WO2023206270A1 - 物理上行共享信道配置方法、装置、通信设备和存储介质 - Google Patents

物理上行共享信道配置方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2023206270A1
WO2023206270A1 PCT/CN2022/090013 CN2022090013W WO2023206270A1 WO 2023206270 A1 WO2023206270 A1 WO 2023206270A1 CN 2022090013 W CN2022090013 W CN 2022090013W WO 2023206270 A1 WO2023206270 A1 WO 2023206270A1
Authority
WO
WIPO (PCT)
Prior art keywords
different
data transmission
pusch
tci
tcis
Prior art date
Application number
PCT/CN2022/090013
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/090013 priority Critical patent/WO2023206270A1/zh
Priority to CN202280001503.3A priority patent/CN117322097A/zh
Publication of WO2023206270A1 publication Critical patent/WO2023206270A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and particularly relates to physical uplink shared channel (PUSCH, Physical Uplink Shared Channel) configuration methods, devices, communication equipment and storage media.
  • PUSCH Physical Uplink Shared Channel
  • MIMO Multiple Input Multiple Output
  • MIMO Multiple Input Multiple Output
  • both the sender and the receiver communicate using multiple antennas that can work simultaneously.
  • MIMO systems typically employ sophisticated signal processing techniques to significantly enhance reliability, transmission range and throughput.
  • the transmitter sends multiple radio frequency signals simultaneously, and the receiver recovers the data from these signals.
  • embodiments of the present disclosure provide a PUSCH configuration method, device, communication equipment and storage medium.
  • a PUSCH configuration method includes:
  • N-JT Non-Coherent Joint Transmission
  • TCI Transmission Configuration Indication
  • the TCI is associated with the beam information
  • different TCI is associated with the same transmission resources at the same time
  • the transmission resources include: time domain resources and frequency domain resources, where multiple different antenna panels use space division multiplexing (SDM, Space Division Multiplexing) to perform the PUSCH NC-JT.
  • SDM Space Division Multiplexing
  • the data transmission layer sets associated with different TCIs are different, wherein one data transmission layer set includes: one or more data transmission layers, and the data transmission layers of different data transmission layer sets are different. same.
  • different antenna panels of the terminal perform transmission of a single code word (CW, Code Word) corresponding to a transport block (TB, Transport Block) TB of the NC-JT of the PUSCH, wherein one of the A CW is associated with multiple data transmission layers, wherein the multiple data transmission layers that one CW is associated with belong to at least two of the data transmission layer sets.
  • CW code word
  • TB transport block
  • Transport Block transport Block
  • different antenna panels of the terminal use a single redundancy version (RV, Redundancy Version) for the single codeword CW transmission of the NC-JT of the PUSCH.
  • RV Redundancy Version
  • different antenna panels of the terminal perform multiple codeword CW transmissions corresponding to one TB of the NC-JT of the PUSCH, where one CW corresponds to one data transmission layer set.
  • the terminal uses multiple RVs to implement different codeword CW transmission of NC-JT of the PUSCH.
  • different antenna panels of the terminal use a single modulation and coding strategy MCS to perform NC-JT of the PUSCH.
  • different TCIs correspond to the same number of data transmission layers.
  • different antenna panels of the terminal use different MCSs to perform NC-JT of the PUSCH.
  • different TCIs correspond to the same number of data transmission layers
  • Different TCIs correspond to different numbers of data transmission layers.
  • the maximum number of data transmission layers in the data transmission layer set associated with the TCI is the maximum number of data transmission layers supported by the antenna panel corresponding to the TCI.
  • different TCIs are associated with different Demodulation Reference Signal (DMRS) port sets, wherein one DMRS port set includes: one or more DMRS ports, and different DMRS port sets are The DMRS ports in are all different.
  • DMRS Demodulation Reference Signal
  • different TCIs correspond to different transceiver point (TRP, Transmission Reception Point) directions of the base station.
  • TRP Transmission Reception Point
  • different TCIs are used to indicate different quasi-co-located type D source reference signals, and the quasi-co-located type D source reference signals are used to determine the TRP direction.
  • the TCI includes one of the following:
  • SRI Spatial Relation Information
  • Different unified TCIs are carried in one TCI indication domain.
  • the unified TCI includes one of the following:
  • the PUSCH includes at least one of the following:
  • DCI Downlink Control Information
  • the TCI may be carried in at least one of the following
  • Radio Resource Control (RRC, Radio Resource Control) signaling
  • MAC-CE Media Access Control Control Element
  • a physical uplink shared channel PUSCH configuration device wherein the device includes:
  • the processing module is configured for non-coherent transmission NC-JT of uplink PUSCH, and different antenna panels of the terminal are configured with different transmission configuration indications TCI; wherein the TCI is associated with beam information, and different TCIs are associated with the same transmission resource at the same time, where , the transmission resources include: time domain resources and frequency domain resources, wherein multiple different antenna panels use spatial division multiplexing SDM to perform NC-JT of the PUSCH.
  • the data transmission layer sets associated with different TCIs are different, wherein one data transmission layer set includes: one or more data transmission layers, and the data transmission layers of different data transmission layer sets are different. same.
  • different antenna panels of the terminal perform single codeword CW transmission corresponding to one transmission block TB of the NC-JT of the PUSCH, wherein one CW is associated with multiple data transmission layers, wherein, the multiple data transmission layers to which one CW is associated belong to at least two of the data transmission layer sets.
  • different antenna panels of the terminal use a single redundancy version RV for the single codeword CW transmission of the NC-JT of the PUSCH.
  • different antenna panels of the terminal perform multiple codeword CW transmissions corresponding to one TB of the NC-JT of the PUSCH, where one CW corresponds to one data transmission layer set.
  • the terminal uses multiple RVs to implement different codeword CW transmission of NC-JT of the PUSCH.
  • different antenna panels of the terminal use a single modulation and coding strategy MCS to perform NC-JT of the PUSCH.
  • different TCIs correspond to the same number of data transmission layers.
  • different antenna panels of the terminal use different MCSs to perform NC-JT of the PUSCH.
  • different TCIs correspond to the same number of data transmission layers
  • Different TCIs correspond to different numbers of data transmission layers.
  • the maximum number of data transmission layers in the data transmission layer set associated with the TCI is the maximum number of data transmission layers supported by the antenna panel corresponding to the TCI.
  • the demodulation reference signal DMRS port sets associated with different TCIs are different, wherein one DMRS port set includes: one or more DMRS ports, and the DMRS ports in the different DMRS port sets are different. same.
  • different TCIs correspond to different transceiver point TRP directions of the base station.
  • different TCIs are used to indicate different quasi-co-located type D source reference signals, and the quasi-co-located type D source reference signals are used to determine the TRP direction.
  • the TCI includes one of the following:
  • different unified TCIs are carried in different TCI indication fields
  • Different unified TCIs are carried in one TCI indication domain.
  • the unified TCI includes one of the following:
  • the PUSCH includes at least one of the following:
  • the TCI may be carried in at least one of the following
  • a communication equipment device including a processor, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable program.
  • the steps of the physical uplink shared channel (PUSCH) configuration method according to any one of claims 1 to 19 are performed.
  • PUSCH physical uplink shared channel
  • a storage medium on which an executable program is stored, wherein when the executable program is executed by a processor, the physical uplink as described in any one of claims 1 to 19 is implemented. Steps of the shared channel PUSCH configuration method.
  • the PUSCH configuration method, device, communication equipment and storage medium provided by the embodiments of the present disclosure.
  • different antenna panels of the terminal are configured with different TCIs; where the TCIs are associated with beam information, and different TCIs are associated with the same transmission resources at the same time, where the transmission resources include: time domain resources and Frequency domain resources, wherein multiple different antenna panels use SDM to perform NC-JT of the PUSCH.
  • different TCIs indicate the beam information of different antenna panels respectively, and the beam information of each antenna panel can be configured independently, which improves the flexibility of beam configuration.
  • NC-JT uses SDM to perform uplink PUSCH.
  • Multiple antenna panels transmit simultaneously, which reduces the uplink transmission delay under multiple TRPs and improves throughput. Different antenna panels can be independently precoded, reducing the impact on the transmission environment. Impact on transmission and improve transmission reliability. Multiple antenna panels use the same transmission resources for transmission, saving transmission resources and improving transmission resource utilization.
  • Figure 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Figure 2 is a schematic diagram of an MTRP downlink transmission architecture according to an exemplary embodiment
  • Figure 3 is a schematic diagram of another MTRP downlink transmission architecture according to an exemplary embodiment
  • Figure 4 is a schematic diagram of dynamic transmission point selection and transmission according to an exemplary embodiment
  • Figure 5 is a schematic diagram of coherent joint transmission according to an exemplary embodiment
  • Figure 6 is a schematic diagram of non-coherent joint transmission according to an exemplary embodiment
  • Figure 7 is a schematic flowchart of a PUSCH configuration method according to an exemplary embodiment
  • Figure 8 is a schematic flowchart of another PUSCH configuration method according to an exemplary embodiment
  • Figure 9 is a schematic diagram of an MTRP uplink SDM transmission architecture according to an exemplary embodiment
  • Figure 10 is a schematic diagram of MTRP uplink SDM transmission according to an exemplary embodiment
  • Figure 11 is a schematic flowchart of yet another PUSCH configuration method according to an exemplary embodiment
  • Figure 12 is a schematic diagram of another MTRP uplink SDM transmission architecture according to an exemplary embodiment
  • Figure 13 is a schematic diagram of another MTRP uplink SDM transmission according to an exemplary embodiment
  • Figure 14 is a block diagram of yet another PUSCH configuration device according to an exemplary embodiment
  • Figure 15 is a block diagram of an apparatus for PUSCH configuration according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include several terminals 11 and several base stations 12 .
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • Terminal 11 can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • Terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or "cellular" phone) and a device with The computer of the Internet of Things terminal, for example, can be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • remote station remote station
  • access terminal remote terminal
  • user terminal user agent, user device, or user equipment (UE).
  • UE user equipment
  • the terminal 11 may be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be a vehicle-mounted device, for example, it may be an on-board computer with a wireless communication function, or a wireless communication device connected to an external on-board computer.
  • the terminal 11 may also be a roadside device, for example, it may be a streetlight, a signal light or other roadside device with wireless communication function.
  • the base station 12 may be a network-side device in a wireless communication system.
  • the wireless communication system can be the 4th generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as the Long Term Evolution (LTE) system; or the wireless communication system can also be a 5G system, Also called new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • MTC system New Generation-Radio Access Network
  • the base station 12 may be an evolved base station (eNB) used in the 4G system.
  • the base station 12 may also be a base station (gNB) that adopts a centralized distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is equipped with a protocol stack including the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control protocol (Radio Link Control, RLC) layer, and the Media Access Control (Media Access Control, MAC) layer; distributed
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the base station 12.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • an E2E (End to End) connection can also be established between terminals 11.
  • V2V vehicle to vehicle, vehicle to vehicle
  • V2I vehicle to infrastructure, vehicle to roadside equipment
  • V2P vehicle to pedestrian, vehicle to person
  • the above-mentioned wireless communication system may also include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device can also be other core network devices, such as Serving Gate Way (SGW), Public Data Network Gate Way (PGW), Policy and Charging Rule Function Unit (Policy and Charging Rules Function (PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving Gate Way
  • PGW Public Data Network Gate Way
  • PCRF Policy and Charging Rule Function Unit
  • HSS Home Subscriber Server
  • CoMP Coordinated Multiple Point transmission
  • multi-point cooperative transmission technology can be divided into two types: coherent and non-coherent transmission.
  • coherent transmission each data layer will be mapped to multiple TRPs/panels through weighted vectors.
  • non-coherent transmission each data stream is only mapped to part of the TRP/panel.
