WO2023206962A1 - 发电组件和风力发电机组 - Google Patents

发电组件和风力发电机组 Download PDF

Info

Publication number
WO2023206962A1
WO2023206962A1 PCT/CN2022/122255 CN2022122255W WO2023206962A1 WO 2023206962 A1 WO2023206962 A1 WO 2023206962A1 CN 2022122255 W CN2022122255 W CN 2022122255W WO 2023206962 A1 WO2023206962 A1 WO 2023206962A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
generation assembly
flange
generator
conductive
Prior art date
Application number
PCT/CN2022/122255
Other languages
English (en)
French (fr)
Inventor
彭亮
黄鑫
李术林
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210469795.5A external-priority patent/CN117005990A/zh
Priority claimed from CN202210609568.8A external-priority patent/CN116357521B/zh
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Publication of WO2023206962A1 publication Critical patent/WO2023206962A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields

Definitions

  • the present disclosure belongs to the technical field of wind power generation, and in particular, relates to a power generation component and a wind power generator set having the power generation component.
  • Semi-direct drive units are mostly compact units.
  • the gearbox and generator usually adopt an integrated design.
  • the transmission chain is short, the cabin is lightweight and the structure is compact.
  • the present disclosure provides a power generation assembly to protect sensitive components such as bearings and gears in a gear box and improve the service life.
  • a power generation assembly includes a gearbox, a generator and a bypass power suppression module.
  • the gearbox includes a box and a box end cover provided at the end of the box. and an output shaft, the box end cover is provided with a shaft hole, and the output shaft is rotatably supported in the shaft hole;
  • the generator includes a rotor, and the rotor is fixed to the output shaft through a rotor bracket;
  • the bypass current suppression module is used to suppress stray current of the output shaft.
  • the bypass current suppression module includes a friction disk and a conductive structure. The friction disk is fixed to the box end cover.
  • the conductive structure Disposed on the rotor support, the conductive structure can be electrically connected to the friction disk.
  • a wind turbine generator set in another aspect of the present disclosure, includes the power generation component as described above, and the wind turbine generator set is a semi-direct drive wind turbine generator set.
  • the power generation assembly of the disclosure includes a bypass power suppression module, by arranging the conductive structure on the rotor bracket and arranging the friction disk on the box end cover, thereby Forming a stray current loop can disperse the stray current flowing through the output shaft and avoid excessive stray current on bearings, sealing components and other components, thus avoiding damage to bearings and sealing components and extending the service life of power generation components.
  • Figure 1 is a structural diagram of a power generation component provided by an exemplary embodiment of the present disclosure.
  • FIG. 2 is a partial longitudinal sectional view of the power generation component in FIG. 1 .
  • Fig. 3 is a partial enlarged view of the longitudinal cross-section structure in Fig. 2.
  • FIG. 4 is a partial enlarged view of the circled portion indicated by I in FIG. 2 .
  • Figure 5 is a schematic structural diagram of a power generation component of a semi-direct drive wind turbine set provided by an embodiment of the present invention
  • Figure 6 is a partial cross-sectional view of the power generation component of the semi-direct drive wind turbine set shown in Figure 5;
  • Figure 7 is a partial enlarged view of part A in Figure 6;
  • Figure 8 is a partial view of the ring sector backing plate installed on the second flange mounting surface.
  • the present disclosure provides a wind power generator set.
  • the wind power generator set may include a tower, a nacelle fixed to the tower, and the nacelle is provided with a generator 20 and an impeller.
  • the rotor 21 of the generator 20 is fixed to the impeller, so as to rotate through the impeller.
  • the generator can be installed inside the engine room, but this is not a limitation.
  • the generator can also be installed outside the engine room.
  • the wind turbine generator set may also include a gearbox 10.
  • the output shaft 13 of the gearbox 10 may be fixed to the rotor 21 of the generator.
  • the gearbox 10 may change the rotational speed of the impeller and output it to the generator 20, that is, By arranging the gearbox 10, the rotation speed of the impeller can be accelerated and transmitted to the generator 20, so that the generator 20 can generate electricity.
  • the wind turbine provided by the present disclosure may include a power generation component.
  • the power generation component may include a gearbox 10, a generator 20, and a bypass power suppression module 30.
  • the gearbox 10 includes a box 11 and is disposed at one end of the box 11. There is a box end cover 12 and an output shaft 13 at the bottom.
  • the box end cover 12 is provided with a shaft hole, and the output shaft 13 is rotatably supported in the shaft hole.
  • the gearbox 10 may be a planetary gearbox, but is not limited thereto.
  • the planetary gearbox includes a series of planetary gears, which may be arranged around a central sun gear, and these planetary gears collectively Arranged within a surrounding ring gear.
  • the gear ratio between the ring gear, the planet gear and the sun gear determines the gear ratio of the gear box, which will not be described in detail here.
  • the generator 20 includes a rotor 21 , which is fixed to the output shaft 13 through a rotor bracket 23 .
  • the rotor 21 is fixed on the rotor bracket 23, and the rotor bracket 23 is fixed on the output shaft 13 and electrically connected, so that the rotor 21 is fixedly connected to the output shaft 13, so that the rotation of the output shaft 13 drives the rotor 21 to rotate.
  • the gearbox 10 is disposed between the impeller and the generator 20, so that the rotation of the impeller can be transmitted to the generator 20, thereby enabling the generator 20 to generate electricity.
  • the bypass voltage suppression module 30 can disperse the stray current flowing through the output shaft, and can also effectively suppress the shaft voltage on the output shaft, thereby suppressing excessive stray current on the output shaft 13, thereby suppressing Stray current of power generation components to improve the service life of power generation components.
  • the bypass electricity suppression module 30 includes a friction disk 31 and a conductive structure 32.
  • the friction disk 31 is fixed on the box end cover 12.
  • the conductive structure 32 is provided on the rotor bracket 23. The conductive structure 32 and the friction disk 31 can be electrically connected.
  • the bypass current suppression module 30 By arranging the bypass current suppression module 30 in this disclosure, the stray current formed by the rotor bracket 23 and other components can be shunted through the bypass current suppression module 30 to be shunted to the stator base or gear of the generator through the box end cover 12
  • the box body 11 of the box 10 is used to shunt the current in the output shaft 13, which can also effectively suppress the shaft voltage on the output shaft, thereby suppressing the stray current of the power generation components and improving the service life of the power generation components. This prevents excessive current on the output shaft 13, thereby protecting the output shaft 13 and extending the service life of the power generation components.
  • the conductive structure 32 is disposed on the rotor bracket 23 so as to rotate relative to the friction disk 31 along with the rotor bracket 23 .
  • the conductive structure 32 and the friction disk 31 are made of conductive materials.
  • the rotor bracket 23 and the box end cover 12 are metal conductive parts, so that a shunt path for stray current can be formed.
  • the surface of the friction disk 31 is provided with a friction-resistant coating, but it is not limited to this.
  • the bonding surface of the friction disc 31 and the conductive structure 32 has been surface treated (such as electroplating, thermal spraying, nitriding and other processes) to have a coating with excellent wear resistance, anti-corrosion and excellent conductivity.
