WO2023206143A1 - 一种声学输出装置 - Google Patents

一种声学输出装置 Download PDF

Info

Publication number
WO2023206143A1
WO2023206143A1 PCT/CN2022/089572 CN2022089572W WO2023206143A1 WO 2023206143 A1 WO2023206143 A1 WO 2023206143A1 CN 2022089572 W CN2022089572 W CN 2022089572W WO 2023206143 A1 WO2023206143 A1 WO 2023206143A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
output device
acoustic output
beam structure
vibration
Prior art date
Application number
PCT/CN2022/089572
Other languages
English (en)
French (fr)
Inventor
朱光远
张磊
齐心
王庆依
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to CN202280006967.3A priority Critical patent/CN117643069A/zh
Priority to PCT/CN2022/089572 priority patent/WO2023206143A1/zh
Priority to KR1020237023704A priority patent/KR20230153998A/ko
Priority to JP2023541984A priority patent/JP2024518215A/ja
Priority to EP22893946.8A priority patent/EP4294049A1/en
Priority to BR112023011239A priority patent/BR112023011239A2/pt
Priority to US18/322,573 priority patent/US20230353948A1/en
Publication of WO2023206143A1 publication Critical patent/WO2023206143A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/005Piezoelectric transducers; Electrostrictive transducers using a piezoelectric polymer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2044Cantilevers, i.e. having one fixed end having multiple segments mechanically connected in series, e.g. zig-zag type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2045Cantilevers, i.e. having one fixed end adapted for in-plane bending displacement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2217/00Details of magnetostrictive, piezoelectric, or electrostrictive transducers covered by H04R15/00 or H04R17/00 but not provided for in any of their subgroups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2217/00Details of magnetostrictive, piezoelectric, or electrostrictive transducers covered by H04R15/00 or H04R17/00 but not provided for in any of their subgroups
    • H04R2217/01Non-planar magnetostrictive, piezoelectric or electrostrictive benders

Definitions

  • the present application relates to the field of acoustic technology, and in particular to an acoustic output device.
  • Piezoelectric acoustic output devices use the inverse piezoelectric effect of piezoelectric materials to generate vibrations and radiate sound waves outward. Compared with transmission electric speakers, they have the advantages of high electromechanical energy conversion efficiency, low energy consumption, small size, and high integration. . Under the current trend of device miniaturization and integration, piezoelectric acoustic output devices have extremely broad prospects and future. However, piezoelectric acoustic output devices have problems such as poor low-frequency response, resulting in low sensitivity in the low-frequency range (for example, 50Hz-2000Hz).
  • an acoustic output device to improve the low-frequency response of the piezoelectric acoustic output device, thereby improving the sensitivity of the acoustic output device in the low-frequency range.
  • Embodiments of this specification provide an acoustic output device, including: a vibrating element having a beam structure extending along the length direction; a piezoelectric element used to deform in response to an electrical signal, and the deformation drives the vibration The element vibrates, wherein the piezoelectric element is attached to the first position of the beam structure, and the size of the attachment area along the length direction does not exceed 80% of the size of the beam structure along the length direction. ; And a mass element, the mass element is connected to the second position of the beam structure, wherein the first position and the second position are spaced apart in the length direction, and the vibration of the vibration element drives the The mass element vibrates in a direction perpendicular to the length direction.
  • the vibration element resonates with the mass element to generate a first resonance peak, and the frequency range of the first resonance peak is 50 Hz-2000 Hz.
  • the vibration of the vibration element and the mass element has a second resonance peak, and the ratio of the frequency of the second resonance peak to the frequency of the first resonance peak is greater than 5.
  • the vibration of the vibration element and the mass element generates at least one resonance valley, wherein the first resonance peak or the The amplitude difference between the second resonance peak and the at least one resonance valley is less than 80 dB.
  • the length of the beam structure is less than 50 mm.
  • the mass element has a mass of less than 10 g.
  • the deformation direction of the piezoelectric element is perpendicular to the vibration direction of the vibration element.
  • the length of the piezoelectric element ranges from 3 mm to 30 mm.
  • a second piezoelectric element is further included, and the second piezoelectric element is attached to the third position of the beam structure, wherein the piezoelectric element and the second piezoelectric element are at the third position.
  • the vibrating elements are arranged at intervals in the length direction.
  • the distance between the piezoelectric element and the second piezoelectric element is less than 25 mm.
  • the beam structure includes a fixed end, and the distance between the piezoelectric element or the second piezoelectric element and the fixed end is greater than 3 mm.
  • the piezoelectric element and the second piezoelectric element are located on the same side of the beam structure in the vibration direction of the beam structure.