  • Coherent transmission has higher requirements for synchronization between transmission points and the transmission capacity of the backhaul link, and is therefore sensitive to many non-ideal factors in actual deployment conditions. Relatively speaking, non-coherent transmission is less affected by the above factors, so it is a key consideration for multi-point transmission technology.
  • Quasi Co-Location means that the large-scale parameters of the channel experienced by symbols on a certain antenna port can be inferred from the channel experienced by symbols on another antenna port.
  • the large-scale parameters may include delay spread, average delay, Doppler spread, Doppler shift, average gain, and spatial reception parameters.
  • the concept of QCL was introduced with the emergence of multipoint cooperative transmission technology.
  • the multiple nodes involved in the coordinated multipoint transmission process may correspond to multiple sites (including TRPs) with different geographical locations or multiple sectors with different antenna panel orientations.
  • TRPs transmission path identifiers
  • the large-scale parameters of the channel will directly affect the adjustment and optimization of the filter coefficients during channel estimation.
  • different channel estimation filter parameters should be used to adapt to the corresponding channel propagation characteristics.
  • the impact of the above-mentioned spatial differences on the large-scale parameters of the channel is an important issue that the UE needs to consider when performing channel estimation and reception detection. factor.
  • the so-called QCL of two antenna ports in the sense of certain large-scale parameters means that these large-scale parameters of the two ports are the same. In other words, as long as certain large-scale parameters of the two ports are consistent, regardless of whether there are differences in their actual physical locations or corresponding antenna panel orientations, the terminal can consider that the two ports originate from the same location (i.e., quasi-co-site). site).
  • QCL-TypeA ⁇ Doppler frequency shift, Doppler extension, average delay, delay extension ⁇
  • spatial reception parameters may not be required.
  • this parameter is mainly targeted at frequency bands above 6GHz, it is treated as a separate QCL type.
  • NR Release 15 stipulates that the demodulation reference signal (DMRS, Demodulation Reference Signal) port in each code division multiplexing (CDM, Code Division Multiplexing) group is QCL.
  • DMRS Demodulation Reference Signal
  • a multi-point coordinated transmission scenario is shown in Figure 2, including one terminal and multiple TRPs.
  • the terminal can perform uplink PUSCH transmission in the TRP direction of multiple base stations.
  • Terminals can use time division multiplexing technology (TDM, Time-Division Multiplexing) transmission method for collaborative transmission.
  • TDM Time-Division Multiplexing
  • the terminal sends the same TB of PUSCH to different TRPs of the base station through different transmission opportunities in the time domain.
  • This method has relatively low requirements on terminal capabilities, does not require the ability to support simultaneous transmission of beams, and has a large transmission delay.
  • the spatial characteristics of the actual channels passed by PUSCH channels facing different TRPs may be very different. Therefore, it is considered that the QCL-D of PUSCH channels in different sending directions is different.
  • multi-point cooperative transmission technology can be roughly divided into two types: coherent and non-coherent transmission.
  • each data transmission layer is mapped to multiple TRP/antenna panels participating in cooperative transmission through weighted vectors. If the channel large-scale parameters of each TRP/antenna panel are the same and the same frequency source is used, then coherent transmission is equivalent to splicing multiple sub-arrays into a higher-dimensional virtual array, thereby achieving higher shaping/prediction Coding/multiplexing gain.
  • this method has higher requirements for synchronization between transmission points and backhaul transmission capabilities.
  • Non-coherent transmission means that each data stream is only mapped to the port corresponding to the TRP/antenna panel with the same large-scale channel parameters (i.e. QCL). Different data streams can be mapped to different QCL ports without the need to All collaboration points (multiple TRP/antenna panels for collaborative transmission) are unified as a virtual array and jointly shaped for each layer.
  • QCL large-scale channel parameters
  • Joint transmission can include: dynamic transmission point selection (DPS, Dynamic Point Select) transmission, coherent joint transmission (C-JT, Coherent-Joint Transmission) and non-coherent joint transmission (NC-JT, Non Coherent-Joint Transmission), etc.
  • DPS Dynamic Point Select
  • C-JT coherent joint transmission
  • NC-JT Non Coherent-Joint Transmission
  • the terminal sends the same TB of PUSCH to different TRPs of the base station through different transmission opportunities in the time domain.
  • the delay is large and the throughput rate is low. How to improve the reliability and throughput of transmission while effectively reducing the transmission delay under multiple TRPs is an issue that needs to be solved urgently.
  • this exemplary embodiment provides a PUSCH configuration method, which can be executed by network side equipment and/or terminals of a cellular mobile communication system, including:
  • Step 701 For the NC-JT of uplink PUSCH, different antenna panels of the terminal are configured with different TCIs; wherein the TCI is associated with beam information, and different TCIs are associated with the same transmission resources at the same time, where the transmission resources include: time domain resources and frequency domain resources, wherein multiple different antenna panels use SDM to perform NC-JT of the PUSCH.
  • This embodiment can be applied to, but is not limited to, core network equipment, access network equipment and other network-side equipment, and/or terminals.
  • the terminals here may include: handheld terminals and/or non-handheld terminals, etc. No limitation is made here.
  • the terminal may be a UE capable of implementing coordinated multipoint transmission to TRP directions of multiple base stations simultaneously.
  • the UE can simultaneously implement uplink coordinated multipoint transmission in the TRP direction of multiple base stations.
  • Coordinated Multipoint Transmission (CoMP, Coordinated Multiple Points Transmission/Reception) refers to multiple TRPs that are geographically separated, collaboratively sending data to a terminal or collaboratively receiving data sent by a terminal.
  • the TRP may include: the antenna panel of the base station, etc.
  • the UE can support NC-JT of PUSCH to N TRPs of the base station through N antenna panels simultaneously, where N is a positive integer greater than or equal to 2.
  • N is a positive integer greater than or equal to 2.
  • Each antenna panel of the UE may correspond to a TRP of the base station.
  • a TCI can be configured for each antenna panel of the terminal.
  • TCI is used to indicate the beam information of the beam used when the corresponding antenna panel performs NC-JC of PUSH.
  • the beam information is used to indicate at least the direction of the beam and the like.
  • TCI can be TCI State.
  • Different antenna panels of the terminal are configured with different TCIs.
  • the network side device may configure different TCIs for each antenna panel of the terminal. Different antenna panels of the terminal are configured with different TCIs.
  • the terminal can determine different TCIs for each antenna panel.
  • Each antenna panel can perform independent precoding processing using the precoding matrix corresponding to each antenna panel to perform NC-JT. That is, the antenna panel is not jointly shaped.
  • the TCI includes one of the following:
  • TCI can be unified TCI (Unified TCI).
  • SRI can be used when unified TCI is not configured.
  • Unified TCI can be used when the TRP has beam consistency.
  • Unified TCI indicates uplink and downlink beams through multiple channels and signal sharing, and multiple CCs use common beams.
  • TRP's beam consistency may include: TRP's downlink receiving beam and uplink transmitting beam have reciprocity, that is, the downlink receiving beam and the uplink transmitting beam are beam correspondences. When the beams are consistent, the direction of the uplink beam is also the direction of the downlink beam.
  • the base station can also use spatial relationship information (SRI, Spatial Relation Info) to indicate TCI to the terminal.
  • SRI Spatial Relation Info
  • the base station can also carry TCI through the Sounding Reference Signal RESOURCE INDICATOR (SRI, Sounding Reference Signal RESOURCE INDICATOR).
  • Sounding reference signal resource indication is used to indicate the uplink transmission analog beam direction corresponding to the SRS resources specifically used to transmit PUSCH in codebook transmission, and to indicate which SRS resources are specifically used to transmit PUSCH in non-codebook transmission. Transmit as precoding for the uplink PUSCH, that is, the transmit beam directions of different layers.
  • the reserved bits indicated by the sounding reference signal resource may be used to carry the TCI. Different sounding reference signal resource indications may be sent for different antenna panels.
  • the TCI in the sounding reference signal resource indication may be directly associated with the antenna panel that received the sounding reference signal resource indication.
  • the unified TCI includes one of the following:
  • Different TCIs corresponding to different antenna panels can be joint TCIs or independent TCIs.
  • Unified TCI can include: joint TCI state and independent TCI. Among them, the joint TCI is used to indicate the uplink transmit beam and the downlink receive beam at the same time; the independent TCI is used to indicate the uplink transmit beam or the downlink receive beam.
  • different TCIs correspond to different transceiver point TRP directions of the base station.
  • the beams indicated by TCI can be transmitted at the same time, such as in the same time slot, using the same time domain resources and frequency domain resources.
  • TCI can realize NC-JT of PUSCH using SDM on different antenna panels by indicating beams in different directions.
  • different TCIs are used to indicate different quasi-co-located type D source reference signals, and the quasi-co-located type D source reference signals are used to determine the TRP direction.
  • the quasi-colocated type-D source reference signal may include at least one of the following: Channel State Information Reference Signal (CSI-RS, Channel State Information Reference Signal); Synchronous Signal Broadcast Channel Block (SSB, Synchronous Signal) /PBCH Block); Detection Reference Signal (SRS, Sounding Reference Signal).
  • CSI-RS Channel State Information Reference Signal
  • SSB Synchronous Signal Broadcast Channel Block
  • SRS Detection Reference Signal
  • the base station and the UE can exchange different quasi-co-located type D source reference signals in different beams to determine different beams that can communicate.
  • a quasi-co-located type D source reference signal is associated with a beam.
  • the association relationship can be a one-to-one correspondence. Among them, the directions of different beams can be different.
  • TCI can indicate a beam in one direction via a quasi-co-located Type D source reference signal.
  • Different unified TCIs are carried in one TCI indication domain.
  • TCI can be carried through multiple independent TCI indication fields.
  • TCI can be indicated through two or more independent TCIs, and each TCI indication field carries one TCI, that is, each TCI indication field indicates a beam direction.
  • TCI indication field that is, one TCI code point.
  • one TCI indication field may carry two TCIs, that is, one TCI indication field indicates the first TRP beam direction and the second TRP beam direction.
  • the PUSCH includes at least one of the following:
  • PUSCH may be scheduled by a single DCI.
  • DCI may be transmitted through PDCCH resources.
  • Configured Grant CG PUSCH is divided into two types: type 1 (type1) and type 2 (type2). Among them, type 1CG PUSCH can configure all parameters by RRC signaling, and once configured, it can be sent periodically. Type 2CG PUSCH can configure some parameters through RRC signaling, and then requires downlink control information (DCI, Downlink Control Information) to activate/deactivate, and other parameters are given in the activated DCI, which can be used periodically after activation.
  • DCI Downlink Control Information
  • the TCI may be carried in at least one of the following
  • the base station can carry TCI through different signaling to improve the flexibility of indicating TCI.
  • different TCIs indicate the beam information of different antenna panels respectively, and the beam information of each antenna panel can be configured independently, which improves the flexibility of beam configuration.
  • NC-JT uses SDM to perform uplink PUSCH. Multiple antenna panels transmit simultaneously, which reduces the uplink transmission delay under multiple TRPs and improves throughput. Different antenna panels can be independently precoded, reducing the impact on the transmission environment. Impact on transmission and improve transmission reliability. Multiple antenna panels use the same transmission resources for transmission, saving transmission resources and improving transmission resource utilization.
  • the data transmission layer sets associated with different TCIs are different, wherein one data transmission layer set includes: one or more data transmission layers, and the data transmission layers of different data transmission layer sets are different. same.
  • the TCI-associated data transmission layer set may be the data transmission layer set sent by the TCI-associated antenna panel.
  • the data transmission layer set associated with each TCI is different, that is, the data transmission layer sent by each antenna panel is different.
  • a terminal has two antenna panels.
