WO2023207350A1 - 用于加热动力电池的加热系统和电动车 - Google Patents

用于加热动力电池的加热系统和电动车 Download PDF

Info

Publication number
WO2023207350A1
WO2023207350A1 PCT/CN2023/080344 CN2023080344W WO2023207350A1 WO 2023207350 A1 WO2023207350 A1 WO 2023207350A1 CN 2023080344 W CN2023080344 W CN 2023080344W WO 2023207350 A1 WO2023207350 A1 WO 2023207350A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
heating
group
battery core
inverter
Prior art date
Application number
PCT/CN2023/080344
Other languages
English (en)
French (fr)
Inventor
张柯
郭姿珠
潘仪
朱燕
孙华军
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2023207350A1 publication Critical patent/WO2023207350A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means

Definitions

  • the present disclosure relates to the field of vehicle technology, and more specifically, to a heating system for heating a power battery and an electric vehicle.
  • the characteristics of power batteries are significantly affected by ambient temperature. Especially in low-temperature environments, the energy and power characteristics of lithium-ion power batteries will be severely attenuated, so the batteries need to be heated at low temperatures. How to improve the heating performance of electric vehicle power batteries has become a key issue.
  • An object of the present disclosure is to provide a new technical solution for a heating system for heating a power battery.
  • Another object of the present disclosure is to provide a new technical solution for an electric vehicle, which includes a power battery and a heating system for heating the power battery.
  • a heating system for heating a power battery includes a first battery group and a second battery group connected in series.
  • the heating system includes an inverter, an AC motor, a first controller and a connecting line; the inverter includes three bridge arms, the positive electrode of the power battery is connected to the upper bridge arm of the inverter, and the negative electrode of the power battery is connected to the inverter.
  • the lower bridge arms are connected; the midpoints of the three bridge arms of the inverter are connected to the head ends of the three-phase coils of the AC motor in a one-to-one correspondence, and the ends of the AC motor are connected together to form a neutral point; so
  • the first end of the connecting line is connected to the neutral point of the AC motor, and the connecting line
  • the second end of the connection line is connected to the connection point between the first battery core group and the second battery core group;
  • the first controller is used to input a driving signal to the inverter; the first The battery core group, the second battery core group, the inverter, the AC motor and the connecting line form an AC self-heating circuit; at least one heating device is inserted in series in the connecting line, and the heating device Used to heat the first battery core group and/or the second battery core group.
  • the heating device is attached to the surface of the first battery core group and/or the surface of the second battery core group.
  • the heating device is arranged on the first surface of the first battery group and/or the first surface of the second battery group, and the first surface of the first battery group is a surface formed by a stack of battery cells in the first battery group, and the first surface of the second battery group is a surface formed by a stack of battery cells in the second battery group.
  • the second surface is an opposite surface of adjacent battery cells.
  • the deployment position of the heating device corresponds to the center of the battery cell unit.
  • the heating device corresponds to a low-temperature region of the first battery core group and/or the second battery core group; wherein the low-temperature region is when the temperature of the surface of the battery core group is lower than The area of the first default value.
  • a switch is provided in the connection line; the heating system further includes a second controller; the second controller is used to control the switch to turn on/off the connection line.
  • an electric vehicle which includes a power battery and a heating system according to any one of the first aspects.
  • the heating system and electric vehicle for heating the power battery of the present disclosure are provided with a connection line from the neutral point of the AC motor to the connection point between the first battery group and the second battery group, and in the connection line A heating device for heating the power battery is inserted in the middle series.
  • the heating system also adopts The power battery is heated by excitation current self-heating and external thermoelectric conversion heating, making the heating effect of the power battery more balanced.
  • Figure 2 is a specific circuit diagram of a heating system for heating a power battery provided by an embodiment of the present disclosure
  • Figure 3 is a specific circuit diagram of a heating system for heating a power battery provided by another embodiment of the present disclosure.
  • the inverter is connected between the power battery and the AC motor.
  • One of the main functions of the inverter is to convert the DC power output by the power battery into AC power to drive the AC motor to rotate, and then drive the wheel end to rotate.
  • the power battery heating solution in the embodiment of the present disclosure utilizes the circuit topology between the power battery, the inverter and the AC motor to achieve heating of the power battery.
  • the power battery includes a first battery group and a second battery group connected in series
  • a heating system for heating the power battery includes an inverter, an AC motor, a first controller, and a connecting line.
  • the inverter includes three bridge arms. The positive electrode of the power battery is connected to the upper bridge arm of the inverter. The negative electrode of the power battery is connected to the lower bridge arm of the inverter. The midpoint of the three bridge arms of the inverter is connected to the AC motor. The head ends of the three-phase coils are connected one to one, and the ends of the AC motor are connected together to form a neutral point.
  • the first end of the connection line is connected to the neutral point of the AC motor, and the second end of the connection line is connected to the connection point between the first battery core group and the second battery core group.
  • the heating system for heating the power battery provided by the embodiment of the present disclosure adds a connection line based on the original circuit topology of the electric vehicle.
  • the connection line is from the neutral point of the AC motor to the first battery pack and the second battery pack.
  • the connection point between the battery packs, through this connection circuit allows the first battery pack and the second battery pack to alternately charge each other, that is, the excitation current is used to self-heat the cells of the power battery, which improves the original performance of the electric vehicle.
  • the circuit changes are small and the solution is simple and easy to implement.
  • thermoelectric conversion heating on the battery core from outside the battery core.
  • the heating system uses both excitation current self-heating and external thermoelectric conversion heating to heat the power battery. This makes the heating effect of the power battery more balanced.
  • the heating system for heating a power battery provided by an embodiment of the present disclosure will be described below with reference to FIGS. 1-3 .
  • the power battery includes a first battery group 1 and a second battery group 2 connected in series.
  • the heating system includes an inverter 3, an AC motor 4, a first controller 6 and a connecting line S1.
  • the AC motor 4 is star-connected, and the three ends of the three-phase coils (coil A, coil B, and coil C) are connected together as a common terminal, and the common terminal is the neutral point N of the AC motor 4 .
  • the inverter 3 includes three bridge arms.
  • the positive electrode of the power battery is connected to the upper bridge arm of the inverter 3.
  • the negative electrode of the power battery is connected to the lower bridge arm of the inverter 3.
  • the points are connected one-to-one with the head ends of the three-phase coils of the AC motor.
  • the first battery pack 1 and the second battery pack 2 belong to the same battery pack, and the battery pack provides externally a total positive port, a total negative port, and a third port led from the connection point P.
