WO2023206878A1 - 一种铁芯及其轴向磁场电机、成型方法和尺寸控制方法 - Google Patents

一种铁芯及其轴向磁场电机、成型方法和尺寸控制方法 Download PDF

Info

Publication number
WO2023206878A1
WO2023206878A1 PCT/CN2022/114711 CN2022114711W WO2023206878A1 WO 2023206878 A1 WO2023206878 A1 WO 2023206878A1 CN 2022114711 W CN2022114711 W CN 2022114711W WO 2023206878 A1 WO2023206878 A1 WO 2023206878A1
Authority
WO
WIPO (PCT)
Prior art keywords
stacked
iron core
laminated
blocks
length
Prior art date
Application number
PCT/CN2022/114711
Other languages
English (en)
French (fr)
Inventor
刘洋
何俊明
Original Assignee
浙江盘毂动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江盘毂动力科技有限公司 filed Critical 浙江盘毂动力科技有限公司
Publication of WO2023206878A1 publication Critical patent/WO2023206878A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to the field of axial magnetic field motors, and in particular to an iron core used in an axial magnetic field motor, an axial magnetic field motor, a molding method and a size control method.
  • a motor refers to an electromagnetic device that converts or transmits electrical energy based on the law of electromagnetic induction. Its main function is to generate driving torque and serve as the power source for electrical appliances or various machinery.
  • the types of motors can be divided into radial magnetic field motors and axial magnetic field motors.
  • Axial magnetic field motors are also called disc motors. They have the characteristics of small size, light weight, short axial size and high power density. They can be installed in most thin Occasionally used, so it is widely used.
  • the motor includes a stator and a rotor.
  • the stator is the stationary part of the electric motor. It is mainly composed of an iron core and a coil wound around the iron core.
  • the iron core is mostly trapezoidal.
  • the shape is formed by stacking multiple punched sheets 100 of different sizes, see Figure 1 and Figure 2 .
  • the punched sheets 100 that make up the iron core have different sizes, so each punched sheet 100 needs to be punched and manufactured by different molds. This not only increases the mold development cost, but also causes the adjacent punched sheets 100 to have similar sizes. Therefore, it is difficult to distinguish, which brings difficulties to the stacking and molding process of the core.
  • there is also a method of laminating first and then processing to manufacture a trapezoidal core This method is to superimpose multiple punched sheets 100 of the same shape to form a rectangular structure, and then use machining (such as cutting) to obtain a trapezoidal core.
  • the present invention provides a method that can use the same set of molds to stamp several laminated sheets with the same shape, and form laminated blocks with different laminated lengths according to the number of layers, thereby reducing development costs and molding costs. Difficulty, and ensure the core of product consistency, as well as the axial magnetic field motor, molding method and size control method corresponding to the core.
  • the invention provides an iron core, which is made up of two or more laminated blocks, and a single laminated block is made up of several laminated sheets of the same shape.
  • the overlapping lengths of at least two stacked blocks are different to form a non-rectangular structure with an outer contour of the core air gap surface.
  • the outer contour of the core air gap surface is trapezoidal, at least two of the stacked blocks are arranged and spliced along the height direction of the trapezoid, and the stacked length of the stacked blocks is from the upper bottom to the lower bottom of the trapezoid. slowing shrieking.
  • the stacked length direction of each stacked block is perpendicular to the height of the trapezoid.
  • a first connector and a second connector are respectively provided on both sides of each stacked block in the splicing direction, and two adjacent stacked blocks pass through the first connector and the third connector. Two connectors are connected.
  • the opposite sides of the laminated sheet are respectively provided with first connecting parts and second connecting parts, so that when the laminated sheets are laminated, the first connecting parts of several of the laminated sheets
  • the connecting parts are opposite to form a first connecting body
  • the second connecting parts of a plurality of the stacked sheets are opposite to form a second connecting body.
  • the first connection part is in the shape of a dove tail groove
  • the second connection part is in the shape of a dove tail key
  • the laminated sheets are provided with a rivet point structure, so that each of the laminated sheets is laminated and connected through the rivet point structure.
  • the present invention also provides an axial magnetic field motor.
  • the axial magnetic field motor includes a rotor and a stator.
  • the stator includes a plurality of the iron cores of the above embodiments, and a plurality of the iron cores of the above embodiments.
  • the iron cores are arranged at circumferential intervals around the axis of the magnetic field motor, and the air gap surfaces of each iron core are flush with each other to form an air gap with the rotor.
  • the present invention also provides a method for forming an iron core, which includes the following steps:
  • S1 provide at least two sets of laminated sheets, and the shapes of the laminated sheets in each group are the same;
  • step S3 includes: arranging and splicing the stacked blocks along the trapezoidal height direction, and the stacked length of the stacked blocks is determined by the trapezoidal shape. It gradually decreases from top to bottom.
  • first connectors and second connectors are respectively provided on both sides of the stacked blocks in the splicing direction, and step S3 includes: passing the two adjacent stacked blocks through the first connector. The connector is connected to the second connector.
  • step S2 includes: stacking and connecting each of the laminated sheets through the rivet point structures.
  • the present invention also provides a method for controlling the size of an iron core.
  • the iron core includes multiple layers of laminated blocks with different laminated lengths.
  • the iron core is spliced in a small manner to form an iron core with a trapezoidal outer contour of the air gap surface.
  • the size control method includes designing each layer of the stacked blocks in the following way:
  • the superimposed length relational formula is Y b-2nb1
  • Y is the superimposed length of the superimposed block
  • b is the trapezoid of the iron core.
  • the upper and lower values, n is the layer value of the superimposed block, and b1 is the reserved corner value.
  • the stacked length of the multiple stacked blocks gradually decreases along the height of the trapezoidal core from the upper bottom to the lower bottom.
  • the stacked block includes a plurality of stacked pieces with the same shape, and the plurality of stacked pieces are stacked along the vertical direction of the stacked blocks.
  • quantity or thickness to adjust the stacked length of the stacked blocks.
  • the laminated sheets that make up all the laminated blocks have the same shape, so they can be stamped using the same set of molds, which effectively reduces the development cost of the mold.
  • the shapes of the laminated sheets of the two can be the same or the same. Differently, since the shapes of the laminated sheets that make up each of the laminated blocks are the same, they can be stacked by aligning the outer contours of the laminated sheets to prevent overlapping caused by different stamping shapes and close sizes that are difficult to distinguish. difficult phenomenon. This reduces the difficulty of operation and effectively improves production efficiency.
  • the stacked length of each layer of the stacked blocks is achieved by adjusting the number or thickness of the stacked sheets, making the forming of each layer of the stacked blocks faster and more convenient.
  • Figure 1 is a side view of an existing iron core
  • Figure 2 is a front view of the existing iron core
  • Figure 3 is a side view of the iron core according to the present invention.
  • Figure 4 is a front view of the iron core according to the present invention.
  • Figure 5 is a schematic structural diagram of the stacked block according to the present invention.
  • Figure 6 is a schematic structural diagram of the laminated sheet according to the present invention.
  • the iron core is made up of two or more laminated blocks 200, and a single laminated block 200 is made up of several laminated sheets 210 with the same shape, and forms Correspondingly, the overlapping lengths of at least two stacked blocks 200 are different to form a non-rectangular structure with an outer contour of the core air gap surface.
  • Each layer of the laminated block 200 is made up of several laminated sheets 210 with the same shape. Therefore, the same set of molds can be used to stamp multiple laminated sheets 210 and then laminated to form the laminated block 200 , compared with the prior art of manufacturing different stamping sheets with different molds, it effectively reduces development costs and reduces the difficulty of core molding. Compared with the prior art of laminating first and then processing, it avoids the scrapping of the core caused by subsequent cutting. situation, reduce processing time and operation difficulty, and effectively ensure the consistency of each core.