  • the data transmission layer set of TCI corresponding to one antenna panel includes two data transmission layers: Layer 1 and Layer 2.
  • the data transmission layer set of TCI corresponding to one antenna panel includes Layer 2. )3 and layer 4 two data transmission layers.
  • one antenna panel can be used to transmit two data transmission layers, layer 1 and layer 2, and the other antenna panel can be used to transmit two data transmission layers, layer 3 and layer 4.
  • the maximum number of data transmission layers in the data transmission layer set associated with the TCI is the maximum number of data transmission layers supported by the antenna panel corresponding to the TCI.
  • the data transmission layers that different antenna panels can support can be different or the same. Because different antenna panels use their own TCI corresponding data transmission layer for transmission. Therefore, the maximum number of data transmission layers in the data transmission layer associated with the TCI may be the maximum number of data transmission layers that the corresponding antenna panel of the TCI can support.
  • the terminal can report to the network side equipment such as the base station the maximum number of ports contained in the maximum source reference signal (SRS, source Reference Signal) resource supported by different antenna panels of the terminal (the network side equipment can determine the antenna panel based on the maximum number of ports).
  • the maximum number of data transmission layers that can be supported can be supported.
  • the maximum number of ports can be determined as the maximum number of data transmission layers that the antenna panel can support), or the maximum number of data transmission layers that the UE can support.
  • the network side device indicates TCI to the terminal, it can determine the number of data transmission layers in the data transmission layer set based on the maximum number of data transmission layers that the antenna panel can support.
  • the maximum number of data transmission layers that can be supported by the two antenna panels of the UE are N_p1 and N_p2 respectively. Then, the maximum number of data transmission layers in the data transmission layer set corresponding to TCI associated with antenna panel 1 is less than or equal to N_p1, and the maximum number of data transmission layers in the data transmission layer set corresponding to TCI associated with antenna panel 2 is less than or equal to N_p2.
  • this exemplary embodiment provides a PUSCH configuration method, which can be executed by network side equipment and/or terminals of a cellular mobile communication system, including:
  • Step 801 Different antenna panels of the terminal perform transmission of a single codeword CW corresponding to one TB of the NC-JT of the PUSCH, where one of the CWs is associated with multiple data transmission layers, where one of the The plurality of data transmission layers that the CW is associated with belong to at least two of the data transmission layer sets.
  • 1 TB can obtain 1 code word (CW, Code Word) after data processing.
  • Data processing may include: code block segmentation, channel coding, rate matching, code block concatenation, etc.
  • 1 TB of CW can be mapped to different data transmission layers on the same time-frequency resource in the same time slot. Transmitted by the terminal through multiple antenna panels. Different TCI indicates the data transmission layer sent by different antenna panels.
  • a terminal has two antenna panels.
  • the data transmission layer set of the TCI associated with the antenna panel 1 includes two data transmission layers: data transmission layer (Layer) 1 and data transmission layer 2.
  • the data transmission layer set of the TCI associated with the antenna panel 2 includes data transmission layer (Layer) 3 and Data transmission layer 4 Two data transmission layers. 1 TB of CW can be mapped to 4 data transmission layers: data transmission layer 1, data transmission layer 2, data transmission layer 3 and data transmission layer 4, that is, the data of 4 data transmission layers constitutes a CW.
  • antenna panel 1 sends data of data transmission layer 1 and data transmission layer 2
  • antenna panel 2 sends data of data transmission layer 3 and data transmission layer 4.
  • one antenna panel corresponds to one TRP.
  • Each TRP can correspond to a beam direction. The beam directions of each TRP are different.
  • multiple data transmission layers of one TB are sent through multiple antenna panels.
  • Each antenna panel corresponds to a TRP in a different beam direction, realizing SDM.
  • Multiple antenna panels transmit at the same time, reducing the uplink transmission delay under multiple TRPs. time, improving the throughput rate.
  • different antenna panels of the terminal use a single redundancy version RV for the single codeword CW transmission of the NC-JT of the PUSCH.
  • one TB corresponds to one CW.
  • a TB can obtain a CW based on rate matching (RATE MATCHING) based on a redundant version.
  • the encoded bits are stored in a circular buffer and sequentially read from the circular buffer according to the redundant version during each transmission to achieve rate matching.
  • the RV may be carried in DCI by the network side and indicated to the terminal.
  • the data transmission layer may be mapped for the CW based on channel conditions of multiple TRPs. That is, rank (RANK) allocation is performed based on the channel conditions of multiple TRPs.
  • RTK rank
  • more data transmission layers can be configured for TRPs whose channel conditions are higher than a predetermined threshold. Fewer data transmission layers may be configured for TRPs whose channel conditions are below a predetermined threshold.
  • the number of RAN configured for each TRP is fixed.
  • this exemplary embodiment provides a PUSCH configuration method, which can be executed by network side equipment and/or terminals of a cellular mobile communication system, including:
  • Step 1101 Different antenna panels of the terminal perform multiple codeword CW transmissions corresponding to one TB of the NC-JT of the PUSCH, where one CW corresponds to one data transmission layer set.
  • 1 TB can obtain M code words (CW, Code Word) after data processing, and M is a positive integer greater than or equal to 2.
  • data processing may include: code block segmentation, channel coding, rate matching, code block concatenation, etc.
  • Each CW protects a terabyte of copies.
  • Each CW can be mapped to a data transport layer combination.
  • the data transmission layer set corresponding to each CW can be different.
  • M codewords can be sent by the terminal through M antenna panels. Different TCI instructs different antenna panels to send corresponding data transmission layer sets.
  • a terminal has two antenna panels.
  • the data transmission layer set 1 of the TCI associated with the antenna panel 1 includes two data transmission layers: data transmission layer (Layer) 1 and data transmission layer 2.
  • the data transmission layer set 2 of the TCI associated with the antenna panel 2 includes the data transmission layer (Layer).
  • Data transmission layer set 1 is different from data transmission layer set 2. 1 TB is processed to obtain CW0 and CW1.
  • CW0 can be mapped to data transmission layer set 1, that is, the data of data transmission layer set 1 constitutes CW0.
  • CW1 can be mapped to data transmission layer set 2, that is, the data of data transmission layer set 2 constitutes CW1.
  • antenna panel 1 When the terminal transmits uplink, antenna panel 1 sends data of data transmission layer set 1, and antenna panel 2 sends data of data transmission layer set 2.
  • one antenna panel corresponds to one TRP.
  • Each TRP can correspond to a beam direction. The beam directions of each TRP are different.
  • multiple CWs of one TB are sent through multiple antenna panels.
  • Each antenna panel corresponds to a TRP in a different beam direction, realizing SDM.
  • Multiple antenna panels transmit at the same time, reducing the uplink transmission delay under multiple TRPs. , improving the throughput rate.
  • sending two copies of one TB at the same time improves the reliability of data transmission.
  • the terminal uses multiple RVs to implement different codeword CW transmission of NC-JT of the PUSCH.
  • the same TB obtains different CWs through rate matching operations corresponding to different RVs.
  • a TB can perform rate matching (RATE MATCHING) based on multiple redundant versions to obtain multiple different CWs.
  • the RV may be carried in DCI by the network side and indicated to the terminal.
  • different antenna panels of the terminal use a single modulation and coding strategy MCS to perform NC-JT of the PUSCH.
  • different TCIs correspond to the same number of data transmission layers.
  • a single MCS may be carried in DCI by the network side and indicated to the terminal.
  • a single MCS can be applied to determine multiple CWs using one TB, where each CW can correspond to a TRP respectively. That is, multiple antenna panels correspond to one MCS. In this way, the number of bits of the multiple CWs generated is the same, and therefore the number of RANKs of the TRP corresponding to each CW is the same. That is, the number of data transmission layers corresponding to each CW is the same. Further increase the uplink transmission code rate and throughput rate, and improve the anti-blockage capability.
  • a single MCS may be indicated by the DCI MCS indication field.
  • a terminal has two antenna panels, corresponding to two TRPs respectively.
  • Two antenna panels correspond to one MCS, and one TB uses the same MCS to determine CW0 and CW1.
  • CW0 and CW1 correspond to the same number of bits. Therefore, CW0 and CW1 correspond to the same RANK number of different TRPs.
  • the TRP corresponding to each CW has the same RANK number. That is, the number of data transmission layers corresponding to each CW is the same.
  • different antenna panels of the terminal use different MCSs to perform NC-JT of the PUSCH.
  • Different TCIs correspond to different numbers of data transmission layers.
  • Multiple MCSs may be carried in DCI by the network side and indicated to the terminal.
  • Each MCS among multiple MCSs may be used to determine a CW using one TB, where each CW may correspond to a TRP respectively. That is, each antenna panel corresponds to one MCS.
  • the RV corresponding to each MCS can be different. In this way, the number of bits of multiple CWs generated by different MCSs may be the same or different.
  • the number of RANKs of the TRP corresponding to each CW is the same, that is, the number of data transmission layers corresponding to each CW is the same.
  • the RANK number of the TRP corresponding to each CW can be different, that is, the number of data transmission layers corresponding to each CW can be different.
  • the RANK number can be configured for different CWs based on the data volume of different CWs. Instead of using a fixed RANK number configuration. Improved the flexibility of RANK number allocation.
  • the terminal has two antenna panels, corresponding to two TRPs respectively.
  • the two antenna panels correspond to one MCS respectively, and one TB uses the same and different MCS to determine CW0 and CW1.
  • the number of bits corresponding to CW0 and CW1 can be the same or different.
  • the RANK numbers of CW0 and CW1 corresponding to different TRPs are also the same.
  • CW0 and CW1 have different bit numbers
  • the RANK numbers of CW0 and CW1 corresponding to different TRPs can be the same or different. That is, the number of data transmission layers corresponding to each CW is the same.
  • the demodulation reference signal DMRS port sets associated with different TCIs are different, wherein one DMRS port set includes: one or more DMRS ports, and the DMRS ports in the different DMRS port sets are different. same.
  • the DMRS port set associated with each TCI is different, that is, each antenna panel uses SDM to perform NC-JT with different DMRS ports under the same time domain resources and frequency domain resources.
  • N TCI states suitable for simultaneous transmission are configured for the terminal.
  • N different joint TCIs joint TCIs
  • N independent uplink TCIs can be used.
  • Separatate UL TCI are jointly indicated to the terminal.
  • N can be 2. That is, there can be two TICs: TCI1 and TCI2.
  • Each TCI corresponds to the transmit/receive beam of an antenna panel of the terminal and faces a transmit TRP direction.
  • Each TCI contains a different QCL Type-D source RS, and the terminal uses the antenna panel corresponding to the QCL Type-D source RS contained in the TCI to receive.
  • the terminal capabilities need to be considered.
  • the maximum number of ports contained in the maximum SRS resource supported by different panels reported by the terminal, or the maximum number of supported data transmission layers (Layer) may be different. That is, the maximum number of data transmission layers supported by different antenna panels corresponds to panel1 and panel2 respectively.
  • SDM transmission based on a single DCI can realize NC-JT transmission of uplink MTRP through the following solutions:
  • 1 TB of data is transmitted through different layers on the same time-frequency resource in the same time slot, and each TCI is associated with 1 data transmission layer or multiple data transmission layers.
  • Each TCI is associated with a corresponding assigned set of DMRS ports or port groups.
  • Single CW transmission is achieved through a single RV, and the encoded bits are transmitted in different data transmission layers.
  • the maximum number of data transmission layers supported 4 layers.
  • Can support option-1 limited to the CW to data transport layer allocation rules of the current protocol; or support option-2: RANK unbalanced allocation rules to better adapt to MTRP channel conditions;
  • the number of data transmission layers corresponding to TCI1 will not exceed N_p1, and the number of data transmission layers corresponding to TCI2 will not exceed N_p2.
