WO2023206440A1 - 触控结构、显示面板和触控显示装置 - Google Patents

触控结构、显示面板和触控显示装置 Download PDF

Info

Publication number
WO2023206440A1
WO2023206440A1 PCT/CN2022/090499 CN2022090499W WO2023206440A1 WO 2023206440 A1 WO2023206440 A1 WO 2023206440A1 CN 2022090499 W CN2022090499 W CN 2022090499W WO 2023206440 A1 WO2023206440 A1 WO 2023206440A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
sub
opening
metal conductor
opening unit
Prior art date
Application number
PCT/CN2022/090499
Other languages
English (en)
French (fr)
Inventor
刘丽艳
王英涛
王新星
柳在健
孙雪菲
彭宽军
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/090499 priority Critical patent/WO2023206440A1/zh
Priority to CN202280001037.9A priority patent/CN117321552A/zh
Publication of WO2023206440A1 publication Critical patent/WO2023206440A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a touch structure, a display panel and a touch display device.
  • touch display panels include, for example, single-piece glass (One Glass Solution, OGS) display panels, surface-embedded (On-Cell) display panels, and embedded (In-Cell) display panels.
  • OGS One Glass Solution
  • On-Cell surface-embedded
  • In-Cell embedded
  • the present disclosure provides a touch structure, a display panel and a touch display device.
  • the touch structure includes:
  • Touch structure including:
  • a metal grid including a plurality of metal conductors
  • the metal grid has a plurality of opening units, each of the opening units includes at least three openings, each of the openings is surrounded by a plurality of metal wires, and a plurality of metal wires surround each of the openings.
  • the wires have at least three different extension directions; at least one of the metal wires used to divide the opening in the opening unit has different extension directions from the metal wires surrounding the outer boundary of the opening unit.
  • the number of metal conductors surrounding the outer boundary of the opening unit is greater than the number of metal conductors inside the opening unit.
  • the metal conductors surrounding the outer boundary of the opening unit include at least a pair of metal conductors extending in the same direction.
  • the outer boundary of the opening unit is a parallelepiped.
  • the metal wires surrounding the outer boundary of the opening unit include: two first metal wires arranged oppositely and in parallel, two second metal wires arranged oppositely and parallelly, and two second metal wires arranged oppositely and parallelly.
  • the length of the third metal conductor is greater than the length of the first metal conductor, and the length of the first metal conductor is greater than the length of the second metal conductor.
  • the second metal conductor is perpendicular to the connected third metal conductor.
  • the first included angle formed by the first metal conductor and the connected second metal conductor is the same as the first angle formed by the first metal conductor and the connected second metal conductor.
  • the second included angles formed by the three metal conductors are the same.
  • a first included angle formed by the first metal wire and the connected second metal wire ranges from 120° to 150°.
  • the opening unit includes: two fourth metal wires extending from the midpoint of the first metal wire and along a direction perpendicular to the first metal wire, and along a direction parallel to the first metal wire.
  • the second metal conductor extends in one direction and connects two fifth metal conductors respectively at the other end of the fourth metal conductor and the midpoint of the third metal conductor.
  • the length of the fourth metal conductor is half the length of the first metal conductor; the length of the fifth metal conductor is equal to the length of the second metal conductor. .
  • the outer boundary of the opening unit is cross-shaped.
  • the opening unit includes: two first outer protrusions that are opposite and extend in the first direction and extend in the remote direction, and two opposite and extend in the second direction in the remote direction.
  • the second outer convex portion; the first direction is perpendicular to the second direction.
  • the outer boundary of the first outer protrusion includes: two sixth metal conductors extending along the first direction, and connecting the two sixth metal conductors along the a seventh metal wire extending in the second direction;
  • the outer boundary of the second outer protrusion includes: two eighth metal conductors extending along the second direction, and a ninth metal conductor connecting the two eighth metal conductors and extending along the first direction. ;
  • the sixth metal conductor of the first protruding portion intersects with the eighth metal conductor of the adjacent second protruding portion at the first node.
  • the length of the sixth metal conductor is greater than the length of the seventh metal conductor, and the length of the eighth metal conductor is greater than the length of the ninth metal conductor.
  • the opening unit includes: a tenth metal wire connecting two non-adjacent first nodes adjacent to the first protrusion and the second protrusion. , and an eleventh metal conductor connecting the midpoint of the tenth metal conductor to a first node on one side of the tenth metal conductor.
  • the opening unit includes: a first sub-opening unit and a second sub-opening unit.
  • the first sub-opening unit and the second sub-opening unit have a mirror-image symmetrical structure.
  • the first sub-opening unit and the two second sub-opening units form a repeating unit;
  • two of the first sub-opening units are connected by multiplexing an opening to form a first assembly C1; two of the second sub-opening units are connected by multiplexing an opening to form a second assembly. ;
  • the first assembly forms a repeating unit Z by multiplexing two adjacent metal conductors at the outer boundary with the metal conductors of two different second sub-opening units.
  • the outer boundary of the opening unit is a rectangle.
  • the metal wires surrounding the outer boundary of the opening unit include: two twelfth metal wires extending in the third direction and arranged oppositely; Two thirteenth metal conductors, one of the thirteenth metal conductors is connected to one end of the two twelfth metal conductors respectively, and the other thirteenth metal conductor is connected to the two twelfth metal conductors respectively the other end of;
  • the opening unit includes: a fourteenth metal conductor extending inwardly from a point on the thirteenth metal conductor, and a fifteenth metal conductor connecting two opposite twelfth metal conductors.
  • the tenth metal conductor The other ends of the four metal conductors are connected to a point on the fifteenth metal conductor;
  • At least one of the fourteenth metal conductor and the fifteenth metal conductor is neither parallel to the third direction nor parallel to the fourth direction.
  • the fifteenth metal conductor is a straight line segment.
  • the fifteenth metal conductor includes two sub-metal conductors extending in different directions.
  • an included angle between one of the sub-metal conductors and the fourth direction is a third included angle
  • an included angle between the other sub-metal conductor and the fourth direction is a fourth included angle.
  • the included angle, the third included angle is not equal to the fourth included angle.
  • the third included angle ranges from 10° to 45°
  • the fourth included angle ranges from 10° to 45°.
  • An embodiment of the present disclosure also provides a display panel, which includes: a substrate, a display functional layer located on one side of the substrate, and a display panel located on the side of the display functional layer facing away from the substrate.
  • the touch control structure is provided; wherein the display function layer includes a plurality of sub-pixels, and the front projection of at least one of the openings on the substrate surrounds at least one of the sub-pixels on the front projection of the substrate.
  • the sub-pixels correspond to the opening one-to-one, and the orthographic projection of at least part of the sub-pixels on the substrate is similar to the orthographic projection of the opening on the substrate.
  • the orthographic projection of part of the sub-pixels on the substrate exceeds the orthographic projection of the opening on the substrate.
  • the sub-pixels include red sub-pixels, green sub-pixels and blue sub-pixels;
  • two of the first sub-aperture units are connected by multiplexing the opening where the green sub-pixel is located; and the two second sub-aperture units are connected by multiplexing where the green sub-pixel is located. of the opening connection.
  • the blue sub-pixel includes a first blue sub-pixel and a second blue sub-pixel.
  • the orthographic projection of the first blue sub-pixel on the substrate and the orthographic projection of the second blue sub-pixel on the substrate are respectively located on the adjacent adjacent ones.
  • the first convex portion is within the orthographic projection of the substrate and the second convex portion is within the orthographic projection of the substrate.
  • the first blue sub-pixel and the second blue sub-pixel are integrally connected.
  • the first blue sub-pixel and the second blue sub-pixel are separate structures.
  • the orthographic projection of the first blue sub-pixel on the substrate and the orthographic projection of the second blue sub-pixel on the substrate are respectively located at two of the first blue sub-pixels.
  • An outer convex portion is in the orthographic projection of the substrate.
  • An embodiment of the present disclosure also provides a touch display device, which includes the display panel provided by the embodiment of the present disclosure.
  • FIG. 1A is a schematic diagram of a touch structure provided by an embodiment of the present disclosure
  • Figure 1B is an enlarged schematic view of one of the opening units in Figure 1A;
  • Figure 1C is an enlarged schematic view of another opening unit in Figure 1A;
  • Figure 1D is an enlarged schematic diagram of one of the repeating units in Figure 1A;
  • Figure 1E is a schematic diagram of the touch structure when sub-pixels are set in Figure 1A;
  • Figure 1F is an enlarged schematic view of one of the opening units in Figure 1E;
  • Figure 1G is an enlarged schematic view of another opening unit in Figure 1E;
  • Figure 1H is an enlarged schematic diagram of one of the repeating units in Figure 1E;
  • FIG. 1I is an enlarged schematic diagram of another opening unit when sub-pixels are provided in the touch structure of FIG. 1A;
  • FIG. 2A is a second schematic diagram of the touch structure provided by an embodiment of the present disclosure.
  • Figure 2B is an enlarged schematic view of one of the opening units in Figure 2A;
  • Figure 2C is an enlarged schematic view of another opening unit in Figure 2A;
  • Figure 2D is an enlarged schematic diagram of one of the repeating units in Figure 2A;
  • Figure 2E is a schematic diagram of the touch structure when sub-pixels are set in Figure 2A;
  • Figure 2F is an enlarged schematic view of one of the opening units in Figure 2E;
  • Figure 2G is an enlarged schematic diagram of one of the repeating units in Figure 2E;
  • Figure 2H is an enlarged schematic diagram of another opening unit when sub-pixels are provided in the touch structure of Figure 2A;
  • Figure 2I is an enlarged schematic diagram of another repeating unit when sub-pixels are provided in the touch structure of Figure 2A;
  • Figure 2J is an enlarged schematic diagram of another opening unit when sub-pixels are provided in the touch structure of Figure 2A;
  • Figure 2K is an enlarged schematic diagram of another repeating unit when sub-pixels are provided in the touch structure of Figure 2A;
  • FIG. 3A is a third schematic diagram of the touch structure provided by an embodiment of the present disclosure.
  • Figure 3B is an enlarged schematic view of one of the opening units in Figure 3A;
  • Figure 3C is an enlarged schematic view of another opening unit in Figure 3A;
  • Figure 3D is an enlarged schematic view of another opening unit in Figure 3A;
  • Figure 3E is a schematic diagram of the touch structure when sub-pixels are set in Figure 3A;
  • Figure 3F is an enlarged schematic view of one of the opening units in Figure 3E;
  • Figure 3G is an enlarged schematic view of another opening unit in Figure 3E;
  • Figure 3H is an enlarged schematic view of another opening unit in Figure 3E;
  • Figure 4 is a reflection light path diagram of a symmetrical opening
  • Figure 5 is a schematic diagram of the boundary of the touch electrode
  • Figure 6 is a top view of a touch electrode according to some embodiments.
  • Figure 7 is a top view of drive electrodes and sensing electrodes according to some embodiments.
  • Figure 8 is a cross-sectional view of the touch structure along line AA' in Figure 7 according to some embodiments.
  • Figure 9 is a cross-sectional view of the touch structure along line BB’ in Figure 7 according to some embodiments.
  • Figure 10 is a partial cross-sectional view of a display panel according to some embodiments.
  • Figure 11 is a cross-sectional view of a display panel according to some embodiments.
  • Figure 12 is a cross-sectional view of a touch display device according to some embodiments.
  • Figure 13 is another cross-sectional view of a touch display device according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • AMOLED Active Matrix Organic Light-Emitting Diode, active matrix organic light-emitting diode
  • the technology of making touch structures directly on the packaging layer of OLED (Organic Light-Emitting Diode) display panels can produce lighter and thinner touch panels, and this technology can be applied to folding and curling in OLED display devices.
  • OLED Organic Light-Emitting Diode
  • touch electrodes in the touch structure use metal grids with the advantages of small resistance, small thickness, and fast response speed.
  • touch structures produced directly on the packaging layer of the display panel include two types, flexible multi-layer surface covering type (Flexible Metal Layer On Cell, FMLOC) and flexible single layer covering surface type (Flexible Single Layer On Cell). , FSLOC), among which, FSLOC is more convenient for product thinning than FMLOC.
  • Figure 4 is a schematic cross-sectional view of metal wires forming a metal grid.
  • the light irradiating the surface 01 of the metal wires will be blocked by the polarizer attached to the display panel and cannot enter the human body.
  • the light that hits the side wall 02 of the metal wire cannot be blocked by the polarizer and will enter the human eye. Then there will be a difference in light between the area with the metal wire and the area without the metal wire, causing the human eye to see bright and dark patterns.
  • some embodiments of the present disclosure provide a display panel 900, including a display substrate 200, an encapsulation layer 250 located on the light-emitting side of the display substrate 200, and an encapsulation layer 250 located on the side away from the display substrate 200. of touch structures 1000.
  • the display panel 900 is applied to a touch display device, as shown in FIGS. 12 and 13 .
  • the touch display device may be an electroluminescent display device or a photoluminescent display device.
  • the electroluminescent display device may be an organic electroluminescent display device (Organic Light-Emitting Diode, OLED for short) or a quantum dot electroluminescent display device (Quantum Dot Light Emitting Diodes, referred to as QLED) or liquid crystal display devices (Liquid Crystal Display, LCD) or electrophoretic displays (Electrophoretic Displays, EPD, EPD).
  • OLED Organic Light-Emitting Diode
  • QLED Quantum Dot Light Emitting Diodes
  • LCD Liquid Crystal Display
  • EPD Electrophoretic Displays
  • the touch display device is a photoluminescence display device
  • the photoluminescence display device may be a quantum dot photoluminescence display device.
  • an OLED display device is used for description, but it should be considered that it is not limited to the OLED display device.
  • the main structure of the touch display device includes a display panel 900, a touch structure 1000, an anti-reflective structure such as a polarizer 500, a first optical glue (Optically Clear) arranged in sequence.
  • the anti-reflective structure may include color filters and black matrices.
  • the location of the anti-reflective structure is not limited to the above description, and may be located between the packaging layer and the display substrate, or at other feasible locations.
  • the display panel 900 includes a display substrate 200 and an encapsulation layer 250 for encapsulating the display substrate 200 .
  • the encapsulation layer 250 may be an encapsulation film or an encapsulation substrate.
  • the touch structure 1000 of the display panel 900 is directly disposed on the encapsulation layer 250 , so that the display substrate 200 can be regarded as the base substrate of the touch structure 1000 .
  • This structure is beneficial to Realizing thinner and lighter display devices.
  • the encapsulation layer 250 may include a first inorganic encapsulation layer, a first organic encapsulation layer and a second inorganic encapsulation layer, or may be a stacked structure of at least one organic layer and at least one inorganic layer.
  • an anti-reflective structure may be formed in the encapsulation layer 250 to play an anti-reflective role and further reduce the thickness of the display device.
  • the touch structure 1000 of the display panel 900 is disposed on the base substrate 910 , and the base substrate 910 is attached to the packaging layer 250 through the second optical adhesive layer 920 .
  • the material of the base substrate 910 may be, for example, polyethylene terephthalate (PET), polyimide (PI), cycloolefin polymer (Cyclo Olefin Polymer, COP), etc.
  • each sub-pixel 211 of the above-mentioned display substrate 200 includes a light-emitting device and a driving circuit provided on the substrate 210 .
  • the driving circuit includes a plurality of thin film transistors 270 .
  • the light-emitting device includes an anode 222, a light-emitting layer 223, and a cathode 224.
  • the anode 222 is electrically connected to the drain of the thin film transistor 270 serving as a driving transistor among the plurality of thin film transistors 270 of the driving circuit.