  • An annular plate made of stainless steel material can also be installed at the friction plate 31 instead of the coating as mentioned above for frictional conduction with the conductive structure 32 .
  • part of the stray current generated in the generator 20 can be directed to the conductive structure 32 through the rotor 21 or the rotor bracket 23.
  • the conductive structure 32 can be in sliding contact with the friction disc 31 and conductively connected, and the current can flow through the conductive structure 32. to friction disc 31.
  • the friction disc 31 is directly or indirectly fixed on the box end cover 12 and can be electrically connected to the box end cover 12 so that the current of the friction disc 31 can flow to the box end cover 12 .
  • the rotor bracket 23 - the conductive structure 32 - the friction disc 31 - the box end cover 12 form a shunt path, thereby reducing the amount of current flowing through the output shaft 13, protecting the output shaft 13 and the bearing 15, and improving the output.
  • the excitation source of the above-mentioned stray current is usually located at the motor stator or at both the motor stator and the motor rotor, and the voltage drop is usually generally along the generator axis. If stray currents of different time scales and strengths are not suppressed and controlled, it is very easy to cause damage to bearings, gears, sealing components, etc. in the gearbox (such as electrical corrosion, WEC, etc.).
  • the power generation assembly may also include a first ground cable 34 that connects the stator base 24 of the generator 20 and/or the box 11 of the gearbox 10 to the earth. Electrical connection to guide the current of the power generation components to the ground to protect the power generation components.
  • a first ground cable 34 may be provided between the generator 20 and the main frame or between the gearbox 10 and the main frame. In order to guide the above stray current to the ground, an elastic insulator is provided.
  • the above-mentioned first ground cable 34 further improves the reliability of the power generation assembly.
  • the first grounding cable 34 can be located on the gearbox side or the generator side, and one end of the first grounding cable is connected to the grounding point of the gearbox case or the grounding point of the case end cover 12 or the stator 22 of the motor. Ground point, the other end is connected to the ground, such as the cabin frame, etc.
  • the first grounding cable may be connected by multiple wires. One end of each first grounding cable is connected to the grounding point of the gearbox case or the grounding point of the case end cover 12 or the stator 22 of the motor, and the other end is connected to Ground, such as cabin frame, etc.
  • This arrangement of the first ground cable prevents the generator and gearbox from being grounded at the same time. In the loop formed by the two first ground cables, the power generation components and the ground, a very large current will be generated, which will lead to external grounding structures such as cabin frames. etc. suffer from electrical corrosion problems.
  • the "stray current" in the power generation component is directed to the ground, thereby avoiding arc phenomena in conductive components such as bearings, thereby increasing the service life of bearings and other components.
  • the power generation component further includes a current sensor 33, which can measure the current in the first ground cable 34.
  • the current sensor 33 can be electrically connected to the monitor 44 .
  • a current sensor 33 (typically a current transformer, Rogowski coil, etc.) is arranged at the first ground cable 34, and the measured signal is transmitted to the monitor 44.
  • the monitor 44 can identify the current information and make logical judgments, such as signal Whether the low-frequency component exceeds a certain threshold, whether a specific high-frequency component exceeds a certain threshold, etc.
  • the monitor 44 can also convert the collected real-time current signals into standard output signals, such as digital communication signals, analog signals, etc., and output the information to the unit main control system, which makes logical judgments.
  • the power generation assembly also includes a bearing end cover 14.
  • the bearing end cover 14 is fixed on the side of the box end cover 12 facing the generator 20, and the friction disk 31 is fixed on the bearing end cover 14, wherein,
  • the bearing end cover 14 is made of conductive material to electrically connect the friction disc 31 with the box end cover 12 .
  • the present disclosure can axially position the bearing by providing the bearing end cover 14, thereby improving the reliability of the power generation assembly.
  • the bearing end cover 14 is made of conductive material so that the shunt path is unblocked and not blocked, thereby further improving the reliability of the power generation assembly.
  • the rotor bracket 23 is provided with a bracket through hole.
  • One end of the conductive structure 32 is fixed to the side of the rotor bracket 23 away from the gearbox 10, and the other end of the conductive structure 32 is fixed to the side of the rotor bracket 23 away from the gearbox 10.
  • One end passes through the bracket through hole and is in electrical contact with the friction disk 31 .
  • the conductive structure 32 may be roughly formed into a T-shape.
  • the conductive structure 32 may be composed of a circular plate and a cylindrical member.
  • the cylindrical member may be fixed to the side wall of the circular plate, and the circular plate and the cylindrical member may be Arranged approximately coaxially, the diameter of the circular plate may be larger than the diameter of the cylindrical member.
  • the circular plate may be formed as a base of the conductive structure 32, the cylindrical member may be a conductive beam, and one end of the conductive beam away from the base may be a free end.
  • the base can be fixed on the side of the rotor bracket 23 away from the gearbox 10 , the conductive beam can extend from the base toward the gearbox 10 , and the free end of the conductive beam can be in sliding contact with the friction disc 31 , so that Make electrical connections.
  • the conductive structure 32 can be disassembled without disassembling the gearbox 10 and the generator 20, thus simplifying the maintenance process of the conductive structure 32 and reducing the cost. The operation and maintenance costs of power generation components are reduced.
  • the base may be provided with a plurality of fastener mounting holes along its circumference, and the conductive structure 32 may be connected to the rotor bracket 23 by providing fasteners, but is not limited to this.
  • the conductive bundle may be composed of multiple bundles of conductive fibers arranged in parallel.
  • the conductive fibers may be carbon fibers, graphite fibers or metal fibers, but are not limited thereto. This disclosure will be explained by taking the conductive fiber as carbon fiber as an example.
  • the conductive structure 32 can be a conductive brush, and the brush head of the conductive brush can be formed as the base of the conductive structure 32 , and the bristles can form the above-mentioned conductive bundle, wherein the brush head of the conductive brush is fixed to the rotor bracket 23 away from the gearbox 10 On one side, the bristles pass through the bracket through hole and contact the friction disc 31.
  • the power generation assembly may include a plurality of conductive structures 32 , the plurality of conductive structures 32 may be arranged at intervals along the circumference of the rotor bracket 23 , and each conductive structure 32 is electrically connected to the friction plate 31 .
  • the bristles are made of conductive materials.
  • the bristles can be made of conductive fibers, or made of graphite, but are not limited thereto.
  • the bristles are arranged parallel to the output shaft 13, and the bristles are arranged parallel to each other to form multiple parallel conductive loops, thereby improving the reliability of the power generation assembly.
  • the rotor 21 can be cylindrical, and the rotor bracket 23 can be a disc-shaped structure.
  • the radial outer edge of the rotor bracket 23 can be fixed on the inner wall of the rotor 21.
  • the rotor bracket 23 can be It is arranged in the axial middle of the rotor 21 so that the rotor 21 and the rotor bracket 23 can rotate together.
