WO2023206912A1 - 光纤剥模器、光纤剥模器制备方法及激光设备 - Google Patents

光纤剥模器、光纤剥模器制备方法及激光设备 Download PDF

Info

Publication number
WO2023206912A1
WO2023206912A1 PCT/CN2022/118218 CN2022118218W WO2023206912A1 WO 2023206912 A1 WO2023206912 A1 WO 2023206912A1 CN 2022118218 W CN2022118218 W CN 2022118218W WO 2023206912 A1 WO2023206912 A1 WO 2023206912A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
cladding
stripper according
micro
Prior art date
Application number
PCT/CN2022/118218
Other languages
English (en)
French (fr)
Inventor
买一帆
沈翔
李榕
黄中亚
施建宏
卢昆忠
李成
闫大鹏
Original Assignee
武汉锐科光纤激光技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉锐科光纤激光技术股份有限公司 filed Critical 武汉锐科光纤激光技术股份有限公司
Priority to EP22847106.6A priority Critical patent/EP4290283A4/en
Publication of WO2023206912A1 publication Critical patent/WO2023206912A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region

Definitions

  • the present application relates to the field of optical fiber technology, and in particular to an optical fiber stripper, a preparation method for an optical fiber stripper and laser equipment.
  • Embodiments of the present application provide an optical fiber stripper, a preparation method for an optical fiber stripper, and a laser device, aiming to solve the problem of low stripping efficiency of existing optical fiber strippers.
  • Embodiments of the present application provide an optical fiber stripper.
  • the optical fiber stripper includes an optical fiber.
  • the optical fiber includes a core and a cladding wrapping the core.
  • the surface of the cladding includes an extension along the optical fiber.
  • the waveguide damage area and the light-transmitting area are distributed sequentially in different directions.
  • the waveguide damage area is provided with a plurality of grooves distributed sequentially along the extension direction of the optical fiber.
  • the light-transmitting area is provided with a plurality of micro-nano particles.
  • the particle size of nanoparticles is less than or equal to 200nm.
  • the center distance between two adjacent micro-nano particles is less than or equal to 200 nm.
  • the light-transmitting area is provided with a plurality of concave holes, and a plurality of the micro-nano particles are protruding from the bottom surface of the concave holes.
  • the micro-nano particles protrude from the bottom surface of the concave hole into a columnar shape.
  • the height of the micro-nano particles in the protrusion direction is less than or equal to 200 nm.
  • the center distance between two adjacent concave holes is less than or equal to 200 ⁇ m.
  • the light-transmitting area is provided with a plurality of rows of concave holes arranged at intervals along the circumferential direction of the optical fiber, and the plurality of concave holes in each row of concave holes are along the extension direction of the optical fiber. distributed in sequence.
  • the light-transmitting area is provided with a plurality of concave hole groups spaced apart along the extension direction of the optical fiber, and the plurality of concave holes in each concave hole group are arranged along the circumferential direction of the optical fiber. Distributed at intervals.
  • the concave holes in two adjacent concave hole groups are arranged offset from each other.
  • the recessed holes include circular holes, square holes, triangular holes, or oval holes.
  • the length of the light-transmitting region in the extending direction of the optical fiber is less than or equal to 10 mm.
  • the length of the light-transmitting region in the extending direction of the optical fiber is greater than 10 mm.
  • the extending direction of the groove forms an angle with the extending direction of the optical fiber.
  • the extending direction of the groove is perpendicular to the extending direction of the optical fiber.
  • the maximum depth of the grooves recessed from the surface of the cladding is less than or equal to 120 ⁇ m.
  • the length of the waveguide damage region in the extending direction of the optical fiber is less than or equal to 50 mm.
  • the length of the waveguide damage region in the extending direction of the optical fiber is greater than 50 mm.
  • a plurality of the grooves in the waveguide damage region are sequentially adjacent in the extending direction of the optical fiber.
  • An embodiment of the present application also provides a laser device, which includes an optical fiber stripper as described above; the optical fiber stripper includes an optical fiber, and the optical fiber includes a core and a cladding wrapping the core;
  • the surface of the cladding includes a waveguide damage area and a light-transmitting area distributed sequentially along the extension direction of the optical fiber.
  • the waveguide damage area is provided with a plurality of grooves distributed sequentially along the extension direction of the optical fiber.
  • the transparent area The light area is provided with a plurality of micro-nano particles, and the particle size of the micro-nano particles is less than or equal to 200 nm.
  • Embodiments of the present application also provide a method for preparing an optical fiber stripper.
  • the optical fiber includes a fiber core and a cladding wrapping the fiber core; the surface of the cladding includes waveguide damage sequentially distributed along the extension direction of the optical fiber. area and light-transmitting area; the method includes:
  • a plurality of grooves are formed in the waveguide damage area of the cladding, and the plurality of grooves are sequentially distributed along the extension direction of the optical fiber;
  • a plurality of micro-nano particles are formed in the light-transmitting area of the cladding layer, and the particle size of the micro-nano particles is less than or equal to 200 nm.
  • the optical fiber mode stripper provided in the embodiment of the present application destroys the waveguide structure on the surface of the cladding by opening a plurality of grooves sequentially distributed along the extending direction of the optical fiber in the waveguide damage area of the cladding.
  • a plurality of micro-nano particles with a particle size less than or equal to 200 nm are provided in the light-transmitting area so that the light-transmitting area of the cladding has better light transmittance, thereby being able to remove light with low NA (core numerical aperture) in the cladding.
