WO2023207176A1 - 射频测试系统及射频测试方法 - Google Patents

射频测试系统及射频测试方法 Download PDF

Info

Publication number
WO2023207176A1
WO2023207176A1 PCT/CN2022/142005 CN2022142005W WO2023207176A1 WO 2023207176 A1 WO2023207176 A1 WO 2023207176A1 CN 2022142005 W CN2022142005 W CN 2022142005W WO 2023207176 A1 WO2023207176 A1 WO 2023207176A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
power
test
tester
grounding
Prior art date
Application number
PCT/CN2022/142005
Other languages
English (en)
French (fr)
Inventor
何文卿
Original Assignee
西安闻泰信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安闻泰信息技术有限公司 filed Critical 西安闻泰信息技术有限公司
Publication of WO2023207176A1 publication Critical patent/WO2023207176A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2806Apparatus therefor, e.g. test stations, drivers, analysers, conveyors
    • G01R31/2808Holding, conveying or contacting devices, e.g. test adapters, edge connectors, extender boards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2822Testing of electronic circuits specially adapted for particular applications not provided for elsewhere of microwave or radiofrequency circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to radio frequency testing systems and radio frequency testing methods.
  • a test socket is set up on the circuit board, and the test socket is connected to the RF line on the circuit board.
  • the test line can be connected to the test socket.
  • the test socket It can cut off the path connecting the RF line to the antenna feed point, so that the RF signal can be transmitted to the tester through the test line, so that the tester can be used to test the received RF signal.
  • the setting of the test socket will not only occupy space on the circuit board, resulting in a larger circuit board, but also increase the cost of the electronic equipment.
  • the tester is directly connected to the antenna feed point on the circuit board to transmit the RF signal from the antenna feed point to the tester, and then the tester is used to analyze the received RF signal. How the signal is tested.
  • the radio frequency signal has a large loss during transmission to the tester, which affects the test accuracy.
  • a radio frequency testing system and a radio frequency testing method are provided.
  • a radio frequency test system including:
  • a circuit board the circuit board has a first side and a second side opposite to each other, the first side is provided with a grounding portion configured to be grounded, the second side is provided with a radio frequency circuit, the second side has a first area and a second area provided corresponding to the ground portion, the first area is provided with an antenna feed point, a part of the radio frequency line is located in the second area, and another part of the radio frequency line extends to the The first area is electrically connected to the antenna feed point, and the radio frequency line is configured to transmit radio frequency signals to the antenna feed point;
  • test conductor the test conductor is electrically connected to the antenna feed point
  • the grounding piece is located on the side of the first surface, and the grounding piece is arranged corresponding to the radio frequency line in another part of the first area, and the grounding piece is electrically connected to the grounding part, And the grounding piece can move along the first direction to adjust the distance between the grounding piece and another part of the radio frequency line;
  • the tester is configured to test the first power of the radio frequency signal corresponding to the distance from the ground piece to another part of the radio frequency line during the movement of the ground piece in the first direction;
  • the first direction is the direction in which the first surface points to the second surface, or the first direction is the direction in which the second surface points to the first surface.
  • the grounding member is provided with an elastic conductive portion protruding toward the first surface, and the elastic conductive portion is configured to abut and be electrically connected to the grounding portion. , the elastic conductive part can deform when the grounding member moves along the first direction.
  • the elastic conductive part includes at least one of an elastic piece, a spring, and an elastic probe.
  • the grounding member is provided with a plurality of elastic conductive parts, and the plurality of elastic conductive parts are spaced apart from each other.
  • the radio frequency test system further includes a driving structure, the driving structure is connected to the ground piece, and the driving structure is configured to drive the ground piece along the first Move in the direction to adjust the distance from the grounding piece to another part of the radio frequency line.
  • the radio frequency test system further includes a control module, the control module is electrically connected to the tester, and the control module is configured to receive the the first power of the radio frequency signal, and determine the actual power of the radio frequency signal based on the first power.
  • control module is further configured to determine the maximum power based on the first power, and determine the relative position of the ground piece relative to another part of the radio frequency line based on the maximum power. position; the tester is also configured to test that the power corresponding to the radio frequency signal is a second power when the grounding piece moves to the position along the first direction again; the second power is greater than or equal to When the first power is determined, the second power is determined as the actual power.
  • the width of the grounding member in the second direction is a, and the line width of the other part of the radio frequency line in the second direction is b, a ⁇ 7b ;
  • the second direction is perpendicular to the extension direction of another part of the radio frequency line, and the second direction is perpendicular to the first direction.
  • the test conductor includes a first test conductor and a second test conductor, and the first test conductor is electrically connected to the antenna feed point and the tester, so The second test conductor is provided on the outer periphery of the first test conductor and is insulatedly connected to the first test conductor, and the second test conductor is configured to be grounded.
  • the first area is further provided with an antenna ground point, and the second test conductor is electrically connected to the antenna ground point, so that the second test conductor is grounded.
  • the second test conductor is provided with an accommodation cavity, the accommodation cavity has a first opening, and the first test conductor is movably connected to the accommodation cavity, To adjust the length of the part of the first test conductor located outside the first opening in the moving direction of the first test conductor, the second test conductor is in contact with the antenna ground point to electrically connect all The antenna ground point.
  • the tester is electrically connected to the second test conductor to ground the tester.
  • the tester obtains the power of the radio frequency signal
  • the tester tests the first power of the radio frequency signal corresponding to the distance between the ground piece and another part of the radio frequency line.
  • electrically connecting the test conductor to the antenna feed point includes: electrically connecting the first test conductor to the antenna feed point; Two test conductors are electrically connected to the antenna ground point.
  • the radio frequency testing method further includes: determining the maximum power according to the first power; determining the grounding piece relative to another part of the radio frequency line according to the maximum power. position; control the grounding piece to move to the position again along the first direction, so that the power corresponding to the radio frequency signal tested by the tester is the second power; when the second power is greater than or equal to the maximum power, determine The second power is the actual power of the radio frequency signal.
  • Figure 1 is a schematic structural diagram of a radio frequency test system provided by one or more embodiments of the present disclosure
  • Figure 2 is a schematic front view of a radio frequency test system provided by one or more embodiments of the present disclosure
  • Figure 3 is a schematic structural diagram of a radio frequency conductor provided by one or more embodiments of the present disclosure
  • Figure 4 is a flow chart of a radio frequency testing method provided by one or more embodiments of the present disclosure.
  • Figure 5 is another flow chart of a radio frequency testing method provided by one or more embodiments of the present disclosure.
  • the antenna can receive a radio frequency signal with a preset power from the circuit board and then radiate it to the outside of the electronic device to realize wireless communication of the electronic device.
  • a commonly used test method is to set a test socket on the circuit board and connect the test socket to the RF line on the circuit board, so that the RF signal of the circuit board needs to be tested.
  • the test socket can cut off the path connecting the RF line to the antenna, so that the RF signal can be transmitted to the tester through the test line, and then use the tester to analyze the received RF signal. carry out testing.
  • the test socket provided on the circuit board is only used for the above-mentioned radio frequency signal testing and does not play a role in the daily use of electronic equipment. This not only takes up space on the circuit board, causing the circuit board of the electronic equipment to It is larger in size and also increases the production cost of electronic equipment.
  • the tester is directly connected to the antenna feed point on the circuit board to transmit the radio frequency signal on the circuit board to the tester, and then the tester is used to test the received radio frequency signal.
  • the radio frequency signal has a large loss during transmission to the tester, which easily affects the test accuracy.
  • the radio frequency test system includes a circuit board, a tester, a test conductor and a grounding piece.
  • the tester can be electrically connected to the antenna feed point through the test conductor, and the tester can The radio frequency signal transmitted via the test conductor is received and the radio frequency signal is tested.
  • the grounding piece is located on the side of the first surface of the circuit board and is electrically connected to the power connection part, so that the grounding piece becomes the ground plane of the radio frequency circuit in the area where the grounding part is not provided, and the ground plane is connected to the ground plane of the radio frequency circuit.
  • the distance is variable, so that the characteristic impedance of this part of the RF line can be controlled, so that the tester can measure the power of the RF signal when the attenuation is minimum, and achieve accurate testing of the RF signal.
  • first, second, etc. in the description and claims of the present disclosure are used to distinguish different objects, rather than to describe a specific order of objects.
  • first camera and the second camera are used to distinguish different cameras, rather than to describe a specific order of the cameras.