  • the output shaft 13 may be coaxially arranged with the rotor bracket 23 so that the air gaps 17 are evenly arranged along the circumferential direction of the generator 20 .
  • the rotor bracket 23 is provided with a plurality of bracket through holes, and the plurality of bracket through holes are arranged at intervals along the circumference of the rotor bracket 23 , and the conductive structure 32 can be disposed in the bracket through holes.
  • the number of conductive structures 32 can be selected according to actual needs. For example, but not limited to, the number of conductive structures 32 is not greater than the number of bracket through holes.
  • the power generation assembly also includes a monitor 44 and a measurement probe 42.
  • the monitor 44 is used to monitor the shaft end voltage of the output shaft 13.
  • the measurement probe 42 is fixed to the stator base of the generator 20 through the bracket 41. On the base 24, the measuring probe 42 is in electrical contact with the rotor support 23.
  • the measurement probe 42 can be a conductive brush
  • the connection method between the conductive brush and the bracket 41 can refer to the connection method between the conductive structure 32 and the rotor bracket 23 , that is, the brush head of the measurement probe 42 is placed toward the side away from the gearbox 10 , to facilitate disassembly and assembly, but not limited to this.
  • the measurement probe 42 and the bracket 41 are insulated to prevent stray current from shunting through the bracket 41, thereby improving the accuracy of the monitor 44.
  • an insulating pad 43 is provided between the measurement probe 42 and the bracket 41 .
  • the insulating pad 43 may be made of nylon material or rubber material.
  • the monitor 44 and the measuring probe 42 By setting the monitor 44 and the measuring probe 42, the current value or voltage value on the rotor support 23 can be monitored in real time. When the current value or voltage value exceeds the predetermined range, an alarm can be issued to further improve the reliability of the power generation component.
  • the above-mentioned alarm can be sent to the operator to remind the operator that the above-mentioned bypass power suppression module is working abnormally, and the manual personnel can stop the machine for maintenance.
  • the above alarm can also be sent to the controller, and the controller can control the wind turbine to shut down to avoid excessive damage to the power generation components.
  • the monitor 44 can be disposed at the axial outer end of the stator base 24 of the generator 20, that is, at an end of the stator base 24 facing away from the gearbox 10, and the monitor 44 is electrically connected to the measurement probe 42, The current or voltage on the rotor support 23 can be transmitted to the monitor 44 for monitoring, thereby improving the reliability of the power generation component.
  • the distance from the conductive structure 32 to the central axis of the output shaft 13 is greater than the distance from the measuring probe 42 to the central axis of the output shaft 13.
  • the monitor 44 can still work normally, thereby further improving the Reliability of power generation components.
  • the monitor 44 may be a current monitor and/or a voltage monitor.
  • the current monitor may be a current sensor
  • the voltage monitor may be a voltage sensor, but is not limited thereto.
  • a wind turbine generator set which includes the power generation components as described above.
  • the wind turbine generator set is a semi-direct drive wind turbine generator set, but is not limited to this.
  • the power generation component provided by the present disclosure disperses the stray current on the output shaft 13 by arranging the bypass voltage suppression module 30 and suppresses the shaft voltage on the output shaft to avoid excessive stray current on the output shaft 13 and thereby avoid output Shaft 13, bearings and sealing components are damaged, which increases the service life of the power generation components. Furthermore, by providing the first grounding cable, the stray current on the stator base 24 of the generator or the gearbox case can be guided to ground, thereby protecting the power generation components.
  • the power generation component may also include a monitor 44, which may detect the voltage value on the rotor support 23 or/and the current value at the first ground cable. , prevent excessive stray current, and judge the working status of the suppression device, thereby further improving the reliability of the power generation components.
  • Figure 5 is a schematic structural diagram of a semi-direct drive wind turbine assembly provided by an embodiment of the present invention
  • Figure 6 is a schematic diagram of the semi-direct drive wind turbine assembly shown in Figure 5. Partial cutaway view.
  • the power generation assembly mainly consists of two parts: a gearbox 10 and a generator 20.
  • the gearbox 10 is usually composed of a multi-stage planetary gear train in series, and the output speed is Roughly between 100rpm and 900rpm
  • the generator 20 is usually a permanent magnet generator with an inner rotor and an outer stator.
  • the input shaft 16 of the gearbox 10 is usually machined from a steel forging. Its speed is the speed of the impeller. One end receives the torque from the impeller, and the other end is usually connected to the first-stage planet. Planetary gears of the gear train.
  • the box body 11 of the gearbox 10 is usually a ring gear structure or support member of a multi-stage planetary gear train connected through flanges. The electrical impedance of the electrical connection is very small.
  • the box body 11 is generally elastically supported through flange connections or support arms. fixed on the base or main frame.
  • the box end cover 12 of the gear box 10 is usually machined after casting. It is generally connected to the box 11 as a whole through a flange connection, and provides support for the gear box output shaft bearing 15.
  • the gearbox output shaft 13 is usually connected to the sun gear of the last planetary gear train of the gearbox 10 through splines, locking discs, etc. After the multi-stage planetary gear train increases its speed, its output speed is doubled.
  • the rotor 21 of the generator 20 is generally mechanically fixed on the output shaft 13 through a flange, and the bracket of the stator 22 of the generator 20 is generally fixed on the box end cover 12 of the gearbox 10 through flange bolt connection.
  • the gearbox 10 passes through the first ground cable 34 (preferably a copper braid) at the box body 11 or the box end cover 12 through a conductive channel (such as a nacelle frame or base or a grounded copper bar or tower, etc. and various combinations) Electrically connected to the neutral point of the DC busbar of the unit converter.
  • a conductive channel such as a nacelle frame or base or a grounded copper bar or tower, etc. and various combinations
  • the generator stator 22 is electrically connected to the unit converter at its casing through a second ground cable 35 (preferably a copper braid) via a conductive channel (such as a nacelle frame or base or a grounded copper bar or tower, etc. and various combinations) The neutral point of the DC bus of the converter.
  • a second ground cable 35 preferably a copper braid
  • a conductive channel such as a nacelle frame or base or a grounded copper bar or tower, etc. and various combinations
  • gear box body 11 and the box end cover 12 are also electrically connected (that is, the electrical impedance is very small).
  • the box end cover 12 of the gearbox 10 is provided with a first flange 1131, and the stator base 24 of the generator 20 is provided with a second flange 12111.
  • the first flange 1131 is connected with the second flange 1131.
  • the flange 12111 is connected by bolts 5.
  • An insulating pad 403 is provided between the first flange 1131 and the second flange 12111.
  • the insulating pad 403 is provided with through holes corresponding to the bolts 5; the bolt heads of the bolts 5 are Insulating washers 401 are provided between the first flanges 1131, and an insulating sleeve 402 is provided in the bolt hole of the first flange 1131.
