WO2022088307A1 - 一种输出光束形状可调的高功率全光纤激光合束器 - Google Patents

一种输出光束形状可调的高功率全光纤激光合束器 Download PDF

Info

Publication number
WO2022088307A1
WO2022088307A1 PCT/CN2020/129948 CN2020129948W WO2022088307A1 WO 2022088307 A1 WO2022088307 A1 WO 2022088307A1 CN 2020129948 W CN2020129948 W CN 2020129948W WO 2022088307 A1 WO2022088307 A1 WO 2022088307A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
cladding
output
input
marked
Prior art date
Application number
PCT/CN2020/129948
Other languages
English (en)
French (fr)
Inventor
房强
史伟
许海鑫
Original Assignee
山东海富光子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东海富光子科技股份有限公司 filed Critical 山东海富光子科技股份有限公司
Publication of WO2022088307A1 publication Critical patent/WO2022088307A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding

Definitions

  • the invention belongs to the field of fiber lasers, in particular to a high-power full-fiber laser beam combiner with adjustable output beam shape.
  • fiber lasers With high output power, excellent beam quality, simple thermal management, easy maintenance, flexible transmission and other excellent characteristics, fiber lasers have gradually developed into a new generation of advanced laser intelligent manufacturing fiber lasers, which are widely used in laser cutting, laser welding, laser Laser manufacturing fields such as cladding and laser 3D printing. Limited by nonlinear effects, mode instability effects, pump brightness and glass fiber damage, the power level of single-fiber single-mode fiber lasers is currently in the order of 10kW-20kW.
  • the purpose of the present invention is to provide a high-power all-fiber laser beam combiner with adjustable output beam shape.
  • the power can be adjusted, and by increasing the number of input fibers and increasing the laser power transmitted by the input fibers, the laser power transmitted in the output fibers of the combiner can be greatly increased, and the power expansion capability is strong.
  • the present invention adopts the following technical solutions:
  • a high-power all-fiber laser beam combiner with adjustable output beam shape comprising an input optical fiber bundle and an output optical fiber.
  • the input optical fiber bundle includes a central input optical fiber, a peripheral input optical fiber and a glass sleeve; wherein, the center input optical fiber of the stripped coating layer and the cladding of the peripheral input optical fiber are closely arranged into a predetermined shape, and the glass sleeve uses a oxyhydrogen flame or other cladding.
  • the heat source is tapered, the input optical fibers arranged in a predetermined shape are inserted into the glass sleeve, and the taper is again drawn to form an input optical fiber bundle;
  • the output fiber includes a core 20, a first cladding 21, a second cladding 22, a third cladding 23, and a fourth cladding 24; wherein, the output fiber may or may not be tapered to achieve the same
  • the mode field of the input fiber bundle is matched, so that the laser light transmitted in the central input fiber core is coupled into the output fiber core to form a central beam, and the laser light transmitted in the peripheral input fiber core is coupled into the second inner cladding of the output fiber to form a peripheral
  • the output beam of the fiber laser beam combiner is composed of a central beam and a peripheral ring beam, and the shape of the output beam of the fiber combiner can be adjusted by adjusting the laser power in the central input fiber and the peripheral input fiber.
  • the outer diameter dimension of the cladding of the central input fiber and the peripheral input fiber arranged in a predetermined shape is marked as R1
  • the center input fiber is a double-clad fiber
  • the core refractive index is n110
  • the cladding refractive index is n111
  • the center input fiber core numerical aperture is marked as NA110, and 0.06 ⁇ NA110 ⁇ 0.22
  • the core diameter is d110
  • the outer diameter of the cladding is h111, and 125 ⁇ m ⁇ h111 ⁇ 360 ⁇ m;
  • the peripheral input fiber is a double-clad fiber, the core refractive index is n120, the cladding refractive index is n121, the peripheral input fiber core numerical aperture is marked as NA120, 0.06 ⁇ NA120 ⁇ 0.12, the core diameter is d120, 14 ⁇ m ⁇ d120 ⁇ 50 ⁇ m, the outer diameter of the cladding is h121, 125 ⁇ m ⁇ h121 ⁇ 360 ⁇ m;
  • the refractive index of the glass sleeve is n13, where n111>n13 and n121>n13.
  • the multilayer waveguide structure of the output fiber adopts pure silica and fluorine-doped silica sink layers
  • the output fiber core, the second cladding, and the fourth cladding are pure silica
  • the first cladding and the third cladding are
  • the numerical aperture of the output fiber core is marked as NA20, NA20 is about 0.22
  • the numerical aperture of the second cladding is marked as NA22
  • NA22 is about 0.22
  • the numerical aperture of the fourth cladding is marked as NA24
  • NA24 is about 0.46
  • the diameter of the output core is recorded as d20, and 50 ⁇ m ⁇ d20 ⁇ 150 ⁇ m
  • the outer diameter of the first cladding is recorded as d21
  • the outer diameter of the second cladding is recorded as d22
  • the outer diameter of the fourth cladding is recorded as is d24, and 360 ⁇ m ⁇ d24 ⁇ 600 ⁇ m.
  • the center input fiber and the output fiber satisfy d110 ⁇ NA110 ⁇ d20 ⁇ NA20; the peripheral input fiber and the output fiber satisfy where N is the number of peripheral input fibers.
  • the central input fiber may also be a fiber bundle formed by grouping a plurality of input fibers into a taper.
  • the invention realizes a point ring output beam composed of a central beam and a peripheral ring beam through an optical fiber combiner.
  • the invention does not use a complex spatial optical shaping structure, and adopts an all-fiber structure to realize the fiber transmission of the point ring laser, which has better performance. prospects for industrial applications.
  • the power ratio of the central beam and the peripheral annular beam can be adjusted, so as to realize the adjustment of the output beam shape.
  • the invention simultaneously realizes the all-fiber beam combining of laser power, and can greatly improve the power level of the single-fiber laser.
  • the invention can expand the number of input optical fibers, so that it can be used to couple a larger number of lasers into the output optical fibers, and the power expansion capability is strong.
  • FIG. 1 is a schematic diagram of an all-fiber combiner with adjustable beam shape in an embodiment of the present invention