  • the cladding light in the cladding when transmitted along the distribution direction of the waveguide damaged area and the light-transmitting area, it can first be scattered into scattered light through the multiple grooves in the waveguide damaged area, and at the same time, it can also pass through the light-transmitting area.
  • Micro-nano particles remove low NA (core numerical aperture) light in the cladding, so that the optical fiber stripper has higher stripping efficiency for cladding light, achieving higher stripping efficiency and high stripping efficiency in a shorter length. Lower calorific value and higher tensile strength.
  • Figure 1 is a schematic structural diagram of an embodiment of an optical fiber stripper provided by an embodiment of the present application.
  • Figure 2 is an enlarged view of the concave hole in Figure 1;
  • FIG. 3 is a flow chart of an embodiment of a method for preparing an optical fiber stripper provided by an embodiment of the present application.
  • Optical fiber stripper 100 optical fiber 110; cladding 120; waveguide damage area 121; groove 122; light transmission area 123; micro-nano particles 124; concave holes 125.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the described features.
  • “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be mechanical connection, electrical connection or mutual communication; it can be direct connection, or indirect connection through an intermediary, it can be internal connection of two elements or interaction of two elements relation.
  • the term “above” or “below” a first feature on a second feature may include direct contact between the first and second features, or may also include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • Embodiments of the present application provide an optical fiber stripper, a preparation method for an optical fiber stripper, and laser equipment. Each is explained in detail below.
  • embodiments of the present application provide an optical fiber mode stripper.
  • FIG. 1 is a schematic structural diagram of an embodiment of an optical fiber mode stripper provided by an embodiment of the present application.
  • the optical fiber stripper 100 includes an optical fiber 110.
  • the optical fiber 110 includes a core (not shown in the figure) and a cladding 120 surrounding the core.
  • the surface of the cladding 120 includes sequentially Distributed waveguide destruction area 121 and light-transmitting area 123.
  • the waveguide destruction region 121 is used to destroy the waveguide structure on the surface of the cladding 120
  • the light-transmitting region 123 is used to increase the light transmittance of the surface of the cladding 120 so that the light in the cladding 120 can easily emit from the light-transmitting region 123 .
  • the waveguide destruction area 121 is provided with a plurality of grooves 122 sequentially distributed along the extension direction of the optical fiber 110 to destroy the waveguide structure on the surface of the cladding 120 so that the low-order mode light around the fiber core is converted into high-order mode light. .
  • a plurality of micro-nano particles 124 are provided in the light-transmitting area 123, and the particle size of the micro-nano particles 124 is less than or equal to 200 nm, so that the light-transmitting area 123 of the cladding layer 120 has better Translucency.
  • I is the incident light intensity
  • I 0 is the scattered light intensity
  • is the angle of the incident light
  • S is the distance between the detector and the submicron-nanoscale structure surface, and the detector is an optical power meter or photodiode
  • is the light Wavelength
  • n is the refractive index of the submicron-nanoscale structure
  • d is the particle size of the submicron-nanoscale structure.
  • the key measure to reduce the scattering effect on the surface of the cladding 120 is to reduce the size of the particles on the surface of the cladding 120 and prepare micro-nanoscale particles on the surface of the cladding 120 as much as possible. The particles are used to improve the roughness, enhance the anti-scattering performance of the surface of the cladding 120, and increase the light transmittance of the surface of the cladding 120.
  • a plurality of grooves 122 sequentially distributed along the extension direction of the optical fiber 110 are opened in the waveguide damage area 121 of the cladding 120 of the optical fiber 110 to destroy the waveguide structure on the surface of the cladding 120.
  • the light-transmitting area 123 of the cladding 120 is provided with a plurality of micro-nano particles 124 with a particle size less than or equal to 200 nm, so that the light-transmitting area 123 of the cladding 120 has better light transmittance, so that the low NA (core) in the cladding 120 can be removed. numerical aperture) of light.
  • the cladding light in the cladding layer 120 when the cladding light in the cladding layer 120 is transmitted along the distribution direction of the waveguide damage area 121 and the light transmission area 123, it can first be scattered into scattered light through the plurality of grooves 122 of the waveguide damage area 121, and at the same time, it can The light with low NA (core numerical aperture) in the cladding 120 is removed through the micro-nano particles 124 in the light-transmitting area 123, so that the fiber stripper 100 has a higher stripping efficiency for the cladding light, and achieves a shorter length. It has high mold stripping efficiency, low calorific value, and high tensile strength.
  • the distance between centers of two adjacent micro-nano particles 124 is less than or equal to 200 nm. It should be noted that the center distance of two adjacent micro-nano particles 124 refers to the distance between the centers of two adjacent micro-nano particles 124 , which may also be the distance between the highest points of two adjacent micro-nano particles 124 distance.
  • the light transmittance of the light-transmitting area 123 of the cladding layer 120 can be further improved, thereby further improving the efficiency of removing low NA light in the cladding layer 120 . Effect.
  • the micro-nano particles 124 protrude from the bottom surface of the concave hole 125 to form a columnar structure.
  • the height of the micro-nano particles 124 in the protruding direction is less than or equal to 200 nm, and its height may specifically be 180 nm, 170 nm, 150 nm, etc.
  • the diameter of the micro-nano particles 124 is less than or equal to 200 nm, and its diameter may specifically be 180 nm, 170 nm, 150 nm, etc.
  • the distance between the centers of two adjacent micro-nano particles 124 may be 180 nm, 170 nm, 150 nm, etc. specifically.
