WO2023207122A1 - 一种充电模块、电子设备和充电器 - Google Patents

一种充电模块、电子设备和充电器 Download PDF

Info

Publication number
WO2023207122A1
WO2023207122A1 PCT/CN2022/137875 CN2022137875W WO2023207122A1 WO 2023207122 A1 WO2023207122 A1 WO 2023207122A1 CN 2022137875 W CN2022137875 W CN 2022137875W WO 2023207122 A1 WO2023207122 A1 WO 2023207122A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
component
magnetic
magnetic attraction
magnetic field
Prior art date
Application number
PCT/CN2022/137875
Other languages
English (en)
French (fr)
Inventor
李跃超
汪超
吴宝善
李长远
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2023207122A1 publication Critical patent/WO2023207122A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to the field of charging technology, and in particular, to a charging module, electronic equipment and charger.
  • Existing wireless charging technology can make electronic devices and chargers adsorb each other through magnets, and wireless charging can be achieved through electromagnetic induction between the electronic devices and the charging coils of the charger.
  • the magnetic field of the magnet will affect the normal operation of electronic equipment and other magnetic field sensitive devices inside the charger, thus affecting the performance of electronic equipment and chargers.
  • the charging module includes a charging coil and a magnetic device.
  • the magnetic field intensity around or inside the magnetic device is weakened, which can reduce the impact of the magnetic device on the charger or other magnetically sensitive devices in electronic equipment.
  • Soft magnetic materials can be omitted or reduced, and Conducive to the miniaturization of chargers or electronic devices.
  • the enhanced magnetic field intensity on one side of the magnetic device can increase the magnetic adsorption force between the electronic device and the charger, and can better define the contact position of the electronic device and the charger, making it easier to match the charging coils of the electronic device and the charger. It is beneficial to the user experience when wireless charging of electronic devices and chargers.
  • the present application provides a charging module, which includes a charging coil and a magnetic attraction device.
  • the charging coil is used to receive or send electric energy.
  • the magnetic attraction device is disposed inside or outside the charging coil.
  • the magnetic attraction device includes at least one magnetic attraction unit.
  • the magnetic unit includes a first component and a second component, the first component and the second component are arranged adjacent to each other along the first direction; wherein, the first component includes a plurality of magnets; the plurality of magnets in the first component are arranged along the second direction.
  • the internal magnetic field directions of at least two magnets in the first component are opposite; the second component includes at least one magnet; the internal magnetic field directions of the magnets in the second component are the same; the first direction is consistent with the plane of the charging coil or magnetic attraction device parallel to each other, and the second direction is perpendicular to the plane of the charging coil or magnetic device.
  • the charging coil, the first component of the magnetic unit, and the second component of the magnetic unit are arranged adjacently in sequence along the first direction.
  • the direction of the internal magnetic field of at least two magnets in the first component is parallel to one of the first direction and the second direction
  • the direction of the internal magnetic field of the magnets in the second component is parallel to the first direction, the second direction.
  • the other direction is parallel.
  • At least two magnets in the first component are magnetized in a manner different from the magnets in the second component.
  • the at least two magnets of the first component include a first magnet and a second magnet.
  • the first magnet is magnetized in the same manner as the second magnet.
  • the direction of the internal magnetic field of the first magnet is the same as that of the second magnet.
  • the internal magnetic fields of the magnets are in opposite directions.
  • the first component further includes a filling material
  • the filling material is stacked with the at least two magnets of the first component along the second direction, the filling material is disposed between the at least two magnets of the first component, and the filling material Includes one or more isolating components or magnets.
  • one or more magnets in one or more of the first component or the second component are formed by splicing a plurality of adjacently arranged magnet sub-modules.
  • the shape of the top view cross-section of the magnet in the first component is a sector ring or a polygon
  • the shape of the top view cross-section of the magnet in the second component is a sector ring or a polygon
  • the magnetization of at least two magnets in the first component The method is one of axial magnetization and radiation magnetization, and the magnetization method of the magnets in the second component is the other one of axial magnetization and radiation magnetization; or, at least two magnets in the first component
  • the magnetization method is one of axial magnetization and radial magnetization
  • the magnetization method of the magnet in the second component is the other of axial magnetization and radial magnetization.
  • the magnetic attraction device includes a plurality of magnetic attraction units.
  • the shape of the top view cross-section of each magnetic attraction unit is a sector ring or a polygon.
  • the plurality of magnetic attraction units are arranged adjacent to the charging coil in sequence to form a ring shape. Or fan ring.
  • the magnetic attraction device includes a plurality of magnetic attraction units, the top view cross-section of each magnetic attraction unit is a sector ring or a polygon, and each magnetic attraction unit is individually disposed adjacent to the charging coil.
  • the magnetic attraction device includes multiple groups of magnetic attraction units.
  • Each group of magnetic attraction units includes one magnetic attraction unit or a plurality of magnetic attraction units arranged adjacently in sequence.
  • Each group of magnetic attraction units is independently disposed on the charging coil. Proximity location.
  • the magnetic attraction device includes a magnetic attraction unit, and the shape of the top view cross-section of the magnetic attraction unit is circular, annular, or polygonal.
  • the shape of the top-view cross-section of the magnet in the first component is an annular or sector-ring shape
  • the shape of the top-view cross-section of the magnet in the second component is an annular, circular, or polygonal shape
  • at least two of the first components are
  • the magnetization method of the magnet is one of axial magnetization and radiation magnetization
  • the magnetization method of the magnet in the second component is the other of axial magnetization and radiation magnetization.
  • the present application provides a charging module, including a charging coil and a magnetic attraction device.
  • the charging coil is used to receive or send electric energy.
  • the magnetic attraction device is disposed inside or outside the charging coil.
  • the magnetic attraction device includes at least one magnetic attraction unit.
  • the magnetic unit includes a first component and a second component, the first component and the second component are arranged adjacent to each other along the first direction; wherein, the first component includes a plurality of magnets; the plurality of magnets in the first component are arranged along the first direction.
  • the internal magnetic field directions of at least two magnets in the first component are opposite; the second component includes at least one magnet; the internal magnetic field directions of the magnets in the second component are the same; the first direction is consistent with the plane of the charging coil or magnetic attraction device Perpendicular to each other.
  • the present application provides an electronic device, which is characterized in that it includes a power module and the above-mentioned charging module, wherein the charging coil of the charging module is electrically connected to the power module, and the charging coil of the charging module is used to receive a charger.
  • the electric energy sent by the charging coil; the magnetic attraction device is used to limit the contact position between the electronic device and the charger, so that the charging coil of the charger matches the charging coil of the electronic device.
  • the present application provides a charger, which is characterized in that it includes a power module and the above-mentioned charging module, wherein the charging coil of the charging module is electrically connected to the power module, and the charging coil of the charging module is used to charge the electronic device.
  • the charging coil sends electric energy; the magnetic device is used to limit the contact position between the charger and the electronic device so that the charging coil of the charger matches the charging coil of the electronic device.
  • Figure 1 is a schematic structural diagram of an electronic device and its charger in the prior art
  • Figure 2(a) is a schematic diagram of a magnet in an embodiment of the present application.
  • Figure 2(b) is a schematic diagram of another magnet in the embodiment of the present application.
  • Figure 2(c) is a schematic diagram of another magnet in the embodiment of the present application.
  • Figure 2(d) is a schematic diagram of another magnet in the embodiment of the present application.
  • Figure 3(a) is a schematic top cross-sectional view of a charging module provided in an embodiment of the present application.
  • Figure 3(b) is a schematic top-section view of another charging module provided in the embodiment of the present application.
  • Figure 3(c) is a schematic top cross-sectional view of another charging module provided in the embodiment of the present application.
  • Figure 3(d) is a schematic diagram of the direction of the internal magnetic field of the magnet in the magnetic attraction device of the charging module provided in the embodiment of the present application;
  • Figure 3(e) is a schematic diagram of the direction of the internal magnetic field of the magnet in the magnetic attraction device of another charging module provided in the embodiment of the present application;
  • Figure 3(f) is a schematic diagram of the direction of the internal magnetic field of the magnet in the magnetic attraction device of another charging module provided in the embodiment of the present application;
  • Figure 4 is a schematic structural diagram of an electronic device and its charger in an embodiment of the present application.
  • Figure 5(a) is a schematic structural diagram of a magnetic attraction device provided by an embodiment of the present application.
  • Figure 5(b) is a schematic diagram of the magnet magnetic field of a magnetic attraction device provided by an embodiment of the present application.
  • Figure 5(c) is a schematic diagram of the magnet magnetic field of a magnetic attraction device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of another electronic device and its charger provided by an embodiment of the present application.
  • Figure 7(a) is a schematic structural diagram of another magnetic attraction device provided by an embodiment of the present application.
  • Figure 7(b) is a schematic diagram of the magnet magnetic field of another magnetic attraction device provided by an embodiment of the present application.
  • Figure 8(a) is a schematic structural diagram of another magnetic attraction device provided by an embodiment of the present application.
  • Figure 8(b) is a schematic diagram of the magnet magnetic field of the first magnetic attraction device provided by the embodiment of the present application.
  • Figure 8(c) is a schematic diagram of the magnet magnetic field of the second magnetic attraction device provided by the embodiment of the present application.
  • Figure 9(a) is a schematic structural diagram of another magnetic attraction device provided by an embodiment of the present application.
  • Figure 9(b) is a schematic diagram of the magnet magnetic field of the first magnetic attraction device provided by the embodiment of the present application.
  • Figure 9(c) is a schematic diagram of the magnet magnetic field of the second magnetic attraction device provided by the embodiment of the present application.
  • Figure 10(a) is a schematic structural diagram of another magnetic attraction device provided by an embodiment of the present application.
  • Figure 10(b) is a schematic diagram of the magnet magnetic field of the first magnetic attraction device provided by the embodiment of the present application.
  • Figure 10(c) is a schematic diagram of the magnet magnetic field of the second magnetic attraction device provided by the embodiment of the present application.
  • Figure 10(d) is a schematic structural diagram of another electronic device and its charger provided by an embodiment of the present application.
  • Figure 11(a) is a schematic structural diagram of another magnetic attraction device provided by an embodiment of the present application.
  • Figure 11(b) is a schematic diagram of the magnet magnetic field of the first magnetic attraction device provided by the embodiment of the present application.
  • Figure 11(c) is a schematic diagram of the magnet magnetic field of the second magnetic attraction device provided by the embodiment of the present application.
  • Figure 12(a) is a schematic structural diagram of another magnetic attraction device provided by an embodiment of the present application.
  • Figure 12(b) is a schematic diagram of the magnet magnetic field of the first magnetic attraction device provided by the embodiment of the present application.
  • Figure 12(c) is a schematic diagram of the magnet magnetic field of the second magnetic attraction device provided by the embodiment of the present application.
  • Figure 12(d) is a schematic diagram of the magnet magnetic field of the third magnetic attraction device provided by the embodiment of the present application.
  • Figure 12(e) is a schematic diagram of the magnet magnetic field of the fourth magnetic attraction device provided by the embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a magnetic attraction device provided in an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of another magnetic attraction device provided in the embodiment of the present application.
  • Figure 15 is a schematic structural diagram of another magnetic attraction device provided in the embodiment of the present application.
  • Figure 16 is a schematic diagram of the magnet structure of a magnetic attraction device provided in an embodiment of the present application.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection.
  • it can also be a conflicting connection or an integral connection; for those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • FIG. 1 is a schematic structural diagram of an electronic device and its charger in the prior art.
  • the charger 200 is placed horizontally on the table, and the electronic device 100 is stacked on the charger 200 .
  • the charging coil 230 of the electronic device 100 and the charging coil 130 of the charger 200 can be wirelessly charged after being matched.
  • the electronic device 100 includes a magnet 110, a soft magnetic material 120 and a charging coil 130.
  • the soft magnetic material 120 is wrapped around the magnet 110
  • the charging coil 130 is wrapped around the soft magnetic material 120 .
  • the charger 200 includes a magnet 210, a soft magnetic material 220 and a charging coil 230.
  • the soft magnetic material 220 is wrapped around the magnet 210
  • the charging coil 230 is wrapped around the soft magnetic material 220 .
  • Existing electronic equipment or chargers wrap soft magnetic materials around magnets, and use soft magnetic materials to absorb the magnetic field radiated by the magnets to the surroundings, thereby reducing the impact of magnets on magnetic field sensitive components in electronic equipment or chargers, such as reducing the impact of magnets on electronic devices.
  • soft magnetic materials have limited magnetic attraction capabilities and cannot eliminate the influence of the magnet's magnetic field on magnetic field sensitive devices.
  • soft magnetic materials need to occupy the internal space of electronic devices or chargers, which is not conducive to the miniaturization of electronic devices or chargers.
  • embodiments of the present application provide a charging module, an electronic device and a charger using the charging module.
  • the magnetization methods of the magnet include radiation magnetization, axial magnetization and radial magnetization.
  • the magnets include radiation magnetization magnets, axial magnetization magnets and radial magnetization magnets.
  • the direction of the magnetic field inside the magnet refers to the direction in which the S pole inside the magnet points to the N pole.
  • FIG. 2(a) is a ring-shaped radiation magnetized magnet.
  • the annular radiation magnetized magnet is placed horizontally on a plane.
  • the direction of the magnetic field inside the annular radiation magnetized magnet is roughly parallel to the plane.
  • the direction of the magnetic field inside the annular radiation magnetized magnet is from the outside to the center. In other embodiments, the direction of the magnetic field inside the annular radiation magnet can be from the center to the outside.
  • Figure 2(b) shows an annular axially magnetized magnet.
  • the annular axially magnetized magnet is placed horizontally on a plane.
  • the direction of the magnetic field inside the annular axially magnetized magnet is approximately perpendicular to the plane.
  • the direction of the magnetic field inside the annular axially magnetized magnet points from the lower side to the upper side. In other embodiments, the direction of the magnetic field inside the annular axially magnetized magnet may be from the upper side to the lower side.
  • a rectangular axially magnetized magnet is shown in Figure 2(c).
  • the rectangular axially magnetized magnet is placed horizontally on a plane.
  • the direction of the magnetic field inside the rectangular axially magnetized magnet is approximately perpendicular to the plane.
  • the direction of the magnetic field inside the rectangular axially magnetized magnet is from the upper side to the lower side. In other embodiments, the direction of the magnetic field inside the rectangular axially magnetized magnet may be from the lower side to the upper side.
  • a rectangular radially magnetized magnet is shown in Figure 2(d).
  • the rectangular radially magnetized magnet is placed horizontally on a plane.
  • the direction of the magnetic field inside the rectangular radially magnetized magnet is roughly parallel to the plane.
  • the direction of the magnetic field inside the rectangular radially magnetized magnet is from the left to the right.
  • the direction of the magnetic field inside the rectangular radially magnetized magnet can be any direction that is substantially parallel to the plane, such as from the right side to the left side, from the front side to the back side, and from the back side to the front side.
  • the "radial size of the magnet” refers to the distance between the center and the inner edge or outer edge of a circular, annular, sector-ring, or polygonal magnetic device.
  • polygons include triangles, rectangles or other polygons
  • rings include circular rings, polygonal rings or other irregular ring shapes
  • sector rings can also be called arc shapes.
  • the “surface” may be a substrate used to carry a magnetic device in an electronic device or a charger, a housing of an electronic device and a charger, or a substrate used to carry a charging coil in an electronic device or a charger.
  • the surface may be a plane or a curved surface.
  • the substrate may be a circuit board, a soft magnetic material or a structural component.
  • parallel includes that the angle between two planes, between two directions, or between a direction and a plane is approximately 0 degrees.
  • Opasite includes the angle between the two directions being approximately 180 degrees.
  • Perpendicular includes that the angle between two directions, between a direction and a plane, and between a plane and a plane is approximately 90 degrees.
  • Upward refers to the direction from the charger 200 to the electronic device 100 during wireless charging.
  • Down means the opposite direction to "up”.
  • the side of the electronic device 100 close to the charger 200 is the lower side of the electronic device 100 , and the other side of the electronic device 100 is the upper side of the electronic device 100 .
  • the side of the charger 200 close to the electronic device 100 is the upper side of the charger 200
  • the other side of the charger 200 is the lower side of the charger 200 .
  • the charging module provided by the embodiment of the present application includes a charging coil and a magnetic device.
  • the charging coil is used to receive or send electric energy
  • the magnetic device is arranged inside or outside the charging coil.
  • the magnetic attraction device includes at least one magnetic attraction unit.
  • the magnetic unit includes a first component and a second component, and the first component and the second component are adjacently arranged along the first direction.
  • the first assembly includes a plurality of magnets, and at least two magnets in the first assembly have internal magnetic fields in opposite directions.
  • the second component includes at least one magnet, the magnets in the second component having their internal magnetic fields in the same direction. A plurality of magnets in the first component are stacked along the second direction.
  • the first direction refers to the direction parallel to the plane of the charging coil or the magnetic attraction device
  • the second direction refers to the direction perpendicular to the plane of the charging coil or the magnetic attraction device. That is, the first direction and the second direction are perpendicular to each other.
  • the magnetic field intensity around or inside the magnetic attraction device in the charging module provided by the embodiment of the present application is weakened, which can reduce the impact of the magnetic attraction device on the charger or other magnetically sensitive devices in electronic equipment, and can omit or reduce soft magnetic materials, which is beneficial to Miniaturization of chargers or electronic devices.
  • the enhanced magnetic field strength on one side of the magnetic attraction device in the charging module provided by the embodiment of the present application can increase the magnetic adsorption force between the electronic device and the charger, and can better define the contact position between the electronic device and the charger, making it easier for the electronic device to Matching with the charging coil of the charger is beneficial to the user experience when wireless charging of electronic devices and chargers.
  • the charging coil, the first component of the magnetic unit, and the second component of the magnetic unit are arranged in sequence along the first direction.
  • the magnetic suction device includes at least one magnetic suction unit.
  • the magnetic suction unit includes a first component and a second component.
  • the first component and the second component are arranged adjacent to each other along the first direction.
  • the first assembly includes a plurality of magnets, and at least two magnets in the first assembly have internal magnetic fields in opposite directions.
  • the second component includes at least one magnet, the magnets in the second component having their internal magnetic fields in the same direction.
  • a plurality of magnets in the first component are stacked along the second direction.
  • the first direction refers to the direction parallel to the plane of the magnetic attraction device
  • the second direction refers to the direction perpendicular to the plane of the magnetic attraction device.
  • the magnetization method of the magnet in the magnetic unit and the direction of the internal magnetic field can include various combinations.
  • the magnetization method of the magnet can include radiation magnetization, axial magnetization or radial magnetization.
  • the direction of the magnetic field inside the magnet may include a first direction or a second direction.
  • the first direction refers to the direction parallel to the plane of the magnetic attraction device, and the second direction refers to the direction perpendicular to the plane of the magnetic attraction device.
  • the magnetic unit includes a first component and a second component.
  • the first component includes a plurality of magnets.
  • the second component includes at least one magnet.
  • the direction of the internal magnetic field of at least two magnets in the first component is parallel to one of the first direction and the second direction, and the direction of the internal magnetic field of the magnets in the second component is parallel to the other of the first direction and the second direction. parallel.
  • the magnetic unit includes a first component and a second component.
  • the first component includes a plurality of magnets.
  • the second component includes at least one magnet. At least two magnets in the first assembly are magnetized in a manner different from the magnets in the second assembly.
  • the first component of the magnetic unit includes a first magnet and a second magnet.
  • the first magnet is magnetized in the same way as the second magnet.
  • the direction of the internal magnetic field of the first magnet is the same as that of the second magnet.
  • the direction of the internal magnetic field is opposite.
  • the first component of the magnetic unit further includes a filling material.
  • the filling material is stacked with at least two magnets of the first component along the second direction.
  • the filling material is provided on at least two magnets of the first component. Between the magnets, the filler material includes one or more isolating components or magnets.
  • the magnet may be a single complete magnet.
  • the magnet may also be formed by splicing multiple magnet sub-modules. Adjacent magnet sub-modules may be in contact, or there may be gaps or filling materials.
  • the material of the magnet or the magnet sub-module may include one or more types of neodymium ferromagnets, neodymium magnets or other magnetic materials.
  • one or more magnets in one or more of the first component or the second component are spliced and formed by a plurality of adjacently arranged magnet sub-modules.
  • the number of magnetic units and the shape of the top cross-section in the magnetic device may include various combinations.
  • the magnetization method and top cross-sectional shape of the magnets in the magnetic unit can include various combinations.
  • the magnetization method of the magnet can include radiation magnetization, axial magnetization or radial magnetization.
  • the shape of the top view cross-section of the magnetic suction unit or the magnet in the magnetic suction unit may include circular, annular, polygonal or other irregular shapes.
  • the shape of the top view cross-section of the magnet in the first component of the magnetic unit is a sector ring or a polygon
  • the shape of the top view cross-section of the magnet in the second component is a sector ring or a polygon.
  • the magnetization method of at least two magnets in the first component is one of axial magnetization and radiation magnetization
  • the magnetization method of the magnets in the second component is the other one of axial magnetization and radiation magnetization.
  • the magnetization mode of at least two magnets in the first component is one of axial magnetization and radial magnetization
  • the magnetization mode of the magnets in the second component is one of axial magnetization and radial magnetization. of another.
  • the magnetic attraction device includes the magnetic attraction unit.
  • the shape of the top view cross-section of the magnetic attraction unit is a sector ring or a polygon.
  • a plurality of magnetic attraction units are arranged adjacent to the charging coil in sequence to form a ring or polygon. fan ring.
  • the magnetic attraction device includes a plurality of magnetic attraction units.
  • the shape of the plan view cross-section of each magnetic attraction unit is a sector ring or a polygon.
  • Each magnetic attraction unit is individually disposed adjacent to the charging coil. The distance between any two magnetic units is the same.
  • the magnetic suction device includes multiple magnetic suction units, and the multiple magnetic suction units are divided into multiple groups of magnetic suction units.
  • Any group of magnetic suction units includes one magnetic suction unit or multiple adjacent magnetic units arranged in sequence.
  • a magnetic suction unit is provided, and multiple groups of magnetic suction units are separately arranged adjacent to the charging coil. The distance between any two groups of magnetic units is the same.
  • the magnetic attraction device includes a magnetic attraction unit, and the shape of the top view cross-section of the magnetic attraction unit is circular, annular, or polygonal.
  • the shape of the top view cross-section of the magnet in the first component of the magnetic suction device is an annular or sector ring shape
  • the shape of the top view cross-section of the magnet in the second component of the magnetic suction device is annular, circular or polygonal
  • the third The magnetization mode of at least two magnets in one component is one of axial magnetization and radiation magnetization
  • the magnetization mode of the magnets in the second component is the other one of axial magnetization and radiation magnetization.
  • the electronic device provided by the embodiment of the present application includes a power module and a charging module.
  • Power modules are used to power electronic devices.
  • the charging module includes a charging coil and a magnetic device as described above.
  • the charging coil of the charging module is electrically connected to the power module, and the charging coil of the charging module is used to receive the electric energy sent by the charging coil of the charger.
  • the charging module is arranged on the lower side inside the electronic device.
  • the magnetic device is used to define the contact position between the electronic device and the charger so that the charging coil of the electronic device matches the charging coil of the charger.
  • the charger provided by the embodiment of the present application includes a power module and a charging module.
  • the charging module includes a charging coil and a magnetic device as described above.
  • the charging coil of the charging module is electrically connected to the power module.
  • the power module is used to power the charging coil of the charging module.
  • the charging coil of the charging module is used to send electrical energy to the charging coil of the electronic device.