  • the shapes of the laminated sheets 210 of the two laminated blocks 200 may be the same or different, but the shapes of the laminated sheets 210 constituting each of the laminated blocks 200 are the same. In this way, through the laminated sheets 210 The stacked blocks 200 are stacked with the outer contours aligned to form the stacked blocks 200 with corresponding stacked lengths. If the shapes of the laminated sheets 210 of each laminated block 200 are the same, all the laminated sheets 210 constituting the iron core can be punched and formed by the same set of molds, further reducing the development cost of the mold and improving the molding efficiency. .
  • the number and thickness of the stacked sheets 210 and other factors determine the stacked length of the stacked block 200.
  • the stacked length of the stacked block 200 refers to the length of the stacked block 200 from left to right. length to the right.
  • the number of laminated sheets 210 may be the same, and in this case, the thicknesses of the laminated sheets 210 are different.
  • the stacked length of the stacked block 200 can be adjusted by adjusting the number of stacked pieces 210 with the same thickness.
  • the outer contour of the core air gap surface is trapezoidal, but is not limited to this.
  • a trapezoid as an example, at least two of the stacked blocks 200 are arranged and spliced along the height direction of the trapezoid, and the stacked length of the stacked blocks 200 gradually decreases from the upper bottom to the lower bottom of the trapezoid.
  • the stacked length direction of each stacked block 200 is perpendicular to the height of the trapezoid.
  • both sides of the stacked length direction of each layer of the stacked blocks 200 are symmetrical along the central axis of the core trapezoid.
  • the stacked block 200 located at the upper and bottom position of the trapezoid has the longest stacked length.
  • the overlapped length of the stacked block 200 located at the bottom of the trapezoid is the shortest, and both sides of the stacked length direction of the stacked block 200 respectively correspond to the two waists of the core trapezoid.
  • multiple layers of the laminated blocks 200 are spliced along the height direction of the core trapezoid, and the laminated sheets 210 of each layer of the laminated blocks 200 are laminated along the vertical direction of the core trapezoid height to form as shown in the figure. 3 and the trapezoidal core shown in Figure 4.
  • the stacked length directions of the stacked blocks 200 of each layer are parallel.
  • a first connecting body 2001 and a second connecting body 2002 are respectively provided on both sides of each stacked block 200 in the splicing direction.
  • the two adjacent stacked blocks 200 pass through the first connecting body 2001 and the second connecting body 2002 .
  • a connecting body 2001 is connected to the second connecting body 2002.
  • the first connecting body 2001 is located above the stacked block 200
  • the second connecting body 2002 is located below the stacked block 200.
  • the first connecting body 2001 may be in the shape of a dove tail groove, and the dove tail groove penetrates all of the stacked pieces 210 , and the second connecting body 2002 is connected to the first connecting body 2001 .
  • the second connecting body 2002 is in the shape of a dovetail key.
  • Block 200 splice connection. Due to the adoption of the above structure, separation of the two superimposed blocks 200 after splicing and connection is prevented, ensuring the stability and reliability of the iron core structure.
  • the first connecting body 2001 and the second connecting body 2002 can also be in other shapes, which are not limited here.
  • first connecting portions 211 and second connecting portions 212 are respectively provided on opposite sides of the stacked sheet 210 , so that when the stacked sheets 210 are stacked, several The first connecting portions 211 of the laminated sheets 210 are opposed to form a first connecting body 2001, and the second connecting portions 212 of several of the laminated sheets 210 are opposed to form a second connecting body 2002.
  • the first connecting portion 211 is located at the position of the lamination piece 210, which corresponds to the position of the first connecting body 2001 on the lamination block 200.
  • the second connecting portion 212 is located at the position of the stacked piece 210 , which corresponds to the position of the second connecting body 2002 on the stacked block 200 .
  • the laminated piece 210 is rectangular, and the first connecting portion 211 and the second connecting portion 212 are respectively provided on both sides of the laminated piece 210 in the width direction, so as to form a rectangular parallelepiped with a rectangular cross-section. Block 200. It is worth noting that when the stacked pieces 210 are stacked, their outer hubs are flush to ensure that the first connecting portion 211 and the second connecting portion 212 are aligned accordingly.
  • the first connecting part 211 and the second connecting part 212 are located at the middle position of the length of the laminated piece 210 , so that neither the first connecting part 211 nor the second connecting part 211
  • the distances between the two connecting parts 212 to both sides of the length dimension of the laminated piece 210 are the same, and the two sides in the thickness direction of the iron core correspond to the two sides of the length dimension of the laminated piece 210. It can be seen that the thickness direction of the iron core Both sides of the iron core are flush.
  • the thickness direction of the iron core is aligned with the axial direction of the axial magnetic field motor, thereby ensuring that the axial magnetic field motor has a small axial size.
  • One side of the iron core in the thickness direction forms an air gap surface of the iron core and is opposite to the rotor, so that an air gap is formed between the air gap surface of the iron core and the rotor.
  • the first connecting portion 211 is in the shape of a dove tail groove to correspond to the first connecting body 2001 formed in the shape of a dove tail groove.
  • the second connecting portion 212 is in the shape of a dove tail key to correspond to the second connecting body 2002 forming the dove tail key.
  • rivet point structures 213 are provided on the laminated sheets 210 so that the laminated sheets 210 are laminated and connected through the rivet point structures 213 .
  • the rivet point structure 213 may be located at the center of the stacked piece 210 , that is, between the first connecting part 211 and the second connecting part 212 .
  • the rivet point structure 213 may be a round hole, but is not limited thereto.
  • the rivet point structure 213 includes opposite convex portions and concave portions 2131, and the convex portion and the concave portion 2131 are respectively provided on the On both sides of the stacking direction of the stacked sheets 210, the two adjacent stacked sheets 210 cooperate through the convex portion and the concave portion 2131 to perform stacking.
  • each layer of the laminated block 200 is composed of a plurality of laminated pieces 210 with the same shape. Therefore, the same set of molds can be used to stamp multiple laminated pieces 210, and then they can be laminated to form the entire laminated block 200.
  • the above-mentioned stacked block 200 can effectively reduce development costs and reduce the difficulty of core molding compared to the prior art of manufacturing different punched sheets using different molds. Compared with the prior art of laminating first and then processing, the stacked block 200 can avoid subsequent cutting. It prevents the iron core from being scrapped, reduces the processing time and difficulty of operation, and effectively ensures the consistency of each iron core.
  • the present invention also provides an axial magnetic field motor, which includes the iron core of the above embodiment. Since the axial magnetic field motor uses the iron core of the above embodiment, the beneficial effects of the axial magnetic field motor can be referred to the iron core of the above embodiment.
  • the axial magnetic field motor includes a relatively fixed stator and a rotor.
  • the stator includes a plurality of the iron cores of the above embodiments.
  • the plurality of iron cores are axially spaced around the axis of the magnetic field motor and are circumferentially spaced. Arrange, and the air gap surface of each iron core is flush and an air gap is formed between the iron core and the rotor.
  • the stacked blocks 200 of each iron core are arranged along the radial direction of the axial magnetic field motor, and the air gap surfaces of each iron core are respectively perpendicular to the axial direction of the axial magnetic field motor.
  • the present invention also provides an iron core forming method, which includes the following steps:
  • S1 provide at least two sets of laminated sheets 210, and the shapes of the laminated sheets 210 in each group are the same;
  • the number of the laminated sheets 210 in each group is multiple and the shapes are the same. Therefore, they can be stamped using the same set of molds, for example, strip-shaped silicon steel sheets are continuously stamped to obtain several
  • the two laminated pieces 210 with the same shape effectively reduce the development cost of the mold, and prevent the lamination difficulty caused by the difficulty in distinguishing the stamping shapes with different shapes and similar sizes. See Figures 5 and 6.
  • the shapes of the laminated sheets 210 of the two laminated blocks 200 may be the same or different, but the shapes of the laminated sheets 210 constituting each of the laminated blocks 200 are the same.
  • the stacked lengths of each layer of the stacked blocks 200 that make up the iron core are different, and the stacked blocks 200 of each layer are determined by the number and thickness of the stacked sheets 210. Determined by other factors, for example, when the number of stacked sheets 210 is the same, the thickness of the stacked sheets 210 can be adjusted to obtain stacked blocks 200 with different stacked lengths. When the thickness of the stacked sheets 210 is the same, the number of the stacked sheets 210 can be adjusted to obtain stacked blocks 200 with different stacked lengths. It can be seen that the number of each group of stacked sheets 210 can be the same or different.
  • each of the stacked blocks 200 Since the stacked pieces 210 that make up each of the stacked blocks 200 have the same shape, they can be stacked by aligning the outer contours of the stacked pieces 210 , which reduces the difficulty of operation and effectively improves production efficiency.
  • the stacked length of each layer of the stacked blocks 200 is achieved by adjusting the number or thickness of the stacked pieces 210 , making the forming of each layer of the stacked blocks 200 faster and more convenient.
  • the laminated sheet 210 is provided with a rivet point structure 213, and the step S2 includes: each of the laminated sheets 210 is laminated and connected through the rivet point structure 213, see Figures 5 and 6.
  • step S3 the outer contour of the iron core air gap surface may be trapezoidal, but is not limited to this.
  • step S3 includes: arranging and splicing the stacked blocks 200 along the height direction of the trapezoid, and the stacked length of the stacked blocks 200 gradually decreases from the upper bottom to the lower bottom of the trapezoid.
  • the stacked length direction of the stacked blocks 200 is perpendicular to the height of the trapezoid respectively, and both sides of the length direction of the stacked blocks 200 in each layer are symmetrical along the central axis of the core trapezoid, thereby forming an iron core as shown in Figures 3 and 4.
  • the outer contour of the core air gap surface is a trapezoidal core.
  • step S3 includes: two adjacent stacked blocks 200 They are connected through the first connector 2001 and the second connector 2002 .
  • the laminated pieces 210 that make up all the laminated blocks 200 have the same shape, so they can be stamped using the same set of molds, which effectively reduces the development cost of the mold.
  • 210 have the same shape, so they can be stacked by aligning the outer contours of the stacked pieces 210 to prevent stacking difficulties caused by different stamping shapes and close sizes that are difficult to distinguish. This reduces the difficulty of operation and effectively improves production efficiency.
  • the stacking length of each layer of the stacked blocks 200 is achieved by adjusting the number of the stacked pieces 210 , making the forming of each layer of the stacked blocks 200 faster and more convenient.
  • the present invention also provides a method for controlling the size of an iron core.
  • the iron core includes multiple layers of laminated blocks 200 with different laminated lengths.
  • the laminated blocks of each layer are spliced together to form a trapezoidal core in such a way that the combined length is reduced, and the size control method includes designing each layer of the stacked blocks in the following manner:
  • the overlay length of each layer of the overlay block 200 is obtained, where the overlay length relational expression is Y b-2nb1, Y is the overlay length of the overlay block, and b is the core trapezoid
  • Y is the overlay length of the overlay block
  • b is the core trapezoid
  • n is the layer value of the superimposed block
  • b1 is the reserved corner value.
  • the stacked blocks 200 are arranged along the height direction of the iron core trapezoid, and the stacked length of the multiple layers of the stacked blocks 200 gradually decreases from the upper bottom to the lower bottom of the iron core trapezoid, and each The two sides of the stacked length of the stacked blocks 200 are symmetrical along the central axis of the iron core, so that the iron core forms an inverted trapezoid as shown in Figure 4, and the stacked length of each layer of the stacked blocks 200 is directions are parallel.
  • the superimposed block 200 corresponding to the upper bottom has the longest superimposed length, and the layer value n is 1.
  • the superimposed block 200 that follows has the second largest superimposed length, and the layer value n is 2. Accordingly, analogy.
  • reserved corners are respectively provided on both sides of the stacked length direction of each layer of the stacked blocks 200, where the reserved corner value refers to the value between the two adjacent layers of the stacked blocks 200, which is located between the two adjacent layers of the stacked blocks 200.
  • the reserved corner value refers to one-half of the stacking length difference between the stacked blocks 200 of two adjacent layers.
  • the reserved corner values corresponding to the stacked blocks 200 in each layer are equal.
  • the height of the core trapezoid is denoted as h
  • the size of each layer of the stacked blocks 200 along the height direction of the core trapezoid is consistent, and is denoted as the stacked block height L.
  • L h/n, n is the layer value of the laminated block.
  • the iron core is made up of 8 layers of laminated blocks, and n is 8 in this case.
  • the height L of the stacked blocks 200 of each layer should not be too short to avoid making molding and lamination difficult. And it should not be too long to avoid the reserved corner value b1 being too large, which will cause the trapezoidal area of the formed core to be too different from the required area, which will affect the use.
  • the reserved corner value b1 should satisfy the following formula:
  • b is the upper bottom value of the iron core trapezoid
  • a is the lower bottom value of the iron core trapezoid
  • h is the height of the iron core trapezoid
  • b1 is the reserved corner value
  • L is the height of the superimposed block.
  • the two waists of the core trapezoid correspond to the two sides of each stacked block 200 in the stacked length direction. Since the reserved corner values corresponding to the stacked blocks 200 in each layer are equal, they are located at On the same side of the stacked length direction of each stacked block 200, the bottom corners C of each stacked block 200 are located on the same straight line, and the connection line of the bottom corners C constitutes the waist of the core trapezoid.
  • the lower value a of the core trapezoid is equal to the overlap length Y of the n-th layer of the stack block 200 of the core trapezoid, and:
  • the stacked length of the first layer of stacked blocks of the core trapezoid is b-2b1;
  • the stacking length of the second layer of stacked blocks of the core trapezoid is b-4b1;
  • the stacking length of the third layer of stacked blocks of the core trapezoid is b-6b1;
  • the stacked block 200 includes a plurality of stacked pieces 210 with the same shape, and the plurality of stacked pieces 210 are stacked along the vertical direction of the stacked block 200 .
  • the number or thickness of the stacked pieces 210 is adjusted to adjust the stacked length of the stacked block 200 .
  • the stacked sheets 210 are stacked in the thickness direction to form the stacked block 200, so that the sum of the thicknesses of the stacked sheets 210 is equal to the stacked length of the stacked block 200.
  • the thickness of each of the laminated sheets 210 can be consistent. In this way, the upper and lower value b of the core trapezoid, the layer value n and the reserved corner value b1 of the laminated block are determined, and the laminated layer is calculated according to the laminated length relationship. After calculating the stacked length of the block 200 and dividing the stacked length by the thickness of the stacked sheet 210, the corresponding stacked number of the stacked sheets 210 can be obtained. This makes the size control and molding of each stacked block 200 more convenient and faster.
  • each stacked block 200 can be obtained while ensuring the normal use of the iron core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