  • the bolt 5 passes through the insulating sleeve 402 and is screwed into the bolt hole of the second flange 12111; the insulating sleeve One end of the tube 402 is in close contact with the insulating gasket 401 in an abutting manner. The other end of the insulating sleeve 402 is inserted into the through hole of the insulating pad 403 and is in close contact with the insulating pad 403 .
  • the insulating gasket 401, the insulating sleeve 402 and the insulating pad 403 are all made of electrical insulating materials (such as rubber, engineering plastics, etc.).
  • the stray current generated at the generator stator can be prevented from passing through the gearbox 10 or less through the gearbox 10, and can pass through the second ground cable 35 (preferably the copper braid) through the conductive channel (such as the nacelle frame) Or base or grounding copper bar or tower, etc. and various combinations) are electrically connected to the neutral point of the DC busbar of the unit converter.
  • possible low-frequency and high-frequency circulating current paths are further cut off to avoid low-frequency and high-frequency circulation caused by increased grounding impedance of the first ground cable 34 and the second ground cable 35 such as poor installation wiring quality. Electrical current hazard.
  • annular insulating pad 403 made of electrically insulating material needs to be added between the two.
  • the outer diameter of the stator 22 of a megawatt medium-speed permanent magnet direct drive generator is usually greater than 2 m, the overall processing of the insulating pad 403 is difficult and costly.
  • the insulating pad 403 can be made into a ring sector-shaped pad 4031 with a certain circumferential angle, and is configured into an annular shape through uniform distribution at the connection surface of the second flange 12111 of the stator base 24, that is to say, the insulating
  • the backing plate 403 is annular in shape as a whole, and is composed of several annular sector-shaped backing plates 4031 evenly distributed in the circumferential direction.
  • the shaft voltage and axis current problem of the semi-direct drive transmission chain is essentially an electromagnetic compatibility problem.
  • the excitation sources are the converter and the generator body, which are the power generation components of the usual wind power semi-direct drive unit. Specifically, they are the common mode voltage and common mode current of the converter and the magnetic imbalance of the generator body.
  • the electrical insulation structure Since an electrical insulation structure (mainly composed of insulating washers 401, insulating sleeves 402 and insulating pads 403) is added between the generator stator 22 and the non-rotating parts of the gearbox 10 (box 11, box end cover 12, etc.) ), in addition, the electrical insulation structure exhibits capacitive reactance characteristics under AC. Within a certain frequency range (typically below 100kHz), the total impedance of "Path 2" is very large, and the current allowed to pass is very small, such as it can be controlled at mA Level, it will not cause electrical corrosion damage to sensitive parts such as bearings and gears.
  • the stray current in "Path 1" is mainly composed of two currents, referred to as “current I1” and “current I2" respectively;
  • the excitation source of "current I1” is mainly the common mode voltage of the converter and IGBT (insulation
  • IGBT insulation
  • the du/dt generated by the switching of the gate bipolar transistor element reaches the stator base 24 from the converter through the main cable, the generator winding, and through the capacitive coupling between the winding and the stator core; the excitation of "current I2"
  • the source is mainly the common mode voltage of the converter and the du/dt generated by the IGBT element switching.
  • the first ground cable 34 and the second ground cable 35 will be relative to a certain point A in the "path 1" (such as in the engine room). (dedicated grounding bus)) increases, the current value is very large and the "current I1" is very likely to partially reach point A in "path 1" through the inside of the gearbox 10. This situation needs to be avoided.
  • an electrical insulation structure is added between the generator stator 22 and the gearbox 10 to realize the separation of "current I1" and "current I2".
  • the "current I1” mainly reaches the stator 22, mainly passes through the second ground cable 35, and finally flows back to the neutral point of the converter DC bus;
  • the "current I2” mainly reaches the box 11 or 11 of the gear box 10.
  • the box end cover 12 After the box end cover 12, it mainly flows through the first ground cable 34 and finally returns to the neutral point of the DC bus of the converter.
  • sensitive components in the gearbox such as bearings, gears, sealing components, etc. only bear a very small "current I2".
  • a current sensor 33 can be set at the position shown in Figure 5, that is, on the first grounding cable 34.
  • the sensor 33 such as (current transformer, Rogowski coil, current caliper, etc.) measures and monitors the current value. As long as the actual current value is less than a certain threshold (such as a single peak value or effective value or peak-to-peak value), it can be considered is safe. This layout enables measurement and monitoring of sensitive currents and is easy to implement.
  • the present invention also provides a process for manufacturing the generator set, which includes the following steps:
  • the second flange 12111 of the stator base 24 is processed with mounting holes and mounting surfaces for fixing the insulating pad 403 during prefabrication, and the insulating pad 403 is pre-processed with mounting holes;
  • the stator base 24 containing the second flange 12111 has gone through the main processes of blanking, welding, heat treatment, etc., that is, before the overall machining, a ring sector-shaped backing plate 4031 with a certain machining allowance in the circumferential direction is installed (see Figure 8 ), the insulating pad 403 is formed by splicing the ring sector pads 4031;
  • the whole body composed of the stator base 24 and the insulating pad 403 is machined (such as turning, milling, etc.) to obtain a mounting surface that matches the first flange 1131 of the box end cover 12 and a hole group for connecting bolts. .
  • the power generation component of the semi-direct drive wind turbine provided by the present invention controls and monitors the stray current injected into the gearbox 10 through isolation, bypass, monitoring and other measures, thereby realizing the separation of "current I1" and "current I2". Ultimately, unacceptable electrical corrosion damage to bearings, gears, sealing components, etc. in the gearbox 10 is avoided.
  • the split and spliced insulating pad 403 and its manufacturing process have well solved the problems of difficulty and high cost in overall processing of the insulating pad 403.
  • the power generation assembly provided by the present disclosure may include a gearbox 10, a generator 20 and a bypass power suppression module 30.
  • An insulating pad 403 may also be provided between the first flange 1131 and the second flange 12111, and the output shaft may be further 13 for protection.
  • an insulating pad 403 is provided between the first flange 1131 and the second flange 12111, which is not restricted by the use of the bypass power suppression module 30, that is, the first flange 1131 and the second flange
  • the insulating pad 403 provided between 12111 can be a technical solution independent of the bypass power suppression module 30 .
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present disclosure, “plurality” means two or more unless otherwise specified.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, or a fixed connection.
  • It can be a detachable connection, or an integral connection, it can be a mechanical connection, it can be an electrical connection, it can also be a communication connection; it can be a direct connection, or it can be an indirect connection through an intermediate medium, it can be an internal connection or an internal connection between two components.
  • the interaction between two components can be understood on a case-by-case basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种发电组件和风力发电机组,发电组件包括齿轮箱(10)、发电机(20)以及旁路抑电模块(30),齿轮箱(10)包括箱体(11)、设置于箱体(11)端部的箱体端盖(12)以及输出轴(13),箱体端盖(12)设置有轴孔,输出轴(13)可转动地支撑在轴孔内;发电机(20)包括转子(21),转子(21)通过转子支架(23)固定于输出轴(13);旁路抑电模块(30)用于抑制输出轴(13)的杂散电流,旁路抑电模块(30)包括摩擦盘(31)和导电结构(32),摩擦盘(31)固定于箱体端盖(12),导电结构(32)设置在转子支架(23)上,导电结构(32)与摩擦盘(31)能够电连接。