  • 1 TB of data is transmitted through 2 CWs on the same time-frequency resource in the same time slot through different layers.
  • Each TCI is associated with 1 CW and its corresponding 1 data transmission layer or multiple data transmission layers.
  • Each TCI is associated with a corresponding assigned set of DMRS ports or port groups;
  • Multi-CW transmission is achieved through multiple RVs, and the encoded bits are transmitted in their corresponding different data transmission layers.
  • the maximum number of data transmission layers supported 4 layers.
  • the number of data transmission layers corresponding to TCI1 will not exceed N_p1, and the number of data transmission layers corresponding to TCI2 will not exceed N_p2.
  • 1 TB of data is transmitted through 2 CWs on the same time-frequency resource in the same time slot through different layers.
  • Each TCI is associated with 1 CW and its corresponding 1 data transmission layer or multiple data transmission layers.
  • Each TCI is associated with a corresponding assigned set of DMRS ports or port groups;
  • Multi-CW transmission is achieved through multiple RVs, and the encoded bits are transmitted in their corresponding different data transmission layers.
  • the maximum number of data transmission layers supported 4 layers.
  • the number of data transmission layers corresponding to TCI1 will not exceed N_p1, and the number of data transmission layers corresponding to TCI2 will not exceed N_p2.
  • An embodiment of the present invention also provides a PUSCH configuration device, as shown in Figure 14, applied in network side equipment and/or terminals of cellular mobile wireless communications, wherein the device 100 includes:
  • the processing module 100 is configured for non-coherent transmission NC-JT of uplink PUSCH, and different antenna panels of the terminal are configured with different transmission configuration indications TCI; wherein the TCI is associated with beam information, and different TCIs are associated with the same transmission resource at the same time,
  • the transmission resources include: time domain resources and frequency domain resources, wherein multiple different antenna panels use spatial division multiplexing SDM to perform NC-JT of the PUSCH.
  • the data transmission layer sets associated with different TCIs are different, wherein one data transmission layer set includes: one or more data transmission layers, and the data transmission layers of different data transmission layer sets are different. same.
  • different antenna panels of the terminal perform single codeword CW transmission corresponding to one transmission block TB of the NC-JT of the PUSCH, wherein one CW is associated with multiple data transmission layers, wherein, the multiple data transmission layers to which one CW is associated belong to at least two of the data transmission layer sets.
  • different antenna panels of the terminal use a single redundancy version RV for the single codeword CW transmission of the NC-JT of the PUSCH.
  • different antenna panels of the terminal perform multiple codeword CW transmissions corresponding to one TB of the NC-JT of the PUSCH, where one CW corresponds to one data transmission layer set.
  • the terminal uses multiple RVs to implement different codeword CW transmission of NC-JT of the PUSCH.
  • different antenna panels of the terminal use a single modulation and coding strategy MCS to perform NC-JT of the PUSCH.
  • different TCIs correspond to the same number of data transmission layers.
  • different antenna panels of the terminal use different MCSs to perform NC-JT of the PUSCH.
  • different TCIs correspond to the same number of data transmission layers
  • Different TCIs correspond to different numbers of data transmission layers.
  • the maximum number of data transmission layers in the data transmission layer set associated with the TCI is the maximum number of data transmission layers supported by the antenna panel corresponding to the TCI.
  • the demodulation reference signal DMRS port sets associated with different TCIs are different, wherein one DMRS port set includes: one or more DMRS ports, and the DMRS ports in the different DMRS port sets are different. same.
  • different TCIs correspond to different transceiver point TRP directions of the base station.
  • different TCIs are used to indicate different quasi-co-located type D source reference signals, and the quasi-co-located type D source reference signals are used to determine the TRP direction.
  • the TCI includes one of the following:
  • different unified TCIs are carried in different TCI indication fields
  • Different unified TCIs are carried in one TCI indication domain.
  • the unified TCI includes one of the following:
  • the PUSCH includes at least one of the following:
  • the TCI may be carried in at least one of the following
  • the processing module 100 and the like may be configured by one or more central processing units (CPUs, Central Processing Units), graphics processing units (GPUs, Graphics Processing Units), baseband processors (BPs, Baseband Processors), application Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field- Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic component implementation, used to execute the aforementioned method.
  • CPUs Central Processing Units
  • GPUs Graphics Processing Units
  • BPs Baseband Processors
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • general-purpose processor controller, microcontroller (
  • Figure 15 is a block diagram of a device 3000 for PUSCH configuration according to an exemplary embodiment.
  • the device 3000 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • device 3000 may include one or more of the following components: processing component 3002, memory 3004, power supply component 3006, multimedia component 3008, audio component 3010, input/output (I/O) interface 3012, sensor component 3014, and Communication Component 3016.
  • Processing component 3002 generally controls the overall operations of device 3000, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the above method.
  • processing component 3002 may include one or more modules that facilitate interaction between processing component 3002 and other components.
  • processing component 3002 may include a multimedia module to facilitate interaction between multimedia component 3008 and processing component 3002.
  • Memory 3004 is configured to store various types of data to support operations at device 3000. Examples of such data include instructions for any application or method operating on device 3000, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 3004 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 3006 provides power to the various components of device 3000.