  • words such as “exemplary” or “for example” mean examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the present disclosure is not intended to be construed as preferred or advantageous over other embodiments or designs. To be precise, the use of words such as “exemplary” or “such as” is intended to present relevant concepts in a specific manner. In addition, in the description of the embodiments of the present disclosure, unless otherwise stated, the meaning of "plurality" refers to both one or more than two.
  • FIG 1 is a schematic structural diagram of a radio frequency test system provided by an embodiment of the present invention.
  • Figure 2 is a schematic front view of a radio frequency test system provided by an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a radio frequency conductor provided by an embodiment of the present invention.
  • the radio frequency test system 1 provided in this embodiment includes a circuit board 10, a tester 20, a test conductor 30 and a grounding piece 40, so as to achieve electrical connection between the tester 20 and the circuit board 10 through the test conductor 30. So that the radio frequency signal of the circuit board 10 is transmitted to the tester 20 for testing.
  • the circuit board 10 may have an opposite first side 101 and a second side 102.
  • the first side 101 is provided with a ground portion 1011 configured to be grounded, and the second side 102 has a first area 1021 and a third area corresponding to the ground portion 1011.
  • the second area 1022 for example, the first area 1021 may be the antenna clearance area of the circuit board 10.
  • the first area 1021 is provided with an antenna feed point 1021a.
  • the antenna feed point 1021a is used to connect an antenna of an electronic device.
  • a radio frequency circuit 1023 is provided on the second side 102 of the circuit board 10.
  • a part 1023a of the radio frequency circuit 1023 is located on the second side.
  • another part 1023b of the radio frequency line 1023 extends to the first area 1021 and is electrically connected to the antenna feed point 1021a to transmit radio frequency signals to the antenna feed point 1021a.
  • the grounding piece 40 When testing radio frequency signals, the grounding piece 40 is located on the side of the first surface 101 of the circuit board 10 , and the grounding piece 40 is arranged in another part 1023b of the first area 1021 corresponding to the radio frequency line 1023 .
  • the grounding piece 40 and the grounding part 1011 If the grounding piece 40 is electrically connected, the grounding piece 40 can serve as a ground plane for the other part 1023b of the radio frequency line 1023, and because the grounding piece 40 can move along the first direction to adjust the distance between the grounding piece 40 and the other part 1023b of the radio frequency line 1023, thereby
  • the radio frequency impedance of the other part 1023b of the radio frequency line 1023 can be controlled to change the degree of loss when the radio frequency signal is transmitted through the radio frequency line 1023.
  • the first direction is the direction from the first surface 101 to the second surface 102 , for example, the direction pointed by the arrow Z1 in FIG. 1 , or the first direction is the direction from the second surface 102 to the first surface 101 , for example, the direction pointed by arrow Z0 in Figure 1.
  • the position of the grounding piece 40 far away from the other part 1023b of the radio frequency line 1023 can be set as the initial position of the grounding piece 40, and then the grounding piece 40 is controlled to gradually approach the other part 1023b of the radio frequency line 1023 along the first direction. Or set the position where the grounding piece 40 is closer to the other part 1023b of the radio frequency line 1023 as the initial position of the grounding piece 40.
  • the grounding piece 40 can be attached to the first surface 101, and then the grounding piece 40 can be controlled to move along the first direction. Another portion 1023b gradually away from the radio frequency line 1023.
  • the test conductor 30 is electrically connected to the antenna feed point 1021a, and the tester 20 is electrically connected to the test conductor 30, so the radio frequency signal can be transmitted to the tester 20 via the test conductor 30.
  • the tester 20 tests the first power of the radio frequency signal corresponding to the distance from the grounding piece 40 to the other part 1023b of the radio frequency line 1023. That is to say, while the grounding piece 40 moves along the first direction, the tester 20 continues to test the received radio frequency signal.
  • the first power of the radio frequency signal with different loss levels is measured, and the first power has a corresponding distance from the ground piece 40 to another part 1023b of the radio frequency line 1023.
  • the plurality of first powers include the first power of the radio frequency signal with the smallest loss, and compared with other first powers, the first power of the radio frequency signal with the smallest loss has the largest power value. Therefore, the first power of the radio frequency signal with the smallest loss can be The first power is set as the maximum power. Since the maximum power is closer to the actual radio frequency signal power that the circuit board 10 can provide, it can be output as the final test result, which is beneficial to improving the accuracy of the test.
  • the circuit board 10 of the present application can be used as a circuit board in electronic devices such as mobile phones, tablets, or smart watches.
  • the antenna feed point 1021a may be a metal pad or a metal spring.
  • the ground portion 1011 can be a metal layer, such as a copper layer, a gold layer, etc.
  • the part 1023a of the radio frequency line 1023 may form a microstrip line with the ground part 1011 and the insulating dielectric layer provided between the radio frequency line 1023 and the ground part 1011, or another ground part 1011 may be provided in the first area 1021 of the circuit board 10
  • the two layers of ground portions 1011 sandwich a portion 1023a of the radio frequency line 1023 in the middle, and an insulating dielectric layer is provided between a portion 1023a of the radio frequency line 1023 and any one of the ground portions 1011, thus forming a stripline together.
  • the line width of the part 1023a of the radio frequency line 1023 may be A1, and the distance from the part 1023a of the radio frequency line 1023 to the ground part 1011 may be D1, so that the characteristic impedance of part 1023a of the radio frequency line 1023 reaches 50 ⁇ , and the radio frequency signal is The portion 1023a of the radio frequency line 1023 has minimal loss during transmission.
  • the line width A2 of the other part 1023b of the radio frequency line 1023 may be different from the line width A1 of the part 1023a of the radio frequency line 1023, if you want to make the characteristic impedance of the other part 1023b of the radio frequency line 1023 also reach 50 ⁇ , the radio frequency line can be adjusted appropriately.
  • the second area 1022 of the circuit board 10 can be provided with a radio frequency transceiver, the radio frequency transceiver can generate a radio frequency signal, and the radio frequency signal generated by the radio frequency transceiver can be transmitted to the antenna feed of the first area 1021 through the radio frequency line 1023.
  • Electric point 1021a then when the antenna is electrically connected to the antenna feed point 1021a and the antenna ground point 1021b, the radio frequency signal can be transmitted to the antenna via the antenna feed point 1021a, and radiated to the outside by the antenna.
  • the second area 1022 of the circuit board 10 may be provided with a radio frequency matching network 1024.
  • a portion 1023a of the radio frequency line 1023 may be connected in series with the radio frequency matching network 1024.
  • the radio frequency matching network 1024 is configured to regulate the transmission of the radio frequency line 1023 to the antenna feed. RF signal at point 1021a.
  • the radio frequency matching network 1024 may be a resistor connected in series to the radio frequency line 1023 .
  • the actual power of the radio frequency signal can be the power of the radio frequency signal emitted by the radio frequency transceiver and adjusted through the radio frequency matching network 1024, that is, the preset power of the radio frequency signal that needs to be transmitted to the antenna by the radio frequency line 1023.
  • the radio frequency signal received by the tester 20 is somewhat lost during the test process, so the power of the measured radio frequency signal has a large deviation and cannot be equal to the actual power of the radio frequency signal.
  • the tester 20 can measure the first power of the radio frequency signal with the smallest loss, that is, the maximum power, and the maximum power is closest to the actual power, thereby determining the maximum power as the actual power of the radio frequency signal and taking it as the test result. output, improving the accuracy of the test.
  • the grounding part 40 is provided with an elastic conductive part 401 protruding toward the first surface 101.
  • the elastic conductive part 401 is configured to be in contact with and electrically connected to the ground part 1011.
  • the elastic conductive part 401 can deform when the grounding member 40 moves along the first direction, so that the grounding member 40 can be caused by the restoring force of the elastic conductive part 401.
  • the elastic conductive part 401 When moving within a certain distance, the elastic conductive part 401 always contacts the ground part 1011 to maintain the electrical connection between the ground member 40 and the ground part 1011 .
  • the elastic conductive portion 401 can be provided at a portion of the grounding member 40 extending to the grounding portion 1011 .
  • the elastic conductive part 401 may include at least one of an elastic piece, a spring, and an elastic probe.
  • the elastic conductive part 401 can be a spring piece made of metal such as copper or silver, or the elastic conductive part 401 can be a spring made of metal, which can deform when subjected to external force to contact the ground part 1011 at all times.
  • the elastic conductive parts 401 can be arranged at intervals, and the plurality of elastic conductive parts 401 are all in contact with the ground part 1011 And are all electrically connected to the grounding part 1011, thereby ensuring the stability of the electrical connection between the grounding member 40 and the grounding part 1011.
  • the multiple elastic conductive parts 401 are helpful to limit the distance between each part of the grounding member 40 and the other part 1023b of the radio frequency line 1023, and avoid the situation where the grounding member 40 is too tilted and the characteristic impedance of the other part 1023b of the radio frequency line 1023 cannot reach the optimal value. , which is helpful to improve the accuracy of the test.
  • the grounding member 40 may also be provided with wires, and the wires are flexible members. Therefore, the grounding member 40 may be welded to the ground layer of the circuit board 10 to realize the movement of the grounding member 40 in the first direction. Electrical connection between process and ground plane.