  • the charging module is arranged on the upper side of the charger.
  • the magnetic device is used to define the contact position between the charger and the electronic device so that the charging coil of the charger matches the charging coil of the electronic device.
  • the embodiments of the present application provide a weakening of the magnetic field intensity around or inside the magnetic attraction device in a charger or a charging module of an electronic device, which can reduce the impact of magnetic attraction on other magnetically sensitive devices, and can omit or reduce soft magnetic materials, which is beneficial to the charger. or the miniaturization of electronic devices.
  • Embodiments of the present application provide enhanced magnetic field strength on one side of the magnetic attraction device in a charger or charging module of an electronic device, which can increase the magnetic adsorption force between the electronic device and the charger, and can better limit the contact between the electronic device and the charger.
  • the position facilitates the matching of the charging coils of the electronic device and the charger, and is conducive to the user experience when the electronic device and the charger are wirelessly charged.
  • FIG. 3(a) is a schematic diagram of a charging module provided by an embodiment of the present application.
  • the charging module 10 includes a magnetic device 300 and a charging coil 230 .
  • the magnetic attraction device 300 includes a plurality of magnetic attraction units 301 .
  • the shape of the top view cross-section of each magnetic unit 301 is a sector ring or a polygon.
  • a plurality of magnetic units 301 are arranged adjacently in sequence on the outside of the charging coil 230 to form a sector ring or a ring shape with a gap.
  • the top cross-sectional shape of the charging coil 230 may include various shapes such as circular annular shape, irregular ring shape, etc., and the intervals between each magnetic unit 301 and the charging coil 230 may be different or different.
  • a plurality of magnetic units 301 are arranged adjacently in sequence at adjacent positions on the inside of the charging coil 230 to form a sector ring or a ring shape with a gap.
  • the top cross-sectional shape of the charging coil 230 may include various shapes such as circular annular shape, irregular ring shape, etc., and the intervals between each magnetic unit 301 and the charging coil 230 may be different or different.
  • the charging coil 230 can be electrically connected to other circuits of the charger 200 through the gap of the magnetic device 300, which is beneficial to miniaturization of the charger 200.
  • the magnetic attraction device 210 includes a magnetic attraction unit 301 .
  • the shape of the top cross-section of the magnetic suction unit 301 is a fan ring or a ring with a gap, which is the same shape as the magnetic suction device 300 shown in FIG. 3(a) .
  • FIG. 3(b) is a schematic diagram of another charging module provided by an embodiment of the present application.
  • the charging module 10 includes a magnetic device 300 and a charging coil 230 .
  • the magnetic attraction device 300 includes two sets of magnetic attraction units 301 .
  • Each group of magnetic suction units 301 includes the same number of magnetic suction units 301 .
  • the shape of the top view cross-section of each magnetic unit 301 is a sector ring or a polygon.
  • the shape of the top view cross-section of each group of magnetic units 301 is a sector ring or a polygon.
  • a plurality of magnetic suction units 301 in one group of magnetic suction units 301 are arranged adjacently to form a sector ring, and a plurality of magnetic suction units 301 in another group of magnetic suction units 301 are arranged adjacently to form another sector ring.
  • Two adjacent magnetic units 301 may be in contact, or there may be gaps or filling materials.
  • two sets of magnetic units 301 may be disposed outside the charging coil 230 .
  • two sets of magnetic units 301 may be disposed inside the charging coil 230 .
  • Each group of magnetic units 301 is individually disposed adjacent to the charging coil 230 .
  • the top cross-sectional shape of the charging coil 230 may include various shapes such as a circular ring, an irregular ring, etc., and the intervals between each group of magnetic units 301 and the charging coil 230 may be different or different.
  • the two intervals between the two groups of magnetic units 301 are the same, which is beneficial to the mutual cooperation between the two groups of magnetic units 301 in the magnetic device 300 .
  • the number of groups of magnetic units 301 in the magnetic device 300 is not only two as shown in FIG. 3(b) , but can also be more than two.
  • the spacing between any two groups of magnetic units 301 may be the same.
  • the number of magnetic units 301 in each group of magnetic units 301 may also be different.
  • Each group of magnetic units 301 may be formed by a plurality of adjacent magnetic units 301 , or may only include a single magnetic unit 301 .
  • FIG. 3(c) is a schematic diagram of another charging module provided by an embodiment of the present application.
  • the charging module 10 includes a magnetic device 300 and a charging coil 230 .
  • the magnetic attraction device 300 includes a plurality of magnetic attraction units 301 .
  • the shape of the top view cross-section of each magnetic unit 301 is a sector ring or a polygon.
  • a plurality of magnetic attraction units 301 are disposed outside the charging coil, and each magnetic attraction unit 301 is individually disposed adjacent to the charging coil 230 .
  • the top cross-sectional shape of the charging coil 230 may include various shapes such as a circular ring, an irregular ring, etc., and the intervals between each magnetic unit 301 and the charging coil 230 may be different or different.
  • the distance between any two magnetic suction units 301 is the same, which is beneficial to the mutual cooperation between the two groups of magnetic suction units 301 in the magnetic suction device 300 .
  • the number of magnetic suction units 301 is not limited to the four shown in FIG. 3(c) , but can also be other numbers.
  • multiple magnetic units 301 may be disposed inside the charging coil, and each magnetic unit 301 is individually disposed adjacent to the charging coil 230 .
  • the top cross-sectional shape of the charging coil 230 may include various shapes such as circular annular shape, irregular ring shape, etc., and the intervals between each magnetic unit 301 and the charging coil 230 may be different or different.
  • FIG. 3(d) is a schematic diagram of the direction of the internal magnetic field of the magnet in the magnetic attraction device of the charging module provided in the embodiment of the present application.
  • the magnetic unit 301 includes a first component and a second component.
  • the first component includes a first magnet 311 and a second magnet 312
  • the second component includes a third magnet 320 .
  • the first magnet 311 and the third magnet 320 are arranged adjacently along the first direction
  • the second magnet 312 and the third magnet 320 are arranged adjacently along the first direction.
  • the first magnet 311 and the second magnet 312 are stacked along the second direction.
  • the shape of the top view cross-section of the magnetic attraction unit 301 is a sector ring or a polygon.
  • the first magnet 311 , the second magnet 312 and the third magnet 320 have a plan view cross-sectional shape of a sector ring or a polygon.
  • the magnetization methods of the magnets in the magnetic suction unit 301 are radiation magnetization, radial magnetization and axial magnetization.
  • the magnetization method of the first magnet 311 and the second magnet 312 is radiation magnetization or radial magnetization, and the direction of the internal magnetic field of the first magnet 311 is opposite to that of the second magnet 312 .
  • the third magnet 320 is magnetized in an axial direction.
  • the S pole of the first magnet 311a faces to the left and the N pole faces to the right.
  • the N pole of the second magnet 312a faces to the left and the S pole faces to the right.
  • the S pole of the third magnet 320a faces upward and the N pole faces downward.
  • the magnetic field direction of the first magnet 311a and the magnetic field direction of the second magnet 312a are parallel and opposite to each other. The magnetic fields radiated to the right side by the first magnet 311a and the second magnet 312a cancel each other out, thereby realizing the magnetic field direction of the magnetic attraction device 300 radiating to the right side.
  • the N pole of the first magnet 311b faces the left and the S pole faces the right.
  • the S pole of the second magnet 312b faces to the left and the N pole faces to the right.
  • the N pole of the third magnet 320b faces upward and the S pole faces downward.
  • the magnetic field direction of the first magnet 311b and the magnetic field direction of the second magnet 312b are parallel and opposite to each other. The magnetic fields radiated to the right side by the first magnet 311b and the second magnet 312b cancel each other, thereby realizing the magnetic field radiating to the right side of the magnetic attraction device 300.
  • the magnetic field weakens.
  • the first magnet 311 and the second magnet 312 are magnetized in an axial direction, and the direction of the internal magnetic field of the first magnet 311 is opposite to the direction of the internal magnetic field of the second magnet 312 .
  • the magnetization method of the third magnet 320 is radiation magnetization or radial magnetization.
  • the N pole of the first magnet 311c faces upward and the S pole faces downward.
  • the S pole of the second magnet 312c faces upward and the N pole faces downward.
  • the S pole of the third magnet 320c faces the left side, and the N pole faces the right side.
  • the magnetic field directions of the first magnet 311c and the second magnet 312c are parallel and opposite to each other. The magnetic fields radiated to the right by the first magnet 311c and the second magnet 312c cancel each other, thereby realizing the magnetic field radiating to the right of the magnetic attraction device 300.
  • the magnetic field weakens.
  • the S pole of the first magnet 311d faces upward and the N pole faces downward.
  • the N pole of the second magnet 312d faces upward and the S pole faces downward.
  • the N pole of the third magnet 320d faces the left side, and the S pole faces the right side.
  • the magnetic field direction of the first magnet 311d and the magnetic field direction of the second magnet 312d are parallel and opposite to each other. The magnetic fields radiated to the right side by the first magnet 311d and the second magnet 312d cancel each other, thereby realizing the magnetic field radiation of the magnetic device 300 to the right side.
  • the magnetic field weakens.
  • Figure 3(e) is a schematic diagram of the direction of the internal magnetic field of the magnet in the magnetic attraction device of another charging module provided in the embodiment of the present application.
  • the magnetic unit 301 includes a first component and a second component.
  • the first component includes a first magnet 311 , a second magnet 312 and a filling material 313
  • the second component includes a third magnet 320 .
  • the first magnet 311 and the third magnet 320 are arranged adjacently along the first direction
  • the second magnet 312 and the third magnet 320 are arranged adjacently along the first direction.
  • the first magnet 311, the second magnet 312 and the filling material 313 are stacked along the second direction.
  • Filling material 313 is located between the first magnet 311 and the second magnet 312 .
  • Filling material 313 may include one or more of magnets, isolation materials, or voids.
  • filler material 313 may include magnets.
  • the filling material 313 may include a non-magnetic isolation material filled between the first magnet 311 and the second magnet 312, which may reduce the volume of the first magnet 311 and the second magnet 312, thereby reducing the Magnet material cost.
  • filler material 313 may include a volume of voids, thereby reducing weight.
  • the shape of the top view cross-section of the magnetic attraction unit 301 is a sector ring or a polygon.
  • the first magnet 311 , the second magnet 312 and the third magnet 320 have a plan view cross-sectional shape of a sector ring or a polygon.
  • the magnetization methods of the magnets in the magnetic suction unit 301 are radiation magnetization, radial magnetization and axial magnetization.
  • the first magnet 311 and the second magnet 312 are magnetized in an axial direction, and the direction of the internal magnetic field of the first magnet 311 is opposite to the direction of the internal magnetic field of the second magnet 312 .
  • the magnetization method of the third magnet 320 is radiation magnetization or radial magnetization.
  • filler material 313 may include radially charged magnets or radially charged magnets.
  • the N pole of the first magnet 311a faces upward and the S pole faces downward.
  • the S pole of the second magnet 312a faces upward and the N pole faces downward.
  • the N pole of the third magnet 320a faces to the left, and the S pole faces to the right.
  • the magnetic field direction of the first magnet 311a and the magnetic field direction of the second magnet 312a are parallel and opposite to each other. The magnetic fields radiated to the left by the first magnet 311a and the second magnet 312a cancel each other, thereby realizing the magnetic field radiating to the left of the magnetic device 300.
  • the magnetic field weakens.
  • the S pole of the first magnet 311b faces upward and the N pole faces downward.
  • the N pole of the second magnet 312b faces upward and the S pole faces downward.
  • the S pole of the third magnet 320b faces to the left, and the N pole faces to the right.
  • the magnetic field direction of the first magnet 311b and the magnetic field direction of the second magnet 312b are parallel and opposite to each other. The magnetic fields radiated to the left by the first magnet 311b and the second magnet 312b cancel each other out, thereby realizing the magnetic field radiated by the magnetic device 300 to the left.
  • the magnetic field weakens.
  • the magnetization method of the first magnet 311 and the second magnet 312 is radiation magnetization or radial magnetization, and the direction of the internal magnetic field of the first magnet 311 is opposite to that of the second magnet 312 .
  • the third magnet 320 is magnetized in an axial direction.
  • filler material 313 may include axially charged magnets.
  • the S pole of the first magnet 311c faces the left and the N pole faces the right.
  • the N pole of the second magnet 312c faces to the left and the S pole faces to the right.
  • the S pole of the third magnet 320c faces upward and the N pole faces downward.
  • the magnetic field directions of the first magnet 311c and the second magnet 312c are parallel and opposite to each other.
  • the magnetic fields radiated to the right by the first magnet 311c and the second magnet 312c cancel each other, thereby realizing the magnetic field radiating to the right of the magnetic attraction device 300.
  • the magnetic field weakens.
  • the N pole of the first magnet 311d faces the left and the S pole faces the right.
  • the S pole of the second magnet 312d faces the left side, and the N pole faces the right side.
  • the N pole of the third magnet 320d faces upward and the S pole faces downward.
  • the magnetic field direction of the first magnet 311d and the magnetic field direction of the second magnet 312d are parallel and opposite to each other. The magnetic fields radiated to the right side by the first magnet 311d and the second magnet 312d cancel each other, thereby realizing the magnetic field radiation of the magnetic device 300 to the right side.
  • the magnetic field weakens.
  • FIG. 3(f) is a schematic diagram of the direction of the internal magnetic field of the magnet in the magnetic attraction device of another charging module provided in the embodiment of the present application.
  • the magnetic unit 301 includes a first component and a second component.
  • the first component includes a first magnet 311 and a second magnet 312
  • the second component includes a third magnet 320 .
  • the first magnet 311, the second magnet 312 and the third magnet 320 are stacked along the second direction.
  • the third magnet 320 is located between the first magnet 311 and the second magnet 312 .
  • the shape of the top view cross-section of the magnetic attraction unit 301 is a sector ring or a polygon.
  • the first magnet 311 , the second magnet 312 and the third magnet 320 have a plan view cross-sectional shape of a sector ring or a polygon.
  • the magnetization methods of the magnets in the magnetic suction unit 301 are radiation magnetization, radial magnetization and axial magnetization.
  • the first magnet 311 and the second magnet 312 are magnetized in an axial direction, and the direction of the internal magnetic field of the first magnet 311 is opposite to the direction of the internal magnetic field of the second magnet 312 .
  • the magnetization method of the third magnet 320 is radiation magnetization or radial magnetization.
  • the S pole of the first magnet 311a faces to the left and the N pole faces to the right.
  • the N pole of the second magnet 312a faces to the left and the S pole faces to the right.
  • the S pole of the third magnet 320a faces upward and the N pole faces downward.
  • the magnetic field directions of the first magnet 311a and the second magnet 312a are parallel and opposite to each other. The magnetic fields radiated to the left or right side by the first magnet 311a and the second magnet 312a cancel each other, thereby realizing the magnetic attraction device 300 moving to the left.
  • the magnetic field radiated from the side or right side weakens.
  • the N pole of the first magnet 311b faces the left and the S pole faces the right.
  • the S pole of the second magnet 312b faces to the left and the N pole faces to the right.
  • the N pole of the third magnet 320b faces upward and the S pole faces downward.
  • the magnetic field directions of the first magnet 311b and the second magnet 312b are parallel and opposite to each other.
  • the magnetic fields radiated to the left or right side by the first magnet 311b and the second magnet 312b cancel each other out, thereby realizing the magnetic attraction device 300 moving to the left.
  • the magnetic field radiated from the side or right side weakens.
  • the magnetization method of the first magnet 311 and the second magnet 312 is radiation magnetization or radial magnetization, and the direction of the internal magnetic field of the first magnet 311 is opposite to that of the second magnet 312 .
  • the third magnet 320 is magnetized in an axial direction.
  • the S pole of the first magnet 311c faces upward and the N pole faces downward.
  • the N pole of the second magnet 312c faces upward and the S pole faces downward.
  • the S pole of the third magnet 320c faces the left side, and the N pole faces the right side.
  • the magnetic field directions of the first magnet 311c and the second magnet 312c are parallel and opposite to each other. The magnetic fields radiated to the left or right side by the first magnet 311c and the second magnet 312c cancel each other, thereby realizing the magnetic attraction device 300 moving to the left.
  • the magnetic field radiated from the side or right side weakens.
  • the N pole of the first magnet 311d faces upward and the S pole faces downward.
  • the S pole of the second magnet 312d faces upward and the N pole faces downward.
  • the N pole of the third magnet 320d faces the left side, and the S pole faces the right side.
  • the magnetic field direction of the first magnet 311d and the magnetic field direction of the second magnet 312d are parallel and opposite to each other. The magnetic fields radiated to the left or right side by the first magnet 311d and the second magnet 312d cancel each other, thereby realizing the magnetic attraction device 300 moving to the left.
  • the magnetic field radiated from the side or right side weakens.
  • FIG. 4 is a schematic structural diagram of an electronic device 100 and its charger 200 in an embodiment of the present application.
  • the electronic device 100 may be a watch, a mobile phone, an earphone, a tablet or a computer, etc.
  • the charger 200 may be a portable charger or a car charger, etc.
  • FIG. 4 To facilitate description of the charging module 10 of the electronic device 100 or the charger 200 , other circuits or structures of the electronic device 100 and the charger 200 are omitted in FIG. 4 .
  • the electronic device 100 includes a charging module 10 .
  • the charging module 10 is disposed on a lower surface inside the electronic device 100 .
  • the charging module 10 is disposed on the inner surface of the housing on the lower side of the electronic device 100 or on the substrate inside the electronic device 100 . That is, the surface may be the inner surface of the housing on the lower side of the electronic device 100 or the substrate inside the electronic device 100 .
  • the charging module 10 includes a magnetic device 30 and a charging coil 20 . The magnetic field intensity around the magnetic attraction device 30 in the electronic device 100 weakens, and the magnetic field intensity below the magnetic attraction device 30 increases.
  • the charger 200 includes a charging module 10 .
  • the charging module 10 is disposed on an upper surface inside the charger 200 .
  • the charging module 10 is disposed on the inner surface of the upper housing of the charger 200 or on the substrate inside the charger 200 . That is, the surface may be the inner surface of the upper housing of the charger 200 or the substrate inside the charger 200 .
  • the charging module 10 includes a magnetic device 30 and a charging coil 20 . The magnetic field intensity around the magnetic attraction device 30 in the charger 200 weakens, and the magnetic field intensity above the magnetic attraction device 30 increases.
  • the magnetic device 30 and the charging coil 20 in the charging module 10 are disposed on the same surface.
  • the magnetic device 30 and the charging coil 20 of the charging module 10 may be respectively provided with multiple surfaces, and the multiple surfaces are parallel or close to each other.
  • the charging coil 230 in the charging module 10 is disposed outside the magnetic device 30 .
  • the electric coil 20 in the charging module 10 may be disposed inside the magnetic device 30 .
  • the magnetic field intensity around the magnetic device in the electronic device 100 and the charger 200 provided by the embodiment of the present application is weakened, which can reduce the impact of the magnetic device on other magnetically sensitive components in the electronic device 100 and the charger 200 .
  • the electronic device 100 or the charger 200 can omit or reduce the soft magnetic material, which is beneficial to the miniaturization of the electronic device 100 or the charger 200 .
  • the charging module 10 in the electronic device 100 or the charger 200 shown in FIG. 4 has various embodiments.
  • the magnetic attraction device 3 in the charging module 10 includes multiple magnets.
  • the positional relationship, quantity, magnetization method, top cross-sectional shape, internal magnetic field direction, structure, etc. of multiple magnets can be combined in various ways.
  • Figure 5(a) is a schematic structural diagram of a magnetic attraction device provided in an embodiment of the present application.
  • the magnetic attraction device 500 includes a first component 510 and a second component 520 .
  • the first component 510 and the second component 520 are disposed on the same surface along the first direction. That is, the first component 510 and the second component 520 are disposed on the same surface along the horizontal direction.
  • the first component 510 has a circular cross-sectional shape in plan view, and the second component 520 has a cylindrical structure.
  • the inner radial dimension of the first component 510 is greater than or equal to the radial dimension of the second component 520 .
  • the second component 520 is disposed inside the first component 510 .
  • first component 510 and the second component 520 may be fixedly connected to form an integral structure. In other embodiments, the first component 510 and the second component 520 can be respectively fixed on the same surface, and there can be a gap or filling material between the first component 510 and the second component 520 .
  • the second component 520 has a circular cross-sectional shape when viewed from above, and the first component 510 has a circular cross-sectional shape when viewed from above.
  • the magnetic field distribution of circular and annular magnets is uniform, which is beneficial for the magnetic field of the first component 510 and the magnetic field of the second component 520 to strengthen each other.
  • the second component 520 may have a top-view cross-sectional shape that is elliptical
  • the first component 510 may have a top-view cross-sectional shape that is an elliptical ring.
  • the shape of the top-view cross-section of the second component 520 may be a polygon such as a triangle, a quadrilateral, or other irregular shapes
  • the shape of the top-view cross-section of the first component 510 may also be a triangular annular shape, a quadrilateral annular shape, or other polygonal annular shapes, or other irregular shapes. Irregular ring shape.
  • the magnetic suction device 500 can select any of the above-mentioned first components 510 and second components 520, thereby improving the applicability of the magnetic suction device 500.
  • the first assembly 510 includes a first magnet 511 and a second magnet 512 .
  • the second assembly 520 includes a third magnet 520 .
  • the first magnet 511 and the second magnet 512 are stacked along the second direction. That is, the first magnet 511 and the second magnet 512 are stacked perpendicularly to the surface. Wherein, the shapes of the first magnet 511 and the second magnet 512 are annular in plan view.
  • the first magnet 511 and the second magnet 512 may be fixedly connected to form an integral structure. In other embodiments, the first magnet 511 and the second magnet 512 may be respectively fixed on the sides of the third magnet 520, and there may be a gap or filling material between the first magnet 511 and the second magnet 512.
  • Figure 5(b) is a schematic diagram of the magnetic field of a magnet provided in an embodiment of the present application.
  • the magnetic attraction device 500 includes a first magnet 511 , a second magnet 512 and a third magnet 520 .
  • the first magnet 511 and the second magnet 512 are both magnetized by radiation magnetization.
  • the third magnet 520 is magnetized in an axial direction.
  • the S pole of the first magnet 511 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the second magnet 512 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the third magnet 520 faces upward and the N pole faces downward.
  • the magnetic field direction of the first magnet 511 and the magnetic field direction of the second magnet 512 are parallel and opposite to each other.
  • the magnetic fields radiated by the first magnet 511 and the second magnet 512 to the surroundings cancel each other out, thereby weakening the magnetic field radiated by the magnetic device 500 to the surroundings. .
  • the internal magnetic field directions of the first magnet 511, the second magnet 512 and the third magnet 520 of the magnetic attraction device 500 also include other combinations, which can realize the weakening of the magnetic field radiated by the magnetic attraction device 500 to the surroundings.
  • the N pole of the first magnet 511 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the second magnet 512 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the third magnet 520 faces upward and the S pole faces downward.
  • the magnetic field direction of the first magnet 511 and the magnetic field direction of the second magnet 512 are parallel and opposite to each other. The magnetic fields radiated by the first magnet 511 and the second magnet 512 to the surroundings cancel each other out, thereby weakening the magnetic field radiated by the magnetic device 500 to the surroundings. .
  • the magnetic field direction of the first magnet 511 in the magnetic attraction device 500 is opposite to the magnetic field direction of the second magnet 512 . That is, the angle between the magnetic field direction of the first magnet 511 and the magnetic field direction of the second magnet 512 is approximately 180 degrees.
  • the direction of the magnetic field inside the first magnet 511 and the second magnet 512 is parallel to its surface
  • the direction of the magnetic field inside the third magnet 520 is perpendicular to its surface
  • the direction of the magnetic field inside the first magnet 511 and the second magnet 512 They are respectively perpendicular to the direction of the magnetic field inside the third magnet 520 .
  • the angle between the magnetic field direction inside the first magnet 511 and the second magnet 512 and its surface is approximately 0 degrees
  • the angle between the magnetic field direction inside the third magnet 520 and its surface is approximately 90 degrees
  • the angle between the direction of the magnetic field inside the magnet 512 and the direction of the magnetic field inside the third magnet 520 is approximately 90 degrees.
  • the magnetic attraction device 500 in the embodiment of the present application can also achieve enhancement of the upper magnetic field intensity or the lower magnetic field intensity.
  • the S pole of the first magnet 511 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the second magnet 512 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the third magnet 520 faces upward and the N pole faces downward.
  • the S pole of the first magnet 511 and the S pole of the third magnet 520 strengthen each other on the upper side of the magnetic attraction device 500, thereby increasing the magnetic field intensity on the upper side of the magnetic attraction device 500.
  • the internal magnetic field directions of the first magnet 511 , the second magnet 512 and the third magnet 520 of the magnetic attraction device 500 also include other combinations, which can enhance the magnetic field intensity on the upper side of the magnetic attraction device 500 .
  • the N pole of the first magnet 511 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the second magnet 512 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the third magnet 520 faces upward and the S pole faces downward.
  • the N pole of the first magnet 511 and the N pole of the third magnet 520 strengthen each other on the upper side of the magnetic attraction device 500, thereby increasing the magnetic field intensity on the upper side of the magnetic attraction device 500.
  • Figure 5(c) is a schematic diagram of the magnet magnetic field of a magnetic attraction device provided by an embodiment of the present application.
  • the magnetic attraction device 500 includes a first magnet 511 , a second magnet 512 and a third magnet 520 .
