WO2023207285A9 - 显示模组及显示装置 - Google Patents

显示模组及显示装置 Download PDF

Info

Publication number
WO2023207285A9
WO2023207285A9 PCT/CN2023/077523 CN2023077523W WO2023207285A9 WO 2023207285 A9 WO2023207285 A9 WO 2023207285A9 CN 2023077523 W CN2023077523 W CN 2023077523W WO 2023207285 A9 WO2023207285 A9 WO 2023207285A9
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
circuit board
display module
module according
display
Prior art date
Application number
PCT/CN2023/077523
Other languages
English (en)
French (fr)
Other versions
WO2023207285A1 (zh
Inventor
孙舸
喻勇
黄小霞
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023207285A1 publication Critical patent/WO2023207285A1/zh
Publication of WO2023207285A9 publication Critical patent/WO2023207285A9/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20954Modifications to facilitate cooling, ventilating, or heating for display panels
    • H05K7/20963Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display module and a display device.
  • the thermal stability and reliability of display devices have become one of the more important properties.
  • the power of components such as chips, resistors, capacitors, and inductors carried by circuit boards has gradually increased with the development of large-size display devices, resulting in a sharp increase in the heat flow density on the circuit board. Large, correspondingly the display device has poor thermal stability and reliability.
  • a display module including a display panel, a circuit board, an electronic device, a copper foil and a graphite film.
  • the circuit board is electrically connected to the display panel; the circuit board includes an opposite first surface and a second surface.
  • the electronic device is provided on the first surface of the circuit board.
  • the copper foil covers the electronic device.
  • the graphite film is provided on the second surface of the circuit board.
  • the display module further includes a first adhesive layer.
  • the first adhesive layer is provided between the circuit board and the graphite film, and the first adhesive layer is provided with a plurality of openings.
  • the circuit board includes a first exposed copper area located on the second surface, and the first adhesive layer is disposed avoiding the first exposed copper area.
  • the graphite film is arranged to avoid the first exposed copper area.
  • the thickness of the first adhesive layer is approximately 0.001mm ⁇ 0.003mm.
  • the diameter of at least one opening in the first adhesive layer is approximately 0.3 mm to 0.7 mm.
  • a distance between two adjacent openings is approximately 8 mm to 12 mm.
  • the display module further includes a second adhesive layer.
  • the second adhesive layer includes a plurality of first adhesive blocks located on a side of the graphite film away from the circuit board.
  • the plurality of first bonding blocks are arranged away from the electronic device.
  • the circuit board includes a first exposed copper area on the second surface.
  • the second adhesive layer also includes a second adhesive block covering the first exposed copper area, the second adhesive block is electrically conductive and is in electrical contact with the first exposed copper area.
  • the display module further includes a middle frame.
  • the middle frame is bonded to the second adhesive layer.
  • the middle frame is electrically connected to the second adhesive block.
  • the thickness of the first bonding block is approximately 0.005mm ⁇ 0.015mm.
  • the display module further includes a third adhesive layer.
  • the third adhesive layer is provided between the electronic device and the copper foil.
  • the third adhesive layer covers the electronic device.
  • the circuit board further includes a second exposed copper area located on the first surface, and the third adhesive layer is disposed avoiding the second exposed copper area.
  • the third adhesive layer includes a through hole for avoiding the second exposed copper area, and the copper foil is in electrical contact with the second exposed copper area through the through hole.
  • the thickness of the third adhesive layer is approximately 0.005mm ⁇ 0.01mm.
  • the display module includes: a first adhesive layer provided between the circuit board and the graphite film, and a second adhesive layer provided on a side of the graphite film away from the circuit board. a connecting layer, and a third adhesive layer provided between the electronic device and the copper foil.
  • the material of at least one of the first adhesive layer, the second adhesive layer and the third adhesive layer includes acrylic material.
  • the thickness of the graphite film is approximately 0.02 mm to 0.035 mm.
  • the thickness of the copper foil is approximately 0.015 mm to 0.02 mm.
  • a display device including the display module according to any of the preceding embodiments.
  • Figure 1 is a top view of a display device provided according to some embodiments.
  • Figure 2 is a structural diagram of a display module provided according to some embodiments.
  • Figure 3 is another structural diagram of a display module provided according to some embodiments.
  • Figure 4 is a top view of a first surface of a circuit board provided according to some embodiments.
  • Figure 5 is another top view of a first surface of a circuit board provided in accordance with some embodiments.
  • Figure 6 is a top view of the second surface of the circuit board provided according to some embodiments.
  • FIG. 7 is another top view of a second surface of a circuit board provided in accordance with some embodiments.
  • Figure 8 is a structural diagram of a first adhesive layer provided according to some embodiments.
  • Figure 9 is a structural diagram of a second adhesive layer provided according to some embodiments.
  • Figure 10 is another top view of a second surface of a circuit board provided in accordance with some embodiments.
  • Figure 11 is a cross-sectional view along section line A-A’ in Figure 10;
  • Figure 12 is a temperature detection diagram of a display device according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional illustrations and/or plan illustrations that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • FIG. 1 is a top view of a display device 1000 provided by some embodiments of the present disclosure.
  • the display device 1000 may be any device that displays text or images, whether moving (eg, video) or stationary (eg, still images). More specifically, it is contemplated that embodiments may be implemented in or associated with a variety of electronic devices, such as (but not limited to) mobile phones, wireless devices, personal digital assistants (Personal Digital Assistants, for short).
  • PDA Virtual Reality
  • VR Virtual Reality
  • GPS Global Positioning System
  • camera MP4 video player
  • video camera game console
  • Watches clocks
  • calculators television monitors
  • flat panel displays computer monitors
  • automotive displays e.g., odometer displays, etc.
  • navigators cockpit controls and/or displays
  • camera view displays e.g., in the rear of the vehicle monitors for video cameras
  • electronic photographs electronic billboards or signs
  • projectors architectural structures, packaging and aesthetic structures (for example, displays for images of a piece of jewelry), etc.
  • the display device 1000 may include a display module 100 .
  • the display device 1000 may further include a front frame and a rear shell.
  • the front frame is disposed on the display side of the display module 100 and surrounds the display module 100 .
  • the rear shell is disposed on the non-display side of the display module 100 (the side opposite to the display side), and is assembled with the front frame to protect and fix the display module 100 .
  • a display module includes a display panel and a circuit board.
  • the display panel is configured for image display.
  • the circuit board is electrically connected to the display panel.
  • the circuit board is configured to carry components. The components carried by the circuit board provide power signals, light-emitting driving signals, control signals, etc. to the display panel to drive the display panel for image display.
  • the size of the display panel increases.
  • the number of light-emitting devices in the display panel increases, and the driving current required when the display panel emits light increases.
  • the device used to provide driving current to the display panel The number and power consumption of driver chips, resistors, capacitors and other components carried in the circuit board have also increased accordingly, resulting in a serious increase in the heat flow density of the circuit board, an increase in the temperature of the circuit board, and an impact on the performance and life of the components.
  • the heat on the circuit board will be quickly transmitted to the display panel, causing devices with poor heat resistance in the display panel, such as light-emitting devices, to be greatly damaged, affecting the display panel.
