳能电池组件中,所述密封胶层与所述第二封装胶层之间可能会存在空隙容易形成气泡,影响太阳能电池组件的外观和耐候性能。
在一个实施例中,继续参考图2,具体的,对所述层叠结构进行层压之前,所述密封胶层200的外侧壁与所述第一基板101的侧壁之间的距离L2为0.1mm-5.0mm,例如2.5mm、3.5mm、4.5mm;若所述密封胶层200的外侧壁与所述第一基板101的侧壁之间的距离L2小于0.1mm,则层压之后容易溢胶,造成资源浪费且形成的太阳能电池组件不美观;若所述密封胶层200的外侧壁与所述第一基板101的侧壁之间的距离L2大于5.0mm,则层压之后形成的太阳能电池组件的边缘存在空隙,会导致提高对太阳能电池组的密封性和绝缘性的程度较小。
在一个实施例中,继续参考图2,具体的,对所述层叠结构进行层压之前,所述密封胶层200的厚度T为0.5mm-2.0mm,例如1.0mm、1.2mm、1.5mm,若所述密封胶层的厚 度小于0.5mm,则密封胶层的厚度过小可能使太阳能电池组处于完全封闭的环境的程度较小,起到阻挡水汽的作用较小;若所述密封胶层的厚度大于2.0mm,则密封胶层的厚度过大,在层压过程中容易溢胶,造成资源浪费。
在一个实施例中,继续参考图2,具体的,对所述层叠结构进行层压之前,所述密封胶层200的宽度W为5.0mm-12.0mm,例如6.5mm、7.5mm、8.5mm,若所述密封胶层的宽度小于5.0mm,则所述密封胶层起到阻止环境中的水汽与粉尘穿过所述密封胶层渗入到所述太阳能电池组的作用较弱;若所述密封胶层的宽度大于12.0mm,则密封胶层的宽度过大,则在层压时可能导致所述密封胶层溢出,造成浪费。
在一个实施例中,所述密封胶层200包括丁基胶。所述丁基胶的材料包括异丁烯和少量异戊二烯,所述丁基胶具有良好的化学稳定性和热稳定性,具有较高的气密性和水密性。所述丁基胶中的丁基橡胶分子链中侧甲基陈列密集,限制了聚合物分子的热活动,因而所述丁基胶的透气率低,气密性好。所述丁基胶对空气的透过率仅为天然橡胶的1/7,丁苯橡胶的1/5,所述丁基胶对蒸汽的透过率为天然橡胶的1/200,丁苯橡胶的1/140。表1示出了本实施例中的丁基胶与现有技术中太阳能电池组件封装材料的水汽透过率对比,具体见表1。丁基橡胶的水汽透过率远低于现有太阳能电池组件封装材料。
表1
所述丁基胶中的丁基橡胶硫化胶具有优异的耐热不变性,树脂硫化的丁基橡胶运用温度可达150℃∽200℃。因此所述丁基胶具有良好的热稳定性,所述丁基胶中的丁基橡胶分子构造中短少双键且侧链甲基散布密度较大,丁基橡胶分子链空间构造呈螺旋状,因此甲基较多,具有较强的弹性,因此具有优胜的接收震动和冲击能量的特征,在很宽的温度局限内丁基橡胶的回弹特征都不超过20%,因此所述丁基胶的承受机械力的能力较高且具有良好的耐低温性,所述丁基胶中的丁基橡胶分子链的高饱和度使之具有很高的耐臭氧性和耐天候老化性,所述丁基胶耐臭氧性和耐天候老化性是丁苯橡胶的10倍。所述丁基胶中的丁基橡胶的高饱和构造使得丁基胶具有较高的化学不变性,丁基橡胶具有优胜的抗腐蚀性,所述丁基胶的电绝缘性和耐电晕性强,体积电阻率比浅显橡胶高10倍∽100倍。所述丁基胶中的丁基橡胶中由于复合了白炭黑作填料,硫黄或不溶性硫黄作硫化剂。物理性能和抗紫外线、耐热老化和耐 湿热等性能都有很大的改进。所述丁基胶的水浸透率极低、物理性能和抗紫外线、耐热老化和耐湿热等性能很强。
在一个实施例中,所述太阳能电池组102包括若干个并联连接的太阳能电池串,所述太阳能电池串包括若干个串联连接的太阳能电池。
在一个实施例中,所述太阳能电池可以为多种类型,包括但不限于TOPCon(隧穿氧化层钝化接触太阳能电池)、PERC(发射极及背面钝化太阳能电池)、钙钛矿电池或HJT(异质结太阳能电池),也可以为叠瓦,这里不做限定。