  • the first magnet 511 and the second magnet 512 are both magnetized in an axial direction.
  • the magnetization method of the third magnet 520 is radiation magnetization.
  • the S pole of the first magnet 511 faces downward and the N pole faces upward.
  • the S pole of the second magnet 512 faces upward and the N pole faces downward.
  • the N pole of the third magnet 520 faces the center of the circle, and the S pole faces the outside of the circle.
  • the magnetic field direction of the first magnet 511 and the magnetic field direction of the second magnet 512 are parallel and opposite to each other.
  • the magnetic fields radiated by the first magnet 511 and the second magnet 512 to the surroundings cancel each other out, thereby weakening the magnetic field radiated by the magnetic device 500 to the surroundings. .
  • the internal magnetic field directions of the first magnet 511, the second magnet 512 and the third magnet 520 of the magnetic attraction device 500 also include other combinations, which can realize the weakening of the magnetic field radiated by the magnetic attraction device 500 to the surroundings.
  • the N pole of the first magnet 511 faces downward and the S pole faces upward.
  • the N pole of the second magnet 512 faces upward and the S pole faces downward.
  • the S pole of the third magnet 520 faces the center of the circle, and the N pole faces the outside of the circle.
  • the magnetic field direction of the first magnet 511 and the magnetic field direction of the second magnet 512 are parallel and opposite to each other. The magnetic fields radiated by the first magnet 511 and the second magnet 512 to the surroundings cancel each other out, thereby weakening the magnetic field radiated by the magnetic device 500 to the surroundings. .
  • the function of the first component 510 in the embodiment of the present application is to weaken the magnetic field radiated by the magnetic attraction device 500 to the surroundings.
  • the function of the second component 520 is to provide magnetic attraction force to the electronic device or charger and radiate the magnetic field to the surroundings. Therefore, the charging coil 20, the first component 510 and the second component 520 are sequentially arranged along the first direction.
  • the first component 510 is located between the charging coil 20 and the second component 520, which weakens the magnetic field radiated by the second component 520 to the surroundings and reduces the influence of the magnet on the magnetic core on the back of the charging coil 20 in electronic equipment or chargers.
  • the magnetic attraction device of the charging module includes a first component and a second component, and the first component and the second component are disposed on the same surface along the first direction.
  • the first component includes a first magnet and a second magnet, and the first magnet and the second magnet are stacked along the second direction.
  • the first magnet and the second magnet are magnetized in a manner different from the magnetization manner of the third magnet in the second assembly.
  • the first magnet and the second magnet are magnetized in the same way.
  • the magnetic field direction of the first magnet and the magnetic field direction of the second magnet are parallel and opposite to each other, so that the lateral magnetic fields cancel each other out, thereby weakening the magnetic field radiated by the magnetic device to the surroundings. .
  • FIG. 6 is a schematic structural diagram of another electronic device and its charger in an embodiment of the present application. The difference between FIG. 6 and FIG. 4 is that the magnetic attraction device 30 of the charging module 10 shown in FIG. 4 is replaced with the magnetic attraction device 500 shown in FIG. 5 .
  • the charging coil 20 in the charging module 10 shown in FIG. 4 is omitted in FIG. 6 .
  • the magnetic attraction device 500 in the electronic device 100 and the charger 200 can magnetically attract each other to define the contact position of the electronic device 100 and the charger 200 to facilitate the charging coil 20 of the electronic device 100 and the charger 200 .
  • the charging coils 20 of the charger 200 match each other, thereby improving the convenience of wireless charging.
  • the magnetic attraction device 500 is disposed on the lower side inside the electronic device 100 .
  • the first component 510 and the second component 520 of the magnetic device 500 are adjacently arranged on the same surface along the first direction, and the first magnet 511 and the second component 512 of the first component 510 are stacked along the second direction.
  • the first component 510 and the second component 520 of the magnetic device 500 may be disposed adjacent to the inner surface of the lower housing of the electronic device 100 or the substrate inside the electronic device 100 . That is, the same surface may be the inner surface of the lower housing of the electronic device 100 or the substrate inside the electronic device 100 .
  • the intensity of the magnetic field radiated to the surroundings by the magnetic attraction device 500 weakens, and the intensity of the magnetic field on the lower side of the magnetic attraction device 500 increases.
  • the N pole of the first magnet 511 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the second magnet 512 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the magnetic field direction of the first magnet 511 and the magnetic field direction of the second magnet 512 are parallel and opposite to each other. The magnetic fields radiated by the first magnet 511 and the second magnet 512 to the surroundings cancel each other, thereby realizing the magnetic attraction device 500 to radiate to the surroundings.
  • the magnetic field weakens.
  • the S pole of the second magnet 512 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the S pole of the third magnet 520 faces upward and the N pole faces downward.
  • the S pole of the second magnet 512 and the S pole of the third magnet 520 strengthen each other on the lower side of the electronic device 100, thereby realizing the enhancement of the magnetic field intensity on the lower side of the electronic device 100.
  • the gap between the lower side of the electronic device 100 and the upper side of the charger 200 is The enhanced magnetic adsorption force can better define the contact position between the electronic device 100 and the charger 200, making it easier for the charging coil 20 of the electronic device 100 and the charging coil 20 of the charger 200 to match each other, thereby improving the convenience of wireless charging.
  • the magnetic device 500 is disposed on the upper side of the charger 200 .
  • the first component 510 and the second component 520 of the magnetic device 500 are adjacently arranged on the same surface along the first direction, and the first magnet 511 and the second component 512 of the first component 510 are stacked along the second direction.
  • the first component 510 and the second component 520 of the magnetic device 500 may be disposed adjacent to the inner surface of the upper housing of the charger 200 or the substrate inside the charger 200 . That is, the same surface may be the inner surface of the upper housing of the charger 200 or the substrate inside the charger 200 .
  • the intensity of the magnetic field radiated to the surroundings by the magnetic attraction device 500 in the charger 200 weakens, and the intensity of the magnetic field on the upper side of the magnetic attraction device 500 increases.
  • the N pole of the first magnet 511 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the second magnet 512 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the magnetic field direction of the first magnet 511 and the magnetic field direction of the second magnet 512 are parallel and opposite to each other. The magnetic fields radiated by the first magnet 511 and the second magnet 512 to the surroundings cancel each other, thereby realizing the magnetic attraction device 500 to radiate to the surroundings.
  • the magnetic field weakens.
  • the N pole of the first magnet 511 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the N pole of the third magnet 520 faces upward and the S pole faces downward.
  • the N pole of the first magnet 511 and the N pole of the third magnet 520 strengthen each other on the upper side of the charger 200, thereby enhancing the magnetic field intensity on the upper side of the charger 200.
  • the gap between the lower side of the electronic device 100 and the upper side of the charger 200 The enhanced magnetic adsorption force can better define the contact position between the electronic device 100 and the charger 200, making it easier for the charging coil 20 of the electronic device 100 and the charging coil 20 of the charger 200 to match each other, thereby improving the convenience of wireless charging.
  • the top view cross-section shape of the magnetic attraction device 500 is circular or polygonal, and the charging coil 20 of the charging module 10 may be disposed outside the first component 510 of the magnetic attraction device 500 .
  • the charging coil 20, the first component 510 and the second component 520 are arranged in sequence along the first direction.
  • Figure 7(a) is a schematic structural diagram of another magnetic attraction device provided in an embodiment of the present application.
  • the magnetic attraction device 700 includes a first component 710 and a second component 720 .
  • the first component 710 and the second component 720 are disposed on the same surface along the first direction. That is, the first component 710 and the second component 720 are disposed on the same surface along the horizontal direction.
  • the first assembly 710 includes a first magnet 711 , a second magnet 712 and a filling material 713 .
  • the second assembly 720 includes a third magnet 720 .
  • the first magnet 711, the second magnet 712 and the filling material 713 are stacked along the second direction. That is, the first magnet 711 and the second magnet 712 are stacked perpendicularly to the surface.
  • Filling material 713 is provided between the first magnet 711 and the second magnet 712 .
  • the first magnet 711, the second magnet 712 and the filling material 713 have the same shape, and their top cross-sectional shapes are all circular rings.
  • the first magnet 711, the second magnet 712 and the filling material 713 can be fixedly connected to form an integral structure.
  • the first magnet 711, the second magnet 712 and the filling material 713 may be respectively fixed on the sides of the third magnet 720.
  • a filling material 713 is added to the magnetic attraction device 700, which is disposed between the first magnet 711 and the second magnet 712.
  • Filling material 713 may include one or more of magnets, isolation materials, or voids.
  • filler material 713 may include magnets.
  • the filling material 713 may include a non-magnetic isolation material, which is filled in the gap between the first magnet 711 and the second magnet 712 to reduce the volume of the first magnet 711 and the second magnet 712 , thereby reducing the cost of magnet materials.
  • the filler material 713 may include a volume of voids, thereby reducing weight.
  • the upper surface of the first magnet 711 and the upper surface of the third magnet 720 are on the same plane, and the lower surface of the second magnet 712 is on the same plane.
  • the lower surface of the third magnet 720 is on a plane.
  • a gap of a set volume is reserved between the first magnet 711 and the second magnet 712 .
  • Figure 7(b) is a schematic diagram of the magnet magnetic field of a magnetic attraction device provided by an embodiment of the present application.
  • the magnetic attraction device 700 includes a first magnet 711 , a second magnet 712 , a filling material 713 and a third magnet 720 .
  • the first magnet 711 and the second magnet 712 are both magnetized by radiation magnetization.
  • the magnetization mode of the third magnet 720 is axial magnetization.
  • the S pole of the first magnet 711 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the second magnet 712 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the third magnet 720 faces upward and the N pole faces downward.
  • filler material 713 may include axially charged magnets.
  • the magnetic field radiated to the surroundings from the middle part of the side of the third magnet 720 is relatively small, so no magnet is provided at the middle part of the side of the third magnet 720.
  • the first magnet 711 is only provided at the upper part of the side of the third magnet 720.
  • the second magnet 712 is provided on the lower part of the side of the third magnet 720, which can also weaken the magnetic field radiated by the magnetic attraction device 700 to the surroundings.
  • reducing the amount of magnet material used can reduce the cost of the electronic device 100 and the charger 200 .
  • the top view cross-section shape of the magnetic attraction device 700 is circular or polygonal, and the charging coil 20 of the charging module 10 can be disposed outside the first component 710 of the magnetic attraction device 700 .
  • the charging coil 20, the first component 710 and the second component 720 are arranged in sequence along the first direction.
  • Figure 8(a) is a schematic structural diagram of another magnetic attraction device provided in an embodiment of the present application.
  • the magnetic attraction device 800 includes a first component 810 and a second component 820 .
  • the first component 810 and the second component 820 are disposed on the same surface along the first direction. That is, the first component 810 and the second component 820 are disposed on the same surface along the horizontal direction.
  • the shape of the first component 810 in plan view is annular, and the shape of the second component 820 in plan view is annular.
  • the inner radial dimension of the first component 810 is greater than or equal to the radial dimension of the second component 820 .
  • the second component 820 is disposed inside the first component 810 .
  • the first component 810 and the second component 820 may be fixedly connected to form an integral structure.
  • the first component 810 and the second component 820 can be respectively fixed on the same surface, and there can be a gap or filling material between the first component 810 and the second component 820 .
  • the shapes of the first component 810 and the second component 820 are circular in plan view.
  • the magnetic field distribution of the annular magnet is uniform, which is beneficial for the magnetic field of the first component 810 and the magnetic field of the second component 820 to strengthen each other.
  • the top cross-sectional shapes of the first component 810 and the second component 820 are both elliptical.
  • the shape of the top view cross-section of the first component 810 and the second component 820 may be a polygon such as a triangle, a quadrilateral, or other irregular shapes.
  • the magnetic suction device 800 can select any of the above-mentioned first components 810 and second components 820 , thereby improving the applicability of the magnetic suction device 800 .
  • the first component 810 includes a first magnet 811 and a second magnet 812
  • the second component 820 includes a third magnet 820 .
  • the first magnet 811 and the second magnet 812 are stacked along the second direction. That is, the first magnet 811 and the second magnet 812 are stacked perpendicularly to the surface. Among them, the first magnet 811 and the second magnet 812 have the same shape, and their top cross-sectional shapes are both circular rings.
  • the first magnet 811 and the second magnet 812 may be fixedly connected to form an integral structure. In other embodiments, the first magnet 811 and the second magnet 812 may be respectively fixed on the sides of the third magnet 820, and there may be a gap or filling material between the first magnet 811 and the second magnet 812.
  • Figure 8(b) is a schematic diagram of the magnetic field of a magnet provided in an embodiment of the present application.
  • the magnetic attraction device 800 includes a first magnet 811 , a second magnet 812 and a third magnet 820 .
  • the first magnet 811 and the second magnet 812 are both magnetized by radiation magnetization.
  • the magnetization mode of the third magnet 820 is axial magnetization.
  • the S pole of the first magnet 811 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the second magnet 812 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the third magnet 820 faces upward and the N pole faces downward.
  • the magnetic field direction of the first magnet 811 and the magnetic field direction of the second magnet 812 are parallel and opposite to each other.
  • the magnetic fields radiated by the first magnet 811 and the second magnet 812 to the surroundings cancel each other, thereby weakening the magnetic field radiated by the magnetic device 800 to the surroundings. .
  • the internal magnetic field directions of the first magnet 811, the second magnet 812 and the third magnet 820 of the magnetic attraction device 800 also include other combinations, which can realize the weakening of the magnetic field radiated by the magnetic attraction device 800 to the surroundings.
  • the N pole of the first magnet 811 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the second magnet 812 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the third magnet 820 faces upward and the S pole faces downward.
  • the magnetic field direction of the first magnet 811 and the magnetic field direction of the second magnet 812 are parallel and opposite to each other. The magnetic fields radiated by the first magnet 811 and the second magnet 812 to the surroundings cancel each other, thereby weakening the magnetic field radiated by the magnetic device 800 to the surroundings. .
  • the magnetic attraction device 800 in the embodiment of the present application can also enhance the upper magnetic field intensity or the lower magnetic field intensity.
  • the S pole of the first magnet 811 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the second magnet 812 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the third magnet 820 faces upward and the N pole faces downward.
  • the S pole of the first magnet 811 and the S pole of the third magnet 820 strengthen each other on the upper side of the magnetic attraction device 800, thereby increasing the magnetic field intensity on the upper side of the magnetic attraction device 800.
  • the internal magnetic field directions of the first magnet 811, the second magnet 812 and the third magnet 820 of the magnetic suction device 800 also include other combinations, which can enhance the magnetic field intensity on the upper side of the magnetic suction device 800. This application will not describe in detail here. .
  • Figure 8(c) is a schematic diagram of the magnetic field of a magnet provided in an embodiment of the present application.
  • the magnetic attraction device 800 includes a first magnet 811 , a second magnet 812 and a third magnet 820 .
  • the first magnet 811 and the second magnet 812 are both magnetized in an axial direction.
  • the magnetization method of the third magnet 820 is radiation magnetization.
  • the S pole of the first magnet 811 faces downward and the N pole faces upward.
  • the S pole of the second magnet 812 faces upward and the N pole faces downward.
  • the S pole of the third magnet 820 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the magnetic field direction of the first magnet 811 and the magnetic field direction of the second magnet 812 are parallel and opposite to each other.
  • the magnetic fields radiated by the first magnet 811 and the second magnet 812 to the surroundings cancel each other, thereby weakening the magnetic field radiated by the magnetic device 800 to the surroundings. .
  • the internal magnetic field directions of the first magnet 811, the second magnet 812 and the third magnet 820 of the magnetic attraction device 800 also include other combinations, which can realize the weakening of the magnetic field radiated by the magnetic attraction device 800 to the surroundings.
  • the N pole of the first magnet 811 faces downward and the S pole faces upward.
  • the N pole of the second magnet 812 faces upward and the S pole faces downward.
  • the N pole of the third magnet 820 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the magnetic field direction of the first magnet 811 and the magnetic field direction of the second magnet 812 are parallel and opposite to each other. The magnetic fields radiated by the first magnet 811 and the second magnet 812 to the surroundings cancel each other, thereby weakening the magnetic field radiated by the magnetic device 800 to the surroundings. .
  • the magnetic attraction device 800 in the embodiment of the present application can also enhance the upper magnetic field intensity or the lower magnetic field intensity.
  • the S pole of the first magnet 811 faces downward and the N pole faces upward.
  • the S pole of the second magnet 812 faces upward and the N pole faces downward.
  • the S pole of the third magnet 820 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the first magnet 811 and the N pole of the third magnet 820 strengthen each other on the upper side of the magnetic attraction device 800, thereby increasing the magnetic field intensity on the upper side of the magnetic attraction device 800.
  • the internal magnetic field directions of the first magnet 811, the second magnet 812 and the third magnet 820 of the magnetic suction device 800 also include other combinations, which can enhance the magnetic field intensity on the upper side of the magnetic suction device 800. This application will not describe in detail here. .
  • the third magnet 820 in the magnetic attraction device 800 is replaced by a cylindrical magnet with a ring magnet.
  • the number of magnets reduced
  • the amount of materials used can reduce the cost of the electronic device 100 and the charger 200 .
  • the shape of the third magnet 820 in the electronic device 100 and the charger 200 is annular, the electronic device 100 is placed on the charger 200, which can avoid interference problems between the alignment magnet and the middle structure.
  • the magnetic suction device 800 is suitable for use in non-planar suction electronic equipment or chargers such as sleeve type.
  • the top view cross-section shape of the magnetic attraction device 800 is circular or polygonal, and the charging coil 20 of the charging module 10 can be disposed outside the first component 810 of the magnetic attraction device 800 .
  • the charging coil 20, the first component 810 and the second component 820 are arranged in sequence along the first direction.
  • Figure 9(a) is a schematic structural diagram of another magnetic attraction device provided in an embodiment of the present application.
  • the magnetic attraction device 900 includes a first component 910 and a second component 920 .
  • the first component 910 and the second component 920 are disposed on the same surface along the first direction. That is, the first component 910 and the second component 920 are disposed on the same surface along the horizontal direction.
  • the first component 910 includes a first magnet 911 , a second magnet 912 and a filling material 913
  • the second component 920 includes a third magnet 920 .
  • the first magnet 911, the second magnet 912 and the filling material 913 are stacked along the second direction. That is, the first magnet 911 and the second magnet 912 are stacked perpendicularly to the surface.
  • Filling material 913 is provided between the first magnet 911 and the second magnet 912 .
  • the shapes of the first magnet 911, the second magnet 912 and the filling material 913 are circular in plan view.
  • the first magnet 911, the second magnet 912 and the filling material 913 may be fixedly connected to form an integral structure.
  • the first magnet 911, the second magnet 912 and the filling material 913 may be fixed on the sides of the third magnet 920 respectively.
  • a filling material 913 is added to the magnetic attraction device 900, which is disposed between the first magnet 911 and the second magnet 912.
  • Filling material 913 may include one or more of magnets, isolation materials, or voids.
  • filler material 713 may include magnets.
  • the filling material 913 may be a non-magnetic isolation material that is filled in the gap between the first magnet 911 and the second magnet 912 to reduce the volume of the first magnet 911 and the second magnet 912 , thereby reducing the cost of magnet materials.
  • the filling material 913 may be a gap of a certain volume, that is, when the first magnet 911 and the second magnet 912 are stacked along the second direction, the upper surface of the first magnet 911 and the upper side of the third magnet 920 The surfaces are on the same plane, and the lower surface of the second magnet 912 and the lower surface of the third magnet 920 are on the same plane.
  • a gap of a set volume is reserved between the first magnet 911 and the second magnet 912 .
  • Figure 9(b) is a schematic diagram of the magnet magnetic field of a magnetic attraction device provided by an embodiment of the present application.
  • the magnetic attraction device 900 includes a first magnet 911 , a second magnet 912 , a filling material 913 and a third magnet 920 .
  • the first magnet 911 and the second magnet 912 are both magnetized by radiation magnetization.
  • the third magnet 920 is magnetized in an axial direction.
  • the S pole of the first magnet 911 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the second magnet 912 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the third magnet 920 faces upward and the N pole faces downward.
  • filler material 913 may include axially charged magnets.
  • Figure 9(c) is a schematic diagram of the magnetic field of a magnet provided in an embodiment of the present application.
  • the magnetic attraction device 900 includes a first magnet 911, a second magnet 912, a filling material 913 and a third magnet 920.
  • the first magnet 911 and the second magnet 912 are both magnetized in an axial direction.
  • the magnetization method of the third magnet 920 is radiation magnetization.
  • the S pole of the first magnet 911 faces downward and the N pole faces upward.
  • the S pole of the second magnet 912 faces upward and the N pole faces downward.
  • the S pole of the third magnet 920 faces the inside of the ring, and the N pole faces the outside of the ring.
  • filler material 913 may include radiation-magnetic magnets.
  • the top view cross-section shape of the magnetic attraction device 900 is circular or polygonal, and the charging coil 20 of the charging module 10 can be disposed outside the first component 910 of the magnetic attraction device 900.
  • the charging coil 20, the first component 910 and the second component 920 are arranged in sequence along the first direction.
  • the magnetic field radiated to the surroundings from the middle part of the side of the third magnet 920 is relatively small, so no magnet is provided at the middle part of the side of the third magnet 920.
  • the first magnet 911 is only provided at the upper part of the side of the third magnet 920.
  • the second magnet 912 is provided on the lower part of the side of the third magnet 920, which can also weaken the magnetic field radiated by the magnetic attraction device 900 to the surroundings.
  • reducing the amount of magnet material used can reduce the cost of the electronic device 100 and the charger 200 .
  • Figure 10(a) is a schematic structural diagram of another magnetic attraction device provided in an embodiment of the present application.
  • the magnetic attraction device 1000 includes a first component 1010 and a second component 1020 .
  • the first component 1010 and the second component 1020 are disposed on the same surface along the first direction, that is, the first component 1010 and the second component 1020 are disposed on the same surface along the horizontal direction.
  • the first component 1010 has an annular cross-sectional shape in plan view, and the second component 1020 is also annular.
  • the inner radial dimension of the second component 1020 is greater than or equal to the outer radial dimension of the first component 1010 .
  • the second component 1020 is disposed outside the first component 1010 .
  • the inner radial size of the first component 1010 is greater than or equal to the outer radial size of the charging coil 20 .
  • the first component 1010 and the second component 1020 may be fixedly connected to form an integral structure.
  • the first component 1010 and the second component 1020 can be respectively fixed on the same surface, and there can be a gap or filling material between the first component 1010 and the second component 1020 .
  • the top cross-sectional shapes of the first component 1010 and the second component 1020 are both circular annulus shapes.
  • the magnetic field distribution of the annular magnet is uniform, which is beneficial for the magnetic field of the first component 1010 and the magnetic field of the second component 1020 to enhance each other.
  • the first component 1010 and the second component 1020 both have an elliptical top-view cross-section shape.
  • the shapes of the top-view cross-sections of the first component 1010 and the second component 1020 may be polygons such as triangles, quadrilaterals, or other irregular shapes.
  • the magnetic suction device 1000 can select any of the above-mentioned first components 1010 and second components 1020, thereby improving the applicability of the magnetic suction device 1000.
  • the first component 1010 includes a first magnet 1011 and a second magnet 1012
  • the second component 1020 includes a third magnet 1020 .
  • the first magnet 1011 and the second magnet 1012 are stacked along the second direction. That is, the first magnet 1011 and the second magnet 1012 are stacked perpendicularly to the surface. Among them, the first magnet 1011 and the second magnet 1012 have the same shape, and their top cross-sectional shapes are both circular rings.
  • the first magnet 1011 and the second magnet 1012 may be fixedly connected to form an integral structure. In other embodiments, the first magnet 1011 and the second magnet 1012 may be respectively fixed on the sides of the third magnet 1020, and there may be a gap or filling material between the first magnet 1011 and the second magnet 1012.
  • Figure 10(b) is a schematic diagram of the magnetic field of a magnet provided in an embodiment of the present application.
  • the magnetic attraction device 1000 includes a first magnet 1011, a second magnet 1012 and a third magnet 1020.
  • the first magnet 1011 and the second magnet 1012 are both magnetized by radiation magnetization.
  • the magnetization mode of the third magnet 1020 is axial magnetization.
  • the N pole of the first magnet 1011 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the second magnet 1012 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the S pole of the third magnet 1020 faces upward and the N pole faces downward.
  • the magnetic field direction of the first magnet 1011 and the magnetic field direction of the second magnet 1012 are parallel and opposite to each other.
  • the magnetic fields radiated inward by the first magnet 1011 and the second magnet 1012 cancel each other, thereby realizing the weakening of the magnetic field radiated inward by the magnetic attraction device 1000 .