  • the display effect is improved, and the overall life of the display device is shortened.
  • embodiments of the present disclosure provide a display module 100.
  • the display module 100 includes a display panel 10 , a circuit board 20 , an electronic device 30 , a copper foil 40 and a graphite film 50 .
  • the display panel 10 can be a liquid crystal display panel (Liquid Crystal Display, LCD for short); the display panel 10 can also be an electroluminescent display panel or a photoluminescent display panel.
  • the electroluminescent display panel may be an organic electroluminescent (Organic Light-Emitting Diode, OLED for short) display panel or a quantum dot electroluminescent (Quantum Dot Light Emitting Diode) display panel. , referred to as QLED) display panel.
  • the display panel 10 is a photoluminescence display panel
  • the photoluminescence display device may be a quantum dot photoluminescence display panel.
  • the circuit board 20 includes opposite first surfaces 1 a and second surfaces 1 b.
  • the second surface 1b is configured to carry components, for example, components are soldered to the second surface 1b.
  • the second surface 1b may also be configured to carry components. That is, the first surface 1a and the second surface 1b of the circuit board 20 can carry components at the same time, and the embodiment of the present disclosure is not limited to this.
  • the components carried by the circuit board 20 are configured to transmit light-emitting driving signals, power signals, control signals, etc. to the display panel 10 so as to drive and control the light-emitting display of the display panel 10 .
  • circuit board 20 is a circuit board on which components have not yet been soldered.
  • the circuit board 20 is electrically connected to the display panel 10 .
  • the display module 100 may also include multiple circuit boards 20 , and the multiple circuit boards 20 are electrically connected to the display panel 10 .
  • the circuit board 20 and the display panel 10 may be electrically connected through a flexible connection board.
  • the flexible connection board may be a Flexible Printed Circuit (FPC) or a flexible connection board. It is a chip on film (COF).
  • FPC Flexible Printed Circuit
  • COF chip on film
  • the circuit board 20 and the display panel 10 are respectively bound and electrically connected to the FPC.
  • the circuit board 20 is provided with a pin E (see FIG. 4 ), and the FPC and the circuit board 20 are bound and electrically connected through the pin E. .
  • the FPC is bent toward the non-display side of the display panel 10 so that the circuit board 20 is located on the non-display side of the display panel 10 , and the display panel 10 and the circuit board 20 located on the non-display side of the display panel 10 are assembled. Form a display module.
  • the display side of the display panel 10 refers to the side on which the display panel 10 displays, and the non-display side refers to the side opposite to the display side.
  • the electronic device 30 is provided on the first surface 1 a of the circuit board 20 .
  • the electronic device 30 may include a logic circuit (Tcon IC), a power management integrated circuit (Power Management IC, PMIC for short), a MOS tube, a light emitting device driving circuit, and various capacitors, resistors, inductors, etc.
  • the electronic device 30 has a large load and is one of the main heating components in the display module 100 .
  • the copper foil 40 covers the electronic device 30 .
  • each electronic device 30 corresponds to a copper foil 40 respectively.
  • a plurality of electronic devices 30 are provided in the electronic device area S, and the copper foil 40 covers the entire electronic device area S, thereby covering the electronic devices 30 .
  • the copper foil 40 and the electronic device 30 are insulated from each other to prevent the copper foil 40 from overlapping the pins on the electronic device 30 and causing a short circuit in the electronic device 30 .
  • the circuit board 20 further includes a plurality of pins E configured to be electrically connected to the FPC binding.
  • the copper foil 40 is arranged to avoid the pin E.
  • the copper foil 40 can be in direct or indirect contact with the metal back case, so that the heat on the electronic device 30 can be conducted to the metal back case through the copper foil 40, thereby accelerating the heat dissipation. Improve the heat dissipation effect of the display module 100.
  • the electronic device 30 is one of the components that generates the most heat in the display module 100 .
  • the heat dissipation on the electronic device 30 can be accelerated, and the heat generated by the electronic device 30 can be prevented from accumulating in the display module 100 and causing damage to the components of the display module 100, thus prolonging the display module 100. Group life of 100.
  • the thickness of the copper foil 40 is approximately 0.015mm ⁇ 0.02mm.
  • the thickness of the copper foil 40 may be 0.015mm, 0.0155mm, 0.016mm, 0.018mm or 0.02mm.
  • the heat dissipation effect of the copper foil 40 on the electronic device 30 is ensured to the greatest extent, and at the same time, the copper foil 40 is prevented from increasing the thickness of the display module 100 and affecting the lightness and thinness of the display device 1000 design.
  • the graphite film 50 is provided on the second surface 1 b of the circuit board 20 .
  • the material of the graphite film 50 may include graphite, graphene, or a composite structure of graphite and graphene, or the like.
  • the boundary of the graphite film 50 is flush with the boundary of the circuit board 20, so that the graphite film 50 completely covers the circuit board 20, which can increase the heat dissipation area of the circuit board 20 and improve the heat dissipation efficiency of the circuit board 20. .
  • the graphite film 50 By disposing the graphite film 50 on the second surface 1 b of the circuit board 20 , the graphite film 50 dissipates heat from the second surface 1 b of the circuit board 20 , and the copper foil 40 dissipates heat from the circuit board 20 .
  • the graphite film 50 can further speed up the heat dissipation efficiency of the circuit board 20 and prevent the heat generated by the electronic device 30 in the process of driving the display panel 10 to perform light-emitting display from gathering on the circuit board 20, causing the circuit board 20 to become seriously heated and affecting the performance of the display module 100. The issue of service life.
  • the thickness of the graphite film 50 is approximately 0.02mm ⁇ 0.035mm.
  • the thickness of the graphite film 50 may be 0.02mm, 0.025mm, 0.03mm, 0.0325mm, or 0.035mm.
  • the heat dissipation effect of the graphite film 50 on the circuit board 20 is ensured to the greatest extent, while preventing the graphite film 50 from increasing the thickness of the display module 100 and affecting the performance of the display device 1000 Thin and lightweight design.
  • the display module 100 further includes a middle frame 60 .
  • the display module 100 passes through the middle frame 60 . 60 Assemble the display panel 10 and the circuit board 20 .
  • the middle frame 60 is disposed between the display panel 10 and the circuit board 20 , and the middle frame 60 is fixedly connected to the display panel 10 and the circuit board 20 respectively.
  • the graphite film 50 is disposed between the middle frame 60 and the circuit board 20 .
  • the heat in the circuit board 20 is conducted to the middle frame 60 and finally to the outside of the display module 100 . Realize heat dissipation of the display module 100 .
  • the middle frame 60 can be assembled with the front frame and the rear case to form a structure for protecting and fixing the display module 100 .
  • the display module 100 further includes a first adhesive layer M1.
  • the first adhesive layer M1 is provided between the circuit board 20 and the graphite film 50 .
  • the first adhesive layer M1 is configured to fix the graphite film 50 on the circuit board 20 .
  • the first adhesive layer M1 is provided with a plurality of openings K1.
  • the first adhesive layer M1 has a grid shape.
  • the inventor of the present disclosure has discovered through research that colloidal materials such as the first adhesive layer M1 have poor heat dissipation capabilities. Coating the first adhesive layer M1 on the graphite film 50 will block the heat conduction path of the graphite film 50 and reduce the thermal conductivity of the graphite film. The heat dissipation capacity of 50 greatly affects the heat dissipation effect of the display module 100.
  • the graphite film 50 By arranging the graphite film 50 in a grid shape, it is possible to ensure the bonding strength of the first adhesive layer M1 and prevent the graphite film 50 from falling off from the circuit board 20 , and at the same time reduce the risk of the first adhesive layer M1 through the opening K1