在一个实施例中,所述第一封装胶层104的厚度为0.2mm-1.0mm,例如0.7mm;所述第二封装胶层105的厚度为0.2mm-1.0mm,例如0.7mm;所述太阳能电池组102的厚度为0.10mm-0.20mm,例如0.15mm。
本实施例中,所述第一基板101为单层结构,所述第一基板101的材料包括玻璃;在其他实施例中,所述第一基板为多层结构,所述第一基板包括层叠的保护层、绝缘层和粘合层,所述绝缘层位于所述粘合层和所述保护层之间,所述粘合层与所述第一封装胶层粘合,所述保护层的材料包括聚偏氟乙烯,所述绝缘层的材料包括聚对苯二甲酸乙二醇酯,所述粘合层的材料包括聚烯烃。所述第一基板对所述太阳能电池组具有保护和支撑作用。
在一个实施例中,所述第二基板103的材料包括玻璃;在其他实施例中,所述第二基板的材料还可以包括其他柔性背板或者可透光的材料。
在一个实施例中,所述太阳能电池组件的制备方法,还包括:在所述第一基板101的第一区的一侧设置太阳能电池组102之前,在所述第一基板101的第一区的表面设置第二封装胶层105,所述第二封装胶层105的材料包括乙烯和乙酸乙烯酯共聚物如EVA胶膜;在其他实施例中,所述第二封装胶层的材料还可以包括其他具有粘着性、光学透明性的材料如EPE/POE/PVB等。
在一个实施例中,在所述第一基板101的第一区的一侧设置太阳能电池组102的步骤为:在第一封装胶层104背离所述第一基板101的一侧设置太阳能电池组102;在所述第一基板101的第一区的一侧设置太阳能电池组102之后,在所述太阳能电池组102背离所述第一基板101的表面设置第一封装胶层104,所述第一封装胶层104的材料包括乙烯和乙酸乙烯酯共聚物如EVA胶膜;在其他实施例中,所述第二封装胶层的材料还可以包括其他具有粘着性、光学透明性的材料如EPE/POE/PVB等。
在一个实施例中,对所述第一基板101、太阳能电池组102、第一封装胶层104和所述第二基板103进行层压的过程中,还对所述第一封装胶层104和所述第二封装胶层105进行层压。
在一个实施例中,对所述层叠结构进行层压的参数包括:层压的温度为130℃-150℃,例如140℃;若层压的温度低于130℃,则提高所述密封胶层与所述第一基板和第二基板的交联度不足;若层压的温度高于150℃,则易使所述密封胶层成为流体而流出所述太阳能电池组件,其次温度过高也可能影响所述第一基板、太阳能电池组和所述第二基板的性能。
在一个实施例中,对所述层叠结构进行层压的参数包括:层压时间为10分钟-20分钟,例如15分钟;若层压时间不足10分钟,则层压的时间不够,可能会导致提高所述密封胶层与所述第一基板和第二基板的粘结力的程度较低;若层压时间超过20分钟,则层压的时间过长,则提高所述太阳能电池组件的制备效率降低。
在一个实施例中,对所述层叠结构进行层压的参数包括:层压的压强值为-50kPa-0kPa,例如-10kPa;若层压的压强值小于-50kPa,则压力过大,可能会导致所述太阳能电池组中的太阳能电池出现裂片;若层压的压强值大于0kPa,则层压的压力不够,可能会导致提高所述密封胶层与所述第一基板和第二基板的粘结力的程度较低。
在一个实施例中,对所述层叠结构进行层压的参数包括:层压的真空度为20Pa-200Pa,例如100Pa;若层压的真空度小于20Pa,则抽出所述太阳能电池组件中的气体不够彻底,容易导致所述密封胶层与所述第一基板和第二基板之间存在气泡,影响太阳能电池组件的外观和耐候性能。
在一个实施例中,对所述第一基板101、太阳能电池组102、第一封装胶层104、第二封装胶层105和所述第二基板103进行层压以形成层压结构的设备包括层压机。