  • the electrical connection is also made through a transfer electrode.
  • the transfer electrode is located on the film where the drain electrode is located. between the film layer and the anode.
  • the display substrate 200 also includes a pixel defining layer 225.
  • the pixel defining layer 225 includes a plurality of light exit ports 225A, and one light emitting device is provided corresponding to one light exit port 225A.
  • the display function layer 220 includes a light emitting layer 223 .
  • the display function layer 220 in addition to the light-emitting layer 223, the display function layer 220 also includes an electron transporting layer (Election Transporting Layer, ETL for short), an electron injection layer (Election Injection Layer, EIL for short), a hole transport layer (Hole One or more layers in the Transporting Layer (HTL for short) and the Hole Injection Layer (HIL for short).
  • ETL electron transporting layer
  • EIL electron injection layer
  • HTL Hole Injection Layer
  • HIL Hole Injection Layer
  • the display substrate 200 further includes at least one flat layer 230 disposed between the thin film transistor 270 and the anode 222 .
  • at least one passivation layer is further included on the planarization layer 230 .
  • the touch display device may be a top-emission display device.
  • the anode 222 close to the substrate 210 is opaque, and the cathode 224 far away from the substrate 210 is transparent or Semi-transparent; the touch display device can also be a bottom-emission display device.
  • the anode 222 close to the substrate 210 is transparent or translucent, and the cathode 224 far away from the substrate 210 is opaque; the touch display device can also be a bottom-emission display device. It is a double-sided light-emitting display device.
  • the anode 222 close to the substrate 210 and the cathode 224 far away from the substrate 210 are both transparent or translucent.
  • an embodiment of the present disclosure provides a touch structure 1000, including:
  • the metal grid 100 includes a plurality of metal wires 110;
  • the metal grid 100 has a plurality of opening units 120, each opening unit 120 includes at least three openings 100A, each opening 100A is surrounded by a plurality of metal conductors 110, and the plurality of metal conductors surrounding each opening 100A 110 has at least three different extension directions; at least one metal wire 110 used to divide the opening in the opening unit 120 has different extension directions from the metal wires 100 surrounding the outer boundary of the opening unit 120 .
  • each opening unit 120 includes at least three openings 100A, each opening 100A is surrounded by a plurality of metal conductors 110, and the plurality of metal conductors surrounding each opening 100A 110 has at least three different extension directions; at least one metal wire 110 used to divide the opening in the opening unit 120 has different extension directions from the metal wires 100 surrounding the outer boundary of the opening unit 120 .
  • the extension direction of each metal wire 100 surrounding the outer boundary of the opening unit 120 is horizontal or oblique, and is used to divide the multiple metal wires of the opening 100A in the opening unit 120 110 includes vertical metal wires 110, and the vertical metal wires 110A extend in different directions from the metal wires 100 that surround the outer boundary of the opening unit 120; for another example, as shown in FIG. 2B or 2C, the opening unit is surrounded by The extension direction of each metal wire 100 at the outer boundary of 120 is oblique.
  • the plurality of metal wires 110 used to divide the opening 100A in the opening unit 120 include vertical metal wires 110.
  • the vertical metal wires 110A and the surrounding openings are The extension directions of the metal wires 100 at the outer boundary of the unit 120 are different; for another example, as shown in FIGS. 3B to 3D , the extension directions of the metal wires 100 surrounding the outer boundary of the opening unit 120 are horizontal or vertical, for
  • the plurality of metal conductors 110 dividing the opening 100A in the opening unit 120 include oblique metal conductors 110 , and the oblique metal conductors 110A extend in different directions from the metal conductors 100 surrounding the outer boundary of the opening unit 120 .
  • the touch area of the touch structure 1000 may overlap with the display area AA (also known as the active display area, English name is Active Area) in the display substrate 200.
  • the display area AA also known as the active display area, English name is Active Area
  • the plurality of metal wires surrounding each opening have at least three different extension directions.
  • the at least one metal wire 110 used to divide the opening in the opening unit 120 is different from the metal wires surrounding the outer boundary of the opening unit 120 .
  • the extension directions of the metal wires 100 are different, the incident light in one direction is reflected through the opening, and the reflected light is obtained in more directions.
  • the light in each reflection direction is more dispersed, achieving a quasi-scattering effect, and the reflection brightness decreases. Reduces the degree of reflection difference perceived by the human eye.
  • the degree of reflection difference (touch mura) perceived by the eye is reduced to a minimum.
  • the at least one metal wire 110 used to divide the opening in the opening unit 120 is different from the shape surrounding the opening.
  • the extension directions of the metal wires 100 on the outer boundary of the unit 120 are different, which can increase the extension direction of the metal wires 110 in the metal grid 100, so that the overall reflected light direction of the metal grid 100 increases, reaching or approaching the effect of light scattering, eliminating the problem of light scattering. Or it can reduce the phenomenon that the metal grid 100 forms continuous reflected light in the same direction, reduce the degree of reflection difference perceived by human eyes, and improve the display effect.
  • the metal grid 100 close to the surface touch structure 1000 reflects the external light, causing the Mura phenomenon (a phenomenon in which the brightness display is uneven and various traces are displayed). main reason.
  • Some embodiments of the present disclosure achieve the scattering effect of reflected light by configuring the shape of the above-mentioned openings 100A so that the plurality of metal wires 110 surrounding each opening 100A have at least three different extension directions, and can also eliminate or reduce the display panel.
  • 900's Mura phenomenon improves the display effect of the display panel 900.
  • the number of metal conductors 110 surrounding the outer boundary of the opening unit 120 is greater than the number of metal conductors 110 inside the opening unit 120 .
  • the metal wires 110 surrounding the outer boundary of the opening unit 120 include: two a1, two a2, and two a3, a total of 6 metal wires 110.
  • the metal wires 110 include: two a4 and two a5, a total of four metal wires 110.
  • the number of metal wires 110 surrounding the outer boundary of the opening unit 120 is greater than the number of metal wires 110 inside the opening unit 120; for another example, in conjunction with FIG. 2B As shown in FIG.
  • the metal wires 110 surrounding the outer boundary of the opening unit 120 include: four a6, two a7, four a8, and two a9, a total of 12 metal wires 110.
  • the metal wire 110 inside the opening unit 120 includes: one a10, a11 has a total of 2 metal wires 110.
  • the number of metal wires 110 surrounding the outer boundary of the opening unit 120 is greater than the number of metal wires 110 inside the opening unit 120; for another example, as shown in Figures 3B to 3D, the number of metal wires 110 surrounding the opening is
  • the metal conductors 110 at the outer boundary of the unit 120 include: two a12 and two a13, a total of 4 metal conductors 110.
  • the metal conductors 110 inside the opening unit 120 include: one a14, one or two a15, and at most 3 metal conductors 110.
  • the number of metal conductors 110 surrounding the outer boundary of the opening unit 120 is greater than the number of metal conductors 110 inside the opening unit 120 .
  • the metal conductors 110 surrounding the outer boundary of the opening unit 120 include at least a pair of metal conductors 110 extending in the same direction.
  • the metal wires 110 that surround the outer boundary of the opening unit 120 there are two a1 , two a2 , and two a3 in the same extending direction, for a total of three pairs of metal wires 110 .
  • the metal wires 110 that surround the outer boundary of the opening unit 120 there are four a6, two a7, four a8, two a, 9, and a total of 6 pairs in the same extension direction.
  • Metal wires 110 for another example, as shown in FIGS. 3B to 3D, among the metal wires 110 that surround the outer boundary of the opening unit 120, there are two pairs of metal wires 110, two a12 and two a13 in the same extending direction.
  • the outer boundary of the opening unit 120 is a parallelepiped.
  • the outer boundary of the opening unit 120 is a parallel hexagon, which is conducive to splicing multiple opening units 120 to each other without gaps to form a closely arranged structure, and also forms multiple closely arranged openings 100A. Since the openings 100A are usually connected to The sub-pixels correspond to each other one by one. In this way, the sub-pixels can be arranged closely, and more sub-pixels can be arranged in a limited area, thereby improving the resolution of the display device.
  • the metal wires 110 surrounding the outer boundary of the opening unit 120 include: two first metal wires a1 arranged oppositely and in parallel, and two first metal wires a1 arranged oppositely and in parallel.
  • One of the second metal conductors a2 connects a first metal conductor a1 and a third metal conductor a3, and the other second metal conductor a2 connects the other A first metal wire a1 and a third metal wire a3.
  • the second metal conductor a2 on the left side connects the first metal conductor a1 on the upper side and the third metal conductor a3 on the lower left side
  • the second metal conductor a2 on the right side connects the first metal conductor a1 on the lower side. with the third metal wire a3 on the upper right side.
  • the length L3 of the third metal conductor a3 is greater than the length L1 of the first metal conductor a1
  • the length L1 of the first metal conductor a1 is greater than the length L1 of the second metal conductor a2. Length L2.
  • the second metal wire a2 is perpendicular to the connected third metal wire a3.
  • the first included angle ⁇ 1 formed by the first metal wire a1 and the connected second metal wire a2 is the same as the first angle ⁇ 1 formed by the first metal wire a1 and the connected second metal wire a2 .
  • the second included angle ⁇ 2 formed by the connected third metal wires a3 is the same.
  • the first included angle ⁇ 1 formed by the first metal wire a1 and the connected second metal wire a2 in the opening unit 120 ranges from 120° to 150°.
  • the included angle ⁇ 1 formed by the first metal wire a1 and the connected second metal wire a2 is 135°.
  • the angle ⁇ 1 formed by the first metal wire a1 and the connected second metal wire a2 in the opening unit 120 ranges from 120° to 150°. During specific manufacturing, the angle is relatively easy to manufacture, which is conducive to simplicity. Manufacturing process of touch structure.
  • the angle ⁇ 1 formed by the first metal wire a1 and the connected second metal wire a2 is 135°
  • the direction of the first metal wire a1 is set to be the direction of 0°
  • the second metal wire a2 is Arranged in a 45° inclined direction
  • the fourth metal conductor a4 is arranged vertically at 90°
  • the third metal conductor a3 is arranged in a 135° inclined direction.
  • This misaligned arrangement ensures that it is conducive to the demarcation of the touch electrodes (Tx and Rx)
  • the bending design of the opening at the border (as shown in the dotted thick line and the solid thick line in Figure 5), when the boundaries between Tx and Rx are 45° and 135° diagonally, it is more conducive to matching the design with the opening design at the non-border , from the perspective of opening design, to avoid dark-state reflection MURA and reduce the reflection difference perceived by the human eye.
  • the opening unit 120 includes: two fourth metal wires a4 extending from the midpoint of the first metal wire a1 and extending perpendicularly to the first metal wire a1 . , and two fifth metal wires a5 extending in a direction parallel to the second metal wire a2 and respectively connecting the other end of the fourth metal wire a4 and the midpoint of the third metal wire a3.
  • the opening unit 120 can be formed into two pentagonal openings 100A and one octagonal opening 100A, forming three openings 100A with different areas, so that when three sub-pixels are provided correspondingly, the areas of different sub-pixels are different.
  • the octagonal opening 100A is provided with a blue sub-pixel, and the two pentagonal openings 100A are provided with a red sub-pixel and a green sub-pixel respectively, due to the limitation of the material used in the blue sub-pixel, the life of the blue sub-pixel will be longer. Short, the light emission brightness is low. By setting the blue sub-pixel to a larger area, it is helpful to achieve a balance between the brightness and life of the sub-pixels of different light-emitting colors in the display device.
  • the human eye has different color sensitivities. The human eye's color sensitivity is specifically: green > red > blue. For this reason, the area of the blue sub-pixel B is larger than the area of the red sub-pixel R.
  • the design that the area of the pixel R is larger than the area of the green sub-pixel G can achieve a balanced perception of various colors of light by the human eye, reduce sub-pixel redundancy, and improve the aperture ratio and resolution.
  • the length of the fourth metal conductor a4 is half the length L1 of the first metal conductor a1; the length of the fifth metal conductor a5 is the same as the length of the second metal conductor a1.
  • the length L2 of wire a2 is equal.
  • the outer boundary of the opening unit 120 is cross-shaped.
  • the outer boundary of the opening unit 120 is cross-shaped, which is conducive to splicing multiple opening units 120 to each other without gaps to form a closely arranged structure, and also forms multiple closely arranged openings 100A, because the openings 100A are usually connected to the sub-pixels.
  • One-to-one correspondence in this way, can also realize the close arrangement of sub-pixels, thereby achieving the arrangement of more sub-pixels in a limited area, thereby improving the resolution of the display device.
  • the opening unit 120 includes: two first outer protrusions b1 that are opposite and extend far away from each other along the first direction
  • the second outer convex portion b2 extends in the remote direction in the second direction X2; the first direction X1 is perpendicular to the second direction X2.
  • the first direction X1 can be a vertical direction of 45° formed when the repeating unit Z is arranged, and the second direction 45° direction.
  • the outer boundary of the first outer protrusion b1 includes: two sixth metal wires a6 extending along the first direction X1, and connecting two sixth metal wires a6 wire a6 and a seventh metal wire a7 extending along the second direction X2;
  • the outer boundary of the second outer protrusion b2 includes: two eighth metal wires a8 extending along the second direction X2, and connecting the two eighth metal wires a8 and the ninth metal conductor a9 extending along the first direction X1;
  • the sixth metal conductor a6 of the first outer protrusion b1 intersects with the eighth metal conductor a8 of the adjacent second outer protrusion b2 at the first node A1.
  • the length of the sixth metal conductor a6 is greater than the length of the seventh metal conductor a7
  • the length of the eighth metal conductor s8 is greater than the length of the ninth metal conductor a9 .
  • the opening unit 120 internally includes: two non-adjacent first nodes A1 connecting the adjacent first outer convex portion b1 and the second outer convex portion b2.
  • the opening unit 120 includes: a first sub-opening unit 1201 and a second sub-opening unit 1202.
  • the first sub-opening unit 1201 and The second sub-opening unit 1202 has a mirror-symmetric structure.
  • Two first sub-opening units 1201 and two second sub-opening units 1202 form a repeating unit Z; in the repeating unit Z, the two first sub-opening units 1201 pass through the repeating unit Z. They are connected by an opening to form a first assembly; the two second sub-opening units 1202 are connected by multiplexing an opening to form a second assembly; the first assembly is connected to the two adjacent metal wires at the outer boundary respectively.
  • the metal wires 110 of different second sub-opening units 1202 are multiplexed to form a repeating unit Z.
  • the metal wires inside the multiplexed openings do not need to be provided, as shown by the dotted lines in the openings in Figure 1D or Figure 2D.
  • the outer boundary of the opening unit 120 is a rectangle.
  • the outer boundary of the opening unit 120 is rectangular, which is conducive to splicing multiple opening units 120 to each other without gaps to form a closely arranged structure, and also forms multiple closely arranged openings 100A, because the openings 100A are usually the same as the sub-pixels.
  • the sub-pixels can also be arranged closely, and more sub-pixels can be arranged in a limited area, thereby improving the resolution of the display device.
  • the metal wires 110 surrounding the outer boundary of the opening unit 120 include: two twelfth metal wires a12 extending along the third direction X3 and arranged oppositely, and two thirteenth metal wires a13 extending along the third direction
  • the other ends of the two twelfth metal wires a12 specifically, for example, the thirteenth metal wire a13 on the left is connected to the left ends of the upper and lower twelfth metal wires a12 respectively, and the thirteenth metal wire a13 on the right is connected to the upper and lower metal wires a12 respectively.
