WO2023206317A1 - 显示面板及其老化补偿方法和显示装置 - Google Patents

显示面板及其老化补偿方法和显示装置 Download PDF

Info

Publication number
WO2023206317A1
WO2023206317A1 PCT/CN2022/090134 CN2022090134W WO2023206317A1 WO 2023206317 A1 WO2023206317 A1 WO 2023206317A1 CN 2022090134 W CN2022090134 W CN 2022090134W WO 2023206317 A1 WO2023206317 A1 WO 2023206317A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting element
brightness
time
real
Prior art date
Application number
PCT/CN2022/090134
Other languages
English (en)
French (fr)
Inventor
孟松
何敏
Original Assignee
京东方科技集团股份有限公司
合肥京东方卓印科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方卓印科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000969.1A priority Critical patent/CN117321670A/zh
Priority to PCT/CN2022/090134 priority patent/WO2023206317A1/zh
Publication of WO2023206317A1 publication Critical patent/WO2023206317A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]

Definitions

  • Embodiments of the present disclosure belong to the field of display technology, and specifically relate to a display panel, an aging compensation method thereof, and a display device.
  • Active Matrix/Organic Light Emitting Diode devices have the advantages of self-illumination, fast response, high contrast, and low power consumption, and are increasingly being used in display devices.
  • Active matrix organic light-emitting diode devices have a variety of structures, which can be selected and set according to actual needs.
  • active matrix organic light emitting diode devices can be organic electroluminescent diodes (Organic Light Emitting Diode, OLED for short), quantum dot light emitting diodes (Quantum Dot Light Emitting Diodes, QLED for short) or micro light emitting diodes (Micro Light Emitting Diode). Diodes, referred to as Micro LED), etc.
  • the active matrix organic light-emitting diode device is a current-driven light-emitting device. As the use time increases, the efficiency of the device will gradually decrease. The decrease in efficiency will lead to a decrease in brightness and will cause an aging afterimage on the display panel. When the efficiency drops to a certain level, the panel will reach the end of its life cycle and can only be scrapped.
  • Embodiments of the present disclosure provide a display panel, an aging compensation method thereof, and a display device.
  • an embodiment of the present disclosure provides a display panel, which includes:
  • a storage module configured to store a first mapping relationship table;
  • the first mapping relationship table is a correspondence relationship table between the brightness accumulation amount of the light-emitting element in the display panel and the brightness compensation gain value;
  • An accumulation module configured to accumulate brightness data of the light-emitting elements in real time when the display panel is turned on, and obtain a real-time accumulation amount of brightness data
  • the main control module is configured to search the corresponding brightness compensation gain value in the first mapping relationship table according to the real-time accumulation amount of the brightness data;
  • the light-emitting element is lit in real time according to the real-time data signal that lights the light-emitting element, so that the light-emitting element achieves a real-time target brightness.
  • the accumulation module includes a first short-term memory
  • the first short-term memory is configured to start accumulating the brightness data of the light-emitting element in real time when the display panel is turned on;
  • the main control module is configured to read out and store the last accumulation result of brightness data in the first short-term memory each time the first short-term memory accumulates the brightness data of the light-emitting element.
  • the first cache In the first cache;
  • the current brightness data accumulation result in the second cache is stored in the first short-term memory.
  • the first short-term memory is configured to accumulate the brightness data of the light-emitting element starting from 0 when the display panel is turned on.
  • the accumulation module further includes a long-term memory
  • the long-term memory is configured to start accumulating the brightness data of the light-emitting element in real time when the display panel is turned on;
  • the main control module is configured to read out the brightness data accumulation result in the first short-term memory and store it in the first short-term memory each time the long-term memory accumulates the brightness data of the light-emitting element. In the cache; read out the last accumulation result of brightness data in the long-term memory and store it in the second cache;
  • the accumulated result of the added brightness data in the third buffer is stored in the long-term memory.
  • the long-term memory is configured to accumulate the brightness data of the light-emitting element starting from the last brightness data accumulation result when the display panel is turned on.
  • the first short-term memory is configured to suspend accumulation of the brightness data of the light-emitting element while the long-term memory accumulates the brightness data of the light-emitting element;
  • the display panel further includes a second short-term memory
  • the second short-term memory is configured to start accumulating the brightness data of the light-emitting element in real time from 0 when the first short-term memory stops accumulating the brightness data of the light-emitting element.
  • the storage module includes a third short-term memory
  • the main control module is configured to read the real-time accumulation of brightness data of the light-emitting element in the long-term memory and store it in the third short-term memory;
  • the corresponding brightness compensation gain value is searched in the first mapping relationship table, and the brightness compensation gain value is stored in the third short-term memory.
  • the long-term memory is configured to accumulate brightness data of at least one row of the light-emitting elements at a time.
  • the first short-term memory is configured to accumulate brightness data of at least one row of the light-emitting element at a time
  • the second short-term memory is configured to accumulate brightness data of at least one row of the light-emitting elements at a time.
  • n ranges from 1.4 to 1.6;
  • A1 and A2 represent any two accumulated brightness data of the light-emitting element;
  • L1 represents the actual brightness value of the light-emitting element corresponding to A1;
  • L2 represents the brightness data corresponding to A2 The actual brightness value of the light-emitting element.
  • the main control module is configured to multiply the real-time target brightness value of the light-emitting element by the brightness compensation gain value corresponding to the real-time accumulation of brightness data to obtain a compensated brightness value;
  • the digital current signal is converted into an analog voltage signal; the analog voltage signal is a real-time data signal that lights the light-emitting element.
  • the light-emitting elements include first, second, third and fourth light-emitting elements with different colors
  • the storage module is further configured to store a second mapping relationship table;
  • the second mapping relationship table is the corresponding relationship between the brightness accumulation amount of the fourth light-emitting element in the display panel and the chromaticity compensation gain value. surface;
  • the accumulation module is further configured to accumulate the brightness data of the fourth light-emitting element in real time when the display panel is turned on, and obtain a real-time accumulation amount of brightness data;
  • the main control module is further configured to search the second mapping relationship table for its corresponding chroma compensation gain value according to the real-time accumulation amount of the brightness data;
  • the other color light-emitting elements that perform chromaticity compensation on the fourth light-emitting element are illuminated in real time according to the real-time data signals of the other color light-emitting elements that perform chromaticity compensation on the fourth light-emitting element, so that the fourth light-emitting element emits light.
  • the component implements real-time target brightness and real-time target color.
  • the main control module is further configured to adjust the brightness of the first light-emitting element, the second light-emitting element and the third light-emitting element according to the change in chromaticity of the fourth light-emitting element before and after aging. Select two colors of light-emitting components from the components for complementary colors;
  • the second mapping relationship table includes a first relationship table and a second relationship table
  • the first relationship table is a mapping relationship table between the cumulative brightness of the fourth light-emitting element and the first chromaticity compensation gain value of the light-emitting element of one color;
  • the second relationship table is a mapping relationship table between the cumulative brightness of the fourth light-emitting element and the second chromaticity compensation gain value of the light-emitting element of another color;
  • the main control module is further configured to compare the compensated brightness value of the light-emitting element of one of the selected two colors of light-emitting elements and the real-time target brightness value of the fourth light-emitting element with the brightness. Add the products of the first chroma compensation gain value corresponding to the real-time accumulation amount of data to obtain the first complementary color brightness value;
  • the compensated brightness value of the light-emitting element of the other of the two selected colors of light-emitting elements and the real-time target brightness value of the fourth light-emitting element are matched with the second real-time accumulation amount of brightness data.
  • the products of the chroma compensation gain values are added to obtain the second complementary color brightness value;
  • the first complementary color brightness value and the second complementary color brightness value are respectively included in the real-time data signals of the two color light-emitting elements that perform chromaticity compensation on the fourth light-emitting element.
  • the first light-emitting element includes a red light-emitting element; the second light-emitting element includes a green light-emitting element; and the third light-emitting element includes a blue light-emitting element;
  • the fourth light-emitting element includes a white light-emitting element.
  • the number of the light-emitting elements is multiple, and the plurality of light-emitting elements are arranged in an array;
  • the display panel also includes a detection calculation module configured to detect and calculate to obtain the first mapping relationship table
  • the detection calculation module includes:
  • the first accumulation unit is configured to light each of the light-emitting elements at the same brightness for different durations and/or at different brightnesses at the same time and/or at different brightnesses for different durations; the different durations correspond to At different time nodes, obtain the cumulative brightness of each of the light-emitting elements at different time nodes;
  • a first calculation unit configured to calculate the efficiency of each of the light-emitting elements at different time nodes based on the cumulative brightness of each of the light-emitting elements at different time nodes;
  • a table building unit configured to establish a one-to-one mapping relationship table between the cumulative brightness of each light-emitting element at different time nodes and the brightness compensation gain value of each light-emitting element at different time nodes.
  • the number of the fourth light-emitting elements is multiple;
  • the detection calculation module is also configured to detect and calculate to obtain the second mapping relationship table
  • the first accumulation unit is further configured to light up each of the fourth light-emitting elements in the display panel at the same brightness for different durations and/or at different brightnesses at the same time and/or at different brightnesses. Light up for different durations under the brightness; different durations respectively correspond to different time nodes, and the cumulative brightness of each of the fourth light-emitting elements at different time nodes is obtained;
  • the first calculation unit is further configured to measure the chromaticity value of each of the fourth light-emitting elements at different time nodes;
  • the table building unit is further configured to establish a one-to-one correspondence between the cumulative brightness of each of the fourth light-emitting elements at different time nodes and the chromaticity compensation gain value of each of the fourth light-emitting elements at different time nodes.
  • the second mapping relationship table is further configured to establish a one-to-one correspondence between the cumulative brightness of each of the fourth light-emitting elements at different time nodes and the chromaticity compensation gain value of each of the fourth light-emitting elements at different time nodes.
  • the first accumulation unit is configured to extract different M rows of brightness data of the light-emitting elements in each frame of N consecutive frames for accumulation. After the N frames are displayed, all The brightness data of the light-emitting elements are accumulated once respectively; where M ⁇ N is the number of rows of the light-emitting elements in the display panel;
  • the first accumulation unit is configured to accumulate the brightness data of the light-emitting element frame by frame.
  • the efficiency of the light-emitting element at different time nodes the actual brightness value of the light-emitting element at the current time node/the light-emitting element before aging the initial actual brightness value;
  • the efficiency of the light-emitting element at different time nodes (actual brightness value of the light-emitting element at the current time node/current lighting current of the light-emitting element )/(initial actual brightness value of the light-emitting element before aging/initial lighting current of the light-emitting element before aging).
  • the brightness compensation gain value of the light-emitting element at different time nodes 1/the efficiency of the light-emitting element at different time nodes.
  • an embodiment of the present disclosure further provides a display device, which includes the above-mentioned display panel.
  • embodiments of the present disclosure also provide an aging compensation method for a display panel, which includes:
  • the brightness data of the light-emitting elements are accumulated in real time to obtain the real-time accumulation of brightness data
  • the light-emitting element is lit in real time according to the real-time data signal that lights the light-emitting element, so that the light-emitting element achieves a real-time target brightness.
  • the light-emitting elements include first, second, third and fourth light-emitting elements with different colors
  • the aging compensation method also includes:
  • the brightness data of the fourth light-emitting element is accumulated in real time to obtain the real-time accumulation of brightness data
  • the other color light-emitting elements that perform chromaticity compensation on the fourth light-emitting element are illuminated in real time according to the real-time data signals of the other color light-emitting elements that perform chromaticity compensation on the fourth light-emitting element, so that the fourth light-emitting element emits light.
  • the component implements real-time target brightness and real-time target color.
  • FIG. 1 is a circuit diagram of an aging detection pixel that compensates for the characteristics of a thin film transistor in a pixel driving circuit for driving an OLED device in the disclosed technology.
  • FIG. 2 is a flow chart of a display panel aging compensation method in an embodiment of the present disclosure.
  • FIG. 3 is a correspondence curve between the actual brightness value of the light-emitting element and the accumulated brightness data of the light-emitting element during the brightness accumulation process of the light-emitting element.
  • FIG. 4 is a corresponding relationship curve between the brightness accumulation amount of the light-emitting element and the brightness compensation gain value in the embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of the principle that the first short-term memory accumulates the brightness data of the light-emitting element each time.
  • FIG. 6 is a schematic diagram of the principle that the long-term memory accumulates the brightness data of the light-emitting element each time.
  • FIG. 7 is a flow chart of aging brightness compensation for a display panel including red, green, and blue light-emitting elements in an embodiment of the present disclosure.
  • FIG. 9 is a flow chart of aging brightness and chromaticity compensation for a display panel including red, green, blue, and white light-emitting elements in an embodiment of the present disclosure.
  • FIG. 10 is a functional block diagram of aging compensation of a display panel in an embodiment of the present disclosure.
  • Active Matrix/Organic Light Emitting Diode Panels Active Matrix/Organic Light Emitting Diode Panels
  • Active Matrix Organic Light Emitting Diode panels have always faced challenges with afterimages and lifespan.
  • the active matrix organic light-emitting diode device in the panel is a current-driven device. During use, the current will cause irreversible aging of the active matrix organic light-emitting diode device. This aging will cause the device to The efficiency decreases, that is, when the same current is given to the device, the brightness cannot reach the original brightness.
  • TFTs thin film transistors
  • the compensation for the aging of active matrix organic light-emitting diode devices (such as OLED devices) in active matrix organic light-emitting diode panels is mainly through compensation for the characteristics of the thin film transistors in the pixel driving circuits that drive them.
  • FIG 1 it is an aging detection pixel circuit diagram in the public technology that compensates the characteristics of the thin film transistor (TFT) in the pixel driving circuit of the OLED device.
  • TFT thin film transistor
  • the OLED device D is used to detect the change in the cross voltage between the anode and the cathode of the OLED device D.
  • the change in the cross voltage of the OLED device D reflects the aging degree of the OLED device D, and then the aging compensation of the OLED device D is carried out.
  • the aging compensation method in the public technology first requires a complex pixel circuit, which will reduce the aperture ratio of the display panel; secondly, it needs to complete the compensation of TFT characteristics; but actual tests found that during OLED cross-voltage detection, the impact of TFT characteristics on OLED cross-voltage detection cannot be completely ruled out.
  • the aging compensation scheme of OLED devices in the public technology requires sub-pixels to be lit row by row during detection, so a bright line will be generated during the detection process, which greatly affects the look and feel. This also makes it difficult for the OLED device aging compensation scheme in the public technology to be widely used.
  • an embodiment of the present disclosure provides an aging compensation method for a display panel.
  • FIG. 2 is a flow chart of the aging compensation method for a display panel in an embodiment of the present disclosure.
  • the method includes: Step S01: Detect and calculate to obtain a first mapping relationship table between the cumulative brightness of the light-emitting elements in the display panel and the brightness compensation gain value.
  • the display panel includes a plurality of light-emitting elements, and the plurality of light-emitting elements are arranged in an array.
  • This step specifically includes: Step S011: Lighting each light-emitting element in the display panel at the same brightness for different durations and/or at different brightnesses for different durations and/or at different brightnesses for different durations. Corresponding to different time nodes, the cumulative brightness of each light-emitting element at different time nodes is obtained.
  • the light-emitting element may be an organic electroluminescent diode (Organic Light Emitting Diode, OLED for short), a quantum dot light-emitting diode (Quantum Dot Light Emitting Diodes, QLED for short), or a Micro Light Emitting Diode (Micro Light Emitting Diodes, for short). Micro LED) or Mini Light Emitting Diodes (Mini LED for short), etc.
  • OLED Organic Light Emitting Diode
  • QLED Quantum Dot Light Emitting Diodes
  • Micro Light Emitting Diode Micro Light Emitting Diode
  • Mini Light Emitting Diodes Mini LED for short
  • the display panel when the brightness of each light-emitting element is accumulated, the display panel is divided into multiple areas, and the lighting brightness of the light-emitting elements in each area is different; for example, the display panel is divided into four areas, and the first area is lit.
  • the brightness is 150nit
  • the lighting brightness of the second area is 200nit
  • the lighting brightness of the third area is 300nit
  • the lighting brightness of the fourth area is 450nit
  • the brightness of each light-emitting element is accumulated at different intervals; for example, the first interval is 24
  • the brightness of each light-emitting element is accumulated once every hour, and then the brightness of each light-emitting element is accumulated every 48 hours.
  • the light-emitting elements in an area accumulate the brightness of each light-emitting element every 24 hours and 48 hours respectively, realizing the accumulation of the brightness of each light-emitting element in the area when lit for different lengths of time at the same brightness; the light-emitting elements in each area are lit for 24 hours Accumulating the brightness of each light-emitting element realizes the accumulation of the brightness of each light-emitting element at the same time under different brightness.
  • the light-emitting elements in each area accumulate the brightness of each light-emitting element every 24 hours and 48 hours respectively, realizing the point-to-point brightness under different brightness.
  • the above-mentioned process of accumulating the brightness of the light-emitting element mainly takes into account that the requirements for data bandwidth and memory storage capacity of the brightness accumulation process can be met.
  • step S011 refer to Figure 3, which is the corresponding relationship curve between the actual brightness value of the light-emitting element and the accumulated brightness data of the light-emitting element during the brightness accumulation process of the light-emitting element; the vertical axis of the two-dimensional coordinate system where the corresponding relationship curve in Figure 3 is located is The coordinates represent the brightness data of the light-emitting element accumulated each time; the brightness data of the light-emitting element accumulated each time is the actual brightness on the corresponding ordinate found from the corresponding relationship curve based on the actual brightness value of the light-emitting element represented by the abscissa in Figure 3.