  • Power supply components 3006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 3000 .
  • Multimedia component 3008 includes a screen that provides an output interface between device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. A touch sensor can not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • multimedia component 3008 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 3010 is configured to output and/or input audio signals.
  • audio component 3010 includes a microphone (MIC) configured to receive external audio signals when device 3000 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signal may be further stored in memory 3004 or sent via communication component 3016.
  • audio component 3010 also includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 3014 includes one or more sensors for providing various aspects of status assessment for device 3000 .
  • the sensor component 3014 can detect the open/closed state of the device 3000, the relative PUSCH configuration of the components, such as the display and keypad of the device 3000.
  • the sensor component 3014 can also detect the position change of the device 3000 or a component of the device 3000, The presence or absence of user contact with device 3000, device 3000 orientation or acceleration/deceleration, and temperature changes of device 3000.
  • Sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the apparatus 3000 and other devices.
  • Device 3000 may access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • communications component 3016 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 3000 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 3004 including instructions, which can be executed by the processor 3020 of the device 3000 to complete the above method is also provided.
  • non-transitory computer-readable storage media may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例是关于PUSCH配置方法、装置、通信设备和存储介质,方法包括:针对上行物理上行共享信道(PUSCH)的非相干传输(NC-JT),终端的不同天线面板配置不同的传输配置指示(TCI);其中,所述TCI关联于波束信息,不同的TCI同时关联相同的传输资源,其中,所述传输资源包括:时域资源和频域资源,其中,多个不同所述天线面板采用空分复用(SDM)进行所述PUSCH的NC-JT。

Description

物理上行共享信道配置方法、装置、通信设备和存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及物理上行共享信道(PUSCH,Physical Uplink Shared Channel)配置方法、装置、通信设备和存储介质。
背景技术
多进多出(MIMO,Multiple Input Multiple Output)是为了提高信道容量,在发送端和接收端都使用多根天线,在收发之间构成多个信道的天线系统。
在MIMO系统中,收发双方使用多副可以同时工作的天线进行通信。MIMO系统通常采用复杂的信号处理技术来显著增强可靠性、传输范围和吞吐量。发射机同时发送多路射频信号,接收机再从这些信号中将数据恢复出来。
发明内容
有鉴于此,本公开实施例提供了一种PUSCH配置方法、装置、通信设备和存储介质。
根据本公开实施例的第一方面,提供一种PUSCH配置方法,其中,所述方法包括:
针对上行PUSCH的非相干传输(NC-JT,Non-Coherent Joint Transmission),终端的不同天线面板配置不同的传输配置指示(TCI,Transmission Configuration Indication);其中,所述TCI关联于波束信息,不同的TCI同时关联相同的传输资源,其中,所述传输资源包括:时域资 源和频域资源,其中,多个不同所述天线面板采用空分复用(SDM,Space Division Multiplexing)进行所述PUSCH的NC-JT。
在一个实施例中,不同所述TCI关联的数据传输层集合不同,其中,一个所述数据传输层集合包括:一个或多个数据传输层,不同所述数据传输层集合的数据传输层均不相同。
在一个实施例中,所述终端的不同天线面板进行所述PUSCH的NC-JT的一个传输块(TB,Transport Block)TB对应的单个码字(CW,Code Word)传输,其中,一个所述CW关联于多个所述数据传输层,其中,一个所述CW关联于的多个所述数据传输层至少属于两个所述数据传输层集合。
在一个实施例中,所述终端的不同天线面板使用单个冗余版本(RV,Redundancy Version)进行所述PUSCH的NC-JT的所述单个码字CW传输。
在一个实施例中,所述终端的不同天线面板进行所述PUSCH的NC-JT的一个TB对应的多个码字CW传输,其中,一个所述CW对应于一个所述数据传输层集合。
在一个实施例中,所述终端的使用多个RV实现所述PUSCH的NC-JT的不同码字CW传输。
在一个实施例中,所述终端的不同天线面板使用单个调制与编码策略MCS进行所述PUSCH的NC-JT。
在一个实施例中,不同所述TCI对应相同的数据传输层数量。
在一个实施例中,所述终端的不同天线面板使用不同的MCS进行所述PUSCH的NC-JT。
在一个实施例中,不同所述TCI对应相同的数据传输层数;
或者,
不同所述TCI对应不同的数据传输层数。
在一个实施例中,所述TCI关联的数据传输层集合中最大数据传输层 数为所述TCI对应的天线面板支持的最大数据传输层数。
在一个实施例中,不同所述TCI关联的解调参考信号(DMRS,Demodulation Reference Signal)端口集合不同,其中,一个所述DMRS端口集合包括:一个或多个DMRS端口,不同所述DMRS端口集合中的DMRS端口均不相同。
在一个实施例中,不同所述TCI对应于基站的不同收发点()TRP,Transmission Reception Point)方向。
在一个实施例中,不同所述TCI用于指示不同的准共址类型D源参考信号,所述准共址类型D源参考信号用于确定所述TRP方向。
在一个实施例中,所述TCI包括以下之一:
统一TCI;
空间关系信息(SRI,Spatial Relation Info);
探测参考信号资源指示(SRI,Sounding Reference Signal RESOURCE INDICATOR)。
在一个实施例中,
不同的所述统一TCI采用不同的TCI指示域承载;
或者,
不同的所述统一TCI采用一个TCI指示域承载。
在一个实施例中,所述统一TCI包括以下之一:
联合TCI;
独立TCI。
在一个实施例中,所述PUSCH包括以下至少之一:
下行控制信息(DCI,Downlink Control Information)调度的PUSCH;
免调度的类型1配置授权(CG,Configured Grant)PUSCH;
免调度的类型2 CG PUSCH。
在一个实施例中,其中,所述TCI可以携带于以下至少之一
无线资源控制(RRC,Radio Resource Control)信令;
媒体访问控制控制单元(MAC-CE,Media Access Control-Control Element)信令;
DCI信令。
根据本公开实施例的第二方面,提供一种物理上行共享信道PUSCH配置装置,其中,所述装置包括:
处理模块,配置为针对上行PUSCH的非相干传输NC-JT,终端的不同天线面板配置不同的传输配置指示TCI;其中,所述TCI关联于波束信息,不同的TCI同时关联相同的传输资源,其中,所述传输资源包括:时域资源和频域资源,其中,多个不同所述天线面板采用空分复用SDM进行所述PUSCH的NC-JT。
在一个实施例中,不同所述TCI关联的数据传输层集合不同,其中,一个所述数据传输层集合包括:一个或多个数据传输层,不同所述数据传输层集合的数据传输层均不相同。
在一个实施例中,所述终端的不同天线面板进行所述PUSCH的NC-JT的一个传输块TB对应的单个码字CW传输,其中,一个所述CW关联于多个所述数据传输层,其中,一个所述CW关联于的多个所述数据传输层至少属于两个所述数据传输层集合。
在一个实施例中,所述终端的不同天线面板使用单个冗余版本RV进行所述PUSCH的NC-JT的所述单个码字CW传输。
在一个实施例中,所述终端的不同天线面板进行所述PUSCH的NC-JT的一个TB对应的多个码字CW传输,其中,一个所述CW对应于一个所述数据传输层集合。
在一个实施例中,所述终端的使用多个RV实现所述PUSCH的NC-JT 的不同码字CW传输。
在一个实施例中,所述终端的不同天线面板使用单个调制与编码策略MCS进行所述PUSCH的NC-JT。
在一个实施例中,不同所述TCI对应相同的数据传输层数量。
在一个实施例中,所述终端的不同天线面板使用不同的MCS进行所述PUSCH的NC-JT。
在一个实施例中,不同所述TCI对应相同的数据传输层数;
或者,
不同所述TCI对应不同的数据传输层数。
在一个实施例中,所述TCI关联的数据传输层集合中最大数据传输层数为所述TCI对应的天线面板支持的最大数据传输层数。
在一个实施例中,不同所述TCI关联的解调参考信号DMRS端口集合不同,其中,一个所述DMRS端口集合包括:一个或多个DMRS端口,不同所述DMRS端口集合中的DMRS端口均不相同。
在一个实施例中,不同所述TCI对应于基站的不同收发点TRP方向。
在一个实施例中,不同所述TCI用于指示不同的准共址类型D源参考信号,所述准共址类型D源参考信号用于确定所述TRP方向。
在一个实施例中,所述TCI包括以下之一:
统一TCI;
空间关系信息SRI;
探测参考信号资源指示SRI。
在一个实施例中,不同的所述统一TCI采用不同的TCI指示域承载;
或者,
不同的所述统一TCI采用一个TCI指示域承载。
在一个实施例中,所述统一TCI包括以下之一:
联合TCI;
独立TCI。
在一个实施例中,所述PUSCH包括以下至少之一:
下行控制信息DCI调度的PUSCH;
免调度的类型1配置授权CG PUSCH;
免调度的类型2 CG PUSCH。
在一个实施例中,所述TCI可以携带于以下至少之一
无线资源控制RRC信令;
媒体访问控制控制单元MAC-CE信令;
DCI信令。
根据本公开实施例的第三方面,提供一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至19任一项所述物理上行共享信道PUSCH配置方法的步骤。
根据本公开实施例的第四方面,提供一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至19任一项所述物理上行共享信道PUSCH配置方法的步骤。
本公开实施例提供的PUSCH配置方法、装置、通信设备和存储介质。针对上行PUSCH的NC-JT,终端的不同天线面板配置不同的TCI;其中,所述TCI关联于波束信息,不同的TCI同时关联相同的传输资源,其中,所述传输资源包括:时域资源和频域资源,其中,多个不同所述天线面板采用SDM进行所述PUSCH的NC-JT。如此,一方面,通过不同TCI分别指示不同天线面板的波束信息,每个天线面板的波束信息可以单独配置,提高了波束配置的灵活性。另一方面,通过SDM方式进行上行PUSCH的NC-JT,多个天线面板同时进行传输降低了多TRP下的上行传输延时,提 高了吞吐率,不同天线面板可以独立预编码,减少对传输环境对传输的影响,提高传输可靠性。多个天线面板采用相同的传输资源进行传输,节省了传输资源,提高传输资源利用率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种MTRP下行传输架构示意图;
图3是根据一示例性实施例示出的另一种MTRP下行传输架构示意图;
图4是根据一示例性实施例示出的一种动态传输点选择传输示意图;
图5是根据一示例性实施例示出的一种相干联合传输示意图;
图6是根据一示例性实施例示出的一种非相干联合传输示意图;
图7是根据一示例性实施例示出的一种PUSCH配置方法的流程示意图;
图8是根据一示例性实施例示出的另一种PUSCH配置方法的流程示意图;
图9是根据一示例性实施例示出的一种MTRP上行SDM传输架构示意图;
图10是根据一示例性实施例示出的一种MTRP上行SDM传输示意图;
图11是根据一示例性实施例示出的又一种PUSCH配置方法的流程示意图;
图12是根据一示例性实施例示出的另一种MTRP上行SDM传输架构 示意图;
图13是根据一示例性实施例示出的另一种MTRP上行SDM传输示意图;
图14是根据一示例性实施例示出的又一种PUSCH配置装置的框图;
图15是根据一示例性实施例示出的一种用于PUSCH配置的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用于将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统, 该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议 (Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连接。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving Gate Way,SGW)、公用数据网网关(Public Data Network Gate Way,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