  • 1-input fiber bundle 11-center input fiber; 110-center input fiber core; 111-center input fiber cladding; 12-peripheral input fiber; 120-peripheral input fiber core; 121-peripheral input fiber package layer; 13-glass sleeve;
  • 2-output fiber 20-output fiber core; 21-output fiber first cladding; 22-output fiber second cladding; 23-output fiber third cladding; 24-output fiber fourth cladding.
  • FIG. 2 is a schematic view of the end face of the input optical fiber bundle before taper drawing in an embodiment of the present invention
  • FIG. 3 is a schematic view of the end face of the input optical fiber bundle after tapering in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a cross-section of an output optical fiber in an embodiment of the present invention.
  • FIG. 1 it is a high-power all-fiber laser beam combiner with adjustable output beam shape, including an input fiber bundle 1 and an output fiber 2.
  • the input fiber bundle and the output fiber are matched and spliced by taper to form a fiber laser beam combiner.
  • the input optical fiber bundle 1 includes a central input optical fiber 11, a peripheral input optical fiber 12, and a glass sleeve 13.
  • the center input optical fiber 11 and the cladding of the peripheral input optical fiber 12 from which the coating layer is stripped are closely arranged into a predetermined shape.
  • the input optical fiber is inserted into the glass sleeve, and the end face is shown in Figure 2; the glass sleeve inserted into the input optical fiber is tapered again to form the input fiber bundle 1, and the end face is shown in Figure 3;
  • the output fiber 2 includes a core 20 , a first cladding 21 , a second cladding 22 , a third cladding 23 , and a fourth cladding 24 .
  • the input fiber bundle 1 and the output fiber 2 are matched and spliced by tapering, and the output fiber 2 may or may not be tapered to achieve mode field matching with the input fiber bundle, so that the center input fiber core 110
  • the transmitted laser is coupled into the output fiber core 20 to form a central beam
  • the laser transmitted in the peripheral input fiber core 120 is coupled into the second inner cladding 22 of the output fiber 2 to form a peripheral annular beam
  • the output beam of the fiber combiner is composed of
  • the central beam and the peripheral annular beam are formed, and the shape of the output beam of the fiber combiner can be adjusted by adjusting the laser power in the central input fiber 11 and the peripheral input fiber 12 .
  • the central input fiber 11 is a double-clad fiber, the core refractive index is n110, the refractive index of the cladding is n111, the core numerical aperture is marked as NA110, the core diameter is d110, and the outer diameter of the cladding is h111, 0.06 ⁇ NA110 ⁇ 0.22, 14 ⁇ m ⁇ d110 ⁇ 100 ⁇ m, 125 ⁇ m ⁇ h111 ⁇ 360 ⁇ m, the central input fiber 11 may also be a fiber bundle formed by tapering a plurality of input fibers; the peripheral input fiber 12 is double-wrapped Layered fiber, the refractive index of the core is n120, the refractive index of the cladding is n121, the core numerical aperture is marked as NA120, the core diameter is d120, the outer diameter of the cladding is h121, 0.06 ⁇ NA120 ⁇ 0.12, 14 ⁇ m ⁇ d120 ⁇ 50 ⁇ m, 125 ⁇ m ⁇ h121 ⁇ 360 ⁇ m; the refractive index of the glass sleeve 13 is
  • the output fiber 2 includes a core 20 , a first cladding 21 , a second cladding 22 , a third cladding 23 , and a fourth cladding 24 , wherein the core 20 , the second cladding 22.
  • the fourth cladding 24 is pure silica
  • the first cladding 21 and the third cladding 23 are fluorine-doped silica sink layers
  • the core NA20 is about 0.22
  • the second cladding NA22 is about 0.22
  • the fourth cladding NA24 About 0.46
  • the diameter of the core is 50 ⁇ m ⁇ d20 ⁇ 150 ⁇ m
  • the outer diameter of the second cladding is 150 ⁇ m ⁇ d22 ⁇ 300 ⁇ m
  • the outer diameter of the fourth cladding is 360 ⁇ m ⁇ d24 ⁇ 600 ⁇ m.
  • the relationship between the central input fiber 11 and the output fiber 2 satisfies d110 ⁇ NA110 ⁇ d20 ⁇ NA20, and the relationship between the peripheral input fiber 12 and the output fiber 2 satisfies where N is the number of peripheral input optical fibers 12 .
  • the down-cone ratio must satisfy the following conditions: ⁇ >2.405 ⁇ /( ⁇ NA110 ⁇ d110), ⁇ >2.405 ⁇ /( ⁇ NA120 ⁇ d120), where ⁇ is the wavelength of the transmitted laser light.
  • a high-power all-fiber laser beam combiner with adjustable output beam shape includes an input optical fiber bundle 1 and an output optical fiber 2.
  • the input optical fiber bundle 1 and the output optical fiber 2 are matched and spliced by taper to form a fiber laser beam combiner.
  • the input fiber bundle 1 includes a center input fiber 11, a peripheral input fiber 12, and a glass sleeve 13.
  • the center input fiber 11 is a double-clad fiber
  • the center input fiber core 110 has a numerical aperture of 0.08, a core diameter of 20 ⁇ m, and an outer cladding.
  • the diameter size is 130 ⁇ m
  • the peripheral input fiber 12 is a double-clad fiber
  • the numerical aperture of the peripheral input fiber core 120 is 0.08
  • the core diameter is 20 ⁇ m
  • the outer diameter of the cladding is 130 ⁇ m.
  • One central input optical fiber 11 and six peripheral input optical fibers 12 have a total of seven input optical fibers whose cladding is closely arranged into a hexagon, and the diameter of the circumscribed circle of the hexagon is 390 ⁇ m.
  • a section of low refractive index glass sleeve 13 is selected. The refractive index of the glass sleeve 13 is smaller than that of the central input fiber 11 and the inner cladding of the peripheral output fibers; the inner diameter of the glass sleeve 13 is 600 ⁇ m and the outer diameter is 800 ⁇ m.
  • the inner diameter of the glass sleeve 13 is tapered to 390 ⁇ m by heating, and 7 optical fibers that are closely arranged are inserted into the tapered glass sleeve 13, and the end face is shown in FIG. 2 .
  • the outer diameter of the conical area of the glass sleeve 13 is controlled to be 200 ⁇ m by the second heating and drawing the conical area, and cutting is performed at the conical area, and the end face is shown in FIG. 3 .
  • the output fiber includes a core 20 , a first cladding 21 , a second cladding 22 , a third cladding 23 , and a fourth cladding 24 .
  • the output fiber core 20, the second cladding 22, and the fourth cladding 24 are pure silica
  • the first cladding 21 and the third cladding 23 are fluorine-doped silica sink layers
  • the core NA20 is about 0.22
  • the second cladding NA22 is about 0.22
  • the fourth cladding NA24 is about 0.46
  • the core diameter is 50 ⁇ m
  • the first cladding outer diameter is 70 ⁇ m