  • the light-transmitting area 123 is provided with a plurality of concave holes 125 , and a plurality of micro-nano particles 124 are protrudingly disposed on the bottom surface of the concave holes 125 . Therefore, the light-transmitting area 123 of the cladding layer 120 can be easily processed using a femtosecond laser to form the micro-nano particles 124 .
  • the center distance between two adjacent concave holes 125 is less than or equal to 200 ⁇ m to further improve the light transmission performance of the light transmission area 123 of the cladding layer 120 .
  • the center distance between two adjacent concave holes 125 refers to the distance between the centers of two adjacent concave holes 125 .
  • the light-transmitting area 123 is provided with multiple rows of concave holes 125 that are spaced apart along the circumferential direction of the optical fiber 110.
  • the plurality of concave holes 125 in each row of concave holes 125 are sequentially distributed along the extension direction of the optical fiber 110, thereby making the light-transmissive area 125 transparent.
  • the distribution of the plurality of recessed holes 125 in the area 123 is more uniform, thereby making the light transmittance of the light transmitting area 123 basically consistent.
  • the number of rows of concave holes 125 and the number of concave holes 125 in each row of concave holes 125 can be determined according to the diameter of the cladding 120 of the optical fiber 110, and are not limited here.
  • the diameter of the cladding 120 of the optical fiber 110 is 360 ⁇ m.
  • the center distance between two corresponding concave holes 125 in two adjacent rows of concave holes 125 is less than or equal to 200 ⁇ m. In the same row of concave holes 125, the center distance between two adjacent concave holes 125 is less than or equal to 200 ⁇ m.
  • the plurality of concave holes 125 in the light-transmitting area 123 can also be arranged in other ways.
  • the plurality of concave holes 125 in the light-transmitting area 123 can be divided into a plurality of concave hole groups distributed at intervals along the extension direction of the optical fiber 110 , and the plurality of concave holes 125 in each concave hole group are arranged along the circumference of the optical fiber 110 . Distributed at intervals.
  • the concave holes 125 in two adjacent concave hole groups are offset from each other.
  • the plurality of concave holes 125 in the light-transmitting area 123 may also be randomly arranged on the outer peripheral surface of the optical fiber 110 .
  • the concave hole 125 can be a circular hole, a square hole, a triangular hole, an oval hole, etc., which is not limited here.
  • the length of the light-transmitting region 123 of the cladding 120 in the extending direction of the optical fiber 110 is less than or equal to 10 mm. Therefore, while the micro-nano particles 124 in the light-transmitting area 123 of the cladding 120 can effectively eliminate low-NA light in the cladding 120, the length process of the light-transmitting area 123 in the extending direction of the optical fiber 110 is avoided to increase the light-transmitting area. 123 processing cost.
  • the length of the light-transmitting region 123 in the extending direction of the optical fiber 110 may be 8 mm, 5 mm, 3 mm, etc. specifically.
  • the length of the light-transmitting area 123 of the cladding 120 in the extending direction of the optical fiber 110 may also be greater than 10 mm.
  • the cancellation effect of low NA light in the cladding layer 120 can be further provided.
  • the length of the light-transmitting region 123 of the cladding 120 in the extending direction of the optical fiber 110 increases, the improvement in the elimination effect of low NA light in the cladding 120 will be reduced, and the processing cost of the light-transmitting region 123 will decrease. Increase.
  • the extending direction of the groove 122 in the waveguide damage area 121 of the cladding 120 is at an angle with the extending direction of the optical fiber 110 to improve the effect of the groove 122 on the waveguide structure on the surface of the cladding 120 . destruction effect.
  • the angle formed by the extending direction of the groove 122 and the extending direction of the optical fiber 110 may be 90°, 85°, 70°, etc., of course, when the extending direction of the groove 122 is perpendicular to the extending direction of the optical fiber 110, the cladding The 120 surface waveguide structure has the best damage effect.
  • multiple grooves 122 are distributed on the same side of optical fiber 110 . Therefore, the waveguide destruction region 121 of the cladding layer 120 can be more conveniently processed by laser to form a plurality of grooves 122 .
  • the groove 122 can be formed by processing the waveguide destruction area 121 with a carbon dioxide laser.
  • carbon dioxide laser In addition to using carbon dioxide laser to process the groove 122, other lasers can also be used, or mechanical processing can be used to process the groove 122 in the waveguide damage area 121.
  • the maximum depth of the groove 122 recessed from the surface of the cladding 120 is less than or equal to 120 ⁇ m, so that the groove 122 has a better damaging effect on the waveguide structure on the surface of the cladding 120 while avoiding the groove 122 The depth is too large and affects the strength of the cladding 120.
  • the length of the waveguide damage area 121 in the extension direction of the optical fiber 110 is less than or equal to 50 mm, so that while the waveguide damage area 121 can effectively scatter the cladding light, the overall length of the fiber stripper 100 is not will be too long.
  • the length of the waveguide damage region 121 in the extending direction of the optical fiber 110 may be 30 mm, 40 mm, 45 mm, etc., which may be determined according to the amount of cladding light in the cladding 120 .
  • the length of the waveguide damage region 121 in the extending direction of the optical fiber 110 can also be made greater than 50 mm.
  • the length of the waveguide damage area 121 in the extension direction of the optical fiber 110 can be specifically 60mm, 80mm, 100mm, etc. In this case, as the length of the waveguide damage area 121 in the extension direction of the optical fiber 110 increases, the waveguide damage area 121 The improvement of the light scattering effect of the cladding is weakened.
  • the plurality of grooves 122 in the waveguide destruction region 121 of the cladding 120 are sequentially adjacent in the extending direction of the optical fiber 110 .