  • the piezoelectric element and the second piezoelectric element are respectively located on both sides of the beam structure in the vibration direction of the beam structure.
  • a second mass element is further included, wherein the mass element and the second mass element are respectively located on both sides of the piezoelectric element in the length direction of the vibration element.
  • the second mass element has a mass greater than the mass of the mass element.
  • the ratio between the mass of the second mass element and the mass of the mass element is in the range of 0-10.
  • the deformation direction of the piezoelectric element is parallel to the vibration direction of the vibration element.
  • one end of the piezoelectric element is fixed along the vibration direction, and the other end is connected to the beam structure at the first position.
  • the beam structure includes a fixed end, and the ratio between the distance between the first position and the fixed end and the length of the beam structure is less than 0.6.
  • a second vibration element is further included, and the vibration element and the second vibration element are symmetrically arranged on both sides of the mass element.
  • a third piezoelectric element connected to the second vibration element is further included, wherein the third piezoelectric element and the piezoelectric element are symmetrically arranged on both sides of the mass element.
  • the vibrating element and the second vibrating element are fixedly arranged at one end away from the mass element.
  • a third vibration element is further included, and the third vibration element is connected to the mass element.
  • the third vibration element increases the vibration amplitude of the mass element in a frequency range greater than 100 Hz.
  • the ratio of the length of the third vibration element to the length of the vibration element is greater than 0.7.
  • the vibration direction of the third vibration element is parallel to the vibration direction of the vibration element.
  • a fourth piezoelectric element is further included, and the fourth piezoelectric element is connected to the third vibration element.
  • the deformation direction of the fourth piezoelectric element is perpendicular to the vibration direction of the third vibration element.
  • the electrical signals received by the piezoelectric element and the fourth piezoelectric element have a phase difference, and the phase difference is less than 135°.
  • Figure 1 is a structural block diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 2A is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 2B is a cross-sectional view of the acoustic output device shown in Figure 2A along a direction perpendicular to the length direction of the vibrating element;
  • Figure 3A is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 3B is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 4 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 5 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 6 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 7 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 8 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 9 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 10 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 11 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 12 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 13 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 14 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 15 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 16 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 17 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 18 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 19 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 20 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 21 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 22 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • the acoustic output device can utilize the inverse piezoelectric effect to generate vibration through the piezoelectric element to output sound.
  • piezoelectric elements can adopt two working modes: d33 and d31.
  • the deformation direction of the piezoelectric element also called the displacement output direction
  • the electrical direction also called the polarization direction. Its resonant frequency is high, the output amplitude is small, and the low-frequency response is poor.
  • the deformation direction of the piezoelectric element is perpendicular to the electrical direction.
  • the piezoelectric element In the d31 operating mode, although by increasing the length of the piezoelectric element, a sufficiently low frequency peak can be provided, and the output amplitude is also significantly increased, but in this case, the piezoelectric element is within the audible range (for example, 20Hz-20kHz) There are more vibration modes, which are manifested in more peaks and valleys in the frequency response curve, so the sound quality of the acoustic output device (or piezoelectric speaker) is still poor.
  • the acoustic output device may include a vibrating element, a piezoelectric element, and a mass element.
  • the vibrating element has a beam structure extending along the length direction.
  • the piezoelectric element can deform in response to an electrical signal, and the deformation can drive the vibrating element to vibrate.
  • the piezoelectric element is attached to the first position of the beam structure, and the size of the attachment area along the length direction of the beam structure does not exceed 80% of the size of the beam structure along the length direction.
  • the mass element may be connected to the beam structure at a second location.
  • the first position and the second position are spaced apart in the length direction of the beam structure, and the vibration of the piezoelectric element can drive the mass element to vibrate perpendicular to the length direction of the beam structure.
  • the resonance of the piezoelectric element and the mass element can cause the frequency response curve of the acoustic output device to have a first resonance peak in the low frequency band (for example, 50 Hz to 2000 Hz), thereby improving the sensitivity of the acoustic output device in the low frequency band.
  • the vibration of the piezoelectric element and the mass element has a second resonance peak in a high frequency band (for example, 2000 Hz to 20000 Hz), and there is at least one resonance valley between the first resonance peak and the second resonance peak, and the first resonance peak Or the amplitude difference between the second resonance peak and the at least one resonance valley is less than 80dB, thereby obtaining a relatively flat vibration response curve from low frequency to high frequency, thereby improving the sound quality of the acoustic output device.
  • a high frequency band for example, 2000 Hz to 20000 Hz
  • the acoustic output device provided in the embodiment of this specification is attached to the vibrating element with a beam structure through a piezoelectric element, and uses an elastic mass system composed of the elasticity provided by the beam structure with a certain length and the mass provided by the mass element to output vibration, so that The frequency response curve of the acoustic output device has a resonance peak in the low frequency band, thereby effectively improving the sensitivity of the acoustic output device in the low frequency band.