  • the second cladding outer diameter is 150 ⁇ m
  • the third cladding outer diameter is 170 ⁇ m
  • the fourth cladding outer diameter is 360 ⁇ m .
  • the outer diameter of the cone area is 200 ⁇ m.
  • the input fiber bundle 1 and the output fiber 2 are matched and spliced, and the laser transmitted in the central input fiber core 110 is coupled into the output fiber core 20 to form a central beam, and the peripheral input fiber core 120.
  • the laser is coupled into the second inner cladding of the output fiber 2 to form a peripheral ring beam, so that the output beam of the fiber combiner is composed of a central beam and a peripheral ring beam. Adjustment of the output beam shape of the fiber combiner.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a high-power all-fiber laser beam combiner with adjustable output beam shape includes an input optical fiber bundle 1 and an output optical fiber 2.
  • the input optical fiber bundle 1 and the output optical fiber 2 are matched and spliced by taper to form a fiber laser beam combiner.
  • the input fiber bundle 1 includes a central input fiber 11, a peripheral input fiber 12, and a glass sleeve 13.
  • the central input fiber is a double-clad fiber, the core numerical aperture is 0.07, the core diameter is 14 ⁇ m, and the cladding is The outer diameter is 250 ⁇ m;
  • the peripheral input fiber 12 is a double-clad fiber, the core numerical aperture is 0.07, the core diameter is 14 ⁇ m, and the outer diameter of the cladding is 250 ⁇ m.
  • One central input optical fiber 11 and six peripheral input optical fibers 12 have a total of seven input optical fibers whose cladding is closely arranged into a hexagon, and the diameter of the circumscribed circle of the hexagon is 750 ⁇ m.
  • a section of low-refractive-index glass sleeve 13 is selected.
  • the refractive index of the glass sleeve 13 is smaller than that of the central input fiber 11 and the inner cladding of the peripheral output fibers; the inner diameter of the glass sleeve 13 is 800 ⁇ m and the outer diameter is 1100 ⁇ m.
  • the inner diameter of the glass sleeve 13 is tapered to 750 ⁇ m by heating, and seven optical fibers that are closely arranged are inserted into the tapered glass sleeve 13 .
  • the outer diameter of the conical area of the glass sleeve 13 was controlled to be 400 ⁇ m by heating the taper for the second time, and cutting was performed at the conical area.
  • the output fiber includes a core 20 , a first cladding 21 , a second cladding 22 , a third cladding 23 , and a fourth cladding 24 .
  • the output fiber core 20, the second cladding 22, and the fourth cladding 24 are pure silica
  • the first cladding 21 and the third cladding 23 are fluorine-doped silica sink layers
  • the core NA20 is about 0.22
  • the second cladding NA22 is about 0.22
  • the fourth cladding NA24 is about 0.46
  • the core diameter is 50 ⁇ m
  • the first cladding outer diameter is 70 ⁇ m
  • the second cladding outer diameter is 200 ⁇ m
  • the third cladding outer diameter is 220 ⁇ m
  • the fourth cladding outer diameter is 360 ⁇ m .
  • the outer diameter of the cone area is 400 ⁇ m.
  • the input fiber bundle 1 and the output fiber 2 are matched and spliced, and the laser transmitted in the central input fiber core 110 is coupled into the output fiber core 20 to form a central beam, and the peripheral input fiber core 120.
  • the laser is coupled into the second inner cladding 22 of the output fiber 2 to form a peripheral annular beam, so that the output beam of the fiber combiner is composed of a central beam and a peripheral annular beam, which is achieved by adjusting the laser power in the central input fiber 11 and the peripheral input fiber 12 Adjustment of the output beam shape of the fiber combiner.
  • a high-power all-fiber laser beam combiner with adjustable output beam shape includes an input optical fiber bundle 1 and an output optical fiber 2.
  • the input optical fiber bundle 1 and the output optical fiber 2 are matched and spliced by taper to form a fiber laser beam combiner.
  • the input fiber bundle 1 includes a central input fiber 11, a peripheral input fiber 12, and a glass sleeve 13.
  • the central input fiber 11 is a double-clad fiber with a core numerical aperture of 0.12 and a core diameter of 50 ⁇ m.
  • the outer diameter of the layer is 130 ⁇ m;
  • the peripheral input fiber 12 is a double-clad optical fiber, the core numerical aperture is 0.08, the core diameter is 20 ⁇ m, and the outer diameter of the cladding is 130 ⁇ m.
  • One central input optical fiber 11 and six peripheral input optical fibers 12 have a total of seven input optical fibers whose cladding is closely arranged into a hexagon, and the diameter of the circumscribed circle of the hexagon is 390 ⁇ m.
  • a section of low refractive index glass sleeve 13 is selected.
  • the refractive index of the glass sleeve 13 is smaller than that of the central input fiber 11 and the inner cladding of the peripheral output fibers; the inner diameter of the glass sleeve 13 is 600 ⁇ m and the outer diameter is 800 ⁇ m.
  • the inner diameter of the glass sleeve 13 is tapered to 390 ⁇ m by heating, and seven optical fibers that are closely arranged are inserted into the tapered glass sleeve 13 .
  • the outer diameter of the conical area of the glass sleeve 13 is controlled to be 200 ⁇ m by heating the taper for the second time, and cutting is performed at the conical area.
  • the output fiber includes a core 20 , a first cladding 21 , a second cladding 22 , a third cladding 23 , and a fourth cladding 24 .
  • the output fiber core 20, the second cladding 22, and the fourth cladding 24 are pure silica
  • the first cladding 21 and the third cladding 23 are fluorine-doped silica sink layers
  • the core NA20 is about 0.22
  • the second cladding NA22 is about 0.22
  • the fourth cladding NA24 is about 0.46
  • the core diameter is 50 ⁇ m
  • the first cladding outer diameter is 70 ⁇ m
  • the second cladding outer diameter is 150 ⁇ m
  • the third cladding outer diameter is 170 ⁇ m
  • the fourth cladding outer diameter is 360 ⁇ m .
  • the outer diameter of the cone area is 200 ⁇ m.
  • the input fiber bundle 1 and the output fiber 2 are matched and spliced, and the laser transmitted in the central input fiber core 110 is coupled into the output fiber core 20 to form a central beam, and the peripheral input fiber core 120.
  • the laser is coupled into the second inner cladding of the output fiber 2 to form a peripheral ring beam, so that the output beam of the fiber combiner is composed of a central beam and a peripheral ring beam. Adjustment of the output beam shape of the fiber combiner.