  • the right end of the twelfth metal conductor a12; the opening unit 120 includes: a fourteenth metal conductor a14 extending inward from a point on the thirteenth metal conductor a13, and a fifteenth metal conductor a14 connecting two opposite twelfth metal conductors a12.
  • the other ends of the metal conductor a15 and the fourteenth metal conductor a14 are connected to a point on the fifteenth metal conductor a15; at least one of the fourteenth metal conductor a14 and the fifteenth metal conductor a15 is neither parallel to the third direction , nor parallel to the fourth direction.
  • the fifteenth metal wire a15 is a straight line segment.
  • the fifteenth metal conductor a15 includes two sub-metal conductors a150 with different extending directions.
  • the angle between one sub-metal conductor a150 and the fourth direction X4 is the third included angle ⁇ 3, and the angle between the other sub-metal conductor a150 and the fourth direction
  • the angle is the fourth included angle ⁇ 4, and the third included angle ⁇ 3 is not equal to the fourth included angle ⁇ 4.
  • two sub-metal wires extending in different directions are formed, which is beneficial to increasing the direction of reflected light.
  • the third included angle ⁇ 3 ranges from 10° to 45°
  • the fourth included angle ⁇ 4 ranges from 10° to 45°.
  • the aperture ratios of the three sub-pixels R, G, and B are differentiated, thereby ensuring better display quality.
  • the material of the metal wire 110 includes at least one of copper Cu, silver Ag, nanocarbon, or graphene.
  • silver can refer to silver element, nano-silver, or other structural forms of silver; in addition, the material of the metal wire 110 can also be a compound including silver element. There are no limitations here.
  • the material of the metal wire 110 includes copper and nanocarbon.
  • Copper can refer to simple copper, nanocopper, or other structural forms of copper;
  • nanocarbon can refer to carbon nanotubes or carbon.
  • Nanofibers can also refer to structural forms such as nanocarbon spheres.
  • the material of the metal wire 110 may include a mixture of any of the above-mentioned copper forms and any of the above-mentioned nanocarbon forms.
  • the touch structure may include a plurality of touch electrodes 410 , each touch electrode 410 includes a metal mesh, and the plurality of touch electrodes are configured to be independently connected. to the touch chip.
  • the plurality of touch electrodes 410 are insulated from each other, and the plurality of touch electrodes 410 are arranged in the display area.
  • the shape of the plurality of touch electrodes 410 may be the same, and the shape of the touch electrode 410 may be a rhombus or a substantially rhombus shape, where "approximately rhombus" means that the shape of the touch electrode 410 is a rhombus shape as a whole, but is not limited thereto. It is a standard diamond shape, for example, the boundary of the touch electrode 410 is allowed to be non-linear (such as a zigzag shape).
  • the shape of the touch electrode 410 is not limited to a rhombus or a rough rhombus, but may also be a rectangle, a strip, etc.
  • the touch electrode 410 includes a metal mesh, which means that each touch electrode adopts a metal mesh structure.
  • ITO Indium Tin Oxide, indium tin oxide
  • the metal mesh structure The touch electrode 410 has small resistance and high sensitivity, which can improve the touch sensitivity of the touch display panel.
  • the touch electrode 410 using a metal mesh structure has high mechanical strength and can reduce the weight of the touch display panel. When the touch display panel is used in a display device, the display device can be made lighter and thinner.
  • Multiple touch electrodes 410 including a metal mesh structure can be disposed on the same metal layer, that is, a FSLOC structure, to facilitate the thinning of the display device.
  • Each touch electrode 410 is independently electrically connected to the touch chip, and the touch chip provides voltage to the touch electrode 410 so that the touch electrode 410 can independently form a capacitance with ground. Subsequently, the touch point position in the display area is determined by sensing changes in multiple capacitances.
  • the metal wires of the metal grid in the touch electrode 410 can be arranged directly opposite the gaps between the light-emitting areas 221A of the multiple sub-pixels 221 in the display area, thereby preventing the metal grid from blocking the emission of light and ensuring the luminescence of the display device. efficiency.
  • the touch structure may include a plurality of driving units 510 and a plurality of sensing units 520 that are insulated from each other; each driving unit 510 includes a plurality of driving electrodes arranged side by side along the third direction X3 511, and a first connection portion 512 that electrically connects two adjacent driving electrodes 511; each sensing unit 520 includes a plurality of sensing electrodes 521 arranged in parallel along the fourth direction X4, and a first connecting portion 512 that electrically connects two adjacent sensing electrodes 521.
  • the third direction X3 and the fourth direction X4 intersect. Specifically, the third direction X3 may be the row direction formed by the driving electrodes 511 being arranged, and the third direction X3 may be the column direction formed by the driving electrodes 511 being arranged.
  • the touch structure includes a first metal layer 610 , an insulating layer 620 and a second metal layer 630 that are stacked in sequence.
  • a plurality of via holes 621 are provided in the insulating layer 620 .
  • the driving electrode 511, the first connection part 512 and the sensing electrode 521 are located in one of the first metal layer 610 and the second metal layer 630, and the second connection part 522 is located in the first metal layer 610 and the second metal layer. 630, and the second connection part 522 is electrically connected to two adjacent sensing electrodes 521 through the via hole 621.
  • the driving electrode 511, the second connection part 522 and the sensing electrode 521 are located in one of the first metal layer 610 and the second metal layer 630, and the first connection part 512 is located in the first metal layer 610 and the second metal layer 630, and the first connection portion 512 is electrically connected to two adjacent driving electrodes 511 through the via hole 621.
  • the driving electrode 511, the sensing electrode 521, the first connection part 512 and the second connection part 522 include a metal mesh.
  • the opening shape and related arrangement of the metal grid adopt the design of the above embodiments, which can increase the direction of reflected light of the touch structure 1000, reduce the amount of reflected light in each direction of reflected light, and achieve a quasi-scattering effect, making it impossible for the human eye to Perceive reflected light, thereby eliminating or reducing the difference in reflection perceived by the human eye and improving the display effect.
  • the third direction X3 and the fourth direction X4 are arranged to intersect.
  • the third direction X3 and the fourth direction X4 may be perpendicular to each other.
  • the third direction X3 may be the horizontal direction of the touch display device, and the fourth direction X4 may be the longitudinal direction of the touch display device; or the third direction X3 may be the row direction of the pixel arrangement of the touch display device, and the fourth direction X3 may be the row direction of the pixel arrangement of the touch display device.
  • the four directions X4 may be the column direction of the pixel arrangement of the touch display device.
  • the first connection part 512 and the second connection part 522 are located on different metal layers of the touch structure at least at the intersection position. That is, at the intersection position, one of the first connection part 512 and the second connection part 522 is located on the first metal layer. layer 610, the other is located on the second metal layer 630, and the first connection part 512 and the second connection part 522 are separated by an insulating layer 620 at the intersection position to prevent the first connection part 512 and the second connection part 522 from Crosstalk occurs in the transmitted touch signals.
  • the first connection part 512 is located on the first metal layer 610, and two driving electrodes 511 located on the first metal layer 610 and adjacent along the first direction X are directly connected through the first connection part 512; the second connection part 522
  • the two sensing electrodes 521 located in the second metal layer 630 and located in the first metal layer 610 and adjacent along the second direction Y are respectively connected to the second connection portion 522 through different via holes 621 in the insulating layer 620, thereby realizing two The sensing electrodes 521 are connected.
  • the first connection portion 512 is located in the second metal layer 630, and the two driving electrodes 511 located in the first metal layer 610 and adjacent along the first direction X respectively pass through Different via holes 621 in the insulating layer 620 are connected to the first connection part 512, thereby realizing the connection of the two driving electrodes 511;
  • the second connection part 522 is located in the first metal layer 610 and is located in the first metal layer 610 and along the second direction Y Two adjacent sensing electrodes 521 are directly connected through the second connection portion 522 .
  • the second connection part 522 is located on the first metal layer 610.
  • Two sensing electrodes 521 located on the first metal layer 610 and adjacent along the second direction Y are directly connected through the second connection part 522; the first connection part 512 is located on the second metal layer 610.
  • Figures 8 and 9 are only illustrations of the case where the driving electrode 511, the second connection part 522 and the sensing electrode 521 are located in the first metal layer 610, and the first connection part 512 is located in the second metal layer 630;
  • the electrical connections and structural figures in other cases can be deduced without any doubt using the same methods and principles.
  • the driving electrode 511 and the sensing electrode 521 are filled with different patterns in order to distinguish different electrodes.
  • the driving electrode 511 and the sensing electrode 521 can be formed using the same material and the same process.
  • the area of the driving electrode 511 and/or the sensing electrode 521 may be 9 mm 2 to 25 mm 2 , that is, the area of at least one of the driving electrode 511 and the sensing electrode 521 may be 9 mm 2 to 25 mm 2 , and the area of the driving electrode 511 may be 9mm2 ⁇ 25mm2, or the area of the sensing electrode 521 can be 9mm2 ⁇ 25mm2, or the area of the driving electrode 511 and the sensing electrode 521 can both be 9mm2 ⁇ 25mm2.
  • 9mm2 ⁇ 25mm2 can be 10mm2, 12mm2, 14mm2, 16mm2, 20mm2 or 23mm2.
  • the length of two sides of the driving electrode 511 may be 3 mm to 5 mm, such as 3.2 mm, 3.8 mm, 4 mm, 4.3 mm or 4.7 mm.
  • the length of one side of the diamond-shaped driving electrode is 3.8mm, and the length of the other side of the diamond-shaped driving electrode is 4.7mm; or, the length of one side of the diamond-shaped driving electrode is 4mm, and the length of the other side of the diamond-shaped driving electrode is 4.5mm. .
  • the opening design of the metal grid can be used to form an array of touch electrodes with a side length of ⁇ 0.3mm that is indiscernible to the human eye, eliminating the human eye's sensitivity to 3 ⁇ 5mm
  • the degree of difference in reflection of the drive electrode consisting of side lengths shows defects.
  • the openings of the metal grid 100 are limited by the resistive-capacitive load.
  • the side length of the minimum touch electrode formed through the design of the opening 100A is generally larger than 0.3mm, it is easy for the human eye to detect the difference in reflection and show defects.
  • the touch structure 1000 adopts an asymmetrically shaped opening design surrounded by multiple metal edges. When strong light is irradiated, the metal grid forms multi-directional reflections to achieve a scattering-like effect, thereby eliminating the metal The degree of reflection difference of mesh 100.
  • the line width of the metal wire 110 may be 1 ⁇ m to 20 ⁇ m, such as 2 ⁇ m, 3.5 ⁇ m, 4.7 ⁇ m, 8 ⁇ m, 15 ⁇ m or 18 ⁇ m.
  • the line width of the metal conductor 110 refers to the width perpendicular to the extension direction of the metal conductor 110.
  • the width of the metal conductor 110 is the width of its cross section; the metal conductor 110 is an arc metal conductor 110H.
  • the width of the metal conductor 110 is the cross-sectional width, and the cross-section is perpendicular to the tangential direction of the cut position.
  • embodiments of the present disclosure also provide a display panel, which includes: a substrate 210 , a display functional layer 220 located on one side of the substrate, and a display functional layer 200 located on one side of the substrate.
  • the touch control structure 1000 provided by the embodiment of the present disclosure on the side away from the substrate; wherein, as shown in FIGS. 1E-1H, 2E-2K, and 3E-3H, the display function layer 200 includes a plurality of sub-pixels 221 , the orthographic projection of at least one opening 100A on the substrate 210 surrounds at least the orthographic projection of one sub-pixel 221 on the substrate 220 .
  • the touch structure 1000 can be disposed on the light emitting side of the display function layer 220 .
  • the display function layer 220 includes a light emitting device 240 .
  • the encapsulation layer 250 covers the light emitting device 240, and the touch structure 1000 is formed on the encapsulation layer 250.
  • the touch structure 1000 is formed between the encapsulation layer 250 and the anti-reflective structure, and the metal grid 100 It can be directly formed on the surface of the encapsulation layer 250 , that is, there is no other film layer between the metal grid 100 and the surface of the encapsulation layer 250 .
  • the above-mentioned substrate 210 may be an organic substrate or an inorganic substrate.
  • the material of the substrate 210 may be polyethylene terephthalate (PET), polyimide (PI), cycloolefin polymer (Cyclo Olefin Polymer, COP), etc.
  • the display functional layer 220 may include multiple functional film layers forming the sub-pixels 221, such as film layers forming the thin film transistor 270, the anode 222, the light-emitting layer 223, the cathode 224, etc.
  • the light-emitting area 221A of the sub-pixel 221 can be understood as the effective light-emitting surface of the sub-pixel 221.
  • the outline of the light-emitting area 221A of each sub-pixel 221 has at least three different extending directions.
  • the display function layer 200 includes: a pixel definition layer 225, which is provided with a plurality of light exit ports 225A, each light exit port 225A determines the light emitting area 221A of a sub-pixel;
  • the shape of the light outlet 225A is substantially the same as the shape of the light emitting area 221A of the sub-pixel 221 .
  • the structure of the pixel defining layer 225 is similar to a grid, with a plurality of light outlets 225A surrounded by blocking walls.
  • One light outlet 225A is provided in a sub-pixel area.
  • the light outlet 225A is configured to determine the light-emitting area 221A of the sub-pixel 221.
  • the light emitted by the layer 223 passes through the light outlet 225A to obtain the light emitting area 221A. Therefore, the shape of the light outlet 225A is substantially the same as the shape of the light emitting area 221A of the sub-pixel 221 .
  • the plurality of light outlets 225A configured as the light emitting areas 221A of the sub-pixels 221 of the same color in the pixel definition layer 225 may be of the same shape, and the light outlet 225A configured as the light emitting areas 221A of the sub-pixels 221 of different colors may be of different shapes. .
  • the sub-pixels 221 correspond to the opening 100A one-to-one, and at least some of the sub-pixels 221 are located on the substrate 210.
  • the orthographic projection is similar to the orthographic projection shape of the opening 100A on the substrate 210 .
  • the front projection of some sub-pixels 221 on the substrate 210 exceeds the front projection of the opening 100A on the substrate 210.
  • the orthographic projection of the green sub-pixel G on the substrate 210 exceeds the orthographic projection of the opening 100A on the substrate 210 .
  • the sub-pixel 221 includes a red sub-pixel R, a green sub-pixel G and a blue sub-pixel B; in the overlapping unit Z, two The first sub-aperture units 1201 are connected by multiplexing the opening where a green sub-pixel G is located; the two second sub-aperture units 1202 are connected by multiplexing the opening where a green sub-pixel is located.
  • the blue subpixel B includes a first blue subpixel B1 and a second blue subpixel B2.
  • the orthographic projection of the first blue sub-pixel B1 on the substrate 210 and the orthographic projection of the second blue sub-pixel B2 on the substrate 210 are respectively located in the same phase.
  • the adjacent first protruding portion b1 is within the orthographic projection of the substrate 210 and the adjacent second protruding portion b2 is within the orthographic projection of the substrate 210 .
  • the first blue sub-pixel B1 and the second blue sub-pixel B2 have an integral connection structure.
  • the first blue sub-pixel B1 and the second blue sub-pixel B2 have separate structures.
  • the orthographic projection of the first blue sub-pixel B1 on the substrate 210 and the orthographic projection of the second blue sub-pixel B2 on the substrate 210 are respectively located on two sides.
  • the first outer protrusion b1 is within the orthographic projection of the substrate 210.
  • an embodiment of the present disclosure also provides a touch display device, which includes the display panel as provided in the embodiment of the present disclosure.
  • the beneficial effects achieved by the touch display device are the same as those achieved by the display panel 900 in the above embodiment.
  • the structure of the touch display device has been described above and will not be described again here.