为了改善小区边缘的覆盖,在服务区内提供更为均衡的服务质量,多点协作传输(Coordinated Multiple Point transmission,CoMP)在新空口(NR, New Radio)系统中仍然是一种重要的技术手段。从网络形态角度考虑,以大量的分布式接入点结合基带集中处理的方式进行网络部署将更加有利于提供均衡的用户体验速率,并且显著的降低越区切换带来的时延和信令开销。随着频段的升高,从保证网络覆盖的角度出发,也需要相对密集的接入点部署。而在高频段,随着有源天线设备集成度的提高,将更加倾向于采用模块化的有源天线阵列。
根据发送信号流到多个收发点(TRP,Transmit Receive Point)/天线面板上的映射关系,多点协作传输技术可以分为相干和非相干传输两种。其中,相干传输时,每个数据层会通过加权向量映射到多个TRP/面板之上。而非相干传输时,每个数据流只映射到部分的TRP/面板上。相干传输对于传输点之间的同步以及回程链路的传输能力有着更高的要求,因而对现实部署条件中的很多非理想因素较为敏感。相对而言,非相干传输受上述因素的影响较小,因此是多点传输技术的重点考虑方案。
准共址(QCL,Quasi Co-Location)是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道所推断出来。其中的大尺度参数可以包括时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及空间接收参数等。
QCL的概念是随着多点协作传输技术的出现而引入的。多点协作传输过程中涉及到的多个可能对应于多个地理位置不同的站点(包括:TRP)或者天线面板朝向有差异的多个扇区。例如当终端从不同的站点接收数据时,各个站点在空间上的差异会导致来自不同站点的接收链路的大尺度信道参数的差别,如多普勒频偏,时延扩展等。而信道的大尺度参数将直接影响到信道估计时滤波器系数的调整与优化,对应于不同站点发出的信号,应当使用不同的信道估计滤波参数以适应相应的信道传播特性。
因此,尽管各个站点在空间位置或角度上的差异对于UE以及CoMP 操作本身而言是透明的,但是上述空间差异对于信道大尺度参数的影响则是UE进行信道估计与接收检测时需要考虑的重要因素。所谓两个天线端口在某些大尺度参数意义下QCL,就是指这两个端口的这些大尺度参数是相同的。或者说,只要两个端口的某些大尺度参数一致,不论他们的实际物理位置或对应的天线面板朝向是否存在差异,终端就可以认为这两个端口是发自相同的位置(即准共站址)。
针对一些典型的应用场景,考虑到各种参考信号之间可能的QCL关系,从简化信令的角度出发,NR中将几种信道大尺度参数分为以下4个类型,便于系统根据不同场景进行配置/指示:
QCL-TypeA:{Doppler频移,Doppler扩展,平均时延,时延扩展}
-除了空间接收参数之外,的其他大尺度参数均相同。
-对于6GHz以下频段而言,可能并不需要空间接收参数。
QCL-TypeB:{Doppler频移,Doppler扩展}
-仅针对6GHz以下频段的如下两种情况。
QCL-TypeC:{Doppler频移,平均时延}
QCL-TypeD:{空间接收参数}
-如前所述,由于这一参数主要针对6GHz以上频段,因此将其单独作为一个QCL type。
NR Release 15(Rel-15)中规定,在每个码分多路复用(CDM,Code Division Multiplexing)组内的解调参考信号(DMRS,Demodulation Reference Signal)端口是QCL的。
一种多点协作传输的场景如图2所示,包括1个终端和多个TRP。如图3所示,终端可以向多个基站的TRP方向进行上行PUSCH传输。终端可以采用时分复用技术(TDM,Time-Division Multiplexing)传输方式的进行协作传输。终端通过时域上的不同传输时机分时向基站的不同TRP发送 PUSCH的同一TB。这种方法对终端能力的要求比较低,不要求支持同时发送波束的能力,而且传输时延较大。
针对上行传输,面向不同TRP的PUSCH信道,实际经过的信道可能空间特性差别很大,因此,认为不同的发送方向PUSCH信道的QCL-D不同。
根据发送信号流到多个TRP/天线面板(Panel)上的映射关系,多点协作传输技术可以大致分为相干和非相干传输两种。
相干传输时,每个数据传输层会通过加权向量映射到参与协作传输的多个TRP/天线面板上。如果各个TRP/天线面板的信道大尺度参数相同,而且使用了相同的频率源,那么相干传输等效于将多个子阵拼接成为更高维度的虚拟阵列,从而能够获得更高的赋形/预编码/复用增益。但是,在实际的部署环境中,这种方式对于传输点之间的同步以及回程(backhaul)的传输能力有着更高的要求。
非相干传输,是指每个数据流只映射到信道大尺度参数一致(即QCL)的TRP/天线面板所对应的端口上,不同的数据流可以被映射到QCL不同的端口上,不需要将所有的协作点(协作传输的多个TRP/天线面板)统一作为一个虚拟阵列并对每个层都进行联合赋形。
联合传输可以包括:动态传输点选择(DPS,Dynamic Point Select)传输,相干联合传输(C-JT,Coherent-Joint Transmission)以及非相干联合传输(NC-JT,Non Coherent-Joint Transmission)等。如图4所示,单点传输(即DPS传输)的所有码字对应数据传输层都通过一个传输点发出;如图5所示,C-JT时,所有码字和层都通过两个传输点联合预编码之后发出;如图6所示,NC-JT方式中,码字0对应的两个数据传输层从传输点1(TP1,Transmit Point 1)发出,而码字1对应的两个数据传输层从TP2发出。
时分复用(TDM,Time Division Multiplexing)传输方式中,终端通过 时域上的不同传输时机分时向基站的不同TRP发送PUSCH的同一TB,时延较大,吞吐率低。如何提高传输的可靠性和吞吐率,同时可以有效的降低多TRP下的传输时延,是亟待解决的问题。
如图7所示,本示例性实施例提供一种PUSCH配置方法,所述方法可以被蜂窝移动通信系统的网络侧设备和/或终端执行,包括:
步骤701:针对上行PUSCH的NC-JT,终端的不同天线面板配置不同的TCI;其中,所述TCI关联于波束信息,不同的TCI同时关联相同的传输资源,其中,所述传输资源包括:时域资源和频域资源,其中,多个不同所述天线面板采用SDM进行所述PUSCH的NC-JT。
本实施例可以应用但不限于核心网设备、接入网设备等网络侧设备,和/或终端。这里终端可以包括:手持终端和/或非手持终端等。在此不进行限定。
终端可以是能够同时向多个基站的TRP方向实现多点协作传输的UE。UE能够同时向多个基站的TRP方向实现上行多点协作传输。多点协作传输(CoMP,Coordinated Multiple Points Transmission/Reception)是指地理位置上分离的多个TRP,协同向一个终端发送数据或者协同接收一个终端发送的数据。这里,TRP可以包括:基站的天线面板等。
例如,UE能够支持通过N个天线面板同时向基站的N个TRP进行PUSCH的NC-JT,其中,N为大于或等于2的正整数。UE的每个天线面板可以分别对应于基站的一个TRP。
这里,可以分别为终端的每个天线面板配置一个TCI。TCI用于指示对应天线面板进行PUSH的NC-JC时采用的波束的波束信息。这里,波束信息至少用于指示波束的方向等。这里,TCI可以是TCI状态(TCI State)。
终端的不同天线面板配置不同的TCI,可以是网络侧设备为终端的每个天线面板配置不同的TCI。终端的不同天线面板配置不同的TCI,可以是终 端为每个天线面板确定不同的TCI,
各天线面板可以应用各所述天线面板分别对应的预编码矩阵进行独立的预编码处理以进行NC-JT。即不对天线面板进行联合赋形。
在一个实施例中,所述TCI包括以下之一:
统一TCI;
空间关系信息SRI;
探测参考信号资源指示SRI。
TCI可以是统一TCI(Unified TCI)。可以在未配置有统一TCI时,使用SRI。
可以在TRP具有波束一致性时,采用统一TCI。统一TCI通过多信道和信号共享指示上下行波束,多CC使用公共的波束。TRP具有波束一致性可以包括:TRP下行接收波束和上行发射波束具有互性易,即下行接收波束和上行发射波束为波束对应(beam correspondence)。波束一致性时上行波束的方向同样是下行波束的方向。
基站也可以采用空间关系信息(SRI,Spatial Relation Info)向终端指示TCI。
基站还可以通过探测参考信号资源指示(SRI,Sounding Reference Signal RESOURCE INDICATOR)携带TCI。探测参考信号资源指示,用于在码本传输中指示上行发送PUSCH具体使用的SRS资源对应的上行发送模拟波束方向,以及在非码本的传输中指示具体发送PUSCH具体使用那几个SRS资源的发送作为上行PUSCH的预编码,即不同层的发送波束方向。可以采用探测参考信号资源指示的预留比特位携带TCI。不同探测参考信号资源指示可以是针对不同天线面板发送的。探测参考信号资源指示中的TCI可以直接关联于接收到探测参考信号资源指示的天线面板。
在一个实施例中,所述统一TCI包括以下之一:
联合TCI;
独立TCI。
不同天线面板对应的不同的TCI可以是联合TCI,也可以是独立TCI。
统一TCI(Unified TCI)可以包括:联合(Joint)TCI state和独立(separate)TCI。其中,联合TCI同时用于指示上行发送波束和下行接收波束;独立TCI用于指示上行发送波束或下行接收波束。
在一个实施例中,不同所述TCI对应于基站的不同收发点TRP方向。
TCI指示的波束可以在同一时间,如同一时隙内,采用相同的时域资源和频域资源进行传输。TCI可以通过指示不同方向的波束,实现不同天线面板采用SDM进行PUSCH的NC-JT。
在一个实施例中,不同所述TCI用于指示不同的准共址类型D源参考信号,所述准共址类型D源参考信号用于确定所述TRP方向。
准共址类型D源参考信号(QCL Type-D source RS)可以包括以下至少之一:信道状态信息参考信号(CSI-RS,Channel State Information Reference Signal);同步信号广播信道块(SSB,Synchronous Signal/PBCH Block);探测参考信号(SRS,Sounding Reference Signal)。
基站和UE可以在不同的波束内交互不同的准共址类型D源参考信号,用于确定不同的可以进行通信的波束。一个准共址类型D源参考信号与一个波束具有关联关系。关联关系可以是一一对应关系。其中,不同波束的方向可以不同。
TCI可以通过准共址类型D源参考信号指示一个方向的波束。
在一个实施例中,
不同的所述统一TCI采用不同的TCI指示域承载;
或者,
不同的所述统一TCI采用一个TCI指示域承载。
可以通过多个个独立的TCI指示域分别承载一个TCI。例如,可以通过两个多个独立的TCI指示TCI,每个TCI指示域承载一个TCI,即每个TCI指示域指示一个波束方向。
也可以通过一个TCI指示域即一个TCI码点(Code Point)承载多个TCI。例如,可以通过一个TCI指示域承载两个TCI,即一个TCI指示域指示第一TRP波束方向和第二TRP波束方向。
在一个实施例中,所述PUSCH包括以下至少之一:
下行控制信息DCI调度的PUSCH;
免调度的类型1配置授权CG PUSCH;
免调度的类型2 CG PUSCH。
PUSCH可以是由单个DCI调度的。DCI可以是通过PDCCH资源传送的。
配置授权(Configured Grant)CG PUSCH又分为两种类型:类型1(type1)和类型2(type2)。其中类型1CG PUSCH可以由RRC信令配置全部参数,一旦配置后便可以周期性发送。类型2CG PUSCH可以由RRC信令配置部分参数,然后需要下行控制信息(DCI,Downlink Control Information)激活/去激活,并在激活DCI中给出其他部分参数,激活后可以周期性使用。
在一个实施例中,其中,所述TCI可以携带于以下至少之一
无线资源控制RRC信令;
媒体访问控制控制单元MAC-CE信令;
DCI信令。
基站可以通过不同的信令携带TCI,提高指示TCI的灵活性。
如此,一方面,通过不同TCI分别指示不同天线面板的波束信息,每个天线面板的波束信息可以单独配置,提高了波束配置的灵活性。另一方 面,通过SDM方式进行上行PUSCH的NC-JT,多个天线面板同时进行传输降低了多TRP下的上行传输延时,提高了吞吐率,不同天线面板可以独立预编码,减少对传输环境对传输的影响,提高传输可靠性。多个天线面板采用相同的传输资源进行传输,节省了传输资源,提高传输资源利用率。
在一个实施例中,不同所述TCI关联的数据传输层集合不同,其中,一个所述数据传输层集合包括:一个或多个数据传输层,不同所述数据传输层集合的数据传输层均不相同。
TCI关联的数据传输层集合,可以是TCI关联的天线面板发送的数据传输层集合。每个TCI关联的数据传输层集合不同,即每个天线面板发送的数据传输层不同。
例如,终端具有两个天线面板,一个天线面板对应的TCI的数据传输层集合包括层(Layer)1和层2两个数据传输层,一个天线面板对应的TCI的数据传输层集合包括层(Layer)3和层4两个数据传输层。如此,一个天线面板可以用于发送层1和层2两个数据传输层,另一个天线面板可以用于发送层3和层4两个数据传输层。
在一个实施例中,所述TCI关联的数据传输层集合中最大数据传输层数为所述TCI对应的天线面板支持的最大数据传输层数。
不同天线面板可以支持的数据传输层可以不同或相同。由于不同天线面板传输采用自身TCI对应的数据传输层。因此,TCI关联的数据传输层中数据传输层的最大数量可以是TCI对应天线面板能支持的最大数据传输层数。
示例性的,终端可以向基站等网络侧设备上报终端的不同天线面板支持的最大源参考信号(SRS,source Reference Signal)资源包含的最大端口数(网络侧设备可以根据最大端口数,确定天线面板能支持的最大数据传输层数。例如,可以将最大端口数确定为天线面板能支持的最大数据传输 层数),或UE能支持的最大数据传输层数。网络侧设备在向终端指示TCI时,可以基于天线面板能支持的最大数据传输层数,确定数据传输层集合中数据传输层的数量。
例如,UE的两个天线面板(天线面板1和天线面板2)能支持的最大数据传输层数分别为N_p1,N_p2。那么,天线面板1对应TCI关联的数据传输层集合中最大数据传输层数小于或等于N_p1,天线面板2对应TCI关联的数据传输层集合中最大数据传输层数小于或等于N_p2。
如图8所示,本示例性实施例提供一种PUSCH配置方法,所述方法可以被蜂窝移动通信系统的网络侧设备和/或终端执行,包括:
步骤801:所述终端的不同天线面板进行所述PUSCH的NC-JT的一个TB对应的单个码字CW传输,其中,一个所述CW关联于多个所述数据传输层,其中,一个所述CW关联于的多个所述数据传输层至少属于两个所述数据传输层集合。
这里,1个TB可以通过数据处理后得到1个码字(CW,Code Word)。数据处理可以包括:码块分割、信道编码、速率匹配、码块串联等。1个TB的CW可以映射在同一时隙的相同时频资源上的不同数据传输层。由终端通过多个天线面板进行发送。不同TCI指示不同天线面板发送的数据传输层。