Abstract

一种输出光束形状可调的高功率全光纤激光合束器,包括输入光纤束(1)和输出光纤(2),输入光纤束(1)与输出光纤(2)通过拉锥匹配设置并熔接从而构成光纤激光合束器。其中输入光纤束(1)包括中心输入光纤(11)、外围输入光纤(12)以及玻璃套管(13),输出光纤(2)包括纤芯(20)、第一内包层(21)、第二内包层(22)、第三内包层(23)以及第四内包层(24);通过光纤束精准拉锥与多包层输出光纤匹配熔接,可以实现高功率激光合束及由中心光束与外围环形光束组成的光束输出,且通过调节输入光纤的激光功率,可实时精确控制中心光束与环形光束的功率占比,实现对合束器输出光束形状的调节。高功率全光纤激光合束器未使用复杂的空间光学整形结构,采用全光纤的结构实现点环形激光的光纤传输,具有较好的工业应用前景。

Description

一种输出光束形状可调的高功率全光纤激光合束器 技术领域
本发明属于光纤激光器领域,尤其涉及一种输出光束形状可调的高功率全光纤激光合束器。
背景技术
光纤激光器凭借高输出功率、优异的光束质量、热管理简单、易维护、可柔性传输等优异特质,逐步发展为新一代先进激光智能制造用光纤激光器,被广泛应用到激光切割、激光焊接、激光熔覆、激光3D打印等激光制造领域。受非线性效应、模式不稳定效应、泵浦亮度以及玻璃光纤损伤等效应限制,单纤单模光纤激光器的功率水平目前在10kW-20kW量级。考虑到激光制造应用对激光器的光束质量要求不高,因此,人们通过光纤激光合束器对多路单纤单模光纤激光器进行合束,耦合到一根光纤的纤芯里输出,从而可以大幅提升光纤激光器的功率水平,目前美国IPG公司可以提供500kW量级的合束多模光纤激光器。
目前有多个专利介绍了不同的光纤激光合束器的制作方法,这些光纤激光合束器都是将多路单纤单模光纤激光耦合书输出光纤的纤芯中,形成的输出光束都是近高斯分布或者平顶分布的一个光斑,光束形状一般都是圆形的,如果输出光纤的纤芯是方形的,输出光束形状是一个近方形的光斑,但是光束能量分布及形状均不能调节。然而激光切割、激光焊接等激光应用的效果依赖于激光光束的能量分布,针对不同的加工材料,如果针对性的采用具有不同能量分布的激光光束进行加工,可以明显提高加工效率且提升加工效果。比如在激光焊接中,如果使用一种点环形分布的激光光束进行焊接,可以有效抑制焊接中的熔融金属飞溅,全面提升焊接质量。
如公开号为CN206952364U的专利所述:利用聚焦透镜、圆锥透镜等空间光学元件,对激光光束进行整形,可以获得点环形等形状的激光光束,这也是目前常用的技术方案,然而这种方案由于使用了大量的空间光学元件,造成系统集成度较低、可靠性较差,同时在整形过程中会引入较高的激光功率损耗,不适合工业应用。公开号为CN210465873U的专利论述了一种实现点环形光斑分布的全光纤结构,该专利使用一根输入光纤通过拉锥的方式与多包层输出光纤进行匹配,通过拉锥来控制输出光束中点环形光斑的能量分布。但是该方案中输入光源只有一个,输出功率受限,而且中心光斑和环形光斑的能量占比不能实时独立调节,应用范围受限。
因此本领域人员致力于开发一种全光纤器件或装置,可以实现输出激光光束形状可调,同时输出功率扩展能力强,具备高可靠性工业化应用的条件。
发明内容
本发明的目的是提供一种输出光束形状可调的高功率全光纤激光合束器,输出的激光光束由中心光束和外围环形光束组成,光斑形状为点环形,中心光束及外围环形光束的激光功率可以调节,而且通过增加输入光纤的数量及提升输入光纤传输的激光功率,可以大幅提升合束器输出光纤中传输的激光功率,功率扩展能力强。
为解决上述技术问题,本发明采用以下技术方案:
一种输出光束形状可调的高功率全光纤激光合束器,包括输入光纤束和输出光纤,其特征为,输入光纤束与输出光纤通过拉锥匹配设置并熔接从而构成全光纤激光合束器;
所述输入光纤束包括中心输入光纤、外围输入光纤以及玻璃套管;其中,剥离涂覆层的中心输入光纤和外围输入光纤的包层紧密排列成一预定形状,玻璃套管使用氢氧焰或者其他热源进行拉锥,将排列成预定形状的输入光纤插入玻璃套管内,再次进行拉锥形成输入光纤束;
所述输出光纤包括纤芯20、第一包层21、第二包层22、第三包层23以及第四包层24;其中,所述输出光纤可以拉锥也可以不拉锥以实现与输入光纤束模场匹配,以使中心输入光纤纤芯中传输的激光耦合入输出光纤纤芯中形成中心光束,外围输入光纤纤芯中传输的激光耦合入输出光纤的第二内包层中形成外围环形光束,从而光纤激光合束器输出光束由中心光束及外围环形光束构成,通过调节中心输入光纤及外围输入光纤中的激光功率实现对光纤合束器输出光束形状的调节。
优选地,中心输入光纤和外围输入光纤的包层排列成预定形状的外径尺寸标记为R1,拉锥后玻璃套管的内径尺寸和外径尺寸分别标记为R2、R3,且R1=R2。
优选地中心输入光纤为双包层光纤,纤芯折射率为n110,包层的折射率为n111,中心输入光纤纤芯数值孔径标记为NA110,且0.06≤NA110≤0.22,纤芯直径为d110,且14μm≤d110≤100μm,包层外径尺寸为h111,且125μm≤h111≤360μm;
外围输入光纤为双包层光纤,纤芯折射率为n120,包层的折射率为n121,外围输入光纤纤芯数值孔径标记为NA120,0.06≤NA120≤0.12,纤芯直径为d120,14μm≤d120≤50μm,包层外径尺寸为h121,125μm≤h121≤360μm;
玻璃套管折射率是n13,其中n111>n13,n121>n13。