Description

发电组件和风力发电机组 技术领域
本公开属于风力发电技术领域,尤其涉及一种发电组件和具有该发电组件的风力发电机组。
背景技术
随着风电技术的发展,大功率风力发电机组成为未来发展趋势。因半直驱机组兼具直驱机组和双馈机组的优势,在风力发电机组向大型化发展的过程中,半直驱机组不断受到青睐。
半直驱机组多为紧凑型机组,齿轮箱和发电机通常采用集成设计方案,传动链较短、机舱重量较轻且结构紧凑。
风力发电机组在运行时,由于存在容性耦合和传导耦合,存在数量众多的由变流器经电缆、定子绕组、发电机定转子支架、齿轮箱并最终返回到变流器的各种以变流器开关频率倍频特征的杂散电流路径。另外由于发电机本身存在转子偏心、气隙不均匀等原因,也存在数量众多的由发电机经定子绕组、定子铁芯、定子支架、发电机定转子支架、齿轮箱并最终返回到发电机的各种以发电机基频倍频特征的杂散电流路径。杂散电流过大将直接影响轴承、齿轮等敏感元件的使用寿命。
发明内容
本公开提供一种发电组件,以对齿轮箱内轴承、齿轮等敏感元件齿轮进行保护,提高使用寿命。
本公开提供如下技术方案:
本公开的一个方面,提供一种发电组件,所述发电组件包括齿轮箱、发电机以及旁路抑电模块,所述齿轮箱包括箱体、设置于所述箱体端部的箱体端盖以及输出轴,所述箱体端盖设置有轴孔,所述输出轴可转动地支撑在所述轴孔内;所述发电机包括转子,所述转子通过转子支架固定于所述输出轴;所述旁路抑电模块用于抑制所述输出轴的杂散电流,所述旁路抑电模块包括 摩擦盘和导电结构,所述摩擦盘固定于所述箱体端盖,所述导电结构设置在所述转子支架上,所述导电结构与所述摩擦盘能够电连接。
本公开另一方面,提供一种风力发电机组,所述风力发电机组包括如上所述的发电组件,所述风力发电机组为半直驱风力发电机组。
本公开提供的发电组件和风力发电机组至少具有如下有益效果:本公开的发电组件包括旁路抑电模块,通过将导电结构设置在转子支架上,将摩擦盘设置在箱体端盖上,从而形成杂散电流回路,能够分散流经输出轴的杂散电流,避免轴承、密封元件等部件上的杂散电流过大,从而避免轴承、密封元件损伤,提高了发电组件的使用寿命。
附图说明
通过下面结合附图对实施例进行的描述,本公开的上述和/或其它目的和优点将会变得更加清楚,其中:
图1为本公开一示例性实施例提供的发电组件的结构图。
图2为图1中的发电组件的局部纵剖图。
图3为图2中的纵剖结构的局部放大图。
图4为图2中的I所指示圆圈部分的局部放大图。
图5为本发明实施例所提供的一种半直驱风力发电机组的发电组件的结构示意图;
图6为图5所示半直驱风力发电机组的发电组件的局部剖视图;
图7为图6中A部位的局部放大图;
图8为环扇形垫板安装于第二法兰安装面上的局部视图。
附图标记说明:
5、螺栓;
10、齿轮箱;        11、箱体;
12、箱体端盖;      13、输出轴;
14、轴承端盖;      15、轴承;
16、输入轴;
20、发电机;        21、转子;
22、定子;          23、转子支架;
24、定子基座;      30、旁路抑电模块;
31、摩擦盘;        32、导电结构;
33、电流传感器;    34、第一接地线缆;
35、第二接地线缆;
41、支架;          42、测量探头;
43、绝缘垫;        44、监测仪;
401、绝缘垫圈;     402、绝缘套管;
403、绝缘垫板;     4031、环扇形垫板;
1131、第一法兰;    12111、第二法兰。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,不应被理解为本公开的实施形态限于在此阐述的实施方式。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
本公开提供一种风力发电机组,该风力发电机组可以包括塔架、固定于塔架的机舱、机舱设置有发电机20和叶轮,其中发电机20的转子21与叶轮固定,以通过叶轮的旋转带动发电机发电。作为示例,发电机可以设置于机舱内,但不以此为限,发电机也可以设置于机舱外。
本实施例中,风力发电机组还可以包括齿轮箱10、齿轮箱10的输出轴13可以与发电机的转子21固定,齿轮箱10可以将叶轮的转速进行改变,并输出给发电机20,即通过设置齿轮箱10可以对叶轮的转速进行加速处理,并传递给发电机20,以使发电机20能够发电。
本公开提供的风力发电机组中可以包括发电组件,可选地,发电组件可包括齿轮箱10、发电机20以及旁路抑电模块30,齿轮箱10包括箱体11、设置于箱体11端部的箱体端盖12以及输出轴13,箱体端盖12设置有轴孔,输出轴13可转动地支撑在轴孔内。
可选地,齿轮箱10可以是行星齿轮箱,但不以此为限,本实施例中,行星齿轮箱包括一系列行星齿轮,这些行星齿轮可以围绕中心太阳轮布置,且这些行星齿轮共同地被布置在环绕的环形齿轮内。环形齿轮、行星齿轮以及太阳轮之间的齿轮的比确定了齿轮箱的齿轮比,在此不再赘述。
发电机20包括转子21,转子21通过转子支架23固定于输出轴13。具体地,转子21固定于转子支架23上,转子支架23固定在输出轴13上,且 电连接,从而使得转子21与输出轴13固定连接,以使输出轴13的转动带动转子21转动。进一步地,齿轮箱10设置在叶轮和发电机20之间,从而可以将叶轮的转动传递给发电机20,从而实现发电机20发电。
继续参照图1和图2,旁路抑电模块30能够分散流经输出轴的杂散电流,也可以有效抑制输出轴上的轴电压,进而抑制输出轴13的杂散电流过大,从而抑制发电组件的杂散电流,以提高发电组件的使用寿命。具体地,旁路抑电模块30包括摩擦盘31和导电结构32,摩擦盘31固定于箱体端盖12,导电结构32设置在转子支架23上,导电结构32与摩擦盘31能够电连接。
本公开通过设置旁路抑电模块30,可以将转子支架23等部件形成的杂散电流通过旁路抑电模块30分流,以经箱体端盖12分流到发电机的定子基座上或者齿轮箱10的箱体11上,以对输出轴13中的电流量进行分流,也可以有效抑制输出轴上的轴电压,从而抑制发电组件的杂散电流,以提高发电组件的使用寿命。避免输出轴13上的电流过大,从而对输出轴13进行保护,也就提高了发电组件的使用寿命。
具体地,可以参照图1至图4,导电结构32设置于转子支架23上,以能够随着该转子支架23一同相对于摩擦盘31转动,导电结构32和摩擦盘31为导电材料制成。同时转子支架23和箱体端盖12为金属导电件,如此便可以形成杂散电流的分流路径。
为了提高摩擦盘31的使用寿命,以降低发电组件的运维成本,摩擦盘31的表面设置有耐摩擦镀层,但不以此为限。摩擦盘31与导电结构32的贴合面经表面处理(如电镀、热喷涂、渗氮等工艺处理)具有耐磨、防腐以及导电性优异的涂层。也可以在摩擦盘31处安装环形的不锈钢材料制成的板,代替如上所述涂层,用于与导电结构32摩擦导电。
具体地,发电机20内产生的部分杂散电流可以经转子21或转子支架23导流到导电结构32上,导电结构32能够与摩擦盘31滑动接触且导电连接,电流可以经导电结构32流到摩擦盘31。摩擦盘31直接或者间接固定在箱体端盖12上,且能够与箱体端盖12电连接,以能够使摩擦盘31的电流流到箱体端盖12上。本公开中,转子支架23-导电结构32-摩擦盘31-箱体端盖12形成分流路径,从而可以减少流经输出轴13上的电流量,对输出轴13、轴承15进行保护,提高输出轴13以及轴承15的使用寿命。
所谓的“杂散电流”可导致相邻部件之间的电弧,并且这继而可导致诸 如点蚀和焊接的损坏。轴承特别容易受到这种腐蚀,因此需要控制这种“杂散电流”以使其维持在可接受水平内。
风力发电机组在运行时,由于存在容性耦合和传导耦合,存在数量众多的由变流器经电缆、定子绕组、定子基座、转子支架、齿轮箱并最终返回到变流器的各种以变流器开关频率倍频特征的杂散电流路径。另外由于发电机本身可能存在转子偏心、气隙不均匀、磁路不平衡等误差,也存在数量众多的由发电机经定子绕组、定子铁芯、定子基座、转子支架、齿轮箱并最终返回到发电机的各种以发电机基频倍频特征的杂散电流路径。