示例性的,如图9所示,以终端具有两个天线面板为例。天线面板1关联的TCI的数据传输层集合包括数据传输层(Layer)1和数据传输层2两个数据传输层,天线面板2关联的TCI的数据传输层集合包括数据传输层(Layer)3和数据传输层4两个数据传输层。1个TB的CW可以被映射到4个数据传输层:数据传输层1、数据传输层2,数据传输层3和数据传输层4,即4个数据传输层的数据构成一个CW。发送时,天线面板1发送数据传输层1和数据传输层2的数据,天线面板2发送数据传输层3和数 据传输层4的数据。这里,一个天线面板对应于一个TRP。每个TRP可以对应于一个波束方向。各TRP的波束方向不同。
如此,一个TB的多个数据传输层通过多个天线面板进行发送,每个天线面板对应于不同波束方向的TRP,实现了SDM,多个天线面板同时进行传输降低了多TRP下的上行传输延时,提高了吞吐率。
在一个实施例中,所述终端的不同天线面板使用单个冗余版本RV进行所述PUSCH的NC-JT的所述单个码字CW传输。
如图10所示,针对于1个TB对应于一个CW。一个TB可以基于一个冗余版本进行速率匹配(RATE MATCHING)等得到一个CW。将编码比特存储在循环缓存中,每次传输时根据冗余版本从循环缓存中顺序读取,实现速率匹配。
RV可以是由网络侧携带在DCI中向终端指示的。
一个实施例中,可以基于多个TRP的信道条件,为CW映射数据传输层。即基于多个TRP的信道条件,进行秩(RANK)分配
例如,在多个TRP场景下,可以为信道条件高于预定阈值的TRP配置较多的数据传输层。可以为信道条件低于预定阈值的TRP配置较少的数据传输层。
相关技术中,对于MTRP,针对每个TRP配置的RAN数是固定的。例如,DMRS分配对于RANK=3的情况即3个数据传输层仅能支持在两个TRP方向上为2加1的RANK分配,不支持例如1+2的RANK分配(即TRP1配置一个数据传输层,TRP2配置两个数据传输层);对于RANK=4的情况也只支持2加2的RANK分配,不支持例如1加3或者3加1的RANK分配。
这里,可以不限于相关技术中RANK分配方式,而是基于多个TRP的信道条件进行RANK分配。例如,对于RANK=4的情况支持2加2的RANK 分配,也可以采用1加3或者3加1的RANK分配。如此,提高RANK分配灵活性,同时可以适应不同TRP的信道条件。
如图11所示,本示例性实施例提供一种PUSCH配置方法,所述方法可以被蜂窝移动通信系统的网络侧设备和/或终端执行,包括:
步骤1101:所述终端的不同天线面板进行所述PUSCH的NC-JT的一个TB对应的多个码字CW传输,其中,一个所述CW对应于一个所述数据传输层集合。
这里,1个TB可以通过数据处理后得到M个码字(CW,Code Word),M为大于或等于2的正整数。其中,数据处理可以包括:码块分割、信道编码、速率匹配、码块串联等。每个CW保护一个TB的副本。
每个CW可以映射到一个数据传输层结合。每个CW对应的数据传输层集合可以不同。M个码字可以由终端通过M个天线面板进行发送。不同TCI指示不同天线面板发送对应的数据传输层集合。
示例性的,如图12所示,以终端具有两个天线面板为例。天线面板1关联的TCI的数据传输层集合1包括数据传输层(Layer)1和数据传输层2两个数据传输层,天线面板2关联的TCI的数据传输层集合2包括数据传输层(Layer)3和数据传输层4两个数据传输层。数据传输层集合1不同于数据传输层集合2。1个TB经过数据处理得到CW0和CW1。CW0可以被映射到数据传输层集合1,即数据传输层集合1的数据构成CW0。CW1可以被映射到数据传输层集合2,即数据传输层集合2的数据构成CW1。终端上行发送时,天线面板1发送数据传输层集合1的数据,天线面板2发送数据传输层集合2的数据。这里,一个天线面板对应于一个TRP。每个TRP可以对应于一个波束方向。各TRP的波束方向不同。
如此,一个TB的多个CW分别通过多个天线面板进行发送,每个天线面板对应于不同波束方向的TRP,实现了SDM,多个天线面板同时进行传 输降低了多TRP下的上行传输延时,提高了吞吐率。同时,同时发送一个TB的两个副本,提高了数据传输的可靠性。
在一个实施例中,所述终端的使用多个RV实现所述PUSCH的NC-JT的不同码字CW传输。
如图13所示,相同的TB通过不同的RV对应的速率匹配操作得到不同的CW。
一个TB可以基于多个冗余版本进行速率匹配(RATE MATCHING)得到多个不同的CW。
RV可以是由网络侧携带在DCI中向终端指示的。
在一个实施例中,所述终端的不同天线面板使用单个调制与编码策略MCS进行所述PUSCH的NC-JT。
在一个实施例中,不同所述TCI对应相同的数据传输层数量。
单个MCS可以是由网络侧携带在DCI中向终端指示的。
单个MCS可以应用于采用一个TB确定多个CW,其中,每个CW可以分别对应于一个TRP。即多个天线面板对应于一个MCS。如此,生成的多个CW的比特数相同,进而每个CW对应的TRP的RANK数相同。即每个CW对应的数据传输层数量相同。进一步增加上行传输码率及吞吐率,提高了抗堵塞(blockage)能力。单个MCS可以是DCI MCS指示域指示的。
示例性的,如图11所示,针对终端具有两个天线面板,分别对应于两个TRP。两个天线面板对应于一个MCS,一个TB采用同一个MCS确定CW0和CW1。如此,CW0和CW1对应的比特数相同,因此,CW0和CW1对应到不同TRP的RANK数也相同的情况。每个CW对应的TRP的RANK数相同。即每个CW对应的数据传输层数量相同。
在一个实施例中,所述终端的不同天线面板使用不同的MCS进行所述PUSCH的NC-JT。
在一个实施例中,
不同所述TCI对应相同的数据传输层数;
或者,
不同所述TCI对应不同的数据传输层数。
多个MCS可以是由网络侧携带在DCI中向终端指示的。
多个MCS中每个MCS可以应用于采用一个TB确定一个CW,其中,每个CW可以分别对应于一个TRP。即每个天线面板对应于一个MCS。每个MCS对应的RV可以不同。如此,不同MCS生成的多个CW的比特数可以相同也可以不同。
当多个CW的比特数相同时,每个CW对应的TRP的RANK数相同,即每个CW对应的数据传输层数量相同。
当多个CW的比特数不同时,每个CW对应的TRP的RANK数可以不同,即每个CW对应的数据传输层数量可以不同。可以基于不同CW的数据量为不同CW配置RANK数。而不采用固定的RANK数配置。提高了RANK数分配的灵活性。
示例性的,针对终端具有两个天线面板,分别对应于两个TRP。两个天线面板分别对应于一个MCS,一个TB采用同不同MCS确定CW0和CW1。CW0和CW1对应的比特数可以相同,也可以不同。CW0和CW1比特数相同时,CW0和CW1对应到不同TRP的RANK数也相同。CW0和CW1比特数不同同时,CW0和CW1对应到不同TRP的RANK数可以相同,也可以不同。即每个CW对应的数据传输层数量相同。
在一个实施例中,不同所述TCI关联的解调参考信号DMRS端口集合不同,其中,一个所述DMRS端口集合包括:一个或多个DMRS端口,不同所述DMRS端口集合中的DMRS端口均不相同。
针对NC-JT,每个TCI关联的DMRS端口集合不同,即每个天线面板 在相同时域资源和频域资源下,采用SDM进行NC-JT的DMRS端口不同。
以下结合上述任意实施例提供一个具体示例:
基于统一TCI架构(unified TCI framework)配置给终端适于同时传输的N个TCI state,根据MP/MTRP波束一致性是否成立,可以通过N个不同的联合TCI(joint TCI)或者N个独立上行TCI(separate UL TCI)共同指示给终端。这里N可以为2。即可以有两个TIC:TCI1和TCI2。每个TCI对应终端一个天线面板(panel)的发送/接收波束,并面向一个发送TRP方向。TCI各自包含不同的QCL Type-D source RS,终端使用TCI中包含的QCL Type-D source RS对应的天线面板进行接收。
没有配置统一TCI时,回退到3GPP release 15/16(R15/16)指示方案,使用SRI组合指示的spatialRelationInfo1/2
对于每个TCI实际对应的数据传输层数的支持,需要考虑终端能力。根据终端上报的不同panel支持的最大SRS资源包含的最大端口数目,或最大支持的数据传输层(Layer)数量可能会有不同,即不同天线面板支持的最大数据传输层数目对应panel1和panel2分别为N_p1,N_p2。
基于单个DCI(S-DCI)的SDM传输,可以通过以下方案实现上行MTRP的NC-JT传输:
方案(Scheme)SDM-1:如图9所示,
1个TB的数据在同一时隙的相同时频资源上通过不同层进行传输,每个TCI与1个数据传输层或多个数据传输层相关联。每个TCI与分配的对应一组DMRS端口或端口组相关联。
通过单个RV实现单CW传输,编码后的比特在不同数据传输层中进行传输。
支持的最大数据传输层数:4层。
可以支持option-1:仅限于当前协议的CW到数据传输层分配规则;或 者支持option-2:RANK不平衡的分配规则,更好的适应MTRP信道条件;
TCI1对应的数据传输层数不会超过N_p1,TCI2对应的数据传输层数不会超过N_p2。
方案(Scheme)SDM-2:如图12所示,
1个TB的数据通过2个CW在同一时隙的相同时频资源上通过不同层进行传输,每个TCI与1个CW及其对应的1个数据传输层或多个数据传输层相关联。每个TCI与与分配的对应一组DMRS端口或端口组相关联;
通过多个RV实现多CW传输,编码后的比特在各自对应的不同数据传输层中进行传输。
支持的最大数据传输层数:4层。
采用单个MCS。
TCI1对应的数据传输层数不会超过N_p1,TCI2对应的数据传输层数不会超过N_p2。
进一步增加上行传输码率及吞吐率,提高了抗blockage能力。
方案(Scheme)SDM-3:如图12所示,
1个TB的数据通过2个CW在同一时隙的相同时频资源上通过不同层进行传输,每个TCI与1个CW及其对应的1个数据传输层或多个数据传输层相关联。每个TCI与分配的对应一组DMRS端口或端口组相关联;
通过多个RV实现多CW传输,编码后的比特在各自对应的不同数据传输层中进行传输。
支持的最大数据传输层数:4层。
不同的TCI关联的MCS不同
允许支持RANK在TRP间的不平衡分配;
TCI1对应的数据传输层数不会超过N_p1,TCI2对应的数据传输层数 不会超过N_p2。
本发明实施例还提供了一种PUSCH配置装置,如图14所示,应用于蜂窝移动无线通信的网络侧设备和/或终端中,其中,所述装置100包括:
处理模块100,配置为针对上行PUSCH的非相干传输NC-JT,终端的不同天线面板配置不同的传输配置指示TCI;其中,所述TCI关联于波束信息,不同的TCI同时关联相同的传输资源,其中,所述传输资源包括:时域资源和频域资源,其中,多个不同所述天线面板采用空分复用SDM进行所述PUSCH的NC-JT。
在一个实施例中,不同所述TCI关联的数据传输层集合不同,其中,一个所述数据传输层集合包括:一个或多个数据传输层,不同所述数据传输层集合的数据传输层均不相同。
在一个实施例中,所述终端的不同天线面板进行所述PUSCH的NC-JT的一个传输块TB对应的单个码字CW传输,其中,一个所述CW关联于多个所述数据传输层,其中,一个所述CW关联于的多个所述数据传输层至少属于两个所述数据传输层集合。
在一个实施例中,所述终端的不同天线面板使用单个冗余版本RV进行所述PUSCH的NC-JT的所述单个码字CW传输。
在一个实施例中,所述终端的不同天线面板进行所述PUSCH的NC-JT的一个TB对应的多个码字CW传输,其中,一个所述CW对应于一个所述数据传输层集合。
在一个实施例中,所述终端的使用多个RV实现所述PUSCH的NC-JT的不同码字CW传输。
在一个实施例中,所述终端的不同天线面板使用单个调制与编码策略MCS进行所述PUSCH的NC-JT。
在一个实施例中,不同所述TCI对应相同的数据传输层数量。
在一个实施例中,所述终端的不同天线面板使用不同的MCS进行所述PUSCH的NC-JT。
在一个实施例中,不同所述TCI对应相同的数据传输层数;
或者,
不同所述TCI对应不同的数据传输层数。
在一个实施例中,所述TCI关联的数据传输层集合中最大数据传输层数为所述TCI对应的天线面板支持的最大数据传输层数。
在一个实施例中,不同所述TCI关联的解调参考信号DMRS端口集合不同,其中,一个所述DMRS端口集合包括:一个或多个DMRS端口,不同所述DMRS端口集合中的DMRS端口均不相同。
在一个实施例中,不同所述TCI对应于基站的不同收发点TRP方向。
在一个实施例中,不同所述TCI用于指示不同的准共址类型D源参考信号,所述准共址类型D源参考信号用于确定所述TRP方向。
在一个实施例中,所述TCI包括以下之一:
统一TCI;
空间关系信息SRI;
探测参考信号资源指示SRI。
在一个实施例中,不同的所述统一TCI采用不同的TCI指示域承载;
或者,
不同的所述统一TCI采用一个TCI指示域承载。
在一个实施例中,所述统一TCI包括以下之一:
联合TCI;
独立TCI。
在一个实施例中,所述PUSCH包括以下至少之一:
下行控制信息DCI调度的PUSCH;
免调度的类型1配置授权CG PUSCH;
免调度的类型2 CG PUSCH。
在一个实施例中,所述TCI可以携带于以下至少之一
无线资源控制RRC信令;
媒体访问控制控制单元MAC-CE信令;
DCI信令。
在示例性实施例中,处理模块100等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,Baseband Processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图15是根据一示例性实施例示出的一种用于PUSCH配置的装置3000的框图。例如,装置3000可以是移动电话、计算机、数字广播终端、消息收发设备、游戏控制台、平板设备、医疗设备、健身设备、个人数字助理等。
参照图15,装置3000可以包括以下一个或多个组件:处理组件3002、存储器3004、电源组件3006、多媒体组件3008、音频组件3010、输入/输出(I/O)接口3012、传感器组件3014、以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示、电话呼叫、数据通信、相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002 和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在装置3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令、联系人数据、电话簿数据、消息、图片、视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM)、电可擦除可编程只读存储器(EEPROM)、可擦除可编程只读存储器(EPROM)、可编程只读存储器(PROM)、只读存储器(ROM)、磁存储器、快闪存储器、磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统、一个或多个电源、及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当装置3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频 信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘、点击轮、按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到装置3000的打开/关闭状态、组件的相对PUSCH配置,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变、用户与装置3000接触的存在或不存在、装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器、陀螺仪传感器、磁传感器、压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi、2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术、红外数据协会(IrDA)技术、超宽带(UWB)技术、蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处 理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (40)