  • the occupied area on the graphite film 50 can thereby improve the thermal conductivity effect from the circuit board 20 to the graphite film 50, achieve effective heat dissipation of the circuit board 20, and avoid shortening the display panel 10 and the components carried by the circuit board 20 due to excessive heat of the circuit board 20. service life.
  • the thickness of the first adhesive layer M1 is approximately 0.001mm ⁇ 0.003mm.
  • the thickness of the first adhesive layer M1 may be 0.001mm, 0.00125mm, 0.0015mm, 0.002mm, 0.0028mm or 0.003mm.
  • the thickness of the first adhesive layer M1 By controlling the thickness of the first adhesive layer M1 within the range of 0.001 mm to 0.003 mm, an ultra-thin design of the first adhesive layer M1 is achieved. On the one hand, it is possible to avoid increasing the thickness of the display module 100 and realize the thinning of the display device 1000 Light and thin design; on the other hand, while ensuring that the first adhesive layer M1 adheres and fixes the graphite film 50 to the circuit board 20, the ultra-thin designed first adhesive layer M1 can reduce its impact on the circuit board 20 to the graphite film.
  • the heat conduction blocking effect is 50%, thereby ensuring the heat dissipation capacity of the graphite film 50, improving the heat dissipation effect of the circuit board 20, reducing the heat of the circuit board 20, and extending the service life of the circuit board 20, the display panel 10 and even the display device 1000.
  • the shape of the aforementioned opening K1 is circular, elliptical, or polygonal, which is not limited in this disclosure.
  • the diameter of at least one opening K1 in the first adhesive layer M1 is approximately 0.3mm ⁇ 0.7mm.
  • the diameter of at least one opening K1 in the first adhesive layer M1 may be 0.3mm, 0.35mm, 0.425mm, 0.5mm, 0.68mm or 0.7mm.
  • the distance between two adjacent openings K1 is approximately 8 mm to 12 mm.
  • the spacing between two adjacent openings K1 can be 8mm, 8.5mm, 9.8mm, 10.25mm, 11.78mm or 12mm.
  • the first adhesive layer M1 can reduce the impact of the first adhesive layer M1 on the circuit board 20 to the graphite film when the first adhesive layer M1 can meet the adhesive strength.
  • the heat conduction blocking capability of 50% improves the heat dissipation effect of the graphite film 50 on the circuit board 20 and reduces the heat of the circuit board 20 .
  • the circuit board 20 includes a first exposed copper region Q1 located on the second surface 1 b.
  • the circuit board 20 is prone to breakdown due to electrostatic discharge, which affects the service life of the display module 100 .
  • the static electricity can be conducted to the outside of the display device 1000, so that the static electricity accumulated on the circuit board 20 can be dissipated, and the electrostatic breakdown of the circuit board 20 and its components can be avoided.
  • the components carried are damaged and the service life of the display module 100 is increased.
  • the first adhesive layer M1 is arranged to avoid the first exposed copper area Q1.
  • a first opening K2 is provided in the first adhesive layer M1 at a position corresponding to the first exposed copper area Q1 so that the first adhesive layer M1 avoids the first exposed copper area Q1.
  • the first adhesive layer M1 By arranging the first adhesive layer M1 to avoid the first exposed copper area Q1, it is prevented that the first adhesive layer M1 covers the first exposed copper area Q1 and then interrupts the transmission path of static electricity, which facilitates the completion of the grounding of the first exposed copper area Q1, thereby
  • the static electricity in the circuit board 20 is conducted to the outside world, thereby eliminating the static electricity, extending the service life of the circuit board 20 and components, and improving the stability of the circuit board 20 and even the display device 1000 .
  • the graphite film 50 is disposed away from the first exposed copper region Q1.
  • a second opening K3 is provided on the graphite film 50 , and the second opening K3 corresponds to the first exposed copper area Q1 so that the graphite film 50 avoids the first exposed copper area Q1 .
  • the graphite film 50 By setting the graphite film 50 to avoid the first exposed copper area Q1, the graphite film 50 is prevented from covering the first exposed copper area Q1 and interrupting the transmission path of static electricity, so that the first exposed copper area Q1 can be grounded, thereby eliminating the static electricity in the circuit board 20. It is transmitted to the outside world to eliminate static electricity, extend the service life of the circuit board 20 and components, and improve the stability of the circuit board 20 and even the display device 1000 .
  • the display module 100 further includes a second adhesive layer M2.
  • the second adhesive layer M2 includes a plurality of first adhesive blocks M21.
  • a plurality of first adhesive blocks M21 are located on the side of the graphite film 50 away from the circuit board 20 .
  • the first bonding block M21 is rectangular.
  • the second adhesive layer M2 is provided between the middle frame 60 and the circuit board 20 .
  • the second adhesive layer M2 is configured to adhere and fix the circuit board 20 to the middle frame 60 , thereby realizing the assembly of the display panel 10 , the middle frame 60 , and the circuit board 20 .
  • the second adhesive layer M2 By arranging the second adhesive layer M2 to include a plurality of first adhesive blocks M21 , that is, arranging the second adhesive layer M2 in blocks, the bonding firmness between the circuit board 20 and the middle frame 60 is ensured. At the same time, the second adhesive layer M2 is prevented from isolating the heat loss of the circuit board 20 .
  • the contact area between the second adhesive layer M2 and the graphite film 50 can be reduced, thereby preventing the second adhesive layer M2 from blocking the heat dissipation path from the graphite film 50 to the middle frame 60 and improving the performance of the graphite film. 50% heat dissipation effect on the circuit board.
  • the thickness of the first bonding block M1 is approximately 0.005mm ⁇ 0.015mm.
  • the thickness of the first bonding block may be 0.005mm, 0.006mm, 0.0075mm, 0.00875mm, 0.009mm, 0.01mm, 0.013mm, 0.0145mm or 0.015mm.
  • the thickness of the first adhesive block M1 within the range of 0.005 mm to 0.015 mm, the adhesive strength of the second adhesive layer M2 is ensured, and the assembly firmness of the display panel 10 and the circuit board 20 is ensured.
  • display module 100 includes electronic device 30 .
  • the electronic device 30 is provided on the first surface 1 a of the circuit board 20 .
  • the first bonding block M21 is arranged away from the electronic device 30 . That is, the orthographic projection of the first bonding block M21 on the circuit board 20 and the orthographic projection of the electronic device 30 on the circuit board 20 are offset from each other.
  • the first bonding block M21 avoids some electronic devices 30 that generate serious heat among the plurality of electronic devices 30.
  • the first bonding block M21 avoids the light emitting device driving circuit.
  • the electronic device 30 generates serious heat.
  • the second adhesive block M21 can be prevented from isolating the location of the main heating device. Heat dissipation ensures the heat dissipation effect of the main heating components, thereby improving the overall heat dissipation effect of the display module 100.
  • the circuit board 20 includes a first exposed copper region Q1 located on the second surface 1 b.
  • the second adhesive layer M2 also includes a second adhesive block M22 covering the first exposed copper area Q1.
  • the second adhesive block M22 is electrically conductive and is in electrical contact with the first exposed copper area Q1.
  • the second adhesive layer M2 is also configured to conduct static electricity in the circuit board 20 to the outside (for example, the middle frame 60 ).
  • the second adhesive layer M2 is in contact with the middle frame 60 .
  • the static electricity in the circuit board 20 can be conducted to the outside (for example, in the circuit board 20) through the first exposed copper area Q1 and the second adhesive block M22 in turn.
  • Block 60 realize the grounding of the first exposed copper area Q1, thereby dissipating the static electricity in the circuit board 20, preventing the electrostatic discharge from causing breakdown of the circuit board 20 and the components carried by the circuit board 20, thereby prolonging the Displays the service life of the module 100.
  • the second adhesive block M22 is filled in the first opening K2 and the second opening K3 , that is, the second adhesive layer M2 penetrates the first adhesive layer M1 and the graphite film 50 and then The first exposed copper area Q1 is in electrical contact.