  • the highest points of two adjacent grooves 122 can be overlapped, so that the number of grooves 122 per unit length in the waveguide damage area 121 reaches the maximum value, so that the waveguide area per unit length can damage the waveguide on the surface of the cladding 120 Best results.
  • the grooves 122 on the surface of the cladding 120 extend along straight lines.
  • the extending direction of the groove 122 is perpendicular to the extending direction of the optical fiber 110 .
  • the extending directions of the plurality of grooves 122 are parallel to each other.
  • the plurality of grooves 122 are evenly distributed along the extending direction of the optical fiber 110 .
  • the intersection line between the inner surface of the groove 122 and the surface perpendicular to the extending direction of the groove is an arc line.
  • the plurality of grooves 122 have the same shape. Wherein, the dot distance between the intersection lines between the inner surfaces of two adjacent grooves 122 and the surface perpendicular to the extending direction of the grooves is equal to the diameter of the intersection lines.
  • the embodiment of the present application also proposes a method for preparing an optical fiber stripper.
  • the optical fiber 110 includes a fiber core and a cladding 120 wrapping the core; the surface of the cladding 120 includes waveguide damage areas 121 and transparent areas distributed sequentially along the extension direction of the optical fiber 110.
  • Light area 123 As shown in Figure 3, the fiber stripper preparation method may specifically include steps 210 and 220. The detailed description is as follows:
  • Multiple grooves are formed in the waveguide damage area of the cladding, and the multiple grooves are sequentially distributed along the extension direction of the optical fiber.
  • the waveguide damage area 121 of the cladding 120 can be laser etched along the extension direction of the optical fiber 110 using a carbon dioxide laser device to form a plurality of grooves 122 .
  • the waveguide damage area 121 of the cladding 120 can be laser etched along the radial direction of the optical fiber 110 with the laser emitted by the carbon dioxide laser equipment to form the groove 122, and then, the optical fiber 110 or the optical fiber 110 can be etched along the extension direction of the optical fiber 110.
  • the carbon dioxide laser equipment moves a certain distance, and then the waveguide destruction area 121 of the cladding 120 is repeatedly laser-etched by the carbon dioxide laser equipment to form grooves 122 .
  • the distance that the optical fiber 110 or the carbon dioxide laser device moves along the extension direction of the optical fiber 110 is the diameter of the spot formed by the laser emitted by the carbon dioxide laser device on the surface of the cladding 120, so that the waveguide of the cladding 120 destroys multiple laser beams in the region 121.
  • the grooves 122 are adjacent in sequence in the extending direction of the optical fiber 110 .
  • a plurality of grooves 122 may also be formed in the waveguide damage area 121 of the cladding 120 by grinding or cutting.
  • a cylindrical rod with a grinding surface can be brought into contact with the surface of the waveguide destruction region 121 of the cladding 120, and the extension direction of the cylindrical rod is kept perpendicular to the extension direction of the optical fiber 110, and then the rotation of the cylindrical rod can be controlled, Grooves 122 are formed by grinding in the waveguide damage area 121 .
  • the groove 122 can also be directly milled on the surface of the waveguide destruction area 121 of the cladding 120 using a milling cutter.
  • the light-transmitting area 123 of the cladding layer 120 can be laser etched by a femtosecond laser device to form a laser-induced periodic surface structure (ie, a plurality of micro-nano particles 124).
  • a laser-induced periodic surface structure ie, a plurality of micro-nano particles 124.
  • ion beam etching, photolithography, or other methods may be used to form a plurality of micro-nano particles 124 in the light-transmitting area 123 of the cladding layer 120 .
  • the fiber stripper preparation method provided by the embodiment of the present application forms a plurality of grooves 122 sequentially distributed along the extension direction of the optical fiber 110 in the waveguide damage area 121 of the cladding 120 of the optical fiber 110 to destroy the waveguide on the surface of the cladding 120 structure, at the same time, a plurality of micro-nano particles 124 with a particle size less than or equal to 200 nm are formed in the light-transmitting area 123 of the cladding layer 120, so that the light-transmitting area 123 of the cladding layer 120 has better light transmittance, so that the cladding layer can be removed.
  • Low NA core numerical aperture
  • the cladding light in the cladding 120 When the cladding light in the cladding 120 is transmitted along the distribution direction of the waveguide damage area 121 and the light transmission area 123, it can first be scattered into scattered light through the plurality of grooves 122 in the waveguide damage area 121, and at the same time, it can also pass through the light transmission area.
  • the micro-nano particles 124 in the area 123 remove the low NA (core numerical aperture) light in the cladding 120, so that the optical fiber stripper 100 has a higher stripping efficiency for the cladding light, achieving a higher stripping efficiency in a shorter length. High mold stripping efficiency, low heat generation, and high tensile strength.
  • the embodiment of the present application also proposes a laser equipment.
  • the laser equipment includes a fiber stripper.
  • the specific structure of the fiber stripper is referred to the above embodiments. Since this laser equipment adopts all the technical solutions of all the above embodiments, at least All the beneficial effects brought by the technical solutions of the above embodiments will not be described again here.
  • One end of the optical fiber 110 of the optical fiber stripper 100 is connected to the optical path of the optical fiber output end of the laser equipment (not shown in the figure), so as to strip the cladding light of the optical fiber output end of the laser equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种光纤剥模器(100)、光纤剥模器制备方法及激光设备,光纤剥模器(100)包括光纤(110),光纤(110)包括纤芯及包层(120);包层(120)的表面包括依次分布的波导破坏区域(121)和透光区域(123),波导破坏区域(121)设有依次分布的多个凹槽(122),透光区域(123)设有多个微纳颗粒(124),微纳颗粒(124)的粒径小于或等于200nm。光纤剥模器具有较高的剥模效率以及较大的拉伸强度。