优选地,输出光纤的多层波导结构采用纯石英和掺氟石英下陷层,所述输出光纤纤芯、第二包层、第四包层是纯石英,第一包层和第三包层是掺氟石英下陷层,输出光纤纤芯数值孔径标记为NA20,NA20约为0.22,第二包层数值孔径记为NA22,NA22约为0.22,第四包层数值孔径记为NA24,NA24约为0.46;输出纤芯直径记为d20,且50μm≤d20≤150μm, 第一包层外径记为d21,第二包层外径记为d22,且150μm≤d22≤300μm,第四包层外径记为d24,且360μm≤d24≤600μm。
优选地,中心输入光纤与输出光纤之间满足d110×NA110≤d20×NA20;所述的外围输入光纤与输出光纤之间满足
Figure PCTCN2020129948-appb-000001
其中N为外围输入光纤的数量。
优选地,玻璃套管第二次拉锥时,拉锥后的锥区直径尺寸标记为R4,合束器的拉锥比标记为α=R4/R3,为保证拉锥后合束器的耦合效率,在亮度守恒原则下拉锥比需满足条件:α>2.405×λ/(π×NA110×d110),α>2.405×λ/(π×NA120×d120),其中λ为传输激光的波长。
优选地,中心输入光纤也可以是多根输入光纤组束拉锥后形成的光纤束。
本发明所带来的有益技术效果:
本发明通过光纤合束器实现了由中心光束及外围环形光束组成的点环形输出光束,本发明未使用复杂的空间光学整形结构,采用全光纤的结构实现点环形激光的光纤传输,具有较好的工业应用前景。
本发明中心光束与外围环形光束的功率占比可以调节,从而实现对输出光束形状的调节。
本发明同时实现了激光功率的全光纤合束,可以大幅提升单纤激光器的功率水平。
本发明可以扩展输入光纤的数量,从而可以用来将更多数量的激光耦合到输出光纤中,功率扩展能力强。
附图说明
图1为本发明实施例中光束形状可调全光纤合束器的示意图;
其中,1-输入光纤束;11-中心输入光纤;110-中心输入光纤纤芯;111-中心输入光纤包层;12-外围输入光纤;120-外围输入光纤纤芯;121-外围输入光纤包层;13-玻璃套管;
2-输出光纤;20-输出光纤纤芯;21-输出光纤第一包层;22-输出光纤第二包层;23-输出光纤第三包层;24-输出光纤第四包层。
图2为本发明实施例中拉锥前输入光纤束的端面示意图;
图3为本发明实施例中拉锥后输入光纤束的端面示意图;
图4为本发明实施例中输出光纤截面的示意图;
具体实施方式
下面将结合本发明实施例,详细描述本发明的技术方案。
如图1所示是一种输出光束形状可调的高功率全光纤激光合束器,包括输入光纤束1和 输出光纤2,输入光纤束与输出光纤通过拉锥匹配设置并熔接从而构成光纤激光合束器。
输入光纤束1包括中心输入光纤11、外围输入光纤12、玻璃套管13,将剥离涂覆层的中心输入光纤11和外围输入光纤12的包层紧密排列成一预定形状,排列后的外径尺寸R1;玻璃套管13使用氢氧焰或者其他热源进行拉锥,拉锥后玻璃套管的内径尺寸为R2,且R1=R2,玻璃套管的外径尺寸标记为R3,将排列成预定形状的输入光纤插入玻璃套管内,端面如图2所示;将插入输入光纤后的玻璃套管进行再次拉锥形成输入光纤束1,端面如图3所示;
输出光纤2包括纤芯20、第一包层21、第二包层22、第三包层23、及第四包层24。
具体地,输入光纤束1与输出光纤2通过拉锥匹配设置并熔接,对输出光纤2可以拉锥也可以不拉锥以实现与输入光纤束模场匹配,以使中心输入光纤纤芯110中传输的激光耦合入输出光纤纤芯20中形成中心光束,外围输入光纤纤芯120中传输的激光耦合入输出光纤2的第二内包层22中形成外围环形光束,从而光纤合束器输出光束由中心光束及外围环形光束构成,通过调节中心输入光纤11及外围输入光纤12中的激光功率实现对光纤合束器输出光束形状的调节。
具体地,中心输入光纤11为双包层光纤,纤芯折射率为n110,包层的折射率为n111,纤芯数值孔径标记为NA110,纤芯直径为d110,包层外径尺寸为h111,0.06≤NA110≤0.22,14μm≤d110≤100μm,125μm≤h111≤360μm,所述中心输入光纤11也可以是多根输入光纤组束拉锥后形成的光纤束;所述外围输入光纤12为双包层光纤,纤芯折射率为n120,包层的折射率为n121,纤芯数值孔径标记为NA120,纤芯直径为d120,包层外径尺寸为h121,0.06≤NA120≤0.12,14μm≤d120≤50μm,125μm≤h121≤360μm;所述玻璃套管13折射率是n13,其中n111>n13,n121>n13。
如图4所示,所述输出光纤2包括纤芯20、第一包层21、第二包层22、第三包层23、及第四包层24,其中纤芯20、第二包层22、第四包层24是纯石英,第一包层21和第三包层23是掺氟石英下陷层,纤芯NA20约为0.22,第二包层NA22约为0.22,第四包层NA24约为0.46;纤芯直径50μm≤d20≤150μm,第二包层外径150μm≤d22≤300μm,第四包层外径360μm≤d24≤600μm。
具体地,中心输入光纤11与输出光纤2之间满足d110×NA110≤d20×NA20,所述外围输入光纤12与输出光纤2之间满足
Figure PCTCN2020129948-appb-000002
其中N为外围输入光纤12的数量。
具体地,玻璃套管13第二次拉锥时,拉锥后的锥区直径尺寸标记为R4,合束器的拉锥比标记为α=R4/R3,为保证拉锥后合束器的耦合效率,在亮度守恒原则下拉锥比需满足如 下条件α>2.405×λ/(π×NA110×d110),α>2.405×λ/(π×NA120×d120),其中λ为传输激光的波长。
实施例一:
一种输出光束形状可调的高功率全光纤激光合束器,包括输入光纤束1和输出光纤2,输入光纤束1与输出光纤2通过拉锥匹配设置并熔接从而构成光纤激光合束器。