  • the abscissa represents the actual brightness value of the light-emitting element (that is, the actual brightness, the brightness unit is nit). Since the actual brightness value of the light-emitting element (that is, the actual brightness, the unit of brightness is nit) is not linearly related to the aging of the light-emitting element, but satisfies the exponential relationship shown in Figure 3, so when accumulating different brightnesses of the light-emitting element, it cannot The actual brightness values of the light-emitting elements are directly accumulated, but according to the corresponding relationship curve in Figure 3, the actual brightness values of the light-emitting elements represented by the abscissa in the two-dimensional coordinate system where the curve is located are converted into the corresponding light-emitting elements on the ordinate. The brightness data of the light-emitting element is then accumulated, and the accumulation result of the brightness data of the light-emitting element is used as the accumulated brightness of the light-emitting element at different time nodes.
  • obtaining the cumulative brightness of each light-emitting element at different time nodes includes: in consecutive N frames, extracting and accumulating the brightness data of different M rows of light-emitting elements in each frame, and displaying the N frames After completion, the brightness data of all light-emitting elements are accumulated once respectively; where, M ⁇ N is the number of rows of light-emitting elements in the display panel. That is, the brightness data of different M rows of light-emitting elements are extracted and accumulated in each frame. After N frames, the brightness data of all light-emitting elements in the display panel are accumulated once. This accumulation method is suitable for situations where the storage capacity of the memory storing the brightness accumulation amount is not very large and can store less data.
  • obtaining the cumulative brightness of each light-emitting element at different time nodes includes: accumulating the brightness data of the light-emitting element frame by frame. That is, the brightness data of all light-emitting elements on the display panel is accumulated every frame. This accumulation method is suitable for situations where the memory storing the brightness accumulation amount has a large storage capacity and can store a large amount of data.
  • each light-emitting element at different time nodes, other accumulation methods can also be used. As long as the brightness data of each light-emitting element on the display panel is accumulated, ensure that the brightness data of the light-emitting elements are in order from small to large. All the increased cumulative luminance amounts are accumulated. As long as all the accumulated luminance amounts of the light-emitting elements that increase from small to large are accumulated, it can be ensured that each luminance accumulated amount of the light-emitting element is treated differently.
  • the brightness compensation gain value is compensated to achieve more accurate aging compensation of the light-emitting elements and improve the display quality of the display panel.
  • Step S012 Calculate the efficiency of each light-emitting element at different time nodes based on the cumulative brightness of each light-emitting element at different time nodes.
  • the efficiency of the light-emitting element at different time nodes (actual brightness value of the light-emitting element at the current time node/current lighting current of the light-emitting element)/(luminescence
  • the initial actual brightness value before the component ages/the initial lighting current before the light-emitting component ages). That is , X (L current /I current )/(L initial /I initial ); where , The initial actual brightness value before the component ages; Icurrent is the current lighting current of the light-emitting component; IInitial is the initial lighting current of the light-emitting component before aging.
  • Step S013 Calculate the brightness compensation gain value of each light-emitting element at different time nodes based on the efficiency of each light-emitting element at different time nodes.
  • the brightness compensation gain value of the light-emitting element at different time nodes 1/the efficiency of the light-emitting element at different time nodes.
  • Step S014 Establish a one-to-one first mapping relationship table between the cumulative brightness of each light-emitting element at different time nodes and the brightness compensation gain value of each light-emitting element at different time nodes.
  • FIG. 4 a corresponding relationship curve between the brightness accumulation amount of the light-emitting element and the brightness compensation gain value in the embodiment of the present disclosure is shown.
  • the light-emitting element includes a first light-emitting element, a second light-emitting element and a third light-emitting element with different colors.
  • the first light-emitting element includes a red light-emitting element; the second light-emitting element includes a green light-emitting element; and the third light-emitting element includes a blue light-emitting element.
  • the corresponding relationship curve between the brightness accumulation amount of the light-emitting element of each color and the brightness compensation gain value can be referred to the corresponding relationship curve in FIG. 4 .
  • Step S02 Store the first mapping relationship table in the display panel.
  • the first mapping relationship table is stored in the timing controller (ie TCON) in the display panel.
  • Step S03 When the display panel is turned on, the brightness data of the light-emitting elements are accumulated in real time to obtain the real-time accumulation of brightness data.
  • the display panel includes a first short-term memory.
  • the first short-term memory uses double-rate synchronous dynamic random access memory (Double Data Rate, or DDR).
  • DDR Double Data Rate
  • This step specifically includes: when the display panel is turned on, the first short-term memory begins to accumulate the brightness data of the light-emitting element in real time; refer to Figure 5, which is a schematic diagram of the principle of each time the first short-term memory accumulates the brightness data of the light-emitting element; the first short-term memory Each time the memory DDR1 accumulates the brightness data of the light-emitting element, it includes: reading out the last accumulated brightness data in the first short-term memory DDR1 and storing it in the first cache RAM1; reading the last brightness data in the first cache RAM1.
  • the accumulation result is added to the current brightness data of the lighting element to obtain the current brightness data accumulation result; the current brightness data accumulation result is stored in the second cache RAM2; the current brightness data in the second cache RAM2 is stored in the second cache RAM2.
  • the brightness data accumulation result is stored in the first short-term memory DDR1.
  • the first short-term memory DDR1 when the display panel is turned on, starts to accumulate the brightness data of the light-emitting elements from 0. The brightness data accumulated in the first short-term memory DDR1 is cleared to 0 when the power is turned off.
  • the first short-term memory accumulates brightness data of at least one row of light-emitting elements at a time. That is, the amount of brightness data accumulated by the first short-term memory each time needs to be determined according to the storage capacity of the first short-term memory. If the storage capacity of the first short-term memory is small, the brightness data of one or several rows of light-emitting elements can be accumulated at a time; if The first short-term memory has a large storage capacity and can accumulate one or several frames of brightness data of the light-emitting element at a time.
  • the display panel also includes long-term memory.
  • the long-term memory uses eMMC (Embedded Multi Media Card, embedded memory) with MMC (Multi Media Card) interface, flash memory device and main controller.
  • eMMC embedded Multi Media Card
  • MMC Multi Media Card
  • step S03 specifically includes: when the display panel is turned on, the long-term memory begins to accumulate the brightness data of the light-emitting elements in real time.
  • Figure 6 which is a schematic diagram of the principle of the long-term memory accumulating the brightness data of the light-emitting elements each time;
  • the long-term memory eMMC accumulates the brightness data of the light-emitting element, it includes: reading out the brightness data accumulation result in the first short-term memory DDR1 and storing it in the first cache RAM1; accumulating the last brightness data in the long-term memory eMMC The result is read out and stored in the second cache RAM2; the brightness data accumulation results in the first cache RAM1 and the second cache RAM2 are read and added together, and the added brightness data accumulation result is stored in the third cache In RAM3; store the accumulated result of brightness data added in the third buffer RAM3 into the long-term memory eMMC.
  • the long-term memory eMMC when the display panel is turned on, the long-term memory eMMC accumulates the brightness data of the light-emitting elements starting from the last brightness data accumulation result. Long-term memory eMMC does not lose data when powered off.
  • the long-term memory accumulates brightness data of at least one row of light-emitting elements at a time.
  • the amount of brightness data accumulated by the long-term memory each time needs to be determined according to the cache capacity of the third cache. If the cache capacity of the third cache is small, the long-term memory can accumulate the brightness data of one or several rows of light-emitting elements at a time; if the third cache If the buffer capacity is large, the long-term memory can accumulate one or several frames of brightness data of the light-emitting element at a time until the entire frame of brightness data is accumulated.
  • the first short-term memory suspends accumulating the brightness data of the light-emitting elements. Since when the long-term memory accumulates brightness data, the first short-term memory must cooperate to store the accumulated brightness data into the long-term memory. Therefore, when the long-term memory accumulates brightness data, the first short-term memory suspends the accumulation of brightness data.
  • the brightness data of the light-emitting element is usually accumulated in the first short-term memory first, and then the brightness data accumulated in the first short-term memory is stored in the long-term memory, so when the long-term memory accumulates the brightness data, the first short-term memory
  • the real-time brightness data of OLED cannot be accumulated.
  • the real-time brightness data of some light-emitting elements will be lost.
  • the display panel further includes a second short-term memory.
  • the second short-term memory uses double-rate synchronous dynamic random access memory (Double Data Rate, or DDR).
  • DDR double-rate synchronous dynamic random access memory
  • the first short-term memory stops accumulating the brightness data of the light-emitting element the second short-term memory starts from 0 to accumulate the brightness data of the light-emitting element in real time.
  • the second short-term memory can accumulate the brightness data of the light-emitting element in real time when the first short-term memory pauses accumulation, thereby avoiding the loss of the real-time brightness data of the light-emitting element, thereby making the real-time brightness data accumulation result of the light-emitting element more accurate, and ultimately ensuring Accuracy of aging compensation for light-emitting components.
  • the second short-term memory accumulates brightness data of at least one row of light-emitting elements at a time. That is, the amount of brightness data accumulated in the second short-term memory each time needs to be determined according to the storage capacity of the second short-term memory. If the storage capacity of the second short-term memory is small, the brightness data of one or several rows of light-emitting elements can be accumulated at a time; if The second short-term memory has a large storage capacity and can accumulate one or several frames of brightness data of the light-emitting element at a time.
  • step S03 when the display panel is turned on, the brightness data of the light-emitting elements are accumulated in real time.
  • the brightness data of the light-emitting elements accumulated each time is the same as the brightness data of the light-emitting elements.
  • Step S04 Search the first mapping relationship table for its corresponding brightness compensation gain value according to the real-time accumulation amount of brightness data.
  • Step S041 When the display panel is turned on, read the real-time accumulation of brightness data of the light-emitting elements in the long-term memory, and store it in the third short-term memory.
  • Step S042 Read the real-time accumulation amount of brightness data of the light-emitting element in the third short-term memory, and search the corresponding brightness compensation gain value in the first mapping table according to the real-time accumulation amount of brightness data of the light-emitting element.
  • this step S04 specifically includes: Step S041': When the display panel is turned on, read the real-time accumulation amount of the brightness data of the light-emitting element in the long-term memory; Step S042': According to the real-time accumulation amount of the brightness data of the light-emitting element The corresponding brightness compensation gain value is searched in the first mapping relationship table, and the brightness compensation gain value is stored in the third short-term memory.
  • the third short-term memory may be one or a group, and a group may include multiple third short-term memories.
  • the third short-term memory uses double rate synchronous dynamic random access memory (Double Data Rate, DDR).
  • DDR Double Data Rate
  • Step S05 Calculate the real-time data signal for lighting the light-emitting element based on the brightness compensation gain value corresponding to the real-time accumulation of brightness data and the real-time target brightness value of the light-emitting element.
  • step S05 specifically includes: step S051: multiply the real-time target brightness value of the light-emitting element by the brightness compensation gain value corresponding to the real-time accumulation amount of brightness data to obtain a compensated brightness value.
  • the real-time target brightness value of the light-emitting element refers to the real-time brightness value of the light-emitting element before aging (that is, the actual brightness, the brightness unit is nit).
  • the compensated brightness value needs to be provided to the aged light-emitting element so that the aged light-emitting element can achieve its real-time target brightness value after compensation.
  • Step S052 Convert the compensated brightness value into a digital current signal that drives the light-emitting element to emit light.
  • the compensated brightness value is positively correlated with the digital current signal that drives the light-emitting element to emit light.
  • Step S053 Convert the digital current signal into an analog voltage signal; the analog voltage signal is a real-time data signal for lighting the light-emitting element.
  • the real-time data signal that lights up the light-emitting element is provided to the driving circuit of the light-emitting element through the data line, and the driving circuit drives the light-emitting element to emit light.
  • FIG. 7 is a flow chart of aging brightness compensation for a display panel including red, green, and blue light-emitting elements in an embodiment of the present disclosure;
  • the R GL, G GL, and B GL input to the main control chip They are the grayscale signals of the red light-emitting element, the green light-emitting element, and the blue light-emitting element respectively;
  • LR, LG, and LB are the brightness values of the red light-emitting element, the green light-emitting element, and the blue light-emitting element respectively (that is, the actual brightness, the brightness unit is nit );
  • the main control chip converts the grayscale signal of the light-emitting element into the brightness value of the light-emitting element (that is, the actual brightness, the brightness unit is nit);
  • the main control chip reads the brightness compensation of different color light-emitting elements in the third short-term memory DDR3 Gain values (i.e.
  • GainR, GainG, GainB after compensation calculation, obtain the compensated brightness values of different color light-emitting elements, i.e. O_LR, O_LG, O_LB; then convert the compensated brightness values of different color light-emitting elements into driving them to emit light
  • the digital current signals namely O_R, O_G, O_B; finally, the digital current signals are converted into analog voltage signals, namely V_R, V_G, V_B, through the data driver chip (ie, Source IC); this analog voltage signal is the real-time function of lighting the luminous element.
  • Data signal the analog voltage signal is provided to each light-emitting element in the display panel (ie, Panel) through the data line.
  • the brightness compensation gain value of the light-emitting element is:
  • Step S06 Light the light-emitting element in real time according to the real-time data signal of the light-emitting element, so that the light-emitting element achieves the real-time target brightness.
  • the real-time target brightness of the light-emitting element refers to the real-time brightness value of the light-emitting element before aging (that is, the actual brightness, the brightness unit is nit).
  • the light-emitting element includes a first light-emitting element, a second light-emitting element, a third light-emitting element and a fourth light-emitting element with different colors; in the aging compensation method, step S01 also includes: detecting and calculating to obtain the fourth light-emitting element in the display panel.
  • step S011 also includes: lighting each fourth light-emitting element in the display panel at the same brightness for different durations and/or lighting up at different brightnesses at the same time and/or lighting up at different brightnesses for different durations. , different durations respectively correspond to different time nodes, and the cumulative brightness of each fourth light-emitting element at different time nodes is obtained.
  • the actual brightness value of the fourth light-emitting element represented by the abscissa in the two-dimensional coordinate system where the curve is located is converted into the corresponding brightness data of the fourth light-emitting element on the ordinate, and then the brightness data of the fourth light-emitting element is accumulated, and the fourth light-emitting element is accumulated.
  • the cumulative result of the brightness data of the four light-emitting elements is used as the cumulative brightness of the fourth light-emitting element at different time nodes.
  • the specific accumulation process and method for obtaining the cumulative brightness of each fourth light-emitting element at different time nodes is the same as obtaining the aforementioned brightness of the first light-emitting element, the second light-emitting element, and the third light-emitting element at different time nodes.
  • the process and method of accumulators are the same and will not be repeated here.
  • Step S012 also includes: measuring the chromaticity value of each fourth light-emitting element at different time nodes.
  • Step S013 also includes: calculating the chromaticity compensation gain value of each fourth light-emitting element at different time nodes based on the chromaticity value of each fourth light-emitting element at different time nodes.
  • the chromaticity compensation gain values at different time nodes can be calculated.
  • Step S014 also includes: establishing a one-to-one second mapping relationship table between the cumulative brightness of each fourth light-emitting element at different time nodes and the chromaticity compensation gain value of each fourth light-emitting element at different time nodes.
  • the first light-emitting element includes a red light-emitting element; the second light-emitting element includes a green light-emitting element; the third light-emitting element includes a blue light-emitting element; and the fourth light-emitting element includes a white light-emitting element.
  • the corresponding relationship curve between the brightness accumulation amount of the fourth light-emitting element and the brightness compensation gain value may refer to the corresponding relationship curve in FIG. 4 .
  • the second mapping relationship table includes The first relationship table and the second relationship table;
  • the first relationship table is a mapping relationship table between the cumulative brightness of the fourth light-emitting element and the first chromaticity compensation gain value of the light-emitting element of one color;
  • the second relationship table is A mapping relationship table between the cumulative brightness of the fourth light-emitting element and the second chromaticity compensation gain value of the light-emitting element of another color.
  • the first relationship table is a mapping relationship table between the cumulative brightness of the white light-emitting element and the first chromaticity compensation gain value of the green light-emitting element; the second relationship table is the mapping relationship between the cumulative brightness of the white light-emitting element and the blue light-emitting element.
  • Step S02 also includes: storing the second mapping relationship table in the display panel.
  • the second mapping relationship table is stored in the timing controller (ie TCON) in the display panel.
  • Step S03 also includes: when the display panel is turned on, real-time accumulation of brightness data of the fourth light-emitting element to obtain a real-time accumulation amount of brightness data.
  • Step S04 also includes: searching the second mapping relationship table for its corresponding chroma compensation gain value according to the real-time accumulation amount of the brightness data.
  • Step S05 also includes: calculating real-time data signals of other color light-emitting elements that perform chromaticity compensation on the fourth light-emitting element based on the chromaticity compensation gain value corresponding to the real-time accumulation of brightness data and the real-time target brightness value of the fourth light-emitting element.
  • step S051 also includes: comparing the compensated brightness value of one of the selected two color light-emitting elements and the real-time target brightness value of the fourth light-emitting element with the real-time accumulation amount of brightness data.
  • the products of the first chromaticity compensation gain values are added to obtain the first complementary color brightness value;