  • the radio frequency test system 1 further includes a driving structure 50 , the driving structure 50 is connected to the grounding member 40 , and the driving structure 50 is configured to drive the grounding member 40 to move along the first direction to adjust the grounding member 40 to another part of the radio frequency line 1023 . Part of the 1023b distance.
  • Driving the grounding member 40 through the driving structure 50 is conducive to controlling the direction and speed of movement of the grounding member 40, thereby ensuring that when the grounding member 40 moves to any position along the first direction while maintaining electrical connection with the grounding portion 1011, the tester 20 can measure the power of the radio frequency signal, thereby preventing the grounding piece 40 from moving too fast and causing data omission, thereby ensuring the accuracy of the test, or preventing the grounding piece 40 from moving too slowly and affecting the test efficiency.
  • the driving structure 50 can be a direct-acting motor, a pneumatic cylinder or a hydraulic cylinder, and the driving structure 50 can be connected to a side of the grounding member 40 away from the first surface 101 so as to point along the first surface 101 to the second surface 102 Push the grounding member 40 in the direction, or pull the grounding member 40 in the direction that the second surface 102 points to the first surface 101 to adjust the distance between the grounding member 40 and the other part 1023b of the radio frequency line 1023.
  • the radio frequency test system 1 further includes a control module 60.
  • the control module 60 is electrically connected to the tester 20.
  • the control module 60 is configured to receive the first power of the radio frequency signal sent by the tester 20, and determine the radio frequency according to the first power.
  • the actual power of the signal may be a control module 60 of a computer or a console.
  • the control module 60 can obtain the first power with the largest power value by comparing the power values of each first power.
  • the first power with the largest power value corresponds to the loss during the radio frequency signal transmission process.
  • the minimum power, the first power with the largest power value can be determined as the actual power and output as the final test result.
  • control module 60 is further configured to determine the maximum power according to the first power, and determine the position of the grounding piece 40 relative to the other part 1023b of the radio frequency line 1023 according to the maximum power.
  • the tester 20 is also configured to set the power corresponding to the test radio frequency signal to the second power when the grounding member 40 moves to the position along the first direction again. When the second power is greater than or equal to the first power, the second power is determined as the actual power.
  • the second power measured by the tester 20 is obtained through the control module 60, and the second power is compared with the maximum power to verify the position of the grounding piece 40 relative to the other part 1023b of the radio frequency line 1023 when the maximum power is measured, Whether it is the position that minimizes radio frequency signal loss, if the second power is greater than or equal to the maximum power, then it is, and the second power can be determined as the actual power of the radio frequency signal and output as the final test result.
  • the maximum power is also the first power with the largest power value mentioned above.
  • the control module 60 can learn that the grounding piece 40 measured the maximum power with the tester 20 relative to the position of the other part 1023b of the radio frequency line 1023.
  • the position of the ground member 40 relative to the other part 1023b of the radio frequency line 1023 can be determined by the displacement sensor or the driving structure 50.
  • the control module 60 can control the driving structure 50 to drive the grounding member 40 to move in the direction from the first surface 101 to the second surface 102 so that the elastic conductive portion 401 of the grounding member 40 just contacts the grounding portion 1011 to achieve grounding.
  • the electrical connection between the ground member 40 and the grounding part 1011, and the position of the grounding member 40 at this time can be used as the initial position of the grounding member 40, and the distance from the grounding member 40 to the other part 1023b of the radio frequency line 1023 in the initial position is recorded as Dx, Dx It can be an unknown value, which can be determined according to the actual situation.
  • the driving structure 50 continues to drive the grounding member 40 to move Dm in the direction from the first surface 101 to the second surface 102.
  • Dm is a known value, such as 1mm or 1.5mm.
  • the distance between the grounding piece 40 and the other part 1023b of the radio frequency line 1023 is Dx-Dm.
  • the tester 20 measures that the first power of the radio frequency signal when the grounding piece 40 is located at this position is Gm, and sends Gm to The control module 60 determines that Gm is the maximum power, the distance from the grounding piece 40 to the other part 1023b of the radio frequency line 1023 is Dx-Dm, and also learns the position of the grounding piece 40 relative to the other part 1023b of the radio frequency line 1023.
  • the control module 60 can control the driving structure 50 to drive the grounding member 40 to move upward in the direction from the second surface 102 to the first surface 101 to a distance of Dx-Dm from the grounding member 40 to another part 1023b of the radio frequency line 1023.
  • the position that is, when the grounding piece 40 is moved again to the maximum power (ie, Gm) measured by the tester 20, the position of the grounding piece 40 relative to the other part 1023b of the radio frequency line 1023.
  • the tester 20 tests the radio frequency signal again to obtain the second power of the radio frequency signal. By comparing the maximum power and the second power, it can be verified whether the grounding piece 40 is another part 1023b of the radio frequency line 1023 when it is in this position. when losses are minimal.
  • the second power value can be determined as the actual power output. If the second power is less than the first power, then no.
  • the first power and the first power of the radio frequency signal can be reacquired. two powers until the second power obtained is greater than the first power.
  • the grounding member 40 can be a metal plate or a metal block. Since the thickness of the grounding member 40 in the first direction will not affect the radio frequency signal, the thickness of the grounding member 40 in the first direction can be adjusted according to the actual situation. thickness of.
  • the width of the grounding member 40 needs to be reasonably controlled.
  • the width of the grounding member 40 in the second direction is a
  • the line width of the other part 1023b of the radio frequency line 1023 in the second direction is b, and a ⁇ 7b.
  • the second direction is perpendicular to the extension direction of the other part 1023b of the radio frequency line 1023, and the second direction is perpendicular to the first direction.
  • the second direction is shown in the X0 and X1 directions in the figure.
  • the extension direction of the other part 1023b of the radio frequency line 1023 is shown in the Y1 direction in the figure.
  • the first direction is shown in the Z0 and Z1 directions in the figure. 40 extends in the direction of 3 times or more than 3.5 times the line width, then a equals 7b, 7.5b or 8b.
  • the tester 20 and the test conductor 30 may be electrically connected through a radio frequency line 70 .
  • the radio frequency line 70 may be a coaxial line, a microstrip line or a parallel double line.
  • the test conductor 30 includes a first test conductor 301 and a second test conductor 302.
  • the first test conductor 301 is electrically connected to the antenna feed point 1021a and the tester 20, and the second test conductor 302 is disposed on the first test conductor 302. 301 and is insulatedly connected to the first test conductor 301, and the second test conductor 302 is configured to be grounded.
  • the radio frequency signal of the first test conductor 301 can be better transmitted to the tester 20, so that the radio frequency signal transmitted by the first test conductor 301 is not It will radiate to the outside of the second test conductor 302, and at the same time, it can also be protected from radiation interference outside the second test conductor 302.
  • first test conductor 301 and the second test conductor 302 may be made of copper or gold.
  • an insulating medium may be provided between the first test conductor 301 and the second test conductor 302, so that the first test conductor 301 and the second test conductor 302
  • the conductor 302 is insulated and connected through an insulating medium, and just like this, the first test conductor 301 and the second test conductor 302 are spaced apart from each other.
  • the first area 1021 of the circuit board 10 may also be provided with an antenna grounding point 1021b.
  • the antenna grounding point 1021b is used to connect the antenna of the electronic device to ground the antenna.
  • the antenna grounding point 1021b may be a metal pad or a metal elastic piece, and the antenna feeder and the antenna grounding point 1021b are spaced apart.
  • the second test conductor 302 can be electrically connected to the antenna ground point 1021b provided in the first area 1021, so that the second test conductor 302 is grounded.
  • the second test conductor 302 can be grounded by directly contacting the antenna grounding point 1021b, which is beneficial to simplifying the structure of the radio frequency test system 1.
  • the antenna feed point 1021a and the antenna grounding point 1021b are electrically connected to the tester 20 at the same time, so the distance from the first test conductor 301 to the peripheral second test conductor 302 can refer to the antenna feed point of the circuit board 10 under test. 1021a to the antenna ground point 1021b to ensure that when the first test conductor 301 contacts the antenna feed point 1021a and is electrically connected to the antenna feed point 1021a, the antenna ground point 1021b can also contact the second test conductor 302 to achieve Electrical connection.
  • the tester 20 is also electrically connected to the second test conductor 302 to ground the tester 20 . That is to say, after the tester 20 receives the radio frequency signal from the antenna feed point 1021a and tests the radio frequency signal, it can export the radio frequency signal to the second test conductor 302 to improve the test accuracy of the tester 20 .
  • first test conductor 301 can be a columnar structure or a needle structure
  • second test conductor 302 can be an annular structure
  • the second test conductor 302 can be arranged around the outer periphery of the first test conductor 301 .
  • the second test conductor 302 is provided with an accommodating cavity 302a, the accommodating cavity 302a has a first opening 302b, the first test conductor 301 is provided in the accommodating cavity 302a, and the first test conductor 301 is at least partially located on the first Outside the opening 302b, the portion of the first test conductor 301 located outside the first opening 302b is electrically connected to the antenna feed point 1021a.