  • the internal magnetic field directions of the first magnet 1011, the second magnet 1012 and the third magnet 1020 of the magnetic attraction device 1000 also include other combinations, which can realize the weakening of the magnetic field radiated inward by the magnetic attraction device 1000.
  • the S pole of the first magnet 1011 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the second magnet 1012 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the N pole of the third magnet 1020 faces upward and the S pole faces downward.
  • the magnetic field direction of the first magnet 1011 and the magnetic field direction of the second magnet 1012 are parallel and opposite to each other. The magnetic fields radiated inward by the first magnet 1011 and the second magnet 1012 cancel each other, thereby realizing the weakening of the magnetic field radiated inward by the magnetic attraction device 1000 .
  • the magnetic attraction device 1000 in the embodiment of the present application can also achieve enhancement of the magnetic field strength on the upper side or the magnetic field strength on the lower side.
  • the N pole of the first magnet 1011 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the second magnet 1012 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the S pole of the third magnet 1020 faces upward and the N pole faces downward.
  • the S pole of the first magnet 1011 and the S pole of the third magnet 1020 strengthen each other on the upper side of the magnetic attraction device 1000, thereby achieving enhanced magnetic field intensity on the upper side of the magnetic attraction device 1000.
  • the internal magnetic field directions of the first magnet 1011, the second magnet 1012 and the third magnet 1020 of the magnetic suction device 1000 also include other combinations, which can enhance the magnetic field intensity on the upper side of the magnetic suction device 1000. This application will not describe in detail here. .
  • Figure 10(c) is a schematic diagram of the magnet magnetic field of a magnetic attraction device provided by an embodiment of the present application.
  • the magnetic attraction device 1000 includes a first magnet 1011, a second magnet 1012 and a third magnet 1020.
  • the first magnet 1011 and the second magnet 1012 are both magnetized in an axial direction.
  • the magnetization method of the third magnet 1020 is radiation magnetization.
  • the S pole of the first magnet 1011 faces downward and the N pole faces upward.
  • the S pole of the second magnet 1012 faces upward and the N pole faces downward.
  • the N pole of the third magnet 1020 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the magnetic field direction of the first magnet 1011 and the magnetic field direction of the second magnet 1012 are parallel and opposite to each other.
  • the magnetic fields radiated inward by the first magnet 1011 and the second magnet 1012 cancel each other, thereby realizing the weakening of the magnetic field radiated inward by the magnetic attraction device 1000 .
  • the internal magnetic field directions of the first magnet 1011, the second magnet 1012 and the third magnet 1020 of the magnetic attraction device 1000 also include other combinations, which can realize the weakening of the magnetic field radiated inward by the magnetic attraction device 1000.
  • the N pole of the first magnet 1011 faces downward and the S pole faces upward.
  • the N pole of the second magnet 1012 faces upward and the S pole faces downward.
  • the S pole of the third magnet 1020 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the magnetic field direction of the first magnet 1011 and the magnetic field direction of the second magnet 1012 are parallel and opposite to each other. The magnetic fields radiated inward by the first magnet 1011 and the second magnet 1012 cancel each other, thereby realizing the weakening of the magnetic field radiated inward by the magnetic attraction device 1000 .
  • the magnetic attraction device 1000 in the embodiment of the present application can also achieve enhancement of the magnetic field strength on the upper side or the magnetic field strength on the lower side.
  • the N pole of the first magnet 1011 faces downward and the S pole faces upward.
  • the N pole of the second magnet 1012 faces upward and the S pole faces downward.
  • the S pole of the third magnet 1020 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the first magnet 1011 and the N pole of the third magnet 1020 strengthen each other on the upper side of the magnetic attraction device 1000, thereby achieving enhancement of the magnetic field intensity on the upper side of the magnetic attraction device 1000.
  • the internal magnetic field directions of the first magnet 1011, the second magnet 1012 and the third magnet 1020 of the magnetic suction device 1000 also include other combinations, which can enhance the magnetic field intensity on the upper side of the magnetic suction device 1000. This application will not describe in detail here. .
  • the top view cross-section shape of the magnetic attraction device 1000 is circular or polygonal, and the charging coil 20 of the charging module 10 can be disposed inside the first component 1010 of the magnetic attraction device 1000 .
  • the charging coil 20, the first component 1010 and the second component 1020 are arranged in sequence along the first direction.
  • the first component 1010 and the third component 1020 in the magnetic suction device 1000 are annular, and the first component 1010 is disposed inside the second component 1020, which weakens the second component.
  • the radius of the magnetic attraction device 1000 is relatively large and can be nested outside the charging coil 20, which can reduce the influence of the magnet on the magnetic core on the back of the charging coil 20 in the electronic device or charger.
  • FIG. 10(d) is a schematic structural diagram of another electronic device and its charger in an embodiment of the present application.
  • the difference between Figure 10(d) and Figure 4 is that the magnetic attraction device 30 of the charging module 10 shown in Figure 4 is replaced with the magnetic attraction device 1000 shown in Figure 10 .
  • the charging coil 20 is built inside the magnetic attraction device 1000 .
  • the charging coil 20 in the charging module 10 shown in FIG. 4 is omitted in FIG. 10(d).
  • the magnetic attraction device 1000 in the electronic device 100 and the charger 200 can magnetically attract each other to define the contact position of the electronic device 100 and the charger 200, thereby facilitating the charging of the electronic device 100.
  • the coil 20 and the charging coil 20 of the charger 200 match each other, thereby improving the convenience of wireless charging.
  • the magnetic attraction device 1000 is disposed on the lower side inside the electronic device 100 .
  • the first component 1010 and the second component 1020 of the magnetic device 1000 are adjacently arranged on the same surface along the first direction, and the first magnet 1011 and the second component 1012 of the first component 1010 are stacked along the second direction.
  • the first component 1010 and the second component 1020 of the magnetic device 1000 may be disposed adjacent to the inner surface of the lower housing of the electronic device 100 or the substrate inside the electronic device 100 .
  • the intensity of the magnetic field radiated inward by the magnetic attraction device 1000 weakens, and the intensity of the magnetic field on the lower side of the magnetic attraction device 1000 increases.
  • the magnetic attraction device 1000 is disposed on the upper side inside the charger 200 .
  • the first component 1010 and the second component 1020 of the magnetic device 1000 are adjacently arranged on the same surface along the first direction, and the first magnet 1011 and the second component 1012 of the first component 1010 are stacked along the second direction.
  • the first component 1010 and the second component 1020 of the magnetic device 1000 may be disposed adjacent to the inner surface of the upper housing of the charger 200 or the substrate inside the charger 200 .
  • the intensity of the magnetic field radiated inward by the magnetic attraction device 1000 in the charger 200 weakens, and the intensity of the magnetic field on the upper side of the magnetic attraction device 1000 increases.
  • Figure 11(a) is a schematic structural diagram of another magnetic attraction device provided in an embodiment of the present application.
  • the magnetic attraction device 1100 includes a first component 1110 and a second component 1120 .
  • the first component 1110 and the second component 1120 are disposed on the same surface along the first direction. That is, the first component 1110 and the second component 1120 are disposed on the same surface along the horizontal direction.
  • the first component 1110 includes a first magnet 1111 , a second magnet 1112 and a filling material 1113
  • the second component 1120 includes a third magnet 1120 .
  • the first magnet 1111, the second magnet 1112 and the filling material 1113 are stacked along the second direction. That is, the first magnet 1111 and the second magnet 1112 are stacked perpendicularly to the surface.
  • Filling material 1113 is provided between the first magnet 1111 and the second magnet 1112.
  • the first magnet 1111, the second magnet 1112 and the filling material 1113 have the same shape, and their plan view cross-section shapes are all circular rings.
  • the first magnet 1111, the second magnet 1112 and the filling material 1113 may be fixedly connected to form an integral structure. In other embodiments, the first magnet 1111, the second magnet 1112 and the filling material 1113 may be fixed on the sides of the third magnet 1120 respectively.
  • a filling material 1113 is added to the magnetic attraction device 1100, which is disposed between the first magnet 1111 and the second magnet 1112.
  • Filling material 1113 may include one or more of magnets, isolation materials, or voids.
  • filler material 713 may include magnets.
  • the filling material 1113 may be a non-magnetic isolation material that is filled in the gap between the first magnet 1111 and the second magnet 1112 to reduce the volumes of the first magnet 1111 and the second magnet 1112. , thereby reducing the cost of magnet materials.
  • the filling material 1113 may be a gap of a certain volume, that is, when the first magnet 1111 and the second magnet 1112 are stacked along the second direction, the upper surface of the first magnet 1111 and the upper side of the third magnet 1120 The surfaces are on the same plane, and the lower surface of the second magnet 1112 and the lower surface of the third magnet 1120 are on the same plane.
  • a gap of a set volume is reserved between the first magnet 1111 and the second magnet 1112 .
  • Figure 11(b) is a schematic diagram of the magnetic field of a magnet provided in an embodiment of the present application.
  • the magnetic attraction device 1100 includes a first magnet 1111, a second magnet 1112, a filling material 1113 and a third magnet 1120.
  • the first magnet 1111 and the second magnet 1112 are both magnetized by radiation magnetization.
  • the third magnet 1120 is magnetized in an axial direction.
  • the N pole of the first magnet 1111 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the second magnet 1112 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the S pole of the third magnet 1120 faces upward and the N pole faces downward.
  • filler material 1113 may include axially charged magnets.
  • Figure 11(c) is a schematic diagram of the magnet magnetic field of a magnetic attraction device provided by an embodiment of the present application.
  • the magnetic attraction device 1100 includes a first magnet 1111, a second magnet 1112, a filling material 1113 and a third magnet 1120.
  • the first magnet 1111 and the second magnet 1112 are both magnetized in an axial direction.
  • the magnetization method of the third magnet 1120 is radiation magnetization.
  • the S pole of the first magnet 1111 faces downward and the N pole faces upward.
  • the S pole of the second magnet 1112 faces upward and the N pole faces downward.
  • the N pole of the third magnet 1120 faces the inside of the ring, and the S pole faces the outside of the ring.
  • filler material 1113 may include radiation-magnetic magnets.
  • the top view cross-section shape of the magnetic attraction device 1100 is circular or polygonal, and the charging coil 20 of the charging module 10 can be disposed inside the first component 1110 of the magnetic attraction device 1100 .
  • the charging coil 20, the first component 1110 and the second component 1120 are arranged in sequence along the first direction.
  • the magnetic field radiated inwardly from the middle part of the side of the third magnet 1120 is relatively small, so no magnet is provided at the middle part of the side of the third magnet 1120.
  • the first magnet 1111 is only provided at the upper part of the side of the third magnet 1120.
  • the second magnet 1112 is provided on the lower part of the side of the third magnet 1120, which can also weaken the magnetic field radiated inwardly by the magnetic attraction device 1100.
  • reducing the amount of magnet material used can reduce the cost of the electronic device 100 and the charger 200 .
  • the charging module provided by the embodiment of the present application includes at least one magnetic unit, and each magnetic unit includes a first component and a second component.
  • the first component includes a first magnet and a second magnet, the first component including at least one magnet.
  • the first magnet and the second magnet are stacked along the second direction.
  • the second component is disposed between the first magnet and the second magnet of the first component.
  • the first magnet and the second magnet in the first component are magnetized in one of axial magnetization and radial magnetization.
  • the magnetization of at least one magnet in the second component is axial magnetization or radial magnetization.
  • the first magnet and the second magnet in the first component are magnetized in one of axial magnetization and radiation magnetization
  • the magnetization of at least one magnet in the second component is axial magnetization and radiation magnetization.
  • the first magnet and the second magnet in the first assembly are magnetized in a manner different from the magnetization manner of at least one magnet in the second assembly.
  • Figure 12(a) is a schematic structural diagram of another magnetic attraction device provided in an embodiment of the present application.
  • the magnetic attraction device 1200 includes a first component 1210 and a second component 1220 .
  • the first component 1210 and the second component 1220 are stacked perpendicularly to the surface.
  • the first component 1210 and the second component 1220 are both annular in plan view and have the same shape.
  • the magnetic field distribution of the annular magnet is uniform, which is beneficial for the magnetic field of the first component 1210 and the magnetic field of the second component 1220 to enhance each other.
  • the shape of the top cross-section of the second component 1220 may be an ellipse, and the shape of the top cross-section of the first component 1210 may be an elliptical annular shape.
  • the shape of the top-view cross-section of the second component 1220 may be a polygon such as a triangle, a quadrilateral, or other irregular shapes, and the shape of the top-view cross-section of the first component 1210 may also be a triangular annular shape, a quadrilateral annular shape, or other polygonal annular shapes, or other irregular shapes. Irregular ring shape.
  • the magnetic suction device 1200 can select any of the above-mentioned first components 1210 and second components 1220, thereby improving the applicability of the magnetic suction device 1200.
  • the first component 1210 includes a first magnet 1211 and a second magnet 1212
  • the second component 1220 includes a third magnet 1220 .
  • the first magnet 1211 and the second magnet 1212 are stacked perpendicularly to the surface.
  • the third magnet 1220 is disposed between the first magnet 1211 and the second magnet 1212.
  • the first magnet 1211 and the second magnet 1212 have the same shape, and their top cross-sectional shapes are both circular rings.
  • the first magnet 1211, the third magnet 1220 and the second magnet 1212 may be fixedly connected to form an integral structure.
  • Figure 12(b) is a schematic diagram of the magnet magnetic field of a magnetic attraction device provided by an embodiment of the present application.
  • the magnetic attraction device 1200 includes a first magnet 1211, a second magnet 1212 and a third magnet 1220.
  • the first magnet 1211 and the second magnet 1212 are both magnetized by radiation magnetization.
  • the magnetization mode of the third magnet 1220 is axial magnetization.
  • the S pole of the first magnet 1211 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the N pole of the second magnet 1212 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the third magnet 1220 faces upward and the N pole faces downward.
  • the magnetic field direction of the first magnet 1211 and the magnetic field direction of the second magnet 1212 are parallel and opposite to each other.
  • Figure 12(c) is a schematic diagram of the magnet magnetic field of a magnetic attraction device provided by an embodiment of the present application.
  • the magnetic attraction device 1200 includes a first magnet 1211, a second magnet 1212 and a third magnet 1220.
  • the first magnet 1211 and the second magnet 1212 are both magnetized in an axial direction.
  • the magnetization method of the third magnet 1220 is radiation magnetization.
  • the S pole of the first magnet 1211 faces upward and the N pole faces downward.
  • the N pole of the second magnet 1212 faces upward and the S pole faces downward.
  • the S pole of the third magnet 1220 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the magnetic field direction of the first magnet 1211 and the magnetic field direction of the second magnet 1212 are parallel and opposite to each other.
  • Figure 12(d) is a schematic diagram of the magnetic field of a magnet provided in an embodiment of the present application.
  • the magnetic attraction device 1200 includes a first magnet 1211, a second magnet 1212 and a third magnet 1220.
  • the first magnet 1211 and the second magnet 1212 are both magnetized by radiation magnetization.
  • the magnetization mode of the third magnet 1220 is axial magnetization.
  • the N pole of the first magnet 1211 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the S pole of the second magnet 1212 faces the inside of the ring, and the N pole faces the outside of the ring.
  • the S pole of the third magnet 1220 faces upward and the N pole faces downward.
  • the magnetic field direction of the first magnet 1211 and the magnetic field direction of the second magnet 1212 are parallel and opposite to each other.
  • Figure 12(e) is a schematic diagram of the magnetic field of a magnet provided in an embodiment of the present application.
  • the magnetic attraction device 1200 includes a first magnet 1211, a second magnet 1212 and a third magnet 1220.
  • the first magnet 1211 and the second magnet 1212 are both magnetized in an axial direction.
  • the magnetization method of the third magnet 1220 is radiation magnetization.
  • the N pole of the first magnet 1211 faces upward and the S pole faces downward.
  • the S pole of the second magnet 1212 faces upward and the N pole faces downward.
  • the N pole of the third magnet 1220 faces the inside of the ring, and the S pole faces the outside of the ring.
  • the magnetic field direction of the first magnet 1211 and the magnetic field direction of the second magnet 1212 are parallel and opposite to each other.
  • the internal magnetic field directions of the first magnet 1211, the second magnet 212 and the third magnet 1220 of the magnetic attraction device 1200 also include other combinations, which can realize the weakening of the magnetic field radiated by the magnetic attraction device 1200 to the surroundings, which is not limited in this application.
  • the shape of the top view cross-section of the first magnet 1211, the second magnet 212 and the third magnet 1220 in the magnetic attraction device 1200 may also be a polygon.
  • the magnetization method of the first magnet 1211 and the second magnet 1212 is axial magnetization.
  • the magnetization method of the third magnet 1220 is radiation magnetization.
  • the magnetization method of the first magnet 1211 and the second magnet 1212 is radiation magnetization.
  • the magnetization mode of the third magnet 1220 is axial magnetization.
  • the magnetization method of the first magnet 1211 and the second magnet 1212 is axial magnetization.
  • the third magnet 1220 is magnetized in a radial direction.
  • the first magnet 1211 and the second magnet 1212 are both magnetized in a radial direction.
  • the magnetization mode of the third magnet 1220 is axial magnetization.
  • the magnetic field directions of the polygonal first magnet 1211, the second magnet 212 and the third magnet 1220 are the same as those in the above embodiment, and will not be described again.
  • the shape of the top view cross-section of the first magnet 1211, the second magnet 212 and the third magnet 1220 in the magnetic device 1200 may also be a sector ring.
  • the magnetization method of the first magnet 1211 and the second magnet 1212 is radiation magnetization.
  • the magnetization mode of the third magnet 1220 is axial magnetization.
  • the magnetization method of the first magnet 1211 and the second magnet 1212 is axial magnetization.
  • the magnetization method of the third magnet 1220 is radiation magnetization.
  • the magnetization method of the first magnet 1211 and the second magnet 1212 is axial magnetization.
  • the third magnet 1220 is magnetized in a radial direction. As shown in FIG. 12(d) , the first magnet 1211 and the second magnet 1212 are both magnetized in a radial direction.
  • the magnetization mode of the third magnet 1220 is axial magnetization.
  • the magnetic field directions of the first magnet 1211, the second magnet 212 and the third magnet 1220 of the sector ring are the same as those in the above embodiment, and will not be described again.
  • Figure 13 is a schematic diagram of the magnet structure of a magnetic attraction device provided in an embodiment of the present application.
  • the magnetic attraction device 1300 includes a first component 1310 and a second component 1320 .
  • the first component 1310 includes a first magnet 1311 and a second magnet 1312
  • the second component 1320 includes a third magnet 1320 .
  • the first magnet 1311 includes a plurality of magnet modules
  • the second magnet 1312 includes a plurality of magnet modules
  • the third magnet 1320 only includes one cylindrical magnet module.
  • Multiple magnet modules are spliced to form an annular cylindrical structure.
  • the plan view cross-section shape of the plurality of magnet modules in the first magnet 1311 and the second magnet 1312 is a sector ring.
  • the magnet module can be a sector magnet with an angle of 360°/M.
  • M is the number of magnet modules spliced to form a circular magnet, and is greater than or equal to 2.
  • the shape of the top view cross-section of the magnet module may also be a polygon such as a triangle or a quadrilateral.
  • the magnetic device 1300 can select magnet modules of various shapes, thereby improving the applicability of the magnetic device 1300 .
  • the number of magnet modules in the first magnet 1311 and the second magnet 1312 is the same or different.
  • the first magnet 1311 only includes one cylindrical magnet module
  • the second magnet 1312 only includes one cylindrical magnet module
  • the third magnet 1320 includes multiple magnet modules.
  • Figure 14 is a schematic diagram of the magnet structure of a magnetic attraction device provided in an embodiment of the present application.
  • the magnetic attraction device 1400 includes a first component 1410 and a second component 1420 .
  • the first assembly 1410 includes a first magnet 1411 and a second magnet 1412 .
  • the second assembly 1420 includes a third magnet 1420 .
  • the first magnet 1411 includes a plurality of magnet modules
  • the second magnet 1412 includes a plurality of magnet modules
  • the third magnet 1420 only includes an annular cylindrical magnet module. Multiple magnet modules are spliced to form an annular cylindrical structure.
  • the plan view cross-section shape of the plurality of magnet modules in the first magnet 1411 and the second magnet 1412 is a sector ring.
  • the magnet module can be a sector magnet with an angle of 360°/M.
  • M is the number of magnet modules spliced to form a circular magnet, and is greater than or equal to 2.
  • the shape of the top view cross-section of the magnet module may also be a polygon such as a triangle or a quadrilateral.
  • the magnetic device 1400 can select magnet modules of various shapes, thereby improving the applicability of the magnetic device 1400 .
  • the number of magnet modules in the first magnet 1411 and the second magnet 1412 is the same or different.
  • the first magnet 1411 only includes one cylindrical magnet module
  • the second magnet 1412 only includes one cylindrical magnet module
  • the third magnet 1420 includes multiple magnet modules.
  • Figure 15 is a schematic diagram of the magnet structure of a magnetic attraction device provided in an embodiment of the present application.
  • the magnetic attraction device 1500 includes a first component 1510 and a second component 1520 .
  • the first assembly 1510 includes a first magnet 1511 and a second magnet 1512 .
  • the second assembly 1520 includes a third magnet 1520 .
  • the first magnet 1511 only includes an annular cylindrical magnet module.
  • the second magnet 1512 only includes an annular cylindrical magnet module.
  • the third magnet 1520 includes a plurality of magnet modules. Multiple magnet modules are spliced to form an annular cylindrical structure.
  • the plan view cross-section shape of the plurality of magnet modules in the third magnet 1520 is a sector ring.
  • the magnet module can be a sector magnet with an angle of 360°/M.
  • M is the number of magnet modules spliced to form a circular magnet, and is greater than or equal to 2.
  • the shape of the top view cross-section of the magnet module may also be a polygon such as a triangle or a quadrilateral.
  • the magnetic device 1500 can select magnet modules of various shapes, thereby improving the applicability of the magnetic device 1500 .
  • first magnet 1511 includes a plurality of magnet modules.
  • the second magnet 1512 includes a plurality of magnet modules.
  • the third magnet 1520 only includes an annular cylindrical magnet module. In this embodiment, the number of magnet modules in the first magnet 1511 and the second magnet 1512 is the same or different.
  • Figure 16 is a schematic diagram of the magnet magnetic field of another magnetic attraction device provided in the embodiment of the present application.
  • the magnetic attraction device 1600 includes a first component 1610 and a second component 1620 .
  • the first component 1610 includes a first magnet 1611 and a second magnet 1612 .
  • the second magnet 1612 is covered by the first magnet 1611 .
  • the second assembly 1620 includes a third magnet 1620 .
  • the first magnet 1611, the second magnet 1612 and the third magnet 1620 each include a plurality of magnet modules. Multiple magnet modules are spliced to form a ring structure.
  • the multiple magnet modules in the first magnet 1611 are magnetized in the same manner.
  • the multiple magnet modules in the second magnet 1612 are magnetized in the same manner.
  • the multiple magnet modules in the third magnet 1620 are magnetized in the same manner. That is, multiple magnet modules of the same magnet are magnetized in the same manner.
  • the magnetic field directions inside two adjacent magnet modules of the first magnet 1611 are opposite.
  • the directions of the magnetic fields inside two adjacent magnet modules of the second magnet 1612 are opposite.
  • the directions of the magnetic fields inside two adjacent magnet modules in the third magnet 1620 are opposite.
  • the N pole of one of the two adjacent magnet modules in the first magnet 1611 is facing upward and the S pole is facing downward.
  • the S pole of the other magnet module among the two adjacent magnet modules in the first magnet 1611 is facing upward and the N pole is facing downward. That is, the magnetic field directions inside two adjacent magnet modules among multiple magnet modules of the same magnet are opposite, which can reduce the repulsive force between the magnet modules during the assembly process of the magnetic attraction device 1600 and facilitate the assembly of the magnetic attraction device 1600 .
  • multiple magnet modules of the same magnet can be divided into at least two sides.
  • the direction of the magnetic field inside the multiple magnet modules on one side is different from that of the multiple magnet modules on the other side.
  • the magnetic field inside is in the opposite direction.
  • M magnet modules in the same magnet are divided into two sides, one side includes M1 magnet modules, and the other side includes M2 magnet modules.
  • the S pole inside the M1 magnet modules on one side faces upward and the N pole faces downward.
  • the S pole inside the M2 magnet modules on the other side is facing down and the N pole is facing up.
  • the magnetic field direction inside the multiple magnet modules on one side of the multiple magnet modules on adjacent sides of the same magnet is opposite to the direction of the magnetic field inside the multiple magnet modules on the other side, which can reduce the number of magnets during the assembly process of the magnetic attraction device.
  • the repulsive force between modules facilitates the assembly of the magnetic device.
  • One or more magnets in the first component or the second component of the magnetic attraction device in the charging module provided by the embodiment of the present application may include one or more magnet modules.
  • the top view cross-sectional shape of the magnet module is a sector ring or a polygon.
  • one or more magnets of the first component or the second component may include multiple magnet modules, and the multiple magnet modules of the same magnet are magnetized in the same manner.
  • one or more magnets of the first component or the second component may include multiple magnet modules, and the internal magnetic fields of two adjacent magnets in the same magnet have opposite directions.
  • one or more magnets of the first component or the second component may include multiple magnet modules.
  • the multiple magnet modules in the same magnet are divided into at least two sides, and the internal magnetic fields of the magnets on adjacent two sides have opposite directions. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供了一种无线充电模块、电子设备和充电器。无线充电模块包括充电线圈和磁性对位装置。其中,磁吸装置包括多个磁吸单元,每个磁吸单元包括第一组件和第二组件,第一组件和第二组件沿第一方向设置于同一表面。第一组件包括多个磁体,多个磁体的磁场方向相互平行且方向相反,让侧向磁场相互抵消,从而实现磁吸装置向四周或内侧辐射的磁场减弱,可以省略或减少软磁材料,有利于充电器或电子设备的小型化。磁吸装置一侧的磁场强度增强,可以增加电子设备和充电器之间的磁性吸附力,可以更好地限定电子设备和充电器的接触位置,便于电子设备和充电器的充电线圈的匹配,有利于电子设备和充电器进行无线充电时的用户体验。