输入光纤束1包括中心输入光纤11、外围输入光纤12、玻璃套管13,中心输入光纤11为双包层光纤,中心输入光纤纤芯110数值孔径为0.08,纤芯直径为20μm,包层外径尺寸为130μm;外围输入光纤12为双包层光纤,外围输入光纤纤芯120数值孔径为0.08,纤芯直径为20μm,包层外径尺寸为130μm。
1根中心输入光纤11与6根外围输入光纤12共7根输入光纤包层紧密排列成六边形,该六边形的外切圆直径为390μm。选取一段低折射率玻璃套管13,玻璃套管13折射率小于中心输入光纤11及外围输出光纤内包层的折射率;玻璃套管13内径600μm,外径800μm。采用加热方式将玻璃套管13内径拉锥至390μm,将紧密排列的7根光纤插入拉锥后的玻璃套管13中,端面如图2所示。通过第二次加热拉锥的方式将玻璃套管13锥区外径控制在200μm,在锥区位置切割,端面如图3所示。
如图4所示,输出光纤包括纤芯20、第一包层21、第二包层22、第三包层23、及第四包层24。输出光纤纤芯20、第二包层22、第四包层24是纯石英,第一包层21和第三包层23是掺氟石英下陷层,纤芯NA20约为0.22,第二包层NA22约为0.22,第四包层NA24约为0.46;纤芯直径50μm,第一包层外径70μm,第二包层外径150μm,第三包层外径170μm,第四包层外径360μm。
锥区外径为200μm输入光纤束1与输出光纤2进行匹配熔接,在中心输入光纤纤芯110中传输的激光耦合入输出光纤纤芯20中形成中心光束,外围输入光纤纤芯120中传输的激光耦合入输出光纤2的第二内包层中形成外围环形光束,从而光纤合束器输出光束由中心光束及外围环形光束构成,通过调节中心输入光纤11及外围输入光纤12中的激光功率实现对光纤合束器输出光束形状的调节。
实施例二:
一种输出光束形状可调的高功率全光纤激光合束器,包括输入光纤束1和输出光纤2,输入光纤束1与输出光纤2通过拉锥匹配设置并熔接从而构成光纤激光合束器。
如图1所示,输入光纤束1包括中心输入光纤11、外围输入光纤12、玻璃套管13,中心输入光纤为双包层光纤,纤芯数值孔径为0.07,纤芯直径为14μm,包层外径尺寸为250μm;外围输入光纤12为双包层光纤,纤芯数值孔径为0.07,纤芯直径为14μm,包层外径尺 寸为250μm。
1根中心输入光纤11与6根外围输入光纤12共7根输入光纤包层紧密排列成六边形,该六边形的外切圆直径为750μm。选取一段低折射率玻璃套管13,玻璃套管13折射率小于中心输入光纤11及外围输出光纤内包层的折射率;玻璃套管13内径800μm,外径1100μm。采用加热方式将玻璃套管13内径拉锥至750μm,将紧密排列的7根光纤插入拉锥后的玻璃套管13中。通过第二次加热拉锥的方式将玻璃套管13锥区外径控制在400μm,在锥区位置切割。
输出光纤包括纤芯20、第一包层21、第二包层22、第三包层23、及第四包层24。输出光纤纤芯20、第二包层22、第四包层24是纯石英,第一包层21和第三包层23是掺氟石英下陷层,纤芯NA20约为0.22,第二包层NA22约为0.22,第四包层NA24约为0.46;纤芯直径50μm,第一包层外径70μm,第二包层外径200μm,第三包层外径220μm,第四包层外径360μm。
锥区外径为400μm输入光纤束1与输出光纤2进行匹配熔接,在中心输入光纤纤芯110中传输的激光耦合入输出光纤纤芯20中形成中心光束,外围输入光纤纤芯120中传输的激光耦合入输出光纤2的第二内包层22中形成外围环形光束,从而光纤合束器输出光束由中心光束及外围环形光束构成,通过调节中心输入光纤11及外围输入光纤12中的激光功率实现对光纤合束器输出光束形状的调节。
实施例三:
一种输出光束形状可调的高功率全光纤激光合束器,包括输入光纤束1和输出光纤2,输入光纤束1与输出光纤2通过拉锥匹配设置并熔接从而构成光纤激光合束器。
如图1所示,输入光纤束1包括中心输入光纤11、外围输入光纤12、玻璃套管13,中心输入光纤11为双包层光纤,纤芯数值孔径为0.12,纤芯直径为50μm,包层外径尺寸为130μm;外围输入光纤12为双包层光纤,纤芯数值孔径为0.08,纤芯直径为20μm,包层外径尺寸为130μm。
1根中心输入光纤11与6根外围输入光纤12共7根输入光纤包层紧密排列成六边形,该六边形的外切圆直径为390μm。选取一段低折射率玻璃套管13,玻璃套管13折射率小于中心输入光纤11及外围输出光纤内包层的折射率;玻璃套管13内径600μm,外径800μm。采用加热方式将玻璃套管13内径拉锥至390μm,将紧密排列的7根光纤插入拉锥后的玻璃套管13中。通过第二次加热拉锥的方式将玻璃套管13锥区外径控制在200μm,在锥区位置切割。
输出光纤包括纤芯20、第一包层21、第二包层22、第三包层23、及第四包层24。输出 光纤纤芯20、第二包层22、第四包层24是纯石英,第一包层21和第三包层23是掺氟石英下陷层,纤芯NA20约为0.22,第二包层NA22约为0.22,第四包层NA24约为0.46;纤芯直径50μm,第一包层外径70μm,第二包层外径150μm,第三包层外径170μm,第四包层外径360μm。
锥区外径为200μm输入光纤束1与输出光纤2进行匹配熔接,在中心输入光纤纤芯110中传输的激光耦合入输出光纤纤芯20中形成中心光束,外围输入光纤纤芯120中传输的激光耦合入输出光纤2的第二内包层中形成外围环形光束,从而光纤合束器输出光束由中心光束及外围环形光束构成,通过调节中心输入光纤11及外围输入光纤12中的激光功率实现对光纤合束器输出光束形状的调节。
以上为本实施例的完整实现过程。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (9)