Abstract

本公开提供一种触控结构、显示面板和触控显示装置。所述触控结构包括:触控结构,包括:金属网格,包括多条金属导线;其中,所述金属网格具有多个开口单元,每一所述开口单元包括至少三个开口,每个所述开口由多条金属导线围成,且围成每个所述开口的多条金属导线具有至少三个不同的延伸方向;用于划分所述开口单元内所述开口的至少一条所述金属导线,与围成所述开口单元外边界的各所述金属导线的延伸方向不同。

Description

触控结构、显示面板和触控显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种触控结构、显示面板和触控显示装置。
背景技术
随着电子产品的不断发展,具有触控功能和显示功能的显示面板,可以实现简易灵活的人机交互,因而得到广泛应用。触控显示面板的结构例如包括:单片玻璃式(One Glass Solution,OGS)显示面板、表嵌式(On-Cell)显示面板和内嵌式(In-Cell)显示面板。
发明内容
本公开提供一种触控结构、显示面板和触控显示装置。所述触控结构包括:
触控结构,包括:
金属网格,包括多条金属导线;
其中,所述金属网格具有多个开口单元,每一所述开口单元包括至少三个开口,每个所述开口由多条金属导线围成,且围成每个所述开口的多条金属导线具有至少三个不同的延伸方向;用于划分所述开口单元内所述开口的至少一条所述金属导线,与围成所述开口单元外边界的各所述金属导线的延伸方向不同。
在一种可能的实施方式中,围成所述开口单元外边界的所述金属导线数量,大于所述开口单元内部的所述金属导线数量。
在一种可能的实施方式中,围成所述开口单元外边界的所述金属导线中,至少包括一对延伸方向相同的金属导线。
在一种可能的实施方式中,所述开口单元外边界为平行六边形。
在一种可能的实施方式中,围成所述开口单元外边界的所述金属导线包括:相对且平行设置的两条第一金属导线,相对且平行设置的两条第二金属导线,相对且平行设置的两条第三金属导线,其中一所述第二金属导线连接一所述第一金属导线与一所述第三金属导线,另一所述第二金属导线连接另一所述第一金属导线与另一所述第三金属导线。
在一种可能的实施方式中,所述第三金属导线的长度大于所述第一金属导线的长度,所述第一金属导线的长度大于所述第二金属导线的长度。
在一种可能的实施方式中,所述第二金属导线与相连的所述第三金属导线垂直。
在一种可能的实施方式中,所述开口单元内,所述第一金属导线与相连的所述第二金属导线形成的第一夹角,与所述第一金属导线与相连的所述第三金属导线形成的第二夹角相同。
在一种可能的实施方式中,所述开口单元内,所述第一金属导线与相连的所述第二金属导线形成的第一夹角范围为120°~150°。
在一种可能的实施方式中,所述开口单元内包括:分别由所述第一金属导线中点且沿垂直于所述第一金属导线延伸的两条第四金属导线,以及沿平行于所述第二金属导线方向延伸、分别连接所述第四金属导线另一端与所述第三金属导线中点的两条第五金属导线。
在一种可能的实施方式中,所述第四金属导线的长度为与所述第一金属导线长度的二分之一;所述第五金属导线的长度与所述第二金属导线的长度相等。
在一种可能的实施方式中,所述开口单元外边界为十字形。
在一种可能的实施方式中,所述开口单元包括:两个相对且沿第一方向向相远方向延伸的第一外凸部,以及两个相对且沿第二方向向相远方向延伸的第二外凸部;所述第一方向与所述第二方向垂直。
在一种可能的实施方式中,所述第一外凸部的外边界包括:两条沿所述 第一方向延伸的第六金属导线,以及连接两条所述第六金属导线且沿所述第二方向延伸的第七金属导线;
所述第二外凸部的外边界包括:两条沿所述第二方向延伸的第八金属导线,以及连接两条所述第八金属导线且沿所述第一方向延伸的第九金属导线;第一外凸部的所述第六金属导线与相邻的所述第二外凸部的所述第八金属导线相交于第一节点。
在一种可能的实施方式中,所述第六金属导线的长度大于所述第七金属导线的长度,所述第八金属导线的长度大于所述第九金属导线的长度。
在一种可能的实施方式中,所述开口单元内部包括:连接相邻所述第一外凸部与所述第二外凸部的两个不相邻所述第一节点的第十金属导线,以及连接所述第十金属导线中点与所述第十金属导线一侧的一所述第一节点的第十一金属导线。
在一种可能的实施方式中,所述开口单元包括:第一子开口单元与第二子开口单元,所述第一子开口单元与所述第二子开口单元为镜像对称结构,两个所述第一子开口单元与两个所述第二子开口单元围成一重复单元;
所述重复单元内,两个所述第一子开口单元通过复用一开口连接,形成第一组合体C1;两个所述第二子开口单元通过复用一开口连接,形成第二组合体;
所述第一组合体通过外边界的相邻两个所述金属导线,分别与两个不同所述第二子开口单元的所述金属导线进行复用形成重复单元Z。
在一种可能的实施方式中,所述开口单元外边界为矩形。
在一种可能的实施方式中,围成所述开口单元外边界的所述金属导线包括:沿第三方向延伸且相对设置的两条第十二金属导线,以及沿第三方向延伸且相对设置的两条第十三金属导线,其中一所述第十三金属导线分别连接两所述第十二金属导线的一端,另一所述第十三金属导线分别连接两所述第十二金属导线的另一端;
所述开口单元内包括:由所述第十三金属导线上的一点向内延伸的第十 四金属导线,以及连接相对两所述第十二金属导线的第十五金属导线,所述第十四金属导线的另一端连接于所述第十五金属导线上的一点;
所述第十四金属导线、所述第十五金属导线中的至少一者既不平行于所述第三方向,也不平行于所述第四方向。
在一种可能的实施方式中,所述第十五金属导线为一直线段。
在一种可能的实施方式中,所述第十五金属导线包括两条延伸方向不同的子金属导线。
在一种可能的实施方式中,其中一所述子金属导线与所述第四方向的夹角为第三夹角,另一所述子金属导线与所述第四方向的夹角为第四夹角,所述第三夹角与所述第四夹角不相等。
在一种可能的实施方式中,所述第三夹角的范围为10°~45°,所述第四夹角的范围为10°~45°。
本公开实施例还提供一种显示面板,其中,包括:衬底,位于所述衬底一侧的显示功能层,以及位于所述显示功能层背离所述衬底一侧的如本公开实施例提供的所述的触控结构;其中,所述显示功能层包括多个子像素,至少一个所述开口在所述衬底的正投影至少包围一个所述子像素在所述衬底的正投影。
在一种可能的实施方式中,所述子像素与所述开口一一对应,至少部分所述子像素在所述衬底的正投影与所述开口在所述衬底的正投影形状相似。
在一种可能的实施方式中,部分所述子像素在所述衬底的正投影超出所述开口在所述衬底的正投影以外。
在一种可能的实施方式中,所述子像素包括红色子像素,绿色子像素以及蓝色子像素;
所述重叠单元内,两个所述第一子开口单元通过复用一所述绿色子像素所在的所述开口连接;两个所述第二子开口单元通过复用一所述绿色子像素所在的所述开口连接。
在一种可能的实施方式中,所述蓝色子像素包括第一蓝色子像素与第二 蓝色子像素。
在一种可能的实施方式中,所述第一蓝色子像素在所述衬底的正投影、所述第二蓝色子像素在所述衬底的正投影,分别位于相邻的所述第一外凸部在所述衬底的正投影内与所述第二外凸部在所述衬底的正投影内。
在一种可能的实施方式中,所述第一蓝色子像素与所述第二蓝色子像素为一体连接结构。
在一种可能的实施方式中,所述第一蓝色子像素与所述第二蓝色子像素为分离的结构。
在一种可能的实施方式中,所述第一蓝色子像素在所述衬底的正投影、所述第二蓝色子像素在所述衬底的正投影,分别位于两个所述第一外凸部在所述衬底的正投影内。
本公开实施例还提供一种触控显示装置,其中,包括如本公开实施例提供的所述显示面板。
附图说明
图1A为本公开实施例提供的触控结构的示意图之一;
图1B为图1A中其中一开口单元的放大示意图;
图1C为图1A中其中另一开口单元的放大示意图;
图1D为图1A中其中一重复单元的放大示意图;
图1E为图1A中设置子像素时的触控结构示意图;
图1F为图1E中其中一开口单元的放大示意图;
图1G为图1E中其中另一开口单元的放大示意图;
图1H为图1E中其中一重复单元的放大示意图;
图1I为图1A的触控结构中设置子像素时的另一种一开口单元的放大示意图;
图2A为本公开实施例提供的触控结构的示意图之二;
图2B为图2A中其中一开口单元的放大示意图;
图2C为图2A中其中另一开口单元的放大示意图;
图2D为图2A中其中一重复单元的放大示意图;
图2E为图2A中设置子像素时的触控结构示意图;
图2F为图2E中其中一开口单元的放大示意图;
图2G为图2E中其中一重复单元的放大示意图;
图2H为图2A的触控结构中设置子像素时的另一种一开口单元的放大示意图;
图2I为图2A的触控结构中设置子像素时的另一种重复单元的放大示意图;
图2J为图2A的触控结构中设置子像素时的另一种一开口单元的放大示意图;
图2K为图2A的触控结构中设置子像素时的另一种重复单元的放大示意图;
图3A为本公开实施例提供的触控结构的示意图之三;
图3B为图3A中其中一开口单元的放大示意图;
图3C为图3A中其中另一开口单元的放大示意图;
图3D为图3A中其中另一开口单元的放大示意图;
图3E为图3A中设置子像素时的触控结构示意图;
图3F为图3E中其中一开口单元的放大示意图;
图3G为图3E中其中另一开口单元的放大示意图;
图3H为图3E中其中另一开口单元的放大示意图;
图4为对称开口的反射光路图;
图5为触控电极边界处的示意图;
图6为根据一些实施例的触控电极的俯视图;
图7为根据一些实施例的驱动电极和感应电极的俯视图;
图8为根据一些实施例的触控结构沿图7中AA’线的剖视图;
图9为根据一些实施例的触控结构沿图7中BB’线的剖视图;
图10为根据一些实施例的显示面板的一种局部剖视图;
图11为根据一些实施例的显示面板的一种剖视图;
图12为根据一些实施例的触控显示装置的一种剖视图;
图13为根据一些实施例的触控显示装置的另一种剖视图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“电连接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“点连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内 容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“近似”或“大致”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
随着AMOLED(Active Matrix Organic Light-Emitting Diode,有源矩阵有机发光二极管)显示装置的迅速发展,全面屏、窄边框、高分辨率、卷曲穿戴、折叠等成为未来AMOLED的重要发展方向。
其中,直接在OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板的封装层上制作触控结构的技术,能够制备更轻更薄的触控面板,且该技术可以应用于折叠及卷曲的OLED显示装置中。
基于降低电阻和提高触控灵敏性等方面的考虑,触控结构中的触控电极采用具有电阻小、厚度小和反应速度快等优点的金属网格。相关技术中,直接在显示面板的封装层上制作的触控结构包括两种类型,柔性多层覆盖表面 式(Flexible Metal Layer On Cell,FMLOC)和柔性单层覆盖表面式(Flexible Single Layer On Cell,FSLOC),其中,FSLOC相较于FMLOC更便于产品减薄。
如图4所示,图4为形成金属网格的金属导线的截面示意图,在暗态强光照射下,照射到金属导线表面01的光线会被显示面板贴附的偏光片遮挡,无法进入人眼,而对于照射到金属导线侧壁02的光线,偏光片无法遮挡,会进入人眼,进而有金属导线和无金属导线的区域会形成光线差异,导致人眼看到亮暗图案。
基于此,如图11所示,本公开的一些实施例提供一种显示面板900,包括显示基板200,以及位于显示基板200出光侧的封装层250,以及位于封装层250背离显示基板200一侧的触控结构1000。显示面板900应用于触控显示装置,如图12和图13所示。触控显示装置可以为电致发光显示装置或光致发光显示装置。在该显示装置为电致发光显示装置的情况下,电致发光显示装置可以为有机电致发光显示装置(Organic Light-Emitting Diode,简称OLED)或量子点电致发光显示装置(Quantum Dot Light Emitting Diodes,简称QLED)或液晶显示装置(Liquid Crystal Display,LCD)或电泳显示(Electrophoretic Displays,EPD,EPD)。在该触控显示装置为光致发光显示装置的情况下,光致发光显示装置可以为量子点光致发光显示装置。
本公开的示例性实施例中以OLED显示装置进行说明,但应当认为并不限于OLED显示装置。在一些实施例中,如图12和图13所示,触控显示装置的主要结构包括依次设置的显示面板900、触控结构1000、抗反射结构例如偏光片500、第一光学胶(Optically Clear Adhesive,简称OCA)层600和盖板300。在一些实施例中,抗反射结构可以包括彩色滤光片和黑矩阵。抗反射结构的位置并不限定于上述描述,可以位于封装层和显示基板之间,或其它可实现的位置。
其中,显示面板900包括显示基板200和用于封装显示基板200的封装层250。此处,封装层250可以为封装薄膜,也可以为封装基板。
在一些实施例中,如图12所示,显示面板900的触控结构1000直接设置在封装层250上,这样可以将显示基板200视作触控结构1000的衬底基板,这种结构有利于实现显示装置的轻薄化。
在一些实施例中,封装层250可以包括第一无机封装层、第一有机封装层和第二无机封装层,也可以为至少一层有机层和至少一层无机层的堆叠结构。在一些实施例中,抗反射结构可以形成在封装层250中,起到抗反射作用,同时可以进一步降低显示装置的厚度。
在另一些实施例中,如图13所示,显示面板900的触控结构1000设置在衬底基板910上,衬底基板910通过第二光学胶层920贴附在封装层250上。衬底基板910的材料例如可以是聚对苯二甲酸乙二酯(Polyethylene terephthalate,简称PET)、聚酰亚胺(Polyimide,简称PI)、环烯烃聚合物(Cyclo Olefin Polymer,简称COP)等。