Description

一种充电模块、电子设备和充电器
本申请要求于2022年04月25日提交中国国家知识产权局、申请号为202210440717.2、申请名称为“一种充电模块、电子设备和充电器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及充电技术领域,尤其涉及一种充电模块、电子设备和充电器。
背景技术
现有无线充电技术可以通过磁铁使电子设备和充电器之间相互吸附,电子设备和充电器的充电线圈之间通过电磁感应实现无线充电。但是,磁铁的磁场会影响电子设备以及充电器内部的其它磁场敏感器件的正常工作,从而影响电子设备及充电器的性能。
发明内容
为了解决上述的问题,本申请的实施例提供了一种充电模块和使用充电模块的电子设备和充电器。充电模块包括充电线圈和磁吸装置,磁吸装置的四周或内侧的磁场强度减弱,可以降低磁吸装置对充电器或电子设备中其它磁性敏感器件的影响,可以省略或减少软磁材料,有利于充电器或电子设备的小型化。磁吸装置一侧的磁场强度增强,可以增加电子设备和充电器之间的磁性吸附力,可以更好地限定电子设备和充电器的接触位置,便于电子设备和充电器的充电线圈的匹配,有利于电子设备和充电器进行无线充电时的用户体验。
第一方面,本申请提供一种充电模块,包括充电线圈和磁吸装置,充电线圈用于接收或发送电能,磁吸装置设置于充电线圈的内侧或外侧,磁吸装置包括至少一个磁吸单元,磁吸单元包括第一组件和第二组件,第一组件与第二组件沿第一方向相邻设置;其中,第一组件包括多个磁体;第一组件中的多个磁体沿第二方向层叠设置;第一组件中的至少两个磁体的内部磁场方向相反;第二组件包括至少一个磁体;第二组件中的磁体的内部磁场方向相同;第一方向与充电线圈或磁吸装置的平面相平行,第二方向与充电线圈或磁吸装置的平面相垂直。
一种实施例中,充电线圈、磁吸单元的第一组件、磁吸单元的第二组件沿第一方向依次相邻排列。
一种实施例中,第一组件中的至少两个磁体的内部磁场方向与第一方向、第二方向中的一个相平行,第二组件中的磁体的内部磁场方向与第一方向、第二方向中的另一个相平行。
一种实施例中,第一组件中的至少两个磁体的充磁方式与第二组件中磁体的充磁方式不同。
一种实施例中,第一组件的至少两个磁体包括第一磁体和第二磁体,第一磁体的充磁方式和第二磁体的充磁方式相同,第一磁体的内部磁场方向和第二磁体的内部磁场方向相反。
一种实施例中,第一组件还包括填充材料,填充材料与第一组件的至少两个磁体沿第二方向层叠设置,填充材料设置于位于第一组件的至少两个磁体之间,填充材料包括隔离组件或磁体的一种或多种。
一种实施例中,第一组件中或第二组件中的一个或多个中的一个或多个磁体由多个相邻设置的磁体子模块拼接形成。
一种实施例中,第一组件中磁体的俯视截面的形状为扇环或多边形,第二组件中磁体的俯视截面的形状为扇环或多边形;第一组件中的至少两个磁体的充磁方式为轴向充磁、辐射充磁中的一种,第二组件中磁体的充磁方式为轴向充磁、辐射充磁中的另一种;或,第一组件中的至少两个磁体的充磁方式为轴向充磁、径向充磁中的一种,第二组件中磁体的充磁方式为轴向充磁、径向充磁中的另一种。
一种实施例中,磁吸装置包括多个磁吸单元,每个磁吸单元的俯视截面的形状为扇环或多边形,多个磁吸单元依次相邻设置于充电线圈的邻近位置从而形成环形或扇环。
一种实施例中,磁吸装置包括多个磁吸单元,每个磁吸单元的俯视截面的形状为扇环或多边形,每个磁吸单元单独设置于充电线圈的邻近位置。
一种实施例中,磁吸装置包括多组磁吸单元,每组磁吸单元包括一个磁吸单元或者多个依次相邻排列的磁吸单元,每组磁吸单元单独地设置于充电线圈的邻近位置。
一种实施例中,磁吸装置包括一个磁吸单元,磁吸单元的俯视截面的形状为圆形、或环形、或多边形。
一种实施例中,第一组件中磁体的俯视截面的形状为环形或扇环,第二组件中磁体的俯视截面的形状为环形、或圆形、或多边形,第一组件中的至少两个磁体的充磁方式为轴向充磁、辐射充磁中的一种,第二组件中磁体的充磁方式为轴向充磁、辐射充磁中的另一种。
第二方面,本申请提供一种充电模块,包括充电线圈和磁吸装置,充电线圈用于接收或发送电能,磁吸装置设置于充电线圈的内侧或外侧,磁吸装置包括至少一个磁吸单元,磁吸单元包括第一组件和第二组件,第一组件与第二组件沿第一方向相邻设置;其中,第一组件包括多个磁体;第一组件中的多个磁体沿第一方向层叠设置;第一组件中的至少两个磁体的内部磁场方向相反;第二组件包括至少一个磁体;第二组件中的磁体的内部磁场方向相同;第一方向与充电线圈或磁吸装置的平面相垂直。
第三方面,本申请提供一种电子设备,其特征在于,包括电源模块和上述所述的充电模块,其中,充电模块的充电线圈与电源模块电连接,充电模块的充电线圈用于接收充电器的充电线圈发送的电能;磁吸装置用于限定电子设备与充电器的接触位置,使得充电器的充电线圈与电子设备的充电线圈相匹配。
第四方面,本申请提供一种充电器,其特征在于,包括电源模块和上述所述的充电模块,其中,充电模块的充电线圈与电源模块电连接,充电模块的充电线圈用于向电子设备的充电线圈发送电能;磁吸装置用于限定充电器与电子设备的接触位置,使得充电器的充电线圈与电子设备的充电线圈相匹配。
附图说明
下面对实施例或现有技术描述中所需使用的附图作简单地介绍。
图1为现有技术中一种电子设备及其充电器的结构示意图;
图2(a)为本申请实施例中一种磁体示意图;
图2(b)为本申请实施例中另一种磁体示意图;
图2(c)为本申请实施例中另一种磁体示意图;
图2(d)为本申请实施例中另一种磁体示意图;
图3(a)为本申请实施例中提供的一种充电模块的俯视截面的示意图;
图3(b)为本申请实施例中提供的另一种充电模块的俯视截面的示意图;
图3(c)为本申请实施例中提供的另一种充电模块的俯视截面的示意图;
图3(d)为本申请实施例中提供的一种充电模块的磁吸装置中磁体的内部磁场方向的示意图;
图3(e)为本申请实施例中提供的另一种充电模块的磁吸装置中磁体的内部磁场方向的示意图;
图3(f)为本申请实施例中提供的另一种充电模块的磁吸装置中磁体的内部磁场方向的示意图;
图4为本申请实施例中一种电子设备及其充电器的结构示意图;
图5(a)为本申请实施例提供的一种磁吸装置的结构示意图;
图5(b)为本申请实施例提供的一种磁吸装置的磁体磁场示意图;
图5(c)为本申请实施例提供的一种磁吸装置的磁体磁场示意图;
图6为本申请实施例提供的另一种电子设备及其充电器的结构示意图;
图7(a)为本申请实施例提供的另一种磁吸装置的结构示意图;
图7(b)为本申请实施例提供的另一种磁吸装置的磁体磁场示意图;
图8(a)为本申请实施例提供的另一种磁吸装置的结构示意图;
图8(b)为本申请实施例提供的第一种磁吸装置的磁体磁场示意图;
图8(c)为本申请实施例提供的第二种磁吸装置的磁体磁场示意图;
图9(a)为本申请实施例提供的另一种磁吸装置的结构示意图;
图9(b)为本申请实施例提供的第一种磁吸装置的磁体磁场示意图;
图9(c)为本申请实施例提供的第二种磁吸装置的磁体磁场示意图;
图10(a)为本申请实施例提供的另一种磁吸装置的结构示意图;
图10(b)为本申请实施例提供的第一种磁吸装置的磁体磁场示意图;
图10(c)为本申请实施例提供的第二种磁吸装置的磁体磁场示意图;
图10(d)为本申请实施例提供的另一种电子设备及其充电器的结构示意图;
图11(a)为本申请实施例提供的另一种磁吸装置的结构示意图;
图11(b)为本申请实施例提供的第一种磁吸装置的磁体磁场示意图;
图11(c)为本申请实施例提供的第二种磁吸装置的磁体磁场示意图;
图12(a)为本申请实施例提供的另一种磁吸装置的结构示意图;
图12(b)为本申请实施例提供的第一种磁吸装置的磁体磁场示意图;
图12(c)为本申请实施例提供的第二种磁吸装置的磁体磁场示意图;
图12(d)为本申请实施例提供的第三种磁吸装置的磁体磁场示意图;
图12(e)为本申请实施例提供的第四种磁吸装置的磁体磁场示意图;
图13为本申请实施例中提供的一种磁吸装置的结构示意图;
图14为本申请实施例中提供的另一种磁吸装置的结构示意图;
图15为本申请实施例中提供的另一种磁吸装置的结构示意图;
图16为本申请实施例中提供的一种磁吸装置的磁体结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
在本申请的描述中,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、 “顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如可以是固定连接,也可以是可拆卸连接,还可以是抵触连接或一体的连接;对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以适合的方式结合。
图1为现有技术中一种电子设备及其充电器的结构示意图。如图1所示,充电器200水平放置于桌面,电子设备100层叠于充电器200,电子设备100的充电线圈230和充电器200的充电线圈130匹配后可以无线充电。电子设备100中包括磁铁110、软磁材料120和充电线圈130。软磁材料120包裹在磁铁110的四周,充电线圈130套在软磁材料120的四周。充电器200中包括磁铁210、软磁材料220和充电线圈230。软磁材料220包裹在磁铁210的四周,充电线圈230套在软磁材料220的四周。
现有电子设备或充电器在磁铁的四周包裹软磁材料,利用软磁材料吸收磁铁向四周辐射的磁场,从而减少磁铁对电子设备或充电器中磁场敏感器件的影响,如减小磁铁对电子设备或充电器中的充电线圈背部磁芯的影响。但是,软磁材料的吸磁能力有限,无法消除磁铁的磁场对磁场敏感器件的影响。另外,软磁材料需要占用电子设备或充电器的内部空间,不利于电子设备或充电器的小型化。
为了解决现有无线充电技术存在的问题,本申请实施例提供了一种充电模块以及使用该充电模块的电子设备和充电器。
在本申请实施例中,磁体的充磁方式包括辐射充磁、轴向充磁和径向充磁。根据磁体的充磁方式区分,磁体包括辐射充磁磁体、轴向充磁磁体和径向充磁磁体。在本申请实施例中,“磁体内部的磁场方向”是指磁体内部的S极指向N极的方向。
示例性的,如图2(a)所示为环形的辐射充磁磁体。环形的辐射充磁磁体水平放置于平面,环形的辐射充磁磁体内部的磁场方向与平面大致相平行,环形的辐射充磁磁体内部的磁场方向为由外侧指向中心。在其它实施例中,环形的辐射充磁磁体内部的磁场方向可以为中心指向外侧。
示例性的,如图2(b)所示为环形的轴向充磁磁体。环形的轴向充磁磁体水平放置于平面,环形的轴向充磁磁体内部的磁场方向与平面大致相垂直,环形的轴向充磁磁体内部的磁场方向由下侧指向上侧。在其它实施例中,环形的轴向充磁磁体内部的磁场方向可以为由上侧指向下侧。
示例性的,如图2(c)所示为长方形的轴向充磁磁体。长方形的轴向充磁磁体水平放置于平面,长方形的轴向充磁磁体内部的磁场方向与平面大致相垂直,长方形的轴向充磁磁体内部的磁场方向为由上侧指向下侧。在其它实施例中,长方形的轴向充磁磁体内部的磁场方向可以为由下侧指向上侧。
示例性的,如图2(d)所示为长方形的径向充磁磁体。长方形的径向充磁磁体水平放置于平面,长方形的径向充磁磁体内部的磁场方向与平面大致相平行,长方形的径向充磁磁体内部的磁场方向为由左侧指向右侧。在其它实施例中,长方形的径向充磁磁体内部的磁场方向可以为与平面大致相平行的任意方向,如由右侧指向左侧、由前侧指向后侧、由后侧指向 前侧。
本申请实施例中,“磁体的径向尺寸”是指圆形、环形、扇环、多边形的磁吸装置的中心与内侧边缘或外侧边缘之间的距离。本申请实施例中,多边形包括三角形、长方形或其它多边形,环形包括圆环形、多边环形或其它不规则环形,扇环也可以称为弧形。“表面”可以是电子设备或充电器中用于承载磁吸装置的基板,可以是电子设备与充电器的壳体,或者可以是电子设备或充电器中用于承载充电线圈的基板。本申请实施例中,表面可以是平面或曲面。在本申请实施例中,基板可以是电路板、软磁材料或结构件。本申请实施例中,“相平行”包括两个平面之间、两个方向之间或方向与平面之间的夹角大致为0度。“相反”包括两个方向之间的夹角大致为180度。“相垂直”包括两个方向之间、方向与平面之间、平面与平面之的夹角大致为90度。“朝上”是指无线充电时从充电器200指向电子设备100的方向。“朝下”是指与“朝上”相反的方向。无线充电时,电子设备100靠近充电器200的一侧为电子设备100的下侧,电子设备100的另一侧为电子设备100的上侧。无线充电时,充电器200靠近电子设备100的一侧为充电器200的上侧,充电器200的另一侧为充电器200的下侧。
本申请实施例提供的充电模块包括充电线圈和磁吸装置。充电线圈用于接收或发送电能,磁吸装置设置于充电线圈的内侧或外侧。磁吸装置包括至少一个磁吸单元。磁吸单元包括第一组件和第二组件,第一组件与第二组件沿第一方向相邻设置。第一组件包括多个磁体,第一组件中的至少两个磁体的内部磁场方向相反。第二组件包括至少一个磁体,第二组件中的磁体的内部磁场方向相同。第一组件中多个磁体沿第二方向层叠设置。其中,第一方向是指与充电线圈或磁吸装置的平面相平行的方向,第二方向是指与充电线圈或磁吸装置的平面相垂直的方向。也即,第一方向与第二方向之间相垂直。
本申请实施例提供的充电模块中磁吸装置的四周或内侧的磁场强度减弱,可以降低磁吸装置对充电器或电子设备中其它磁性敏感器件的影响,可以省略或减少软磁材料,有利于充电器或电子设备的小型化。本申请实施例提供的充电模块中磁吸装置一侧的磁场强度增强,可以增加电子设备和充电器之间的磁性吸附力,可以更好地限定电子设备和充电器的接触位置,便于电子设备和充电器的充电线圈的匹配,有利于电子设备和充电器进行无线充电时的用户体验。
在本申请实施例中,充电线圈、磁吸单元的第一组件和磁吸单元的第二组件沿第一方向依次排列。
本申请实施例提供的磁吸装置包括至少一个磁吸单元。磁吸单元包括第一组件和第二组件。第一组件与第二组件沿第一方向相邻设置。第一组件包括多个磁体,第一组件中的至少两个磁体的内部磁场方向相反。第二组件包括至少一个磁体,第二组件中的磁体的内部磁场方向相同。第一组件中多个磁体沿第二方向层叠设置。其中,第一方向是指与磁吸装置的平面相平行的方向,第二方向是指与磁吸装置的平面相垂直的方向。
本申请实施例中,磁吸单元中磁体的充磁方式、内部的磁场方向可以包括多种组合。磁体的充磁方式可以包括辐射充磁、轴向充磁或径向充磁。磁体的内部的磁场方向可以包括第一方向或第二方向。其中,第一方向是指与磁吸装置的平面相平行的方向,第二方向是指与磁吸装置的平面相垂直的方向。
本申请实施例中,磁吸单元包括第一组件和第二组件。第一组件包括多个磁体。第二组件包括至少一个磁体。第一组件中的至少两个磁体的内部磁场方向与第一方向、第二方向中的一个相平行,第二组件中的磁体的内部磁场方向与第一方向、第二方向中的另一个相平行。
本申请实施例中,磁吸单元包括第一组件和第二组件。第一组件包括多个磁体。第二组 件包括至少一个磁体。第一组件中的至少两个磁体的充磁方式与第二组件中磁体的充磁方式不同。
本申请实施例中,磁吸单元的第一组件包括第一磁体和第二磁体,第一磁体的充磁方式和第二磁体的充磁方式相同,第一磁体的内部磁场方向和第二磁体的内部磁场方向相反。本申请实施例中,磁吸单元的第一组件还包括填充材料,填充材料与第一组件的至少两个磁体沿所述第二方向层叠设置,填充材料设置于位于第一组件的至少两个磁体之间,填充材料包括隔离组件或磁体的一种或多种。
本申请实施例中,磁体可以是单个完整的磁体。本申请实施例中,磁体也可以是多个磁体子模块拼接形成,相邻的磁体子模块可以相接触,也可以存在空隙或填充材料。本申请实施例中,磁体或磁体子模块的材料可以包括钕铁磁、钕磁或其它磁性材料一种或多种。
在本申请实施例中,第一组件中或第二组件中的一个或多个中的一个或多个磁体由多个相邻设置的磁体子模块拼接形成。本申请实施例中,磁吸装置中磁吸单元的数量、俯视截面的形状可以包括多种组合。磁吸单元中磁体的充磁方式、俯视截面的形状可以包括多种组合。磁体的充磁方式可以包括辐射充磁、轴向充磁或径向充磁。磁吸单元或磁吸单元中磁体的俯视截面的形状可以包括圆形、环形、多边形或其它不规则形状。
在本申请实施例中,磁吸单元的第一组件中磁体的俯视截面的形状为扇环或多边形,第二组件中磁体的俯视截面的形状为扇环或多边形。第一组件中的至少两个磁体的充磁方式为轴向充磁、辐射充磁中的一种,第二组件中磁体的充磁方式为轴向充磁、辐射充磁中的另一种。或者,第一组件中的至少两个磁体的充磁方式为轴向充磁、径向充磁中的一种,第二组件中磁体的充磁方式为轴向充磁、径向充磁中的另一种。
在本申请实施例中,磁吸装置包括所述磁吸单元,磁吸单元的俯视截面的形状为扇环或多边形,多个磁吸单元依次相邻设置于充电线圈的邻近位置从而形成环形或扇环。
在本申请实施例中,磁吸装置包括多个磁吸单元,每个磁吸单元的俯视截面的形状为扇环或多边形,每个磁吸单元单独设置于充电线圈的邻近位置。任意两个磁吸单元之间的间隔相同。
在本申请实施例中,磁吸装置包括多个磁吸单元,多个磁吸单元分为多组磁吸单元,任意一组磁吸单元包括一个磁吸单元或者多个依次相邻排列的多个磁吸单元,多组磁吸单元分别单独设置于充电线圈的邻近位置。任意两组磁吸单元之间的间隔相同。
在本申请实施例中,磁吸装置包括一个磁吸单元,磁吸单元的俯视截面的形状为圆形或环形或多边形。
在本申请实施例中,磁吸装置的第一组件中磁体的俯视截面的形状为环形或扇环,磁吸装置的第二组件中磁体的俯视截面的形状为环形或圆形或多边形,第一组件中的至少两个磁体的充磁方式为轴向充磁、辐射充磁中的一种,第二组件中磁体的充磁方式为轴向充磁、辐射充磁中的另一种。
本申请实施例提供的电子设备包括电源模块和充电模块。电源模块用于为电子设备供电。充电模块包括充电线圈和如上所述的磁吸装置。充电模块的充电线圈与电源模块电连接,充电模块的充电线圈用于接收充电器的充电线圈发送的电能。充电模块设置于电子设备内部下侧。磁吸装置用于限定电子设备和充电器的接触位置,使得电子设备的充电线圈和充电器的充电线圈相匹配。
本申请实施例提供的充电器包括电源模块和充电模块。充电模块包括充电线圈和如上所述的磁吸装置。充电模块的充电线圈与电源模块电连接。电源模块用于为充电模块的充电线 圈供电。充电模块的充电线圈用于向电子设备的充电线圈发送电能。充电模块设置于充电器内部上侧。磁吸装置用于限定充电器与电子设备的接触位置,使得充电器的充电线圈与电子设备的充电线圈相匹配。
本申请实施例提供充电器或电子设备的充电模块中磁吸装置的四周或内侧的磁场强度减弱,可以减少对其它磁性敏感器件受磁吸影响,可以省略或减少软磁材料,有利于充电器或电子设备的小型化。本申请实施例提供充电器或电子设备的充电模块中磁吸装置一侧的磁场强度增强,可以增加电子设备和充电器之间的磁性吸附力,可以更好地限定电子设备和充电器的接触位置,便于电子设备和充电器的充电线圈的匹配,有利于电子设备和充电器进行无线充电时的用户体验。
图3(a)是本申请实施例提供一种充电模块的示意图。如图3(a)所示,充电模块10包括磁吸装置300和充电线圈230。磁吸装置300包括多个磁吸单元301。每个磁吸单元301的俯视截面的形状为扇环或多边形。多个磁吸单元301依次相邻排列置于充电线圈230的外侧的邻近位置从而形成扇环或一个具有缺口的环形。在本申请实施例中,充电线圈230的俯视截面形状可以包括圆环形、不规则环形等多种形状,每个磁吸单元301与充电线圈230之间的间隔可以不相同或不相同。在其它实施例中,多个磁吸单元301依次相邻排列设置于充电线圈230的内侧的邻近位置从而形成扇环或一个具有缺口的环形。在本申请实施例中,充电线圈230的俯视截面形状可以包括圆环形、不规则环形等多种形状,每个磁吸单元301与充电线圈230之间的间隔可以不相同或不相同。相邻的两个磁吸单元301之间可以相接触,也可以存在空隙或填充材料。充电线圈230可以通过磁吸装置300的缺口与充电器200的其他电路电连接,有利于充电器200的小型化。在其它实施例中,磁吸装置210包括一个磁吸单元301。磁吸单元301的俯视截面的形状为扇环或具有一个缺口的环形,与图3(a)所示的磁吸装置300的形状相同。
图3(b)是本申请实施例提供另一种充电模块的示意图。如图3(b)所示,充电模块10包括磁吸装置300和充电线圈230。磁吸装置300包括两组磁吸单元301。其中,每组磁吸单元301包括相同数量的磁吸单元301。每个磁吸单元301的俯视截面的形状为扇环或多边形。每组磁吸单元301的俯视截面的形状为扇环或多边形。其中,一组磁吸单元301中多个磁吸单元301相邻排列从而形成一个扇环,另一组磁吸单元301中多个磁吸单元301相邻排列从而形成另一个扇环。相邻的两个磁吸单元301之间可以相接触,也可以存在空隙或填充材料。如图3(b)所示,两组磁吸单元301可以设置在充电线圈230的外侧。在其他实施例中,两组磁吸单元301可以设置在充电线圈230的内侧。每组磁吸单元301单独地设置在充电线圈230的邻近位置。在本申请实施例中,充电线圈230的俯视截面形状可以包括圆环形、不规则环形等多种形状,每组磁吸单元301与充电线圈230之间的间隔可以不相同或不相同。
如图3(b)所示,两组磁吸单元301之间的两处间隔相同,有利于磁吸装置300中两组磁吸单元301之间的相互配合。在本申请实施例中,磁吸装置300中磁吸单元301的组数不仅于图3(b)所示的两个,还可以为两个以上。任意两组磁吸单元301之间的间隔可以相同。在本申请实施例中,每组磁吸单元301中磁吸单元301的数量也可以不相同。每组磁吸单元301可以由多个磁吸单元301相邻排列而形成,也可以仅包括单个磁吸单元301。
图3(c)是本申请实施例提供另一种充电模块的示意图。如图3(c)所示,充电模块10包括磁吸装置300和充电线圈230。磁吸装置300包括多个磁吸单元301。每个磁吸单元301的俯视截面的形状为扇环或多边形。多个磁吸单元301设置在充电线圈的外侧,每个磁吸单元301单独地设置在与充电线圈230的邻近位置上。在本申请实施例中,充电线圈230的俯视截面形状可以包括圆环形、不规则环形等多种形状,每个磁吸单元301与充电线圈230之间的间隔可以 不相同或不相同。
如图3(c)所示,任意两个磁吸单元301之间的间隔相同,有利于磁吸装置300中两组磁吸单元301之间的相互配合。在本申请实施例中,磁吸单元301的数量也不仅限于图3(c)所示的四个,还可以为其它数量。在其他实施例中,多个磁吸单元301可以设置在充电线圈的内侧,每个磁吸单元301单独地设置在与充电线圈230的邻近位置上。在本申请实施例中,充电线圈230的俯视截面形状可以包括圆环形、不规则环形等多种形状,每个磁吸单元301与充电线圈230之间的间隔可以不相同或不相同。
图3(d)为本申请实施例中提供的一种充电模块的磁吸装置中磁体的内部磁场方向的示意图。如图3(d)所示,磁吸单元301包括第一组件和第二组件,第一组件包括第一磁体311和第二磁体312,第二组件包括第三磁体320。第一磁体311与第三磁体320沿第一方向相邻设置,第二磁体312与第三磁体320沿第一方向相邻设置。第一磁体311与第二磁体312沿第二方向层叠设置。磁吸单元301的俯视截面的形状为扇环或多边形。第一磁体311、第二磁体312和第三磁体320的俯视截面的形状为扇环或多边形。
磁吸单元301中的磁体的充磁方式为辐射充磁、径向充磁和轴向充磁。可选地,第一磁体311和第二磁体312的充磁方式为辐射充磁或径向充磁,第一磁体311的内部磁场方向与第二磁体312的内部磁场方向相反。第三磁体320的充磁方式为轴向充磁。
在一个实施例中,如图3(d)中的磁吸单元301a,第一磁体311a的S极朝向左侧,N极朝向右侧。第二磁体312a的N极朝向左侧,S极朝向右侧。第三磁体320a的S极朝上,N极朝下。第一磁体311a的磁场方向与第二磁体312a的磁场方向相互平行且方向相反,第一磁体311a与第二磁体312a向右侧辐射的磁场相互抵消,从而实现磁吸装置300向右侧辐射的磁场减弱。
在一个实施例中,如图3(d)中的磁吸单元301b,第一磁体311b的N极朝向左侧,S极朝向右侧。第二磁体312b的S极朝向左侧,N极朝向右侧。第三磁体320b的N极朝上,S极朝下。第一磁体311b的磁场方向与第二磁体312b的磁场方向相互平行且方向相反,第一磁体311b与第二磁体312b向右侧辐射的磁场相互抵消,从而实现磁吸装置300向右侧辐射的磁场减弱。
可选地,第一磁体311和第二磁体312的充磁方式为轴向充磁,第一磁体311的内部磁场方向与第二磁体312的内部磁场方向相反。第三磁体320的充磁方式为辐射充磁或径向充磁。
在一个实施例中,如图3(d)中的磁吸单元301c,第一磁体311c的N极朝上,S极朝下。第二磁体312c的S极朝上,N极朝下。第三磁体320c的S极朝向左侧,N极朝向右侧。第一磁体311c的磁场方向与第二磁体312c的磁场方向相互平行且方向相反,第一磁体311c与第二磁体312c向右侧辐射的磁场相互抵消,从而实现磁吸装置300向右侧辐射的磁场减弱。
在一个实施例中,如图3(d)中的磁吸单元301d,第一磁体311d的S极朝上,N极朝下。第二磁体312d的N极朝上,S极朝下。第三磁体320d的N极朝向左侧,S极朝向右侧。第一磁体311d的磁场方向与第二磁体312d的磁场方向相互平行且方向相反,第一磁体311d与第二磁体312d向右侧辐射的磁场相互抵消,从而实现磁吸装置300向右侧辐射的磁场减弱。
图3(e)为本申请实施例中提供的另一种充电模块的磁吸装置中磁体的内部磁场方向的示意图。如图3(e)所示,磁吸单元301包括第一组件和第二组件,第一组件包括第一磁体311、第二磁体312和填充材料313,第二组件包括第三磁体320。第一磁体311与第三磁体320沿第一方向相邻设置,第二磁体312与第三磁体320沿第一方向相邻设置。第一磁体311、第二磁体312和填充材料313沿第二方向层叠设置。填充材料313位于第一磁体311与第二磁体312之间。填充材料313可以包括磁体、隔离材料或空隙中的一种或多种。在一种实施例中,填充材料313可包括磁体。在一种实施例中,填充材料313可以包括不具有磁性的隔离材料,填充在第一磁 体311与第二磁体312之间,可以减小第一磁体311和第二磁体312的体积,从而降低磁体材料的成本。在其它实施例中,填充材料313可以包括一定体积的空隙,从而降低重量。
磁吸单元301的俯视截面的形状为扇环或多边形。第一磁体311、第二磁体312和第三磁体320的俯视截面的形状为扇环或多边形。在第三磁体320侧面的上部分设置第一磁体311,在第三磁体320侧面的下部分设置第二磁体312,也是可以实现减弱磁吸装置300向左侧或右侧辐射的磁场。同时,在实现相同的磁吸力和相同侧向磁场的情况下,减少磁体材料的用量,可以降低电子设备100和充电器200的成本。
磁吸单元301中的磁体的充磁方式为辐射充磁、径向充磁和轴向充磁。可选地,第一磁体311和第二磁体312的充磁方式为轴向充磁,第一磁体311的内部磁场方向与第二磁体312的内部磁场方向相反。第三磁体320的充磁方式为辐射充磁或径向充磁。在一种实施例中,填充材料313可以包括辐射充磁磁体或径向充磁磁体。
在一个实施例中,如图3(e)中的磁吸单元301a,第一磁体311a的N极朝上,S极朝下。第二磁体312a的S极朝上,N极朝下。第三磁体320a的N极朝向左侧,S极朝向右侧。第一磁体311a的磁场方向与第二磁体312a的磁场方向相互平行且方向相反,第一磁体311a与第二磁体312a向左侧辐射的磁场相互抵消,从而实现磁吸装置300向左侧辐射的磁场减弱。
在一个实施例中,如图3(e)中的磁吸单元301b,第一磁体311b的S极朝上,N极朝下。第二磁体312b的N极朝上,S极朝下。第三磁体320b的S极朝向左侧,N极朝向右侧。第一磁体311b的磁场方向与第二磁体312b的磁场方向相互平行且方向相反,第一磁体311b与第二磁体312b向左侧辐射的磁场相互抵消,从而实现磁吸装置300向左侧辐射的磁场减弱。
可选地,第一磁体311和第二磁体312的充磁方式为辐射充磁或径向充磁,第一磁体311的内部磁场方向与第二磁体312的内部磁场方向相反。第三磁体320的充磁方式为轴向充磁。在一种实施例中,填充材料313可以包括轴向充磁磁体。