  • the second end of the connection line S1 is connected to the connection point P between the first battery core group 1 and the second battery core group 2 through the third port.
  • the first battery group 1 and the second battery group 2 belong to different battery packs.
  • the first battery group 1 and the second battery group 2 belong to the same battery pack, and the electromotive force of the first battery group 1 and the second battery group 2 is the same. That is to say, the first battery group connecting line S1 The two ends are connected to the equipotential point of the battery pack.
  • the equipotential point means that the absolute value of the voltage difference from this point to the total positive port of the battery pack is equal to the absolute value of the voltage difference from this point to the total negative port of the battery pack.
  • the first battery group 1 and the second battery group 2 belong to the same battery pack, and the electromotive forces of the first battery group 1 and the second battery group 2 are different.
  • the first battery group connecting line S1 The two ends are connected to the unequal potential point of the battery pack.
  • the unequal potential point means that the absolute value of the voltage difference from this point to the total positive port of the battery pack is not equal to the absolute value of the voltage difference from this point to the total negative port of the battery pack. .
  • the battery cells included in the first battery group 1 and the battery units included in the second battery group 2 are the same in model but different in quantity. Therefore, the first battery group 1 and the battery units are different in quantity.
  • the electromotive force of the second battery cell group 2 is different, and the second end of the connecting line S1 is connected to the unequal potential point of the battery pack.
  • the first controller 6 is used to input a driving signal to the inverter 3 to control the inverter 3 to alternately conduct the first cell group 1 and the AC motor 4, the second cell group 2 and the AC motor 4, so that the The first battery cell group 1 and the second battery cell group 2 alternately charge each other, thereby self-heating the battery cells.
  • the inverter 3 includes an IGBT tube T1, an IGBT tube T2, an IGBT tube T3, an IGBT tube T4, an IGBT tube T5 and an IGBT tube T6.
  • the IGBT tubes T1 to T6 constitute 3 A bridge arm.
  • IGBT Insulated Gate Bipolar Transistor, Insulated Gate Bipolar Transistor
  • BJT tube Bipolar Junction Transistor, Bipolar Transistor
  • MOS tube Metal-Oxide-Semiconductor, Insulated Gate Field Effect Transistor
  • Voltage-driven power semiconductor devices combine the advantages of high input impedance of MOSFET field-effect transistors and low conduction voltage drop of GTR (Giant Transistor, power transistor).
  • GTR Gate Transistor, power transistor
  • each IGBT tube is also connected in reverse parallel with a diode, which can play a circuit protection role.
  • IGBT transistors T1 to T6 can also be replaced with MOS transistors respectively.
  • the IGBT transistors T1 to T6 can also be replaced with silicon carbide (SiC) power transistors respectively.
  • the first controller 6 outputs six drive signals Q1 to Q6, in which the drive signal Q1 is applied to the IGBT tube T1, the drive signal Q2 is applied to the IGBT tube T2, and the drive signal Q2 is applied to the IGBT tube T2.
  • the signal Q3 is applied to the IGBT tube T3
  • the driving signal Q4 is applied to the IGBT tube T4
  • the driving signal Q5 is applied to the IGBT tube T5
  • the driving signal Q6 is applied to the IGBT tube T6.
  • the first controller 6 alternately conducts the circuits of the first cell group 1 and the AC motor 4 and the circuits of the second cell group 2 and the AC motor 4 by applying the driving signals Q1 to Q6 to the IGBT tubes T1 to T6, so that the One battery cell group 1 and the second battery cell group 2 alternately charge each other.
  • the first battery cell group 1 discharges, and the inverter 3 converts the DC power output by the first battery cell group 1 into AC power and supplies it to the AC motor 4.
  • the AC motor 4 stores the electric energy in the coil to the second battery cell. Group 2 charging.
  • the second battery cell group 2 discharges, and the inverter 3 converts the DC power output by the second battery cell group 2 into AC power and supplies it to the AC motor 4.
  • the AC motor 4 stores the electric energy in the coil to charge the first battery cell group 1.
  • the first battery cell group 1 and the second battery cell group 2 alternately charge each other through the AC motor 4, thereby self-heating the battery cells.
  • At least one heating device 7 is inserted in series in the connection line S1.
  • the heating device 7 is used to heat the first battery core group 1 and/or the second battery core group 1.
  • Core set 2 is heated.
  • the heating method used by the heating device 7 to heat the first battery core group 1 and/or the second battery core group 2 is thermoelectric conversion. Under the action of the current in the connecting line S1, the electrical energy will be converted into thermal energy.
  • the heating device 7 is heated, and the heated heating device 7 can conduct heat to the first battery core group 1 and/or the second battery core group 2 .
  • the heating device 7 in addition to using the excitation current to self-heat the battery core, the heating device 7 is also used to perform thermoelectric conversion heating of the battery core from the outside of the battery core.
  • the heating system uses both excitation current self-heating and external thermoelectric conversion heating to heat the power battery, making the heating effect of the power battery more balanced.
  • the shape, model and heating efficiency of the heating device 7 connected in series in the connection line S1 can be flexibly designed according to actual needs.
  • the specific location of the heating device 7 can also be flexibly designed according to the space environment and heating requirements.
  • device selection and layout of the heating device 7 can be performed based on the results of actual testing or simulation experiments.
  • multiple heating devices are connected in series in the connection line S1.
  • the shapes, models and heating efficiencies of the multiple heating devices may be the same or different.
  • the specific number and distribution location of multiple heating devices can be flexibly designed according to the space environment and heating needs.
  • device selection and layout of these heating devices can be performed based on the results of actual tests or simulation experiments.
  • the heating device may be any one of a heating film, a heating plate, or a heating wire.
  • the heating device can be any one of a resistive heating film, a PTC (Positive Temperature Coefficient) heater, an eddy current heater, a ceramic heater, a silicone rubber heating plate, or other types of heating devices.
  • a PTC heater and a resistive heating film are connected in series to the connection line S1 at the same time.
  • the heating device is attached to the surface of the first battery group 1 and/or the surface of the second battery group 2 to heat the first battery group 1 and/or the second battery group 2 .
  • connection line S1 there are two heating devices in series in the connection line S1, one of which is attached to the surface of the first battery core group for heating the first battery core group.
  • another heating device is attached to the surface of the second battery core group for heating the second battery core group.
  • the heating device is arranged on the second surface of the first battery group and/or the second surface of the second battery group, and the second surface of the first battery group is at least one of the first battery groups.
  • the surface of the battery unit, the second surface of the second battery group is the surface of at least one battery unit in the second battery group surface.
  • the second surface may be a surface of a battery cell in the battery pack.
  • the heating device can be attached to its upper or lower surface.
  • the heating device can be attached to any surface of the cell unit.
  • the battery cell unit is cylindrical, it has three surfaces, including two circular end surfaces and a curved surface. The heating device can be attached to the curved surface.
  • the second surface may also refer to the opposite surface of two adjacent battery cells.