本发明提供了一种铁芯及其轴向磁场电机、成型方法和尺寸控制方法,其中铁芯由两个以上的叠合块拼接而成,单个所述叠合块由若干个形状相同的叠合片叠合而成,并形成相应的叠合长度,至少两个叠合块的叠合长度不同以构成铁芯气隙面外轮廓的非矩形结构,组成所有叠合块的叠合片形状一致,因此可采用同一套模具冲压制成,有效降低了模具的开发成本,并且防止冲压形状各异且尺寸接近,而出现难以区分带来的叠压困难的现象,从而降低了操作难度,并有效提升生产效率。而各层所述叠合块的叠合长度,是通过调整所述叠合片的数量和厚度实现的,使得各层所述叠合块的成型更为快捷便利。

Description

一种铁芯及其轴向磁场电机、成型方法和尺寸控制方法 技术领域
本发明涉及轴向磁场电机领域,尤其涉及一种应用于轴向磁场电机的铁芯,及其轴向磁场电机、成型方法和尺寸控制方法。
背景技术
电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置,它的主要作用是产生驱动转矩,作为电器或各种机械的动力源。其中电机的种类可分为径向磁场电机和轴向磁场电机,轴向磁场电机也称为盘式电机,具有体积小、重量轻、轴向尺寸短和功率密度高等特点,可在多数薄型安装场合使用,因此被广泛使用。
电机包括定子和转子,定子是电动静止不动的部分,主要由铁芯,及绕设于铁芯上的线圈组成,对于无轭部的轴向磁场电机铁芯来说,铁芯多为梯形形状,并由多片不同尺寸的冲片100叠合而成,参考图1和图2。当铁芯被置入与转子相对固定时,铁芯的叠片方向与磁场方向相垂直,而轴向磁场电机的磁场方向为沿电机轴向,因此铁芯的叠片方向为沿电机径向,并且冲片100的宽度尺寸沿电机径向并从内之外逐渐增大。
由上述可知,组成铁芯的冲片100尺寸各不相同,因此各冲片100需要通过不同模具进行冲压制造,这样不仅造成模具开发成本的增加,而且由于相邻的两冲片100尺寸相近,因此难以区分,给铁芯的叠合成型过程带来了困难。另外,现有技术还存在先叠合后加工的方法来制造梯形铁芯,该方法是通过多片形状相同的冲片100叠合形成矩形结构,然后利用机加工(如切割)得到梯形铁芯,但由于后切割的方法容易因操作不当,而造成冲片损坏,并直接影响铁芯的成品率以及各铁芯的一致性,而且操作困难,加工时长较长,不利于生产效率。
发明内容
为了解决上述问题,本发明提供了一种可采用同一套模具冲压形成若干个形状相同的叠合片,并根据层数的不同叠合形成不同叠合长度的叠合块,减低开发成本和成型难度,并保证产品一致性的铁芯,以及该铁芯对应的轴向磁场电机、成型方法和尺寸控制方法。
依据本发明的一个目的,本发明提供了一种铁芯,所述铁芯由两个以上的叠合块拼接而成,单个所述叠合块由若干个形状相同的叠合片叠合而成,并形成相应的叠合长度,至少两 个叠合块的叠合长度不同以构成铁芯气隙面外轮廓的非矩形结构。
作为优选的实施例,所述铁芯气隙面外轮廓呈梯形,至少两个所述叠合块沿梯形高度方向排列拼接,并且所述叠合块的叠合长度由梯形上底至下底逐渐减小。
作为优选的实施例,各所述叠合块的叠合长度方向分别与梯形高度相垂直。
作为优选的实施例,各所述叠合块拼接方向的两侧分别设置有第一连接体和第二连接体,相邻的两所述叠合块通过所述第一连接体和所述第二连接体连接。
作为优选的实施例,所述叠合片的相对的两侧分别设置有第一连接部和第二连接部,以在所述叠合片叠合时,若干个所述叠合片的第一连接部相对形成第一连接体,以及若干个所述叠合片的第二连接部相对形成第二连接体。
作为优选的实施例,所述第一连接部呈鸽尾槽形状,所述第二连接部呈鸽尾键形状。
作为优选的实施例,所述叠合片上设置有铆点结构,以使各所述叠合片之间通过所述铆点结构叠压连接。
依据本发明的另一个目的,本发明还提供了一种轴向磁场电机,所述轴向磁场电机包括转子和定子,所述定子包括若干个上述实施例的所述的铁芯,若干个所述铁芯绕所述轴线磁场电机轴向,且呈圆周间隔排列,并且各所述铁芯气隙面齐平其与转子之间形成气隙。依据本发明的另一个目的,本发明还提供了一种铁芯的成型方法,包括以下步骤:
S1,提供至少两组叠合片,各组所述叠合片的形状相同;
S2,将每组所述叠合片叠合形成叠合块,其中每组叠合形成的所述叠合块的叠合长度不同;
S3,将叠合长度不同的叠合块拼接,以形成铁芯气隙面外轮廓的非矩形结构。
作为优选的实施例,所述铁芯气隙面外轮廓呈梯形,进而所述步骤S3包括:将所述叠合块沿梯形高度方向排列拼接,并且所述叠合块的叠合长度由梯形上底至下底逐渐减小。
作为优选的实施例,所述叠合块拼接方向的两侧分别设置有第一连接体和第二连接体,进而所述步骤S3包括:相邻的两所述叠合块通过所述第一连接体和所述第二连接体连接。
作为优选的实施例,所述叠合片上设置有铆点结构,进而所述步骤S2包括:各所述叠合片之间通过所述铆点结构叠压连接。
依据本发明的另一个目的,本发明还提供了一种铁芯的尺寸控制方法,所述铁芯包括多层不同叠合长度的叠合块,多层所述叠合块以叠合长度减小的方式拼接形成铁芯气隙面外轮廓为梯形的铁芯,所述尺寸控制方法包括通过以下方式设计各层所述叠合块:
根据叠合长度关系式,得到各层所述叠合块的叠合长度,其中所述叠合长度关系式为 Y b-2nb1,Y是叠合块的叠合长度,b是铁芯梯形的上底值,n是叠合块的层数值,b1是预留边角值。