  • the compensated brightness value of the other color of the selected two color light-emitting elements and the real-time target brightness of the fourth light-emitting element are The product of the value and the second chromaticity compensation gain value corresponding to the real-time accumulation of brightness data is added to obtain the second complementary color brightness value;
  • the first complementary color brightness value and the second complementary color brightness value are respectively included in the color calculation of the fourth light-emitting element.
  • Degree compensated real-time data signals of two color light-emitting elements are provided.
  • the real-time target brightness value of the fourth light-emitting element refers to the real-time brightness value of the fourth light-emitting element before aging (that is, the actual brightness, the brightness unit is nit).
  • the first complementary color brightness value and the second complementary color brightness value refer to the two color light-emitting elements that need to be provided to the aged fourth light-emitting element for chromaticity compensation, so that the aged fourth light-emitting element can achieve the desired effect after compensation. target chromaticity value.
  • FIG. 9 is a flow chart of aging brightness and chromaticity compensation for a display panel including red, green, blue, and white light-emitting elements in an embodiment of the present disclosure; wherein, R GL and G input to the main control chip GL, B GL are the grayscale signals of the red light-emitting element, the green light-emitting element, and the blue light-emitting element respectively; LR, LG, LB, and LW are the brightness of the red light-emitting element, the green light-emitting element, the blue light-emitting element, and the white light-emitting element respectively.
  • the main control chip converts the grayscale signal of the light-emitting element into the brightness value of the light-emitting element (that is, the actual brightness, the unit of brightness is nit); the main control chip reads the third short time
  • the brightness compensation gain values i.e. GainR, GainG, GainB, GainW
  • the first chromaticity compensation gain value Color_Gain1
  • the second chromaticity compensation gain value Color_Gain2
  • the compensated brightness values of different color light-emitting elements and the compensated chromaticity values of white light-emitting elements are obtained, namely O_LR, O_LG, O_LB, O_LW; then the compensated brightness values of different color light-emitting elements and the white light-emitting elements are obtained
  • the compensated chromaticity values of the components are converted into digital current signals that drive their light emission, namely O_R, O_G, O_B, and O_W.
  • the digital current signals are converted into analog voltage signals through the data driver chip (ie, Source IC), namely V_R, V_G, V_B, V_W; the analog voltage signal is a real-time data signal for lighting the light-emitting element; the analog voltage signal is provided to each light-emitting element in the display panel (ie, Panel) through the data line.
  • the data driver chip ie, Source IC
  • O_LR LR ⁇ GainR
  • O_LG LG ⁇ GainG+LW ⁇ Color_GainG
  • O_LB LB ⁇ GainB+ LW ⁇ Color_GainB
  • O_LW LW ⁇ GainW
  • GainR, GainG, GainB, and GainW are the brightness compensation gain values of the red light-emitting element, the green light-emitting element, the blue light-emitting element, and the white light-emitting element respectively
  • Color_GainG and Color_GainB are the green and Chromaticity compensation gain value of blue light-emitting element.
  • light-emitting elements of other two colors can also be selected to perform chromaticity compensation on the white light-emitting element, ultimately ensuring that the aged white light-emitting element can display after chromaticity compensation.
  • Relatively pure white for example, if the white light-emitting element turns blue after aging, red light-emitting elements and green light-emitting elements can be used to compensate for its chromaticity.
  • light-emitting elements of other colors can also be selected to perform chromaticity compensation, ultimately ensuring that the aged light-emitting elements of different colors are displayed after chromaticity compensation.
  • chromaticity compensation after aging of light-emitting elements of different colors is the same as that of white light-emitting elements, and will not be described again here.
  • Step S06 also includes: lighting other color light-emitting elements that perform chromaticity compensation on the fourth light-emitting element in real time according to real-time data signals of other color light-emitting elements that perform chromaticity compensation on the fourth light-emitting element, so that the fourth light-emitting element can achieve real-time Target luminance and real-time target chroma.
  • the real-time target brightness of the fourth light-emitting element refers to the real-time brightness value of the fourth light-emitting element before aging (that is, the actual brightness, the brightness unit is nit).
  • the real-time target chromaticity of the fourth light-emitting element refers to the real-time chromaticity value of the fourth light-emitting element before aging.
  • the aging compensation method of the display panel can also integrate electrical compensation and optical compensation solutions that compensate for the characteristics of the thin film transistor in the pixel driving circuit that drives the light-emitting element, which will not be described again here.
  • the aging compensation method of the display panel is performed simultaneously and in real time when the display panel is displaying, that is, the display and aging compensation of the display panel are performed independently without affecting each other, and the aging compensation method can realize direct compensation of the light-emitting elements.
  • the aging compensation method there is no need to use an external compensation detection circuit, and at the same time, during the entire aging compensation process, it does not occupy the display time of the display panel, does not produce detection bright lines, and does not require the efficiency of the light-emitting element to meet the cross-voltage between the anode and cathode.
  • this aging compensation method has high compensation accuracy and strong versatility, realizing simple and efficient aging compensation of the display panel.
  • an embodiment of the present disclosure also provides a display panel.
  • FIG. 10 is a functional block diagram of aging compensation of the display panel in an embodiment of the present disclosure.
  • the display panel includes a storage module configured to store the first mapping relationship table.
  • the first mapping relationship table is a correspondence relationship table between the brightness accumulation amount of the light-emitting elements in the display panel and the brightness compensation gain value; the accumulation module is configured to accumulate the brightness data of the light-emitting elements in real time when the display panel is turned on.
  • the main control module is configured to search for its corresponding brightness compensation gain value in the first mapping relationship table according to the real-time accumulation of brightness data; and the brightness compensation gain value corresponding to the real-time accumulation of brightness data and
  • the real-time target brightness value of the light-emitting element is calculated to light the real-time data signal of the light-emitting element; the light-emitting element is lighted in real time according to the real-time data signal of the light-emitting element, so that the light-emitting element achieves the real-time target brightness.
  • the main control module may be an FPGA (Field Programmable Gate Array, programmable array logic); or it may be an application specific integrated circuit (ASIC).
  • FPGA Field Programmable Gate Array, programmable array logic
  • ASIC application specific integrated circuit
  • the storage module is set on the timing controller board (ie, Tcon board) in the display panel; the accumulation module is set in the main control module (ie, FPGA or ASIC); the main control module is set on the timing controller board in the display panel. on the controller board.
  • the accumulation module includes a first short-term memory; the first short-term memory is configured to start accumulating the brightness data of the light-emitting element in real time when the display panel is turned on; and the main control module is configured to start accumulating the brightness data of the light-emitting element in the first short-term memory.
  • the short-term memory accumulates the brightness data of the light-emitting element
  • the last accumulated brightness data result in the first short-term memory is read out and stored in the first cache
  • the last accumulated brightness data result in the first cache is read, Add the current brightness data of the lighting element to obtain the current brightness data accumulation result; store the current brightness data accumulation result in the second cache; store the current brightness data accumulation result in the second cache into the first short-term memory.
  • the first short-term memory is configured to accumulate brightness data of the light-emitting element starting from 0 when the display panel is turned on.
  • the first short-term memory uses Double Data Rate synchronous dynamic random access memory (Double Data Rate, DDR).
  • DDR Double Data Rate synchronous dynamic random access memory
  • the accumulation module further includes a long-term memory; the long-term memory is configured to start accumulating the brightness data of the light-emitting elements in real time when the display panel is turned on; and the main control module is configured to accumulate each time in the long-term memory.
  • the brightness data accumulation result in the first short-term memory is read out and stored in the first cache; the last brightness data accumulation result in the long-term memory is read out and stored in the second cache. ;Read the accumulation results of the brightness data in the first cache and the second cache and add them together, and store the added brightness data accumulation result in the third cache; Add the brightness data in the third buffer The accumulated results are stored in long-term memory.
  • the long-term memory is configured to accumulate the brightness data of the light-emitting element starting from the last brightness data accumulation result when the display panel is turned on.
  • the long-term memory uses an eMMC (Embedded Multi Media Card) with an MMC (Multi Media Card) interface, a flash memory device, and a host controller.
  • eMMC embedded Multi Media Card
  • MMC Multi Media Card
  • the first short-term memory is configured to suspend the accumulation of the brightness data of the light-emitting elements while the long-term memory accumulates the brightness data of the light-emitting elements; alternatively, the display panel further includes a second short-term memory; the second short-term memory The memory is configured to start accumulating the brightness data of the light-emitting element in real time from 0 when the first short-term memory suspends accumulating the brightness data of the light-emitting element.
  • the second short-term memory uses double rate synchronous dynamic random access memory (Double Data Rate, DDR).
  • DDR Double Data Rate
  • the storage module includes a third short-term memory; the main control module is configured to read the real-time accumulation of brightness data of the light-emitting elements in the long-term memory and store it in the third short-term memory; Read the real-time accumulation of brightness data of the light-emitting element in the third short-term memory, and search the corresponding brightness compensation gain value in the first mapping table according to the real-time accumulation of brightness data of the light-emitting element; or, read the long-term memory The real-time accumulation amount of the brightness data of the light-emitting element in the light-emitting element; according to the real-time accumulation amount of the brightness data of the light-emitting element, search its corresponding brightness compensation gain value in the first mapping relationship table, and store the brightness compensation gain value in the third short-term memory .
  • the third short-term memory uses double rate synchronous dynamic random access memory (Double Data Rate, DDR).
  • DDR Double Data Rate
  • the long-term memory is configured to accumulate brightness data of at least one row of light-emitting elements at a time.
  • the first short-term memory is configured to accumulate brightness data of at least one row of light-emitting elements at a time; and the second short-term memory is configured to accumulate brightness data of at least one row of light-emitting elements at a time.
  • the main control module is configured to multiply the real-time target brightness value of the light-emitting element by the brightness compensation gain value corresponding to the real-time accumulation of brightness data to obtain a compensated brightness value; convert the compensated brightness value It is a digital current signal that drives the light-emitting element to emit light; the digital current signal is converted into an analog voltage signal; the analog voltage signal is a real-time data signal that lights the light-emitting element.
  • the light-emitting element includes a first light-emitting element, a second light-emitting element, a third light-emitting element and a fourth light-emitting element with different colors;
  • the storage module is further configured to store a second mapping relationship table; the second mapping relationship The table is a correspondence table between the brightness accumulation amount of the fourth light-emitting element in the display panel and the chromaticity compensation gain value; the accumulation module is also configured to perform real-time processing of the brightness data of the fourth light-emitting element when the display panel is turned on.
  • the main control module is also configured to find its corresponding chromaticity compensation gain value in the second mapping relationship table according to the real-time accumulation of brightness data; the chromaticity corresponding to the real-time accumulation of brightness data
  • the compensation gain value and the real-time target brightness value of the fourth light-emitting element are used to calculate real-time data signals of other color light-emitting elements that perform chromaticity compensation on the fourth light-emitting element; according to the real-time data signals of other color light-emitting elements that perform chromaticity compensation on the fourth light-emitting element.
  • the data signal lights up other color light-emitting elements that perform chromaticity compensation on the fourth light-emitting element in real time, so that the fourth light-emitting element achieves real-time target brightness and real-time target chromaticity.
  • the main control module is further configured to select two color light-emitting elements among the first light-emitting element, the second light-emitting element and the third light-emitting element according to the change in chromaticity of the fourth light-emitting element before and after aging.
  • complementary colors the second mapping relationship table includes a first relationship table and a second relationship table
  • the first relationship table is a mapping between the cumulative brightness of the fourth light-emitting element and the first chromaticity compensation gain value of the light-emitting element of one of the colors.
  • the relationship table; the second relationship table is a mapping relationship table between the cumulative brightness of the fourth light-emitting element and the second chromaticity compensation gain value of the light-emitting element of another color;
  • the main control module is also configured to convert the two selected
  • the compensated brightness value of one of the three colors of light-emitting elements is added to the product of the real-time target brightness value of the fourth light-emitting element and the first chromaticity compensation gain value corresponding to the real-time accumulation of brightness data to obtain the third A complementary color brightness value;
  • the second chromaticity compensation corresponding to the compensated brightness value of the other color light-emitting element of the two selected color light-emitting elements and the real-time target brightness value of the fourth light-emitting element and the real-time accumulation amount of brightness data The products of the gain values are added to obtain the second complementary color brightness value;
  • the first complementary color brightness value and the second complementary color brightness value are respectively included in the real-time data signals of the two color light-emitting elements that
  • the third short-term memory is also used to store a chromaticity compensation gain value corresponding to the real-time accumulation of brightness data of the fourth light-emitting element.
  • the third short-term memory may be one or a group, and a group may include multiple third short-term memories, such as DDR3_1, DDR3_2..., DDR3_X.
  • the third short-term memory may also store electrical compensation data and optical compensation data for aging compensation of the display panel.
  • the first light-emitting element includes a red light-emitting element; the second light-emitting element includes a green light-emitting element; the third light-emitting element includes a blue light-emitting element; and the fourth light-emitting element includes a white light-emitting element.
  • the number of light-emitting elements is multiple, and the plurality of light-emitting elements are arranged in an array;
  • the display panel also includes a detection calculation module configured to detect and calculate to obtain the first mapping relationship table;
  • the detection calculation module includes: An accumulation unit configured to light each light-emitting element at the same brightness for different durations and/or at different brightnesses at the same time and/or at different brightnesses for different durations; the different durations respectively correspond to different times.
  • the first calculation unit is configured to calculate the efficiency of each light-emitting element at different time nodes based on the cumulative brightness of each light-emitting element at different time nodes; according to each light-emitting element The efficiency at different time nodes is calculated by calculating the brightness compensation gain value of each light-emitting element at different time nodes; the table creation unit is configured to compare the cumulative brightness of each light-emitting element at different time nodes with the brightness of each light-emitting element at different time nodes.
  • the compensation gain values establish a one-to-one corresponding first mapping relationship table.
  • the number of fourth light-emitting elements is multiple; the detection calculation module is also configured to detect and calculate to obtain the second mapping relationship table; the first accumulation unit is also configured to add each fourth light-emitting element in the display panel to The light-emitting elements respectively light up at the same brightness for different lengths of time and/or light up at different brightnesses at the same time and/or light up at different brightnesses for different lengths of time; the different lengths of time respectively correspond to different time nodes, and the time of each fourth light-emitting element is obtained.
  • the cumulative amount of brightness at different time nodes; the first calculation unit is also configured to measure the chromaticity value of each fourth light-emitting element at different time nodes; and calculate each fourth light-emitting element according to the chromaticity value of each fourth light-emitting element at different time nodes.
  • Chromaticity compensation gain values of the four light-emitting elements at different time nodes; the table building unit is also configured to compare the cumulative brightness of each fourth light-emitting element at different time nodes with the chromaticity compensation of each fourth light-emitting element at different time nodes.
  • the gain values establish a one-to-one corresponding second mapping relationship table.
  • the first accumulation unit is configured to extract and accumulate the brightness data of different M rows of light-emitting elements in each frame of N consecutive N frames. After the N frames are displayed, the brightness data of all light-emitting elements are The data is accumulated once respectively; where M ⁇ N is the number of rows of light-emitting elements in the display panel; or the first accumulation unit is configured to accumulate the brightness data of the light-emitting elements frame by frame.
  • the first accumulation unit may be an electronic accumulation unit inside the display panel, such as a short-term memory, a long-term memory, etc.; it may also be accumulated manually.
  • the first calculation unit can be a measurement calculation unit inside the display panel.
  • the measurement unit is such as a sensor, and the calculation unit is such as some chips with designed calculation formulas. It can also be calculated manually.
  • the table-building unit can be a chip inside the display panel that can create tables; it can also be built manually.
  • the detection calculation module may be provided only in the display panel undergoing the burn-in test, so that the first mapping relationship table and the second mapping relationship table are obtained through the display panel undergoing the burn-in test.
  • the first mapping relationship obtained by the burn-in test is
  • the table and the second mapping relationship table are stored in the client display panel, and the client display panel directly uses the first mapping relationship table and the second mapping relationship table. Therefore, the client display panel does not need to set a detection calculation module.
  • the display panel provided in the embodiments of the present disclosure can realize simultaneous real-time display and aging compensation, that is, the display panel can realize display and aging compensation independently without affecting each other, and can realize direct compensation of light-emitting elements without affecting each other. It is necessary to use an externally compensated detection circuit. At the same time, during the entire aging compensation process, it does not occupy the display time of the display panel, does not produce detection bright lines, and does not require the efficiency of the light-emitting element to meet the one-to-one correspondence between the cross-voltage between the anode and the cathode. Relationship, the display panel has high aging compensation accuracy, and the aging compensation process is simple and efficient, which improves the display effect of the display panel.
  • an embodiment of the present disclosure further provides a display device, including the display panel in the above embodiment.
  • the display device can be: OLED panel, LED panel, QLED panel, Micro LED panel, Mini LED panel, TV, mobile phone, tablet computer, notebook computer, monitor, digital photo frame, navigator and any other product or component with display function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