如图10、图11、图12和图13所示,上述的显示基板200的每个子像素211包括设置在衬底210上的发光器件和驱动电路,驱动电路包括多个薄膜晶体管270。发光器件包括阳极222、发光层223以及阴极224,阳极222和驱动电路的多个薄膜晶体管270中作为驱动晶体管的薄膜晶体管270的漏极电连接。
在一些实施例中,阳极222和驱动电路的多个薄膜晶体管270中作为驱动晶体管的薄膜晶体管270的漏极电连接时,还通过一个转接电极进行电连接,转接电极位于漏极所在膜层和阳极所在膜层之间。
显示基板200还包括像素界定层225,像素界定层225包括多个出光口225A,一个发光器件对应一个出光口225A设置。
在一些实施例中,显示功能层220包括发光层223。在另一些实施例中,显示功能层220除包括发光层223外,还包括电子传输层(Election Transporting Layer,简称ETL)、电子注入层(Election Injection Layer,简称EIL)、空穴传输层(Hole Transporting Layer,简称HTL)以及空穴注入层(Hole Injection Layer,简称HIL)中的一层或多层。
如图12和图13所示,显示基板200还包括设置在薄膜晶体管270和阳极222之间的至少一层平坦层230。在一些实施例中,平坦层230上还包括至少一层钝化层。
当触控显示装置为电致发光显示装置时,触控显示装置可以是顶发射型显示装置,在此情况下,靠近衬底210的阳极222呈不透明,远离衬底210的阴极224呈透明或半透明;触控显示装置也可以是底发射型显示装置,在此情况下,靠近衬底210的阳极222呈透明或半透明,远离衬底210的阴极224呈不透明;触控显示装置也可以为双面发光型显示装置,在此情况下,靠近衬底210的阳极222和远离衬底210的阴极224均呈透明或半透明。
参见图1A-图1D、图2A-图2D、图3A-图3D所示,本公开实施例提供一种触控结构1000,包括:
金属网格100,金属网格100包括多条金属导线110;
其中,金属网格100具有多个开口单元120,每一开口单元120包括至少三个开口100A,每个开口100A由多条金属导线110围成,且围成每个开口100A的多条金属导线110具有至少三个不同的延伸方向;用于划分开口单元120内开口的至少一条金属导线110,与围成开口单元120外边界的各金属导线100的延伸方向不同。具体的,例如,结合图1B或图1C所示,围成开口单元120外边界的各金属导线100的延伸方向为横向或斜向的,用于划分开口单元120内开口100A的多条金属导线110包括竖向的金属导线110,该竖向的金属导线110A与围成开口单元120外边界的各金属导线100的延伸方向不同;又例如,结合图2B或图2C所示,围成开口单元120外边界的各金属导线100的延伸方向为斜向的,用于划分开口单元120内开口100A的多条金属导线110包括竖向的金属导线110,该竖向的金属导线110A与围成开口单元120外边界的各金属导线100的延伸方向不同;又例如,结合图3B-图3D所示,围成开口单元120外边界的各金属导线100的延伸方向为横向或竖向的,用于划分开口单元120内开口100A的多条金属导线110包括斜向的金属导线110,该斜向的金属导线110A与围成开口单元120外边界的各金属导线 100的延伸方向不同。
触控结构1000的触控区域可以与显示基板200中的显示区域AA(又称有效显示区,英文名称为Active Area)重叠。
本公开实施例中,在围成每个开口的多条金属导线具有至少三个不同的延伸方向,用于划分开口单元120内开口的至少一条金属导线110,与围成开口单元120外边界的各金属导线100的延伸方向不同的情况下,一方向上的入射光经过开口反射,得到的反射光的方向较多,每个反射方向上的光线较为分散,达到类散射的效果,反射亮度下降,降低人眼感知的反射差异程度。另外,增加围成每个开口的金属导线数量,在触控电极(Tx和Rx)分界处,因为金属导线数量和方向变多,可以进行更多选择的断口(cut),从而把分界处人眼感知的反射差异程度(touch mura)降到最低。
因此,通过将开口100A的形状设置为围成每个开口100A的多条金属导线110具有至少三个不同的延伸方向,用于划分开口单元120内开口的至少一条金属导线110,与围成开口单元120外边界的各金属导线100的延伸方向不同,这样能够增加金属网格100中金属导线110的延伸方向,使得金属网格100整体的反射光方向增加,达到或接近光线散射的效果,消除或减轻金属网格100在同一方向上形成连续反射光的现象,降低人眼感知的反射差异程度,提高显示效果。
与此之外,外界光线在射向显示面板时,靠近表层的触控结构1000的金属网格100,针对外界光线的反射是造成Mura现象(亮度显示不均匀,显示各种痕迹的现象)的主要原因。本公开的一些实施例通过将上述开口100A的形状设置为围成每个开口100A的多条金属导线110具有至少三个不同的延伸方向,实现反射光的散射效果,还能够消除或减轻显示面板900的Mura现象,提高显示面板900的显示效果。
在一种可能的实施方式中,围成开口单元120外边界的金属导线110数量,大于开口单元120内部的金属导线110数量。具体的,例如,结合图1B和图1C所示,围成开口单元120外边界的金属导线110包括:两条a1,两条 a2,两条a3,共6条金属导线110,开口单元120内部的金属导线110包括:两条a4,两条a5共4条金属导线110,围成开口单元120外边界的金属导线110数量,大于开口单元120内部的金属导线110数量;又例如,结合图2B和图2C所示,围成开口单元120外边界的金属导线110包括:四条a6,两条a7,四条a8,两条a9共12条金属导线110,开口单元120内部的金属导线110包括:一条a10,一条a11共2条金属导线110,围成开口单元120外边界的金属导线110数量,大于开口单元120内部的金属导线110数量;又例如,结合图3B-图3D所示,围成开口单元120外边界的金属导线110包括:两条a12,两条a13共4条金属导线110,开口单元120内部的金属导线110包括:一条a14,一条或两条a15,至多3条金属导线110,围成开口单元120外边界的金属导线110数量,大于开口单元120内部的金属导线110数量。
在一种可能的实施方式中,围成开口单元120外边界的金属导线110中,至少包括一对延伸方向相同的金属导线110。具体的,例如,结合图1B和图1C所示,围成开口单元120外边界的金属导线110中,延伸方向相同有两条a1,两条a2,两条a3,共3对的金属导线110;又例如,结合图2B和图2C所示,围成开口单元120外边界的金属导线110中,延伸方向相同有四条a6,两条a7,四条a8,两条a,9,共6对的金属导线110;又例如,结合图3B-图3D所示,围成开口单元120外边界的金属导线110中,延伸方向相同有两条a12,两条a13,共2对的金属导线110。
在一种可能的实施方式中,图1A-图1D所示,开口单元120外边界为平行六边形。本公开实施例中,开口单元120外边界为平行六边形,有利于多个开口单元120相互无间隙拼接,形成紧密排列的结构,也形成紧密排列的多个开口100A,由于开口100A通常与子像素一一对应,如此,也可以实现使子像素紧密排列,进而在有限的区域实现排布较多的子像素,提升显示装置的分辨率。
在一种可能的实施方式中,图1B和图1C所示,围成开口单元120外边界的金属导线110包括:相对且平行设置的两条第一金属导线a1,相对且平 行设置的两条第二金属导线a2,相对且平行设置的两条第三金属导线a3,其中一第二金属导线a2连接一第一金属导线a1与一第三金属导线a3,另一第二金属导线a2连接另一第一金属导线a1与另一第三金属导线a3。具体的,例如,图1B中,左侧的第二金属导线a2连接上方的第一金属导线a1与左下侧的第三金属导线a3,右侧的第二金属导线a2连接下方第一金属导线a1与右上侧的第三金属导线a3。
在一种可能的实施方式中,图1B和图1C所示,第三金属导线a3的长度L3大于第一金属导线a1的长度L1,第一金属导线a1的长度L1大于第二金属导线a2的长度L2。
在一种可能的实施方式中,图1B和图1C所示,第二金属导线a2与相连的第三金属导线a3垂直。
在一种可能的实施方式中,图1B和图1C所示,开口单元120内,第一金属导线a1与相连的第二金属导线a2形成的第一夹角β1,与第一金属导线a1与相连的第三金属导线a3形成的第二夹角β2相同。
在一种可能的实施方式中,图1B和图1C所示,开口单元120内,第一金属导线a1与相连的第二金属导线a2形成的第一夹角β1范围为120°~150°。在一种可能的实施方式中,第一金属导线a1与相连的第二金属导线a2形成的夹角β1为135°。本公开实施例中,开口单元120内,第一金属导线a1与相连的第二金属导线a2形成的夹角β1范围为120°~150°,在具体制作时,角度相对易于制作,有利于简化触控结构的制作工艺。
此外,当第一金属导线a1与相连的第二金属导线a2形成的夹角β1为135°时,若设定第一金属导线a1所在方向为0°所在方向,则第二金属导线a2为以45°倾斜方向排布,第四金属导线a4为90°竖向排布,第三金属导线a3以135°倾斜方向排布,这种错位排布保证有利于触控电极(Tx和Rx)分界处的开口弯折设计(如图5所示虚粗线和实粗线所示),Tx和Rx分界为45°和135°对角方向时,更有利于与非边界处的开口设计搭配设计,从开口设计的角度规避暗态反射MURA,降低人眼感知的反射差异程度。
在一种可能的实施方式中,图1B和图1C所示,开口单元120内包括:分别由第一金属导线a1中点且沿垂直于第一金属导线a1延伸的两条第四金属导线a4,以及沿平行于第二金属导线a2方向延伸、分别连接第四金属导线a4另一端与第三金属导线a3中点的两条第五金属导线a5。如此,可以使开口单元120形成两个五边形的开口100A,以及一个八边形的开口100A,形成面积不同的三个开口100A,以对应设置三个子像素时,使不同子像素的面积不同,例如,使八边形开口100A设置蓝色子像素,两个五边形的开口100A分别设置红色子像素与绿色子像素,由于蓝色子像素所使用材料限制,使蓝色子像素寿命较短,发光亮度较低,通过使蓝色子像素设置较大的面积,有利于使显示装置不同出光颜色的子像素亮度和寿命达到均衡。另外,人眼对于色彩敏感度不同,人眼对于色彩敏感度具体为:绿色>红色>蓝色,由于此原因,通过蓝色子像素B的面积大于所述红色子像素R的面积,红色子像素R的面积大于绿色子像素G的面积的设计,能够实现人眼对各色光线的感受平衡,减少子像素冗余,提升开口率和分辨率。
在一种可能的实施方式中,图1B和图1C所示,第四金属导线a4的长度为与第一金属导线a1长度L1的二分之一;第五金属导线a5的长度与第二金属导线a2的长度L2相等。
在一种可能的实施方式中,图2B和图2C所示,开口单元120外边界为十字形。本公开实施例中,开口单元120外边界为十字形,有利于多个开口单元120相互无间隙拼接,形成紧密排列的结构,也形成紧密排列的多个开口100A,由于开口100A通常与子像素一一对应,如此,也可以实现使子像素紧密排列,进而在有限的区域实现排布较多的子像素,提升显示装置的分辨率。
在一种可能的实施方式中,图2B和图2C所示,开口单元120包括:两个相对且沿第一方向X1向相远方向延伸的第一外凸部b1,以及两个相对且沿第二方向X2向相远方向延伸的第二外凸部b2;第一方向X1与第二方向X2垂直。
在一种可能的实施方式中,第一方向X1可以为与重复单元Z进行排列时形成的竖向呈45°的方向,第二方向X2可以为与重复单元Z进行排列时形成的行向呈45°的方向。
在一种可能的实施方式中,图2B和图2C所示,第一外凸部b1的外边界包括:两条沿第一方向X1延伸的第六金属导线a6,以及连接两条第六金属导线a6且沿第二方向X2延伸的第七金属导线a7;第二外凸部b2的外边界包括:两条沿第二方向X2延伸的第八金属导线a8,以及连接两条第八金属导线a8且沿第一方向X1延伸的第九金属导线a9;第一外凸部b1的第六金属导线a6与相邻的第二外凸部b2的第八金属导线a8相交于第一节点A1。
在一种可能的实施方式中,图2B和图2C所示,第六金属导线a6的长度大于第七金属导线a7的长度,第八金属导线s8的长度大于第九金属导线a9的长度。
在一种可能的实施方式中,图2B和图2C所示,开口单元120内部包括:连接相邻第一外凸部b1与第二外凸部b2的两个不相邻第一节点A1的第十金属导线a10,以及连接第十金属导线a10中点与第十金属导线a10一侧的一第一节点A1的第十一金属导线a11。
在一种可能的实施方式中,参见图1A-图1D、图2A-图2D所示,开口单元120包括:第一子开口单元1201与第二子开口单元1202,第一子开口单元1201与第二子开口单元1202为镜像对称结构,两个第一子开口单元1201与两个第二子开口单元1202围成一重复单元Z;重复单元Z内,两个第一子开口单元1201通过复用一开口连接,形成第一组合体;两个第二子开口单元1202通过复用一开口连接,形成第二组合体;第一组合体通过外边界的相邻两个金属导线,分别与两个不同第二子开口单元1202的金属导线110进行复用形成重复单元Z。
在一种可能的实施方式中,重复单元Z中,复用的开口内部的金属导线可以无需设置,如图1D或图2D中开口内的虚线所示位置。
在一种可能的实施方式中,参见图3A-图3D所示,开口单元120外边界 为矩形。本公开实施例中,开口单元120外边界为矩形,有利于多个开口单元120相互无间隙拼接,形成紧密排列的结构,也形成紧密排列的多个开口100A,由于开口100A通常与子像素一一对应,如此,也可以实现使子像素紧密排列,进而在有限的区域实现排布较多的子像素,提升显示装置的分辨率。