在一个实施例中,如图3(e)中的磁吸单元301c,第一磁体311c的S极朝向左侧,N极朝向右侧。第二磁体312c的N极朝向左侧,S极朝向右侧。第三磁体320c的S极朝上,N极朝下。第一磁体311c的磁场方向与第二磁体312c的磁场方向相互平行且方向相反,第一磁体311c与第二磁体312c向右侧辐射的磁场相互抵消,从而实现磁吸装置300向右侧辐射的磁场减弱。
在一个实施例中,如图3(e)中的磁吸单元301d,第一磁体311d的N极朝向左侧,S极朝向右侧。第二磁体312d的S极朝向左侧,N极朝向右侧。第三磁体320d的N极朝上,S极朝下。第一磁体311d的磁场方向与第二磁体312d的磁场方向相互平行且方向相反,第一磁体311d与第二磁体312d向右侧辐射的磁场相互抵消,从而实现磁吸装置300向右侧辐射的磁场减弱。
图3(f)为本申请实施例中提供的另一种充电模块的磁吸装置中磁体的内部磁场方向的示意图。如图3(f)所示,磁吸单元301包括第一组件和第二组件,第一组件包括第一磁体311和第二磁体312,第二组件包括第三磁体320。第一磁体311、第二磁体312和第三磁体320沿第二方向层叠设置。第三磁体320位于第一磁体311和第二磁体312之间。磁吸单元301的俯视截面的形状为扇环或多边形。第一磁体311、第二磁体312和第三磁体320的俯视截面的形状为扇环或多边形。
磁吸单元301中的磁体的充磁方式为辐射充磁、径向充磁和轴向充磁。可选地,第一磁体311和第二磁体312的充磁方式为轴向充磁,第一磁体311的内部磁场方向与第二磁体312的内部磁场方向相反。第三磁体320的充磁方式为辐射充磁或径向充磁。
在一个实施例中,如图3(f)中的磁吸单元301a,第一磁体311a的S极朝向左侧,N极朝向右侧。第二磁体312a的N极朝向左侧,S极朝向右侧。第三磁体320a的S极朝上,N极朝下。第 一磁体311a的磁场方向与第二磁体312a的磁场方向相互平行且方向相反,第一磁体311a与第二磁体312a向左侧或右侧辐射的磁场相互抵消,从而实现磁吸装置300向左侧或右侧辐射的磁场减弱。
在一个实施例中,如图3(f)中的磁吸单元301b,第一磁体311b的N极朝向左侧,S极朝向右侧。第二磁体312b的S极朝向左侧,N极朝向右侧。第三磁体320b的N极朝上,S极朝下。第一磁体311b的磁场方向与第二磁体312b的磁场方向相互平行且方向相反,第一磁体311b与第二磁体312b向左侧或右侧辐射的磁场相互抵消,从而实现磁吸装置300向左侧或右侧辐射的磁场减弱。
可选地,第一磁体311和第二磁体312的充磁方式为辐射充磁或径向充磁,第一磁体311的内部磁场方向与第二磁体312的内部磁场方向相反。第三磁体320的充磁方式为轴向充磁。
在一个实施例中,如图3(f)中的磁吸单元301c,第一磁体311c的S极朝上,N极朝下。第二磁体312c的N极朝上,S极朝下。第三磁体320c的S极朝向左侧,N极朝向右侧。第一磁体311c的磁场方向与第二磁体312c的磁场方向相互平行且方向相反,第一磁体311c与第二磁体312c向左侧或右侧辐射的磁场相互抵消,从而实现磁吸装置300向左侧或右侧辐射的磁场减弱。
在一个实施例中,如图3(f)中的磁吸单元301d,第一磁体311d的N极朝上,S极朝下。第二磁体312d的S极朝上,N极朝下。第三磁体320d的N极朝向左侧,S极朝向右侧。第一磁体311d的磁场方向与第二磁体312d的磁场方向相互平行且方向相反,第一磁体311d与第二磁体312d向左侧或右侧辐射的磁场相互抵消,从而实现磁吸装置300向左侧或右侧辐射的磁场减弱。
图4为本申请实施例中一种电子设备100及其充电器200的结构示意图。其中,电子设备100可以为手表、手机、耳机、平板或电脑等。充电器200可以是便携式充电器或车载充电器等。为便于描述电子设备100或充电器200的充电模块10,图4中省略了电子设备100和充电器200的其他电路或结构。
如图4所示,电子设备100包括充电模块10。充电模块10设置于电子设备100内部下侧的表面。在一种实施例中,充电模块10设置于电子设备100下侧的外壳内表面或者电子设备100内部的基板。即,表面可以是电子设备100下侧的外壳内表面或者电子设备100内部的基板。充电模块10包括磁吸装置30和充电线圈20。电子设备100中磁吸装置30四周的磁场强度减弱,磁吸装置30下侧的磁场强度增强。
如图4所示,充电器200包括充电模块10。充电模块10设置于充电器200内部上侧的表面。在一种实施例中,充电模块10设置于充电器200上侧外壳的内表面或者充电器200内部的基板。即,表面可以是充电器200上侧外壳的内表面或者充电器200内部的基板。充电模块10包括磁吸装置30和充电线圈20。充电器200中磁吸装置30四周的磁场强度减弱,磁吸装置30上侧的磁场强度增强。
如图4所示,充电模块10中磁吸装置30和充电线圈20设置于同一表面。在其它实施例中,充电模块10的磁吸装置30和充电线圈20可以分别设置多个表面,多个表面相互平行或接近。
如图4所示,充电模块10中充电线圈230设置于磁吸装置30的外侧。在其它实施例中,充电模块10中电线圈20可以设置于磁吸装置30的内侧。
本申请实施例提供的电子设备100和充电器200中磁吸装置四周的磁场强度减弱,可以降低磁吸装置对电子设备100和充电器200中其它磁性敏感器件的影响。另外,电子设备100或充电器200可以省略或减少软磁材料,有利于电子设备100或充电器200的小型化。
图4所示的电子设备100或充电器200中充电模块10具有多种实施例。充电模块10中磁吸装置3包括多个磁体。多个磁体的位置关系、数量、充磁方式、俯视截面的形状、内部的磁场方 向、结构等可以有多种组合方式。
图5(a)为本申请实施例中提供的一种磁吸装置的结构示意图。如图5(a)所示,磁吸装置500包括第一组件510和第二组件520。第一组件510和第二组件520沿第一方向设置于同一表面。即,第一组件510和第二组件520沿水平方向设置于同一表面。其中,第一组件510的俯视截面的形状为圆环形,第二组件520为圆柱体结构。第一组件510的内侧径向尺寸大于或等于第二组件520的径向尺寸。第二组件520设置于第一组件510的内侧。在一种实施例中,第一组件510和第二组件520可以固定连接,从而构成一个整体结构。在其它实施例中,第一组件510和第二组件520可以分别固定于同一表面,第一组件510和第二组件520之间可以存在空隙或填充材料。
如图5(a)所示,第二组件520的俯视截面的形状为圆形,第一组件510的俯视截面的形状为圆环形。圆形、圆环形的磁体的磁场分布均匀,有利于第一组件510的磁场和第二组件520的磁场相互增强。在一些实施例中,第二组件520的俯视截面的形状可以为椭圆形,第一组件510的俯视截面的形状可以为椭圆环形。在一些实施例中,第二组件520的俯视截面的形状可以为三角形、四边形等多边形或其它不规则形状,第一组件510的俯视截面的形状也可以为三角环形、四边环形等多边环形或其它不规则环形。本申请实施例中,根据电子设备100或充电器200的内部空间,磁吸装置500可以选择上述任意一种第一组件510和第二组件520,从而提高磁吸装置500的适用性。
第一组件510包括第一磁体511和第二磁体512。第二组件520包括第三磁体520。第一磁体511与第二磁体512沿第二方向层叠设置。即,第一磁体511与第二磁体512垂直于表面层叠设置。其中,第一磁体511和第二磁体512的俯视截面的形状均为圆环形。在一个实施例中,第一磁体511与第二磁体512可以固定连接,从而构成一个整体结构。在其它实施例中,第一磁体511和第二磁体512可以分别固定在第三磁体520的侧面上,第一磁体511和第二磁体512之间可以存在空隙或填充材料。
图5(b)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图5(b)所示,磁吸装置500包括第一磁体511、第二磁体512和第三磁体520。第一磁体511和第二磁体512的充磁方式均为辐射充磁。第三磁体520的充磁方式为轴向充磁。第一磁体511的S极朝向圆环内侧,N极朝向圆环外侧。第二磁体512的N极朝向圆环内侧,S极朝向圆环外侧。第三磁体520的S极朝上,N极朝下。第一磁体511的磁场方向与第二磁体512的磁场方向相互平行且方向相反,第一磁体511与第二磁体512向四周辐射的磁场相互抵消,从而实现磁吸装置500向四周辐射的磁场减弱。
磁吸装置500的第一磁体511、第二磁体512和第三磁体520的内部磁场方向还包括其它组合方式,可以实现磁吸装置500向四周辐射的磁场减弱。示例性的,第一磁体511的N极朝向圆环内侧,S极朝向圆环外侧。第二磁体512的S极朝向圆环内侧,N极朝向圆环外侧。第三磁体520的N极朝上,S极朝下。第一磁体511的磁场方向与第二磁体512的磁场方向相互平行且方向相反,第一磁体511与第二磁体512向四周辐射的磁场相互抵消,从而实现磁吸装置500向四周辐射的磁场减弱。
本申请实施例中,磁吸装置500中第一磁体511的磁场方向与第二磁体512的磁场方向相反。即,第一磁体511的磁场方向与第二磁体512的磁场方向之间的夹角大致为180度。本申请实施例中,第一磁体511和第二磁体512内部的磁场方向与其表面相平行,第三磁体520内部的磁场方向与其表面相垂直,第一磁体511和第二磁体512内部的磁场方向分别与第三磁体520内部的磁场方向相垂直。即,第一磁体511和第二磁体512内部的磁场方向与其表面的夹角大致为0度, 第三磁体520内部的磁场方向与其表面的夹角大致为90度,第一磁体511和第二磁体512内部的磁场方向分别与第三磁体520内部的磁场方向之间的夹角大致为90度。
本申请实施例的磁吸装置500也可以实现上侧磁场强度或下侧磁场强度增强。如图5(b)所示,第一磁体511的S极朝向圆环内侧,N极朝向圆环外侧。第二磁体512的N极朝向圆环内侧,S极朝向圆环外侧。第三磁体520的S极朝上,N极朝下。第一磁体511的S极与第三磁体520的S极在磁吸装置500上侧相互增强,从而实现磁吸装置500上侧的磁场强度增强。
磁吸装置500的第一磁体511、第二磁体512和第三磁体520的内部磁场方向还包括其它组合方式,可以实现磁吸装置500上侧的磁场强度增强。示例性的,第一磁体511的N极朝向圆环内侧,S极朝向圆环外侧。第二磁体512的S极朝向圆环内侧,N极朝向圆环外侧。第三磁体520的N极朝上,S极朝下。第一磁体511的N极与第三磁体520的N极在磁吸装置500上侧相互增强,从而实现磁吸装置500上侧的磁场强度增强。
图5(c)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图5(c)所示,磁吸装置500包括第一磁体511、第二磁体512和第三磁体520。第一磁体511和第二磁体512的充磁方式均为轴向充磁。第三磁体520的充磁方式为辐射充磁。第一磁体511的S极朝下,N极朝上。第二磁体512的S极朝上,N极朝下。第三磁体520的N极朝向圆形圆心,S极朝向圆形外侧。第一磁体511的磁场方向与第二磁体512的磁场方向相互平行且方向相反,第一磁体511与第二磁体512向四周辐射的磁场相互抵消,从而实现磁吸装置500向四周辐射的磁场减弱。
磁吸装置500的第一磁体511、第二磁体512和第三磁体520的内部磁场方向还包括其它组合方式,可以实现磁吸装置500向四周辐射的磁场减弱。示例性的,第一磁体511的N极朝下,S极朝上。第二磁体512的N极朝上,S极朝下。第三磁体520的S极朝向圆形圆心,N极朝向圆形外侧。第一磁体511的磁场方向与第二磁体512的磁场方向相互平行且方向相反,第一磁体511与第二磁体512向四周辐射的磁场相互抵消,从而实现磁吸装置500向四周辐射的磁场减弱。
本申请实施例的第一组件510的作用是减弱磁吸装置500向四周辐射磁场,第二组件520的作用是给电子设备或充电器提供磁性吸附力,且会向四周辐射磁场。因此,充电线圈20、第一组件510和第二组件520沿第一方向依次排列。第一组件510处在充电线圈20和第二组件520之间,减弱第二组件520向四周辐射磁场,减小磁铁对电子设备或充电器中的充电线圈20背部磁芯的影响。
本申请实施例中,充电模块的磁吸装置包括第一组件和第二组件,第一组件和第二组件沿第一方向设置于同一表面。第一组件包括第一磁体和第二磁体,第一磁体和第二磁体沿第二方向层叠设置。第一磁体和第二磁体的充磁方式与第二组件中第三磁体的充磁方式不相同。第一磁体和第二磁体的充磁方式相同,第一磁体的磁场方向与第二磁体的磁场方向相互平行且方向相反,让侧向磁场相互抵消,从而实现磁吸装置向四周辐射的磁场减弱。而且,当第一磁体的S极(或N极)在磁吸装置的上侧产生的磁场方向与第三磁体的S极(或N极)在磁吸装置的上侧产生的磁场方向相同时,实现磁吸装置上侧的磁场强度增强。相比较现有技术,在实现相同的磁吸力的条件下,磁吸装置的整体尺寸缩小,磁吸装置向四周辐射的磁场得到有效的抑制。
本申请实施例提供的磁吸装置500可以应用于图4所示的充电模块20。图6为本申请实施例中另一种电子设备及其充电器的结构示意图。图6与图4区别在于,图4所示的充电模块10的磁吸装置30替换为图5所示的磁吸装置500。为便于说明,图6中省略了图4所示的充电模块10中的充电线圈20。
如图6所示,电子设备100中磁吸装置500和充电器200磁吸装置500可以相互磁性吸附,用 于限定电子设备100和充电器200的接触位置,便于电子设备100的充电线圈20和充电器200的充电线圈20相互匹配,从而提高无线充电的便利性。
如图6所示,磁吸装置500设置于电子设备100内部的下侧。磁吸装置500的第一组件510和第二组件520沿第一方向相邻设置于同一表面,第一组件510的第一磁体511和第二组件512沿第二方向层叠设置。在一种实施例中,磁吸装置500的第一组件510和第二组件520可以相邻设置于电子设备100下侧外壳的内表面或者电子设备100内部的基板。即,同一表面可以是电子设备100下侧外壳的内表面或者电子设备100内部的基板。电子设备100中磁吸装置500向四周辐射的磁场强度减弱,磁吸装置500下侧的磁场强度增强。
示例性的,第一磁体511的N极朝向圆环内侧,S极朝向圆环外侧。第二磁体512的S极朝向圆环内侧,N极朝向圆环外侧。相应的,第一磁体511的磁场方向与第二磁体512的磁场方向相互平行且方向相反,第一磁体511与第二磁体512向四周辐射的磁场相互抵消,从而实现磁吸装置500向四周辐射的磁场减弱。而且,第二磁体512的S极朝向圆环内侧,N极朝向圆环外侧。第三磁体520的S极朝上,N极朝下。第二磁体512的S极与第三磁体520的S极在电子设备100下侧相互增强,从而实现电子设备100下侧的磁场强度增强,电子设备100下侧和充电器200上侧之间的磁性吸附力增强,可以更好地限定电子设备100与充电器200的接触位置,便于电子设备100的充电线圈20和充电器200的充电线圈20相互匹配,从而提高无线充电的便利性。
如图6所示,磁吸装置500设置于充电器200内部的上侧。磁吸装置500的第一组件510和第二组件520沿第一方向相邻设置于同一表面,第一组件510的第一磁体511和第二组件512沿第二方向层叠设置。在一种实施例中,磁吸装置500的第一组件510和第二组件520可以相邻设置于充电器200上侧外壳的内表面或者充电器200内部的基板。即,同一表面可以是充电器200上侧外壳的内表面或者充电器200内部的基板。充电器200中磁吸装置500向四周辐射的磁场强度减弱,磁吸装置500上侧的磁场强度增强。
示例性的,第一磁体511的N极朝向圆环内侧,S极朝向圆环外侧。第二磁体512的S极朝向圆环内侧,N极朝向圆环外侧。相应的,第一磁体511的磁场方向与第二磁体512的磁场方向相互平行且方向相反,第一磁体511与第二磁体512向四周辐射的磁场相互抵消,从而实现磁吸装置500向四周辐射的磁场减弱。
而且,第一磁体511的N极朝向圆环内侧,S极朝向圆环外侧。第三磁体520的N极朝上,S极朝下。第一磁体511的N极与第三磁体520的N极在充电器200上侧相互增强,从而实现充电器200上侧的磁场强度增强,电子设备100下侧和充电器200上侧之间的磁性吸附力增强,可以更好地限定电子设备100与充电器200的接触位置,便于电子设备100的充电线圈20和充电器200的充电线圈20相互匹配,从而提高无线充电的便利性。
在本实施例中,磁吸装置500的俯视截面的形状为圆形或多边形,充电模块10的充电线圈20可以设置于磁吸装置500的第一组件510的外侧。充电线圈20、第一组件510和第二组件520沿第一方向依次排列。
图7(a)为本申请实施例中提供的另一种磁吸装置的结构示意图。如图7(a)所示,磁吸装置700包括第一组件710和第二组件720。第一组件710和第二组件720沿第一方向设置于同一表面。即,第一组件710和第二组件720沿水平方向设置于同一表面。
第一组件710包括第一磁体711、第二磁体712和填充材料713。第二组件720包括第三磁体720。第一磁体711、第二磁体712和填充材料713沿第二方向层叠设置。即,第一磁体711与第二磁体712垂直于表面层叠设置。填充材料713设置在第一磁体711与第二磁体712之间。其中,第一磁体711、第二磁体712和填充材料713的形状相同,其俯视截面的形状均为圆环形。在一 个实施例中,第一磁体711、第二磁体712和填充材料713可以固定连接,从而构成一个整体结构。在其它实施例中,第一磁体711、第二磁体712和填充材料713可以分别固定在第三磁体720的侧面上。
相比较图5(a)所示的磁吸装置500,磁吸装置700中增加了一个填充材料713,其设置在第一磁体711与第二磁体712之间。填充材料713可以包括磁体、隔离材料或空隙中的一种或多种。在一种实施例中,填充材料713可以包括磁体。在一种实施例中,填充材料713可以包括不具有磁性的隔离材料,填充在第一磁体711与第二磁体712之间的空隙中,可以减小第一磁体711和第二磁体712的体积,从而降低磁体材料的成本。在其它实施例中,填充材料713可以包括一定体积的空隙,从而降低重量。即,第一磁体711与第二磁体712沿第二方向层叠时,第一磁体711的上侧表面与第三磁体720的上侧表面处在一个平面上,第二磁体712的下侧表面与第三磁体720的下侧表面处在一个平面上。第一磁体711与第二磁体712之间预留出设定体积的空隙。
图7(b)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图7(b)所示,磁吸装置700包括第一磁体711、第二磁体712、填充材料713和第三磁体720。第一磁体711和第二磁体712的充磁方式均为辐射充磁。第三磁体720的充磁方式为轴向充磁。第一磁体711的S极朝向圆环内侧,N极朝向圆环外侧。第二磁体712的N极朝向圆环内侧,S极朝向圆环外侧。第三磁体720的S极朝上,N极朝下。第一磁体711的磁场方向与第二磁体712的磁场方向相互平行且方向相反,第一磁体711与第二磁体712向四周辐射的磁场相互抵消,从而实现磁吸装置700向四周辐射的磁场减弱。在一种实施例中,填充材料713可以包括轴向充磁磁体。
该实施例中,第三磁体720侧面中间部分向四周辐射的磁场比较小,所以在第三磁体720侧面中间部分不设置磁体,只在第三磁体720侧面的上部分设置第一磁体711,在第三磁体720侧面的下部分设置第二磁体712,也是可以实现减弱磁吸装置700向四周辐射的磁场。相比较图5(a)所示的磁吸装置500,在实现相同的磁吸力和相同侧向磁场的情况下,减少磁体材料的用量,可以降低电子设备100和充电器200的成本。
在本实施例中,磁吸装置700的俯视截面的形状为圆形或多边形,充电模块10的充电线圈20可以设置于磁吸装置700的第一组件710的外侧。充电线圈20、第一组件710和第二组件720沿第一方向依次排列。
图8(a)为本申请实施例中提供的另一种磁吸装置的结构示意图。如图8(a)所示,磁吸装置800包括第一组件810和第二组件820。第一组件810和第二组件820沿第一方向设置于同一表面。即,第一组件810和第二组件820沿水平方向设置于同一表面。
第一组件810的俯视截面的形状为圆环形,第二组件820的俯视截面的形状为圆环形。第一组件810的内侧径向尺寸大于或等于第二组件820的径向尺寸。第二组件820设置于第一组件810的内侧。在一种实施例中,第一组件810和第二组件820可以固定连接,从而构成一个整体结构。在其它实施例中,第一组件810和第二组件820可以分别固定于同一表面,第一组件810和第二组件820之间可以存在空隙或填充材料。
如图8(a)所示,第一组件810和第二组件820的俯视截面的形状均为圆环形。圆环形的磁体的磁场分布均匀,有利于第一组件810的磁场和第二组件820的磁场相互增强。在一些实施例中,第一组件810和第二组件820的俯视截面的形状均为椭圆形。在一些实施例中,第一组件810和第二组件820的俯视截面的形状均可以为三角形、四边形等多边形或其它不规则形状,本申请实施例中,根据电子设备100或充电器200的内部空间,磁吸装置800可以选择上述任意一种第一组件810和第二组件820,从而提高磁吸装置800的适用性。
第一组件810包括第一磁体811和第二磁体812,第二组件820包括第三磁体820。第一磁体811与第二磁体812沿第二方向层叠设置。即,第一磁体811与第二磁体812垂直于表面层叠设置。其中,第一磁体811和第二磁体812的形状相同,其俯视截面的形状均为圆环形。在一个实施例中,第一磁体811与第二磁体812可以固定连接,从而构成一个整体结构。在其它实施例中,第一磁体811和第二磁体812可以分别固定在第三磁体820的侧面上,第一磁体811和第二磁体812之间可以存在空隙或填充材料。
图8(b)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图8(b)所示,磁吸装置800包括第一磁体811、第二磁体812和第三磁体820。第一磁体811和第二磁体812的充磁方式均为辐射充磁。第三磁体820的充磁方式为轴向充磁。第一磁体811的S极朝向圆环内侧,N极朝向圆环外侧。第二磁体812的N极朝向圆环内侧,S极朝向圆环外侧。第三磁体820的S极朝上,N极朝下。第一磁体811的磁场方向与第二磁体812的磁场方向相互平行且方向相反,第一磁体811与第二磁体812向四周辐射的磁场相互抵消,从而实现磁吸装置800向四周辐射的磁场减弱。
磁吸装置800的第一磁体811、第二磁体812和第三磁体820的内部磁场方向还包括其它组合方式,可以实现磁吸装置800向四周辐射的磁场减弱。示例性的,第一磁体811的N极朝向圆环内侧,S极朝向圆环外侧。第二磁体812的S极朝向圆环内侧,N极朝向圆环外侧。第三磁体820的N极朝上,S极朝下。第一磁体811的磁场方向与第二磁体812的磁场方向相互平行且方向相反,第一磁体811与第二磁体812向四周辐射的磁场相互抵消,从而实现磁吸装置800向四周辐射的磁场减弱。
本申请实施例的磁吸装置800也可以实现上侧磁场强度或下侧磁场强度增强。如图8(b)所示,第一磁体811的S极朝向圆环内侧,N极朝向圆环外侧。第二磁体812的N极朝向圆环内侧,S极朝向圆环外侧。第三磁体820的S极朝上,N极朝下。第一磁体811的S极与第三磁体820的S极在磁吸装置800上侧相互增强,从而实现磁吸装置800上侧的磁场强度增强。磁吸装置800的第一磁体811、第二磁体812和第三磁体820的内部磁场方向还包括其它组合方式,可以实现磁吸装置800上侧的磁场强度增强,本申请在此不再详细说明。
图8(c)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图8(c)所示,磁吸装置800包括第一磁体811、第二磁体812和第三磁体820。第一磁体811和第二磁体812的充磁方式均为轴向充磁。第三磁体820的充磁方式为辐射充磁。第一磁体811的S极朝下,N极朝上。第二磁体812的S极朝上,N极朝下。第三磁体820的S极朝向圆环内侧,N极朝向圆环外侧。第一磁体811的磁场方向与第二磁体812的磁场方向相互平行且方向相反,第一磁体811与第二磁体812向四周辐射的磁场相互抵消,从而实现磁吸装置800向四周辐射的磁场减弱。
磁吸装置800的第一磁体811、第二磁体812和第三磁体820的内部磁场方向还包括其它组合方式,可以实现磁吸装置800向四周辐射的磁场减弱。示例性的,第一磁体811的N极朝下,S极朝上。第二磁体812的N极朝上,S极朝下。第三磁体820的N极朝向圆环内侧,S极朝向圆环外侧。第一磁体811的磁场方向与第二磁体812的磁场方向相互平行且方向相反,第一磁体811与第二磁体812向四周辐射的磁场相互抵消,从而实现磁吸装置800向四周辐射的磁场减弱。
本申请实施例的磁吸装置800也可以实现上侧磁场强度或下侧磁场强度增强。如图8(c)所示,第一磁体811的S极朝下,N极朝上。第二磁体812的S极朝上,N极朝下。第三磁体820的S极朝向圆环内侧,N极朝向圆环外侧。第一磁体811的N极与第三磁体820的N极在磁吸装置800上侧相互增强,从而实现磁吸装置800上侧的磁场强度增强。磁吸装置800的第一磁体811、第二磁体812和第三磁体820的内部磁场方向还包括其它组合方式,可以实现磁吸装置800上侧 的磁场强度增强,本申请在此不再详细说明。
相比较图5(a)所示的磁吸装置500,磁吸装置800中第三磁体820由圆柱形磁体替换成环形磁体,在实现相同的磁吸力和相同侧向磁场的情况下,减少磁体材料的用量,可以降低电子设备100和充电器200的成本。而且,当电子设备100和充电器200中第三磁体820的形状为环形时,电子设备100放置在充电器200上,可以避免对位磁体与中部结构出现干涉问题。本申请实施例中,磁吸装置800适用于轴套式等非平面吸合的电子设备或充电器中。
在本实施例中,磁吸装置800的俯视截面的形状为圆形或多边形,充电模块10的充电线圈20可以设置于磁吸装置800的第一组件810的外侧。充电线圈20、第一组件810和第二组件820沿第一方向依次排列。
图9(a)为本申请实施例中提供的另一种磁吸装置的结构示意图。如图9(a)所示,磁吸装置900包括第一组件910和第二组件920。第一组件910和第二组件920沿第一方向设置于同一表面。即,第一组件910和第二组件920沿水平方向设置于同一表面。
第一组件910包括第一磁体911、第二磁体912和填充材料913,第二组件920包括第三磁体920。第一磁体911、第二磁体912和填充材料913沿第二方向层叠设置。即,第一磁体911与第二磁体912垂直于表面层叠设置。填充材料913设置在第一磁体911与第二磁体912之间。其中,第一磁体911、第二磁体912和填充材料913的俯视截面的形状均为圆环形。在一个实施例中,第一磁体911、第二磁体912和填充材料913可以固定连接,从而构成一个整体结构。在其它实施例中,第一磁体911、第二磁体912和填充材料913可以分别固定在第三磁体920的侧面上。
相比较图8(a)所示的磁吸装置800,磁吸装置900中增加了一个填充材料913,其设置在第一磁体911与第二磁体912之间。填充材料913可以包括磁体、隔离材料或空隙中的一种或多种。在一种实施例中,填充材料713可以包括磁体。在一种实施例中,填充材料913可以为不具有磁性的隔离材料,填充在第一磁体911与第二磁体912之间的空隙中,可以减小第一磁体911和第二磁体912的体积,从而降低磁体材料的成本。在其它实施例中,填充材料913可以为一定体积的空隙,也即第一磁体911与第二磁体912沿第二方向层叠时,第一磁体911的上侧表面与第三磁体920的上侧表面处在一个平面上,第二磁体912的下侧表面与第三磁体920的下侧表面处在一个平面上。第一磁体911与第二磁体912之间预留出设定体积的空隙。