  • the second adhesive block M22 is provided on the side of the first adhesive block M21 close to the circuit board 20 .
  • the second bonding block M22 and the first bonding block M21 have an integrated structure.
  • the material of the second bonding block M22 includes an adhesive material and a conductive material.
  • the second adhesive block M22 uses an acrylic material as a base material and fills the base material with a conductive material, so that the conductivity and adhesiveness of the second adhesive block M22 can be achieved at the same time.
  • first bonding block M21 may also be electrically conductive.
  • first bonding block M21 integrally provided with the second bonding block M22 is electrically conductive.
  • the first bonding block M21 that is not integrally provided with the second bonding block M22 may be made of insulating material.
  • the first bonding block M21 that is offset from the first exposed copper area Q1 can be made of acrylic material without being filled with conductive material, which can enhance the bonding strength of the second bonding layer M2.
  • the second adhesive layer M2 can all be made of conductive material, or the portion of the second adhesive layer M2 corresponding to the first exposed copper area Q1 can be made of conductive material, and the portion of the second adhesive layer M2 corresponding to the first exposed copper area Q1 can be made of conductive material.
  • the parts of areas Q1 that are staggered to each other are simply adhesive glue, which can reduce the cost of the second adhesive layer M2 to a certain extent; at the same time, the non-conductive part of the second adhesive layer M2 does not need to be filled with conductive materials, which can strengthen the The adhesive strength of the second adhesive layer M2 ensures a good fixing effect between the middle frame 60 and the circuit board 20 .
  • the aforementioned conductive material may include metal, composite materials, conductive fibers, etc.
  • it is powder of metals such as gold, silver, copper, aluminum, zinc, nickel, or graphite and some conductive compounds.
  • the display module 100 further includes a middle frame 60 .
  • the middle frame 60 is bonded to the second adhesive layer M2.
  • the middle frame 60 is electrically connected to the second adhesive block M22.
  • the static electricity in the circuit board 20 can be conducted to the outside of the display device 1000 through the first exposed copper area Q1 , the second adhesive layer M2 and the middle frame 60 to achieve grounding. , effectively preventing electrostatic discharge from causing damage to components in the display device 1000 and extending the service life of the display device 1000 .
  • the display module 100 further includes a third adhesive layer M3.
  • the third adhesive layer M3 is provided between the electronic device 30 and the copper foil 40 .
  • the third adhesive layer M3 covers the electronic device 30 . That is, the electronic device 30 is electrically
  • the orthographic projection on the circuit board 20 is within the range of the orthographic projection of the third adhesive layer M3 on the circuit board 20 .
  • the third adhesive layer M3 is configured to fix the copper foil 40 to the first surface 1 a of the circuit board 20 . At the same time, by providing the third adhesive layer M3 to cover the electronic device 30 , the third adhesive layer M3 can also serve as copper. The insulating layer between the foil 40 and the electronic device 30 prevents the electronic device 30 from being short-circuited due to overlap between the copper foil 40 and the pins of the electronic device 30 .
  • the thickness of the third adhesive layer M3 is approximately 0.005mm ⁇ 0.01mm.
  • the thickness of the third adhesive layer M3 may be 0.005mm, 0.0065mm, 0.007mm, 0.0087mm, 0.00925mm or 0.01mm.
  • the third adhesive layer M3 can be reduced in size while satisfying the adhesive strength of the third adhesive layer M3 and ensuring the fixing strength of the copper foil 40 and the circuit board 20 .
  • the influence of the three adhesive layers M3 on the heat dissipation ability of the copper foil 40 improves the heat dissipation effect of the display module 100 .
  • the circuit board 20 further includes a second exposed copper area Q2 located on the first surface 1a, and the third adhesive layer M3 is disposed to avoid the second exposed copper area Q2.
  • the first surface 1a of the circuit board 20 is provided with components (such as the electronic device 30). When electrostatic discharge occurs, breakdown of the circuit board 20 and the components will also occur. By arranging the second exposed copper area Q2, the static electricity on the first surface 1a of the circuit board 20 can be dissipated, thereby avoiding the risk of component breakdown and extending the service life of the components, the circuit board 20 and even the display module 100.
  • the third adhesive layer M3 includes a through hole K4 for avoiding the second exposed copper area Q2, and the copper foil 40 is in electrical contact with the second exposed copper area Q2 through the through hole K4. .
  • the copper foil 40 is a conductive material. By arranging the copper foil 40 to be in electrical contact with the second exposed copper area Q2, the static electricity in the circuit board 20 can be conducted to the outside of the display module 100 through the second exposed copper area Q2 and the copper foil 40.
  • the static electricity grounding in the circuit board 20 is completed to achieve static electricity dissipation, avoid damage to components due to electrostatic discharge, and extend the service life of the display module 100 .
  • the static electricity in the circuit board 20 is conducted to the copper foil 40 through the second exposed copper area Q2, thereby increasing the static electricity dissipation area and improving the static electricity dissipation effect.
  • the copper foil 40 By arranging the copper foil 40 and arranging the copper foil 40 to be in electrical contact with the second exposed copper area Q2, the copper foil 40 has both the heat dissipation ability of the electronic device 30, the ability to resist ESD (Electro-Static discharge, electrostatic discharge), and the ability to resist EMI. (Electro Magnetic Interference, electromagnetic interference) capability to realize the multi-functional function of copper foil 40, so that copper foil 40 can be utilized to the greatest extent.
  • ESD Electro-Static discharge, electrostatic discharge
  • EMI Electro Magnetic Interference, electromagnetic interference
  • the side of the copper foil 40 away from the circuit board 20 is also in direct or indirect electrical contact with the metal back shell.
  • conductive foam is provided between the copper foil 40 and the metal back case, and the copper foil 40 and the metal back case are electrically connected through the conductive foam.
  • the static electricity in the circuit board 20 is sequentially conducted to the display device 1000 through the second exposed copper area Q2, the copper foil 40 and the back case. outside to achieve the dissipation of static electricity in the circuit board 20 .
  • the display module 100 includes a first adhesive layer M1 disposed between the circuit board 20 and the graphite film 50 , a second adhesive layer M2 disposed on a side of the graphite film 50 away from the circuit board 20 , and
  • the third adhesive layer M3 is provided between the electronic device 30 and the copper foil 40 .
  • the material of at least one of the first adhesive layer M1, the second adhesive layer M2, and the third adhesive layer M3 may include an acrylic material.
  • the material of the first adhesive block M21 includes acrylic material.
  • the material of the second adhesive block M22 includes an acrylic material.
  • the second bonding block M22 further includes conductive material.
  • the conductive material is, for example, powder of metals such as gold, silver, copper, aluminum, zinc, nickel, or graphite and some conductive compounds.
  • the heat dissipation condition of the display device 1000 provided by the embodiments of the present disclosure is greatly improved.
  • the display device 1000 provided in the embodiment of the present disclosure is subjected to temperature detection.
  • the detection conditions are: at room temperature of 23.51°C, a thermocouple testing instrument model HIOKI LR8501 is used for testing.
  • the test point P and the temperature corresponding to the test point P are as follows As shown in Figure 12.
  • the surface temperature of the display device 1000 provided by the embodiment of the present disclosure can be controlled within a maximum of 45°C.
  • the embodiment of the present disclosure can ensure small changes in the structure and thickness of the entire device, while also having lower manufacturing costs and efficient heat conduction and heat dissipation capabilities, effectively extending the service life of the display device 1000 .