在一个实施例中,结合参考图3和图4,在所述密封胶层200和所述太阳能电池组102背离所述第一基板101的一侧设置第二基板103之前,形成引线孔K,所述引线孔K贯穿所述第二基板103和所述第一封装胶层104。所述太阳能电池组102包括通过汇流条并联连接相邻的太阳能电池串,所述太阳能电池串包括通过互联条依次串联连接相邻所述太阳能电池,所述汇流条穿过所述引线孔K。
所述的太阳能电池组件的制备方法还包括:在所述密封胶层200和所述太阳能电池组102背离所述第一基板101的一侧设置第二基板103的步骤中,将汇流条穿过所述引线孔K延伸至所述第二基板103背离所述第一封装胶层104的一侧;在所述第一基板101的第一区的一侧设置所述太阳能电池组102之后,且在所述密封胶层200和所述太阳能电池组102背离所述第一基板101的一侧设置所述第二基板103之前,在所述引线孔K中形成密封填充件300。
在一个实施例中,所述密封填充件300的材料包括丁基胶;在其他实施例中,所述密封填充件的材料还可以包括其他具有良好的化学稳定性、热稳定性和电绝缘性能以及具有较强 的气密性和水密性的材料。
在一个实施例中,所述太阳能电池组件的制备方法,还包括:在所述太阳能电池组102背离所述第一基板101的表面设置第一封装胶层104之前,且在所述第一基板101的第一区的一侧设置太阳能电池组102之后,对所述太阳能电池组102进行缺陷检测。
在所述太阳能电池组102背离所述第一基板101的表面设置第二封装胶层105之前,且在所述第一基板101的第一区的一侧设置太阳能电池组102之后,对所述太阳能电池组进行缺陷检测,可以在设置第二基板之前提前对所述太阳能电池组进行缺陷检测,这样操作减少了大量的重复返工工作量,极大提高了返修效率,有利于减少人工成本,有利于提高生产线利用率和生产效率,有利于降低返修成本。
对所述太阳能电池组进行缺陷检测包括:外观形貌检测、隐裂检测和虚焊检测中的一种或者几种,所述外观形貌检测为检测所述太阳能电池组是否存在破损,所述隐裂检测为检测所述太阳能电池组中的太阳能电池是否存在裂片,所述虚焊检测为检测所述太阳能电池组中的太阳能电池与焊带之间是否存在虚焊。
在一个实施例中,对所述太阳能电池组进行所述外观形貌检测时,检测到所述太阳能电池组的外观存在破损,例如所述太阳能电池组存在破损,则需更换新的太阳能电池组直至对所述太阳能电池组检验合格。
在另一个实施例中,对所述太阳能电池组进行所述隐裂检测时,检测到所述太阳能电池组中的太阳能电池存在裂片,则需对存在裂片的太阳能电池组进行返修,直至对所述太阳能电池组检验合格。
在另一个实施例中,对所述太阳能电池组进行所述虚焊检测时,检测到所述太阳能电池组中的太阳能电池与焊带之间存在虚焊,则需对存在虚焊的太阳能电池与焊带之间存在虚焊位置重新焊接,直至对所述太阳能电池组检验合格。
现有技术中,太阳能电池组件的返工率为15%-20%,需要大量人力进行返修作业;本实施例提供的所述太阳能电池组件的制备方法可以减少大量的重复返工工作量,极大提高返修效率,可以减少1-2人操作员工,降低人工成本。
在一个实施例中,所述太阳能电池组件的制备方法,参考图5,还包括:提供封装框400,所述封装框400中具有容纳腔;对所述第一基板101、太阳能电池组102、第一封装胶层104和所述第二基板103进行层压以形成层压结构100。
在一个实施例中,所述封装框400包括合金铝边框。在其他实施例中,所述封装框还可以包括可起到密封作用的其他材料的封装框。
在一个实施例中,在所述层叠结构完成层压形成层压结构后:在所述容纳腔的内壁表面形成边框胶401;将所述层压结构100的边缘区域套在所述容纳腔中。
在一个实施例中,所述边框胶401的材料包括丁基胶。在其他实施例中,所述边框胶的材料还可以包括其他具有良好的化学稳定性、热稳定性和电绝缘性能以及具有较强的气密性和水密性的材料。