本公开实施例提供一种显示面板,其中,包括:存储模块,被配置为存储第一映射关系表;第一映射关系表为显示面板中发光元件的亮度累积量与亮度补偿增益值之间的对应关系表;累积模块,被配置为在显示面板开机时,对其中发光元件的亮度数据进行实时累积,获得亮度数据实时累积量;主控模块,被配置为根据亮度数据实时累积量在第一映射关系表中查找其对应的亮度补偿增益值;根据亮度数据实时累积量对应的亮度补偿增益值和发光元件的实时目标亮度值计算点亮发光元件的实时数据信号;根据点亮发光元件的实时数据信号实时点亮发光元件,以使发光元件实现实时目标亮度。

Description

显示面板及其老化补偿方法和显示装置 技术领域
本公开实施例属于显示技术领域,具体涉及一种显示面板及其老化补偿方法和显示装置。
背景技术
有源矩阵有机发光二极体器件(Active Matrix/Organic Light Emitting Diode)有着自发光、响应快、对比高、功耗低等优点,越来越多的被应用到显示设备中。有源矩阵有机发光二极体器件的结构包括多种,可以根据实际需要选择设置。例如,有源矩阵有机发光二极体器件可以为有机电致发光二极管(Organic Light Emitting Diode,简称OLED)、量子点发光二极管(Quantum Dot Light Emitting Diodes,简称QLED)或微发光二极管(Micro Light Emitting Diodes,简称Micro LED)等。
有源矩阵有机发光二极体器件是一种电流驱动发光器件,随着使用时间的加长,器件的效率会逐渐下降。效率的下降会带来亮度的降低,并且会在显示面板上行成老化残像。当效率下降到一定程度时,面板会达到生命周期,只能报废。
发明内容
本公开实施例提供一种显示面板及其老化补偿方法和显示装置。
第一方面,本公开实施例提供一种显示面板,其中,包括:
存储模块,被配置为存储第一映射关系表;所述第一映射关系表为所述显示面板中发光元件的亮度累积量与亮度补偿增益值之间的对应关系表;
累积模块,被配置为在所述显示面板开机时,对其中所述发光元件的亮度数据进行实时累积,获得亮度数据实时累积量;
主控模块,被配置为根据所述亮度数据实时累积量在所述第一映射关 系表中查找其对应的所述亮度补偿增益值;
根据所述亮度数据实时累积量对应的所述亮度补偿增益值和所述发光元件的实时目标亮度值计算点亮所述发光元件的实时数据信号;
根据点亮所述发光元件的所述实时数据信号实时点亮所述发光元件,以使所述发光元件实现实时目标亮度。
在一些实施例中,所述累积模块包括第一短时存储器;
所述第一短时存储器,被配置为在所述显示面板开机时,开始实时累积所述发光元件的亮度数据;
所述主控模块,被配置为在所述第一短时存储器每次累积所述发光元件的亮度数据时,将所述第一短时存储器中上次的亮度数据累积结果读出并存入第一缓存中;
读取所述第一缓存中所述上次的亮度数据累积结果,与点亮所述发光元件的本次亮度数据相加,获得本次的亮度数据累积结果;
将所述本次的亮度数据累积结果存入第二缓存中;
将所述第二缓存中所述本次的亮度数据累积结果存入所述第一短时存储器中。
在一些实施例中,所述第一短时存储器,被配置为在所述显示面板开机时,从0开始累积所述发光元件的亮度数据。
在一些实施例中,所述累积模块还包括长时存储器;
所述长时存储器,被配置为在所述显示面板开机时,开始实时累积所述发光元件的亮度数据;
所述主控模块,被配置为在所述长时存储器每次累积所述发光元件的亮度数据时,将所述第一短时存储器中的亮度数据累积结果读出并存入所述第一缓存中;将所述长时存储器中上次的亮度数据累积结果读出并存入所述第二缓存中;
读取所述第一缓存和所述第二缓存中的亮度数据累积结果并使二者相 加,将相加后的亮度数据累积结果存入第三缓存中;
将所述第三缓冲中所述相加后的亮度数据累积结果存入所述长时存储器中。
在一些实施例中,所述长时存储器,被配置为在所述显示面板开机时,从上次的亮度数据累积结果开始累积所述发光元件的亮度数据。
在一些实施例中,所述第一短时存储器被配置为在所述长时存储器累积所述发光元件的亮度数据时,暂停累积所述发光元件的亮度数据;
或者,所述显示面板还包括第二短时存储器;
所述第二短时存储器,被配置为当所述第一短时存储器暂停累积所述发光元件的亮度数据时,从0开始实时累积所述发光元件的亮度数据。
在一些实施例中,所述存储模块包括第三短时存储器;
所述主控模块,被配置为读取所述长时存储器中的所述发光元件的亮度数据实时累积量,并将其存入所述第三短时存储器中;
读取所述第三短时存储器中的所述发光元件的亮度数据实时累积量,根据所述发光元件的亮度数据实时累积量在所述第一映射关系表中查找其对应的所述亮度补偿增益值;
或者,读取所述长时存储器中的所述发光元件的亮度数据实时累积量;
根据所述发光元件的亮度数据实时累积量在所述第一映射关系表中查找其对应的所述亮度补偿增益值,并将所述亮度补偿增益值存入所述第三短时存储器中。
在一些实施例中,所述长时存储器,被配置为每次累积至少一行所述发光元件的亮度数据。
在一些实施例中,所述第一短时存储器,被配置为每次累积至少一行所述发光元件的亮度数据;
所述第二短时存储器,被配置为每次累积至少一行所述发光元件的亮度数据。
在一些实施例中,每次累积的所述发光元件的亮度数据与所述发光元件的实际亮度值之间满足关系式:(L1/L2) n=A1/A2;
其中,n的取值范围为1.4~1.6;A1和A2表示任意两次累积的所述发光元件的亮度数据;L1表示对应A1的所述发光元件的实际亮度值;L2表示对应A2的所述发光元件的实际亮度值。
在一些实施例中,
所述主控模块,被配置为将所述发光元件的实时目标亮度值与所述亮度数据实时累积量对应的所述亮度补偿增益值相乘,获得补偿后的亮度值;
将所述补偿后的亮度值转换为驱动所述发光元件发光的数字电流信号;
将所述数字电流信号转换为模拟电压信号;所述模拟电压信号为点亮所述发光元件的实时数据信号。
在一些实施例中,所述发光元件包括颜色不同的第一发光元件、第二发光元件、第三发光元件和第四发光元件;
所述存储模块,还被配置为存储第二映射关系表;所述第二映射关系表为所述显示面板中所述第四发光元件的亮度累积量与色度补偿增益值之间的对应关系表;
所述累积模块,还被配置为在所述显示面板开机时,对其中所述第四发光元件的亮度数据进行实时累积,获得亮度数据实时累积量;
所述主控模块,还被配置为根据所述亮度数据实时累积量在所述第二映射关系表中查找其对应的所述色度补偿增益值;
根据所述亮度数据实时累积量对应的所述色度补偿增益值和所述第四发光元件的实时目标亮度值计算对所述第四发光元件进行色度补偿的其他颜色发光元件的实时数据信号;
根据对所述第四发光元件进行色度补偿的其他颜色发光元件的所述实时数据信号实时点亮对所述第四发光元件进行色度补偿的其他颜色发光元 件,以使所述第四发光元件实现实时目标亮度和实时目标色度。
在一些实施例中,所述主控模块,还被配置为根据所述第四发光元件老化前后色度的变化,在所述第一发光元件、所述第二发光元件和所述第三发光元件中选择两个颜色的发光元件进行补色;
所述第二映射关系表包括第一关系表和第二关系表;
所述第一关系表为所述第四发光元件的亮度累积量与其中一个颜色的发光元件的第一色度补偿增益值之间的映射关系表;
所述第二关系表为所述第四发光元件的亮度累积量与另一个颜色的发光元件的第二色度补偿增益值之间的映射关系表;
所述主控模块,还被配置为将选择的两个颜色的发光元件中其中一个颜色的所述发光元件的补偿后的亮度值和所述第四发光元件的实时目标亮度值与所述亮度数据实时累积量对应的所述第一色度补偿增益值的乘积相加,获得第一补色亮度值;
将选择的两个颜色的发光元件中另一个颜色的所述发光元件的补偿后的亮度值和所述第四发光元件的实时目标亮度值与所述亮度数据实时累积量对应的所述第二色度补偿增益值的乘积相加,获得第二补色亮度值;
将所述第一补色亮度值和所述第二补色亮度值分别计入对所述第四发光元件进行色度补偿的两个颜色的发光元件的实时数据信号。
在一些实施例中,所述第一发光元件包括红色发光元件;所述第二发光元件包括绿色发光元件;所述第三发光元件包括蓝色发光元件;
所述第四发光元件包括白色发光元件。
在一些实施例中,所述发光元件的数量为多个,多个所述发光元件排布呈阵列;
所述显示面板还包括检测计算模块,被配置为检测计算获得所述第一映射关系表;
所述检测计算模块,包括:
第一累积单元,被配置为将各所述发光元件分别在同一亮度下点亮不同时长和/或在不同亮度下点亮相同时长和/或在不同亮度下点亮不同时长;不同时长分别对应不同的时间节点,获取各所述发光元件在不同时间节点的亮度累积量;
第一计算单元,被配置为根据各所述发光元件在不同时间节点的亮度累积量计算各所述发光元件在不同时间节点的效率;
根据各所述发光元件在不同时间节点的效率,计算各所述发光元件在不同时间节点的所述亮度补偿增益值;
建表单元,被配置为将各所述发光元件在不同时间节点的亮度累积量与各所述发光元件在不同时间节点的所述亮度补偿增益值建立一一对应的所述第一映射关系表。
在一些实施例中,所述第四发光元件的数量为多个;
所述检测计算模块,还被配置为检测计算获得所述第二映射关系表;
所述第一累积单元,还被配置为将所述显示面板中的各所述第四发光元件分别在同一亮度下点亮不同时长和/或在不同亮度下点亮相同时长和/或在不同亮度下点亮不同时长;不同时长分别对应不同的时间节点,获取各所述第四发光元件在不同时间节点的亮度累积量;
所述第一计算单元,还被配置为测量各所述第四发光元件在不同时间节点的色度值;
根据各所述第四发光元件在不同时间节点的色度值,计算各所述第四发光元件在不同时间节点的所述色度补偿增益值;
所述建表单元,还被配置为将各所述第四发光元件在不同时间节点的亮度累积量与各所述第四发光元件在不同时间节点的所述色度补偿增益值建立一一对应的所述第二映射关系表。
在一些实施例中,所述第一累积单元,被配置为在连续的N帧画面中,每帧画面中抽取不同的M行所述发光元件的亮度数据进行累积,N帧画面显 示完毕后所有所述发光元件的亮度数据分别累积一次;其中,M×N为所述显示面板中所述发光元件的行数;
或者,所述第一累积单元,被配置为对所述发光元件的亮度数据进行逐帧累积。
在一些实施例中,在老化前后所述发光元件的点亮电流一致时,所述发光元件在不同时间节点的效率=所述发光元件在当前时间节点的实际亮度值/所述发光元件老化前的初始实际亮度值;
或者,在老化前后所述发光元件的点亮电流不一致时,所述发光元件在不同时间节点的效率=(所述发光元件在当前时间节点的实际亮度值/所述发光元件的当前点亮电流)/(所述发光元件老化前的初始实际亮度值/所述发光元件老化前的初始点亮电流)。
在一些实施例中,所述发光元件在不同时间节点的所述亮度补偿增益值=1/所述发光元件在不同时间节点的效率。
第二方面,本公开实施例还提供一种显示装置,其中,包括上述显示面板。
第三方面,本公开实施例还提供一种显示面板的老化补偿方法,其中,包括:
检测计算获得所述显示面板中发光元件的亮度累积量与亮度补偿增益值的第一映射关系表;
将所述第一映射关系表存入所述显示面板中;
所述显示面板开机时,对其中所述发光元件的亮度数据进行实时累积,获得亮度数据实时累积量;
根据所述亮度数据实时累积量在所述第一映射关系表中查找其对应的所述亮度补偿增益值;
根据所述亮度数据实时累积量对应的所述亮度补偿增益值和所述发光元件的实时目标亮度值计算点亮所述发光元件的实时数据信号;
根据点亮所述发光元件的所述实时数据信号实时点亮所述发光元件,以使所述发光元件实现实时目标亮度。
在一些实施例中,所述发光元件包括颜色不同的第一发光元件、第二发光元件、第三发光元件和第四发光元件;
所述老化补偿方法还包括:
检测计算获得所述显示面板中所述第四发光元件的亮度累积量与色度补偿增益值的第二映射关系表;
将所述第二映射关系表存入所述显示面板中;
所述显示面板开机时,对其中所述第四发光元件的亮度数据进行实时累积,获得亮度数据实时累积量;
根据所述亮度数据实时累积量在所述第二映射关系表中查找其对应的所述色度补偿增益值;
根据所述亮度数据实时累积量对应的所述色度补偿增益值和所述第四发光元件的实时目标亮度值计算对所述第四发光元件进行色度补偿的其他颜色发光元件的实时数据信号;
根据对所述第四发光元件进行色度补偿的其他颜色发光元件的所述实时数据信号实时点亮对所述第四发光元件进行色度补偿的其他颜色发光元件,以使所述第四发光元件实现实时目标亮度和实时目标色度。
附图说明
附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其它特征和优点对本领域技术人员将变得更加显而易见,在附图中:
图1为公开技术中对驱动OLED器件的像素驱动电路中薄膜晶体管的特性进行补偿的老化检测像素电路图。
图2为本公开实施例中显示面板老化补偿方法的流程图。
图3为发光元件的亮度累积过程中发光元件的实际亮度值与累积的发光元件亮度数据之间的对应关系曲线。
图4为本公开实施例中发光元件的亮度累积量与亮度补偿增益值之间的对应关系曲线。
图5为第一短时存储器每次累积发光元件的亮度数据的原理示意图。
图6为长时存储器每次累积发光元件的亮度数据的原理示意图。
图7为本公开实施例中包含红、绿、蓝色发光元件的显示面板的老化亮度补偿流程框图。
图8为本公开实施例中白色发光元件的亮度累积量与第一色度补偿增益值和第二色度补偿增益值之间的对应关系曲线。
图9为本公开实施例中包含红、绿、蓝、白色发光元件的显示面板的老化亮度色度补偿流程框图。
图10为本公开实施例中显示面板的老化补偿原理框图。
具体实施方式
为使本领域技术人员更好地理解本公开实施例的技术方案,下面结合附图和具体实施方式对本公开实施例提供的一种显示面板及其老化补偿方法和显示装置作进一步详细描述。
在下文中将参考附图更充分地描述本公开实施例,但是所示的实施例可以以不同形式来体现,且不应当被解释为限于本公开阐述的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
本公开实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了区的具体形状,但并不是旨在限制性的。
公开技术中,有源矩阵有机发光二极体面板(Active Matrix/Organic Light Emitting Diode Panel)得到广泛的应用,但有源矩阵有机发光二 极体面板一直面临着残像、寿命的挑战。面板中的有源矩阵有机发光二极体器件是一种电流驱动型器件,在使用的过程中,电流会对有源矩阵有机发光二极体器件形成不可恢复的老化,这种老化会造成器件的效率下降,即给器件同样的电流,亮度达不到原来的亮度。如果有源矩阵有机发光二极体面板中的各有源矩阵有机发光二极体器件效率下降不同,就会形成残像。当效率下降到一定值时,例如:效率下降到初始效率的50%时,则面板只能面临报废。在有源矩阵有机发光二极体器件的驱动电路中,薄膜晶体管(TFT)的驱动特性补偿当前已经比较成熟,但对老化的有源矩阵有机发光二极体器件进行直接补偿,实际应用的很少。
公开技术中,对有源矩阵有机发光二极体面板中有源矩阵有机发光二极体器件(如OLED器件)老化的补偿主要通过对驱动其的像素驱动电路中的薄膜晶体管的特性进行补偿,参照图1,为公开技术中对驱动OLED器件的像素驱动电路中薄膜晶体管(TFT)的特性进行补偿的老化检测像素电路图,该方案中,先将TFT补偿完成;然后逐行点亮显示面板中的OLED器件D,检测OLED器件D阳极和阴极之间跨压的变化,通过OLED器件D跨压的变化反映出OLED器件D的老化程度,进而对OLED器件D进行老化补偿。
公开技术中的老化补偿方法首先需要复杂的像素电路,会带来显示面板开口率的降低;其次需要完成TFT特性的补偿;而实际测试发现,在OLED跨压检测时,不能完全排除TFT特性对OLED器件老化补偿的影响;再次,需要OLED跨压与OLED效率成一一对应关系,才能进行补偿;而实际测试,OLED跨压与OLED效率之间的对应关系与诸多因素有关,不同的显示面板,OLED跨压与OLED效率之间的对应关系不同,即OLED跨压与OLED效率之间没有明确的对应关系;因此,公开技术中OLED器件老化补偿方案的通用性很差。
另外,公开技术中OLED器件的老化补偿方案在检测时需要逐行子像素点亮,因此检测过程中会产生一条亮线,很影响观感。这也造成公开技术 中的OLED器件老化补偿方案很难普及使用。
针对目前存在的上述问题,第一方面,本公开实施例提供一种显示面板的老化补偿方法,参照图2,为本公开实施例中显示面板老化补偿方法的流程图,其中,该方法包括:步骤S01:检测计算获得显示面板中发光元件的亮度累积量与亮度补偿增益值的第一映射关系表。