  • the first test conductor 301 can be a cylinder
  • the second test conductor 302 can be a hollow cylinder
  • the first test conductor 301 is located in the hollow of the second test conductor 302
  • the second test conductor 302 may have an opposite first end 302c and a second end 302d.
  • the accommodating cavity 302a penetrates from the first end 302c to the second end 302d, and forms a first opening 302b on the end surface of the first end 302c.
  • the end surfaces of the two ends 302d form a second opening.
  • the first test conductor 301 may also have an opposite third end 301a and a fourth end 302b.
  • the first test conductor 301 is located in the accommodation cavity 302a.
  • the fourth end 301b is insulated from the second end 302d, and the third end 301a A portion is located outside the first opening 302b, that is, the third end 301a protrudes from the end surface of the first end 302c and is used for electrical connection with the antenna feed point 1021a.
  • the second test conductor 302 blocks the third end 301a of the first test conductor 301, and the third end 301a of the first test conductor 301 cannot be blocked.
  • the end 301a is accurately positioned to the antenna feed point 1021a to achieve electrical connection between the two.
  • the first test conductor 301 is movably provided in the accommodation cavity 302a to adjust the length of the portion of the first test conductor 301 located outside the first opening 302b in the moving direction of the first test conductor 301.
  • the fourth end 301b of the first test conductor 301 may be connected to the second end 302d of the second test conductor 302 through a flexible material or an elastic member, or the third end 301a of the first test conductor 301 and the second test conductor 302 may be connected to each other through a flexible material or an elastic member.
  • the first ends 302a of the conductors 302 are connected through flexible materials or elastic pieces, so that the third end 301a of the first test conductor 301 can move relative to the second test conductor 302 along the third end 301a to the third end when subjected to external force.
  • the four ends 301b move in the direction (Z1 direction of 1 in the figure), so that the length of the part of the first test conductor 301 located outside the first opening 302b gradually decreases in the direction from the third end 301a to the fourth end 301b, Until the second test conductor 302 also contacts the antenna ground point 1021b and is electrically connected to the antenna ground point 1021b, the third end 301a of the first test conductor 301 is affected by the restoring force provided by the elastic material or flexible material, and is connected to the antenna.
  • the feed point 1021a is in close contact to ensure the stability of the electrical connection between the first test conductor 301 and the antenna feed point 1021a.
  • the third end 301a of the first test conductor 301 protrudes from the end surface of the first end 302c, and the end surface of the first end 302c of the second test conductor 302 may also be provided with one or more
  • the probe is located on the outer periphery of the third end 301a and contacts the antenna ground point 1021b, so that the first test conductor 301 and the antenna ground point 1021b are electrically connected to realize the grounding of the first test conductor 301.
  • FIG. 4 is a flow chart of the radio frequency testing method provided by the embodiment of the present invention.
  • the RF test method includes the following steps:
  • S1 Electrically connect the tester to the test conductor.
  • the tester can be electrically connected to the test conductor through a radio frequency line, and the radio frequency line can be a coaxial line, a microstrip line or a parallel dual line.
  • the test conductor may include a first test conductor and a second test conductor disposed around the first test conductor.
  • the first test conductor has an opposite third end and a fourth end, and the third end may be in contact with the antenna.
  • the feed point is electrically connected to the antenna feed point.
  • the fourth end can be electrically connected to the tester through a radio frequency line to realize the electrical connection between the antenna feed point and the tester.
  • the tester can receive the radio frequency signal transmitted by the antenna feed point. .
  • the tester obtains the power of the RF signal. After receiving the radio frequency signal, the tester can test the strength of the radio frequency signal to obtain the power of the radio frequency signal.
  • S4 Set the grounding piece on the side of the first surface, place the grounding piece corresponding to the radio frequency line in another part of the first area, and electrically connect the grounding piece to the grounding part.
  • the grounding member can move in a direction from the first surface to the second surface until the elastic conductive portion of the grounding member just contacts the grounding portion to achieve electrical connection. At this time, the position of the grounding member can be the initial position.
  • the grounding piece can also be set on the side of the first surface first, and its position corresponding to the other part of the radio frequency line, and after the grounding piece is electrically connected to the grounding part, the test conductor can be electrically connected to the test conductor.
  • the tester and antenna feed point enable the tester to receive RF signals and test the RF signals to obtain the power of the RF signals.
  • S5 Control the grounding piece to move along the first direction to adjust the distance between the grounding piece and another part of the radio frequency line.
  • the grounding member can be manually controlled, or the driving structure can drive the grounding member to move in a direction from the first surface to the second surface starting from the initial position.
  • the tester tests the first power of the RF signal corresponding to the distance from the grounding piece to another part of the RF line. That is to say, when the grounding piece moves in the direction from the first surface to the second surface, the characteristics of the other part of the radio frequency circuit change, and the loss of the radio frequency signal received by the tester is different, then the tester can measure A plurality of first powers are obtained, and the plurality of first powers correspond to different distances from the grounding piece to another part of the radio frequency line.
  • the multiple first powers include the first power when the radio frequency signal loss is minimal, that is, the first power with the largest power value. Then the first power with the largest power value can be determined as the actual power of the radio frequency signal and used as the final test. Result output.
  • the embodiment of the present disclosure also provides another radio frequency testing method based on the above-mentioned radio frequency testing system.
  • Figure 5 is another flow chart of the radio frequency testing method provided by the embodiment of the present invention. Refer to Figure 5. Specifically, the radio frequency test method includes the following steps:
  • S1 Electrically connect the tester to the test conductor.
  • the tester can be electrically connected to the test conductor through a radio frequency line, and the radio frequency line can be a coaxial line, a microstrip line or a parallel dual line.
  • the test conductor may include a first test conductor and a second test conductor disposed around the first test conductor.
  • the first test conductor has an opposite third end and a fourth end, and the third end may be in contact with the antenna.
  • the feed point is electrically connected to the antenna feed point.
  • the fourth end can be electrically connected to the tester through a radio frequency line to realize the electrical connection between the antenna feed point and the tester.
  • the tester can receive the radio frequency signal transmitted by the antenna feed point. .
  • the tester obtains the power of the RF signal. After receiving the radio frequency signal, the tester can test the strength of the radio frequency signal to obtain the power of the radio frequency signal.
  • S4 Set the grounding piece on the side of the first surface, place the grounding piece corresponding to the radio frequency line in another part of the first area, and electrically connect the grounding piece to the grounding part.
  • control module can control the driving structure to drive the grounding member to move in the first direction.
  • the tester tests the first power of the RF signal corresponding to the distance from the grounding piece to another part of the RF line. That is to say, when the grounding piece moves along the first direction, the distance from the grounding piece to another part of the RF line changes, the characteristic blocking of the other part of the RF line changes, and the loss of the RF signal received by the tester is different, then The tester can measure multiple first powers, and the multiple first powers correspond to different distances from the grounding piece to another part of the radio frequency line.
  • the multiple first powers include the power when radio frequency signal loss is minimal.
  • S7 Determine the maximum power based on the first power. Specifically, the control module can obtain the first power measured by the tester, the control module can compare the power values of the first power, and determine the first power with the largest power value as the maximum power.
  • S8 Determine the position of the ground piece relative to another part of the RF line based on maximum power. Since the first power has a corresponding distance from the grounding piece to another part of the RF line, the position of the grounding piece relative to another part of the RF line when the tester measures the maximum power can be determined.
  • the control module can again control the driving structure to drive the grounding piece to move in the first direction to the position of the grounding piece relative to another part of the radio frequency line when the maximum power is measured, so that the tester can test again and obtain the second power.
  • S10 When the second power is greater than or equal to the maximum power, determine the second power to be the actual power of the radio frequency signal.
  • the control module obtains the second power measured by the tester and compares the second power with the maximum power to check whether the position of the grounding piece relative to the other part of the RF line when the maximum power is measured causes RF signal loss. The minimum position, if the second power is greater than or equal to the maximum power, then the second power can be determined as the actual power of the radio frequency signal and output as the final test result. If the second power is less than the maximum power, it means that an error occurred during the test.
  • the radio frequency test system and radio frequency test method provided by the present disclosure can effectively reduce the loss of radio frequency signals during transmission to the tester, so that the power of the radio frequency signal can enter the tester for testing at a level equal to or close to the actual power, which can improve testing accuracy and strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