Description

光纤剥模器、光纤剥模器制备方法及激光设备 技术领域
本申请涉及光纤技术领域,尤其涉及一种光纤剥模器、光纤剥模器制备方法及激光设备。
背景技术
随着工业领域对质量和效率的要求越来越高,激光相对于传统加工的优势越来越明显,其中以光纤激光设备为代表的高功率激光设备再近些年来发展的越来越快。随之光纤激光设备的功率提升,目前对高功率包层光剥模器的要求越来越高,其本身不仅要能承受较高的包层光功率,同时需要较高的剥模效率。
技术问题
本申请实施例提供一种光纤剥模器、光纤剥模器制备方法及激光设备,旨在解决现有的光纤剥模器的剥模效率较低的问题。
技术解决方案
本申请实施例提供一种光纤剥模器,所述光纤剥模器包括光纤,所述光纤包括纤芯及包裹所述纤芯的包层;所述包层的表面包括沿所述光纤的延伸方向依次分布的波导破坏区域和透光区域,所述波导破坏区域设有沿所述光纤的延伸方向依次分布的多个凹槽,所述透光区域设有多个微纳颗粒,所述微纳颗粒的粒径小于或等于200nm。
在一些实施例中,相邻两个所述微纳颗粒的中心距离小于或等于200nm。
在一些实施例中,所述透光区域开设有多个凹孔,所述凹孔的底面凸设有多个所述微纳颗粒。
在一些实施例中,所述微纳颗粒自所述凹孔的底面凸出成柱状。
在一些实施例中,所述微纳颗粒在凸出方向上的高度小于或等于200nm。
在一些实施例中,相邻两个所述凹孔的中心距小于或等于200μm。
在一些实施例中,所述透光区域设有沿所述光纤的周向依次间隔设置的多排所述凹孔,每排所述凹孔中的多个凹孔沿所述光纤的延伸方向依次分布。
在一些实施例中,所述透光区域设有沿所述光纤的延伸方向依次间隔分布的多个凹孔组,每个所述凹孔组中的多个凹孔沿所述光纤的周向依次间隔分布。
在一些实施例中,相邻两个所述凹孔组中的凹孔相互错位设置。
在一些实施例中,所述凹孔包括圆形孔、方形孔、三角形孔或椭圆形孔。
在一些实施例中,所述透光区域在所述光纤延伸方向上的长度小于或等于10mm。
在一些实施例中,所述透光区域在所述光纤延伸方向上的长度大于10mm。
在一些实施例中,所述凹槽的延伸方向与所述光纤的延伸方向呈夹角。
在一些实施例中,所述凹槽的延伸方向与所述光纤的延伸方向垂直。
在一些实施例中,所述凹槽自所述包层的表面凹陷的最大深度小于或等于120μm。
在一些实施例中,所述波导破坏区域在所述光纤延伸方向上的长度小于或等于50mm。
在一些实施例中,所述波导破坏区域在所述光纤延伸方向上的长度大于50mm。
在一些实施例中,所述波导破坏区域内的多个所述凹槽在所述光纤延伸方向上依次邻接。
本申请实施例还提供一种激光设备,所述激光设备包括如上所述 的光纤剥模器;所述光纤剥模器包括光纤,所述光纤包括纤芯及包裹所述纤芯的包层;所述包层的表面包括沿所述光纤的延伸方向依次分布的波导破坏区域和透光区域,所述波导破坏区域设有沿所述光纤的延伸方向依次分布的多个凹槽,所述透光区域设有多个微纳颗粒,所述微纳颗粒的粒径小于或等于200nm。
本申请实施例还提供一种光纤剥模器制备方法,所述光纤包括纤芯及包裹所述纤芯的包层;所述包层的表面包括沿所述光纤的延伸方向依次分布的波导破坏区域和透光区域;所述方法包括:
在所述包层的波导破坏区域加工形成多个凹槽,所述多个凹槽沿所述光纤的延伸方向依次分布;
在所述包层的透光区域加工形成多个微纳颗粒,所述微纳颗粒的粒径小于或等于200nm。
有益效果
本申请实施例提供的光纤剥模器通过在光纤的包层的波导破坏区域开设多个沿光纤延伸方向依次分布的多个凹槽,以破坏包层表面的波导结构,同时,在包层的透光区域设置多个粒径小于或等于200nm的微纳颗粒,以使包层的透光区域具有较好的透光性,从而能够去除包层中低NA(纤芯数值孔径)的光。
由此,当包层内的包层光沿波导破坏区域和透光区域的分布方向传输时,能够先通过波导破坏区域的多个凹槽散射成散射光,同时,还能够通过透光区域的微纳颗粒去除包层中低NA(纤芯数值孔径)的光,从而使光纤剥模器对包层光具有较高的剥模效率,实现在较短长度内具有较高的剥模效率和较低的发热量,同时具有较大的拉伸强度。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的光纤剥模器的一个实施例的结构示意 图;
图2为图1中凹孔的放大图;
图3为本申请实施例提供的光纤剥模器制备方法的一个实施例的流程图。
光纤剥模器100;光纤110;包层120;波导破坏区域121;凹槽122;透光区域123;微纳颗粒124;凹孔125。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相 连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本申请实施例提供一种光纤剥模器、光纤剥模器制备方法及激光设备。以下分别进行详细说明。
首先,本申请实施例提供一种光纤剥模器。
图1为本申请实施例提供的光纤剥模器的一个实施例的结构示意图。如图1所示,光纤剥模器100包括光纤110,该光纤110包括纤芯(图中未示出)及包裹纤芯的包层120,包层120的表面包括沿光纤110的延伸方向依次分布的波导破坏区域121和透光区域123。波导破坏区域121用于破坏包层120表面的波导结构,透光区域123用于增大包层120表面的透光性,使包层120内的光容易从透光区域123射出。
其中,在波导破坏区域121设有沿光纤110的延伸方向依次分布的多个凹槽122,以破坏包层120表面的波导结构,使得纤芯周围低阶模 式的光转化为高阶模式的光。
如图1和图2所示,在透光区域123设有多个微纳颗粒124,该微纳颗粒124的粒径小于或等于200nm,以使包层120的透光区域123具有较好的透光性。
根据(瑞利)Rayleigh散射模型,当一束光照射到具有亚微米-纳米级结构的粗糙表面时,散射光的强度满足下列公式:
Figure PCTCN2022118218-appb-000001
其中,I为入射光强;I 0为散射光强;θ为入射光的角度;S为探测器与亚微米-纳米级结构表面的距离,探测器为光功率计或光电二极管;λ为光波长;n为亚微米-纳米级结构的折射率;d为亚微米-纳米级结构的粒径。
根据上述公式可知,包层120表面颗粒尺度的增大会加强散射强度,因此降低包层120表面散射效应的关键措施就是降低包层120表面颗粒的尺度,尽可能在包层120表面制备微纳米级的颗粒来实现粗糙度的提高,实现包层120表面的抗散射性能的增强,增大包层120表面的透光性。
本申请实施例通过在光纤110的包层120的波导破坏区域121开设多个沿光纤110延伸方向依次分布的多个凹槽122,以破坏包层120表面的波导结构,同时,在包层120的透光区域123设置多个粒径小于或等于200nm的微纳颗粒124,以使包层120的透光区域123具有较好的透光性,从而能够去除包层120中低NA(纤芯数值孔径)的光。