其中,显示面板包括多个发光元件,多个发光元件排布呈阵列。该步骤具体包括:步骤S011:将显示面板中的各发光元件分别在同一亮度下点亮不同时长和/或在不同亮度下点亮相同时长和/或在不同亮度下点亮不同时长,不同时长分别对应不同的时间节点,获取各发光元件在不同时间节点的亮度累积量。
在一些实施例中,发光元件可以是有机电致发光二极管(Organic Light Emitting Diode,简称OLED)、量子点发光二极管(Quantum Dot Light Emitting Diodes,简称QLED)、微发光二极管(Micro Light Emitting Diodes,简称Micro LED)或迷你发光二极管(Mini Light Emitting Diodes,简称Mini LED)等。
在一些实施例中,在对各发光元件进行亮度累积时,将显示面板分成多个区域,各个区域内发光元件的点亮亮度不同;如将显示面板分成四个区域,第一个区域点亮亮度为150nit,第二个区域点亮亮度为200nit,第三个区域点亮亮度为300nit,第四个区域点亮亮度为450nit;每隔不同时长累积一次各发光元件的亮度;如先间隔24小时累积一次各发光元件的亮度,再间隔48小时累积一次各发光元件的亮度。一个区域的发光元件分别隔24小时和48小时累积一次各发光元件的亮度,实现了同一亮度下点亮不同时长时对该区域内各发光元件亮度的累积;各个区域的发光元件点亮24小时累积各发光元件的亮度,实现了不同亮度下点亮相同时长对各发光元件亮度的累积;各区域的发光元件分别隔24小时和48小时累积一次各发光元件的亮度,实现了不同亮度下点亮不同时长对各发光元件亮度的累 积。上述累积发光元件亮度的过程主要考虑到亮度累积过程对数据带宽以及存储器存储容量的需求能够满足。
该步骤S011中,参照图3,为发光元件的亮度累积过程中发光元件的实际亮度值与累积的发光元件亮度数据之间的对应关系曲线;图3中对应关系曲线所在二维坐标系的纵坐标表示每次累积的发光元件的亮度数据;每次累积的发光元件的亮度数据是根据图3中横坐标表示的发光元件的实际亮度值从对应关系曲线上找到的对应纵坐标上的实际亮度累积值;横坐标表示发光元件的实际亮度值(即实际亮度,亮度单位为nit)。由于发光元件的实际亮度值(即实际亮度,亮度单位为nit)与发光元件的老化情况不是线性关系,而是满足图3中所示的指数关系,所以在进行发光元件不同亮度累积时,不能将发光元件的实际亮度值直接进行累加,而是要根据图3中的对应关系曲线将该曲线所在二维坐标系中横坐标表示的发光元件的实际亮度值转换为纵坐标上相应的发光元件的亮度数据,然后再进行发光元件的亮度数据的累加,将发光元件的亮度数据的累加结果作为发光元件在不同时间节点的亮度累积量。
在一些实施例中,每次累积的发光元件的亮度数据与发光元件的实际亮度值之间满足关系式:(L1/L2) n=A1/A2;其中,n的取值范围为1.4~1.6;A1和A2表示任意两次累积的发光元件的亮度数据;L1表示对应A1的发光元件的实际亮度值;L2表示对应A2的发光元件的实际亮度值。
在一些实施例中,获取各发光元件在不同时间节点的亮度累积量,包括:在连续的N帧画面中,每帧画面中抽取不同的M行发光元件的亮度数据进行累积,N帧画面显示完毕后所有发光元件的亮度数据分别累积一次;其中,M×N为显示面板中发光元件的行数。即每帧画面中抽取不同的M行发光元件的亮度数据进行累积,经过N帧后,显示面板中的所有发光元件的亮度数据都累积了一遍。该累积方法适用于存储亮度累积量的存储器的存储容量不是很大,能够存储较少数据的情况。
在一些实施例中,获取各发光元件在不同时间节点的亮度累积量,包括:对发光元件的亮度数据进行逐帧累积。即每帧都对显示面板上所有发光元件的亮度数据累积一遍。该累积方法适用于存储亮度累积量的存储器的存储容量较大,能够存储较多数据的情况。
需要说明的是,获取各发光元件在不同时间节点的亮度累积量,也可以采用其他的累积方法,只要确保显示面板上各发光元件的亮度数据都被累积出来,确保发光元件的从小到大依次增大的所有亮度累积量都被累积获得即可,只要发光元件的从小到大依次增大的所有亮度累积量都被累积获得,就能确保针对发光元件的各个亮度累积量分别对其进行不同的亮度补偿增益值的补偿,从而实现对发光元件更加精确的老化补偿,提升显示面板的显示品质。
步骤S012:根据各发光元件在不同时间节点的亮度累积量计算各发光元件在不同时间节点的效率。
该步骤中,在老化前后发光元件的点亮电流一致时,发光元件在不同时间节点的效率=发光元件在当前时间节点的实际亮度值/发光元件老化前的初始实际亮度值。即X=L 当前/L 初始;其中,X为发光元件在不同时间节点的效率;L 当前为发光元件在当前时间节点的实际亮度值;L 初始为发光元件老化前的初始实际亮度值。
在一些实施例中,在老化前后发光元件的点亮电流不一致时,发光元件在不同时间节点的效率=(发光元件在当前时间节点的实际亮度值/发光元件的当前点亮电流)/(发光元件老化前的初始实际亮度值/发光元件老化前的初始点亮电流)。即X=(L 当前/I 当前)/(L 初始/I 初始);其中,X为发光元件在不同时间节点的效率;L 当前为发光元件在当前时间节点的实际亮度值;L 初始为发光元件老化前的初始实际亮度值;I 当前为发光元件的当前点亮电流;I 初始为发光元件老化前的初始点亮电流。
步骤S013:根据各发光元件在不同时间节点的效率,计算各发光元件 在不同时间节点的亮度补偿增益值。
该步骤中,发光元件在不同时间节点的亮度补偿增益值=1/发光元件在不同时间节点的效率。
步骤S014:将各发光元件在不同时间节点的亮度累积量与各发光元件在不同时间节点的亮度补偿增益值建立一一对应的第一映射关系表。
其中,参照图4,为本公开实施例中发光元件的亮度累积量与亮度补偿增益值之间的对应关系曲线。
在一些实施例中,发光元件包括颜色不同的第一发光元件、第二发光元件和第三发光元件。在一些实施例中,第一发光元件包括红色发光元件;第二发光元件包括绿色发光元件;第三发光元件包括蓝色发光元件。每种颜色的发光元件的亮度累积量与亮度补偿增益值之间的对应关系曲线都可参照图4中的对应关系曲线。
步骤S02:将第一映射关系表存入显示面板中。
该步骤中,将第一映射关系表存入显示面板中的时序控制器(即TCON)中。
步骤S03:显示面板开机时,对其中发光元件的亮度数据进行实时累积,获得亮度数据实时累积量。
其中,显示面板包括第一短时存储器。第一短时存储器采用双倍速率同步动态随机存储器(Double Data Rate,即DDR)。
该步骤具体包括:显示面板开机时,第一短时存储器开始实时累积发光元件的亮度数据;参照图5,为第一短时存储器每次累积发光元件的亮度数据的原理示意图;第一短时存储器DDR1每次累积发光元件的亮度数据包括:将第一短时存储器DDR1中上次的亮度数据累积结果读出并存入第一缓存RAM1中;读取第一缓存RAM1中上次的亮度数据累积结果,与点亮发光元件的本次亮度数据相加,获得本次的亮度数据累积结果;将本次的亮度数据累积结果存入第二缓存RAM2中;将第二缓存RAM2中本次的亮度数据 累积结果存入第一短时存储器DDR1中。
在一些实施例中,显示面板开机时,第一短时存储器DDR1从0开始累积发光元件的亮度数据。第一短时存储器DDR1在断电时其中累积的亮度数据清0。
在一些实施例中,第一短时存储器每次累积至少一行发光元件的亮度数据。即第一短时存储器每次累积的亮度数据量需要根据第一短时存储器的存储容量确定,如果第一短时存储器存储容量较小,可以一次累积一行或几行发光元件的亮度数据;如果第一短时存储器存储容量较大,则可以一次累积一帧或者几帧发光元件的亮度数据。
在一些实施例中,显示面板还包括长时存储器。长时存储器采用带有MMC(多媒体卡)接口、快闪记忆体设备及主控制器的eMMC(Embedded Multi Media Card,内嵌式存储器)。
在一些实施例中,该步骤S03具体还包括:显示面板开机时,长时存储器开始实时累积发光元件的亮度数据;参照图6,为长时存储器每次累积发光元件的亮度数据的原理示意图;长时存储器eMMC每次累积发光元件的亮度数据包括:将第一短时存储器DDR1中的亮度数据累积结果读出并存入第一缓存RAM1中;将长时存储器eMMC中上次的亮度数据累积结果读出并存入第二缓存RAM2中;读取第一缓存RAM1和第二缓存RAM2中的亮度数据累积结果并使二者相加,将相加后的亮度数据累积结果存入第三缓存RAM3中;将第三缓冲RAM3中相加后的亮度数据累积结果存入长时存储器eMMC中。
在一些实施例中,显示面板开机时,长时存储器eMMC从上次的亮度数据累积结果开始累积发光元件的亮度数据。长时存储器eMMC在掉电时不丢失数据。
在一些实施例中,长时存储器每次累积至少一行发光元件的亮度数据。长时存储器每次累积的亮度数据量需要根据第三缓存的缓存容量确定,如 果第三缓存的缓存容量较小,长时存储器可以一次累积一行或几行发光元件的亮度数据;如果第三缓存的缓存容量较大,则长时存储器可以一次累积一帧或者几帧发光元件的亮度数据,直到整帧的亮度数据全部累积完。
在一些实施例中,长时存储器累积发光元件的亮度数据时,第一短时存储器暂停累积发光元件的亮度数据。由于长时存储器累积亮度数据时,第一短时存储器要配合将其累积的亮度数据存入长时存储器中,所以长时存储器累积亮度数据时,第一短时存储器暂停对亮度数据的累积,同时由于发光元件的亮度数据通常先由第一短时存储器累积,然后再将第一短时存储器累积的亮度数据存入长时存储器,所以在长时存储器累积亮度数据时,第一短时存储器不能对OLED的实时亮度数据进行累积,此时,如果没有别的短时存储器对发光元件的实时亮度数据进行累积,会造成部分发光元件的实时亮度数据丢失。
在一些实施例中,显示面板还包括第二短时存储器。第二短时存储器采用双倍速率同步动态随机存储器(Double Data Rate,即DDR)。当第一短时存储器暂停累积发光元件的亮度数据时,第二短时存储器从0开始实时累积发光元件的亮度数据。第二短时存储器能在第一短时存储器暂停累积时对发光元件的亮度数据进行实时累积,从而避免发光元件的实时亮度数据丢失,进而使发光元件的实时亮度数据累积结果更加精确,最终确保对发光元件老化补偿的精确度。
在一些实施例中,第二短时存储器每次累积至少一行发光元件的亮度数据。即第二短时存储器每次累积的亮度数据量需要根据第二短时存储器的存储容量确定,如果第二短时存储器存储容量较小,可以一次累积一行或几行发光元件的亮度数据;如果第二短时存储器存储容量较大,则可以一次累积一帧或者几帧发光元件的亮度数据。
本实施例中,参照图3,步骤S03中,显示面板开机时,对其中发光元件的亮度数据进行实时累积,获得亮度数据实时累积量时,每次累积的发 光元件的亮度数据与发光元件的实际亮度值之间满足关系式:(L1/L2) n=A1/A2;其中,n的取值范围为1.4~1.6;A1和A2表示任意两次累积的发光元件的亮度数据;L1表示对应A1的发光元件的实际亮度值;L2表示对应A2的发光元件的实际亮度值。
步骤S04:根据亮度数据实时累积量在第一映射关系表中查找其对应的亮度补偿增益值。
该步骤具体包括:步骤S041:显示面板开机时,读取长时存储器中的发光元件的亮度数据实时累积量,并将其存入第三短时存储器中。
步骤S042:读取第三短时存储器中的发光元件的亮度数据实时累积量,根据发光元件的亮度数据实时累积量在第一映射关系表中查找其对应的亮度补偿增益值。
在一些实施例中,该步骤S04具体包括:步骤S041':显示面板开机时,读取长时存储器中的发光元件的亮度数据实时累积量;步骤S042':根据发光元件的亮度数据实时累积量在第一映射关系表中查找其对应的亮度补偿增益值,并将亮度补偿增益值存入第三短时存储器中。
在一些实施例中,第三短时存储器可以是一个或者一组,一组中包括多个第三短时存储器。
在一些实施例中,第三短时存储器采用双倍速率同步动态随机存储器(Double Data Rate,即DDR)。
步骤S05:根据亮度数据实时累积量对应的亮度补偿增益值和发光元件的实时目标亮度值计算点亮发光元件的实时数据信号。
在一些实施例中,该步骤S05具体包括:步骤S051:将发光元件的实时目标亮度值与亮度数据实时累积量对应的亮度补偿增益值相乘,获得补偿后的亮度值。
其中,发光元件的实时目标亮度值指发光元件老化前的实时亮度值(即实际亮度,亮度单位为nit)。补偿后的亮度值指需要提供给老化后的发光 元件,以使老化后的发光元件经过补偿后能够实现其实时目标亮度值。
步骤S052:将补偿后的亮度值转换为驱动发光元件发光的数字电流信号。
其中,补偿后的亮度值与驱动发光元件发光的数字电流信号正相关。
步骤S053:将数字电流信号转换为模拟电压信号;模拟电压信号为点亮发光元件的实时数据信号。
其中,点亮发光元件的实时数据信号通过数据线提供给发光元件的驱动电路,驱动电路驱动该发光元件发光。
本实施例中,参照图7,为本公开实施例中包含红、绿、蓝色发光元件的显示面板的老化亮度补偿流程框图;其中,输入到主控芯片的R GL、G GL、B GL分别为红色发光元件、绿色发光元件、蓝色发光元件的灰阶信号;LR、LG、LB分别为红色发光元件、绿色发光元件、蓝色发光元件的亮度值(即实际亮度,亮度单位为nit);即主控芯片将发光元件的灰阶信号转换为发光元件的亮度值(即实际亮度,亮度单位为nit);主控芯片读取第三短时存储器DDR3中不同颜色发光元件的亮度补偿增益值(即GainR、GainG、GainB),经过补偿计算后获得不同颜色发光元件补偿后的亮度值,即O_LR、O_LG、O_LB;然后将不同颜色发光元件补偿后的亮度值分别转换为驱动其发光的数字电流信号,即O_R、O_G、O_B;最后通过数据驱动芯片(即Source IC)将数字电流信号转换为模拟电压信号,即V_R、V_G、V_B;该模拟电压信号为点亮发光元件的实时数据信号;将该模拟电压信号通过数据线分别提供给显示面板(即Panel)中的各发光元件。
其中,不同颜色发光元件的补偿计算公式分别为:O_LR=LR×GainR;O_LG=LG×GainG;O_LB=LB×GainB;其中,GainR、GainG、GainB分别为红色发光元件、绿色发光元件、蓝色发光元件的亮度补偿增益值。
步骤S06:根据点亮发光元件的实时数据信号实时点亮发光元件,以使发光元件实现实时目标亮度。
其中,发光元件的实时目标亮度指发光元件老化前的实时亮度值(即实际亮度,亮度单位为nit)。
在一些实施例中,发光元件包括颜色不同的第一发光元件、第二发光元件、第三发光元件和第四发光元件;老化补偿方法中,步骤S01还包括:检测计算获得显示面板中第四发光元件的亮度累积量与色度补偿增益值的第二映射关系表。
其中,显示面板包括多个第四发光元件。该步骤中,步骤S011还包括:将显示面板中的各第四发光元件分别在同一亮度下点亮不同时长和/或在不同亮度下点亮相同时长和/或在不同亮度下点亮不同时长,不同时长分别对应不同的时间节点,获取各第四发光元件在不同时间节点的亮度累积量。
该步骤S011中,参照图3,第四发光元件的亮度累积过程中第四发光元件的实际亮度值与累积的第四发光元件亮度数据之间的对应关系也满足图3中所示的指数关系:(L1/L2) n=A1/A2;即在进行第四发光元件不同亮度累积时,不能将第四发光元件的实际亮度值直接进行累加,而是要根据图3中的对应关系曲线将该曲线所在二维坐标系中横坐标表示的第四发光元件的实际亮度值转换为纵坐标上相应的第四发光元件的亮度数据,然后再进行第四发光元件的亮度数据的累加,将第四发光元件的亮度数据的累加结果作为第四发光元件在不同时间节点的亮度累积量。
在一些实施例中,获取各第四发光元件在不同时间节点的亮度累积量的具体累积过程和方法与获取前述获取第一发光元件、第二发光元件、第三发光元件在不同时间节点的亮度累积量的过程和方法相同,这里不再赘述。
步骤S012还包括:测量各第四发光元件在不同时间节点的色度值。
步骤S013还包括:根据各第四发光元件在不同时间节点的色度值,计算各第四发光元件在不同时间节点的色度补偿增益值。
该步骤中,根据不同时间节点的色度值与初始色度值(即老化前的色 度值),可以计算出不同时间节点的色度补偿增益值。
步骤S014还包括:将各第四发光元件在不同时间节点的亮度累积量与各第四发光元件在不同时间节点的色度补偿增益值建立一一对应的第二映射关系表。
在一些实施例中,第一发光元件包括红色发光元件;第二发光元件包括绿色发光元件;第三发光元件包括蓝色发光元件;第四发光元件包括白色发光元件。
其中,第四发光元件的亮度累积量与亮度补偿增益值之间的对应关系曲线可参照图4中的对应关系曲线。