  1. 一种物理上行共享信道PUSCH配置方法,其中,所述方法包括:
    针对上行PUSCH的非相干传输NC-JT,终端的不同天线面板配置不同的传输配置指示TCI;其中,所述TCI关联于波束信息,不同的TCI同时关联相同的传输资源,其中,所述传输资源包括:时域资源和频域资源,其中,多个不同所述天线面板采用空分复用SDM进行所述PUSCH的NC-JT。
  2. 根据权利要求1所述的方法,其中,不同所述TCI关联的数据传输层集合不同,其中,一个所述数据传输层集合包括:一个或多个数据传输层,不同所述数据传输层集合的数据传输层均不相同。
  3. 根据权利要求2所述的方法,其中,
    所述终端的不同天线面板进行所述PUSCH的NC-JT的一个传输块TB对应的单个码字CW传输,其中,一个所述CW关联于多个所述数据传输层,其中,一个所述CW关联于的多个所述数据传输层至少属于两个所述数据传输层集合。
  4. 根据权利要求3所述的方法,其中,
    所述终端的不同天线面板使用单个冗余版本RV进行所述PUSCH的NC-JT的所述单个码字CW传输。
  5. 根据权利要求2所述的方法,其中,
    所述终端的不同天线面板进行所述PUSCH的NC-JT的一个TB对应的多个码字CW传输,其中,一个所述CW对应于一个所述数据传输层集合。
  6. 根据权利要求5所述的方法,其中,所述终端的使用多个RV实现所述PUSCH的NC-JT的不同码字CW传输。
  7. 根据权利要求5所述的方法,其中,所述终端的不同天线面板使用单个调制与编码策略MCS进行所述PUSCH的NC-JT。
  8. 根据权利要求7所述的方法,其中,不同所述TCI对应相同的数据传输层数量。
  9. 根据权利要求5所述的方法,其中,所述终端的不同天线面板使用不同的MCS进行所述PUSCH的NC-JT。
  10. 根据权利要求5所述的方法,其中,
    不同所述TCI对应相同的数据传输层数;
    或者,
    不同所述TCI对应不同的数据传输层数。
  11. 根据权利要求2所述的方法,其中,所述TCI关联的数据传输层集合中最大数据传输层数为所述TCI对应的天线面板支持的最大数据传输层数。
  12. 根据权利要求1至11任一项所述的方法,其中,不同所述TCI关联的解调参考信号DMRS端口集合不同,其中,一个所述DMRS端口集合包括:一个或多个DMRS端口,不同所述DMRS端口集合中的DMRS端口均不相同。
  13. 根据权利要求1至11任一项所述的方法,其中,不同所述TCI对应于基站的不同收发点TRP方向。
  14. 根据权利要求13所述的方法,其中,不同所述TCI用于指示不同的准共址类型D源参考信号,所述准共址类型D源参考信号用于确定所述TRP方向。
  15. 根据权利要求1至11任一项所述的方法,其中,所述TCI包括以下之一:
    统一TCI;
    空间关系信息SRI;
    探测参考信号资源指示SRI。
  16. 根据权利要求15所述的方法,其中,
    不同的所述统一TCI采用不同的TCI指示域承载;
    或者,
    不同的所述统一TCI采用一个TCI指示域承载。
  17. 根据权利要求15所述的方法,其中,所述统一TCI包括以下之一:
    联合TCI;
    独立TCI。
  18. 根据权利要求1至11任一项所述的方法,其中,所述PUSCH包括以下至少之一:
    下行控制信息DCI调度的PUSCH;
    免调度的类型1配置授权CG PUSCH;
    免调度的类型2 CG PUSCH。
  19. 根据权利要求1至11任一项所述的方法,其中,所述TCI可以携带于以下至少之一
    无线资源控制RRC信令;
    媒体访问控制控制单元MAC-CE信令;
    DCI信令。
  20. 一种物理上行共享信道PUSCH配置装置,其中,所述装置包括:
    处理模块,配置为针对上行PUSCH的非相干传输NC-JT,终端的不同天线面板配置不同的传输配置指示TCI;其中,所述TCI关联于波束信息,不同的TCI同时关联相同的传输资源,其中,所述传输资源包括:时域资源和频域资源,其中,多个不同所述天线面板采用空分复用SDM进行所述PUSCH的NC-JT。
  21. 根据权利要求20所述的装置,其中,不同所述TCI关联的数据传输层集合不同,其中,一个所述数据传输层集合包括:一个或多个数据传输 层,不同所述数据传输层集合的数据传输层均不相同。
  22. 根据权利要求21所述的装置,其中,
    所述终端的不同天线面板进行所述PUSCH的NC-JT的一个传输块TB对应的单个码字CW传输,其中,一个所述CW关联于多个所述数据传输层,其中,一个所述CW关联于的多个所述数据传输层至少属于两个所述数据传输层集合。
  23. 根据权利要求22所述的装置,其中,
    所述终端的不同天线面板使用单个冗余版本RV进行所述PUSCH的NC-JT的所述单个码字CW传输。
  24. 根据权利要求21所述的装置,其中,
    所述终端的不同天线面板进行所述PUSCH的NC-JT的一个TB对应的多个码字CW传输,其中,一个所述CW对应于一个所述数据传输层集合。
  25. 根据权利要求24所述的装置,其中,所述终端的使用多个RV实现所述PUSCH的NC-JT的不同码字CW传输。
  26. 根据权利要求24所述的装置,其中,所述终端的不同天线面板使用单个调制与编码策略MCS进行所述PUSCH的NC-JT。
  27. 根据权利要求26所述的装置,其中,不同所述TCI对应相同的数据传输层数量。
  28. 根据权利要求24所述的装置,其中,所述终端的不同天线面板使用不同的MCS进行所述PUSCH的NC-JT。
  29. 根据权利要求24所述的装置,其中,
    不同所述TCI对应相同的数据传输层数;
    或者,
    不同所述TCI对应不同的数据传输层数。
  30. 根据权利要求21所述的装置,其中,所述TCI关联的数据传输层集 合中最大数据传输层数为所述TCI对应的天线面板支持的最大数据传输层数。
  31. 根据权利要求20至30任一项所述的装置,其中,不同所述TCI关联的解调参考信号DMRS端口集合不同,其中,一个所述DMRS端口集合包括:一个或多个DMRS端口,不同所述DMRS端口集合中的DMRS端口均不相同。
  32. 根据权利要求20至30任一项所述的装置,其中,不同所述TCI对应于基站的不同收发点TRP方向。
  33. 根据权利要求32所述的装置,其中,不同所述TCI用于指示不同的准共址类型D源参考信号,所述准共址类型D源参考信号用于确定所述TRP方向。
  34. 根据权利要求20至30任一项所述的装置,其中,所述TCI包括以下之一:
    统一TCI;
    空间关系信息SRI;
    探测参考信号资源指示SRI。
  35. 根据权利要求34所述的装置,其中,
    不同的所述统一TCI采用不同的TCI指示域承载;
    或者,
    不同的所述统一TCI采用一个TCI指示域承载。
  36. 根据权利要求34所述的装置,其中,所述统一TCI包括以下之一:
    联合TCI;
    独立TCI。
  37. 根据权利要求20至30任一项所述的装置,其中,所述PUSCH包括以下至少之一:
    下行控制信息DCI调度的PUSCH;
    免调度的类型1配置授权CG PUSCH;
    免调度的类型2 CG PUSCH。
  38. 根据权利要求20至30任一项所述的装置,其中,所述TCI可以携带于以下至少之一
    无线资源控制RRC信令;
    媒体访问控制控制单元MAC-CE信令;
    DCI信令。
  39. 一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至19任一项所述物理上行共享信道PUSCH配置方法的步骤。
  40. 一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至19任一项所述物理上行共享信道PUSCH配置方法的步骤。
PCT/CN2022/090013 2022-04-28 2022-04-28 物理上行共享信道配置方法、装置、通信设备和存储介质 WO2023206270A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/090013 WO2023206270A1 (zh) 2022-04-28 2022-04-28 物理上行共享信道配置方法、装置、通信设备和存储介质
CN202280001503.3A CN117322097A (zh) 2022-04-28 2022-04-28 物理上行共享信道配置方法、装置、通信设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090013 WO2023206270A1 (zh) 2022-04-28 2022-04-28 物理上行共享信道配置方法、装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023206270A1 true WO2023206270A1 (zh) 2023-11-02

Family

ID=88516870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090013 WO2023206270A1 (zh) 2022-04-28 2022-04-28 物理上行共享信道配置方法、装置、通信设备和存储介质

Country Status (2)

Country Link
CN (1) CN117322097A (zh)
WO (1) WO2023206270A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277391A (zh) * 2020-01-20 2020-06-12 展讯半导体(南京)有限公司 信息发送方法及装置、信息接收方法及装置
WO2022027562A1 (en) * 2020-08-07 2022-02-10 Lenovo (Beijing) Limited Configuring sounding reference signal resource sets
CN114071758A (zh) * 2019-09-30 2022-02-18 Oppo广东移动通信有限公司 确定空间域发送滤波器的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114071758A (zh) * 2019-09-30 2022-02-18 Oppo广东移动通信有限公司 确定空间域发送滤波器的方法及装置
CN111277391A (zh) * 2020-01-20 2020-06-12 展讯半导体(南京)有限公司 信息发送方法及装置、信息接收方法及装置
WO2022027562A1 (en) * 2020-08-07 2022-02-10 Lenovo (Beijing) Limited Configuring sounding reference signal resource sets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLE: "Considerations on PDCCH design for NCJT", 3GPP DRAFT; R1-1811124 CONSIDERATIONS ON PDCCH DESIGN FOR NCJT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 29 September 2018 (2018-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051518526 *

Also Published As

Publication number Publication date
CN117322097A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
WO2020108473A1 (zh) 电子设备、通信方法和存储介质
CN111543076B (zh) 传输方法、装置及计算机存储介质
CN111095857B (zh) 无线通信方法、装置及存储介质
WO2018230191A1 (ja) 送信装置、受信装置、送信方法、受信方法及び記録媒体
WO2021184217A1 (zh) 信道状态信息测量方法、装置及计算机存储介质
WO2020052446A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036910A1 (zh) 数据传输方法及装置
TW202139630A (zh) 用於無線通信的電子設備和方法、電腦可讀儲存媒體
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
JP2014517580A (ja) 伝送モードの設定方法、ユーザ機器及び基地局
CN111316741A (zh) 传输调度方法、装置、通信设备及存储介质
WO2023206270A1 (zh) 物理上行共享信道配置方法、装置、通信设备和存储介质
WO2022151387A1 (zh) 信息动态指示方法及装置、网络设备、用户设备及存储介质
WO2023206292A1 (zh) 物理上行共享信道配置方法、装置、通信设备和存储介质
CN114902730A (zh) 信息传输方法、装置、通信设备和存储介质
WO2021142662A1 (zh) 资源配置方法、装置、通信设备及存储介质
WO2023206559A1 (zh) 信息处理方法、装置、终端、基站及存储介质
WO2023206301A1 (zh) 上行传输配置方法及装置、通信设备及存储介质
WO2019095148A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2023206290A1 (zh) Pusch传输配置方法及装置、通信设备及存储介质
WO2023206288A1 (zh) 传输方式指示方法、装置、通信设备及存储介质
WO2024026696A1 (zh) 波束上报增强方法、装置、通信设备及存储介质
WO2023206227A1 (zh) 冗余版本rv的指示方法、装置、通信设备及存储介质
WO2023206530A1 (zh) 物理上行控制信道传输方法及装置、通信设备及存储介质
WO2024026682A1 (zh) 波束上报方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001503.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939121

Country of ref document: EP

Kind code of ref document: A1