在一种可能的实施方式中,参见图3B-图3D所示,围成开口单元120外边界的金属导线110包括:沿第三方向X3延伸且相对设置的两条第十二金属导线a12,以及沿第三方向X3延伸且相对设置的两条第十三金属导线a13,其中一第十三金属导线a13分别连接两第十二金属导线a12的一端,另一第十三金属导线a13分别连接两第十二金属导线a12的另一端;具体的,例如,左侧的第十三金属导线a13分别连接上下第十二金属导线a12的左端,右侧的第十三金属导线a13分别连接上下两第十二金属导线a12的右端;开口单元120内包括:由第十三金属导线a13上的一点向内延伸的第十四金属导线a14,以及连接相对两第十二金属导线a12的第十五金属导线a15,第十四金属导线a14的另一端连接于第十五金属导线a15上的一点;第十四金属导线a14、第十五金属导线a15中的至少一者既不平行于第三方向,也不平行于第四方向。
在一种可能的实施方式中,参见图3C所示,第十五金属导线a15为一直线段。
在一种可能的实施方式中,参见图3B和图3D所示,第十五金属导线a15包括两条延伸方向不同的子金属导线a150。
在一种可能的实施方式中,参见图3B和图3D所示,其中一子金属导线a150与第四方向X4的夹角为第三夹角β3,另一子金属导线与第四方向的夹角为第四夹角β4,第三夹角β3与第四夹角β4不相等。如此,以形成两条延伸方向不同的子金属导线,有利于增加反射光线的方向。
在一种可能的实施方式中,参见图3B和图3D所示,第三夹角β3的范围为10°~45°,第四夹角β4的范围为10°~45°。
示例性的,结合图3B-图3D所示,通过调整W1-W5的长度,实现R、G、 B三个子像素开口率的差异化,从而可以保证更好的显示质量。
在一些实施例中,金属导线110的材料包括铜Cu、银Ag、纳米碳或石墨烯中的至少一种。以金属导线110的材料包括银为例,银可以指的是银单质,也可以指纳米银、还可以是银的其他结构形态;另外,金属导线110的材料还可以是包括银元素的化合物,此处不做限定。
以金属导线110的材料包括铜和纳米碳为例,铜可以指的是铜单质,也可以指纳米铜、还可以是铜的其他结构形态;纳米碳可以指的碳纳米管、也可以指碳纳米纤维,还可以指纳米碳球等结构形态。金属导线110的材料可以包括上述任一种铜形式和上述任一种纳米碳形式的混合物。
在一些实施例中,如图6所示,触控结构可以包括多个触控电极410,每个触控电极410包括金属网格,且所述多个触控电极被配置为各自独立地连接至触控芯片。
多个触控电极410之间相互绝缘设置,且多个触控电极410排布在显示区域内。多个触控电极410的形状可以相同,触控电极410的形状可以为菱形或大致菱形,其中,“大致为菱形”是指,触控电极410的形状整体上呈菱形形状,但是并不局限为标准的菱形,例如触控电极410的边界允许是非直线形的(例如锯齿形)。
另外,触控电极410的形状不限于菱形或大致的菱形,还可以是矩形、长条形等。
触控电极410包括金属网格是指每个触控电极均采用金属网格结构,相比于采用ITO(Indium Tin Oxide,氧化铟锡)形成面状电极作为触控电极410,金属网格结构的触控电极410的电阻小、灵敏度较高,能够提高触控显示面板的触控灵敏度。且采用金属网格结构的触控电极410机械强度高,能减小触控显示面板的重量,在触控显示面板应用于显示装置中时,能够实现显示装置的轻薄化。
多个包括金属网格结构的触控电极410可以设置于同一金属层,即FSLOC结构,便于显示装置的轻薄化。
每个触控电极410均独立与触控芯片电连接,触控芯片向触控电极410提供电压,使得触控电极410可以独立地与地形成电容。后续通过感应多个电容的变化从而确定显示区域内的触控点位。
其中,触控电极410内的金属网格的金属导线可以与显示区域中多个子像素221的发光区221A之间的间隙正对设置,从而能够防止金属网格遮挡光线射出,确保显示装置的发光效率。
在一些实施例中,如图7所示,触控结构可以包括相互绝缘的多个驱动单元510和多个感应单元520;每个驱动单元510包括沿第三方向X3并列设置的多个驱动电极511,及电连接相邻两个驱动电极511的第一连接部512;每个感应单元520包括沿第四方向X4并列设置的多个感应电极521,及电连接相邻两个感应电极521的第二连接部522。第三方向X3和第四方向X4相交叉。具体的,第三方向X3可以为驱动电极511排列形成的行向,第三方向X3可以为驱动电极511排列形成的列向。
如图8和图9所示,触控结构包括依次叠置的第一金属层610、绝缘层620和第二金属层630,绝缘层620中设有多个过孔621。
示例性地,驱动电极511、第一连接部512和感应电极521位于第一金属层610和第二金属层630中的一者,第二连接部522位于第一金属层610和第二金属层630中的另一者,且第二连接部522通过过孔621电连接相邻两个感应电极521。
示例性地,驱动电极511、第二连接部522和感应电极521位于第一金属层610和第二金属层630中的一者,第一连接部512位于第一金属层610和第二金属层630中的另一者,且第一连接部512通过过孔621电连接相邻两个驱动电极511。
示例性地,驱动电极511、感应电极521、第一连接部512和第二连接部522包括金属网格。金属网格的开口形状和相关布置采用上述各实施例的设计,这样可以使得触控结构1000的反射光方向增加,降低每个反射光方向的反射光量,达到类散射的效果,使人眼无法感知反射光线,从而消除或减轻人眼 对感知的反射差异程度,提高显示效果。
如图7所示,第三方向X3与第四方向X4交叉设置,例如第三方向X3与第四方向X4可以相互垂直。例如,第三方向X3可以是触控显示装置的横向方向,第四方向X4可以是触控显示装置的纵向方向;或者,第三方向X3可以是触控显示装置的像素排列的行方向,第四方向X4可以是触控显示装置的像素排列的列方向。
需要说明的是,本公开的多个附图中仅以第三方向X3为横向方向,第四方向X4为纵向方向为例进行示意,在本公开中,通过将附图进行90度旋转所得到的技术方案亦在本公开的保护范围之内。
第一连接部512和第二连接部522至少在交叉位置处位于触控结构的不同金属层,即在交叉位置处,第一连接部512和第二连接部522中的一者位于第一金属层610,另一者位于第二金属层630,并且第一连接部512和第二连接部522在交叉位置处利用绝缘层620隔开,以防止第一连接部512和第二连接部522上传输的触控信号发生串扰。
示例性地,第一连接部512位于第一金属层610,位于第一金属层610且沿第一方向X相邻的两个驱动电极511直接通过第一连接部512相连;第二连接部522位于第二金属层630,位于第一金属层610且沿第二方向Y相邻的两个感应电极521分别通过绝缘层620中的不同过孔621与第二连接部522相连,从而实现两个感应电极521相连。
示例性地,如图7、图8和图9所示,第一连接部512位于第二金属层630,位于第一金属层610且沿第一方向X相邻的两个驱动电极511分别通过绝缘层620中的不同过孔621与第一连接部512相连,从而实现两个驱动电极511相连;第二连接部522位于第一金属层610,位于第一金属层610且沿第二方向Y相邻的两个感应电极521直接通过第二连接部522相连。
第二连接部522位于第一金属层610,位于第一金属层610且沿第二方向Y相邻的两个感应电极521直接通过第二连接部522相连;第一连接部512于第二金属层630,位于第一金属层610且沿第一方向X相邻的两个驱动电 极511分别通过绝缘层620中的不同过孔621与第一连接部512相连,从而实现两个驱动电极511相连。
需要说明的是,图8和图9中仅仅是以驱动电极511、第二连接部522和感应电极521位于第一金属层610,第一连接部512位于第二金属层630的情况的说明;其他情况下的电连接方式和结构图形可以采用相同的方式和原理毫无疑义地推导得出。另外,驱动电极511和感应电极521作不同的图案填充,是为了区分不同的电极,驱动电极511和感应电极521可以采用相同材料,采用相同的工艺制程形成。
在一些实施例中,驱动电极511和/或感应电极521的面积可以为9mm2~25mm2,即驱动电极511和感应电极521中至少一者的面积为9mm2~25mm2,可以是驱动电极511的面积为9mm2~25mm2,也可以是感应电极521的面积为9mm2~25mm2,还可以是驱动电极511和感应电极521的面积均为9mm2~25mm2。9mm2~25mm2具体可以是10mm2、12mm2、14mm2、16mm2、20mm2或23mm2。在驱动电极511的形状为菱形时,驱动电极511的两条边长可以为3mm~5mm,例如3.2mm、3.8mm、4mm、4.3mm或4.7mm。示例性地,菱形驱动电极的一条边长为3.8mm,菱形驱动电极的另一条边长为4.7mm;或者,菱形驱动电极的一条边长为4mm,菱形驱动电极的另一条边长为4.5mm。
在像素密度>500PPI(Pixels Per Inch)的显示装置中,可通过金属网格的开口设计形成人眼不可识别的边长<0.3mm的阵列排布的触控电极,消除人眼对3~5mm边长组成的驱动电极的反射差异程度显示缺陷。对于中大尺寸像素密度<400PPI的显示装置,由于子像素的发光区面积较大,金属网格100开口受限于阻容负载,通过开口100A设计形成的最小触控电极的边长一般都大于0.3mm,容易被人眼识别到反射差异程度显示缺陷。在本公开的示例性实施例中,触控结构1000采用多金属边围成不对称形状的开口设计,在强光照射时,金属网格形成多方向反射,达到类似散射的效果,从而消除金属网格100的反射差异程度。
在一些实施例中,金属导线110的线宽可以为1μm~20μm,例如为2μm、3.5μm、4.7μm、8μm、15μm或18μm。金属导线110的线宽是指垂直金属导线110延伸方向的宽度,例如:金属导线110为直线金属导线110L时,金属导线110的宽度为其横截面的宽度;金属导线110为弧线金属导线110H时,金属导线110的宽度为截面宽度,该截面与所截位置的切线方向相垂直。
基于同一发明构思,参见图10和图11所示,本公开实施例还提供一种显示面板,其中,包括:衬底210,位于衬底一侧的显示功能层220,以及位于显示功能层200背离衬底一侧的如本公开实施例提供的触控结构1000;其中,结合图1E-图1H、图2E-图2K、图3E-图3H所示,显示功能层200包括多个子像素221,至少一个开口100A在衬底210的正投影至少包围一个子像素221在衬底220的正投影。
触控结构1000可以设置于显示功能层220的出光侧。
如图10所示,显示功能层220包括发光器件240。封装层250覆盖发光器件240,触控结构1000形成于封装层250上。在一些实施例中,在显示功能层220的出光侧还可以包括抗反射结构(例如圆偏光片)的情况下,触控结构1000形成于封装层250和抗反射结构之间,金属网格100可以直接形成于封装层250的表面,即金属网格100与封装层250的表面之间没有其他膜层。
上述衬底210可以为有机衬底,也可以为无机衬底。衬底210的材料可以是聚对苯二甲酸乙二酯(Polyethylene terephthalate,简称PET)、聚酰亚胺(Polyimide,简称PI)、环烯烃聚合物(Cyclo Olefin Polymer,简称COP)等。
显示功能层220可以包括形成子像素221的多个功能膜层,例如:形成薄膜晶体管270的各膜层、阳极222、发光层223、阴极224等。子像素221的发光区221A可以理解为子像素221的有效发光面,每个子像素221的发光区221A的轮廓具有至少三个不同的延伸方向。
在一些实施例中,如图10和图11所示,所述显示功能层200包括:像素界定层225,开设有多个出光口225A,每个出光口225A确定一个子像素的发光区221A;所述出光口225A的形状与所述子像素221的发光区221A的形状大致相同。
像素界定层225的结构类似网格状,由挡墙围成多个出光口225A,一个子像素区域内设有一个出光口225A,出光口225A被配置为确定子像素221的发光区221A,发光层223所发出的光线穿过出光口225A,得到发光区221A。因此,出光口225A的形状与所述子像素221的发光区221A的形状大致相同。
像素界定层225中被配置为同一颜色的子像素221的发光区221A的多个出光口225A可以是同一形状,被配置为不同颜色的子像素221的发光区221A的出光口225A可以是不同形状。
在一种可能的实施方式中,结合图1E-图1H、图2E-图2K、图3E-图3H所示,子像素221与开口100A一一对应,至少部分子像素221在衬底210的正投影与开口100A在衬底210的正投影形状相似。
在一种可能的实施方式中,结合图1E-图1H、图2E-图2K、图3E-图3H所示,部分子像素221在衬底210的正投影超出开口100A在衬底210的正投影以外。具体的,例如,绿色子像素G在衬底210的正投影超出开口100A在衬底210的正投影以外。
在一种可能的实施方式中,结合图1E-图1H、图2E-图2K所示,子像素221包括红色子像素R,绿色子像素G以及蓝色子像素B;重叠单元Z内,两个第一子开口单元1201通过复用一绿色子像素G所在的开口连接;两个第二子开口单元1202通过复用一绿色子像素所在的开口连接。
在一种可能的实施方式中,结合图1F-图1I、图2F-图2K所示,蓝色子像素B包括第一蓝色子像素B1与第二蓝色子像素B2。
在一种可能的实施方式中,图2F-图2I所示,第一蓝色子像素B1在衬底210的正投影、第二蓝色子像素B2在衬底210的正投影,分别位于相邻的第 一外凸部b1在衬底210的正投影内与第二外凸部b2在衬底210的正投影内。
在一种可能的实施方式中,图1F、图1G、图2F所示,第一蓝色子像素B1与第二蓝色子像素B2为一体连接结构。
在一种可能的实施方式中,图1I、图2H-图2K所示,第一蓝色子像素B1与第二蓝色子像素B2为分离的结构。
在一种可能的实施方式中,图2J-图2K所示,第一蓝色子像素B1在衬底210的正投影、第二蓝色子像素B2在衬底210的正投影,分别位于两个第一外凸部b1在衬底210的正投影内。
基于同一发明构思,本公开实施例还提供一种触控显示装置,其中,包括如本公开实施例提供的显示面板。触控显示装置所能实现的有益效果与上述实施例中的显示面板900所能达到的有益效果相同,触控显示装置的结构上文已说明各结构,此处不再赘述。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (33)