在一些实施例中,根据第四发光元件老化前后色度的变化,在第一发光元件、第二发光元件和第三发光元件中选择两个颜色的发光元件进行补色;第二映射关系表包括第一关系表和第二关系表;第一关系表为第四发光元件的亮度累积量与其中一个颜色的发光元件的第一色度补偿增益值之间的映射关系表;第二关系表为第四发光元件的亮度累积量与另一个颜色的发光元件的第二色度补偿增益值之间的映射关系表。如本实施例中,参照图8,为本公开实施例中第四发光元件的亮度累积量与第一色度补偿增益值和第二色度补偿增益值之间的对应关系曲线。其中,第一关系表为白色发光元件的亮度累积量与绿色发光元件的第一色度补偿增益值之间的映射关系表;第二关系表为白色发光元件的亮度累积量与蓝色发光元件的第二色度补偿增益值之间的映射关系表。
步骤S02还包括:将第二映射关系表存入显示面板中。
该步骤中,第二映射关系表存入显示面板中的时序控制器(即TCON)中。
步骤S03还包括:显示面板开机时,对其中第四发光元件的亮度数据进行实时累积,获得亮度数据实时累积量。
步骤S04还包括:根据亮度数据实时累积量在第二映射关系表中查找 其对应的色度补偿增益值。
步骤S05还包括:根据亮度数据实时累积量对应的色度补偿增益值和第四发光元件的实时目标亮度值计算对第四发光元件进行色度补偿的其他颜色发光元件的实时数据信号。
该步骤S05中,步骤S051还包括:将选择的两个颜色的发光元件中其中一个颜色的发光元件的补偿后的亮度值和第四发光元件的实时目标亮度值与亮度数据实时累积量对应的第一色度补偿增益值的乘积相加,获得第一补色亮度值;将选择的两个颜色的发光元件中另一个颜色的发光元件的补偿后的亮度值和第四发光元件的实时目标亮度值与亮度数据实时累积量对应的第二色度补偿增益值的乘积相加,获得第二补色亮度值;将第一补色亮度值和第二补色亮度值分别计入对第四发光元件进行色度补偿的两个颜色的发光元件的实时数据信号。
其中,第四发光元件的实时目标亮度值指第四发光元件老化前的实时亮度值(即实际亮度,亮度单位为nit)。第一补色亮度值和第二补色亮度值指需要提供给老化后的对第四发光元件进行色度补偿的两个颜色的发光元件,以使老化后的第四发光元件经过补偿后能够实现其实时目标色度值。
在一些实施例中,参照图9,为本公开实施例中包含红、绿、蓝、白色发光元件的显示面板的老化亮度色度补偿流程框图;其中,输入到主控芯片的R GL、G GL、B GL分别为红色发光元件、绿色发光元件、蓝色发光元件的灰阶信号;LR、LG、LB、LW分别为红色发光元件、绿色发光元件、蓝色发光元件、白色发光元件的亮度值(即实际亮度,亮度单位为nit);即主控芯片将发光元件的灰阶信号转换为发光元件的亮度值(即实际亮度,亮度单位为nit);主控芯片读取第三短时存储器DDR3中不同颜色发光元件的亮度补偿增益值(即GainR、GainG、GainB、GainW)以及其中两种颜色发光元件的第一色度补偿增益值(Color_Gain1)和第二色度补偿增益值(Color_Gain2),经过补偿计算后获得不同颜色发光元件补偿后的亮度值 以及白色发光元件补偿后的色度值,即O_LR、O_LG、O_LB、O_LW;然后将不同颜色发光元件补偿后的亮度值以及白色发光元件补偿后的色度值分别转换为驱动其发光的数字电流信号,即O_R、O_G、O_B、O_W;最后通过数据驱动芯片(即Source IC)将数字电流信号转换为模拟电压信号,即V_R、V_G、V_B、V_W;该模拟电压信号为点亮发光元件的实时数据信号;将该模拟电压信号通过数据线分别提供给显示面板(即Panel)中的各发光元件。
其中,红色、绿色、蓝色、白色发光元件的亮度补偿以及白色发光元件的色度补偿计算公式分别为:O_LR=LR×GainR;O_LG=LG×GainG+LW×Color_GainG;O_LB=LB×GainB+LW×Color_GainB;O_LW=LW×GainW;其中,GainR、GainG、GainB、GainW分别为红色发光元件、绿色发光元件、蓝色发光元件、白色发光元件的亮度补偿增益值;Color_GainG和Color_GainB分别为绿色和蓝色发光元件的色度补偿增益值。
在一些实施例中,根据白色发光元件老化后的色度情况,也可以选择其他两种颜色的发光元件对白色发光元件进行色度补偿,最终确保老化后的白色发光元件经过色度补偿后显示比较纯正的白色;如:如果白色发光元件老化后颜色偏蓝,则可以采用红色发光元件和绿色发光元件对其进行色度补偿。
在一些实施例中,根据各不同颜色发光元件老化后的色度情况,也可以选择其他颜色的发光元件对其进行色度补偿,最终确保老化后的各不同颜色发光元件经过色度补偿后显示比较纯正的本色。各不同颜色发光元件老化后的色度补偿原理与白色发光元件的色度补偿原理相同,此处不再赘述。
步骤S06还包括:根据对第四发光元件进行色度补偿的其他颜色发光元件的实时数据信号实时点亮对第四发光元件进行色度补偿的其他颜色发光元件,以使第四发光元件实现实时目标亮度和实时目标色度。
其中,第四发光元件的实时目标亮度指第四发光元件老化前的实时亮 度值(即实际亮度,亮度单位为nit)。第四发光元件的实时目标色度指第四发光元件老化前的实时色度值。
在一些实施例中,显示面板的老化补偿方法还可以集成对驱动发光元件的像素驱动电路中的薄膜晶体管特性进行补偿的电学补偿和光学补偿方案,这里不再赘述。
本公开实施例中,显示面板的老化补偿方法在显示面板显示时同步实时进行,即显示面板的显示和老化补偿分别独立进行,互不影响,且该老化补偿方法能够实现对发光元件的直接补偿,不需要使用外部补偿的检测电路,同时在整个老化补偿过程中,不占用显示面板的显示时间,不会产生检测亮线,也不需要发光元件效率与其阳极和阴极之间的跨压满足一一对应关系,该老化补偿方法补偿精确度高,通用性强,实现了对显示面板老化补偿的简便高效。
第二方面,本公开实施例还提供一种显示面板,参照图10,为本公开实施例中显示面板的老化补偿原理框图;其中,显示面板包括存储模块,被配置为存储第一映射关系表;第一映射关系表为显示面板中发光元件的亮度累积量与亮度补偿增益值之间的对应关系表;累积模块,被配置为在显示面板开机时,对其中发光元件的亮度数据进行实时累积,获得亮度数据实时累积量;主控模块,被配置为根据亮度数据实时累积量在第一映射关系表中查找其对应的亮度补偿增益值;根据亮度数据实时累积量对应的亮度补偿增益值和发光元件的实时目标亮度值计算点亮发光元件的实时数据信号;根据点亮发光元件的实时数据信号实时点亮发光元件,以使发光元件实现实时目标亮度。
在一些实施例中,主控模块可以是FPGA(Field Programmable Gate Array,可编程阵列逻辑);也可以是专用集成电路(ASIC)。
在一些实施例中,存储模块设置在显示面板中的时序控制器板(即Tcon板)上;累积模块设置在主控模块(即FPGA或者ASIC)中;主控模块设置 在显示面板中的时序控制器板上。
在一些实施例中,累积模块包括第一短时存储器;第一短时存储器,被配置为在显示面板开机时,开始实时累积发光元件的亮度数据;主控模块,被配置为在第一短时存储器每次累积发光元件的亮度数据时,将第一短时存储器中上次的亮度数据累积结果读出并存入第一缓存中;读取第一缓存中上次的亮度数据累积结果,与点亮发光元件的本次亮度数据相加,获得本次的亮度数据累积结果;将本次的亮度数据累积结果存入第二缓存中;将第二缓存中本次的亮度数据累积结果存入第一短时存储器中。
在一些实施例中,第一短时存储器,被配置为在显示面板开机时,从0开始累积发光元件的亮度数据。
在一些实施例中,第一短时存储器采用双倍速率同步动态随机存储器(Double Data Rate,即DDR)。
在一些实施例中,累积模块还包括长时存储器;长时存储器,被配置为在显示面板开机时,开始实时累积发光元件的亮度数据;主控模块,被配置为在长时存储器每次累积发光元件的亮度数据时,将第一短时存储器中的亮度数据累积结果读出并存入第一缓存中;将长时存储器中上次的亮度数据累积结果读出并存入第二缓存中;读取第一缓存和第二缓存中的亮度数据累积结果并使二者相加,将相加后的亮度数据累积结果存入第三缓存中;将第三缓冲中相加后的亮度数据累积结果存入长时存储器中。
在一些实施例中,长时存储器,被配置为在显示面板开机时,从上次的亮度数据累积结果开始累积发光元件的亮度数据。
在一些实施例中,长时存储器采用带有MMC(多媒体卡)接口、快闪记忆体设备及主控制器的eMMC(Embedded Multi Media Card,内嵌式存储器)。
在一些实施例中,第一短时存储器被配置为在长时存储器累积发光元件的亮度数据时,暂停累积发光元件的亮度数据;或者,显示面板还包括第二短时存储器;第二短时存储器,被配置为当第一短时存储器暂停累积 发光元件的亮度数据时,从0开始实时累积发光元件的亮度数据。
在一些实施例中,第二短时存储器采用双倍速率同步动态随机存储器(Double Data Rate,即DDR)。
在一些实施例中,存储模块包括第三短时存储器;主控模块,被配置为读取长时存储器中的发光元件的亮度数据实时累积量,并将其存入第三短时存储器中;读取第三短时存储器中的发光元件的亮度数据实时累积量,根据发光元件的亮度数据实时累积量在第一映射关系表中查找其对应的亮度补偿增益值;或者,读取长时存储器中的发光元件的亮度数据实时累积量;根据发光元件的亮度数据实时累积量在第一映射关系表中查找其对应的亮度补偿增益值,并将亮度补偿增益值存入第三短时存储器中。
在一些实施例中,第三短时存储器采用双倍速率同步动态随机存储器(Double Data Rate,即DDR)。
在一些实施例中,长时存储器,被配置为每次累积至少一行发光元件的亮度数据。
在一些实施例中,第一短时存储器,被配置为每次累积至少一行发光元件的亮度数据;第二短时存储器,被配置为每次累积至少一行发光元件的亮度数据。
在一些实施例中,每次累积的发光元件的亮度数据与发光元件的实际亮度值之间满足关系式:(L1/L2) n=A1/A2;其中,n的取值范围为1.4~1.6;A1和A2表示任意两次累积的发光元件的亮度数据;L1表示对应A1的发光元件的实际亮度值;L2表示对应A2的发光元件的实际亮度值。
在一些实施例中,主控模块,被配置为将发光元件的实时目标亮度值与亮度数据实时累积量对应的亮度补偿增益值相乘,获得补偿后的亮度值;将补偿后的亮度值转换为驱动发光元件发光的数字电流信号;将数字电流信号转换为模拟电压信号;模拟电压信号为点亮发光元件的实时数据信号。
在一些实施例中,发光元件包括颜色不同的第一发光元件、第二发光 元件、第三发光元件和第四发光元件;存储模块,还被配置为存储第二映射关系表;第二映射关系表为显示面板中第四发光元件的亮度累积量与色度补偿增益值之间的对应关系表;累积模块,还被配置为在显示面板开机时,对其中第四发光元件的亮度数据进行实时累积,获得亮度数据实时累积量;主控模块,还被配置为根据亮度数据实时累积量在第二映射关系表中查找其对应的色度补偿增益值;根据亮度数据实时累积量对应的色度补偿增益值和第四发光元件的实时目标亮度值计算对第四发光元件进行色度补偿的其他颜色发光元件的实时数据信号;根据对第四发光元件进行色度补偿的其他颜色发光元件的实时数据信号实时点亮对第四发光元件进行色度补偿的其他颜色发光元件,以使第四发光元件实现实时目标亮度和实时目标色度。
在一些实施例中,主控模块,还被配置为根据第四发光元件老化前后色度的变化,在第一发光元件、第二发光元件和第三发光元件中选择两个颜色的发光元件进行补色;第二映射关系表包括第一关系表和第二关系表;第一关系表为第四发光元件的亮度累积量与其中一个颜色的发光元件的第一色度补偿增益值之间的映射关系表;第二关系表为第四发光元件的亮度累积量与另一个颜色的发光元件的第二色度补偿增益值之间的映射关系表;主控模块,还被配置为将选择的两个颜色的发光元件中其中一个颜色的发光元件的补偿后的亮度值和第四发光元件的实时目标亮度值与亮度数据实时累积量对应的第一色度补偿增益值的乘积相加,获得第一补色亮度值;将选择的两个颜色的发光元件中另一个颜色的发光元件的补偿后的亮度值和第四发光元件的实时目标亮度值与亮度数据实时累积量对应的第二色度补偿增益值的乘积相加,获得第二补色亮度值;将第一补色亮度值和第二补色亮度值分别计入对第四发光元件进行色度补偿的两个颜色的发光元件的实时数据信号。
在一些实施例中,第三短时存储器还用于存储对应第四发光元件的亮 度数据实时累积量的色度补偿增益值。其中,第三短时存储器可以是一个或者一组,一组中包括多个第三短时存储器,如DDR3_1、DDR3_2…、DDR3_X。
在一些实施例中,第三短时存储器还可以存储对显示面板进行老化补偿的电学补偿数据和光学补偿数据。
在一些实施例中,第一发光元件包括红色发光元件;第二发光元件包括绿色发光元件;第三发光元件包括蓝色发光元件;第四发光元件包括白色发光元件。
在一些实施例中,发光元件的数量为多个,多个发光元件排布呈阵列;显示面板还包括检测计算模块,被配置为检测计算获得第一映射关系表;检测计算模块,包括:第一累积单元,被配置为将各发光元件分别在同一亮度下点亮不同时长和/或在不同亮度下点亮相同时长和/或在不同亮度下点亮不同时长;不同时长分别对应不同的时间节点,获取各发光元件在不同时间节点的亮度累积量;第一计算单元,被配置为根据各发光元件在不同时间节点的亮度累积量计算各发光元件在不同时间节点的效率;根据各发光元件在不同时间节点的效率,计算各发光元件在不同时间节点的亮度补偿增益值;建表单元,被配置为将各发光元件在不同时间节点的亮度累积量与各发光元件在不同时间节点的亮度补偿增益值建立一一对应的第一映射关系表。
在一些实施例中,第四发光元件的数量为多个;检测计算模块,还被配置为检测计算获得第二映射关系表;第一累积单元,还被配置为将显示面板中的各第四发光元件分别在同一亮度下点亮不同时长和/或在不同亮度下点亮相同时长和/或在不同亮度下点亮不同时长;不同时长分别对应不同的时间节点,获取各第四发光元件在不同时间节点的亮度累积量;第一计算单元,还被配置为测量各第四发光元件在不同时间节点的色度值;根据各第四发光元件在不同时间节点的色度值,计算各第四发光元件在不同时间节点的色度补偿增益值;建表单元,还被配置为将各第四发光元件在 不同时间节点的亮度累积量与各第四发光元件在不同时间节点的色度补偿增益值建立一一对应的第二映射关系表。
在一些实施例中,第一累积单元,被配置为在连续的N帧画面中,每帧画面中抽取不同的M行发光元件的亮度数据进行累积,N帧画面显示完毕后所有发光元件的亮度数据分别累积一次;其中,M×N为显示面板中发光元件的行数;或者,第一累积单元,被配置为对发光元件的亮度数据进行逐帧累积。
在一些实施例中,第一累积单元可以是显示面板内部的电子累积单元,如短时存储器、长时存储器等;也可以通过人为累积。第一计算单元可以是显示面板内部的测量计算单元,测量单元如传感器等,计算单元如一些设计好计算公式的芯片等;也可以通过人为计算。建表单元可以是显示面板内部的能够建立表格的芯片;也可以通过人为建表。
在一些实施例中,检测计算模块可以仅设置在进行老化测试的显示面板内,以便通过进行老化测试的显示面板获得第一映射关系表和第二映射关系表,老化测试获得的第一映射关系表和第二映射关系表存入客户端显示面板中,客户端显示面板直接使用第一映射关系表和第二映射关系表,因此,客户端显示面板可以不设置检测计算模块。
在一些实施例中,在老化前后发光元件的点亮电流一致时,发光元件在不同时间节点的效率=发光元件在当前时间节点的实际亮度值/发光元件老化前的初始实际亮度值;或者,在老化前后发光元件的点亮电流不一致时,发光元件在不同时间节点的效率=(发光元件在当前时间节点的实际亮度值/发光元件的当前点亮电流)/(发光元件老化前的初始实际亮度值/发光元件老化前的初始点亮电流)。
在一些实施例中,发光元件在不同时间节点的亮度补偿增益值=1/发光元件在不同时间节点的效率。
本公开实施例中所提供的显示面板,能够实现显示与老化补偿的同步 实时进行,即显示面板能实现显示和老化补偿分别独立进行,互不影响,且够实现对发光元件的直接补偿,不需要使用外部补偿的检测电路,同时在整个老化补偿过程中,不占用显示面板的显示时间,不会产生检测亮线,也不需要发光元件效率与其阳极和阴极之间的跨压满足一一对应关系,该显示面板老化补偿精确度高,老化补偿过程简便高效,提升了该显示面板的显示效果。
第三方面,本公开实施例还提供一种显示装置,包括上述实施例中的显示面板。
通过采用上述实施例中的显示面板,能实现该显示装置精确、简便、高效的老化补偿,提升了该显示装置的显示效果。
该显示装置可以为:OLED面板、LED面板、QLED面板、Micro LED面板、Mini LED面板、电视、手机、平板电脑、笔记本电脑、显示器、数码相框、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (22)