  • the first battery cell group and the second battery cell group may be formed by stacking a plurality of battery cell units, and the battery cell units may include single cells or battery modules.
  • the stacking may be arranged along the thickness direction of the battery cell unit, or may be arranged along the length or width direction of the battery cell unit.
  • the heating device is arranged on the first surface of the first battery group and/or the first surface of the second battery group, and the first surface of the first battery group is the battery core in the first battery group.
  • the first surface of the second battery cell group is a surface formed by the stack of battery cells in the second battery cell group. This method allows the heating device to be close to multiple battery core units in the battery core group at the same time, so as to facilitate simultaneous heating of multiple battery core units in the first battery core group and achieve a more uniform heating effect.
  • the surface formed by stacking can be oriented left and right or up and down.
  • the first battery cell group is formed by stacking a plurality of blade-shaped battery unit units. These battery unit stacks form a stacking surface 101 and a stacking surface 102 .
  • the heating device is arranged on the stacking surface 101 or the stacking surface. 102 places.
  • the second battery core group is composed of a plurality of cylindrical battery core units stacked. The circular end surfaces at both ends of the multiple battery core units respectively form a stacking surface, and the heating device is arranged on the stack. surface; or, the intermediate curved surfaces of multiple battery core units form a stacking surface, and the heating device is arranged on the stacking surface.
  • stacking the battery cells in the same direction will form multiple first surfaces.
  • Arranging the heating device on the first surface with a relatively larger area can facilitate the design and layout of the heating device. For example, if the heating device is arranged on the first surface with a relatively large area, under the same load power, a heating device in the form of a heating film can be selected. Since the contact area of the heating film is larger, the heating of the battery core group will be affected. More uniform.
  • the heating device is arranged corresponding to the center of the cell unit.
  • the current density inside the battery unit is unevenly distributed, which often results in a large temperature difference in the battery unit.
  • the temperature at both ends of the battery unit is relatively high, and the temperature in the middle is relatively high.
  • the temperature is relatively low.
  • Arranging the heating device corresponding to the center of the battery unit can selectively and locally heat the low-temperature area of the battery unit, thereby greatly reducing the temperature difference in different areas of the battery unit and enhancing the uniformity of the overall temperature distribution.
  • the heating device corresponds to a low-temperature region of the first cell group and/or the second cell group.
  • the low temperature area of the battery pack is an area where the temperature of the surface of the battery pack is lower than the first preset value.
  • the first preset value is, for example, 10 degrees Celsius.
  • the first preset value may correspond to an interval range.
  • the interval range is, for example, 10 to 15 degrees Celsius.
  • the first preset value is set within the interval range according to the working conditions.
  • the low-temperature area of the battery pack is a target area, and the temperature of the target area is lower than the first preset value and lower than the temperature of the high-temperature area of the battery pack by more than a second preset value.
  • the second preset value The value is, for example, 5 degrees Celsius.
  • the first battery cell group is formed by stacking a plurality of blade-shaped battery unit units. These battery unit stacks form a stacking surface 101 and a stacking surface 102 .
  • the heating device is arranged on the stacking surface 101 or the stacking surface. 102, and the heating device corresponds to the center of the battery unit. In one example, the area of the stacking surface 102 is larger, the heating device is disposed at the stacking surface 102 , and the heating device corresponds to the center of the battery unit.
  • a switch 5 is provided in the connection line S1.
  • the heating system also includes a second controller 9.
  • the second controller 9 is used to control the on-off state of the switch 5 so that the connection line S1 is connected to the power battery. It is turned on when heating is needed and disconnected when the power battery does not need to be heated to ensure the safety of the vehicle and power battery.
  • the second controller 9 controls the switch 5 to be turned off when the electric vehicle is driving to ensure the safety of the vehicle while it is driving.
  • the first controller 6 and the second controller 9 can be integrated together.
  • connection line S1 is provided with a protection circuit 8, such as a fuse, a relay and other protection circuits, to improve the safety of the battery heating process.
  • a protection circuit 8 such as a fuse, a relay and other protection circuits, to improve the safety of the battery heating process.
  • the material of the wire used to connect the circuit S1 is a metal with good conductivity, such as copper and aluminum. Or it can be a carbon-based material with good conductivity.
  • Figure 1 also shows the distribution box of the electric vehicle.
  • the distribution box mainly distributes power according to the electric load of the electric vehicle.
  • the heating system for heating the power battery provided by the embodiment of the present disclosure adds a connection line based on the original circuit topology of the electric vehicle.
  • the connection line is from the neutral point of the AC motor. to the connection point between the first battery cell group and the second battery cell group, the modification to the original circuit of the electric vehicle is small, and the solution is simple and easy to implement.
  • the heating system for heating the power battery provided by the embodiment of the present disclosure can make greater use of the three inductance coils of the motor to generate alternating pulse current by time-sharing the use of the upper and lower bridge arms in the inverter, thereby being used to heat the two The battery pack heats up quickly.
  • At least one heating device is inserted in series in the connection line, and the heating device is used to heat the first battery core group and/or the second battery core group.
  • the heating method used by the heating device to heat the first battery core group and/or the second battery core group is thermoelectric conversion. Under the action of the current in the connecting line, the electrical energy will be converted into thermal energy to cause the heating device to heat up. After the temperature rise, the heating device can Conduct heat to the first battery cell group and/or the second battery cell group.
  • thermoelectric conversion heating on the battery core from outside the battery core.
  • the heating system uses both excitation current self-heating and external thermoelectric conversion heating to heat the power battery, making the heating effect of the power battery more balanced.
  • the charging and discharging current that is, the frequency and size of the excitation current are limited by the relevant components.
  • the heating system provided by the embodiment of the present disclosure can make the excitation current less limited, so that the excitation current can be used with a larger It is possible to heat the battery with electric current.
  • the maximum current of the inverter is limited by the minimum current withstand current of IGBT tubes T1-T6.
  • the maximum current of the inverter is limited by the sum of the withstand currents of IGBT transistors T1, T2, and T3, and the sum of the withstand currents of T4, T5, and T6.
  • the first controller of the embodiment of the present disclosure may include a processor and a memory, as well as a program or instructions stored on the memory and executable on the processor. When the program or instructions are executed by the processor, the power battery is implemented. of self-heating.
  • An embodiment of the present disclosure provides an electric vehicle, including a power battery and the heating system for heating the power battery described in any of the previous embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • General Induction Heating (AREA)