上述杂散电流的激励源通常位于电机定子或同时存在于电机定子和电机转子处,且电压降通常大体沿发电机轴向。不同时间尺度和强度的杂散电流如果不加以抑制和控制,非常容易导致齿轮箱内如轴承、齿轮、密封元件等的损伤(如电蚀、WEC等)。
为了进一步降低杂散电流的影响,发电组件还可以包括第一接地线缆34,所述第一接地线缆34将发电机20的定子基座24和/或齿轮箱10的箱体11与大地电连接,以将发电组件的电流引流到地面上,从而对发电组件进行保护。可选地,为了提高发电组件的抗振性能,在发电机20与主机架之间或者齿轮箱10与主机架之间可能设置有弹性绝缘件,为了能够将上述杂散电流引流接地,设置了上述第一接地线缆34,从而进一步提高了发电组件的使用可靠性。
可选地,第一接地线缆34可以位于齿轮箱侧或发电机侧,第一接地线缆一端连接齿轮箱的箱体的接地点或箱体端盖12的接地点或电机的定子22的接地点,另外一端连接地,如机舱框架等。第一接地线缆可以是多根导线连接,每根第一接地线缆一端连接齿轮箱的箱体的接地点或箱体端盖12的接地点或电机的定子22的接地点,另外一端连接地,如机舱框架等。这种第一接地线缆的布置避免了发电机和齿轮箱同时接地在两个第一接地线缆与发电组件及地构成的环路中会产生非常大的电流进而导致外接地结构如机舱框架等遭受电腐蚀的问题。
进一步地,通过设置第一接地线缆将发电组件中的“杂散电流”引流接地,如此避免轴承等导电部件出现电弧现象,从而提高了轴承等部件的使用寿命。
可选地,发电组件还包括电流传感器33,电流传感器33可对在第一接 地线缆34的电流进行测量。进一步地,电流传感器33可与监测仪44电连接。在第一接地线缆34处布置电流传感器33(典型如电流互感器、罗氏线圈等),测量的信号传递给监测仪44,监测仪44可对电流信息进行识别,并进行逻辑判断,如信号中的低频分量是否超过某一阈值、特定高频分量是否超过某一阈值等等。或者监测仪44也可可将采集到的实时电流信号转化为标准的输出信号,如数字量通讯信号、模拟量信号等,并将信息输出给机组主控系统,由机组主控系统进行逻辑判断。
继续参照图1至图4,发电组件还包括轴承端盖14,轴承端盖14固定于箱体端盖12的朝向发电机20的一侧,摩擦盘31固定于轴承端盖14上,其中,轴承端盖14为导电材料制成,以使摩擦盘31与箱体端盖12电连接。本公开通过设置轴承端盖14可以对轴承进行轴向定位,从而提高了发电组件的使用可靠性。进一步地,轴承端盖14选由导电材料制成,以使分流路径畅通而不被阻隔,从而进一步提高了发电组件的使用可靠性。
可选地,为了便于导电结构32的拆装,便于发电组件的运维,转子支架23设置有支架通孔,导电结构32一端固定于转子支架23背离齿轮箱10的一侧,导电结构32另一端穿过支架通孔与摩擦盘31电接触。
导电结构32可大致形成为T型,为了便于描述,将举例说明,导电结构32可由圆板和圆柱状构件构成,圆柱状构件可以固定于圆板的侧壁,且圆板和圆柱状构件可大致同轴设置,圆板的直接可大于圆柱状构件的直径。圆板可形成为导电结构32的基座,圆柱状构件可为导电束,导电束的远离基座的一端可为自由端。本实施例中,基座可固定于转子支架23背离齿轮箱10的一侧,导电束可以从该基座朝向齿轮箱10延伸,并该导电束的自由端能够与摩擦盘31滑动接触,从而实现电连接。
作为示例,通过将基座固定在转子支架23的轴向外侧,在不拆卸齿轮箱10和发电机20的情况下,可以进行导电结构32的拆卸,从而简化了导电结构32的检修工艺,降低了发电组件的运维成本。
基座可以沿其周向设置有多个紧固件安装孔,可通过设置紧固件将该导电结构32连接在转子支架23上,但不以此为限。
进一步可选地,导电束可以由多束导电纤维平行设置构成,例如但不限于,导电纤维可以为碳纤维、石墨纤维或者金属纤维,但不以此为限。本公开将以导电纤维为碳纤维为例进行说明。
可选地,导电结构32可以为导电刷,导电刷的刷头可形成为导电结构32基座,刷毛可形成上述的导电束,其中,导电刷的刷头固定于转子支架23背离齿轮箱10的一侧,刷毛穿过支架通孔与摩擦盘31接触。
为了进一步提高发电组件的可靠性,发电组件可包括多个导电结构32,多个导电结构32可沿转子支架23的周向间隔设置,且每个导电结构32均与摩擦盘31电连接。
进一步地,作为示例,刷毛由导电材料制成,例如但不限于,刷毛可由导电纤维制成,或者由石墨制成,但不以此为限。可选地,刷毛平行于输出轴13设置,刷毛彼此平行设置,以形成多个并联导电回路,从而提高了发电组件的使用可靠性。
可选地,转子21可呈圆筒状,转子支架23可以为圆盘状结构,该转子支架23的径向外缘可以固定在转子21的内壁上,例如但不限于,该转子支架23可以布置于转子21的轴向中部,以使转子21和转子支架23可以一同旋转。进一步地,输出轴13可以与转子支架23同轴设置,以使气隙17沿发电机20的周向均匀布置。
可选地,转子支架23上设置有多个支架通孔,且多个支架通孔沿转子支架23的周向间隔布置,导电结构32可设置于该支架通孔内。导电结构32的数量可以根据实际需要选择,例如但不限于,该导电结构32的数量不大于支架通孔的数量。
为了进一步提高发电组件的使用可靠性,发电组件还包括监测仪44和测量探头42,监测仪44用于监测输出轴13的轴端电压,测量探头42通过支架41固定于发电机20的定子基座24上,测量探头42与转子支架23电接触。作为示例,测量探头42可以为导电刷,导电刷与支架41的连接方式可以参照导电结构32与转子支架23间的连接方式,即测量探头42的电刷头朝向背离齿轮箱10的一侧设置,以方便拆装,但不以此为限。
可选地,测量探头42与支架41间绝缘设置,以防止杂散电流经该支架41分流,从而提高了监测仪44的精度。作为示例,测量探头42和支架41之间设置有绝缘垫43。可选地,绝缘垫43可为尼龙材料制成,或者为橡胶材料制成。
通过设置监测仪44和测量探头42可以实时监测转子支架23上的电流值或者电压值,在电流值或者电压值超出预定范围后,可以发出警报,以进一 步提高了发电组件的使用可靠性。
上述警报可以发送给操作人员,以提醒操作人员上述旁路抑电模块工作异常,手动人员可以停机检修。可选地,上述警报还可以发送给控制器,控制器可以控制风力发电机组停机,以避免发电组件过度损伤。
作为示例,监测仪44可以设置于发电机20的定子基座24的轴向外端,即设置在定子基座24的背向齿轮箱10的一端,且监测仪44与测量探头42电连接,以能够将转子支架23上的电流或者电压传输到监测仪44,以用于监测,从而提高发电组件的使用可靠性。
作为示例,导电结构32到输出轴13的中轴线的距离大于测量探头42到输出轴13的中轴线的距离,在导电结构32故障的情况下,监测仪44仍能正常工作,从而进一步提高了发电组件的使用可靠性。
可选地,监测仪44可以为电流监测仪和/或电压监测仪,作为示例,电流监测仪可以为电流传感器,电压监测仪可以为电压传感器,但不以此为限。
一种风力发电机组,风力发电机组包括如上所述的发电组件,风力发电机组为半直驱风力发电机组,但不以此为限。
本公开提供的发电组件,通过设置旁路抑电模块30来分散输出轴13上的杂散电流,并抑制输出轴上的轴电压,避免输出轴13上的杂散电流过大,从而避免输出轴13、轴承以及密封元件受损,提高了发电组件的使用寿命。进一步地,通过设置第一接地线缆,可以将发电机的定子基座24或者齿轮箱的箱体上的杂散电流引导接地,从而可以保护发电组件。可选地,为了提高该发电组件的使用可靠性,发电组件还可以包括监测仪44,该监测仪44可以对转子支架23上的电压值或/和第一接地线缆处的电流值进行检测,防止杂散电流过大,并可对抑制装置的工作状态进行判断,从而进一步提高了发电组件的使用可靠性。
请参考图5、图6,图5为本发明实施例所提供的一种半直驱风力发电机组的组合体的结构示意图;图6为图5所示半直驱风力发电机组的组合体的局部剖视图。