由此,当包层120内的包层光沿波导破坏区域121和透光区域123的分布方向传输时,能够先通过波导破坏区域121的多个凹槽122散射成散射光,同时,还能够通过透光区域123的微纳颗粒124去除包层120中低NA(纤芯数值孔径)的光,从而使光纤剥模器100对包层光具有较高的剥模效率,实现在较短长度内具有较高的剥模效率和较低的发热量,同时具有较大的拉伸强度。
在一些实施例中,相邻两个微纳颗粒124的中心距离小于或等于200nm。需要说明的是,相邻两个微纳颗粒124的中心距是指相邻两 个微纳颗粒124的中心之间的距离,其也可以是相邻两个微纳颗粒124的最高点之间的距离。
本申请实施例通过使相邻两个微纳颗粒124的中心距离小于或等于200nm,能够进一步提高包层120的透光区域123的透光性,从而进一步提高去除包层120中低NA光的效果。
具体地,微纳颗粒124自凹孔125的底面凸出成柱状结构。微纳颗粒124在凸出方向上的高度小于或等于200nm,其高度具体可以为180nm、170nm、150nm等等。微纳颗粒124的直径小于或等于200nm,其直径具体可以为180nm、170nm、150nm等等。相邻两个微纳颗粒124的中心距离具体可以为180nm、170nm、150nm等等。
在一些实施例中,透光区域123开设有多个凹孔125,在凹孔125的底面凸设有多个微纳颗粒124。由此,可以很方便的通过飞秒激光对包层120的透光区域123进行加工形成微纳颗粒124。其中,相邻两个凹孔125的中心距小于或等于200μm,以进一步提高包层120透光区域123的透光性能。相邻两个凹孔125的中心距是指相邻两个凹孔125中心的距离。
具体地,透光区域123设有沿光纤110的周向依次间隔设置的多排凹孔125,每排凹孔125中的多个凹孔125沿光纤110的延伸方向依次分布,从而使透光区域123内多个凹孔125的分布更加均匀,进而使透光区域123各处的透光性基本保持一致。
其中,凹孔125的排数,以及每排凹孔125中凹孔125的数量可以根据光纤110的包层120的直径而定,此处不作限制。例如本申请实施例中,光纤110的包层120的直径为360μm,在包层120的周向上均匀分布有23排凹孔125,每排凹孔125中的凹孔125数量为100个。其中,相邻两排凹孔125中位置对应的两个凹孔125的中心距小于或等于200μm。同一排凹孔125中,相邻两个凹孔125的中心距小于或等于200μm。
当然,透光区域123的多个凹孔125也可以按照其它方式进行排布。具体例如:可以将透光区域123的多个凹孔125分为沿光纤110 的延伸方向依次间隔分布的多个凹孔组,每个凹孔组中的多个凹孔125沿光纤110的周向依次间隔分布。其中,相邻两个凹孔组中的凹孔125相互错位设置。或者,透光区域123的多个凹孔125也可以杂乱的排布于光纤110的外周面。
在一些实施例中,凹孔125可以为圆形孔,也可以为方形孔、三角形孔、椭圆形孔等等,此处不作限制。
在一些实施例中,包层120的透光区域123在光纤110延伸方向上的长度小于或等于10mm。由此,在使包层120的透光区域123的微纳颗粒124能够有效消除包层120中低NA光的同时,避免透光区域123在光纤110延伸方向上的长度过程而增加透光区域123的加工成本。其中,透光区域123在光纤110延伸方向上的长度具体可以为8mm、5mm、3mm等等。
当然,包层120的透光区域123在光纤110延伸方向上的长度也可以大于10mm。在这种情况下,能够进一步提供对包层120中低NA光的消除效果。不过随着包层120的透光区域123在光纤110延伸方向上的长度的增加,对包层120中低NA光的消除效果的提升程度会有所降低,而透光区域123的加工成本会增加。
在一些实施例中,如图1所示,包层120的波导破坏区域121内凹槽122的延伸方向与光纤110的延伸方向呈夹角,以提高凹槽122对包层120表面波导结构的破坏效果。凹槽122的延伸方向与光纤110的延伸方向形成的夹角可以为90°、85°、70°等等,当然,当凹槽122的延伸方向与光纤110的延伸方向垂直时,对包层120表面波导结构的破坏效果最优。
在一些实施例中,多个凹槽122分布在光纤110的同一侧。由此,能够更加方便的通过激光对包层120的波导破坏区域121进行加工形成多个凹槽122。其中,可以通过二氧化碳激光对波导破坏区域121加工形成凹槽122。当然,除了采用二氧化碳激光加工凹槽122,也可以采用其他激光,或者,采用机械加工的方式加工在波导破坏区域121加工出凹槽122。
在一些实施例中,凹槽122自包层120的表面凹陷的最大深度小于或等于120μm,以使凹槽122对包层120表面的波导结构具有较好的破坏效果的同时,避免凹槽122的深度过大而影响包层120的强度。
在一些实施例中,波导破坏区域121在光纤110延伸方向上的长度小于或等于50mm,以使波导破坏区域121能够有效的对包层光进行散射的同时,光纤剥模器100的整体长度不会过长。其中,波导破坏区域121在光纤110延伸方向上的长度具体可以为30mm、40mm、45mm等等,具体可根据包层120内包层光的多少而定。
当然,也可以使波导破坏区域121在光纤110延伸方向上的长度大于50mm。其中,波导破坏区域121在光纤110延伸方向上的长度具体可以为60mm、80mm、100mm等等,这种情况下,随着波导破坏区域121在光纤110延伸方向上的长度的加强,波导破坏区域121对包层光散射效果的提升减弱。
在一些实施例中,包层120的波导破坏区域121内的多个凹槽122在光纤110延伸方向上依次邻接。由此,能够使相邻两个凹槽122的最高点重合,从而使波导破坏区域121中单位长度内凹槽122的数量达到最大值,使单位长度的波导区域对包层120表面的波导破坏效果最优。
具体地,包层120表面的凹槽122沿直线延伸。凹槽122的延伸方向与光纤110的延伸方向垂直。多个凹槽122的延伸方向相互平行。多个凹槽122沿光纤110的延伸方向均匀分布。凹槽122的内表面与垂直于凹槽延伸方向的面的交叉线为圆弧线。多个凹槽122的形状相同。其中,相邻两个凹槽122的内表面与垂直于凹槽延伸方向的面的交叉线的圆点距离,与交叉线的直径相等。
本申请实施例还提出一种光纤剥模器制备方法,光纤110包括纤芯及包裹纤芯的包层120;包层120的表面包括沿光纤110的延伸方向依次分布的波导破坏区域121和透光区域123。其中,如图3所示,光纤剥模器制备方法包括具体可以包括步骤210和220,详细说明如下:
210、在包层的波导破坏区域加工形成多个凹槽,多个凹槽沿光纤的延伸方向依次分布。
其中,可以通过二氧化碳激光设备沿光纤110的延伸方向对包层120的波导破坏区域121进行激光刻蚀以形成多个凹槽122。