  • the acoustic output device provided by the embodiments of this specification can further reduce the vibration modes existing in the audible range of the human ear, for example, making the frequency response curve have no or fewer resonance valleys, or reducing the resonance peaks.
  • the amplitude difference between the acoustic output device and the resonance valley makes the frequency response curve of the acoustic output device relatively flat in the audible range, ensuring that the acoustic output device can have better sound quality.
  • Figure 1 is a structural block diagram of an acoustic output device according to some embodiments of this specification.
  • the acoustic output device 100 may be a bone conduction acoustic output device, an air conduction acoustic output device, or a bone-air conduction combined acoustic output device.
  • the acoustic output device 100 may include speakers, headphones, glasses, hearing aids, augmented reality (Augmented Reality, AR) devices, virtual reality (VR) devices, etc. or other devices with audio playback functions (such as mobile phones, computers, etc.).
  • the acoustic output device 100 may include a vibrating element 110 , a piezoelectric element 120 , and a mass element 130 .
  • the vibration element 110 can generate vibration based on the deformation of the piezoelectric element 120 , so that the acoustic output device 100 can output vibration through the mass element 130 .
  • the piezoelectric element 120 can deform in response to an electrical signal, and the deformation of the piezoelectric element 120 can drive the vibration element 110 to vibrate along the polarization direction of the piezoelectric element 120, thereby driving the mass element 130 along the piezoelectric element 120. vibration in the polarization direction.
  • the vibration direction of the mass element 130 is perpendicular to the length direction of the vibration element 110 .
  • the vibration element 110 may be a beam structure extending along the length direction
  • the piezoelectric element 120 may be attached to a first position of the beam structure
  • the mass element 130 may be connected to a second position of the beam structure.
  • the first position and the second position are spaced apart in the length direction of the vibrating element 110 (or the beam structure).
  • the first position and the second position may be respectively located at both ends of the length direction of the beam structure.
  • the first position may be located at the center of the beam structure in the length direction
  • the second position may be located at any end of the beam structure in the length direction.
  • the first position and the second position may be located at any two positions in the length direction of the beam structure, and there is a preset distance between the first position and the second position.
  • the piezoelectric element 120 can be directly attached to the first position of the vibrating element 110 by adhesive bonding. In some embodiments, the piezoelectric element 120 can be connected to the first position of the vibrating element 110 by snapping, snapping, or other methods. In some embodiments, the piezoelectric element 120 may be attached to the first position of the vibrating element 110 by physical deposition or chemical deposition. In some embodiments, the mass element 130 can be connected to the second position of the vibration element 110 by gluing, snapping, welding, threading, etc.
  • the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure (ie, the actual contact surface between the piezoelectric element 120 and the vibration element 110 ) along the length direction of the beam structure can be adjusted so that The range of the flat curve of the frequency response curve of the acoustic output device 100 in the audible range of the human ear is increased, thereby effectively improving the sound quality of the acoustic output device 100 .
  • the high-order modes (or vibration modes) of the acoustic output device 100 in the audible range of the human ear are reduced, and the flatness in the frequency response curve of the acoustic output device 100 is increased.
  • the curve range can be achieved by reducing the size of the attachment area of the piezoelectric element 120 to the first position of the beam structure along the length direction of the beam structure.
  • the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may be in the range of 1 mm to 50 mm.
  • the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may range from 1 mm to 45 mm. In some embodiments, the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may be in the range of 2 mm to 40 mm. In some embodiments, the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may be in the range of 3mm-30mm. In some embodiments, the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may be in the range of 5 mm to 20 mm.
  • the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may not exceed 80% of the size along the length direction of the beam structure. In some embodiments, the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may not exceed 80% of the size along the length direction of the beam structure. In some embodiments, the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may not exceed 70% of the size along the length direction of the beam structure.
  • the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may not exceed 60% of the size along the length direction of the beam structure. In some embodiments, the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may not exceed 50% of the size along the length direction of the beam structure.
  • the damping coefficient of the acoustic output device 100 can also be increased by adding damping to one or more elements in the acoustic output device 100, so that the frequency response curve of the acoustic output device 100 can be heard by the human ear.
  • the listening range is smoother (eg, curve L63 shown in FIG. 6 ) to improve the sound quality of the acoustic output device 100 .
  • the vibration element 110 can be prepared using materials with damping effects (eg, silicone, rubber, foam, etc.).
  • a damping material may be coated on the piezoelectric element 120 .
  • the vibration element 110 and/or the mass element 130 can be filled with damping material or electromagnetic damping.