如图所示,在一种具体实施例中,本公开提供的发电组件主要由齿轮箱10和发电机20两大部分组成,其中,齿轮箱10通常由多级行星轮系串联构成,输出转速大致在100rpm~900rpm,发电机20通常为内转子外定子的永磁发电机。
作为组合体的典型连接形式和特征结构,齿轮箱10的输入轴16通常为钢锻件经机加工而成,其转速为叶轮转速,一端接受来自叶轮的转矩,另一端通常连接第一级行星轮系的行星齿轮。齿轮箱10的箱体11通常是多级行星轮系的齿圈结构体或支撑件通过法兰连接而成,电连接的电阻抗非常小,箱体11一般通过法兰连接或支撑臂弹性支撑的方式固定在底座或主机架上。
齿轮箱10的箱体端盖12通常经铸造后机加工得到,一般通过法兰连接的方式与箱体11连接为一体,且为齿轮箱输出轴轴承15提供支撑。齿轮箱输出轴13通常通过花键、锁紧盘等方式与齿轮箱10最后一级行星轮系的太阳轮连接在一起,经多级行星轮系的增速后,其输出转速倍增。
发电机20的转子21一般通过法兰机械固定在输出轴13上,发电机20的定子22的支架一般通过法兰螺栓连接的方式固定在齿轮箱10的箱体端盖12上。
齿轮箱10在箱体11或箱体端盖12处通过第一接地线缆34(优选铜编织带)经导电通道(如机舱框架或底座或接地铜排或塔架等等以及各种组合)电连接至机组变流器直流母排的中性点。
发电机定子22在其外壳处通过第二接地线缆35(优选铜编织带)经导电通道(如机舱框架或底座或接地铜排或塔架等等以及各种组合)电连接至机组变流器直流母排的中性点。
另外,齿轮箱的箱体11和箱体端盖12之间也是电连接的(即电阻抗非常小)。
其中,参见图7所示,齿轮箱10的箱体端盖12设有第一法兰1131,发电机20的定子基座24设有第二法兰12111,第一法兰1131与第二法兰12111通过螺栓5相连接,第一法兰1131与第二法兰12111之间设有绝缘垫板403,绝缘垫板403上开设有与螺栓5相对应的通孔;螺栓5的螺栓头与第一法兰1131之间设有绝缘垫圈401,第一法兰1131的螺栓孔内设有绝缘套管402,螺栓5穿过绝缘套管402旋入第二法兰12111的螺栓孔;绝缘套管402的一端以抵接的方式与绝缘垫圈401紧密接触,绝缘套管402的另一端插入绝缘垫板403的通孔中,与绝缘垫板403紧密接触。
绝缘垫圈401、绝缘套管402以及绝缘垫板403均是电绝缘材料(如橡胶类、工程塑料类等等)制作而成。
通过上述电隔离、连接结构,能够使得在发电机定子处产生的杂散电流 不经过或少经过齿轮箱10,而通过第二接地线缆35(优选铜编织带)经导电通道(如机舱框架或底座或接地铜排或塔架等等以及各种组合)电连接至机组变流器直流母排的中性点。另外,进一步切断了可能存在的低频和高频循环电流路径,避免因第一接地线缆34和第二接地线缆35在如安装接线质量较差等增加接地阻抗而导致的低频和高频循环电流危害。
如上所述,为实现齿轮箱10的箱体端盖12与发电机20的定子22连接法兰处的电隔离,需在两者之间增加电绝缘材料制成的环形绝缘垫板403。但因为通常兆瓦级中速永磁直驱发电机的定子22外径大于2m,造成绝缘垫板403整体加工困难,成本高。
为此,可以将绝缘垫板403制成一定圆周角度的环扇形垫板4031,通过在定子基座24的第二法兰12111连接面处的均匀分布,构制成环形,也就是说,绝缘垫板403整体上呈圆环形,其由若干块在周向上均匀分布的环扇形垫板4031组成。
请继续参见图5、图6以及图7,半直驱传动链的轴电压轴电流问题本质上是电磁兼容问题。简单来讲,激励源为变流器和发电机本体,就通常的风电半直驱机组的发电组件,具体分别为变流器的共模电压和共模电流以及发电机本体磁不平衡。
由于在发电机定子22和齿轮箱10的非转动部件如(箱体11、箱体端盖12等)之间增加了电绝缘结构(主要由绝缘垫圈401、绝缘套管402以及绝缘垫板403),另外电绝缘结构在交流下呈容抗特征,在一定频域范围内(典型如100kHz以下),“路径2”的总的阻抗非常大,允许通过的电流很小,如可控制在mA级,不会对轴承、齿轮等敏感件造成电蚀类损伤。
“路径1”中的杂散电流主要由两种电流组成,分别简称为“电流I1”和“电流I2”;其中“电流I1”的激励源主要是变流器的共模电压以及IGBT(绝缘栅双极型晶体管)元件开关产生的du/dt,由变流器经主电缆、发电机绕组,经绕组与定子铁芯之间的容性耦合到达定子基座24;“电流I2”的激励源主要是变流器的共模电压以及IGBT元件开关产生的du/dt,由变流器经主电缆、发电机绕组,经绕组与转子之间的容性耦合然后经齿轮箱10内部如齿轮箱输出轴轴承15、行星轮轴承、到达箱体11或齿轮箱箱体端盖12;由于绕组相对定子的等效杂散电容值远大于绕组相对定子的等效杂散电容值,通常“电流I1”远大于“电流I2”。
如果发电机定子22和齿轮箱10之间不加电绝缘结构,当安装接线质量较差,第一接地线缆34和第二接地线缆35相对“路径1”中某一点A(如机舱内专用接地母排)的电势差加大,则电流值非常大“电流I1”极有可能部分经齿轮箱10内部到达“路径1”中的A点,这种情况是需要避免的。
如图6和图7所示,发电机定子22和齿轮箱10之间加电绝缘结构,则实现了“电流I1”和“电流I2”的分离。具体来说,“电流I1”主要到达定子22后,主要经由第二接地线缆35,最终回流到变流器直流母排中性点;“电流I2”主要到达齿轮箱10的箱体11或箱体端盖12后,主要经由第一接地线缆34,最终回流到变流器直流母排中性点。这样齿轮箱内敏感元件如轴承、齿轮、密封元件等仅承受非常小的“电流I2”,同时可在如图5所示位置,也就是第一接地线缆34上设置电流传感器33,采用电流传感器33如(电流互感器、罗氏线圈、电流卡钳等)对该电流值进行测量和监测,只要该实际电流值小于一定的阈值(如某一单峰值或有效值或峰峰值),即可认为是安全的。这种布局,可实现对敏感电流的测量和监测,且易于实现。
除了上述半直驱风力发电机组的组合体,本发明还提供一种用于制作该发电机组的工艺,包括以下步骤:
定子基座24的第二法兰12111在预制时加工出固定绝缘垫板403的安装孔和安装面,绝缘垫板403预加工出安装孔;
将含有第二法兰12111的定子基座24经主要工序如下料、焊接、热处理等后,即在整体机加工前,安装圆周方向留有一定加工余量的环扇形垫板4031(见图8),由环扇形垫板4031以拼接的方式组成绝缘垫板403;
将由定子基座24和绝缘垫板403组成的整体进行机械加工(如车、铣等),加工得到与箱体端盖12的第一法兰1131相配合的安装面以及连接螺栓的孔组等。
本发明所提供的半直驱风电机组的发电组件,通过隔离、旁路、监控等措施控制和监测注入到齿轮箱10的杂散电流,实现了“电流I1”和“电流I2”的分离,最终避免造成的齿轮箱10内如轴承、齿轮、密封元件等的不可接受的电蚀类损伤。
而且,分体拼接式的绝缘垫板403和制作工艺,很好的解决了绝缘垫板403整体加工困难、成本高等问题。
本公开提供的发电组件可包括齿轮箱10、发电机20以及旁路抑电模块 30,还可以在第一法兰1131和第二法兰12111之间设置绝缘垫板403,可以进一步对输出轴13进行保护。除此,本实施例中的第一法兰1131和第二法兰12111之间设置绝缘垫板403,不受旁路抑电模块30的使用限制,即第一法兰1131和第二法兰12111之间设置绝缘垫板403可以为独立于旁路抑电模块30之外的技术方案。
在本公开的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接,可以是机械连接,也可以是电连接,也可以是通讯连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
本公开所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在上面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组件、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本公开的各方面。