  1. 一种显示面板,其中,包括:
    存储模块,被配置为存储第一映射关系表;所述第一映射关系表为所述显示面板中发光元件的亮度累积量与亮度补偿增益值之间的对应关系表;
    累积模块,被配置为在所述显示面板开机时,对其中所述发光元件的亮度数据进行实时累积,获得亮度数据实时累积量;
    主控模块,被配置为根据所述亮度数据实时累积量在所述第一映射关系表中查找其对应的所述亮度补偿增益值;
    根据所述亮度数据实时累积量对应的所述亮度补偿增益值和所述发光元件的实时目标亮度值计算点亮所述发光元件的实时数据信号;
    根据点亮所述发光元件的所述实时数据信号实时点亮所述发光元件,以使所述发光元件实现实时目标亮度。
  2. 根据权利要求1所述的显示面板,其中,所述累积模块包括第一短时存储器;
    所述第一短时存储器,被配置为在所述显示面板开机时,开始实时累积所述发光元件的亮度数据;
    所述主控模块,被配置为在所述第一短时存储器每次累积所述发光元件的亮度数据时,将所述第一短时存储器中上次的亮度数据累积结果读出并存入第一缓存中;
    读取所述第一缓存中所述上次的亮度数据累积结果,与点亮所述发光元件的本次亮度数据相加,获得本次的亮度数据累积结果;
    将所述本次的亮度数据累积结果存入第二缓存中;
    将所述第二缓存中所述本次的亮度数据累积结果存入所述第一短时存 储器中。
  3. 根据权利要求2所述的显示面板,其中,所述第一短时存储器,被配置为在所述显示面板开机时,从0开始累积所述发光元件的亮度数据。
  4. 根据权利要求2所述的显示面板,其中,所述累积模块还包括长时存储器;
    所述长时存储器,被配置为在所述显示面板开机时,开始实时累积所述发光元件的亮度数据;
    所述主控模块,被配置为在所述长时存储器每次累积所述发光元件的亮度数据时,将所述第一短时存储器中的亮度数据累积结果读出并存入所述第一缓存中;将所述长时存储器中上次的亮度数据累积结果读出并存入所述第二缓存中;
    读取所述第一缓存和所述第二缓存中的亮度数据累积结果并使二者相加,将相加后的亮度数据累积结果存入第三缓存中;
    将所述第三缓冲中所述相加后的亮度数据累积结果存入所述长时存储器中。
  5. 根据权利要求4所述的显示面板,其中,所述长时存储器,被配置为在所述显示面板开机时,从上次的亮度数据累积结果开始累积所述发光元件的亮度数据。
  6. 根据权利要求4所述的显示面板,其中,所述第一短时存储器被配置为在所述长时存储器累积所述发光元件的亮度数据时,暂停累积所述发光元件的亮度数据;
    或者,所述显示面板还包括第二短时存储器;
    所述第二短时存储器,被配置为当所述第一短时存储器暂停累积所述发光元件的亮度数据时,从0开始实时累积所述发光元件的亮度数据。
  7. 根据权利要求6所述的显示面板,其中,所述存储模块包括第三短时存储器;
    所述主控模块,被配置为读取所述长时存储器中的所述发光元件的亮度数据实时累积量,并将其存入所述第三短时存储器中;
    读取所述第三短时存储器中的所述发光元件的亮度数据实时累积量,根据所述发光元件的亮度数据实时累积量在所述第一映射关系表中查找其对应的所述亮度补偿增益值;
    或者,读取所述长时存储器中的所述发光元件的亮度数据实时累积量;
    根据所述发光元件的亮度数据实时累积量在所述第一映射关系表中查找其对应的所述亮度补偿增益值,并将所述亮度补偿增益值存入所述第三短时存储器中。
  8. 根据权利要求6所述的显示面板,其中,所述长时存储器,被配置为每次累积至少一行所述发光元件的亮度数据。
  9. 根据权利要求8所述的显示面板,其中,所述第一短时存储器,被配置为每次累积至少一行所述发光元件的亮度数据;
    所述第二短时存储器,被配置为每次累积至少一行所述发光元件的亮度数据。
  10. 根据权利要求1-9任意一项所述的显示面板,其中,每次累积的所述发光元件的亮度数据与所述发光元件的实际亮度值之间满足关系式:(L1/L2) n=A1/A2;
    其中,n的取值范围为1.4~1.6;A1和A2表示任意两次累积的所述发光元件的亮度数据;L1表示对应A1的所述发光元件的实际亮度值;L2表示对应A2的所述发光元件的实际亮度值。
  11. 根据权利要求1所述的显示面板,其中,
    所述主控模块,被配置为将所述发光元件的实时目标亮度值与所述亮度数据实时累积量对应的所述亮度补偿增益值相乘,获得补偿后的亮度值;
    将所述补偿后的亮度值转换为驱动所述发光元件发光的数字电流信号;
    将所述数字电流信号转换为模拟电压信号;所述模拟电压信号为点亮所述发光元件的实时数据信号。
  12. 根据权利要求1所述的显示面板,其中,所述发光元件包括颜色不同的第一发光元件、第二发光元件、第三发光元件和第四发光元件;
    所述存储模块,还被配置为存储第二映射关系表;所述第二映射关系表为所述显示面板中所述第四发光元件的亮度累积量与色度补偿增益值之间的对应关系表;
    所述累积模块,还被配置为在所述显示面板开机时,对其中所述第四发光元件的亮度数据进行实时累积,获得亮度数据实时累积量;
    所述主控模块,还被配置为根据所述亮度数据实时累积量在所述第二映射关系表中查找其对应的所述色度补偿增益值;
    根据所述亮度数据实时累积量对应的所述色度补偿增益值和所述第四发光元件的实时目标亮度值计算对所述第四发光元件进行色度补偿的其他颜色发光元件的实时数据信号;
    根据对所述第四发光元件进行色度补偿的其他颜色发光元件的所述实时数据信号实时点亮对所述第四发光元件进行色度补偿的其他颜色发光元 件,以使所述第四发光元件实现实时目标亮度和实时目标色度。
  13. 根据权利要求12所述的显示面板,其中,所述主控模块,还被配置为根据所述第四发光元件老化前后色度的变化,在所述第一发光元件、所述第二发光元件和所述第三发光元件中选择两个颜色的发光元件进行补色;
    所述第二映射关系表包括第一关系表和第二关系表;
    所述第一关系表为所述第四发光元件的亮度累积量与其中一个颜色的发光元件的第一色度补偿增益值之间的映射关系表;
    所述第二关系表为所述第四发光元件的亮度累积量与另一个颜色的发光元件的第二色度补偿增益值之间的映射关系表;
    所述主控模块,还被配置为将选择的两个颜色的发光元件中其中一个颜色的所述发光元件的补偿后的亮度值和所述第四发光元件的实时目标亮度值与所述亮度数据实时累积量对应的所述第一色度补偿增益值的乘积相加,获得第一补色亮度值;
    将选择的两个颜色的发光元件中另一个颜色的所述发光元件的补偿后的亮度值和所述第四发光元件的实时目标亮度值与所述亮度数据实时累积量对应的所述第二色度补偿增益值的乘积相加,获得第二补色亮度值;
    将所述第一补色亮度值和所述第二补色亮度值分别计入对所述第四发光元件进行色度补偿的两个颜色的发光元件的实时数据信号。
  14. 根据权利要求书12或13所述的显示面板,其中,所述第一发光元件包括红色发光元件;所述第二发光元件包括绿色发光元件;所述第三发光元件包括蓝色发光元件;
    所述第四发光元件包括白色发光元件。
  15. 根据权利要求12所述的显示面板,其中,所述发光元件的数量为多个,多个所述发光元件排布呈阵列;
    所述显示面板还包括检测计算模块,被配置为检测计算获得所述第一映射关系表;
    所述检测计算模块,包括:
    第一累积单元,被配置为将各所述发光元件分别在同一亮度下点亮不同时长和/或在不同亮度下点亮相同时长和/或在不同亮度下点亮不同时长;不同时长分别对应不同的时间节点,获取各所述发光元件在不同时间节点的亮度累积量;
    第一计算单元,被配置为根据各所述发光元件在不同时间节点的亮度累积量计算各所述发光元件在不同时间节点的效率;
    根据各所述发光元件在不同时间节点的效率,计算各所述发光元件在不同时间节点的所述亮度补偿增益值;
    建表单元,被配置为将各所述发光元件在不同时间节点的亮度累积量与各所述发光元件在不同时间节点的所述亮度补偿增益值建立一一对应的所述第一映射关系表。
  16. 根据权利要求15所述的显示面板,其中,所述第四发光元件的数量为多个;
    所述检测计算模块,还被配置为检测计算获得所述第二映射关系表;
    所述第一累积单元,还被配置为将所述显示面板中的各所述第四发光元件分别在同一亮度下点亮不同时长和/或在不同亮度下点亮相同时长和/或在不同亮度下点亮不同时长;不同时长分别对应不同的时间节点,获取各所述第四发光元件在不同时间节点的亮度累积量;
    所述第一计算单元,还被配置为测量各所述第四发光元件在不同时间节点的色度值;
    根据各所述第四发光元件在不同时间节点的色度值,计算各所述第四发光元件在不同时间节点的所述色度补偿增益值;
    所述建表单元,还被配置为将各所述第四发光元件在不同时间节点的亮度累积量与各所述第四发光元件在不同时间节点的所述色度补偿增益值建立一一对应的所述第二映射关系表。
  17. 根据权利要求16所述的显示面板,其中,所述第一累积单元,被配置为在连续的N帧画面中,每帧画面中抽取不同的M行所述发光元件的亮度数据进行累积,N帧画面显示完毕后所有所述发光元件的亮度数据分别累积一次;其中,M×N为所述显示面板中所述发光元件的行数;
    或者,所述第一累积单元,被配置为对所述发光元件的亮度数据进行逐帧累积。
  18. 根据权利要求15所述的显示面板,其中,在老化前后所述发光元件的点亮电流一致时,所述发光元件在不同时间节点的效率=所述发光元件在当前时间节点的实际亮度值/所述发光元件老化前的初始实际亮度值;
    或者,在老化前后所述发光元件的点亮电流不一致时,所述发光元件在不同时间节点的效率=(所述发光元件在当前时间节点的实际亮度值/所述发光元件的当前点亮电流)/(所述发光元件老化前的初始实际亮度值/所述发光元件老化前的初始点亮电流)。
  19. 根据权利要求18所述的显示面板,其中,所述发光元件在不同时间节点的所述亮度补偿增益值=1/所述发光元件在不同时间节点的效率。
  20. 一种显示装置,其中,包括权利要求1-19任意一项所述的显示面板。
  21. 一种显示面板的老化补偿方法,其中,包括:
    检测计算获得所述显示面板中发光元件的亮度累积量与亮度补偿增益值的第一映射关系表;
    将所述第一映射关系表存入所述显示面板中;
    所述显示面板开机时,对其中所述发光元件的亮度数据进行实时累积,获得亮度数据实时累积量;
    根据所述亮度数据实时累积量在所述第一映射关系表中查找其对应的所述亮度补偿增益值;
    根据所述亮度数据实时累积量对应的所述亮度补偿增益值和所述发光元件的实时目标亮度值计算点亮所述发光元件的实时数据信号;
    根据点亮所述发光元件的所述实时数据信号实时点亮所述发光元件,以使所述发光元件实现实时目标亮度。
  22. 根据权利要求21所述的显示面板的老化补偿方法,其中,所述发光元件包括颜色不同的第一发光元件、第二发光元件、第三发光元件和第四发光元件;
    所述老化补偿方法还包括:
    检测计算获得所述显示面板中所述第四发光元件的亮度累积量与色度补偿增益值的第二映射关系表;
    将所述第二映射关系表存入所述显示面板中;
    所述显示面板开机时,对其中所述第四发光元件的亮度数据进行实时累积,获得亮度数据实时累积量;
    根据所述亮度数据实时累积量在所述第二映射关系表中查找其对应的所述色度补偿增益值;
    根据所述亮度数据实时累积量对应的所述色度补偿增益值和所述第四 发光元件的实时目标亮度值计算对所述第四发光元件进行色度补偿的其他颜色发光元件的实时数据信号;
    根据对所述第四发光元件进行色度补偿的其他颜色发光元件的所述实时数据信号实时点亮对所述第四发光元件进行色度补偿的其他颜色发光元件,以使所述第四发光元件实现实时目标亮度和实时目标色度。
PCT/CN2022/090134 2022-04-29 2022-04-29 显示面板及其老化补偿方法和显示装置 WO2023206317A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000969.1A CN117321670A (zh) 2022-04-29 2022-04-29 显示面板及其老化补偿方法和显示装置
PCT/CN2022/090134 WO2023206317A1 (zh) 2022-04-29 2022-04-29 显示面板及其老化补偿方法和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090134 WO2023206317A1 (zh) 2022-04-29 2022-04-29 显示面板及其老化补偿方法和显示装置