图9(b)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图9(b)所示,磁吸装置900包括第一磁体911、第二磁体912、填充材料913和第三磁体920。第一磁体911和第二磁体912的充磁方式均为辐射充磁。第三磁体920的充磁方式为轴向充磁。第一磁体911的S极朝向圆环内侧,N极朝向圆环外侧。第二磁体912的N极朝向圆环内侧,S极朝向圆环外侧。第三磁体920的S极朝上,N极朝下。第一磁体911的磁场方向与第二磁体912的磁场方向相互平行且方向相反,第一磁体911与第二磁体912向四周辐射的磁场相互抵消,从而实现磁吸装置900向四周辐射的磁场减弱。在一种实施例中,填充材料913可以包括轴向充磁磁体。
图9(c)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图9(c)所示,磁吸装置900包括第一磁体911、第二磁体912、填充材料913和第三磁体920。第一磁体911和第二磁体912的充磁方式均为轴向充磁。第三磁体920的充磁方式为辐射充磁。第一磁体911的S极朝下,N极朝上。第二磁体912的S极朝上,N极朝下。第三磁体920的S极朝向圆环内侧,N极朝向圆环外侧。第一磁体911的磁场方向与第二磁体912的磁场方向相互平行且方向相反,第一磁体911与第二磁体912向四周辐射的磁场相互抵消,从而实现磁吸装置900向四周辐射的磁场减弱。在一种实施例中,填充材料913可以包括辐射充磁磁体。
在本实施例中,磁吸装置900的俯视截面的形状为圆形或多边形,充电模块10的充电线圈 20可以设置于磁吸装置900的第一组件910的外侧。充电线圈20、第一组件910和第二组件920沿第一方向依次排列。
该实施例中,第三磁体920侧面中间部分向四周辐射的磁场比较小,所以在第三磁体920侧面中间部分不设置磁体,只在第三磁体920侧面的上部分设置第一磁体911,在第三磁体920侧面的下部分设置第二磁体912,也是可以实现减弱磁吸装置900向四周辐射的磁场。相比较图8(a)所示的磁吸装置800,在实现相同的磁吸力和相同侧向磁场的情况下,减少磁体材料的用量,可以降低电子设备100和充电器200的成本。
图10(a)为本申请实施例中提供的另一种磁吸装置的结构示意图。如图10(a)所示,磁吸装置1000包括第一组件1010和第二组件1020。第一组件1010和第二组件1020沿第一方向设置于同一表面,也即第一组件1010和第二组件1020沿水平方向设置于同一表面。
第一组件1010的俯视截面的形状为圆环形,第二组件1020也是为圆环形。第二组件1020的内侧径向尺寸大于或等于第一组件1010的外侧径向尺寸。第二组件1020设置于第一组件1010的外侧。第一组件1010的内侧径向尺寸大于或等于充电线圈20的外侧径向尺寸。在一种实施例中,第一组件1010和第二组件1020可以固定连接,从而构成一个整体结构。在其它实施例中,第一组件1010和第二组件1020可以分别固定于同一表面,第一组件1010和第二组件1020之间可以存在空隙或填充材料。
如图10(a)所示,第一组件1010和第二组件1020的俯视截面的形状均为圆环形。圆环形的磁体的磁场分布均匀,有利于第一组件1010的磁场和第二组件1020的磁场相互增强。在一些实施例中,第一组件1010和第二组件1020的俯视截面的形状均为椭圆形。在一些实施例中,第一组件1010和第二组件1020的俯视截面的形状均可以为三角形、四边形等多边形或其它不规则形状,本申请实施例中,根据电子设备100或充电器200的内部空间,磁吸装置1000可以选择上述任意一种第一组件1010和第二组件1020,从而提高磁吸装置1000的适用性。
第一组件1010包括第一磁体1011和第二磁体1012,第二组件1020包括第三磁体1020。第一磁体1011与第二磁体1012沿第二方向层叠设置。即,第一磁体1011与第二磁体1012垂直于表面层叠设置。其中,第一磁体1011和第二磁体1012的形状相同,其俯视截面的形状均为圆环形。在一个实施例中,第一磁体1011与第二磁体1012可以固定连接,从而构成一个整体结构。在其它实施例中,第一磁体1011和第二磁体1012可以分别固定在第三磁体1020的侧面上,第一磁体1011和第二磁体1012之间可以存在空隙或填充材料。
图10(b)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图10(b)所示,磁吸装置1000包括第一磁体1011、第二磁体1012和第三磁体1020。第一磁体1011和第二磁体1012的充磁方式均为辐射充磁。第三磁体1020的充磁方式为轴向充磁。第一磁体1011的N极朝向圆环内侧,S极朝向圆环外侧。第二磁体1012的S极朝向圆环内侧,N极朝向圆环外侧。第三磁体1020的S极朝上,N极朝下。第一磁体1011的磁场方向与第二磁体1012的磁场方向相互平行且方向相反,第一磁体1011与第二磁体1012向内侧辐射的磁场相互抵消,从而实现磁吸装置1000向内侧辐射的磁场减弱。
磁吸装置1000的第一磁体1011、第二磁体1012和第三磁体1020的内部磁场方向还包括其它组合方式,可以实现磁吸装置1000向内侧辐射的磁场减弱。示例性的,第一磁体1011的S极朝向圆环内侧,N极朝向圆环外侧。第二磁体1012的N极朝向圆环内侧,S极朝向圆环外侧。第三磁体1020的N极朝上,S极朝下。第一磁体1011的磁场方向与第二磁体1012的磁场方向相互平行且方向相反,第一磁体1011与第二磁体1012向内侧辐射的磁场相互抵消,从而实现磁吸装置1000向内侧辐射的磁场减弱。
本申请实施例的磁吸装置1000也可以实现上侧磁场强度或下侧磁场强度增强。如图10(b)所示,第一磁体1011的N极朝向圆环内侧,S极朝向圆环外侧。第二磁体1012的S极朝向圆环内侧,N极朝向圆环外侧。第三磁体1020的S极朝上,N极朝下。第一磁体1011的S极与第三磁体1020的S极在磁吸装置1000上侧相互增强,从而实现磁吸装置1000上侧的磁场强度增强。磁吸装置1000的第一磁体1011、第二磁体1012和第三磁体1020的内部磁场方向还包括其它组合方式,可以实现磁吸装置1000上侧的磁场强度增强,本申请在此不再详细说明。
图10(c)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图10(c)所示,磁吸装置1000包括第一磁体1011、第二磁体1012和第三磁体1020。第一磁体1011和第二磁体1012的充磁方式均为轴向充磁。第三磁体1020的充磁方式为辐射充磁。第一磁体1011的S极朝下,N极朝上。第二磁体1012的S极朝上,N极朝下。第三磁体1020的N极朝向圆环内侧,S极朝向圆环外侧。第一磁体1011的磁场方向与第二磁体1012的磁场方向相互平行且方向相反,第一磁体1011与第二磁体1012向内侧辐射的磁场相互抵消,从而实现磁吸装置1000向内侧辐射的磁场减弱。
磁吸装置1000的第一磁体1011、第二磁体1012和第三磁体1020的内部磁场方向还包括其它组合方式,可以实现磁吸装置1000向内侧辐射的磁场减弱。示例性的,第一磁体1011的N极朝下,S极朝上。第二磁体1012的N极朝上,S极朝下。第三磁体1020的S极朝向圆环内侧,N极朝向圆环外侧。第一磁体1011的磁场方向与第二磁体1012的磁场方向相互平行且方向相反,第一磁体1011与第二磁体1012向内侧辐射的磁场相互抵消,从而实现磁吸装置1000向内侧辐射的磁场减弱。
本申请实施例的磁吸装置1000也可以实现上侧磁场强度或下侧磁场强度增强。如图10(c)所示,第一磁体1011的N极朝下,S极朝上。第二磁体1012的N极朝上,S极朝下。第三磁体1020的S极朝向圆环内侧,N极朝向圆环外侧。第一磁体1011的N极与第三磁体1020的N极在磁吸装置1000上侧相互增强,从而实现磁吸装置1000上侧的磁场强度增强。磁吸装置1000的第一磁体1011、第二磁体1012和第三磁体1020的内部磁场方向还包括其它组合方式,可以实现磁吸装置1000上侧的磁场强度增强,本申请在此不再详细说明。
在本实施例中,磁吸装置1000的俯视截面的形状为圆形或多边形,充电模块10的充电线圈20可以设置于磁吸装置1000的第一组件1010的内侧。充电线圈20、第一组件1010和第二组件1020沿第一方向依次排列。
相比较图8(a)所示的磁吸装置800,磁吸装置1000中第一组件1010和第三组件1020为圆环形,且第一组件1010设置在第二组件1020内侧,减弱第二组件1020中磁体向内侧辐射的磁场。磁吸装置1000的半径比较大,可以嵌套在充电线圈20的外侧,可以减小磁铁对电子设备或充电器中的充电线圈20背部磁芯的影响。
本申请实施例提供的磁吸装置1000可以应用于图4所示的充电模块20。图10(d)为本申请实施例中另一种电子设备及其充电器的结构示意图。图10(d)与图4区别在于,图4所示的充电模块10的磁吸装置30替换为图10所示的磁吸装置1000。而且,充电线圈20内置于磁吸装置1000内侧。为便于说明,图10(d)中省略了图4所示的充电模块10中的充电线圈20。
如图10(d)所示,电子设备100中磁吸装置1000和充电器200磁吸装置1000可以相互磁性吸附,用于限定电子设备100和充电器200的接触位置,便于电子设备100的充电线圈20和充电器200的充电线圈20相互匹配,从而提高无线充电的便利性。
如图10(d)所示,磁吸装置1000设置于电子设备100内部的下侧。磁吸装置1000的第一组件1010和第二组件1020沿第一方向相邻设置于同一表面,第一组件1010的第一磁体1011和 第二组件1012沿第二方向层叠设置。在一种实施例中,磁吸装置1000的第一组件1010和第二组件1020可以相邻设置于电子设备100下侧外壳的内表面或者电子设备100内部的基板。电子设备100中磁吸装置1000向内侧辐射的磁场强度减弱,磁吸装置1000下侧的磁场强度增强。
如图10(d)所示,磁吸装置1000设置于充电器200内部的上侧。磁吸装置1000的第一组件1010和第二组件1020沿第一方向相邻设置于同一表面,第一组件1010的第一磁体1011和第二组件1012沿第二方向层叠设置。在一种实施例中,磁吸装置1000的第一组件1010和第二组件1020可以相邻设置于充电器200上侧外壳的内表面或者充电器200内部的基板。充电器200中磁吸装置1000向内侧辐射的磁场强度减弱,磁吸装置1000上侧的磁场强度增强。
图11(a)为本申请实施例中提供的另一种磁吸装置的结构示意图。如图11(a)所示,磁吸装置1100包括第一组件1110和第二组件1120。第一组件1110和第二组件1120沿第一方向设置于同一表面。即,第一组件1110和第二组件1120沿水平方向设置于同一表面。
第一组件1110包括第一磁体1111、第二磁体1112和填充材料1113,第二组件1120包括第三磁体1120。第一磁体1111、第二磁体1112和填充材料1113沿第二方向层叠设置。即,第一磁体1111与第二磁体1112垂直于表面层叠设置。填充材料1113设置在第一磁体1111与第二磁体1112之间。其中,第一磁体1111、第二磁体1112和填充材料1113的形状相同,其俯视截面的形状均为圆环形。在一个实施例中,第一磁体1111、第二磁体1112和填充材料1113可以固定连接,从而构成一个整体结构。在其它实施例中,第一磁体1111、第二磁体1112和填充材料1113可以分别固定在第三磁体1120的侧面上。
相比较图10(a)所示的磁吸装置1000,磁吸装置1100中增加了一个填充材料1113,其设置在第一磁体1111与第二磁体1112之间。填充材料1113可以包括磁体、隔离材料或空隙中的一种或多种。在一种实施例中,填充材料713可以包括磁体。在一种实施例中,填充材料1113可以为不具有磁性的隔离材料,填充在第一磁体1111与第二磁体1112之间的空隙中,可以减小第一磁体1111和第二磁体1112的体积,从而降低磁体材料的成本。
在其它实施例中,填充材料1113可以为一定体积的空隙,也即第一磁体1111与第二磁体1112沿第二方向层叠时,第一磁体1111的上侧表面与第三磁体1120的上侧表面处在一个平面上,第二磁体1112的下侧表面与第三磁体1120的下侧表面处在一个平面上。第一磁体1111与第二磁体1112之间预留出设定体积的空隙。
图11(b)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图11(b)所示,磁吸装置1100包括第一磁体1111、第二磁体1112、填充材料1113和第三磁体1120。第一磁体1111和第二磁体1112的充磁方式均为辐射充磁。第三磁体1120的充磁方式为轴向充磁。第一磁体1111的N极朝向圆环内侧,S极朝向圆环外侧。第二磁体1112的S极朝向圆环内侧,N极朝向圆环外侧。第三磁体1120的S极朝上,N极朝下。第一磁体1111的磁场方向与第二磁体1112的磁场方向相互平行且方向相反,第一磁体1111与第二磁体1112向内侧辐射的磁场相互抵消,从而实现磁吸装置1100向内侧辐射的磁场减弱。在一种实施例中,填充材料1113可以包括轴向充磁磁体。
图11(c)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图11(c)所示,磁吸装置1100包括第一磁体1111、第二磁体1112、填充材料1113和第三磁体1120。第一磁体1111和第二磁体1112的充磁方式均为轴向充磁。第三磁体1120的充磁方式为辐射充磁。第一磁体1111的S极朝下,N极朝上。第二磁体1112的S极朝上,N极朝下。第三磁体1120的N极朝向圆环内侧,S极朝向圆环外侧。第一磁体1111的磁场方向与第二磁体1112的磁场方向相互平行且方向相反,第一磁体1111与第二磁体1112向内侧辐射的磁场相互抵消,从而实现磁吸装置 1100向内侧辐射的磁场减弱。在一种实施例中,填充材料1113可以包括辐射充磁磁体。
在本实施例中,磁吸装置1100的俯视截面的形状为圆形或多边形,充电模块10的充电线圈20可以设置于磁吸装置1100的第一组件1110的内侧。充电线圈20、第一组件1110和第二组件1120沿第一方向依次排列。
该实施例中,第三磁体1120侧面中间部分向内侧辐射的磁场比较小,所以在第三磁体1120侧面中间部分不设置磁体,只在第三磁体1120侧面的上部分设置第一磁体1111,在第三磁体1120侧面的下部分设置第二磁体1112,也是可以实现减弱磁吸装置1100向内侧辐射的磁场。相比较图10(a)所示的磁吸装置1000,在实现相同的磁吸力和相同侧向磁场的情况下,减少磁体材料的用量,可以降低电子设备100和充电器200的成本。
本申请实施例提供的充电模块包括至少一个磁吸单元,每个磁吸单元包括第一组件和第二组件。第一组件包括第一磁体和第二磁体,第一组件包括至少一个磁体。第一组件中第一磁体和第二磁体沿第二方向层叠设置。第二组件设置于第一组件的第一磁体和第二磁体之间。
第一组件中第一磁体和第二磁体的充磁方式为轴向充磁和径向充磁中的一种,第二组件中至少一个磁体的充磁方式为轴向充磁、径向充磁中的一种。或者,第一组件中第一磁体和第二磁体的充磁方式为轴向充磁、辐射充磁中的一种,第二组件中至少一个磁体的充磁方式为轴向充磁和辐射充磁中的一种。而且,第一组件中第一磁体和第二磁体的充磁方式与第二组件中至少一个磁体的充磁方式不相同。
图12(a)为本申请实施例中提供的另一种磁吸装置的结构示意图。如图12(a)所示,磁吸装置1200包括第一组件1210和第二组件1220。第一组件1210和第二组件1220垂直于表面层叠设置。其中,第一组件1210和第二组件1220的俯视截面的形状均为圆环形,且形状相同。圆环形的磁体的磁场分布均匀,有利于第一组件1210的磁场和第二组件1220的磁场相互增强。在一些实施例中,第二组件1220的俯视截面的形状可以为椭圆形,第一组件1210的俯视截面的形状可以为椭圆环形。在一些实施例中,第二组件1220的俯视截面的形状可以为三角形、四边形等多边形或其它不规则形状,第一组件1210的俯视截面的形状也可以为三角环形、四边环形等多边环形或其它不规则环形。本申请实施例中,根据电子设备100或充电器200的内部空间,磁吸装置1200可以选择上述任意一种第一组件1210和第二组件1220,从而提高磁吸装置1200的适用性。
第一组件1210包括第一磁体1211和第二磁体1212,第二组件1220包括第三磁体1220。第一磁体1211与第二磁体1212垂直于表面层叠设置。第三磁体1220设置在第一磁体1211与第二磁体1212之间。其中,第一磁体1211和第二磁体1212的形状相同,其俯视截面的形状均为圆环形。在一个实施例中,第一磁体1211、第三磁体1220与第二磁体1212可以固定连接,从而构成一个整体结构。
图12(b)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图12(b)所示,磁吸装置1200包括第一磁体1211、第二磁体1212和第三磁体1220。第一磁体1211和第二磁体1212的充磁方式均为辐射充磁。第三磁体1220的充磁方式为轴向充磁。第一磁体1211的S极朝向圆环内侧,N极朝向圆环外侧。第二磁体1212的N极朝向圆环内侧,S极朝向圆环外侧。第三磁体1220的S极朝上,N极朝下。第一磁体1211的磁场方向与第二磁体1212的磁场方向相互平行且方向相反,第一磁体1211与第二磁体1212向四周辐射的磁场相互抵消,从而实现磁吸装置1200向四周辐射的磁场减弱。
图12(c)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图12(c)所示,磁吸装置1200包括第一磁体1211、第二磁体1212和第三磁体1220。第一磁体1211和第二磁体1212 的充磁方式均为轴向充磁。第三磁体1220的充磁方式为辐射充磁。第一磁体1211的S极朝上,N极朝下。第二磁体1212的N极朝向上,S极朝下。第三磁体1220的S极朝向圆环内侧,N极朝向圆环外侧。第一磁体1211的磁场方向与第二磁体1212的磁场方向相互平行且方向相反,第一磁体1211与第二磁体1212向四周辐射的磁场相互抵消,从而实现磁吸装置1200向四周辐射的磁场减弱。
图12(d)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图12(d)所示,磁吸装置1200包括第一磁体1211、第二磁体1212和第三磁体1220。第一磁体1211和第二磁体1212的充磁方式均为辐射充磁。第三磁体1220的充磁方式为轴向充磁。第一磁体1211的N极朝向圆环内侧,S极朝向圆环外侧。第二磁体1212的S极朝向圆环内侧,N极朝向圆环外侧。第三磁体1220的S极朝上,N极朝下。第一磁体1211的磁场方向与第二磁体1212的磁场方向相互平行且方向相反,第一磁体1211与第二磁体1212向四周辐射的磁场相互抵消,从而实现磁吸装置1200向四周辐射的磁场减弱。
图12(e)为本申请实施例提供的一种磁吸装置的磁体磁场示意图。如图12(e)所示,磁吸装置1200包括第一磁体1211、第二磁体1212和第三磁体1220。第一磁体1211和第二磁体1212的充磁方式均为轴向充磁。第三磁体1220的充磁方式为辐射充磁。第一磁体1211的N极朝上,S极朝下。第二磁体1212的S极朝向上,N极朝下。第三磁体1220的N极朝向圆环内侧,S极朝向圆环外侧。第一磁体1211的磁场方向与第二磁体1212的磁场方向相互平行且方向相反,第一磁体1211与第二磁体1212向四周辐射的磁场相互抵消,从而实现磁吸装置1200向四周辐射的磁场减弱。
磁吸装置1200的第一磁体1211、第二磁体212和第三磁体1220的内部磁场方向还包括其它组合方式,可以实现磁吸装置1200向四周辐射的磁场减弱,本申请在此不作限定。
在本申请实施例中,磁吸装置1200中第一磁体1211、第二磁体212和第三磁体1220的俯视截面的形状还可以是多边形。如图12(b)所示,第一磁体1211和第二磁体1212的充磁方式均为轴向充磁。第三磁体1220的充磁方式为辐射充磁。如图12(c)所示,第一磁体1211和第二磁体1212的充磁方式均为辐射充磁。第三磁体1220的充磁方式为轴向充磁。如图12(e)所示,第一磁体1211和第二磁体1212的充磁方式均为轴向充磁。第三磁体1220的充磁方式为径向充磁。如图12(d)所示,第一磁体1211和第二磁体1212的充磁方式均为径向充磁。第三磁体1220的充磁方式为轴向充磁。多边形的第一磁体1211、第二磁体212和第三磁体1220的磁场方向与上述实施例相同,不再重复说明。
在本申请实施例中,磁吸装置1200中第一磁体1211、第二磁体212和第三磁体1220的俯视截面的形状还可以是扇环。如图12(a)所示,第一磁体1211和第二磁体1212的充磁方式均为辐射充磁。第三磁体1220的充磁方式为轴向充磁。如图12(b)所示,第一磁体1211和第二磁体1212的充磁方式均为轴向充磁。第三磁体1220的充磁方式为辐射充磁。如图12(e)所示,第一磁体1211和第二磁体1212的充磁方式均为轴向充磁。第三磁体1220的充磁方式为径向充磁。如图12(d)所示,第一磁体1211和第二磁体1212的充磁方式均为径向充磁。第三磁体1220的充磁方式为轴向充磁。扇环的第一磁体1211、第二磁体212和第三磁体1220的磁场方向与上述实施例相同,不再重复说明。
图13为本申请实施例中提供的一种磁吸装置的磁体结构示意图。如图13所示,磁吸装置1300包括第一组件1310和第二组件1320,第一组件1310包括第一磁体1311和第二磁体1312,第二组件1320包括第三磁体1320。第一磁体1311包括多个磁体模块,第二磁体1312包括多个磁体模块,第三磁体1320仅包括一个圆柱体的磁体模块。多个磁体模块拼接形成环形的圆柱 体结构。在本实施例中,第一磁体1311和第二磁体1312中多个磁体模块的俯视截面的形状为扇环。其中,磁体模块可以是角度为360°/M的扇形磁铁。M为拼接形成一个圆环形磁体的磁体模块的数量,且大于等于2。在一些实施例中,磁体模块的俯视截面的形状也可以是三角形、四边形等多边形。根据电子设备100和充电器200的内部空间,磁吸装置1300可以选择多种形状的磁体模块,从而提高磁吸装置1300的适用性。该实施例中,第一磁体1311与第二磁体1312中磁体模块的数量相同或不相同。
在一种实施例中,第一磁体1311仅包括一个圆柱体的磁体模块,第二磁体1312仅包括一个圆柱体的磁体模块,第三磁体1320包括多个磁体模块。
图14为本申请实施例中提供的一种磁吸装置的磁体结构示意图。如图14所示,磁吸装置1400包括第一组件1410和第二组件1420。第一组件1410包括第一磁体1411和第二磁体1412。第二组件1420包括第三磁体1420。第一磁体1411包括多个磁体模块,第二磁体1412包括多个磁体模块,第三磁体1420仅包括一个环形的圆柱体的磁体模块。多个磁体模块拼接形成环形的圆柱体结构。在本实施例中,第一磁体1411和第二磁体1412中多个磁体模块的俯视截面的形状为扇环。其中,磁体模块可以是角度为360°/M的扇形磁铁。M为拼接形成一个圆环形磁体的磁体模块的数量,且大于等于2。在一些实施例中,磁体模块的俯视截面的形状也可以是三角形、四边形等多边形。根据电子设备100和充电器200的内部空间,磁吸装置1400可以选择多种形状的磁体模块,从而提高磁吸装置1400的适用性。该实施例中,第一磁体1411与第二磁体1412中磁体模块的数量相同或不相同。
在一种实施例中,第一磁体1411仅包括一个圆柱体的磁体模块,第二磁体1412仅包括一个圆柱体的磁体模块,第三磁体1420包括多个磁体模块。
图15为本申请实施例中提供的一种磁吸装置的磁体结构示意图。如图15所示,磁吸装置1500包括第一组件1510和第二组件1520。第一组件1510包括第一磁体1511和第二磁体1512。第二组件1520包括第三磁体1520。第一磁体1511仅包括一个环形的圆柱体的磁体模块。第二磁体1512仅包括一个环形的圆柱体的磁体模块。第三磁体1520包括多个磁体模块。多个磁体模块拼接形成环形的圆柱体结构。在本实施例中,第三磁体1520中多个磁体模块的俯视截面的形状为扇环。其中,磁体模块可以是角度为360°/M的扇形磁铁。M为拼接形成一个圆环形磁体的磁体模块的数量,且大于等于2。在一些实施例中,磁体模块的俯视截面的形状也可以是三角形、四边形等多边形。根据电子设备100和充电器200的内部空间,磁吸装置1500可以选择多种形状的磁体模块,从而提高磁吸装置1500的适用性。
在一种实施例中,第一磁体1511包括多个磁体模块。第二磁体1512包括多个磁体模块。第三磁体1520仅包括一个环形的圆柱体的磁体模块。该实施例中,第一磁体1511与第二磁体1512中磁体模块的数量相同或不相同。
图16为本申请实施例中提供的另一种磁吸装置的磁体磁场示意图。如图16所示,磁吸装置磁吸装置1600包括第一组件1610和第二组件1620,第一组件1610包括第一磁体1611和第二磁体1612。第二磁体1612被第一磁体1611覆盖。第二组件1620包括第三磁体1620。第一磁体1611、第二磁体1612和第三磁体1620均包括多个磁体模块。多个磁体模块拼接形成环形结构。第一磁体1611中多个磁体模块的充磁方式相同。第二磁体1612中多个磁体模块的充磁方式相同。第三磁体1620中多个磁体模块的充磁方式相同。即,同一磁体的多个磁体模块的充磁方式相同。
如图16所示,第一磁体1611中相邻两个磁体模块内部的磁场方向相反。第二磁体1612中相邻两个磁体模块内部的磁场方向相反。第三磁体1620中相邻两个磁体模块内部的磁场方向 相反。示例性的,第一磁体1611中相邻两个磁体模块中的一个磁体模块的N极朝上,S极朝下。第一磁体1611中相邻两个磁体模块中的另一个磁体模块的S极朝上,N极朝下。即,同一磁体的多个磁体模块中相邻两个磁体模块内部的磁场方向相反,可以减少磁吸装置1600组装过程中磁体模块之间的排斥力,便于磁吸装置1600的组装。
在其它实施例中,同一磁体的多个磁体模块可以分为至少两侧,相邻两侧的多个磁体模块中一侧的多个磁体模块内部的磁场方向与另一侧的多个磁体模块内部的磁场方向相反。示例性的,同一磁体中M个磁体模块分为两侧,一侧包括M1个磁体模块,另一侧包括M2个磁体模块。其中,M为大于等于2的正整数,M=M1+M2。一侧的M1个磁体模块内部的S极朝上,N极朝下。另一侧的M2个磁体模块内部的S极朝下,N极朝上。即,同一磁体中相邻两侧的多个磁体模块中一侧的多个磁体模块内部的磁场方向与另一侧的多个磁体模块内部的磁场方向相反,可以减少磁吸装置组装过程中磁体模块之间的排斥力,便于磁吸装置的组装。
本申请实施例提供的充电模块中磁吸装置的第一组件或第二组件中的一个或多个磁体可以包括一个或多个磁体模块。,磁体模块的俯视截面形状为扇环或多边形。
在一种实施例中,第一组件或第二组件的一个或多个磁体可以包括多个磁体模块,同一磁体的多个磁体模块的充磁方式相同。
在一种实施例中,第一组件或第二组件的一个或多个磁体可以包括多个磁体模块,同一磁体中的相邻两个磁体的内部磁场方向相反。
在一种实施例中,第一组件或第二组件的一个或多个磁体可以包括多个磁体模块,同一磁体中多个磁体模块分为至少两侧,相邻两侧磁体的内部磁场方向相反。
本申请实施例提供的充电模块的磁吸装置中磁体的位置关系、数量、充磁方式、俯视截面的形状、内部的磁场方向、结构等不限于上述实施例,凡在本申请原理下实现的技术方案均在本方案保护范围之内。说明书中任何的一个或多个实施例或图示,以适合的方式结合的技术方案均在本方案保护范围之内。
最后说明的是,以上实施例仅用以说明本申请的技术方案。本领域的普通技术人员应当理解,尽管参照前述实施例对本申请进行了详细的说明,其依然可以对前述各实施例中所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。而这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例中技术方案的精神和范围。