一种射频测试系统(1)及射频测试方法,射频测试系统(1)包括电路板(10)、测试导体(30)、测试仪(20)以及接地件(40);电路板(10)具有相对的第一面(101)和第二面(102),第一面(101)设有接地部(1011),第二面(102)设有射频线路(1023);测试导体(30)电连接于第二面(102)上的天线馈电点(1021a)和测试仪(20);接地件(40)位于第一面(101)的所在侧,与接地部(1011)电连接;测试仪(20)配置成在接地件(40)沿第一方向移动过程中,测试接地件(40)至射频线路(1023)的距离对应的射频信号的第一功率。

Description

射频测试系统及射频测试方法
相关交叉引用
本公开要求于2022年4月29日提交中国专利局、申请号为202210475838.0、发明名称为“射频测试系统及射频测试方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及射频测试系统及射频测试方法。
背景技术
在电子设备的生产制造过程中,往往需要对电子设备的电路板进行射频测试,以测量电路板传输至天线的射频信号的功率是否达到预定值,并根据测试结果进行相关调试。
通常情况下,会在电路板设测试座,测试座与电路板上的射频线路连接,当需要对电路板的射频信号进行测试时,可将测试线连接至测试座上,此时,测试座可切断射频线路连接至天线馈电点的路径,使得射频信号能够通过测试线传输至测试仪,从而利用测试仪对接收到的射频信号进行测试。但是测试座的设置不仅会占用电路板上的空间,导致电路板的体积较大,同时还会增加电子设备的成本。为了解决该问题,大部分测试中会采用直接将测试仪与电路板上的天线馈电点连接,以将射频信号自天线馈电点上传输至测试仪,再利用测试仪对接收到的射频信号进行测试的方式。但是在这种测试方式中,射频信号传输至测试仪的途中损耗较大,影响测试准确度。
发明内容
(一)要解决的技术问题
在现有技术中,采用测试仪与电路板上的天线馈电点连接以利用测试仪对射频信号进行测试时,射频信号传输至测试仪的途中损耗较大,影响测试准确度。
(二)技术方案
根据本公开公开的各种实施例,提供一种射频测试系统及射频测试方法。
一种射频测试系统,包括:
电路板,所述电路板具有相对的第一面和第二面,所述第一面设有配置成接地的接地部,所述第二面设有射频线路,所述第二面具有第一区域以及与所述接地部对应设置的第二区域,所述第一区域设有天线馈电点,所述射频线路的一部分位于所述第二区域,所述射频线路的另一部分延伸至所述第一区域并与所述天线馈电点电连接,所述射频线路配置成传输射频信号至所述天线馈电点;
测试导体,所述测试导体电连接于所述天线馈电点;
测试仪,所述测试仪电连接于所述测试导体;以及
接地件,所述接地件位于所述第一面的所在侧,且所述接地件对应所述射频线路位于所述第一区域的另一部分设置,所述接地件与所述接地部电连接,且所述接地件可沿第一方向移动,以调节所述接地件至所述射频线路的另一部分的距离;
所述测试仪配置成在所述接地件沿所述第一方向移动过程中,测试所述接地件至所述 射频线路的另一部分的距离对应的射频信号的第一功率;
其中,所述第一方向为所述第一面指向所述第二面的方向,或者,所述第一方向为所述第二面指向所述第一面的方向。
作为本公开实施例一种可选的实施方式,所述接地件设有朝向所述第一面凸出的弹性导电部,所述弹性导电部配置成抵接于并电连接于所述接地部,所述弹性导电部能够在所述接地件沿第一方向移动时发生形变。
作为本公开实施例一种可选的实施方式,所述弹性导电部包括弹片、弹簧、弹性探针中的至少一种。
作为本公开实施例一种可选的实施方式,所述接地件设有多个所述弹性导电部,且多个所述弹性导电部之间间隔设置。
作为本公开实施例一种可选的实施方式,所述射频测试系统还包括驱动结构,所述驱动结构连接于所述接地件,所述驱动结构配置成驱动所述接地件沿所述第一方向移动,以调节所述接地件至所述射频线路的另一部分的距离。
作为本公开实施例一种可选的实施方式,所述射频测试系统还包括控制模块,所述控制模块电连接于所述测试仪,所述控制模块配置成接收所述测试仪发送的所述射频信号的第一功率,并根据所述第一功率确定所述射频信号的实际功率。
作为本公开实施例一种可选的实施方式,所述控制模块还配置成根据所述第一功率确定出最大功率,并根据所述最大功率确定所述接地件相对所述射频线路的另一部分的位置;所述测试仪还配置成在所述接地件再次沿所述第一方向移动至所述位置时,测试所述射频信号对应的功率为第二功率;所述第二功率大于或等于所述第一功率时,将所述第二功率确定为所述实际功率。
作为本公开实施例一种可选的实施方式,所述接地件在第二方向上的宽度为a,所述射频线路的另一部分在所述第二方向上的线宽为b,a≥7b;其中,所述第二方向垂直于所述射频线路的另一部分的延伸方向,且所述第二方向垂直于所述第一方向。
作为本公开实施例一种可选的实施方式,所述测试导体包括第一测试导体以及第二测试导体,所述第一测试导体电连接于所述天线馈电点和所述测试仪,所述第二测试导体设于所述第一测试导体的外周并与所述第一测试导体绝缘连接,且所述第二测试导体被配置成接地。
作为本公开实施例一种可选的实施方式,所述第一区域还设有天线接地点,所述第二测试导体电连接所述天线接地点,以使所述第二测试导体接地。
作为本公开实施例一种可选的实施方式,所述第二测试导体设有容置腔,所述容置腔具有第一开口,所述第一测试导体活动连接于所述容置腔,以调节所述第一测试导体位于所述第一开口外的部分在所述第一测试导体的活动方向上的长度,所述第二测试导体抵接于所述天线接地点,以电连接所述天线接地点。
作为本公开实施例一种可选的实施方式,所述测试仪电连接于所述第二测试导体,以使所述测试仪接地。
一种基于上述任一项所述的射频测试系统的射频测试方法,包括以下步骤:
将所述测试仪电连接于所述测试导体;
将所述测试导体电连接于所述天线馈电点;
所述测试仪获取所述射频信号的功率;
将所述接地件设置于第一面的所在侧并使所述接地件对应所述射频线路位于所述第一区域的另一部分,且将所述接地件电连接于所述接地部;
控制所述接地件沿第一方向移动,以调节所述接地件至所述射频线路的另一部分之间的距离;
所述测试仪测试所述接地件至所述射频线路的另一部分之间的距离对应的射频信号的第一功率。
作为本公开实施例一种可选的实施方式,将所述测试导体电连接于所述天线馈电点包括:将所述第一测试导体电连接于所述天线馈电点;将所述第二测试导体电连接于所述天线接地点。
作为本公开实施例一种可选的实施方式,所述射频测试方法还包括:根据所述第一功率确定最大功率;根据所述最大功率确定所述接地件相对所述射频线路的另一部分的位置;控制接地件沿所述第一方向再次移动至所述位置,以使测试仪测试的所述射频信号对应的功率为第二功率;当所述第二功率大于或等于最大功率时,确定所述第二功率为所述射频信号的实际功率。
本公开的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得,本公开的一个或多个实施例的细节在下面的附图和描述中提出。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举可选实施例,并配合所附附图,作详细说明如下。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用来解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个或多个实施例提供的射频测试系统的结构示意图;
图2是本公开一个或多个实施例提供的射频测试系统的正视示意图;
图3是本公开一个或多个实施例提供的射频导体的结构示意图;
图4是本公开一个或多个实施例提供的射频测试方法的一种流程图;
图5是本公开一个或多个实施例提供的射频测试方法的另一种流程图。
具体实施方式
在电子设备的生产制造过程中,往往需要对电子设备的电路板进行射频测试,以测量电路板传输至天线的射频信号的功率是否达到预定值,并根据测试结果进行相关调试,以使电路板装设于电子设备并与天线电连接时,天线能够接收来自于电路板的具有预设功率的射频信号,再将其辐射至电子设备外部,以实现电子设备的无线通讯。
而为了对电路板的射频信号进行准确测试,目前常用的一种测试方式是在电路板上设置测试座,将测试座与电路板上的射频线路连接,从而在需要对电路板的射频信号进行测试时,将测试线连接至测试座上,而此时,测试座可切断射频线路连接至天线的路径,使得射频信号能够通过测试线传输至测试仪,然后利用测试仪对接收到的射频信号进行测试。然而,设置于电路板上的测试座,仅在进行上述的射频信号测试时使用,在电子设备日常使用过程中并未起到作用,这样不仅占用电路板上的空间,导致电子设备的电路板体积较大,同时还增加了电子设备的生产成本。
为了解决该问题,相关技术中会采用直接将测试仪与电路板上的天线馈电点连接,以将电路板上的射频信号传输至测试仪,再利用测试仪对接收到的射频信号进行测试的方式。但是在这种测试方式中,射频信号传输至测试仪的途中损耗较大,容易影响测试准确度。
基于此,本公开提出了一种射频测试系统,该射频测试系统包括电路板、测试仪、测试导体以及接地件,测试时,测试仪可通过测试导体与天线馈电点电连接,测试仪能够接收到经由测试导体传输的射频信号并对射频信号进行测试。同时,使得接地件位于电路板的第一面的所在侧,并与接电部电连接,使得接地件成为未设接地部的区域内的射频线路的地平面,且该地平面至射频线路的距离可变,从而能够控制该部分射频线路的特性阻抗,以使测试仪测得衰减最小时射频信号的功率,实现对射频信号的准确测试。
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
本公开的说明书和权利要求书中的术语“第一”和“第二”等是用来区别不同的对象,而不是用来描述对象的特定顺序。例如,第一摄像头和第二摄像头是为了区别不同的摄像头,而不是为了描述摄像头的特定顺序。
在本公开实施例中,“示例性的”或者“例如”等词来表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,此外,在本公开实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。
图1是本发明实施例提供的射频测试系统的结构示意图,图2是本发明实施例提供的射频测试系统的正视示意图,图3是本发明实施例提供的射频导体的结构示意图,参照图1至图3所示,本实施例提供的射频测试系统1包括电路板10、测试仪20、测试导体30以及接地件40,以通过测试导体30实现测试仪20和电路板10之间电连接,以使电路板10的射频信号传输至测试仪20,进行测试。
电路板10可具有相对的第一面101和第二面102,第一面101设有配置成接地的接地部1011,而第二面102具有第一区域1021以及与接地部1011对应设置的第二区域1022,例如,第一区域1021可为电路板10的天线净空区。第一区域1021设有天线馈电点1021a,天线馈电点1021a用于连接电子设备的天线,而在电路板10的第二面102设有射频线路1023,射频线路1023的一部分1023a位于第二区域1022,射频线路1023的另一部分1023b延伸至第一区域1021与天线馈电点1021a电连接,以传输射频信号至天线馈电点1021a。