  1. 一种触控结构,包括:
    金属网格,包括多条金属导线;
    其中,所述金属网格具有多个开口单元,每一所述开口单元包括至少三个开口,每个所述开口由多条金属导线围成,且围成每个所述开口的多条金属导线具有至少三个不同的延伸方向;用于划分所述开口单元内所述开口的至少一条所述金属导线,与围成所述开口单元外边界的各所述金属导线的延伸方向不同。
  2. 如权利要求1所述的触控结构,其中,围成所述开口单元外边界的所述金属导线数量,大于所述开口单元内部的所述金属导线数量。
  3. 如权利要求1或2所述的触控结构,其中,围成所述开口单元外边界的所述金属导线中,至少包括一对延伸方向相同的金属导线。
  4. 如权利要求3所述的触控结构,其中,所述开口单元外边界为平行六边形。
  5. 如权利要求4所述的触控结构,其中,围成所述开口单元外边界的所述金属导线包括:相对且平行设置的两条第一金属导线,相对且平行设置的两条第二金属导线,相对且平行设置的两条第三金属导线,其中一所述第二金属导线连接一所述第一金属导线与一所述第三金属导线,另一所述第二金属导线连接另一所述第一金属导线与另一所述第三金属导线。
  6. 如权利要求5所述的触控结构,其中,所述第三金属导线的长度大于所述第一金属导线的长度,所述第一金属导线的长度大于所述第二金属导线的长度。
  7. 如权利要求6所述的触控结构,其中,所述第二金属导线与相连的所述第三金属导线垂直。
  8. 如权利要求7所述的触控结构,其中,所述开口单元内,所述第一金属导线与相连的所述第二金属导线形成的第一夹角,与所述第一金属导线与 相连的所述第三金属导线形成的第二夹角相同。
  9. 如权利要求8所述的触控结构,其中,所述开口单元内,所述第一金属导线与相连的所述第二金属导线形成的第一夹角范围为120°~150°。
  10. 如权利要求5-9任一项所述的触控结构,其中,所述开口单元内包括:分别由所述第一金属导线中点且沿垂直于所述第一金属导线延伸的两条第四金属导线,以及沿平行于所述第二金属导线方向延伸、分别连接所述第四金属导线另一端与所述第三金属导线中点的两条第五金属导线。
  11. 如权利要求10所述的触控结构,其中,所述第四金属导线的长度为与所述第一金属导线长度的二分之一;所述第五金属导线的长度与所述第二金属导线的长度相等。
  12. 如权利要求3所述的触控结构,其中,所述开口单元外边界为十字形。
  13. 如权利要求12所述的触控结构,其中,所述开口单元包括:两个相对且沿第一方向向相远方向延伸的第一外凸部,以及两个相对且沿第二方向向相远方向延伸的第二外凸部;所述第一方向与所述第二方向垂直。
  14. 如权利要求13所述的触控结构,其中,所述第一外凸部的外边界包括:两条沿所述第一方向延伸的第六金属导线,以及连接两条所述第六金属导线且沿所述第二方向延伸的第七金属导线;
    所述第二外凸部的外边界包括:两条沿所述第二方向延伸的第八金属导线,以及连接两条所述第八金属导线且沿所述第一方向延伸的第九金属导线;第一外凸部的所述第六金属导线与相邻的所述第二外凸部的所述第八金属导线相交于第一节点。
  15. 如权利要求14所述的触控结构,其中,所述第六金属导线的长度大于所述第七金属导线的长度,所述第八金属导线的长度大于所述第九金属导线的长度。
  16. 如权利要求14或15所述的触控结构,其中,所述开口单元内部包括:连接相邻所述第一外凸部与所述第二外凸部的两个不相邻所述第一节点 的第十金属导线,以及连接所述第十金属导线中点与所述第十金属导线一侧的一所述第一节点的第十一金属导线。
  17. 如权利要求4-16任一项所述的触控结构,其中,所述开口单元包括:第一子开口单元与第二子开口单元,所述第一子开口单元与所述第二子开口单元为镜像对称结构,两个所述第一子开口单元与两个所述第二子开口单元围成一重复单元;
    所述重复单元内,两个所述第一子开口单元通过复用一开口连接,形成第一组合体;两个所述第二子开口单元通过复用一开口连接,形成第二组合体;
    所述第一组合体通过外边界的相邻两个所述金属导线,分别与两个不同所述第二子开口单元的所述金属导线进行复用形成重复单元Z。
  18. 如权利要求3所述的触控结构,其中,所述开口单元外边界为矩形。
  19. 如权利要求18所述的触控结构,其中,围成所述开口单元外边界的所述金属导线包括:沿第三方向延伸且相对设置的两条第十二金属导线,以及沿第三方向延伸且相对设置的两条第十三金属导线,其中一所述第十三金属导线分别连接两所述第十二金属导线的一端,另一所述第十三金属导线分别连接两所述第十二金属导线的另一端;
    所述开口单元内包括:由所述第十三金属导线上的一点向内延伸的第十四金属导线,以及连接相对两所述第十二金属导线的第十五金属导线,所述第十四金属导线的另一端连接于所述第十五金属导线上的一点;
    所述第十四金属导线、所述第十五金属导线中的至少一者既不平行于所述第三方向,也不平行于所述第四方向。
  20. 如权利要求19所述的触控结构,其中,所述第十五金属导线为一直线段。
  21. 如权利要求19所述的触控结构,其中,所述第十五金属导线包括两条延伸方向不同的子金属导线。
  22. 如权利要求21所述的触控结构,其中,其中一所述子金属导线与所 述第四方向的夹角为第三夹角,另一所述子金属导线与所述第四方向的夹角为第四夹角,所述第三夹角与所述第四夹角不相等。
  23. 如权利要求22所述的触控结构,其中,所述第三夹角的范围为10°~45°,所述第四夹角的范围为10°~45°。
  24. 一种显示面板,其中,包括:衬底,位于所述衬底一侧的显示功能层,以及位于所述显示功能层背离所述衬底一侧的如权利要求1-23任一项所述的触控结构;其中,所述显示功能层包括多个子像素,至少一个所述开口在所述衬底的正投影至少包围一个所述子像素在所述衬底的正投影。
  25. 如权利要求24所述的显示面板,其中,所述子像素与所述开口一一对应,至少部分所述子像素在所述衬底的正投影与所述开口在所述衬底的正投影形状相似。
  26. 如权利要求24或25所述的显示面板,其中,部分所述子像素在所述衬底的正投影超出所述开口在所述衬底的正投影以外。
  27. 如权利要求24-26任一项所述的显示面板,其中,所述子像素包括红色子像素,绿色子像素以及蓝色子像素;
    所述重叠单元内,两个所述第一子开口单元通过复用一所述绿色子像素所在的所述开口连接;两个所述第二子开口单元通过复用一所述绿色子像素所在的所述开口连接。
  28. 如权利要求27所述的显示面板,其中,所述蓝色子像素包括第一蓝色子像素与第二蓝色子像素。
  29. 如权利要求28所述的显示面板,其中,所述第一蓝色子像素在所述衬底的正投影、所述第二蓝色子像素在所述衬底的正投影,分别位于相邻的所述第一外凸部在所述衬底的正投影内与所述第二外凸部在所述衬底的正投影内。
  30. 如权利要求29所述的显示面板,其中,所述第一蓝色子像素与所述第二蓝色子像素为一体连接结构。
  31. 如权利要求29所述的显示面板,其中,所述第一蓝色子像素与所述 第二蓝色子像素为分离的结构。
  32. 如权利要求28所述的显示面板,其中,所述第一蓝色子像素在所述衬底的正投影、所述第二蓝色子像素在所述衬底的正投影,分别位于两个所述第一外凸部在所述衬底的正投影内。
  33. 一种触控显示装置,其中,包括如权利要求24-32任一项所述的显示面板。
PCT/CN2022/090499 2022-04-29 2022-04-29 触控结构、显示面板和触控显示装置 WO2023206440A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/090499 WO2023206440A1 (zh) 2022-04-29 2022-04-29 触控结构、显示面板和触控显示装置
CN202280001037.9A CN117321552A (zh) 2022-04-29 2022-04-29 触控结构、显示面板和触控显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090499 WO2023206440A1 (zh) 2022-04-29 2022-04-29 触控结构、显示面板和触控显示装置