Abstract

提供了一种用于加热动力电池的加热系统和电动车。动力电池包括串联的第一电芯组(1)和第二电芯组(2)。该加热系统包括逆变器(3)、交流电动机(4)、第一控制器(6)以及一条连接线路(S1)。逆变器(3)的三个桥臂中点与交流电动机(4)的三相线圈的头端一一对应连接。第一控制器(6)用于向逆变器(3)输入驱动信号。第一电芯组(1)、第二电芯组(2)、逆变器(3)、交流电动机(4)以及连接线路(S1)构成交流电自加热回路连接线路中串入有至少一个加热装置(7)。加热装置(7)用于对第一电芯组(1)和/或第二电芯组(2)进行加热。

Description

用于加热动力电池的加热系统和电动车
本公开要求于2022年04月28日提交中国专利局的申请号为202221000901.7、申请名称为“动力电池的加热系统和电动车”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,更具体地,涉及一种用于加热动力电池的加热系统和电动车。
背景技术
动力电池的特性受环境温度的影响比较显著,特别是在低温环境中,锂离子动力电池的能量和功率特性会出现严重衰减,因此需要在低温情况下对电池进行加热。如何提升电动车的动力电池加热性能成为关键问题。
发明内容
本公开的一个目的是提供一种用于加热动力电池的加热系统的新技术方案。
本公开的又一个目的是提供一种电动车的新技术方案,该电动车包括动力电池以及该用于加热动力电池的加热系统。
根据本公开的第一方面,提供了用于加热动力电池的加热系统,所述动力电池包括串联的第一电芯组和第二电芯组,所述加热系统包括逆变器、交流电动机、第一控制器以及一条连接线路;所述逆变器包括三个桥臂,所述动力电池的正极与所述逆变器的上桥臂连接,所述动力电池的负极与所述逆变器的下桥臂连接;所述逆变器的三个桥臂中点与所述交流电动机的三相线圈的头端一一对应连接,所述交流电动机的末端连接在一起形成中性点;所述连接线路的第一端与所述交流电动机的中性点连接,所述连 接线路的第二端与所述第一电芯组和所述第二电芯组之间的连接点连接;所述第一控制器用于向所述逆变器输入驱动信号;所述第一电芯组、所述第二电芯组、所述逆变器、所述交流电动机以及所述连接线路构成交流电自加热回路;所述连接线路中串入有至少一个加热装置,所述加热装置用于对所述第一电芯组和/或所述第二电芯组进行加热。
根据本公开的实施例,所述加热装置贴设于所述第一电芯组的表面和/或所述第二电芯组的表面。
根据本公开的实施例,所述加热装置布置在所述第一电芯组的第一表面和/或所述第二电芯组的第一表面,所述第一电芯组的第一表面是所述第一电芯组中的电芯单元堆叠形成的表面,所述第二电芯组的第一表面是所述第二电芯组中的电芯单元堆叠形成的表面。
根据本公开的实施例,所述加热装置布置在所述第一电芯组的第二表面和/或所述第二电芯组的第二表面,所述第一电芯组的第二表面是所述第一电芯组中的至少一个电芯单元的表面,所述第二电芯组的第二表面是所述第二电芯组中的至少一个电芯单元的表面。
根据本公开的实施例,所述第二表面是相邻电芯单元相对的表面。
根据本公开的实施例,所述加热装置的部署位置对应于电芯单元的中心。
根据本公开的实施例,所述加热装置对应于所述第一电芯组和/或所述第二电芯组低温区域;其中,所述低温区域为所述电芯组表面的温度低于第一预设值的区域。
根据本公开的实施例,所述连接线路中设有开关;所述加热系统还包括第二控制器;所述第二控制器用于控制所述开关导通/断开所述连接线路。
根据本公开的实施例,所述连接线路中设有保护电路。
根据本公开的第二方面,提供了电动车,所述电动车包括动力电池以及如第一方面任一项所述的加热系统。
本公开的用于加热动力电池的加热系统和电动车,设有一条从交流电动机的中性点至第一电芯组和第二电芯组之间的连接点的连接线路,并且在连接线路中串入用于对动力电池进行加热的加热装置,加热系统同时采 用激励电流自加热和外部热电转换加热这两种方式对动力电池进行加热,使得动力电池的升温效果更为均衡。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本公开的实施例,并且连同其说明一起用于解释本公开的原理。
图1是本公开实施例提供的用于加热动力电池的加热系统的框图;
图2是本公开一个实施例提供的用于加热动力电池的加热系统的具体电路图;
图3是本公开另一个实施例提供的用于加热动力电池的加热系统的具体电路图;
图4是本公开一个实施例的电芯组的结构示意图;
图5是本公开另一个实施例的电芯组的结构示意图。
附图标记说明:
1、第一电芯组;2、第二电芯组;P-连接点;
3、逆变器;4、交流电动机;N-中性点;
5、开关;6、第一控制器;S1、连接线路;
7、加热装置;8、保护电路;
9、第二控制器。
具体实施方式
现在将参照附图来详细描述本说明书的各种示例性实施例。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本说明书实施例及其应用或使用的任何限制。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在电动车中,逆变器连接在动力电池和交流电动机之间,逆变器的主要作用之一是将动力电池输出的直流电转变为交流电以驱动交流电动机转动,进而带动轮端转动。本公开实施例的动力电池加热方案,利用了动力电池、逆变器和交流电动机之间的电路拓扑结构,实现对动力电池的加热升温。
本公开实施例中,动力电池包括串联的第一电芯组和第二电芯组,用于加热动力电池的加热系统包括逆变器、交流电动机、第一控制器以及一条连接线路。逆变器包括三个桥臂,动力电池的正极与逆变器的上桥臂连接,动力电池的负极与逆变器的下桥臂连接,逆变器的三个桥臂中点与交流电动机的三相线圈的头端一一对应连接,交流电动机的末端连接在一起形成中性点。连接线路的第一端与交流电动机的中性点连接,连接线路的第二端与第一电芯组和第二电芯组之间的连接点连接。
其中,第一电芯组、第二电芯组、逆变器、交流电动机以及连接线路构成交流电自加热回路。第一控制器用于向逆变器输入驱动信号,在驱动信号的作用下,逆变器交替导通第一电芯组和交流电动机、第二电芯组和交流电动机,使得第一电芯组和第二电芯组交替互相充电,从而加热第一电芯组和第二电芯组。所述连接线路中串入有至少一个加热装置,所述加热装置用于对第一电芯组和/或第二电芯组进行加热。加热装置对第一电芯组和/或第二电芯组进行加热的加热方式是热电转换,在连接线路中的电流的作用下电能会转换为热能使得加热装置升温,升温后的加热装置可以将热量传导给第一电芯组和/或第二电芯组。