由于丁基胶良好的化学稳定性、热稳定性和电绝缘性能,且具有较强的气密性和水密性,可以有效的阻止水汽通过所述引线孔进入太阳能电池的内部,有利于提高所述太阳能电池组件的密封性和绝缘性,既可保证太阳能电池组件的安全性,也有利于降低水汽渗入太阳能电池组件导致太阳能电池功率衰减,避免所述太阳能电池的发电量降低,有利于延长太阳能电池的使用寿命。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种太阳能电池组件的制备方法,其特征在于,包括:
    提供第一基板,所述第一基板包括第一区和环绕所述第一区的边缘区;
    在所述第一基板的第一区的一侧设置太阳能电池组;
    在所述第一基板的第一区的一侧设置太阳能电池组之后,在所述太阳能电池组背离所述第一基板的表面设置第一封装胶层;
    采用涂胶装置对密封胶材料加热;其中:采用涂胶装置对密封胶材料加热的过程中,同时在所述第一基板的边缘区一侧的部分表面涂敷密封胶层,所述密封胶层环绕所述太阳能电池组,所述密封胶层在密封胶层的宽度方向上包括中心区和位于中心区两侧的边缘区,所述中心区的上表面不高于所述边缘区的上表面;
    在所述密封胶层和所述太阳能电池组背离所述第一基板的一侧设置第二基板,完成层叠结构;
    对所述层叠结构进行层压。
  2. 根据权利要求1所述的太阳能电池组件的制备方法,其特征在于,所述中心区相对于所述边缘区朝向所述第一基板凹陷;
    可选地,所述密封胶层与所述第一基板接触的宽度为所述密封胶层最大宽度的80%-100%。
  3. 根据权利要求1所述的太阳能电池组件的制备方法,其特征在于,所述涂胶装置包括供胶桶、供胶管和出胶部,所述供胶管具有相对的第一端和第二端,所述第一端与所述供胶桶的出口连通,所述第二端与所述出胶部的进口连通,所述出胶部具有出胶口;
    所述供胶管包括流通管层和环绕所述流通管层的加热管层,所述流通管层中适于传输密封胶材料,所述加热管层适于对流通管层中的密封胶材料进行加热;
    可选地,所述出胶口的横截面形状包括长方形,在涂敷密封胶层的过程中,所述出胶口的长边与涂敷移动方向垂直;
    可选地,所述供胶管还包括:环绕所述加热管层的保温管层、以及环绕所述保温管层的防护管层;
    可选地,所述出胶部设置有计量泵;所述在涂敷所述密封胶层的过程中,所述计量泵施压的压强大小为6MPa-25MPa;
    可选地,所述出胶口的出胶线速度为100mm/s-500mm/s;
    可选地,在涂敷所述密封胶层的过程中,所述出胶口至所述第一基板之间的距离为0.3mm-2.2mm。
  4. 根据权利要求3所述的太阳能电池组件的制备方法,其特征在于,所述涂胶装置还包括:第一加热单元和第二加热单元;
    采用涂胶装置对密封胶材料加热的步骤包括:采用所述第一加热单元给所述供胶桶进行加热;采用所述第二加热单元给所述加热管层进行加热;
    可选地,所述第一加热单元给所述供胶桶加热的温度为100℃-230℃;
    可选地,所述第二加热单元给所述加热管层加热的温度为100℃-230℃;
    可选地,所述涂胶装置还包括第一增压泵;在采用涂胶装置对密封胶材料加热的过程中,采用所述第一增压泵给所述供胶桶中的密封胶材料施压,所述第一增压泵施压的压强大小为6MPa-25MPa;
    可选地,所述涂胶装置还包括设置在第一端至第二端之间供胶管的管路上的第二中继增压泵;在采用涂胶装置对密封胶材料加热的过程中,采用所述第二中继增压泵施压的压强大小为6MPa-25MPa;
    可选地,所述涂胶装置还包括第三加热单元;在采用涂胶装置对密封胶材料加热的过程中,所述第三加热单元对通入所述出胶部中的密封胶材料进加热,所述第三加热单元对所述出胶部中的密封胶材料加热的温度为100℃-230℃;
    可选地,所述涂胶装置还包括第四加热单元,所述第四加热单元适于对通入所述第二中继增压泵中的密封胶材料进加热,所述第四加热单元对通入所述第二中继增压泵中的密封胶材料加热的温度为100℃-230℃。