  1. 一种输出光束形状可调的高功率全光纤激光合束器,包括输入光纤束和输出光纤,其特征为,输入光纤束与输出光纤通过拉锥匹配设置并熔接从而构成全光纤激光合束器;
    所述输入光纤束包括中心输入光纤、外围输入光纤以及玻璃套管;其中,剥离涂覆层的中心输入光纤和外围输入光纤的包层紧密排列成一预定形状,玻璃套管使用氢氧焰或者其他热源进行拉锥,将排列成预定形状的输入光纤插入玻璃套管内,再次进行拉锥形成输入光纤束;
    所述输出光纤包括纤芯、第一包层、第二包层、第三包层以及第四包层;其中,所述输出光纤与输入光纤束模场匹配,使中心输入光纤纤芯中传输的激光耦合入输出光纤纤芯中形成中心光束,外围输入光纤纤芯中传输的激光耦合入输出光纤的第二内包层中形成外围环形光束,从而光纤激光合束器输出光束由中心光束及外围环形光束构成,通过调节中心输入光纤及外围输入光纤中的激光功率实现对光纤合束器输出光束形状的调节。
  2. 如权利要求1所述的一种输出光束形状可调的高功率全光纤激光合束器,其特征在于,所述中心输入光纤和外围输入光纤的包层紧密排列成预定形状的外径尺寸标记为R1,拉锥后玻璃套管的内径尺寸和外径尺寸分别标记为R2、R3,且R1=R2。
  3. 如权利要求1所述的一种输出光束形状可调的高功率全光纤激光合束器,其特征在于,所述的中心输入光纤为双包层光纤,包层的折射率标记为n111,中心输入光纤纤芯数值孔径标记为NA110,且0.06≤NA110≤0.22,纤芯直径标记为d110,且14μm≤d110≤100μm,包层外径尺寸标记为h111,且125μm≤h111≤360μm;
    所述的外围输入光纤为双包层光纤,包层的折射率标记为n121,外围输入光纤纤芯数值孔径标记为NA120,且0.06≤NA120≤0.12,纤芯直径标记为d120,且14μm≤d120≤50μm,包层外径尺寸标记为h121,且125μm≤h121≤360μm;
    所述的玻璃套管折射率标记为n13,其中n111>n13,n121>n13。
  4. 如权利要求2所述的一种输出光束形状可调的高功率全光纤激光合束器,其特征在于,所述的中心输入光纤为双包层光纤,包层的折射率标记为n111,中心输入光纤纤芯数值孔径标记为NA110,且0.06≤NA110≤0.22,纤芯直径标记为d110,且14μm≤d110≤100μm,包层外径尺寸标记为h111,且125μm≤h111≤360μm;
    所述的外围输入光纤为双包层光纤,包层的折射率标记为n121,外围输入光纤纤芯数值孔径标记为NA120,且0.06≤NA120≤0.12,纤芯直径标记为d120,且14μm≤d120≤50μm,包层外径尺寸标记为h121,且125μm≤h121≤360μm;
    所述的玻璃套管折射率标记为n13,其中n111>n13,n121>n13。
  5. 如权利要求1所述的一种输出光束形状可调的高功率全光纤激光合束器,其特征在于, 所述输出光纤的多层波导结构采用纯石英和掺氟石英下陷层,所述输出光纤纤芯、第二包层、第四包层是纯石英,第一包层和第三包层是掺氟石英下陷层,输出光纤纤芯数值孔径标记为NA20,NA20约为0.22,第二包层数值孔径记为NA22,NA22约为0.22,第四包层数值孔径记为NA24,NA24约为0.46;输出纤芯直径记为d20,且50μm≤d20≤150μm,第一包层外径记为d21,第二包层外径记为d22,且150μm≤d22≤300μm,第四包层外径记为d24,且360μm≤d24≤600μm。
  6. 如权利要求4所述的一种输出光束形状可调的高功率全光纤激光合束器,其特征在于,所述输出光纤的多层波导结构采用纯石英和掺氟石英下陷层,所述输出光纤纤芯、第二包层、第四包层是纯石英,第一包层和第三包层是掺氟石英下陷层,输出光纤纤芯数值孔径标记为NA20,NA20约为0.22,第二包层数值孔径记为NA22,NA22约为0.22,第四包层数值孔径记为NA24,NA24约为0.46;输出纤芯直径记为d20,且50μm≤d20≤150μm,第一包层外径记为d21,第二包层外径记为d22,且150μm≤d22≤300μm,第四包层外径记为d24,且360μm≤d24≤600μm。
  7. 如权利要求6所述的一种输出光束形状可调的高功率全光纤激光合束器,其特征在于,所述的中心输入光纤与输出光纤之间满足d110×NA110≤d20×NA20;所述的外围输入光纤与输出光纤之间满足
    Figure PCTCN2020129948-appb-100001
    其中N为外围输入光纤的数量。
  8. 如权利要求4所述的一种输出光束形状可调的高功率全光纤激光合束器,其特征在于,玻璃套管第二次拉锥时,拉锥后的锥区直径尺寸标记为R4,合束器的拉锥比标记为α=R4/R3,为保证拉锥后合束器的耦合效率,在亮度守恒原则下拉锥比需满足条件:α>2.405×λ/(π×NA110×d110),α>2.405×λ/(π×NA120×d120),其中λ为传输激光的波长。
  9. 如权利要求1所述的一种输出光束形状可调的高功率全光纤激光合束器,其特征在于,所述的中心输入光纤也可以是多根输入光纤组束拉锥后形成的光纤束。
PCT/CN2020/129948 2020-10-30 2020-11-19 一种输出光束形状可调的高功率全光纤激光合束器 WO2022088307A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011189100.5 2020-10-30
CN202011189100.5A CN112310793A (zh) 2020-10-30 2020-10-30 一种输出光束形状可调的高功率全光纤激光合束器