具体地,可以先通过二氧化碳激光设备射出的激光沿光纤110的径向方向对包层120的波导破坏区域121进行激光刻蚀以形成凹槽122,然后,沿光纤110的延伸方向将光纤110或二氧化碳激光设备移动一定的距离,再通过二氧化碳激光设备重复对包层120的波导破坏区域121进行激光刻蚀以形成凹槽122。其中,光纤110或二氧化碳激光设备沿光纤110的延伸方向移动的距离为二氧化碳激光设备射出的激光在包层120表面所形成的光斑的直径,以使包层120的波导破坏区域121内的多个凹槽122在光纤110延伸方向上依次邻接。
当然,也可以通过磨削加工或切削加工的方式在包层120的波导破坏区域121加工形成多个凹槽122。具体地,可以通过具有磨削面的圆柱形棒与包层120的波导破坏区域121的表面抵接,并保持圆柱形棒的延伸方向与光纤110的延伸方向垂直,然后控制圆柱形棒旋转,以在波导破坏区域121磨削形成凹槽122。或者,也可以通过铣刀直接在包层120的波导破坏区域121的表面铣出凹槽122。
220、在包层的透光区域加工形成多个微纳颗粒,微纳颗粒的粒径小于或等于200nm。
其中,可以通过飞秒激光设备对包层120的透光区域123进行激光刻蚀以形成激光诱导的周期性表面结构(也即多个微纳颗粒124)。或者,也可以采用离子束蚀刻、光刻等方式在包层120的透光区域123加工形成多个微纳颗粒124。
本申请实施例提供的光纤剥模器制备方法通过在光纤110的包层120的波导破坏区域121形成多个沿光纤110延伸方向依次分布的多个凹槽122,以破坏包层120表面的波导结构,同时,在包层120的透光区域123形成多个粒径小于或等于200nm的微纳颗粒124,以使包层120的透光区域123具有较好的透光性,从而能够去除包层120中低NA (纤芯数值孔径)的光。
当包层120内的包层光沿波导破坏区域121和透光区域123的分布方向传输时,能够先通过波导破坏区域121的多个凹槽122散射成散射光,同时,还能够通过透光区域123的微纳颗粒124去除包层120中低NA(纤芯数值孔径)的光,从而使光纤剥模器100对包层光具有较高的剥模效率,实现在较短长度内具有较高的剥模效率和较低的发热量,同时具有较大的拉伸强度。
本申请实施例还提出一种激光设备,该激光设备包括光纤剥模器,该光纤剥模器的具体结构参照上述实施例,由于本激光设备采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
其中,光纤剥模器100的光纤110的一端与激光设备(图中未示出)的光纤输出端光路连接,以将激光设备的光纤输出端的包层光剥离。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种光纤剥模器、激光设备及光纤剥模器制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种光纤剥模器,其中,所述光纤剥模器包括光纤,所述光纤包括纤芯及包裹所述纤芯的包层;所述包层的表面包括沿所述光纤的延伸方向依次分布的波导破坏区域和透光区域,所述波导破坏区域设有沿所述光纤的延伸方向依次分布的多个凹槽,所述透光区域设有多个微纳颗粒,所述微纳颗粒的粒径小于或等于200nm。
  2. 如权利要求1所述的光纤剥模器,其中,相邻两个所述微纳颗粒的中心距离小于或等于200nm。
  3. 如权利要求1所述的光纤剥模器,其中,所述透光区域开设有多个凹孔,所述凹孔的底面凸设有多个所述微纳颗粒。
  4. 如权利要求3所述的光纤剥模器,其中,所述微纳颗粒自所述凹孔的底面凸出成柱状。
  5. 如权利要求4所述的光纤剥模器,其中,所述微纳颗粒在凸出方向上的高度小于或等于200nm。
  6. 如权利要求3所述的光纤剥模器,其中,相邻两个所述凹孔的中心距小于或等于200μm。
  7. 如权利要求3所述的光纤剥模器,其中,所述透光区域设有沿所述光纤的周向依次间隔设置的多排所述凹孔,每排所述凹孔中的多个凹孔沿所述光纤的延伸方向依次分布。
  8. 如权利要求3所述的光纤剥模器,其中,所述透光区域设有沿所述光纤的延伸方向依次间隔分布的多个凹孔组,每个所述凹孔组中的多个凹孔沿所述光纤的周向依次间隔分布。
  9. 如权利要求8所述的光纤剥模器,其中,相邻两个所述凹孔组中的凹孔相互错位设置。
  10. 如权利要求3所述的光纤剥模器,其中,所述凹孔包括圆形孔、方形孔、三角形孔或椭圆形孔。
  11. 如权利要求1所述的光纤剥模器,其中,所述透光区域在所述光纤延伸方向上的长度小于或等于10mm。
  12. 如权利要求1所述的光纤剥模器,其中,所述透光区域在所述光纤延伸方向上的长度大于10mm。
  13. 如权利要求1所述的光纤剥模器,其中,所述凹槽的延伸方向与所述光纤的延伸方向呈夹角。
  14. 如权利要求13所述的光纤剥模器,其中,所述凹槽的延伸方向与所述光纤的延伸方向垂直。
  15. 如权利要求1所述的光纤剥模器,其中,所述凹槽自所述包层的表面凹陷的最大深度小于或等于120μm。
  16. 如权利要求1所述的光纤剥模器,其中,所述波导破坏区域在所述光纤延伸方向上的长度小于或等于50mm。
  17. 如权利要求1所述的光纤剥模器,其中,所述波导破坏区域在所述光纤延伸方向上的长度大于50mm。
  18. 如权利要求1所述的光纤剥模器,其中,所述波导破坏区域内的多个所述凹槽在所述光纤延伸方向上依次邻接。
  19. 一种激光设备,其中,所述激光设备包括权利要求1所述的光纤剥模器。
  20. 一种光纤剥模器制备方法,其中,所述光纤包括纤芯及包裹所述纤芯的包层;所述包层的表面包括沿所述光纤的延伸方向依次分布的波导破坏区域和透光区域;所述方法包括:
    在所述包层的波导破坏区域加工形成多个凹槽,所述多个凹槽沿所述光纤的延伸方向依次分布;
    在所述包层的透光区域加工形成多个微纳颗粒,所述微纳颗粒的粒径小于或等于200nm。
PCT/CN2022/118218 2022-04-24 2022-09-09 光纤剥模器、光纤剥模器制备方法及激光设备 WO2023206912A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22847106.6A EP4290283A4 (en) 2022-04-24 2022-09-09 OPTICAL FIBER STRIPPER, METHOD FOR MANUFACTURING OPTICAL FIBER STRIPPER AND LASER DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210435404.8 2022-04-24
CN202210435404.8A CN114527534B (zh) 2022-04-24 2022-04-24 光纤剥模器、光纤剥模器制备方法及激光设备