  5. 根据权利要求1-4任一项所述的太阳能电池组件的制备方法,其特征在于,还包括:在所述第一基板的第一区的一侧设置太阳能电池组之前,在所述第一基板的第一区的表面设置第二封装胶层;
    在所述第一基板的第一区的一侧设置太阳能电池组的步骤为:在第二封装胶层背离所述第一基板的一侧设置所述太阳能电池组,所述层叠结构还包括第二封装胶层;
    对所述层叠结构进行层压的过程中,还包括对所述第二封装胶层进行层压;
    可选地,对所述层叠结构进行层压之前,所述密封胶层的内侧壁与所述第一封装胶层的侧壁、所述太阳能电池组的侧壁、所述第二封装胶层的侧壁均间隔设置;
    可选地,间隔设置的距离为0.1mm-5.0mm。
  6. 根据权利要求5所述的太阳能电池组件的制备方法,其特征在于,对所述层叠结构进行层压之前,所述密封胶层的厚度为0.5mm-2.0mm,所述密封胶层的宽度为5mm-12mm;
    可选地,所述密封胶层的材料包括丁基胶。
  7. 根据权利要求5所述的太阳能电池组件的制备方法,其特征在于,对所述层叠结构进行层压的参数包括:温度为130℃-150℃,层压时间为10分钟-20分钟,层压的压强值为-50kPa-0kPa;采用的层压机的腔室内的真空度为30Pa-200Pa。
  8. 根据权利要求5所述的太阳能电池组件的制备方法,其特征在于,提供封装框,所述封装框中具有容纳腔;对所述第一基板、太阳能电池组、第一封装胶层、第二封装胶层和所述第二基板进行层压以形成层压结构;
    在所述层叠结构完成层压形成层压结构后:在所述容纳腔的内壁表面形成边框胶;将所述层压结构的边缘区域套在所述容纳腔中;
    可选地,所述边框胶的材料包括丁基胶。
  9. 根据权利要求1所述的太阳能电池组件的制备方法,其特征在于,还包括:
    在所述太阳能电池组背离所述第一基板的表面设置第一封装胶层之前,且在所述第一基板的第一区的一侧设置太阳能电池组之后,对所述太阳能电池组进行缺陷检测。
  10. 根据权利要求5所述的太阳能电池组件的制备方法,其特征在于,在所述密封胶层和所述太阳能电池组背离所述第一基板的一侧设置第二基板之前,形成引线孔,所述引线孔贯穿所述第二基板和所述第一封装胶层;
    所述太阳能电池组包括通过汇流条并联连接相邻的太阳能电池串,所述太阳能电池串包括通过互联条依次串联连接相邻所述太阳能电池,所述汇流条穿过所述引线孔;
    所述太阳能电池组件的制备方法还包括:在所述密封胶层和所述太阳能电池组背离所述第一基板的一侧设置第二基板的步骤中,将汇流条穿过所述引线孔延伸至所述第二基板背离所述第一封装胶层的一侧;在所述第一基板的第一区的一侧设置所述太阳能电池组之后,且在所述密封胶层和所述太阳能电池组背离所述第一基板的一侧设置所述第二基板之前,在所述引线孔中形成密封填充件;
    可选地,所述密封填充件的材料包括丁基胶。
PCT/CN2023/084852 2022-04-28 2023-03-29 一种太阳能电池组件的制备方法 WO2023207494A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23794929.2A EP4350785A1 (en) 2022-04-28 2023-03-29 Method for manufacturing solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210484042.1 2022-04-28
CN202210484042.1A CN114843371A (zh) 2022-04-28 2022-04-28 一种太阳能电池组件的制备方法