作为优选的实施例,多层所述叠合块的叠合长度沿梯形铁芯的高度,并由上底至下底逐渐减小。
作为优选的实施例,所述叠合块包括若干个形状相同的叠合片,若干个所述叠合片沿着所述叠合块拼接的垂直方向叠合,通过调整所述叠合片的数量或厚度,以调节所述叠合块的叠合长度。
与现有技术相比,本技术方案具有以下优点:
组成所有叠合块的叠合片形状一致,因此可采用同一套模具冲压制成,有效降低了模具的开发成本,其中两个所述叠合块中,两者的叠合片形状可相同或不同,由于组成各所述叠合块的叠合片形状相同,因此可通过叠合片外轮廓对齐的方式进行叠合,防止冲压形状各异且尺寸接近,而出现难以区分带来的叠压困难的现象。从而降低了操作难度,并有效提升生产效率。而各层所述叠合块的叠合长度,是通过调整所述叠合片的数量或厚度实现的,使得各层所述叠合块的成型更为快捷便利。在对铁芯尺寸进行设计控制时,只需确定铁芯梯形的上底值,叠合块的层数值和预留边角值,并根据叠合长度关系式就能得到各叠合块的叠合长度。
以下结合附图及实施例进一步说明本发明。
附图说明
图1为现有铁芯的侧视图;
图2为现有铁芯的主视图;
图3为本发明所述铁芯的侧视图;
图4为本发明所述铁芯的主视图;
图5为本发明所述叠合块的结构示意图;
图6为本发明所述叠合片的结构示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明 的精神和范围的其他技术方案。
如图3和图4所示,所述铁芯由两个以上的叠合块200拼接而成,单个所述叠合块200由若干个形状相同的叠合片210叠合而成,并形成相应的叠合长度,至少两个叠合块200的叠合长度不同以构成铁芯气隙面外轮廓的非矩形结构。
各层所述叠合块200均是由若干个形状相同的叠合片210叠合而成,因此可利用同一套模具冲压形成多个叠合片210,再叠合形成所述叠合块200,相对于现有技术中不同模具制造不同冲片来说,有效降低开发成本,并且降低铁芯成型难度,相对于现有技术中先叠合后加工来说,避免后续切割造成铁芯报废的情况,减少加工时长和降低操作难度,还有效保证各铁芯一致性。
其中两个所述叠合块200中,两者的叠合片210形状可相同或不同,但是组成各个所述叠合块200的叠合片210的形状是相同的,这样通过叠合片210外轮廓对齐的方式进行叠合,以形成相应叠合长度的所述叠合块200。若各个所述叠合块200的叠合片210形状均是相同的,这样可通过同一套模具冲压形成组成所述铁芯的所有叠合片210,进一步降低模具的开发成本,以及提升成型效率。
所述叠合片210的数量和厚度等因素决定了所述叠合块200的叠合长度,参考图4,所述叠合块200的叠合长度指的是所述叠合块200从左至右的长度。在两个叠合长度不同的叠合块200中,其叠合片210的数量可相同,此时所述叠合片210的厚度不同。当然可通过调节相同厚度的所述叠合片210数量,来调整所述叠合块200的叠合长度。
参考图3和图4,所述铁芯气隙面外轮廓呈梯形,但不限于此。以梯形为例,其中至少两个所述叠合块200沿梯形高度方向排列拼接,并且所述叠合块200的叠合长度由梯形上底至下底逐渐减小。此时各所述叠合块200的叠合长度方向分别与梯形高度相垂直。进一步地,每层所述叠合块200叠合长度方向两侧沿着所述铁芯梯形的中轴线对称,可见位于所述梯形上底位置的所述叠合块200叠合长度最长,位于所述梯形下底位置的所述叠合块200叠合长度最短,并且所述叠合块200叠合长度方向的两侧分别对应所述铁芯梯形的两个腰部。
更进一步说明,多层所述叠合块200沿铁芯梯形的高度方向拼接,而各层所述叠合块200的叠合片210沿铁芯梯形高度的垂直方向叠合,以形成如图3和图4所示的梯形铁芯。另外各层所述叠合块200的叠合长度方向相平行。
如图3至图6所示,各所述叠合块200拼接方向的两侧分别设置有第一连接体2001和第二连接体2002,相邻的两所述叠合块200通过所述第一连接体2001和所述第二连接体2002连接。例如所述第一连接体2001位于所述叠合块200的上方,所述第二连接体2002位于所 述叠合块200的下方,当相邻的两个所述叠合块200从上至下拼接时,当前所述叠合块200的第一连接体2001,其与位于上一个所述叠合块200的第二连接体2002连接,以完成相邻两所述叠合块200的拼接连接。
如图5所示,所述第一连接体2001可呈鸽尾槽形状,并且所述呈鸽尾槽贯穿所有的所述叠合片210,所述第二连接体2002与所述第一连接体2001的形状相适配,即所述第二连接体2002呈鸽尾键形状。拼接连接时,将上一个所述叠合块200的所述鸽尾键,从当前所述叠合块200叠合长度方向一侧滑入至鸽尾槽内部,以实现两个所述叠合块200的拼接连接。由于采用上述结构,防止拼接连接后的两所述叠合块200出现分离,保证铁芯结构的稳定和可靠性。另外所述第一连接体2001和所述第二连接体2002还可呈其他形状,在此不受限制。
如图5和图6所示,所述叠合片210相对的两侧,其分别设置有第一连接部211和第二连接部212,以在所述叠合片210叠合时,若干个所述叠合片210的第一连接部211相对形成第一连接体2001,以及若干个所述叠合片210的第二连接部212相对形成第二连接体2002。