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示模组及显示装置,其中,显示模组包括显示面板、电路板、电子器件、铜箔以及石墨膜。所述电路板与所述显示面板电连接;所述电路板包括相对的第一表面和第二表面。所述电子器件设于所述电路板的第一表面。所述铜箔覆盖所述电子器件。所述石墨膜设于所述电路板的第二表面。

Description

显示模组及显示装置
本申请要求于2022年04月26日提交的、申请号为202210447015.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其是涉及一种显示模组及显示装置。
背景技术
随着显示技术的不断发展,显示装置的热稳定可靠性成为较为重要的性能之一。电路板作为电子产品中的核心部件,其上所承载的芯片、电阻、电容、电感等元器件的功率,随着大尺寸显示装置的发展而逐渐增加,从而使得电路板上的热流密度急剧增大,相应地显示装置的热稳定可靠性较差。
发明内容
一方面,提供一种显示模组,包括显示面板、电路板、电子器件、铜箔以及石墨膜。
其中,所述电路板与所述显示面板电连接;所述电路板包括相对的第一表面和第二表面。所述电子器件设于所述电路板的第一表面。所述铜箔覆盖所述电子器件。所述石墨膜设于所述电路板的第二表面。
在一些实施例中,所述显示模组还包括第一粘接层。所述第一粘接层设于所述电路板和所述石墨膜之间,所述第一粘接层设有多个开孔。
在一些实施例中,所述电路板包括位于所述第二表面的第一露铜区,所述第一粘接层避开所述第一露铜区设置。
在一些实施例中,所述石墨膜避开所述第一露铜区设置。
在一些实施例中,所述第一粘接层的厚度大致为0.001mm~0.003mm。
在一些实施例中,所述第一粘接层中的至少一个开孔的直径大致为0.3mm~0.7mm。
在一些实施例中,所述多个开孔中,相邻两个开孔之间的间距大致为8mm~12mm。
在一些实施例中,所述显示模组还包括第二粘接层。所述第二粘接层包括多个第一粘接块,所述多个第一粘接块位于所述石墨膜远离所述电路板的一侧。
在一些实施例中,所述多个第一粘接块避开所述电子器件设置。
在一些实施例中,所述电路板包括位于所述第二表面的第一露铜区。所述第二粘接层还包括覆盖所述第一露铜区的第二粘接块,所述第二粘接块导电且与所述第一露铜区电接触。
在一些实施例中,所述显示模组还包括中框。所述中框与所述第二粘接层粘接。在所述第二粘接层包括第二粘接块的情况下,所述中框与所述第二粘接块电连接。
在一些实施例中,所述第一粘接块的厚度大致为0.005mm~0.015mm。
在一些实施例中,所述显示模组还包括第三粘接层。所述第三粘接层设于所述电子器件和所述铜箔之间。所述第三粘接层覆盖所述电子器件。
在一些实施例中,所述电路板还包括位于所述第一表面的第二露铜区,所述第三粘接层避开所述第二露铜区设置。
在一些实施例中,所述第三粘接层包括用于避开所述第二露铜区的通孔,所述铜箔通过所述通孔与所述第二露铜区电接触。
在一些实施例中,所述第三粘接层的厚度大致为0.005mm~0.01mm。
在一些实施例中,所述显示模组包括:设于所述电路板和所述石墨膜之间第一粘接层,设于所述石墨膜远离所述电路板的一侧的第二粘接层,和设于所述电子器件和所述铜箔之间的第三粘接层。所述第一粘接层、所述第二粘接层和所述第三粘接层中的至少一者的材料包括亚克力材料。
在一些实施例中,所述石墨膜的厚度大致为0.02mm~0.035mm。
在一些实施例中,所述铜箔的厚度大致为0.015mm~0.02mm。
另一方面,提供一种显示装置,包括前述任一项实施例所述的显示模组。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例提供的显示装置的俯视图;
图2为根据一些实施例提供的显示模组的一种结构图;
图3为根据一些实施例提供的显示模组的另一种结构图;
图4为根据一些实施例提供的电路板的第一表面的一种俯视图;
图5为根据一些实施例提供的电路板的第一表面的另一种俯视图;
图6为根据一些实施例提供的电路板的第二表面的一种俯视图;
图7为根据一些实施例提供的电路板的第二表面的另一种俯视图;
图8为根据一些实施例提供的第一粘接层的结构图;
图9为根据一些实施例提供的第二粘接层的结构图;
图10为根据一些实施例提供的电路板的第二表面的另一种俯视图;
图11为沿图10中的剖面线A-A’的截面图;
图12为根据一些实施例提供的显示装置的温度检测图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“电连接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“电连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
图1为本公开的一些实施例提供的显示装置1000的俯视图。该显示装置1000可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论是文字的还是图像的任何装置。更明确地说,预期实施例可实施在多种电子装置中,或与多种电子装置关联,多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(Personal Digital Assistant,简称PDA)、虚拟现实(Virtual Reality,简称VR)显示器、手持式或便携式计算机、全球定位系统(Global Positioning System,简称GPS)接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
如图1所示,该显示装置1000可以包括显示模组100。
示例性地,该显示装置1000还可以包括前框和后壳。前框设于显示模组100的显示侧,且围绕显示模组100设置。后壳设于显示模组100的非显示侧(与显示侧相对的一侧),后壳与前框组装,实现对显示模组100的防护以及固定。
在相关技术中,显示模组包括显示面板和电路板。该显示面板被配置为进行图像显示。电路板与显示面板电连接,电路板被配置为承载元器件,电路板所承载的元器件向显示面板提供电源信号、发光驱动信号以及控制信号等以便驱动显示面板进行图像显示。
随着大尺寸显示装置的逐渐发展,显示面板的尺寸增加,相应地显示面板中的发光器件的数量增多,则显示面板发光时所需要的驱动电流增大,用于向显示面板提供驱动电流的电路板中所承载的驱动芯片、电阻、电容等元器件的数量以及功耗也相应地增加,导致电路板的热流密度严重上升,电路板温度升高,元器件的性能以及寿命均受到影响。
此外,当电路板组装在显示面板的非显示侧时,电路板上的热量会迅速传输至显示面板,导致显示面板中耐热性差的器件,例如发光器件,受到较大的损伤,影响显示面板的显示效果,且缩短了显示装置的整体寿命。
为解决上述技术问题,本公开实施例提供一种显示模组100。
如图2和图3所示,该显示模组100包括显示面板10、电路板20、电子器件30、铜箔40以及石墨膜50。
该显示面板10可以为液晶显示面板(Liquid Crystal Display,简称LCD);该显示面板10也可以为电致发光显示面板或光致发光显示面板。在该显示面板10为电致发光显示面板的情况下,电致发光显示面板可以为有机电致发光(Organic Light-Emitting Diode,简称OLED)显示面板或量子点电致发光(Quantum Dot Light Emitting Diode,简称QLED)显示面板。在该显示面板10为光致发光显示面板的情况下,光致发光显示装置可以为量子点光致发光显示面板。
如图2和图3所示,该电路板20包括相对的第一表面1a和第二表面1b。
第二表面1b被配置为承载元器件,例如,将元器件焊接在第二表面1b。
示例性地,第二表面1b也可以被配置为承载元器件。即,电路板20的第一表面1a和第二表面1b可以同时承载元器件,本公开实施例并不对此进行限定。
电路板20所承载的元器件被配置为向显示面板10传输发光驱动信号、电源信号、控制信号等,以便驱动并控制显示面板10的发光显示。
需要说明的是,本公开实施例中所指的“电路板20”为尚未焊接元器件的电路板。
如图2和图3所示,电路板20与显示面板10电连接。
示例性地,显示模组100还可以包括多个电路板20,多个电路板20均与显示面板10电连接。
示例性地,如图2和图3所示,电路板20与显示面板10之间可以通过柔性连接板电连接,该柔性连接板可以是柔性线路板(Flexible Printed Circuit,简称FPC),也可以是覆晶薄膜(COF)。示例性地,电路板20和显示面板10分别与FPC绑定电连接,例如,电路板20设有引脚E(参阅图4),FPC与电路板20之间通过引脚E绑定电连接。
示例性地,如图3所示,FPC朝向显示面板10的非显示侧弯曲,使得电路板20位于显示面板10的非显示侧,显示面板10和位于显示面板10非显示侧的电路板20组装形成显示模组。
需要说明的是,显示面板10的显示侧是指,显示面板10进行显示的一侧,非显示侧是指与显示侧相对的一侧。
如图2和图3所示,电子器件30设于电路板20的第一表面1a。
示例性地,电子器件30可以包括逻辑电路(Tcon IC)、电源管理集成电路(Power Management IC,简称PMIC)、MOS管、发光器件驱动电路以及各种电容、电阻、电感器件等。电子器件30负载较大,其为显示模组100中的主要发热元器件之一。
示例性地,如图4所示,电子器件30可以为多个,多个电子器件30均设于电子器件区S,相邻电子器件30之间间隔设置。
如图2、图3以及图5所示,铜箔40覆盖电子器件30。
示例性地,每个电子器件30均分别对应一个铜箔40。
示例性地,如图5所示,多个电子器件30设于电子器件区S,铜箔40覆盖整个电子器件区S,从而覆盖电子器件30。