Publications (1)

Publication Number Publication Date
WO2023206440A1 true WO2023206440A1 (zh) 2023-11-02

Family

ID=88516974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090499 WO2023206440A1 (zh) 2022-04-29 2022-04-29 触控结构、显示面板和触控显示装置

Country Status (2)

Country Link
CN (1) CN117321552A (zh)
WO (1) WO2023206440A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069261A (ja) * 2011-09-08 2013-04-18 Dainippon Printing Co Ltd タッチパネル用電極基材、及びタッチパネル、並びに画像表示装置
CN104298388A (zh) * 2013-07-17 2015-01-21 胜华科技股份有限公司 触控板以及触控板的网格的形成方法
CN104656966A (zh) * 2013-11-19 2015-05-27 胜华科技股份有限公司 触控板
CN106990858A (zh) * 2016-01-21 2017-07-28 倍胜光电股份有限公司 可消除莫瑞效应的触控面板
CN111736726A (zh) * 2020-06-22 2020-10-02 京东方科技集团股份有限公司 一种触控基板及触控显示装置
CN113504845A (zh) * 2021-07-01 2021-10-15 深圳莱宝高科技股份有限公司 一种导电结构及其制备方法、触摸面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069261A (ja) * 2011-09-08 2013-04-18 Dainippon Printing Co Ltd タッチパネル用電極基材、及びタッチパネル、並びに画像表示装置
CN104298388A (zh) * 2013-07-17 2015-01-21 胜华科技股份有限公司 触控板以及触控板的网格的形成方法
CN104656966A (zh) * 2013-11-19 2015-05-27 胜华科技股份有限公司 触控板
CN106990858A (zh) * 2016-01-21 2017-07-28 倍胜光电股份有限公司 可消除莫瑞效应的触控面板
CN111736726A (zh) * 2020-06-22 2020-10-02 京东方科技集团股份有限公司 一种触控基板及触控显示装置
CN113504845A (zh) * 2021-07-01 2021-10-15 深圳莱宝高科技股份有限公司 一种导电结构及其制备方法、触摸面板及显示装置

Also Published As

Publication number Publication date
CN117321552A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
KR102124906B1 (ko) 터치스크린을 구비한 유기전계 발광소자 및 이의 제조 방법
US11782543B2 (en) Touch display panel and electronic device
CN212515770U (zh) 触控结构、触控显示基板和触控显示装置
US11342407B2 (en) OLED display substrate and display panel
US11626456B2 (en) Display device including stepped section substrate with embedded camera
KR20180077747A (ko) 전계 발광 표시장치
US11921963B2 (en) Touch structure, touch display structure, and touch display device
US11789571B2 (en) Touch structure, touch display panel and electronic device
US11782558B2 (en) Touch structure, touch display panel and electronic device
KR20220142991A (ko) 터치 패널
GB2594117A (en) Display device
CN212277199U (zh) 显示面板和显示装置
WO2023071635A1 (zh) 触控结构、显示基板及显示面板
WO2023206440A1 (zh) 触控结构、显示面板和触控显示装置
CN216817375U (zh) 触控结构、显示基板及显示面板
WO2023141836A1 (zh) 触控结构、触控显示面板及显示装置
WO2022179190A1 (zh) 触控面板及其制备方法、显示触控装置
US20220317807A1 (en) Touch structure, touch display panel and electronic device
US11417715B2 (en) Array substrate, display screen and display device
KR20220000446A (ko) 표시 장치
US20240045544A1 (en) Display panel
WO2023035188A1 (zh) 触控面板、触控显示面板和触控显示装置
WO2022052778A1 (zh) 触控结构、显示面板及电子装置
CN115268708A (zh) 一种触控面板及触控显示装置
KR20230016146A (ko) 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939288

Country of ref document: EP

Kind code of ref document: A1