在进行射频信号的测试时,接地件40位于电路板10的第一面101的所在侧,且接地件40对应射频线路1023在第一区域1021的另一部分1023b设置,接地件40与接地部1011电连接,则接地件40可作为射频线路1023的另一部分1023b的地平面,并且,由于接地件40可沿第一方向移动,以调节接地件40至射频线路1023的另一部分1023b的距离,从而能够控制射频线路1023的另一部分1023b的射频阻抗,改变射频信号经由射频线路1023传输时的损耗程度。其中,第一方向为从第一面101指向第二面102的方向,例如,图1中的箭头Z1所指的方向,或者,第一方向为从第二面102指向第一面101的方向,例如,图1中的箭头Z0所指的方向。示例性的,可将接地件40距离射频线路1023的另一部分1023b较远的位置设为接地件40的初始位置,然后控制接地件40沿着第一方向逐渐靠近射频线路1023的另一部分1023b,或者将接地件40距离射频线路1023的另一部分1023b较近的位置设为接地件40的初始位置,例如,接地件40可贴合于第一面101,然 后控制接地件40沿着第一方向逐渐远离射频线路1023的另一部分1023b。
而在接地件40沿第一方向移动的过程中,测试导体30电连接于天线馈电点1021a,测试仪20电连接于测试导体30,则射频信号能够经由测试导体30传输至测试仪20,测试仪20测试接地件40至射频线路1023的另一部分1023b的距离对应的射频信号的第一功率。也即是说,在接地件40沿第一方向移动的过程中,测试仪20持续对接收到的射频信号进行测试。由于接地件40移动过程中,接地件40至射频线路1023的另一部分1023b的距离变化,则射频线路1023的另一部分1023b的特性阻挡变化,测试仪20接收到的射频信号的损耗不同,从而能够测得损耗程度不同的射频信号的第一功率,且第一功率具有对应的接地件40至射频线路1023的另一部分1023b的距离。多个第一功率中包括损耗最小的射频信号的第一功率,且相比其他第一功率,损耗最小的射频信号的第一功率的功率值最大,因此,可将损耗最小的射频信号的第一功率设为最大功率,由于该最大功率更接近电路板10能够提供的实际的射频信号的功率,可作为最终的测试结果输出,从而有利于提高测试的准确度。
其中,本申请的电路板10可作为手机、平板或智能手表等电子设备中的电路板。天线馈电点1021a可为金属焊盘或金属弹片。该接地部1011可为金属层,例如铜层、金层等。射频线路1023的一部分1023a可与接地部1011,以及设于射频线路1023与接地部1011之间的绝缘电介质层构成微带线,或者,在电路板10的第一区域1021设置另一接地部1011,两层接地部1011将射频线路1023的一部分1023a夹持在中间,且射频线路1023的一部分1023a与任意一个接地部1011之间均设有绝缘电介质层,从而一同构成带状线。
示例性的,射频线路1023的一部分1023a的线宽可为A1,且射频线路1023的一部分1023a至接地部1011的距离可为D1,使得射频线路1023的一部分1023a的特性阻抗达到50Ω,射频信号在射频线路1023的一部分1023a的传输过程中损耗最小。但是由于射频线路1023的另一部分1023b的线宽A2可能与射频线路1023的一部分1023a的线宽A1不同,因此若要使得射频线路1023的另一部分1023b的特性阻抗也达到50Ω,可适当调节射频线路1023的另一部分1023b至接地件40的距离D2。若A2>A1,则D2>D1。若A2=A1,则D2=D1。
可以理解的是,电路板10的第二区域1022可设有射频收发器,射频收发器能够产生射频信号,并且射频收发器产生的射频信号可通过射频线路1023传输至第一区域1021的天线馈电点1021a,则当天线与天线馈电点1021a和天线接地点1021b电连接时,射频信号能够经由天线馈电点1021a传输至天线,并由天线辐射至外部。
一些实施例中,电路板10的第二区域1022可设有射频匹配网络1024,射频线路1023的一部分1023a可与射频匹配网络1024串联,射频匹配网络1024配置成调节射频线路1023传输至天线馈电点1021a的射频信号。示例性的,射频匹配网络1024可为串联于射频线路1023上的一个电阻。
由此可知,射频信号的实际功率可为由射频收发器发出,并经由射频匹配网络1024调节之后的射频信号的功率,也即是预设的需要射频线路1023传输给天线的射频信号的功率。但是,由于相关技术中的测试方式,测试仪20在测试过程中,接收到的射频信号有所损耗,因此测得的射频信号的功率偏差较大,不可等同于射频信号的实际功率。而本发明中测试仪20能够测得损耗最小的射频信号的第一功率,也即是最大功率,而最大功率最接近于实际功率,从而将最大功率确定为射频信号的实际功率并作为测试结果输出,提高了测试的准确度。
为了实现接地件40在沿第一方向移动时,接地件40也能够保持与接地部1011的电连接,一些实施例中,接地件40设有朝向第一面101凸出的弹性导电部401,弹性导电部401配置成抵接于并电连接于接地部1011,弹性导电部401能够在接地件40沿第一方向移动时发生形变,从而能够通过弹性导电部401的回复力,使得接地件40在一定距离内移动时,弹性导电部401时刻抵接于接地部1011,以保持接地件40和接地部1011的电连接。
具体地,弹性导电部401可设于接地件40延伸至接地部1011的部分。而且弹性导电部401可包括弹片、弹簧、弹性探针中的至少一种。示例性的,弹性导电部401可为铜、银等金属材质的弹片,或者弹性导电部401可为金属材质的弹簧,能够在受到外力作用时,发生形变,以时刻抵接于接地部1011。
可以理解的是,弹性导电部401可为一个或多个,当弹性导电部401为多个时,弹性导电部401之间可间隔设置,且多个弹性导电部401均抵接于接地部1011并均与接地部1011电连接,从而有利于确保接地件40与接地部1011之间电连接的稳定性。且多个弹性导电部401有利于限制接地件40各个部分至射频线路1023的另一部分1023b的距离,避免接地件40过于倾斜导致射频线路1023的另一部分1023b的特性阻抗无法达到最佳值的情况,有利于提高测试的准确度。
而在其他实施例中,接地件40上也可设有导线,导线为柔性件,因此接地件40可通过将导线焊接于电路板10的接地层,以实现接地件40在沿第一方向移动过程中和接地层的电连接。
一些实施例中,射频测试系统1还包括驱动结构50,驱动结构50连接于接地件40,驱动结构50配置成驱动接地件40沿第一方向移动,以调节接地件40至射频线路1023的另一部分1023b的距离。通过驱动结构50驱动接地件40,有利于控制接地件40移动的方向和速度,从而确保接地件40在保持与接地部1011电连接的情况下,沿第一方向移动至任意位置时,测试仪20均能够测得射频信号的功率,避免接地件40移动速度过快而导致数据遗漏,从而有利于保证测试的准确度,或者避免接地件40移动速度过慢影响测试效率。示例性的,驱动结构50可为直动式电机、气缸或液缸,且驱动结构50可连接于接地件40的背离第一面101的一侧,以沿第一面101指向第二面102的方向上推动接地件40,或沿第二面102指向第一面101的方向上拉动接地件40,以调节接地件40至射频线路1023的另一部分1023b的距离。
一些实施例中,射频测试系统1还包括控制模块60,控制模块60电连接于测试仪20,控制模块60配置成接收测试仪20发送的射频信号的第一功率,并根据第一功率确定射频信号的实际功率。其中,控制模块60可为计算机或控制台的控制模块60。控制模块60接收到测试仪20发送的第一功率后,可通过比较各第一功率的功率值,得出功率值最大的第一功率,功率值最大的第一功率对应射频信号传输过程中损耗最小时的功率,可将功率值最大的第一功率确定为实际功率并作为最终测试结果输出。
进一步地,控制模块60还配置成根据第一功率确定出最大功率,并根据最大功率确定接地件40相对射频线路1023的另一部分1023b的位置。测试仪20还配置成在接地件40再次沿第一方向移动至该位置时,测试射频信号对应的功率为第二功率。第二功率大于或等于第一功率时,将第二功率确定为实际功率。通过控制模块60获取测试仪20测得的第二功率,并将第二功率与最大功率进行比较,以检验测得最大功率时,接地件40相对射频线路1023的另一部分1023b所处的位置,是否是使得射频信号损耗最小的位置,若第二功率大于或等于最大功率时,则是,并可将第二功率确定为射频信号的实际功率并作 为最终测试结果输出。
可以理解的是,最大功率也即是上述的功率值最大的第一功率,当控制模块60比对得出该最大功率之后,控制模块60可获知接地件40在测试仪20测得该最大功率时相对射频线路1023的另一部分1023b所处的位置。具体地,接地件40相对射频线路1023的另一部分1023b的位置可通过位移传感器或驱动结构50确定。例如,控制模块60可控制驱动结构50驱动接地件40沿从第一面101指向第二面102的方向上移动,以使接地件40的弹性导电部401恰好抵接于接地部1011,实现接地件40与接地部1011的电连接,而此时接地件40的位置可作为接地件40的初始位置,并将初始位置下接地件40至射频线路1023的另一部分1023b的距离记为Dx,Dx可为未知的数值,可以根据实际情况而定,然后驱动结构50继续驱动接地件40沿从第一面101指向第二面102的方向上移动Dm,Dm为可知的数值,例如1mm或1.5mm,此时,接地件40至射频线路1023的另一部分1023b的距离为Dx-Dm,此时测试仪20测得接地件40位于该位置时射频信号的第一功率为Gm,并将Gm发送至控制模块60,控制模块60确定Gm为最大功率,接地件40至射频线路1023的另一部分1023b的距离为Dx-Dm,也获知了接地件40相对射频线路1023的另一部分1023b所处的位置。
接着,控制模块60可控制驱动结构50驱动接地件40沿从第二面102指向第一面101的方向行上移动至,接地件40至射频线路1023的另一部分1023b的距离为Dx-Dm的位置,也即是,将接地件40再次移动至测试仪20测得最大功率(即,Gm)时,接地件40相对射频线路1023的另一部分1023b所处的位置。此时,测试仪20再次对射频信号进行测试,得到射频信号的第二功率,可通过比较最大功率和第二功率,以验证该接地件40处于该位置时是否为射频线路1023的另一部分1023b损耗最小的时候。若第二功率大于或第一功率则是,此时,可将第二功率值确定为实际功率输出,若第二功率小于第一功率,则不是,可重新获取射频信号的第一功率和第二功率,直至得出的第二功率大于第一功率。
示例性的,接地件40可为金属板或金属块等,由于接地件40在第一方向上的厚度并不会对射频信号产生影响,因此可根据实际情况调节接地件40在第一方向上的厚度。
而为了确保射频线路1023的传输性能,需要合理地控制接地件40的宽度。
一些实施例中,接地件40在第二方向上的宽度为a,射频线路1023的另一部分1023b在第二方向上的线宽为b,a≥7b。其中,第二方向垂直于射频线路1023的另一部分1023b的延伸方向,且所述第二方向垂直于所述第一方向。