本公开实施例提供的用于加热动力电池的加热系统,在电动车原有电路拓扑结构的基础上增加连接线路,该连接线路是从交流电动机的中性点至第一电芯组和第二电芯组之间的连接点,通过该连接电路可以实现第一电芯组和第二电芯组交替互相充电,也就是利用激励电流对动力电池的电芯进行自加热,对电动车原有电路的改动小,方案简单容易实现。
也就是说,在本公开实施例中,除了利用激励电流对电芯进行自加热,还利用加热装置从电芯的外部对电芯进行热电转换加热。加热系统同时采用激励电流自加热和外部热电转换加热这两种方式对动力电池进行加热, 使得动力电池的升温效果更为均衡。下面参见图1-3所示,对本公开实施例提供的用于加热动力电池的加热系统进行说明。
参见图1-3所示,动力电池包括串联的第一电芯组1和第二电芯组2,加热系统包括逆变器3、交流电动机4、第一控制器6和一条连接线路S1。
交流电动机4为星形连接,三相线圈(线圈A、线圈B、线圈C)的3个末端连接在一起作为公共端,公共端即为交流电动机4的中性点N。
逆变器3包括三个桥臂,动力电池的正极与逆变器3的上桥臂连接,动力电池的负极与逆变器3的下桥臂连接,逆变器3的三个桥臂中点与交流电动机的三相线圈的头端一一对应连接。
连接线路S1的第一端与交流电动机的中性点N连接,第二端与第一电芯组和第二电芯组之间的连接点P连接。
在一个例子中,第一电芯组1和第二电芯组2属于同一个电池包,电池包对外提供总正端口、总负端口、从连接点P处引出的第三端口。连接线路S1的第二端通过该第三端口与第一电芯组1和第二电芯组2之间的连接点P连接。在另一个例子中,第一电芯组1和第二电芯组2属于不同的电池包。
在一个例子中,第一电芯组1和第二电芯组2属于同一个电池包,第一电芯组1和第二电芯组2的电动势相同,也就是说,连接线路S1的第二端连接在电池包的等势点上,等势点是指该点到电池包总正端口的电压差值绝对值与该点到电池包总负端口的电压差值绝对值相等。在一个例子中,第一电芯组1和第二电芯组2属于同一个电池包,第一电芯组1和第二电芯组2的电动势不同,也就是说,连接线路S1的第二端连接在电池包的不等势点上,不等势点是指该点到电池包总正端口的电压差值绝对值与该点到电池包总负端口的电压差值绝对值不相等。
如图2所示,第一电芯组1中包含的电芯单元和第二电芯组2中包含的电芯单元,在型号上相同,在数量上不同,因此第一电芯组1和第二电芯组2的电动势不同,连接线路S1的第二端连接在电池包的不等势点上。
第一控制器6用于向逆变器3输入驱动信号,以控制逆变器3交替导通第一电芯组1和交流电动机4、第二电芯组2和交流电动机4,以使得第 一电芯组1和第二电芯组2交替互相充电,从而对电芯进行自加热。
在一个例子中,参见图1和图2所示,逆变器3包括IGBT管T1、IGBT管T2、IGBT管T3、IGBT管T4、IGBT管T5以及IGBT管T6,IGBT管T1~T6构成3个桥臂。IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管),是由BJT管(Bipolar Junction Transistor,双极型三极管)和MOS管(Meial-Oxide-Semiconductor,绝缘栅型场效应管)组成的复合型电压驱动式功率半导体器件,兼有MOSFET场效应晶体管的高输入阻抗和GTR(Giant Transistor,电力晶体管)的低导通压降两方面的优点。参见图2所示,在逆变器3中,每个IGBT管还反向并联有二极管,该二极管可以起电路保护作用。在另一个实施例中,IGBT管T1~T6也可以分别替换为MOS管。在另一个实施例中,IGBT管T1~T6也可以分别替换为碳化硅(SiC)功率管。
在本公开实施例中,参见图2-3所示,第一控制器6输出六路驱动信号Q1~Q6,其中驱动信号Q1施加在IGBT管T1上,驱动信号Q2施加在IGBT管T2上,驱动信号Q3施加在IGBT管T3上,驱动信号Q4施加在IGBT管T4上,驱动信号Q5施加在IGBT管T5上,驱动信号Q6施加在IGBT管T6上。第一控制器6通过向IGBT管T1~T6施加驱动信号Q1~Q6,交替导通第一电芯组1和交流电动机4的回路、第二电芯组2和交流电动机4的回路,使得第一电芯组1和第二电芯组2交替性地给对方充电。在一个例子中,第一电芯组1放电,逆变器3把第一电芯组1输出的直流电转换为交流电输入给交流电动机4,交流电动机4将电能储存在线圈中给第二电芯组2充电。之后,第二电芯组2放电,逆变器3把第二电芯组2输出的直流电转换为交流电输入给交流电动机4,交流电动机4将电能储存在线圈给第一电芯组1充电。循环往复,第一电芯组1和第二电芯组2通过交流电动机4交替给对方充电,从而对电芯进行自加热。
参见图1-2所示,在本公开实施例中,所述连接线路S1中串入有至少一个加热装置7,所述加热装置7用于对第一电芯组1和/或第二电芯组2进行加热。加热装置7对第一电芯组1和/或第二电芯组2进行加热的加热方式是热电转换,在连接线路S1中的电流的作用下电能会转换为热能使 得加热装置7升温,升温后的加热装置7可以将热量传导给第一电芯组1和/或第二电芯组2。
也就是说,在本公开实施例中,除了利用激励电流对电芯进行自加热,还利用加热装置7从电芯的外部对电芯进行热电转换加热。加热系统同时采用激励电流自加热和外部热电转换加热这两种方式对动力电池进行加热,使得动力电池的升温效果更为均衡。
在一个例子中,连接线路S1中串入的加热装置7的形态、型号和加热效能可以根据实际需要进行灵活设计。该加热装置7的具体设置位置也可以根据空间环境和加热需求进行灵活设计。在一个例子中,可以根据实际测试或者仿真实验的结果对该加热装置7进行器件选型和布局。
在一个例子中,所述连接线路S1中串入多个加热装置,多个加热装置的形态、型号和加热效能可以是相同的或者是不同的。多个加热装置的具体数量和分布位置,可以根据空间环境和加热需求进行灵活设计。在一个例子中,可以根据实际测试或者仿真实验的结果对这些加热装置进行器件选型和布局。
本公开实施例中,加热装置可以是为加热膜、加热板或加热丝中的任意一种。加热装置为可以电阻性加热膜、PTC(Positive Temperature Coefficient,正温度系数)加热器、涡流加热器、陶瓷加热器、硅橡胶加热板中的任意一种,也可以为其他类型的加热装置。例如,连接线路S1中同时串入有一个PTC加热器、一个电阻性加热膜。
在一个例子中,加热装置贴设于第一电芯组1的表面和/或第二电芯组2的表面,以对第一电芯组1和/或第二电芯组2进行加热。