示例性地,铜箔40和电子器件30之间相互绝缘,避免铜箔40与电子器件30上的引脚搭接造成电子器件30短路。
示例性地,如图4和图5所示,电路板20还包括多个引脚E,其被配置为与FPC绑定电连接。
示例性地,如图5所示,铜箔40避开引脚E设置。
示例性地,铜箔40可以与金属材质的后壳直接或间接接触,从而可以通过铜箔40将电子器件30上的热量传导至金属后壳,从而加快热量的散失, 提高显示模组100的散热效果。
电子器件30为显示模组100中发热最严重的元器件之一。通过将铜箔40设置在电子器件30上,可以加快电子器件30上热量的消散,避免电子器件30产生的热量累积在显示模组100中导致显示模组100的器件受损,从而延长显示模组100的使用寿命。
在示例性实施例中,铜箔40的厚度大致为0.015mm~0.02mm。例如,铜箔40的厚度可以为0.015mm、0.0155mm、0.016mm、0.018mm或0.02mm。
通过将铜箔40的厚度控制在0.015mm~0.02mm,在最大程度保证铜箔40对电子器件30的散热效果的同时,避免铜箔40增加显示模组100的厚度,影响显示装置1000的轻薄化设计。
如图2、图3和图7所示,石墨膜50设于电路板20的第二表面1b。
示例性地,石墨膜50的材料可以包括石墨、石墨烯或者石墨与石墨烯的复合结构等。
示例性地,如图7所示,石墨膜50的边界与电路板20边界齐平,使得石墨膜50完全覆盖电路板20,可以增大电路板20的散热面积,提高电路板20的散热效率。
通过将石墨膜50设于电路板20的第二表面1b,使石墨膜50从电路板20的第二表面1b对电路板20进行散热,在铜箔40对电路板20进行散热的基础上,石墨膜50可以进一步加快电路板20的散热效率,避免电子器件30在驱动显示面板10进行发光显示的过程中产生的热量聚集在电路板20,导致电路板20发热严重,影响显示模组100的使用寿命的问题。
在示例性实施例中,石墨膜50的厚度大致为0.02mm~0.035mm。例如,石墨膜50的厚度可以为0.02mm、0.025mm、0.03mm、0.0325mm或0.035mm。
通过将石墨膜50的厚度控制在0.02mm~0.035mm内,在最大程度保证石墨膜50对电路板20的散热效果的同时,避免石墨膜50增加显示模组100的厚度,影响显示装置1000的轻薄化设计。
示例性地,如图3所示,显示模组100还包括中框60,在FPC朝向显示面板10的非显示侧弯曲,从而使电路板20位于显示面板10的非显示侧之后,通过中框60将显示面板10和电路板20组装。
如图3所示,中框60设于显示面板10和电路板20之间,中框60分别与显示面板10和电路板20固定连接。
如图3所示,石墨膜50设于中框60与电路板20之间,通过设置石墨膜50,将电路板20中的热量传导至中框60,最终传导至显示模组100的外部, 实现显示模组100的散热。
示例性地,中框60可以与前框、后壳组装,形成保护和固定显示模组100的结构。
在一些实施例中,如图2和图3所示,显示模组100还包括第一粘接层M1。第一粘接层M1设于电路板20和石墨膜50之间。
该第一粘接层M1被配置为,将石墨膜50固定在电路板20上。
如图8所示,第一粘接层M1设有多个开孔K1。通过在第一粘接层M1上设置多个开孔K1,使得第一粘接层M1呈网格状。
经本公开发明人研究发现,第一粘接层M1等胶质材料散热能力较差,将第一粘接层M1涂覆在石墨膜50上,会阻隔石墨膜50的导热路径,降低石墨膜50的散热能力,极大程度影响了显示模组100的散热效果。
通过将石墨膜50设置为网格状,可以在保证第一粘接层M1的粘接强度,防止石墨膜50从电路板20上脱落的同时,通过开孔K1减少第一粘接层M1在石墨膜50上的占据面积,从而提高电路板20至石墨膜50的导热效果,实现电路板20的有效散热,避免因电路板20热量过高缩短显示面板10以及电路板20所承载的元器件的使用寿命。
示例性地,第一粘接层M1的厚度大致为0.001mm~0.003mm。例如,第一粘接层M1的厚度可以为0.001mm、0.00125mm、0.0015mm、0.002mm、0.0028mm或0.003mm。
通过将第一粘接层M1的厚度控制在0.001mm~0.003mm的范围内,实现第一粘接层M1的超薄设计,一方面可以避免增加显示模组100的厚度,实现显示装置1000的轻薄化设计;另一方面,在保证第一粘接层M1将石墨膜50粘接固定至电路板20的同时,超薄设计的第一粘接层M1可以降低其对电路板20至石墨膜50的热量传导的阻隔效果,从而保证石墨膜50的散热能力,提高电路板20的散热效果,降低电路板20的热量,延长电路板20以及显示面板10乃至显示装置1000的使用寿命。
在示例性实施例中,前述开孔K1的形状为圆形或椭圆形、或者多边形,本公开对此不做限定。
在示例性实施例中,第一粘接层M1中的至少一个开孔K1的直径大致为0.3mm~0.7mm。例如,第一粘接层M1中的至少一个开孔K1的直径可以为0.3mm、0.35mm、0.425mm、0.5mm、0.68mm或0.7mm。
在示例性实施例中,多个开孔K1中,相邻两个开孔K1之间的间距大致为8mm~12mm。例如,相邻两个开孔K1之间的间距可以为8mm、8.5mm、 9.8mm、10.25mm、11.78mm或12mm。
通过设置开孔K1的形状、尺寸以及相邻开孔K1之间的间距,使得第一粘接层M1可以满足粘接强度的情况下,降低第一粘接层M1对电路板20至石墨膜50的热量传导的阻隔能力,提高石墨膜50对电路板20的散热效果,降低电路板20的热量。
在一些实施例中,如图6所示,电路板20包括位于第二表面1b的第一露铜区Q1。
电路板20容易因为静电释放现象发生击穿,影响显示模组100的使用寿命。
通过设置第一露铜区Q1,并使第一露铜区Q1接地,可以将静电传导至显示装置1000的外部,使得电路板20上集聚的静电消解,避免静电击穿导致电路板20及其承载的元器件受损,提高显示模组100的使用寿命。
第一粘接层M1避开第一露铜区Q1设置。
示例性地,如图8所示,在第一粘接层M1的与第一露铜区Q1对应的位置设置第一开口K2,以便第一粘接层M1避开第一露铜区Q1。
通过设置第一粘接层M1避开第一露铜区Q1,避免第一粘接层M1遮盖第一露铜区Q1后中断静电的传输路径,便于第一露铜区Q1完成接地,从而将电路板20中的静电传导至外界,实现静电的消解,延长电路板20以及元器件的使用寿命,提高电路板20乃至显示装置1000的稳定性。
在一些实施例中,石墨膜50避开第一露铜区Q1设置。
示例性地,如图7所示,石墨膜50上设置有第二开口K3,该第二开口K3与第一露铜区Q1相对应,以便石墨膜50避开第一露铜区Q1。
通过设置石墨膜50避开第一露铜区Q1,避免石墨膜50遮盖第一露铜区Q1后中断静电的传输路径,便于第一露铜区Q1完成接地,从而将电路板20中的静电传导至外界,实现静电的消解,延长电路板20以及元器件的使用寿命,提高电路板20乃至显示装置1000的稳定性。
在一些实施例中,如图2和图3所示,显示模组100还包括第二粘接层M2。
如图9所示,第二粘接层M2包括多个第一粘接块M21。
如图10和图11所示,多个第一粘接块M21位于石墨膜50远离电路板20的一侧。
示例性地,如图9和图10所示,第一粘接块M21呈矩形。
示例性地,如图3所示,第二粘接层M2设于中框60和电路板20之间。
第二粘接层M2被配置为将电路板20粘接固定在中框60上,从而实现显示面板10、中框60、电路板20的组装。
通过设置第二粘接层M2包括多个第一粘接块M21,也即,将第二粘接层M2区块化设置,在保证电路板20与中框60之间的粘接牢固度的同时,避免第二粘接层M2隔绝电路板20热量的散失。区块化设置第二粘接层M2,可以减少第二粘接层M2与石墨膜50的接触面积,从而避免第二粘接层M2阻隔石墨膜50至中框60的散热路径,提高石墨膜50对电路板20散热效果。
示例性地,第一粘接块M1的厚度大致为0.005mm~0.015mm。例如,第一粘接块的厚度可以为0.005mm、0.006mm、0.0075mm、0.00875mm、0.009mm、0.01mm、0.013mm、0.0145mm或0.015mm。
通过控制第一粘接块M1的厚度在0.005mm~0.015mm的范围内,保证第二粘接层M2的粘接强度,保障显示面板10和电路板20的组装牢固度。
在示例性实施例中,如图4所示,显示模组100包括电子器件30。电子器件30设于电路板20的第一表面1a。
如图10所示,第一粘接块M21避开电子器件30设置。即,第一粘接块M21在电路板20上的正投影,与电子器件30在电路板20上的正投影相互错开设置。
示例性地,第一粘接块M21避开多个电子器件30中,发热较为严重的部分电子器件30,例如,第一粘接块M21避开发光器件驱动电路设置。
电子器件30发热较严重,通过设置第一粘接块M21避开电子器件30,尤其避开电子器件30中主要的发热器件,可以避免第二粘接块M21隔绝主要的发热器件所在位置处的散热,保证主要的发热器件的散热效果,从而提高显示模组100整体的散热效果。
在示例性实施例中,如图6所示,电路板20包括位于第二表面1b的第一露铜区Q1。
如图11所示,第二粘接层M2还包括覆盖第一露铜区Q1的第二粘接块M22,第二粘接块M22导电且与第一露铜区Q1电接触。该第二粘接层M2还被配置为,将电路板20中的静电传导至外部(例如中框60)。
示例性地,如图3所示,第二粘接层M2与中框60接触。
通过设置导电且与第一露铜区Q1电接触的第二粘接块M22,可以将电路板20中的静电依次经过第一露铜区Q1和第二粘接块M22传导至外部(例如中框60),实现第一露铜区Q1的接地,从而将电路板20中的静电消解,避免静电释放对电路板20以及电路板20所承载的元器件造成击穿,从而延长 显示模组100的使用寿命。
示例性地,如图11所示,第二粘接块M22填充在第一开口K2和第二开口K3内,即,第二粘接层M2贯穿第一粘接层M1和石墨膜50后与第一露铜区Q1电接触。