第二方向如图中的X0、X1方向所示,射频线路1023的另一部分1023b的延伸方向如图中的Y1方向所示,第一方向如图中的Z0、Z1方向所示,而接地件40朝X0方向上延伸至接地件40超出射频线路1023另一部分1023b的线宽的3倍或3.5倍以上,且接地件40在朝X1方向上延伸至接地件40超出射频线路1023另一部分1023b的线宽的3倍或3.5倍以上,则a等于7b、7.5b或8b,同时尽可能使得射频线路1023另一部分1023b在接地件40上的投影位于接地件40的中部,保证接地件40具有足够大的表面接收射频线路1023的另一部分1023b辐射出去的射频信号,使得射频信号在另一部分1023b传输时损耗达到最小值。
示例性的,测试仪20和测试导体30可通过射频线70电连接。其中,射频线70可为同轴线、微带线或平行双线。
一些实施例中,测试导体30包括第一测试导体301以及第二测试导体302,第一测试 导体301电连接于天线馈电点1021a和测试仪20,第二测试导体302设于第一测试导体301的外周并与第一测试导体301绝缘连接,且第二测试导体302被配置成接地。通过将环设于第一测试导体301外周的第二测试导体302接地,能够使得第一测试导体301的射频信号更好地传输至测试仪20,以使第一测试导体301传输的射频信号不会辐射至第二测试导体302外,同时也能够免受第二测试导体302外的辐射干扰。
进一步地,第一测试导体301和第二测试导体302可为铜材质或金材质。为了实现第一测试导体301和第二测试导体302之间的绝缘连接,可在第一测试导体301和第二测试导体302之间设有绝缘介质,以使第一测试导体301和第二测试导体302通过绝缘介质实现绝缘连接,也正是如此,第一测试导体301和第二测试导体302之间相间隔。
一些实施例中,电路板10的第一区域1021还可设有天线接地点1021b,天线接地点1021b用于连接电子设备的天线,以使天线接地。具体地,天线接地点1021b可为金属焊盘或金属弹片,并且天线馈电件和天线接地点1021b间隔设置。则第二测试导体302可以与设于第一区域1021的天线接地点1021b电连接,以使第二测试导体302接地。具体地,第二测试导体302直接抵接于天线接地点1021b即可实现第二测试导体302的接地,从而有利于简化射频测试系统1的结构。此时,天线馈电点1021a和天线接地点1021b同时与测试仪20进行电连接,则第一测试导体301至外周第二测试导体302的距离,可参照待测电路板10的天线馈电点1021a至天线接地点1021b的距离,以确保第一测试导体301抵接于天线馈电点1021a并于天线馈电点1021a电连接时,天线接地点1021b也能够与第二测试导体302接触以实现电连接。
进一步地,为了提高测试仪20的测试性能,测试仪20还电连接于第二测试导体302,以使测试仪20接地。也即是说,测试仪20接收来自天线馈电点1021a的射频信号,并对该射频信号进行测试之后,能够将射频信号导出至第二测试导体302,以提高测试仪20测试的准确性。
可以理解的是,第一测试导体301可为柱状结构或针状结构,而第二测试导体302可为环状结构,则该第二测试导体302可环设于第一测试导体301的外周。
一些实施例中,第二测试导体302设有容置腔302a,容置腔302a具有第一开口302b,第一测试导体301设于容置腔302a,且第一测试导体301至少部分位于第一开口302b外,第一测试导体301位于第一开口302b外的部分与天线馈电点1021a电连接。示例性地,如图3所示,第一测试导体301可为圆柱体,第二测试导体302可为中空的圆柱体,并使得第一测试导体301位于第二测试导体302的中空处,且第二测试导体302可具有相对的第一端302c和第二端302d,容置腔302a自第一端302c贯穿至第二端302d,并在第一端302c端面形成第一开口302b,在第二端302d端面形成第二开口。而第一测试导体301也可具有相对的第三端301a和第四端302b,第一测试导体301位于容置腔302a内,第四端301b与第二端302d绝缘连接,而第三端301a部分位于第一开口302b外,也即是第三端301a凸出于第一端302c的端面并用于与天线馈电点1021a电连接。通过将第一测试导体301设置为至少部分位于第一开口302b外,能够避免出现第二测试导体302遮挡住第一测试导体301的第三端301a,而无法将第一测试导体301的第三端301a准确定位至天线馈电点1021a以实现两者电连接的情况。
一种可选的实施方式中,第一测试导体301活动设于容置腔302a,以调整第一测试导体301位于第一开口302b外的部分在第一测试导体301的活动方向上的长度。示例性的,第一测试导体301的第四端301b可与第二测试导体302的第二端302d通过柔性材料或弹 性件连接,或者,第一测试导体301的第三端301a和第二测试导体302的第一端302a之间通过柔性材料或弹性件连接,以使第一测试导体301的第三端301a在受外力作用时,能够相对第二测试导体302在沿第三端301a至第四端301b的方向(如图中1的Z1方向)上活动,使得第一测试导体301位于第一开口302b外的部分在第三端301a至第四端301b的方向上的长度逐渐减小,直至第二测试导体302同样抵接于天线接地点1021b并与天线接地点1021b实现电连接,则第一测试导体301的第三端301a受弹性材料或柔性材料提供的回复力的影响,与天线馈电点1021a紧密接触,以确保第一测试导体301与天线馈电点1021a的电连接稳定性。
另一种可选的实施方式中,第一测试导体301的第三端301a凸出于第一端302c的端面,而第二测试导体302的第一端302c端面还可设有一个或多个探针,探针位于第三端301a的外周并抵接于天线接地点1021b,以使第一测试导体301与天线接地点1021b电连接,实现第一测试导体301接地。
基于同一发明构思,本公开实施例还提供了一种基于上述射频测试系统的射频测试方法,图4是本发明实施例提供的射频测试方法的一种流程图,参照图4所示,具体地,该射频测试方法包括以下步骤:
S1:将测试仪电连接于测试导体。具体地,测试仪可通过射频线电连接于测试导体,射频线可为同轴线、微带线或平行双线。
S2:将测试导体电连接于天线馈电点。具体地,测试导体可包括第一测试导体以及设于第一测试导体外周的第二测试导体,第一测试导体的具有相对的第三端和第四端,则第三端可抵接于天线馈电点并与天线馈电点电连接,第四端可通过射频线电连接于测试仪,实现天线馈电点与测试仪的电连接,测试仪能够接收到天线馈电点传输的射频信号。
S3:测试仪获取射频信号的功率。测试仪接收到射频信号之后,能够对射频信号的强度进行测试,以获得射频信号的功率。
S4:将接地件设置于第一面的所在侧并使接地件对应射频线路位于第一区域的另一部分,且将接地件电连接于接地部。具体地,接地件可沿从第一面指向第二面的方向上移动至接地件的弹性导电部恰与接地部接触,实现电连接,此时接地件所在位置可为初始位置。
可以理解的是,也可先将接地件设于第一面的所在侧,并使其对应射频线路的另一部分的位置,以及将接地件电连接于接地部之后,将测试导体电连接于测试仪和天线馈电点,以使测试仪能够接收到射频信号并对射频信号进行测试,获取射频信号的功率。
S5:控制接地件沿第一方向移动,以调节接地件至射频线路的另一部分之间的距离。具体地,可手动控制接地件,或驱动结构驱动接地件自初始位置开始沿从第一面指向第二面的方向上移动。
S6:测试仪测试接地件至射频线路的另一部分的距离对应的射频信号的第一功率。也即是说,接地件沿从第一面指向第二面的方向上移动的过程中,射频线路的另一部分的特性阻挡变化,测试仪接收到的射频信号的损耗不同,则测试仪可测得多个第一功率,多个第一功率对应接地件至射频线路的另一部分的不同距离。多个第一功率中包括射频信号损耗最小时的第一功率,也即是,功率值最大的第一功率,则可将功率值最大的第一功率确定为射频信号的实际功率并作为最终测试结果输出。
基于同一发明构思,本公开实施例还提供了另一种基于上述射频测试系统的射频测试 方法,图5是本发明实施例提供的射频测试方法的另一种流程图,参照图5所示,具体地,该射频测试方法包括以下步骤:
S1:将测试仪电连接于测试导体。具体地,测试仪可通过射频线电连接于测试导体,射频线可为同轴线、微带线或平行双线。
S2:将测试导体电连接于天线馈电点。具体地,测试导体可包括第一测试导体以及设于第一测试导体外周的第二测试导体,第一测试导体的具有相对的第三端和第四端,则第三端可抵接于天线馈电点并与天线馈电点电连接,第四端可通过射频线电连接于测试仪,实现天线馈电点与测试仪的电连接,测试仪能够接收到天线馈电点传输的射频信号。
S3:测试仪获取射频信号的功率。测试仪接收到射频信号之后,能够对射频信号的强度进行测试,以获得射频信号的功率。
S4:将接地件设置于第一面的所在侧并使接地件对应射频线路位于第一区域的另一部分,且将接地件电连接于接地部。
S5:控制接地件沿第一方向移动,以调节接地件至射频线路的另一部分之间的距离。具体地,控制模块可控制驱动结构驱动接地件沿第一方向上移动。
S6:测试仪测试接地件至射频线路的另一部分的距离对应的射频信号的第一功率。也即是说,接地件沿第一方向移动过程中,接地件至射频线路的另一部分的距离变化,则射频线路的另一部分的特性阻挡变化,测试仪接收到的射频信号的损耗不同,则测试仪可测得多个第一功率,多个第一功率对应接地件至射频线路的另一部分的不同距离。多个第一功率中包括射频信号损耗最小时的功率。
S7:根据第一功率确定最大功率。具体地,控制模块可获取测试仪所测得的第一功率,控制模块可比较第一功率的功率值,并将功率值最大的第一功率确定为最大功率。
S8:根据最大功率确定接地件相对射频线路的另一部分的位置。由于第一功率具有对应的接地件至射频线路的另一部分的距离,因此,可确定测试仪测得最大功率时,接地件相对射频线路的另一部分的位置。
S9:控制接地件沿第一方向再次移动至位置,以使测试仪测试的射频信号对应的功率为第二功率。控制模块可再次控制驱动结构驱动接地件沿第一方向移动至测得最大功率时,接地件相对射频线路的另一部分所处的位置,使得测试仪能够再次进行测试,并获得第二功率。
S10:当第二功率大于或等于最大功率时,确定第二功率为射频信号的实际功率。控制模块获取测试仪测得的第二功率,并将第二功率与最大功率进行比较,以检验测得最大功率时,接地件相对射频线路的另一部分所处的位置,是否是使得射频信号损耗最小的位置,若第二功率大于或等于最大功率时,则是,并可将第二功率确定为射频信号的实际功率并作为最终测试结果输出。若第二功率小于最大功率时,则意味着测试过程中出现错误,此时可重复上述步骤,再次测试获得第一功率,确定最大功率,测试获得第二功率,直至测得的第二功率大于或等于最大功率时,将测得的第二功率确定为射频信号的实际功率并作为最终测试结果输出。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。
工业实用性
本公开提供的射频测试系统及射频测试方法,可有效降低射频信号在传输至测试仪的途中的损耗,以使射频信号的功率能够以等于或接近实际功率进入至测试仪进行测试,能够提高测试的准确性,具有很强的工业实用性。