在一个例子中,参见图3所示,在连接线路S1中,串入有两个加热装置,其中一个加热装置贴设于第一电芯组的表面,用于对第一电芯组进行加热,另一个加热装置贴设于第二电芯组的表面,用于对第二电芯组进行加热。
在一个例子中,加热装置布置在第一电芯组的第二表面和/或第二电芯组的第二表面,第一电芯组的第二表面是第一电芯组中的至少一个电芯单元的表面,第二电芯组的第二表面是第二电芯组中的至少一个电芯单元的 表面。在一个例子中,第二表面可以是电芯组中电芯单元的一个表面。
例如,电芯单元为刀片形状,则加热装置可以贴设在其上表面或者下表面。例如,电芯单元为方形,则加热装置可以贴设在其任一个表面上。例如,电芯单元为圆柱形,则电芯单元具有3个表面,其中包括2个圆形端面和一个曲面,加热装置可以贴设在曲面上。
在其他实施例中,该第二表面还可以指两个相邻电芯单元相对的表面。
本公开实施例中,第一电芯组、第二电芯组可以分别由多个电芯单元堆叠形成,电芯单元可以包括单体电池或电池模组。堆叠可以是沿电芯单元厚度方向进行设置,也可以沿电芯单元长度或宽度方向进行设置。
在一个例子中,加热装置布置在第一电芯组的第一表面和/或第二电芯组的第一表面,第一电芯组的第一表面是第一电芯组中的电芯单元堆叠形成的表面,第二电芯组的第一表面是第二电芯组中的电芯单元堆叠形成的表面。这种方式可以让加热装置同时靠近电芯组中的多个电芯单元,方便对第一电芯组中的多个电芯单元同时进行加热,实现更均匀的加热效果。堆叠形成的表面可以是左右方向的,也可以是上下方向的。
例如,参见图4所示,第一电芯组由多个刀片状的电芯单元堆叠形成,这些电芯单元堆叠形成了堆叠面101和堆叠面102,将加热装置布置堆叠面101或者堆叠面102处。例如,参见图5所示,第二电芯组由多个圆柱形的电芯单元堆叠而成,多个电芯单元的两头的圆形端面分别形成了堆叠面,将加热装置布置在该堆叠面处;或者,多个电芯单元的中间曲面形成堆叠面,将加热装置布置在该堆叠面处。
在一个例子中,电芯单元沿同一方向堆叠会形成多个第一表面,将加热装置布置其中面积相对较大的第一表面上,可以方便对加热装置进行设计和布局。例如,将加热装置布置其中面积相对较大的第一表面上,在负载功率相同的情况下,可以选取加热膜形式的加热装置,由于加热膜的接触面积更大,对电芯组的加热会更为均匀。
在一个例子中,加热装置对应于电芯单元的中心进行布置。在通过激励电流对电池进行加热时,电芯单元内部的电流密度分布不均匀,往往会在电芯单元中形成较大的温差,电芯单元的两端的温度相对较高,中间的 温度相对较低。令加热装置对应于电芯单元的中心进行布置,可以选择性地局部加热电芯单元的低温区域,从而大幅度减少电芯单元的不同区域的温差,在整体温度分布上增强均匀性。
在一个例子中,加热装置对应于第一电芯组和/或第二电芯组的低温区域。电芯组的低温区域为电芯组表面的温度低于第一预设值的区域。该第一预设值例如为10摄氏度。该第一预设值可以对应于一个区间范围,该区间范围例如为10~15摄氏度,根据工况在该区间范围内设置第一预设值。在一个例子中,电芯组的低温区域为目标区域,该目标区域的温度低于第一预设值并且比电芯组的高温区域的温度低第二预设值以上,该第二预设值例如为5摄氏度。
例如,参见图4所示,第一电芯组由多个刀片状的电芯单元堆叠形成,这些电芯单元堆叠形成了堆叠面101和堆叠面102,将加热装置布置堆叠面101或者堆叠面102处,并且加热装置对应于电芯单元的中心。在一个例子中,堆叠面102的面积更大,将加热装置设置在堆叠面102处,并且加热装置对应于电芯单元的中心。
参见图1-3所示,连接线路S1中设有开关5,该加热系统还包括第二控制器9,第二控制器9用于控制开关5的通断状态,使得连接线路S1在动力电池需要加热时导通,在动力电池不需要加热时断开,以保证车辆和动力电池的安全性。例如,第二控制器9在电动车行驶状态下控制开关5断开,以保证车辆行驶过的安全性。在一个例子中,第一控制器6和第二控制器9可以集成在一起。
参见图1-3所示,连接线路S1中设有保护电路8,例如设有保险丝、继电器等保护电路,以提升电池加热过程的安全性。
在一个例子中,连接电路S1使用的导线的材质为导电性良好的金属,例如铜、铝。或者也可以是导电性良好的碳基材料。
图1中还示出了电动车的配电箱,配电箱主要根据电动车用电负载的情况进行配电。
本公开实施例提供的用于加热动力电池的加热系统,在电动车原有电路拓扑结构的基础上增加连接线路,该连接线路是从交流电动机的中性点 至第一电芯组和第二电芯组之间的连接点,对电动车原有电路的改动小,方案简单容易实现。
本公开实施例提供的用于加热动力电池的加热系统,通过分时利用逆变器中的上下桥臂从而可以更大限度利用电动机的三个电感线圈产生交变脉冲电流,从而用于对两组电芯快速加热。
本公开实施例中,所述连接线路中串入有至少一个加热装置,所述加热装置用于对第一电芯组和/或第二电芯组进行加热。加热装置对第一电芯组和/或第二电芯组进行加热的加热方式是热电转换,在连接线路中的电流的作用下电能会转换为热能使得加热装置升温,升温后的加热装置可以将热量传导给第一电芯组和/或第二电芯组。
也就是说,在本公开实施例中,除了利用激励电流对电芯进行自加热,还利用加热装置从电芯的外部对电芯进行热电转换加热。加热系统同时采用激励电流自加热和外部热电转换加热这两种方式对动力电池进行加热,使得动力电池的升温效果更为均衡。
在动力电池加热过程中,充放电电流,也就是激励电流的频率和大小受限于相关元器件,本公开实施例提供的加热系统可以使得激励电流的受限程度较小,使得以较大激励电流对电池进行加热成为可能。传统电池包在自加热工况下,逆变器的最大电流受限于IGBT管T1-T6耐受电流的最小电流。而在本公开实施例中,逆变器的最大电流受限于IGBT管T1、T2、T3的耐受电流之和、T4、T5、T6的耐受电流之和。
本公开实施例的第一控制器可以包括处理器和存储器,以及存储在存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现动力电池的自加热。
本公开实施例提供了一种电动车,包括动力电池以及前述任一实施例所述的用于加热动力电池的加热系统。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。对于电动车实施例而言,其相关之处参见加热系统实施例的部分说明即可。
以上已经描述了本说明书的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