Publications (1)

Publication Number Publication Date
WO2023206912A1 true WO2023206912A1 (zh) 2023-11-02

Family

ID=81627911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118218 WO2023206912A1 (zh) 2022-04-24 2022-09-09 光纤剥模器、光纤剥模器制备方法及激光设备

Country Status (3)

Country Link
EP (1) EP4290283A4 (zh)
CN (1) CN114527534B (zh)
WO (1) WO2023206912A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114527534B (zh) * 2022-04-24 2022-06-24 武汉锐科光纤激光技术股份有限公司 光纤剥模器、光纤剥模器制备方法及激光设备
CN115144954B (zh) * 2022-08-31 2023-01-03 北京凯普林光电科技股份有限公司 一种包层光剥离器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029454A (ja) * 2014-07-16 2016-03-03 三菱電線工業株式会社 光ファイバ心線及びそれを備えたレーザ伝送部品
CN107359496A (zh) * 2016-04-01 2017-11-17 三菱电线工业株式会社 剥模器构造及利用该剥模器构造进行的激光的传输方法
CN109768459A (zh) * 2019-02-14 2019-05-17 深圳市鹏星光电科技有限公司 一种激光刻蚀的泵浦光剥除器及其制作方法
CN110808527A (zh) * 2019-10-31 2020-02-18 武汉锐科光纤激光技术股份有限公司 一种包层光剥除装置及其加工方法
CN112955793A (zh) * 2018-09-21 2021-06-11 恩耐公司 光纤包层光剥离器
CN114185132A (zh) * 2022-02-17 2022-03-15 武汉锐科光纤激光技术股份有限公司 一种包层光剥离器及其制作方法
CN114527534A (zh) * 2022-04-24 2022-05-24 武汉锐科光纤激光技术股份有限公司 光纤剥模器、光纤剥模器制备方法及激光设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088267A2 (en) * 2010-12-23 2012-06-28 Nufern Rough-clad optical fibers
US10481339B2 (en) * 2011-06-03 2019-11-19 Foro Energy, Inc. High average power optical fiber cladding mode stripper, methods of making and uses
GB2511923B (en) * 2013-01-28 2018-10-03 Lumentum Operations Llc A cladding light stripper and method of manufacturing
CN203773093U (zh) * 2013-03-01 2014-08-13 三菱电线工业株式会社 光连接器及使用该光连接器的光缆
CN103616744B (zh) * 2013-11-07 2016-01-06 北京工业大学 高功率光纤激光器包层光分段部分剥离方法及装置
CN104242026B (zh) * 2014-08-27 2017-06-23 清华大学 光纤包层光滤除器及其形成方法
CN106646742A (zh) * 2015-10-28 2017-05-10 中国兵器装备研究院 一种锥形熔融包层功率滤除器
WO2018075799A1 (en) * 2016-10-20 2018-04-26 Foro Energy, Inc. High average power optical fiber cladding mode stripper, methods of making and uses
WO2018080952A1 (en) * 2016-10-25 2018-05-03 Aspyrian Therapeutics Inc. Light diffusing devices for use in photoimmunotherapy
CN106772787B (zh) * 2017-02-08 2019-04-05 中科先为激光科技(北京)有限公司 用于滤除包层光的光纤及应用其的包层光滤除器
CN108808430A (zh) * 2018-06-14 2018-11-13 吉林省永利激光科技有限公司 一种光纤包层光功率剥除装置及剥除方法
CN111596403A (zh) * 2020-05-08 2020-08-28 武汉锐科光纤激光技术股份有限公司 光纤器件及其制作方法
CN114063213B (zh) * 2022-01-17 2022-06-14 武汉锐科光纤激光技术股份有限公司 光纤包层光束的剥除方法、结构及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029454A (ja) * 2014-07-16 2016-03-03 三菱電線工業株式会社 光ファイバ心線及びそれを備えたレーザ伝送部品
CN107359496A (zh) * 2016-04-01 2017-11-17 三菱电线工业株式会社 剥模器构造及利用该剥模器构造进行的激光的传输方法
CN112955793A (zh) * 2018-09-21 2021-06-11 恩耐公司 光纤包层光剥离器
CN109768459A (zh) * 2019-02-14 2019-05-17 深圳市鹏星光电科技有限公司 一种激光刻蚀的泵浦光剥除器及其制作方法
CN110808527A (zh) * 2019-10-31 2020-02-18 武汉锐科光纤激光技术股份有限公司 一种包层光剥除装置及其加工方法
CN114185132A (zh) * 2022-02-17 2022-03-15 武汉锐科光纤激光技术股份有限公司 一种包层光剥离器及其制作方法
CN114527534A (zh) * 2022-04-24 2022-05-24 武汉锐科光纤激光技术股份有限公司 光纤剥模器、光纤剥模器制备方法及激光设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4290283A4 *

Also Published As

Publication number Publication date
EP4290283A1 (en) 2023-12-13
CN114527534A (zh) 2022-05-24
CN114527534B (zh) 2022-06-24
EP4290283A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2023206912A1 (zh) 光纤剥模器、光纤剥模器制备方法及激光设备
CN102044830B (zh) 一种大功率光纤激光器的侧面耦合器及制作方法
WO2020259643A1 (zh) 一种三包层光纤、泵浦合束器、光纤光栅和光纤激光器
CN206432553U (zh) 一种光纤激光器包层光剥除器
JP6597773B2 (ja) 光ファイバの漏洩損失測定方法
JP2014531618A (ja) 大口径コアおよび平滑化された基本モードを有する微細構造光ファイバと、その製造方法と、レーザ微細加工におけるその使用法
US11079589B2 (en) Optical fibre
WO2022088307A1 (zh) 一种输出光束形状可调的高功率全光纤激光合束器
WO2009090712A1 (ja) 光ファイバ
CN113031147B (zh) 一种多层正方形结构的匀化光纤
WO2020259642A1 (zh) 一种三包层有源光纤、光放大结构和光纤激光器
CN106998031A (zh) 一种高功率石英端帽的制造方法
CN214100215U (zh) 光纤包层光剥除器
CN104749694A (zh) 光纤剥模器及光纤剥模器的制作方法
CN107359496B (zh) 剥模器构造及利用该剥模器构造进行的激光的传输方法
JP3923244B2 (ja) 光素子
JP3909014B2 (ja) 単一モードフォトニック結晶光ファイバ
JP2004054118A (ja) 光コネクタおよびその製造方法
CN107290822A (zh) 包层光滤除器的制造方法
JP2008015152A (ja) 光ファイバ
CN110596812B (zh) 防止光纤焊点过热的结构及其制作方法
CN203312620U (zh) 一种高功率激光光纤的端面保护结构
CN115144954B (zh) 一种包层光剥离器及其制备方法
TWI723942B (zh) 高功率全光纖式抗反射裝置
Al-Janabi et al. Efficient transportation of Nd laser beam through photonic crystal fiber

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022847106

Country of ref document: EP

Effective date: 20230131

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847106

Country of ref document: EP

Kind code of ref document: A1