Publications (1)

Publication Number Publication Date
WO2023206317A1 true WO2023206317A1 (zh) 2023-11-02

Family

ID=88517025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090134 WO2023206317A1 (zh) 2022-04-29 2022-04-29 显示面板及其老化补偿方法和显示装置

Country Status (2)

Country Link
CN (1) CN117321670A (zh)
WO (1) WO2023206317A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110175944A1 (en) * 2010-01-21 2011-07-21 Chi Lin Technology Co., Ltd. Control system for maintaining color of a display device
CN105895056A (zh) * 2016-06-17 2016-08-24 京东方科技集团股份有限公司 亮度补偿模型的建立方法、屏幕亮度的补偿方法及装置
CN108877687A (zh) * 2018-08-30 2018-11-23 武汉天马微电子有限公司 数据电压补偿方法及其驱动芯片、显示装置
CN109377945A (zh) * 2018-11-08 2019-02-22 京东方科技集团股份有限公司 像素补偿方法、装置及系统
CN110164367A (zh) * 2019-05-05 2019-08-23 霸州市云谷电子科技有限公司 显示屏的亮度调节方法、装置和显示屏
CN112071263A (zh) * 2020-09-04 2020-12-11 京东方科技集团股份有限公司 显示面板的显示方法及显示装置
CN113178160A (zh) * 2021-04-30 2021-07-27 云谷(固安)科技有限公司 显示面板的补偿方法、装置及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110175944A1 (en) * 2010-01-21 2011-07-21 Chi Lin Technology Co., Ltd. Control system for maintaining color of a display device
CN105895056A (zh) * 2016-06-17 2016-08-24 京东方科技集团股份有限公司 亮度补偿模型的建立方法、屏幕亮度的补偿方法及装置
CN108877687A (zh) * 2018-08-30 2018-11-23 武汉天马微电子有限公司 数据电压补偿方法及其驱动芯片、显示装置
CN109377945A (zh) * 2018-11-08 2019-02-22 京东方科技集团股份有限公司 像素补偿方法、装置及系统
CN110164367A (zh) * 2019-05-05 2019-08-23 霸州市云谷电子科技有限公司 显示屏的亮度调节方法、装置和显示屏
CN112071263A (zh) * 2020-09-04 2020-12-11 京东方科技集团股份有限公司 显示面板的显示方法及显示装置
CN113178160A (zh) * 2021-04-30 2021-07-27 云谷(固安)科技有限公司 显示面板的补偿方法、装置及显示装置

Also Published As

Publication number Publication date
CN117321670A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
CN106558287B (zh) 有机发光像素驱动电路、驱动方法及有机发光显示面板
CN110021265B (zh) 一种像素电路及其驱动方法、显示装置及驱动方法
US20210201760A1 (en) Pixel circuit and driving method thereof, display panel and driving method thereof, and display device
US10235937B2 (en) Organic light-emitting display panel and driving method thereof, and organic light-emitting display device
US10565934B2 (en) Drive compensation circuit, display panel and driving method thereof
WO2017206205A1 (zh) Oled显示装置驱动系统及oled显示装置驱动方法
CN105609050B (zh) 像素补偿电路及amoled显示装置
WO2019062579A1 (zh) 像素电路及其驱动方法、显示装置
WO2022048442A1 (zh) 显示面板的显示方法及显示装置
WO2020187200A1 (zh) 有机发光二极管显示基板及其驱动方法
US10770001B2 (en) Flicker quantification system and method of driving the same
CN111445868B (zh) 背光单元及其控制方法、液晶显示装置
CN108376534B (zh) 像素电路及其驱动方法、显示面板
KR102248872B1 (ko) 유기전계발광표시장치
TWI594221B (zh) 像素結構及其驅動方法
CN105427809A (zh) 像素补偿电路及amoled显示装置
CN105741758B (zh) 有机发光显示器和驱动有机发光显示器的方法
TW201532021A (zh) 發光控制電路、其驅動電路及其主動矩陣有機發光二極體顯示面板
CN109036289A (zh) 像素电路、其驱动方法及显示装置
CN109166522A (zh) 像素电路、其驱动方法及显示装置
WO2020206974A1 (zh) 有机发光器件的补偿系统及其补偿方法
WO2019085858A1 (zh) 显示面板的驱动方法、驱动电路、显示面板和显示装置
CN108538253B (zh) Amoled显示器的像素驱动系统及驱动方法
CN114005405A (zh) 显示面板及其亮度补偿方法
CN210627878U (zh) 像素电路和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939167

Country of ref document: EP

Kind code of ref document: A1