所述第一连接部211在所述叠合片210所在的位置,其对应所述叠合块200上所述第一连接体2001所在的位置。同理所述第二连接部212在所述叠合片210所在的位置,其对应所述叠合块200上所述第二连接体2002所在的位置。例如所述叠合片210呈长方形,所述第一连接部211和所述第二连接部212分别设置在所述叠合片210宽度方向的两侧,以叠合形成长方形截面的长方体叠合块200。值得注意的是,当所述叠合片210叠合时,其外轮毂齐平,以保证所述第一连接部211和第二连接部212各相应对齐。
参考图3和图6,所述第一连接部211和所述第二连接部212位于所述叠合片210长度尺寸的中间位置,这样无论是所述第一连接部211,还是所述第二连接部212,其分别至叠合片210长度尺寸两侧的距离一致,而所述铁芯厚度方向的两侧对应所述叠合片210长度尺寸的两侧,可见所述铁芯厚度方向的两侧齐平,当所述铁芯被配置于所述轴向磁场电机时,所述铁芯厚度方向与所述轴向电机的轴向对齐,从而保证轴向磁场电机轴向尺寸小的优势。其中所述铁芯厚度方向的一侧形成铁芯气隙面,并与转子相对,以使铁芯气隙面与转子之间形成气隙。
继续参考图6,所述第一连接部211呈鸽尾槽形状,以对应形成鸽尾槽形状的第一连接体2001。所述第二连接部212呈鸽尾键形状,以对应形成鸽尾键的第二连接体2002。
如图5和图6所示,所述叠合片210上设置有铆点结构213,以使各所述叠合片210之间通过所述铆点结构213叠压连接。所述铆点结构213可位于所述叠合片210中心位置,即位于所述第一连接部211和所述第二连接部212中间。
具体地,所述铆点结构213可以为圆孔,但不限于此,例如所述铆点结构213包括相对的凸面部和凹面部2131,所述凸面部和所述凹面部2131分设于所述叠合片210叠合方向的两侧,相邻的两所述叠合片210通过所述凸面部和所述凹面部2131配合以进行叠压。
综上所述,各层所述叠合块200均是由若干个形状相同的叠合片210叠合而成,因此可利用同一套模具冲压形成多个叠合片210,再叠合形成所述叠合块200,相对于现有技术中不同模具制造不同冲片来说,有效降低开发成本,并且降低铁芯成型难度,相对于现有技术中先叠合后加工来说,避免后续切割造成铁芯报废的情况,减少加工时长和降低操作难度,还有效保证各铁芯一致性。
本发明还提供了一种轴向磁场电机,所述轴向磁场电机包括上述实施例的铁芯。由于所述轴向磁场电机采用了上述实施例的铁芯,因此所述轴向磁场电机的有益效果可参考上述实施例的铁芯。
其中所述轴向磁场电机包括相对固定的定子和转子,所述定子包括若干个上述实施例的所述的铁芯,若干个所述铁芯绕所述轴线磁场电机轴向,且呈圆周间隔排列,并且各所述铁芯气隙面齐平且与转子之间形成气隙。
具体地,每个所述铁芯的叠合块200沿着轴向磁场电机的径向排列,并且各所述铁芯气隙面分别与所述轴向磁场电机轴向相垂直,参考图3。
如图3至图6所示,本发明还提供了一种铁芯的成型方法,包括以下步骤:
S1,提供至少两组叠合片210,各组所述叠合片210的形状相同;
S2,将每组所述叠合片210叠合形成叠合块200,其中每组叠合形成的所述叠合块200的叠合长度不同;
S3,将叠合长度不同的叠合块200拼接,以形成铁芯气隙面外轮廓的非矩形结构。
在所述步骤S1中,每组的所述叠合片210的数量为多个,且形状相同,因此可采用同一套模具冲压制成,例如对条状的硅钢片进行连续冲压,以获得若干个形状相同的叠合片210,有效降低了模具的开发成本,并且防止冲压形状各异且尺寸接近,而出现难以区分带来的叠压困难的现象,参考图5和图6。
其中两个所述叠合块200中,两者的叠合片210形状可相同或不同,但是构成各叠合块200的叠合片210的形状是相同。
在所述步骤S2中,组成所述铁芯的各层所述叠合块200,其叠合长度各不相同,而各层 所述的叠合块200是由叠合片210的数量和厚度等因素决定,例如当叠合片210数量相同时,可调节所述叠合片210厚度来获得不同叠合长度的叠合块200。当叠合片210厚度相同时,可调节所述叠合片210数量来获得不同叠合长度的叠合块200。可见每组叠合片210的数量可相同或不同。
由于组成各所述叠合块200的叠合片210形状相同,因此可通过叠合片210外轮廓对齐的方式进行叠合,降低了操作难度,并有效提升生产效率。而各层所述叠合块200的叠合长度,是通过调整所述叠合片210的数量或厚度实现的,使得各层所述叠合块200的成型更为快捷便利。
所述叠合片210上设置有铆点结构213,进而所述步骤S2包括:各所述叠合片210之间通过所述铆点结构213叠压连接,参考图5和图6。
在所述步骤S3中,所述铁芯气隙面外轮廓可呈梯形,但不限于此。以梯形为例,所述步骤S3包括:将所述叠合块200沿梯形高度方向排列拼接,并且所述叠合块200的叠合长度由梯形上底至下底逐渐减小,各所述叠合块200的叠合长度方向分别与梯形高度相垂直,以及各层所述叠合块200长度方向的两侧沿铁芯梯形的中轴线对称,进而形成如图3和图4所示铁芯气隙面外轮廓为梯形铁芯。
参考图3至图5,所述叠合块200拼接方向的两侧分别设置有第一连接体2001和第二连接体2002,进而所述步骤S3包括:相邻的两所述叠合块200通过所述第一连接体2001和所述第二连接体2002连接。
所述铆点结构213、第一连接体2001和第二连接体2002的内容可参考上述实施例,在此不作赘述。