示例性地,如图11所示,第二粘接块M22设于第一粘接块M21靠近电路板20的一侧。
示例性地,如图11所示,第二粘接块M22与第一粘接块M21为一体结构。
示例性地,第二粘接块M22的材料包括粘接胶材料和导电材料。例如,第二粘接块M22以亚克力材料为基材,并在基材内填充导电材料,可以同时实现第二粘接块M22的导电性和粘接性。
示例性地,第一粘接块M21也可以导电。例如,与第二粘接块M22一体设置的第一粘接块M21导电。
示例性地,不与第二粘接块M22一体设置的第一粘接块M21可以为绝缘材质。例如,与第一露铜区Q1错开设置的第一粘接块M21可以为亚克力材料,其中不填充导电材料,可以增强第二粘接层M2的粘接强度。
即,第二粘接层M2可以均为导电材质,或者,第二粘接层M2中与第一露铜区Q1对应设置的部分为导电材质,第二粘接层M2中与第一露铜区Q1相互错开设置的部分为单纯的粘接胶,可以在一定程度上降低第二粘接层M2的造价成本;同时,第二粘接层M2的不导电的部分无需填充导电材料,可以增强第二粘接层M2的粘接强度,使得中框60与电路板20之间固定效果良好。
示例性地,前述导电材料可以包括金属、复合材料、导电纤维等。例如为金、银、铜、铝、锌、镍等金属的粉末,或者为石墨以及一些导电化合物。
在一些实施例中,如图3所示,显示模组100还包括中框60。中框60与第二粘接层M2粘接。在第二粘接层M1包括第二粘接块M22的情况下,中框60与第二粘接块M22电连接。
通过设置第二粘接层M1与中框60电连接,使得电路板20中的静电可以依次通过第一露铜区Q1、第二粘接层M2以及中框60传导至显示装置1000外部实现接地,有效地避免静电释放对显示装置1000中的元器件造成损伤,延长显示装置1000的使用寿命。
在一些实施例中,如图2、图3和图11所示,显示模组100还包括第三粘接层M3。第三粘接层M3设于电子器件30和铜箔40之间。
如图11所示,第三粘接层M3覆盖电子器件30。即,电子器件30在电 路板20上的正投影,处于第三粘接层M3在电路板20上的正投影的范围内。
第三粘接层M3被配置为将铜箔40固定于电路板20的第一表面1a,同时,通过设置第三粘接层M3覆盖电子器件30,使得第三粘接层M3还可以作为铜箔40与电子器件30之间的绝缘层,避免铜箔40与电子器件30的引脚之间搭接造成电子器件30短路。
示例性地,第三粘接层M3的厚度大致为0.005mm~0.01mm。例如,第三粘接层M3的厚度可以为0.005mm、0.0065mm、0.007mm、0.0087mm、0.00925mm或0.01mm。
通过控制第三粘接层M3的厚度处于0.005mm~0.01mm范围内,可以在满足第三粘接层M3的粘接力,保证铜箔40与电路板20的固定强度的情况下,减少第三粘接层M3对铜箔40散热能力的影响,提高显示模组100的散热效果。
在一些实施例中,如图4和图11所示,电路板20还包括位于第一表面1a的第二露铜区Q2,第三粘接层M3避开第二露铜区Q2设置。
电路板20的第一表面1a设置元器件(例如电子器件30),当存在静电释放时,也会造成电路板20以及元器件的击穿。通过设置第二露铜区Q2,可以对电路板20第一表面1a的静电进行消解,避免元器件发生击穿的风险,延长元器件以及电路板20乃至显示模组100的使用寿命。
在一些实施例中,如图11所示,第三粘接层M3包括用于避开第二露铜区Q2的通孔K4,铜箔40通过通孔K4与第二露铜区Q2电接触。
铜箔40为导电材料,通过设置铜箔40和第二露铜区Q2电接触,可以将电路板20中的静电依次通过第二露铜区Q2和铜箔40传导至显示模组100外部,完成电路板20中的静电接地,实现静电消解,避免元器件因静电释放受到损伤,延长显示模组100的使用寿命。
此外,通过第二露铜区Q2将电路板20中的静电传导至铜箔40,增大了静电消解的面积,可以提高静电消解效果。
通过设置铜箔40,并设置铜箔40和第二露铜区Q2电接触,使得铜箔40兼具对电子器件30的散热能力、抗ESD(Electro-Static discharge,静电释放)能力以及抗EMI(Electro Magnetic Interference,电磁干扰)能力,实现铜箔40的多功能作用,使得铜箔40得到最大程度的利用。
示例性地,铜箔40远离电路板20的一侧还与金属后壳直接或间接电接触。例如,铜箔40与金属后壳之间设置有导电泡棉,铜箔40与金属后壳之间通过导电泡棉实现电连接。
通过设置铜箔40远离电路板20的一侧与金属后壳直接或间接电接触,从而将电路板20中的静电依次经过第二露铜区Q2、铜箔40以及后壳传导至显示装置1000的外部,实现电路板20中的静电的消解。
在一些实施例中,显示模组100包括设于电路板20和石墨膜50之间第一粘接层M1,设于石墨膜50远离电路板20的一侧的第二粘接层M2,和设于电子器件30和铜箔40之间的第三粘接层M3。第一粘接层M1、第二粘接层M2和第三粘接层M3中的至少一者的材料可以包括亚克力材料。
示例性地,在第二粘接层M2包括第一粘接块M21的情况下,第一粘接块M21的材料包括亚克力材料。
示例性地,在第二粘接层M2包括第二粘接块M22的情况下,第二粘接块M22的材料包括亚克力材料。
示例性地,第二粘接块M22还包括导电材料。该导电材料例如为金、银、铜、铝、锌、镍等金属的粉末,或者为石墨以及一些导电化合物。
基于上述实施例,本公开实施例提供的显示装置1000的散热情况得到极大改善。
对本公开实施例提供的显示装置1000进行温度检测,检测条件为:在室温23.51℃下,采用型号为HIOKI LR8501的热电偶测试仪器进行测试,测试点位P和测试点位P所对应的温度如图12所示。
根据图12中的检测结果可知,本公开实施例提供的显示装置1000的表面温度最高可控制在45℃以内,相对于相关技术中温度为50℃甚至80℃以上的显示装置,本公开实施例提供的显示装置1000可以在保证整机的结构和厚度变化较小的同时,还可以具有较低的制备成本,以及高效的导热、散热能力,有效延长显示装置1000的使用寿命。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种显示模组,包括:
    显示面板;
    电路板,与所述显示面板电连接;所述电路板包括相对的第一表面和第二表面;
    电子器件,设于所述电路板的第一表面;
    铜箔,覆盖所述电子器件;
    石墨膜,设于所述电路板的第二表面。
  2. 根据权利要求1所述的显示模组,还包括:
    第一粘接层,设于所述电路板和所述石墨膜之间,所述第一粘接层设有多个开孔。
  3. 根据权利要求2所述的显示模组,其中,所述电路板包括位于所述第二表面的第一露铜区,所述第一粘接层避开所述第一露铜区设置。
  4. 根据权利要求3所述的显示模组,其中,所述石墨膜避开所述第一露铜区设置。
  5. 根据权利要求1~4中任一项所述的显示模组,其中,所述第一粘接层的厚度大致为0.001mm~0.003mm。
  6. 根据权利要求1~5中任一项所述的显示模组,其中,所述第一粘接层中的至少一个开孔的直径大致为0.3mm~0.7mm。
  7. 根据权利要求1~6中任一项所述的显示模组,其中,所述多个开孔中,相邻两个开孔之间的间距大致为8mm~12mm。
  8. 根据权利要求1~7中任一项所述的显示模组,还包括:
    第二粘接层,包括多个第一粘接块,所述多个第一粘接块位于所述石墨膜远离所述电路板的一侧。
  9. 根据权利要求8所述的显示模组,其中,所述多个第一粘接块避开所述电子器件设置。
  10. 根据权利要求8或9所述的显示模组,其中,所述电路板包括位于所述第二表面的第一露铜区;
    所述第二粘接层还包括覆盖所述第一露铜区的第二粘接块,所述第二粘接块导电且与所述第一露铜区电接触。
  11. 根据权利要求8~10中任一项所述的显示模组,还包括:
    中框,与所述第二粘接层粘接;
    在所述第二粘接层包括第二粘接块的情况下,所述中框与所述第二粘接块电连接。
  12. 根据权利要求8~11中任一项所述的显示模组,其中,所述第一粘接块的厚度大致为0.005mm~0.015mm。
  13. 根据权利要求1~12中任一项所述的显示模组,还包括:
    第三粘接层,设于所述电子器件和所述铜箔之间;所述第三粘接层覆盖所述电子器件。
  14. 根据权利要求13所述的显示模组,其中,所述电路板还包括位于所述第一表面的第二露铜区,所述第三粘接层避开所述第二露铜区设置。
  15. 根据权利要求14所述的显示模组,其中,所述第三粘接层包括用于避开所述第二露铜区的通孔,所述铜箔通过所述通孔与所述第二露铜区电接触。
  16. 根据权利要求13~15中任一项所述的显示模组,其中,所述第三粘接层的厚度大致为0.005mm~0.01mm。
  17. 根据权利要求1~16中任一项所述的显示模组,包括:设于所述电路板和所述石墨膜之间第一粘接层,设于所述石墨膜远离所述电路板的一侧的第二粘接层,和设于所述电子器件和所述铜箔之间的第三粘接层;所述第一粘接层、所述第二粘接层和所述第三粘接层中的至少一者的材料包括亚克力材料。
  18. 根据权利要求1~17中任一项所述的显示模组,其中,所述石墨膜的厚度大致为0.02mm~0.035mm。
  19. 根据权利要求1~18中任一项所述的显示模组,其中,所述铜箔的厚度大致为0.015mm~0.02mm。
  20. 一种显示装置,包括如权利要求1~19中任一项所述的显示模组。
PCT/CN2023/077523 2022-04-26 2023-02-22 显示模组及显示装置 WO2023207285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210447015.7 2022-04-26
CN202210447015.7A CN116997132A (zh) 2022-04-26 2022-04-26 显示模组及显示装置