  1. 一种用于加热动力电池的加热系统,其特征在于,所述动力电池包括串联的第一电芯组(1)和第二电芯组(2),所述加热系统包括逆变器(3)、交流电动机(4)、第一控制器(6)以及一条连接线路(S1);
    所述逆变器(3)包括三个桥臂,所述动力电池的正极与所述逆变器(3)的上桥臂连接,所述动力电池的负极与所述逆变器(3)的下桥臂连接;所述逆变器(3)的三个桥臂中点与所述交流电动机(4)的三相线圈的头端一一对应连接,所述交流电动机(4)的末端连接在一起形成中性点(N);
    所述连接线路(S1)的第一端与所述交流电动机(4)的中性点(N)连接,所述连接线路(S1)的第二端与所述第一电芯组(1)和所述第二电芯组(2)之间的连接点(P)连接;
    所述第一控制器(6)用于向所述逆变器(3)输入驱动信号;
    所述第一电芯组(1)、所述第二电芯组(2)、所述逆变器(3)、所述交流电动机(4)以及所述连接线路(S1)构成交流电自加热回路;
    所述连接线路(S1)中串入有至少一个加热装置(7),所述加热装置(7)用于对所述第一电芯组(1)和/或所述第二电芯组(2)进行加热。
  2. 根据权利要求1所述的加热系统,其特征在于,所述加热装置(7)贴设于所述第一电芯组(1)的表面和/或所述第二电芯组(2)的表面。
  3. 根据权利要求1所述的加热系统,其特征在于,所述加热装置(7)布置在所述第一电芯组(1)的第一表面和/或所述第二电芯组(2)的第一表面,所述第一电芯组(1)的第一表面是所述第一电芯组(1)中的电芯单元堆叠形成的表面,所述第二电芯组(2)的第一表面是所述第二电芯组中的电芯单元堆叠形成的表面。
  4. 根据权利要求1所述的加热系统,其特征在于,所述加热装置(7)布置在所述第一电芯组(1)的第二表面和/或所述第二电芯组(2)的第二表面,所述第一电芯组(1)的第二表面是所述第一电芯组(1)中的至少一个电芯单元的表面,所述第二电芯组(2)的第二表面是所述第二电芯组 (2)中的至少一个电芯单元的表面。
  5. 根据权利要求4所述的加热系统,其特征在于,所述第二表面是相邻电芯单元相对的表面。
  6. 根据权利要求3或4所述的加热系统,其特征在于,所述加热装置(7)的部署位置对应于电芯单元的中心。
  7. 根据权利要求1-5任一项所述的加热系统,其特征在于,所述加热装置(7)对应于所述第一电芯组(1)和/或所述第二电芯组(2)低温区域;其中,所述低温区域为电芯组表面的温度低于第一预设值的区域。
  8. 根据权利要求1所述的加热系统,其特征在于,所述连接线路(S1)中设有开关(5);所述加热系统还包括第二控制器(9);所述第二控制器(9)用于控制所述开关(5)导通/断开所述连接线路。
  9. 根据权利要求1所述的加热系统,其特征在于,所述连接线路(S1)中设有保护电路(8)。
  10. 一种电动车,其特征在于,包括动力电池以及如权利要求1-9任一项所述的加热系统。
PCT/CN2023/080344 2022-04-28 2023-03-08 用于加热动力电池的加热系统和电动车 WO2023207350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221000901.7U CN216980690U (zh) 2022-04-28 2022-04-28 动力电池的加热系统和电动车
CN202221000901.7 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023207350A1 true WO2023207350A1 (zh) 2023-11-02