Publications (1)

Publication Number Publication Date
WO2022088307A1 true WO2022088307A1 (zh) 2022-05-05

Family

ID=74332627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129948 WO2022088307A1 (zh) 2020-10-30 2020-11-19 一种输出光束形状可调的高功率全光纤激光合束器

Country Status (2)

Country Link
CN (1) CN112310793A (zh)
WO (1) WO2022088307A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128740A (zh) * 2022-08-30 2022-09-30 北京凯普林光电科技股份有限公司 一种信号合束器、激光器及信号合束器的制作方法
CN117192706A (zh) * 2023-10-23 2023-12-08 中国人民解放军国防科技大学 实现空心光束发射的超连续谱激光系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113770525B (zh) * 2021-09-15 2024-04-05 武汉锐科光纤激光技术股份有限公司 一种电池顶盖封口焊高速焊接装置及方法
CN113809623A (zh) * 2021-09-15 2021-12-17 山东海富光子科技股份有限公司 一种连续脉冲复合模式高功率全光纤激光器系统
CN113964640A (zh) * 2021-10-19 2022-01-21 上海瑞柯恩激光技术有限公司 一种融合波激光输出装置和激光治疗机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969104A (zh) * 2013-01-31 2015-10-07 Spi激光英国有限公司 光纤激光合成器
CN106997074A (zh) * 2016-01-22 2017-08-01 深圳朗光科技有限公司 一种高功率的光纤合束器及激光器
CN206952364U (zh) * 2017-07-03 2018-02-02 大族激光科技产业集团股份有限公司 点环形光斑焊接装置
US20180217409A1 (en) * 2016-09-29 2018-08-02 Nlight, Inc. Fiber-coupled device for varying beam characteristics
CN110488503A (zh) * 2019-09-24 2019-11-22 上海飞博激光科技有限公司 一种光束能量分布可调的点环形激光输出结构
CN111596404A (zh) * 2020-06-15 2020-08-28 湖南杰瑞天光电有限公司 一种可传输双光束的光纤及其耦合方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10551625B2 (en) * 2017-10-16 2020-02-04 Palo Alto Research Center Incorporated Laser homogenizing and beam shaping illumination optical system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969104A (zh) * 2013-01-31 2015-10-07 Spi激光英国有限公司 光纤激光合成器
CN106997074A (zh) * 2016-01-22 2017-08-01 深圳朗光科技有限公司 一种高功率的光纤合束器及激光器
US20180217409A1 (en) * 2016-09-29 2018-08-02 Nlight, Inc. Fiber-coupled device for varying beam characteristics
CN206952364U (zh) * 2017-07-03 2018-02-02 大族激光科技产业集团股份有限公司 点环形光斑焊接装置
CN110488503A (zh) * 2019-09-24 2019-11-22 上海飞博激光科技有限公司 一种光束能量分布可调的点环形激光输出结构
CN111596404A (zh) * 2020-06-15 2020-08-28 湖南杰瑞天光电有限公司 一种可传输双光束的光纤及其耦合方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128740A (zh) * 2022-08-30 2022-09-30 北京凯普林光电科技股份有限公司 一种信号合束器、激光器及信号合束器的制作方法
CN117192706A (zh) * 2023-10-23 2023-12-08 中国人民解放军国防科技大学 实现空心光束发射的超连续谱激光系统
CN117192706B (zh) * 2023-10-23 2024-03-19 中国人民解放军国防科技大学 实现空心光束发射的超连续谱激光系统

Also Published As

Publication number Publication date
CN112310793A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2022088307A1 (zh) 一种输出光束形状可调的高功率全光纤激光合束器
CN110488503B (zh) 一种光束能量分布可调的点环形激光输出结构
CN210465873U (zh) 一种光束能量分布可调的点环形激光输出结构
CN109143475B (zh) 一种耦合透镜系统
CN105633778A (zh) 高阶模滤除光纤端面泵浦耦合器及其制作方法
CN213257671U (zh) 形成点环光斑的光学系统
CN103454730A (zh) 一种光纤准直器
CN111596404A (zh) 一种可传输双光束的光纤及其耦合方法
CN209070239U (zh) 一种多锥非对称光束整形器件
CN104865646A (zh) 一种大功率光纤准直器
CN104330848A (zh) 一种高模场占空比光纤功率合束器
CN115718372A (zh) 实现平顶光束的侧泵信号合束器及其制备方法
CN204790068U (zh) 一种大功率光纤准直器
CN203025420U (zh) 光纤合束器
CN114280803B (zh) 一种光纤激光合束器的制作方法
JPH05288967A (ja) レーザ入力用光ファイバ
CN114167549A (zh) 光纤激光合束装置
CN104345388A (zh) 一种大芯径光纤耦合器及其制作方法
US11955777B2 (en) Optical combiner and laser apparatus
CN208367258U (zh) 一种低串扰大模场面积多芯光纤
CN105785523A (zh) 一种泵浦信号耦合器及其工艺方法
CN115236864B (zh) 一种高光束质量光纤激光合束器
CN217142716U (zh) 一种基于环形光斑的激光焊机装置
CN204178001U (zh) 一种大芯径光纤耦合器
CN212207735U (zh) 一种可传输双光束的光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959467

Country of ref document: EP

Kind code of ref document: A1