综上所述,组成所有叠合块200的叠合片210形状一致,因此可采用同一套模具冲压制成,有效降低了模具的开发成本,由于组成各所述叠合块200的叠合片210形状相同,因此可通过叠合片210外轮廓对齐的方式进行叠合,防止冲压形状各异且尺寸接近,而出现难以区分带来的叠压困难的现象。从而降低了操作难度,并有效提升生产效率。而各层所述叠合块200的叠合长度,是通过调整所述叠合片210的数量实现的,使得各层所述叠合块200的成型更为快捷便利。
如图3和图4所示,本发明还提供了一种铁芯的尺寸控制方法,所述铁芯包括多层不同叠合长度的叠合块200,多层所述叠合块200以叠合长度减小的方式拼接形成梯形铁芯,所述尺寸控制方法包括通过以下方式设计各层所述叠合块:
根据叠合长度关系式,得到各层所述叠合块200的叠合长度,其中所述叠合长度关系式为Y b-2nb1,Y是叠合块的叠合长度,b是铁芯梯形的上底值,n是叠合块的层数值,b1是预留边角值。
多层所述叠合块200沿所述铁芯梯形的高度方向排列,并且多层所述叠合块200的叠合长度从所述铁芯梯形的上底至下底逐渐减小,以及各层所述叠合块200的叠合长度两侧分别沿所述铁芯中轴线对称,以使铁芯形成如图4所示的倒置梯形,并且各层所述叠合块200的叠合长度方向相平行。其中位于上底所对应的叠合块200,其叠合长度最长,并且层数值n为1,紧跟着的叠合块200的叠合长度次之,并且层数值n为2,以此类推。
另外,各层所述叠合块200叠合长度方向的两侧分别设置预留边角,其中预留边角值指的是相邻两层所述叠合块200之间,其位于所述叠合长度方向同一侧之间的间隙尺寸,参考图4,即预留边角值指的是相邻两层所述叠合块200之间的叠合长度差值的二分之一倍。并且各层所述叠合块200所对应的预留边角值相等。
进一步地,铁芯梯形的高度记为h,而每层所述叠合块200沿铁芯梯形的高度方向上的尺寸相一致,并其记为叠合块高度L,参考图4,可见L h/n,n是叠合块的层数值,例如铁芯是由8层叠合块拼接而成,此时n为8。
更进一步地,各层所述叠合块200的高度L不可过于太短,避免造成成型及叠片难度较大。而且也不可过于太长,避免预留边角值b1过大,造成成型后铁芯梯形面积与所需面积相差过大,而影响使用。其中预留边角值b1应满足以下公式:
Figure PCTCN2022114711-appb-000001
其中,b是铁芯梯形的上底值,a是铁芯梯形的下底值,h是铁芯梯形的高度,b1是预留边角值,L是叠合块的高度。
具体说明,参考图4,铁芯梯形的两个腰部分别对应各叠合块200叠合长度方向的两侧,由于各层所述叠合块200所对应的预留边角值相等,因此位于各叠合块200的叠合长度方向的同一侧中,各叠合块200的底角部C位于同一直线上,并且所述底角部C的连线构成铁芯梯形的腰部。
其中位于铁芯梯形上底所在的叠合块,其高度方向与铁芯梯形腰部之间存在夹角A,其中
Figure PCTCN2022114711-appb-000002
而所述铁芯梯形的高度方向与铁芯腰部之间存在夹角B,其中
Figure PCTCN2022114711-appb-000003
而并且所述叠合块的高度方向和所述铁芯梯形的高度方向平行,因此夹角A和夹角B的角度一致,即获得公式:
Figure PCTCN2022114711-appb-000004
根据上述公式可得出
Figure PCTCN2022114711-appb-000005
并在该公式中带入L=h/n,则可得出
Figure PCTCN2022114711-appb-000006
根据上述公式进一步得出a=b-2nb1。其中铁芯梯形的下底值a与铁芯梯形的第n层的叠合块200的叠合长度Y相等,并且:
铁芯梯形第1层叠合块的叠合长度为b-2b1;
铁芯梯形第2层叠合块的叠合长度为b-4b1;
铁芯梯形第3层叠合块的叠合长度为b-6b1;
以此类推,铁芯梯形第n层叠合块的叠合长度为b-2nb1,基于此,可得到所述叠合长度关系式Y=b-2Xb1。
如图3至图6所示,所述叠合块200包括若干个形状相同的叠合片210,若干个所述叠合片210沿着所述叠合块200拼接的垂直方向叠合,通过调整所述叠合片210的数量或厚度,以调节所述叠合块200的叠合长度。
所述叠合片210在其厚度方向上叠合形成叠合块200,这样叠合片210厚度之和就等于所述叠合块200的叠合长度。各所述叠合片210的厚度可一致,这样在确定铁芯梯形的上底值b,叠合块的层数值n和预留边角值b1,并根据叠合长度关系式计算出该层叠合块200的叠合长度后,并将所述叠合长度除以所述叠合片210的厚度,就可得到相应的所述叠合片210的叠合数量。使得各所述叠合块200的尺寸控制及成型更为便利,且快捷。
综上所述,在对铁芯尺寸进行设计控制时,只需确定铁芯梯形的上底值b,叠合块的层数值n和预留边角值b1,并根据叠合长度关系式就能得到各叠合块200的叠合长度,同时保证铁芯的正常使用。
以上所述的实施例仅用于说明本发明的技术思想及特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,不能仅以本实施例来限定本发明的专利采用范围,即凡依本发明所揭示的精神所作的同等变化或修饰,仍落在本发明的专利范围内。