Family

ID=82341637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080344 WO2023207350A1 (zh) 2022-04-28 2023-03-08 用于加热动力电池的加热系统和电动车

Country Status (2)

Country Link
CN (1) CN216980690U (zh)
WO (1) WO2023207350A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117613467A (zh) * 2023-11-28 2024-02-27 江苏前晨汽车科技有限公司 一种电芯ptc加热模块布局的仿真方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116552335A (zh) * 2022-01-29 2023-08-08 比亚迪股份有限公司 动力电池的加热电路和电动车
CN216980690U (zh) * 2022-04-28 2022-07-15 比亚迪股份有限公司 动力电池的加热系统和电动车
CN115051078B (zh) * 2022-08-03 2024-03-29 广汽埃安新能源汽车有限公司 电池交流加热电路和电动车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051026A (zh) * 2012-12-21 2013-04-17 上海恒动汽车电池有限公司 一种锂离子电池组充电加热系统和加热方法
JP2014072955A (ja) * 2012-09-28 2014-04-21 Toyota Industries Corp 電気自動車におけるバッテリ昇温制御装置
CN105762434A (zh) * 2016-05-16 2016-07-13 北京理工大学 一种具有自加热功能的电源系统和车辆
CN112103595A (zh) * 2020-08-31 2020-12-18 上海交通大学 车用动力电池预热装置及其控制方法
CN216980690U (zh) * 2022-04-28 2022-07-15 比亚迪股份有限公司 动力电池的加热系统和电动车
CN216980691U (zh) * 2022-04-28 2022-07-15 比亚迪股份有限公司 动力电池的加热系统和电动车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072955A (ja) * 2012-09-28 2014-04-21 Toyota Industries Corp 電気自動車におけるバッテリ昇温制御装置
CN103051026A (zh) * 2012-12-21 2013-04-17 上海恒动汽车电池有限公司 一种锂离子电池组充电加热系统和加热方法
CN105762434A (zh) * 2016-05-16 2016-07-13 北京理工大学 一种具有自加热功能的电源系统和车辆
CN112103595A (zh) * 2020-08-31 2020-12-18 上海交通大学 车用动力电池预热装置及其控制方法
CN216980690U (zh) * 2022-04-28 2022-07-15 比亚迪股份有限公司 动力电池的加热系统和电动车
CN216980691U (zh) * 2022-04-28 2022-07-15 比亚迪股份有限公司 动力电池的加热系统和电动车

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117613467A (zh) * 2023-11-28 2024-02-27 江苏前晨汽车科技有限公司 一种电芯ptc加热模块布局的仿真方法

Also Published As

Publication number Publication date
CN216980690U (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2023207350A1 (zh) 用于加热动力电池的加热系统和电动车
WO2023208126A1 (zh) 动力电池的加热系统和电动车
Wang et al. Efficiency analysis of a bidirectional DC/DC converter in a hybrid energy storage system for plug-in hybrid electric vehicles
US6259229B1 (en) Circulating current battery heater
CN217074099U (zh) 电池自加热系统及车辆
WO2023207395A1 (zh) 用于加热动力电池的加热系统和电动车
CN102821998B (zh) 电动车控制装置
CN204190731U (zh) 大功率半导体电路
CN108074917A (zh) 一种多芯片并联的半桥型igbt模块
CN108377667A (zh) 用于互连并联的igbt模块的方法和系统
CN114284521A (zh) 一种燃料电池废热回收系统以及车辆
TWM648012U (zh) 電池自加熱裝置和具有其的車輛
CN214706054U (zh) 加热装置、电池模组以及车辆
Liu et al. Conduction Time Variation-Based Active Thermal Control Method for Si and SiC Hybrid Switch
Zhong et al. Design & analysis of a novel IGBT package with double-sided cooling
CN111555375A (zh) 用于感应电流的电路、系统和方法
JP2018505545A (ja) 熱制御された電子デバイス
US20220285245A1 (en) Semiconductor module
Shang et al. A fast-speed heater with internal and external heating for lithium-ion batteries at low temperatures
Goreci et al. The choice of the IGBTs and their cooling in electric traction converters for autonomous vehicles
CN106332500A (zh) 一种基于压接式器件的单相半桥功率模块
JP5899930B2 (ja) 半導体電力変換装置
CN206673852U (zh) 新型高效单相电与三相电的转换装置
CN206089783U (zh) 施加电脉冲的用于zl114a铝合金时效热处理的装置
SOBCZYŃSKI Model of PV inverter in H4 and H5 topologies for power loss analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794786

Country of ref document: EP

Kind code of ref document: A1