Claims (15)

  1. 一种射频测试系统,包括:
    电路板,所述电路板具有相对的第一面和第二面,所述第一面设有配置成接地的接地部,所述第二面设有射频线路,所述第二面具有第一区域以及与所述接地部对应设置的第二区域,所述第一区域设有天线馈电点,所述射频线路的一部分位于所述第二区域,所述射频线路的另一部分延伸至所述第一区域并与所述天线馈电点电连接,所述射频线路配置成传输射频信号至所述天线馈电点;
    测试导体,所述测试导体电连接于所述天线馈电点;
    测试仪,所述测试仪电连接于所述测试导体;以及
    接地件,所述接地件位于所述第一面的所在侧,且所述接地件对应所述射频线路位于所述第一区域的另一部分设置,所述接地件与所述接地部电连接,且所述接地件可沿第一方向移动,以调节所述接地件至所述射频线路的另一部分的距离;
    所述测试仪配置成在所述接地件沿所述第一方向移动过程中,测试所述接地件至所述射频线路的另一部分的距离对应的射频信号的第一功率;
    其中,所述第一方向为所述第一面指向所述第二面的方向,或者,所述第一方向为所述第二面指向所述第一面的方向。
  2. 根据权利要求1所述的射频测试系统,其中,所述接地件设有朝向所述第一面凸出的弹性导电部,所述弹性导电部配置成抵接于并电连接于所述接地部,所述弹性导电部能够在所述接地件沿第一方向移动时发生形变。
  3. 根据权利要求2所述的射频测试系统,其中,所述弹性导电部包括弹片、弹簧、弹性探针中的至少一种。
  4. 根据权利要求2所述的射频测试系统,其中,所述接地件设有多个所述弹性导电部,且多个所述弹性导电部之间间隔设置。
  5. 根据权利要求1所述的射频测试系统,其中,所述射频测试系统还包括驱动结构,所述驱动结构连接于所述接地件,所述驱动结构配置成驱动所述接地件沿所述第一方向移动,以调节所述接地件至所述射频线路的另一部分的距离。
  6. 根据权利要求1所述的射频测试系统,其中,所述射频测试系统还包括控制模块,所述控制模块电连接于所述测试仪,所述控制模块配置成接收所述测试仪发送的所述射频信号的第一功率,并根据所述第一功率确定所述射频信号的实际功率。
  7. 根据权利要求6所述的射频测试系统,其中,所述控制模块还配置成根据所述第一功率确定出最大功率,并根据所述最大功率确定所述接地件相对所述射频线路的另一部分的位置;
    所述测试仪还配置成在所述接地件再次沿所述第一方向移动至所述位置时,测试所述射频信号对应的功率为第二功率;
    所述第二功率大于或等于所述第一功率时,将所述第二功率确定为所述实际功率。
  8. 根据权利要求1-7任一项所述的射频测试系统,其中,所述接地件在第二方向上的宽度为a,所述射频线路的另一部分在所述第二方向上的线宽为b,a≥7b;
    其中,所述第二方向垂直于所述射频线路的另一部分的延伸方向,且所述第二方向垂直于所述第一方向。
  9. 根据权利要求1-7任一项所述的射频测试系统,其中,所述测试导体包括第一测试导体以及第二测试导体,所述第一测试导体电连接于所述天线馈电点和所述测试仪,所述第二测试导体设于所述第一测试导体的外周并与所述第一测试导体绝缘连接,且所述第二测试导体被配置成接地。
  10. 根据权利要求9所述的射频测试系统,其中,所述第一区域还设有天线接地点,所述第二测试导体电连接所述天线接地点,以使所述第二测试导体接地。
  11. 根据权利要求10所述的射频测试系统,其中,所述第二测试导体设有容置腔,所述容置腔具有第一开口,所述第一测试导体活动连接于所述容置腔,以调节所述第一测试导体位于所述第一开口外的部分在所述第一测试导体的活动方向上的长度,所述第二测试导体抵接于所述天线接地点,以电连接所述天线接地点。
  12. 根据权利要求9所述的射频测试系统,其中,所述测试仪电连接于所述第二测试导体,以使所述测试仪接地。
  13. 一种基于如权利要求1-12任一项所述的射频测试系统的射频测试方法,所述射频测试方法包括:
    将所述测试仪电连接于所述测试导体;
    将所述测试导体电连接于所述天线馈电点;
    所述测试仪获取所述射频信号的功率;
    将所述接地件设置于第一面的所在侧并使所述接地件对应所述射频线路位于所述第一区域的另一部分,且将所述接地件电连接于所述接地部;
    控制所述接地件沿第一方向移动,以调节所述接地件至所述射频线路的另一部分之间的距离;
    所述测试仪测试所述接地件至所述射频线路的另一部分之间的距离对应的射频信号的第一功率。
  14. 根据权利要求13所述的射频测试方法,其中,将所述测试导体电连接于所述天线馈电点包括:
    将所述第一测试导体电连接于所述天线馈电点;
    将所述第二测试导体电连接于所述天线接地点。
  15. 根据权利要求13所述的射频测试方法,其中,所述射频测试方法还包括:
    根据所述第一功率确定最大功率;
    根据所述最大功率确定所述接地件相对所述射频线路的另一部分的位置;
    控制接地件沿所述第一方向再次移动至所述位置,以使测试仪测试的所述射频信号对应的功率为第二功率;
    当所述第二功率大于或等于最大功率时,确定所述第二功率为所述射频信号的实际功率。
PCT/CN2022/142005 2022-04-29 2022-12-26 射频测试系统及射频测试方法 WO2023207176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210475838.0A CN114839509B (zh) 2022-04-29 2022-04-29 射频测试系统及射频测试方法
CN202210458838.0 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023207176A1 true WO2023207176A1 (zh) 2023-11-02

Family

ID=82567624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142005 WO2023207176A1 (zh) 2022-04-29 2022-12-26 射频测试系统及射频测试方法

Country Status (2)

Country Link
CN (1) CN114839509B (zh)
WO (1) WO2023207176A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114839509B (zh) * 2022-04-29 2023-09-19 西安闻泰信息技术有限公司 射频测试系统及射频测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100123473A1 (en) * 2008-11-20 2010-05-20 Samsung Electronics Co. Ltd. A test point structure for rf calibration and test of printed circuit board and method thereof
CN112003657A (zh) * 2020-08-19 2020-11-27 深圳合一测试科技有限公司 无需射频测试座的板级射频信号测试系统、方法及装置
CN113259510A (zh) * 2021-05-13 2021-08-13 维沃移动通信有限公司 电子设备、接地弹片和测试座组件
CN113267716A (zh) * 2021-05-10 2021-08-17 维沃移动通信有限公司 射频测试座、射频电路以及电子设备
CN113640612A (zh) * 2021-10-15 2021-11-12 深圳荣耀智能机器有限公司 天线测试系统、待测单板及其相关设备
CN114839509A (zh) * 2022-04-29 2022-08-02 西安闻泰信息技术有限公司 射频测试系统及射频测试方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100123473A1 (en) * 2008-11-20 2010-05-20 Samsung Electronics Co. Ltd. A test point structure for rf calibration and test of printed circuit board and method thereof
CN112003657A (zh) * 2020-08-19 2020-11-27 深圳合一测试科技有限公司 无需射频测试座的板级射频信号测试系统、方法及装置
CN113267716A (zh) * 2021-05-10 2021-08-17 维沃移动通信有限公司 射频测试座、射频电路以及电子设备
CN113259510A (zh) * 2021-05-13 2021-08-13 维沃移动通信有限公司 电子设备、接地弹片和测试座组件
CN113640612A (zh) * 2021-10-15 2021-11-12 深圳荣耀智能机器有限公司 天线测试系统、待测单板及其相关设备
CN114839509A (zh) * 2022-04-29 2022-08-02 西安闻泰信息技术有限公司 射频测试系统及射频测试方法

Also Published As

Publication number Publication date
CN114839509A (zh) 2022-08-02
CN114839509B (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
US11662363B2 (en) Test socket assembly with antenna and related methods
US9310422B2 (en) Methods and apparatus for testing small form factor antenna tuning elements
CN112003657B (zh) 无需射频测试座的板级射频信号测试系统、方法及装置
WO2009052234A1 (en) Variable frequency patch antenna
WO2023207176A1 (zh) 射频测试系统及射频测试方法
US9478866B2 (en) Orientation agnostic millimeter-wave radio link
JP2002271133A (ja) 高周波アンテナおよび高周波通信装置
EP4050728A1 (en) Antenna structure, circuit board having antenna structure, and communication device
CN111551796B (zh) 5g毫米波微带阵列天线的测试装置及方法
RU2654333C1 (ru) Широкополосная антенна в передней панели для транспортного средства
CN113131178B (zh) 测向天线、测向天线系统及电子设备
CN111610378B (zh) 一种毫米波双极化近场测量探头
CN111953430A (zh) 相控阵天线系统级测试系统及测试方法
CN100470929C (zh) 低旁瓣双频暨宽频平面型端射天线
US5812098A (en) Retractable antenna connector assembly system and method
CN212646817U (zh) 5g毫米波微带阵列天线的测试装置
CN115458938A (zh) 探头天线及其探头
CN111865444B (zh) 相控阵天线校准系统及校准方法
CN217363404U (zh) 一种射频测试系统
US20050116866A1 (en) Simple gain testing method
CN218727657U (zh) 横电波小室
CN112864639A (zh) 射频接口的阻抗匹配网络设计方法、阻抗匹配装置及设备
RU2780558C1 (ru) Встраиваемая в печатную плату антенна передачи/приема данных
WO2023241158A1 (zh) 封装天线、射频芯片、和测试装置、测试方法
US20230178884A1 (en) Printed circuit board integrated antenna for transmitting / receiving data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939985

Country of ref document: EP

Kind code of ref document: A1