Claims (15)

  1. 一种充电模块,包括充电线圈和磁吸装置,所述充电线圈用于接收或发送电能,所述磁吸装置设置于所述充电线圈的内侧或外侧,其特征在于,
    所述磁吸装置包括至少一个磁吸单元,所述磁吸单元包括第一组件和第二组件,所述第一组件与所述第二组件沿所述第一方向相邻设置;其中,
    所述第一组件包括多个磁体;所述第一组件中的多个磁体沿第二方向层叠设置;所述第一组件中的至少两个磁体的内部磁场方向相反;
    所述第二组件包括至少一个磁体;所述第二组件中的磁体的内部磁场方向相同;
    所述第一方向与所述充电线圈或所述磁吸装置的平面相平行,所述第二方向与所述充电线圈或所述磁吸装置的平面相垂直。
  2. 根据权利要求1所述的充电模块,其特征在于,所述充电线圈、所述磁吸单元的第一组件、所述磁吸单元的第二组件沿所述第一方向依次相邻排列。
  3. 根据权利要求1-2任意一项所述的充电模块,其特征在于,
    所述第一组件中的所述至少两个磁体的内部磁场方向与所述第一方向、所述第二方向中的一个相平行,所述第二组件中的磁体的内部磁场方向与所述第一方向、所述第二方向中的另一个相平行。
  4. 根据权利要求1-3任意一项所述的充电模块,其特征在于,所述第一组件中的所述至少两个磁体的充磁方式与所述第二组件中磁体的充磁方式不同。
  5. 根据权利要求1-4任意一项所述的充电模块,其特征在于,所述第一组件的所述至少两个磁体包括第一磁体和第二磁体,所述第一磁体的充磁方式和所述第二磁体的充磁方式相同,所述第一磁体的内部磁场方向和所述第二磁体的内部磁场方向相反。
  6. 根据权利要求1-5任意一项所述的充电模块,其特征在于,所述第一组件还包括填充材料,所述填充材料与所述第一组件的所述至少两个磁体沿所述第二方向层叠设置,所述填充材料设置于位于所述第一组件的所述至少两个磁体之间,所述填充材料包括隔离组件或磁体的一种或多种。
  7. 根据权利要求1-6任意一项所述的充电模块,其特征在于,所述第一组件中或第二组件中的一个或多个中的一个或多个磁体由多个相邻设置的磁体子模块拼接形成。
  8. 根据权利要求1-7任意一项所述的充电模块,其特征在于,所述第一组件中磁体的俯视截面的形状为扇环或多边形,所述第二组件中磁体的俯视截面的形状为扇环或多边形;
    所述第一组件中的所述至少两个磁体的充磁方式为轴向充磁、辐射充磁中的一种,所述第二组件中磁体的充磁方式为轴向充磁、辐射充磁中的另一种;或,
    所述第一组件中的所述至少两个磁体的充磁方式为轴向充磁、径向充磁中的一种,所述第二组件中磁体的充磁方式为轴向充磁、径向充磁中的另一种。
  9. 根据权利要求1-8任意一项所述的充电模块,其特征在于,所述磁吸装置包括多个所述磁吸单元,每个所述磁吸单元的俯视截面的形状为扇环或多边形,多个所述磁吸单元依次相邻设置于所述充电线圈的邻近位置从而形成环形或扇环。
  10. 根据权利要求1-8任意一项所述的充电模块,其特征在于,所述磁吸装置包括多个所述磁吸单元,每个所述磁吸单元的俯视截面的形状为扇环或多边形,每个所述磁吸单元单独设置于所述充电线圈的邻近位置。
  11. 根据权利要求1-8任意一项所述的充电模块,其特征在于,所述磁吸装置包括多组所述磁吸单元,每组所述磁吸单元包括一个所述磁吸单元或者多个依次相邻排列的所述磁吸单 元,每组所述磁吸单元单独地设置于所述充电线圈的邻近位置。
  12. 根据权利要求1-7任意一项所述的充电模块,其特征在于,所述磁吸装置包括一个所述磁吸单元,所述磁吸单元的俯视截面的形状为圆形、或环形、或多边形。
  13. 根据权利要求1-7或12任意一项所述的充电模块,其特征在于,所述第一组件中磁体的俯视截面的形状为环形或扇环,所述第二组件中磁体的俯视截面的形状为环形、或圆形、或多边形,所述第一组件中的所述至少两个磁体的充磁方式为轴向充磁、辐射充磁中的一种,所述第二组件中磁体的充磁方式为轴向充磁、辐射充磁中的另一种。
  14. 一种电子设备,其特征在于,包括电源模块和如权利要求1-10任意一项所述的充电模块,其中,
    所述充电模块的充电线圈与所述电源模块电连接,所述充电模块的充电线圈用于接收充电器的充电线圈发送的电能;
    所述磁吸装置用于限定所述电子设备与所述充电器的接触位置,使得所述充电器的充电线圈与所述电子设备的充电线圈相匹配。
  15. 一种充电器,其特征在于,包括电源模块和如权利要求1-10任意一项所述的充电模块,其中,
    所述充电模块的充电线圈与所述电源模块电连接,所述充电模块的充电线圈用于向电子设备的充电线圈发送电能;
    所述磁吸装置用于限定所述充电器与所述电子设备的接触位置,使得所述充电器的充电线圈与所述电子设备的充电线圈相匹配。
PCT/CN2022/137875 2022-04-25 2022-12-09 一种充电模块、电子设备和充电器 WO2023207122A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210440717.2A CN114915039B (zh) 2022-04-25 2022-04-25 一种充电模块、电子设备和充电器
CN202210440717.2 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023207122A1 true WO2023207122A1 (zh) 2023-11-02

Family

ID=82765185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137875 WO2023207122A1 (zh) 2022-04-25 2022-12-09 一种充电模块、电子设备和充电器

Country Status (2)

Country Link
CN (1) CN114915039B (zh)
WO (1) WO2023207122A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915039B (zh) * 2022-04-25 2023-11-10 华为数字能源技术有限公司 一种充电模块、电子设备和充电器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080098167A1 (en) * 2006-10-23 2008-04-24 Commissariat A L'energie Atomique Magnetic device having perpendicular magnetization and interaction compensating interlayer
CN209402218U (zh) * 2019-04-01 2019-09-17 博世(上海)智能科技有限公司 无线充电支架及车载无线充电器
CN112771756A (zh) * 2019-09-27 2021-05-07 苹果公司 用于电子设备的具有nfc的磁性对准系统
CN213183912U (zh) * 2020-08-28 2021-05-11 深圳市倍思科技有限公司 一种带磁吸功能的线圈组件及无线充电装置
US20220069601A1 (en) * 2020-08-31 2022-03-03 Beijing Xiaomi Mobile Software Co., Ltd. Charging device and charging system
CN114915039A (zh) * 2022-04-25 2022-08-16 华为数字能源技术有限公司 一种充电模块、电子设备和充电器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6216966B2 (ja) * 2013-03-29 2017-10-25 株式会社エクォス・リサーチ 電力伝送システム
CN215772678U (zh) * 2020-12-31 2022-02-08 广东高普达集团股份有限公司 一种磁吸装置以及无线充电器
CN214205032U (zh) * 2020-12-31 2021-09-14 深圳市无线云图电子有限公司 一种适用于手机磁吸无线充电器的磁力垫片
CN214707215U (zh) * 2021-02-23 2021-11-12 安克创新科技股份有限公司 磁吸式充电设备
CN113809832A (zh) * 2021-09-18 2021-12-17 肇庆市衡艺实业有限公司 无线传输线圈及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080098167A1 (en) * 2006-10-23 2008-04-24 Commissariat A L'energie Atomique Magnetic device having perpendicular magnetization and interaction compensating interlayer
CN209402218U (zh) * 2019-04-01 2019-09-17 博世(上海)智能科技有限公司 无线充电支架及车载无线充电器
CN112771756A (zh) * 2019-09-27 2021-05-07 苹果公司 用于电子设备的具有nfc的磁性对准系统
CN213183912U (zh) * 2020-08-28 2021-05-11 深圳市倍思科技有限公司 一种带磁吸功能的线圈组件及无线充电装置
US20220069601A1 (en) * 2020-08-31 2022-03-03 Beijing Xiaomi Mobile Software Co., Ltd. Charging device and charging system
CN114915039A (zh) * 2022-04-25 2022-08-16 华为数字能源技术有限公司 一种充电模块、电子设备和充电器

Also Published As

Publication number Publication date
CN114915039B (zh) 2023-11-10
CN114915039A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2023207122A1 (zh) 一种充电模块、电子设备和充电器
JP6903179B2 (ja) 誘導相互接続システム用のアタッチメントデバイス
JP5845404B2 (ja) 受信側非接触充電モジュール及び受信側非接触充電機器
JP4835796B1 (ja) 受信側非接触充電モジュール及び受信側非接触充電機器
JP2012156482A (ja) 受信側非接触充電モジュール及び受信側非接触充電機器
KR20190070011A (ko) 무선전력 송신장치
JP2012010533A (ja) 電力伝送システム、該電力伝送システムの給電装置及び携帯機器
CN110690038A (zh) 一种无线充电装置
KR20190105433A (ko) 무선전력 송신장치
JP5649370B2 (ja) 非接触電力伝送システム
JP4900525B1 (ja) 非接触充電モジュール及びこれを備えた送信側非接触充電機器と受信側非接触充電機器
JP2017060347A (ja) ワイヤレス充電装置及びワイヤレス充電方法
CN106487196B (zh) 一种线性振动马达
US20230261531A1 (en) Wireless Charging Module, Electronic Device, and Charger
CN110189897A (zh) 一种无线充电线圈
CN206349905U (zh) 一种线性振动马达
CN106655696A (zh) 一种线性振动马达
CN106655699B (zh) 一种线性振动马达
JP5003835B1 (ja) 非接触充電モジュール及びそれを用いた非接触充電機器
EP4287457A1 (en) Wireless charging apparatus, electronic device, and electronic device protection case
KR102633300B1 (ko) 오버랩 코일층을 포함하는 내장 무선충전모듈
CN213185635U (zh) 一种无线充电装置及系统
CN213661283U (zh) 无线充电辅助装置、无线电能发射套件和家具
CN213661280U (zh) 无线充电辅助装置、无线电能发射套件和家具
CN220290563U (zh) 磁单元、磁组件、电子设备和设备组合

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939935

Country of ref document: EP

Kind code of ref document: A1