Publications (1)

Publication Number Publication Date
WO2023207494A1 true WO2023207494A1 (zh) 2023-11-02

Family

ID=82568379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084852 WO2023207494A1 (zh) 2022-04-28 2023-03-29 一种太阳能电池组件的制备方法

Country Status (3)

Country Link
EP (1) EP4350785A1 (zh)
CN (1) CN114843371A (zh)
WO (1) WO2023207494A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843371A (zh) * 2022-04-28 2022-08-02 安徽华晟新能源科技有限公司 一种太阳能电池组件的制备方法
CN116825865A (zh) * 2023-06-21 2023-09-29 安徽华晟新能源科技有限公司 一种太阳能电池组件的制备方法
CN117080307B (zh) * 2023-08-31 2024-04-26 安徽华晟新能源科技有限公司 一种太阳能电池组件的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304359A (ja) * 1999-04-21 2000-11-02 Sekisui Chem Co Ltd 光熱ハイブリッドパネルの製造方法
CN203659888U (zh) * 2013-10-31 2014-06-18 英利能源(中国)有限公司 一种太阳能双玻密封组件及封装专用工装
CN105322040A (zh) * 2015-07-21 2016-02-10 珠海格力电器股份有限公司 光伏组件及光伏组件的工艺制备方法
CN205701301U (zh) * 2016-04-18 2016-11-23 大连华工创新科技股份有限公司 涂胶嘴旋转的涂胶头
CN114843371A (zh) * 2022-04-28 2022-08-02 安徽华晟新能源科技有限公司 一种太阳能电池组件的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616894A (en) * 1985-01-14 1986-10-14 Nordson Corporation Electrical connector for hot melt hose unit and gun
JP5780209B2 (ja) * 2012-05-29 2015-09-16 信越化学工業株式会社 太陽電池モジュールの製造方法
JP2015029077A (ja) * 2013-07-04 2015-02-12 信越化学工業株式会社 太陽電池モジュールの製造方法
CN209561462U (zh) * 2019-04-03 2019-10-29 福建华佳彩有限公司 一种网印封胶结构
CN112038431B (zh) * 2020-08-14 2022-04-08 泰州隆基乐叶光伏科技有限公司 一种光伏组件及其封装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304359A (ja) * 1999-04-21 2000-11-02 Sekisui Chem Co Ltd 光熱ハイブリッドパネルの製造方法
CN203659888U (zh) * 2013-10-31 2014-06-18 英利能源(中国)有限公司 一种太阳能双玻密封组件及封装专用工装
CN105322040A (zh) * 2015-07-21 2016-02-10 珠海格力电器股份有限公司 光伏组件及光伏组件的工艺制备方法
CN205701301U (zh) * 2016-04-18 2016-11-23 大连华工创新科技股份有限公司 涂胶嘴旋转的涂胶头
CN114843371A (zh) * 2022-04-28 2022-08-02 安徽华晟新能源科技有限公司 一种太阳能电池组件的制备方法

Also Published As

Publication number Publication date
CN114843371A (zh) 2022-08-02
EP4350785A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2023207494A1 (zh) 一种太阳能电池组件的制备方法
US20100101647A1 (en) Non-autoclave lamination process for manufacturing solar cell modules
CN104779324A (zh) 一种用于双面玻璃晶体硅太阳能电池串组的封装方法
CN103681918B (zh) 一种薄膜太阳能电池组件及其封装方法
CN101162742A (zh) 太阳能光伏夹层幕墙玻璃制作工艺
WO2018120536A1 (zh) 光伏组件及该光伏组件的封装方法
CN102709365A (zh) 一种太阳能电池组件及其制备方法
CN111540793A (zh) 一种带有保温层的碲化镉太阳能电池组件及其制备方法
CN107393994B (zh) 一种光伏组件
CN102157582A (zh) 一种组件生产过程中的封装工艺
CN203659888U (zh) 一种太阳能双玻密封组件及封装专用工装
US20230275171A1 (en) Solar cell module and manufacturing method thereof
CN211125669U (zh) 一种高可靠性晶体硅太阳能电池封装组件
CN206697508U (zh) 薄膜电池光伏组件
CN108666389A (zh) 一种太阳能光伏夹层幕墙玻璃的制作工艺
CN104979414A (zh) 一种中空透光型晶硅太阳电池组件
CN208970529U (zh) 抗蜗牛纹光伏组件
CN204144284U (zh) 一种中空透光型晶硅太阳能电池组件
CN208352345U (zh) 一种钙钛矿太阳能电池组件
JP2003298092A (ja) 太陽電池モジュールと太陽電池モジュール用接着性樹脂封止材
CN207637813U (zh) 一种双玻璃光伏组件
CN102644332A (zh) 一种隔热材料为玻璃真空管的保温模块
WO2019232974A1 (zh) 一种光伏电池组件、光伏墙及光伏电池组件的制造方法
CN114843370B (zh) 一种太阳能电池组件的封装方法
CN213124459U (zh) 一种超薄双玻片高效光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794929

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023794929

Country of ref document: EP

Ref document number: 23 794 929.2

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023794929

Country of ref document: EP

Effective date: 20240103