Claims (26)

  1. 一种发电组件,其特征在于,所述发电组件包括:
    齿轮箱(10),所述齿轮箱(10)包括箱体(11)、设置于所述箱体(11)端部的箱体端盖(12)以及输出轴(13),所述箱体端盖(12)设置有轴孔,所述输出轴(13)可转动地支撑在所述轴孔内;
    发电机(20),包括转子(21),所述转子(21)通过转子支架(23)固定于所述输出轴(13);
    旁路抑电模块(30),用于抑制所述输出轴(13)的杂散电流,所述旁路抑电模块(30)包括摩擦盘(31)和导电结构(32),所述摩擦盘(31)固定于所述箱体端盖(12),所述导电结构(32)设置在所述转子支架(23)上,所述导电结构(32)与所述摩擦盘(31)能够电连接。
  2. 如权利要求1所述的发电组件,其特征在于,所述发电组件还包括轴承端盖(14),所述轴承端盖(14)固定于所述箱体端盖(12)的朝向所述发电机(20)的一侧,所述摩擦盘(31)固定于所述轴承端盖(14)上。
  3. 如权利要求1或2所述的发电组件,其特征在于,所述转子支架(23)设置有支架通孔,所述导电结构(32)一端固定于所述转子支架(23)背离所述齿轮箱(10)的一侧,所述导电结构(32)另一端穿过所述支架通孔与所述摩擦盘(31)电接触。
  4. 如权利要求3所述的发电组件,其特征在于,所述导电结构(32)包括基座和导电束,所述基座固定于所述转子支架(23)上,所述导电束的一端固定于所述基座,所述导电束的另一端为自由端,所述自由端穿过所述支架通孔与所述摩擦盘(31)电接触。
  5. 如权利要求3所述的发电组件,其特征在于,所述导电结构(32)包括导电刷,所述导电刷的刷头固定于所述转子支架(23)背离所述齿轮箱(10)的一侧,刷毛穿过所述支架通孔与所述摩擦盘(31)接触。
  6. 如权利要求5所述的发电组件,其特征在于,所述刷毛由导电材料制成。
  7. 如权利要求6所述的发电组件,其特征在于,所述导电材料为导电纤维、石墨纤维或者碳纤维。
  8. 如权利要求5所述的发电组件,其特征在于,所述刷毛大体平行于所 述输出轴(13)设置。
  9. 如权利要求1所述的发电组件,其特征在于,所述发电组件还包括第一接地线缆(34),所述第一接地线缆(34)的第一端固定于所述箱体(11)或者所述发电机(20)的定子基座(24)上,第二端接地。
  10. 如权利要求9所述的发电组件,其特征在于,所述发电组件还包括电流传感器(33),所述电流传感器(33)用于测量所述第一接地线缆(34)的电流。
  11. 如权利要求1所述的发电组件,其特征在于,所述发电组件还包括监测仪(44)和测量探头(42),所述测量探头(42)与所述输出轴(13)电连接,以使所述监测仪(44)监测所述输出轴(13)的电流或者轴端电压。
  12. 如权利要求11所述的发电组件,其特征在于,所述测量探头(42)通过支架(41)固定于所述发电机(20)的定子基座(24)上,所述测量探头(42)与所述转子支架(23)电接触。
  13. 如权利要求12所述的发电组件,其特征在于,所述监测仪(44)固定于所述发电机(20)的定子基座(24)上,所述监测仪(44)与所述测量探头(42)电连接。
  14. 如权利要求11所述的发电组件,其特征在于,所述监测仪(44)为电压监测仪和/或电流监测仪。
  15. 如权利要求1所述的发电组件,其特征在于,所述齿轮箱(10)的箱体端盖(12)设有对应于所述发电机(20)的第一法兰(1131),所述发电机(20)的定子基座(24)设有对应于所述齿轮箱(10)的第二法兰(12111),所述第一法兰(1131)与所述第二法兰(12111)通过螺纹连接件进行机械固定连接且电绝缘连接。
  16. 如权利要求1所述的发电组件,其特征在于,所述齿轮箱(10)的箱体端盖(12)设有对应于所述发电机(20)的第一法兰(1131),所述发电机(20)的定子基座(24)设有对应于所述齿轮箱(10)的第二法兰(12111),所述第一法兰(1131)与第二法兰(12111)通过螺纹连接件相连接,所述第一法兰(1131)与第二法兰(12111)之间设有绝缘垫板(403),所述绝缘垫板(403)上开设有与所述螺纹连接件相对应的通孔;所述螺纹连接件与所述第一法兰(1131)之间设有绝缘垫圈(401),所述第一法兰(1131)的连接孔内设有绝缘套管(402),所述螺纹连接件穿过所述绝缘套管(402)旋入所 述第二法兰(12111)的螺纹孔;所述齿轮箱(10)在其箱体或箱体端盖(12)设有第一接地线缆(34),所述第一接地线缆(34)用于经过导电通道电连接至机组变流器;所述发电机(20)的定子(22)在其外壳处设有第二接地线缆(35),所述第二接地线缆(35)用于经过导电通道电连接至机组变流器。
  17. 根据权利要求16所述的发电组件,其特征在于,所述第一接地线缆(34)用于经过导电通道电连接至机组变流器;所述第二接地线缆(35)用于经过导电通道电连接至机组变流器。
  18. 根据权利要求17所述的发电组件,其特征在于,所述导电通道包括机舱框架或底座或接地铜排或塔架及其组合。
  19. 根据权利要求18所述的发电组件,其特征在于,所述绝缘套管(402)的一端抵接或插入所述绝缘垫圈(401),所述绝缘套管(402)的另一端抵接或插入所述绝缘垫板(403)。
  20. 根据权利要求19所述的发电组件,其特征在于,所述绝缘垫板(403)整体上呈圆环形,其由若干块在周向上均匀分布的环扇形垫板(4031)组成。
  21. 根据权利要求20所述的发电组件,其特征在于,所述第一接地线缆(34)设有电流传感器(33)。
  22. 根据权利要求16至21中任一项所述的发电组件,其特征在于,所述第一接地线缆(34)和第二接地线缆(35)为铜编织带。
  23. 根据权利要求16至21中任一项所述的发电组件,其特征在于,所述绝缘垫板(403)、绝缘垫圈(401)、绝缘套管(402)为橡胶材质或工程塑料材质。
  24. 一种发电组件制作工艺,用于制作上述权利要求20至23中任一项所述的发电组件,包括:
    预制所述定子基座(24)的第二法兰(12111)时,在所述第二法兰(12111)上加工出固定所述绝缘垫板(403)的安装孔和安装面;
    在整体机加工所述定子基座(24)之前,在其第二法兰(12111)的安装面上安装在圆周方向留有加工余量的环扇形垫板(4031),由若干块所述环扇形垫板(4031)组成所述绝缘垫板(403);
    将由所述定子基座(24)和绝缘垫板(403)组成的整体进行机械加工,得到与所述齿轮箱(10)的后端盖的第一法兰(1131)相配合的安装结构。
  25. 根据权利要求24所述的发电组件制作工艺,其特征在于,所述安装 结构包括与所述齿轮箱(10)的箱体端盖(12)的第一法兰(1131)相配合的安装面以及螺纹连接件的孔组。
  26. 一种风力发电机组,其特征在于,所述风力发电机组包括如权利要求1-23中任一项所述的发电组件,所述风力发电机组为半直驱风力发电机组。
PCT/CN2022/122255 2022-04-28 2022-09-28 发电组件和风力发电机组 WO2023206962A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210469795.5 2022-04-28
CN202210469795.5A CN117005990A (zh) 2022-04-28 2022-04-28 发电组件和风力发电机组
CN202210609568.8A CN116357521B (zh) 2022-05-31 2022-05-31 一种发电组合体及其制作工艺
CN202210609568.8 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023206962A1 true WO2023206962A1 (zh) 2023-11-02

Family

ID=88517155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122255 WO2023206962A1 (zh) 2022-04-28 2022-09-28 发电组件和风力发电机组

Country Status (1)

Country Link
WO (1) WO2023206962A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936265A (zh) * 2009-06-30 2011-01-05 通用电气公司 用于风力涡轮发电机的传动系系统及其组装方法
CN201708625U (zh) * 2010-06-29 2011-01-12 江西泰豪特种电机有限公司 一种发电机的防轴电流装置
CN113227574A (zh) * 2018-12-21 2021-08-06 维斯塔斯风力系统有限公司 与风力涡轮机发电机中的杂散电流检测相关的改进
CN114183307A (zh) * 2021-12-31 2022-03-15 南京高速齿轮制造有限公司 一种半直驱风力发电机组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936265A (zh) * 2009-06-30 2011-01-05 通用电气公司 用于风力涡轮发电机的传动系系统及其组装方法
CN201708625U (zh) * 2010-06-29 2011-01-12 江西泰豪特种电机有限公司 一种发电机的防轴电流装置
CN113227574A (zh) * 2018-12-21 2021-08-06 维斯塔斯风力系统有限公司 与风力涡轮机发电机中的杂散电流检测相关的改进
CN114183307A (zh) * 2021-12-31 2022-03-15 南京高速齿轮制造有限公司 一种半直驱风力发电机组

Similar Documents

Publication Publication Date Title
CN110793664B (zh) 一种多参量感知的变压器光纤传感器安装布置方法
WO2023125640A1 (zh) 一种半直驱风力发电机组
US10886809B2 (en) Electrical isolation mounting of electrical machine stator
KR20130012255A (ko) 윈드 터빈을 위한 토크 제한 커플링
WO2023206962A1 (zh) 发电组件和风力发电机组
WO2018113865A1 (en) Electrical isolation mounting of electrical machine stator
CN117117748B (zh) 一种风力发电输电系统
CN113014055B (zh) 顶驱交流永磁同步电机
WO2023124632A1 (zh) 一种紧凑型半直驱永磁同步风力发电机
CN116357521B (zh) 一种发电组合体及其制作工艺
CN109861438B (zh) 控制发电机的轴承连接部件温度的装置及风力发电机
DE112013003764T5 (de) Elektrisches Leistungsgeneratorsystem
CN115450849A (zh) 一种半直驱风力发电机组
CN210322267U (zh) 一种具备有载分接开关故障监测功能的传感检测装置
CN117005990A (zh) 发电组件和风力发电机组
CN104253523A (zh) 一种复合式永磁涡流调速器
CN113227574B (zh) 与风力涡轮机发电机中的杂散电流检测相关的改进
KR101046328B1 (ko) 삼상 교류 전동기 고정자 코어 상태 진단 장치, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 매체
KR101588142B1 (ko) 풍력 발전기에서 미주 전류를 방지하기 위한 배열 및 방법
CN201813146U (zh) 水轮发电机轴电流继电保护装置
CN104319949A (zh) 一体式电机与控制器组件
CN220307075U (zh) 一种风电机组新型无轴承单元电机轴电流抑制结构
CN218439622U (zh) 一种半直驱风力发电机组
CN217282598U (zh) 发电机轴电流抑制装置及轴电流抑制效果的评估装置
CN109163839A (zh) 一种制动器制动性能测试装置及测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939784

Country of ref document: EP

Kind code of ref document: A1