Claims (15)

  1. 一种铁芯,其特征在于,所述铁芯由两个以上的叠合块(200)拼接而成,单个所述叠合块(200)由若干个形状相同的叠合片(210)叠合而成,并形成相应的叠合长度,至少两个叠合块(200)的叠合长度不同以构成铁芯气隙面外轮廓的非矩形结构。
  2. 如权利要求1所述的铁芯,其特征在于,所述铁芯气隙面外轮廓呈梯形,至少两个所述叠合块(200)沿梯形高度方向排列拼接,并且所述叠合块(200)的叠合长度由梯形上底至下底逐渐减小。
  3. 如权利要求2所述的铁芯,其特征在于,各所述叠合块(200)的叠合长度方向分别与梯形高度相垂直。
  4. 如权利要求1所述的铁芯,其特征在于,各所述叠合块(200)拼接方向的两侧分别设置有第一连接体(2001)和第二连接体(2002),相邻的两所述叠合块(200)通过所述第一连接体(2001)和所述第二连接体(2002)连接。
  5. 如权利要求4所述的铁芯,其特征在于,所述叠合片(210)的相对的两侧分别设置有第一连接部(211)和第二连接部(212),以在所述叠合片(210)叠合时,若干个所述叠合片(210)的第一连接部(211)相对形成第一连接体(2001),以及若干个所述叠合片(210)的第二连接部(212)相对形成第二连接体(2002)。
  6. 如权利要求5所述的铁芯,其特征在于,所述第一连接部(211)呈鸽尾槽形状,所述第二连接部(212)呈鸽尾键形状。
  7. 如权利要求1所述的铁芯,其特征在于,所述叠合片(210)上设置有铆点结构(213),以使各所述叠合片(210)之间通过所述铆点结构(213)叠压连接。
  8. 一种轴向磁场电机,其特征在于,所述轴向磁场电机包括转子和定子,所述定子包括若干个如权利要求1至7任一项所述的铁芯,若干个所述铁芯绕所述轴线磁场电机轴向,且呈圆周间隔排列,并且各所述铁芯气隙面齐平其与转子之间形成气隙。
  9. 一种铁芯的成型方法,其特征在于,包括以下步骤:
    S1,提供至少两组叠合片(210),各组所述叠合片(210)的形状相同;
    S2,将每组所述叠合片(210)叠合形成叠合块(200),其中每组叠合形成的所述叠合块(200)的叠合长度不同;
    S3,将叠合长度不同的叠合块(200)拼接,以形成铁芯气隙面外轮廓的非矩形结构。
  10. 如权利要求9所述的铁芯的成型方法,其特征在于,所述铁芯气隙面外轮廓呈梯形,进而所述步骤S3包括:将所述叠合块(200)沿梯形高度方向排列拼接,并且所述叠合块(200) 的叠合长度由梯形上底至下底逐渐减小。
  11. 如权利要求9所述的铁芯的成型方法,其特征在于,所述叠合块(200)拼接方向的两侧分别设置有第一连接体(2001)和第二连接体(2002),进而所述步骤S3包括:相邻的两所述叠合块(200)通过所述第一连接体(2001)和所述第二连接体(2002)连接。
  12. 如权利要求7所述的铁芯的成型方法,其特征在于,所述叠合片(210)上设置有铆点结构(213),进而所述步骤S2包括:各所述叠合片(210)之间通过所述铆点结构(213)叠压连接。
  13. 一种铁芯的尺寸控制方法,其特征在于,所述铁芯包括多层不同叠合长度的叠合块(200),多层所述叠合块(200)以叠合长度减小的方式拼接形成铁芯气隙面外轮廓为梯形的铁芯,所述尺寸控制方法包括通过以下方式设计各层所述叠合块:
    根据叠合长度关系式,得到各层所述叠合块(200)的叠合长度,其中所述叠合长度关系式为Y=b-2nb1,Y是叠合块的叠合长度,b是铁芯梯形的上底值,n是叠合块的层数值,b1是预留边角值。
  14. 如权利要求13所述的铁芯的尺寸控制方法,其特征在于,多层所述叠合块(200)的叠合长度沿梯形铁芯的高度,并由上底至下底逐渐减小。
  15. 如权利要求13所述的铁芯的尺寸控制方法,其特征在于,所述叠合块(200)包括若干个形状相同的叠合片(210),若干个所述叠合片(210)沿着所述叠合块(200)拼接的垂直方向叠合,通过调整所述叠合片(210)的数量或厚度,以调节所述叠合块(200)的叠合长度。
PCT/CN2022/114711 2022-04-28 2022-08-25 一种铁芯及其轴向磁场电机、成型方法和尺寸控制方法 WO2023206878A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210463841.0 2022-04-28
CN202210463841.0A CN114726116A (zh) 2022-04-28 2022-04-28 一种铁芯及其轴向磁场电机、成型方法和尺寸控制方法

Publications (1)

Publication Number Publication Date
WO2023206878A1 true WO2023206878A1 (zh) 2023-11-02

Family

ID=82244924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114711 WO2023206878A1 (zh) 2022-04-28 2022-08-25 一种铁芯及其轴向磁场电机、成型方法和尺寸控制方法

Country Status (2)

Country Link
CN (1) CN114726116A (zh)
WO (1) WO2023206878A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114726116A (zh) * 2022-04-28 2022-07-08 浙江盘毂动力科技有限公司 一种铁芯及其轴向磁场电机、成型方法和尺寸控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348552A (ja) * 2004-06-04 2005-12-15 Nissan Motor Co Ltd アキシャルギャップ型回転電機のステータ構造
CN103872867A (zh) * 2012-12-11 2014-06-18 株式会社电装 轴向间隙型旋转电机的定子及其制造方法、该电机及车轮
JP2017060281A (ja) * 2015-09-16 2017-03-23 マツダ株式会社 ステータ、アキシャルギャップ型回転電機、及びステータの製造方法
CN108736597A (zh) * 2018-08-31 2018-11-02 核心驱动科技(金华)有限公司 一种分段铁芯以及盘式电机
CN114726116A (zh) * 2022-04-28 2022-07-08 浙江盘毂动力科技有限公司 一种铁芯及其轴向磁场电机、成型方法和尺寸控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348552A (ja) * 2004-06-04 2005-12-15 Nissan Motor Co Ltd アキシャルギャップ型回転電機のステータ構造
CN103872867A (zh) * 2012-12-11 2014-06-18 株式会社电装 轴向间隙型旋转电机的定子及其制造方法、该电机及车轮
JP2017060281A (ja) * 2015-09-16 2017-03-23 マツダ株式会社 ステータ、アキシャルギャップ型回転電機、及びステータの製造方法
CN108736597A (zh) * 2018-08-31 2018-11-02 核心驱动科技(金华)有限公司 一种分段铁芯以及盘式电机
CN114726116A (zh) * 2022-04-28 2022-07-08 浙江盘毂动力科技有限公司 一种铁芯及其轴向磁场电机、成型方法和尺寸控制方法

Also Published As

Publication number Publication date
CN114726116A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023206878A1 (zh) 一种铁芯及其轴向磁场电机、成型方法和尺寸控制方法
KR20160126344A (ko) 변압기 철심 및 적층 방법
WO2013037305A1 (zh) 转子以及包括该转子的电机、电梯曳引机或伺服传动机构
CN112821608A (zh) 转子冲片、转子铁芯、电机转子及组装方法、电机
CN103812236A (zh) 定子及其制造方法和具有该定子的电动机、压缩机
JP5873420B2 (ja) ロータコアの製造方法
CN103475170B (zh) 一种铁芯的制造方法、铁芯结构及电机
CN206471938U (zh) 一种分段斜极转子及其电机
JP4366103B2 (ja) 積層鉄心の製造方法
CN203456956U (zh) 励磁定子叠片及励磁定子铁心
TW201944702A (zh) 疊片鐵芯及其製造方法
CN202940649U (zh) 定子和具有该定子的电动机、压缩机
CN205489867U (zh) 轮辐式永磁自启动电机转子
JP5885488B2 (ja) 積層鉄心及びその製造方法
CN208923924U (zh) 盘式电机及定子铁芯
CN202565041U (zh) 卷绕自扣轻微焊接的定转子铁芯结构
CN218733747U (zh) 一种用于高致密叠铆定转子的冲压模具结构
CN212969191U (zh) 电机定子铁芯、定子绕组模块、电机定子和轴向磁通电机
CN213151735U (zh) 一种新型转子铁芯结构
CN218920084U (zh) 一种无铆点的转子铁芯层叠结构
CN205407430U (zh) 一种差补式电机铁心
WO2023053479A1 (ja) リアクトル
JP7470668B2 (ja) リアクトル用電磁鋼板
CN113746234B (zh) 一种取向硅钢制作的电机凸极转子
CN203445704U (zh) 一种铁芯结构及电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939704

Country of ref document: EP

Kind code of ref document: A1