Publications (2)

Publication Number Publication Date
WO2023207285A1 WO2023207285A1 (zh) 2023-11-02
WO2023207285A9 true WO2023207285A9 (zh) 2024-01-04

Family

ID=88517232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077523 WO2023207285A1 (zh) 2022-04-26 2023-02-22 显示模组及显示装置

Country Status (2)

Country Link
CN (1) CN116997132A (zh)
WO (1) WO2023207285A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207531248U (zh) * 2017-11-17 2018-06-22 维沃移动通信有限公司 一种移动终端
CN113516924B (zh) * 2021-05-19 2024-03-26 京东方科技集团股份有限公司 一种显示模组及电子设备
CN113362724B (zh) * 2021-06-29 2024-05-17 京东方科技集团股份有限公司 显示模组及显示装置
CN113990914A (zh) * 2021-10-29 2022-01-28 京东方科技集团股份有限公司 显示模组及显示装置
CN217563982U (zh) * 2022-04-26 2022-10-11 京东方科技集团股份有限公司 显示模组及显示装置

Also Published As

Publication number Publication date
WO2023207285A1 (zh) 2023-11-02
CN116997132A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
US20220310979A1 (en) Display module and display device
CN114550589A (zh) 显示模组和显示装置
CN106054428B (zh) 电气光学显示装置
US7999341B2 (en) Display driver integrated circuit device, film, and module
CN104134679A (zh) 有机发光二极管显示装置及其制造方法
CN110462567B (zh) 触控基板、触控屏和电子装置
CN114333597B (zh) 显示模组及显示装置
CN113867027B (zh) 一种显示模组及显示装置
EP3780921B1 (en) Heat dissipation device for display panel, manufacturing method thereof, and display device
US9362333B2 (en) Semiconductor packages and display devices including semiconductor packages
CN113570966A (zh) 一种显示装置及拼接屏
CN217563982U (zh) 显示模组及显示装置
US6801174B2 (en) Display device, producing method of electronic apparatus and display device
WO2023207285A9 (zh) 显示模组及显示装置
CN114340146B (zh) 柔性电路板、显示模组及显示装置
CN105409028B (zh) 柔性印刷电路板的结构
JP6205053B2 (ja) 軟性印刷回路基板の構造体
KR20170081058A (ko) 패드와 이를 구비하는 디스플레이 패널 및 디스플레이 장치
WO2022068535A1 (zh) 电路板组件和电子设备
US20210400814A1 (en) Connection structure and display device
TW200906209A (en) System for displaying image and fabrication method thereof
KR20220075554A (ko) 표시장치
WO2024031563A1 (zh) 显示面板、显示装置及拼接显示装置
CN114340145B (zh) 柔性线路板和显示装置
TW201724940A (zh) 具有覆晶薄膜封裝結構的穿戴式裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794721

Country of ref document: EP

Kind code of ref document: A1