  • the vibration element 110 may also be a sheet-shaped, rod-shaped structure, etc.
  • the material of the vibration element 110 may be a material that has the ability to transmit vibration.
  • the material of the vibration element 110 can be silicone, foam, plastic, rubber, metal, etc., or any combination thereof.
  • the vibration element 110 may be a component with good elasticity (that is, easy to undergo elastic deformation).
  • the vibration element 110 may include a spring (such as an air spring, a mechanical spring, an electromagnetic spring, etc.), a vibration transmitting piece, an elastic piece, a substrate, etc., or any combination thereof.
  • the piezoelectric element 120 may be an electrical energy conversion device capable of converting electrical energy into mechanical energy using the inverse piezoelectric effect.
  • the piezoelectric element 120 may be composed of materials with piezoelectric effect (inverse piezoelectric effect) such as piezoelectric ceramics, piezoelectric quartz, piezoelectric crystals, and piezoelectric polymers.
  • the piezoelectric element 120 can be in the shape of a sheet, annular, prismatic, rectangular, columnar, spherical, etc., or any combination thereof, or can be in other irregular shapes.
  • the piezoelectric element 120 may have a beam structure, a sheet structure, a block structure, etc. along its length direction.
  • the piezoelectric element 120 and the vibration element 110 may be beam structures with the same width.
  • the piezoelectric element 110 can be an integral structure, and the piezoelectric element 120 is located on one side of the vibrating element 110.
  • the piezoelectric element 120 deforms along the polarization direction of the piezoelectric element 120, it can drive the vibrating element. 110 vibrates in the same direction, that is, the piezoelectric element 120 can operate in the d33 mode.
  • the piezoelectric element 120 may include two layers of piezoelectric sheets, and the two layers of piezoelectric sheets are respectively attached to opposite sides of the vibrating element.
  • the vibration element 110 can generate vibration along the polarization direction of the piezoelectric element 120 according to the deformation of the two layers of piezoelectric sheets, that is, the piezoelectric element 120 Can work in d31 mode. More description of the piezoelectric element 120 can be found in FIGS. 2A and 2B and their description.
  • the mass element 130 may be a mass block with a certain mass.
  • the mass element 130 may include a vibration plate, a diaphragm, or the like, so that the acoustic output device 100 can output vibration through the mass element 130 .
  • the material of the mass element 130 may include, but is not limited to, metals (for example, copper, iron, magnesium, aluminum, tungsten, etc.), alloys (aluminum alloy, titanium alloy, tungsten alloy, etc.), polymer materials (for example, , polytetrafluoroethylene, silicone rubber, etc.) and other materials.
  • the piezoelectric element 120 can deform under the action of a driving voltage (or electrical signal). This deformation can drive the vibration element 110 to vibrate, thereby driving the mass element 130 to vibrate.
  • the vibration element 110 and the mass element 130 may resonate to generate a first resonance peak (for example, the first resonance peak 621 shown in FIG. 6 ).
  • the resonant frequency corresponding to the first resonance peak generated by the resonance of the vibrating element 110 and the mass element 130 can be determined according to formula (1):
  • f 0 represents the resonant frequency
  • k represents the elastic coefficient of the vibration element 110
  • m represents the mass of the mass element 130 .
  • the frequency range of the resonant frequency corresponding to the first resonance peak can be adjusted by adjusting the mass of the mass element 130 and/or the elastic coefficient of the vibration element 110 .
  • the frequency range of the first resonance peak may be 50 Hz-2000 Hz.
  • the frequency range of the first resonance peak may be 50 Hz-1500 Hz.
  • the frequency range of the first resonance peak may be 100 Hz-1000 Hz.
  • the frequency range of the first resonance peak may be 150 Hz-500 Hz.
  • the frequency range of the first resonance peak may be 150 Hz-200 Hz.
  • the vibrations of the vibration element 110 and the mass element 130 may have a second resonance peak (eg, the second resonance peak 622 shown in FIG. 6 ).
  • the second resonance peak may be generated by resonance of the vibration element 110 with the mass element 130 (eg, a higher order resonance than the resonance that generated the first resonance peak).
  • the ratio of the frequency of the second resonance peak to the frequency of the first resonance peak may be greater than 5.
  • the frequency of the first resonance peak may be between 50Hz and 200Hz
  • the frequency of the second resonance peak may be between 500Hz and 2000Hz.
  • the frequency of the first resonance peak may be between 100Hz and 500Hz
  • the frequency of the second resonance peak may be between 500Hz and 5000Hz.
  • the frequency of the first resonance peak may be between 100 Hz and 1000 Hz, and the frequency of the second resonance peak may be between 600 Hz and 20000 Hz.
  • the frequency of the first resonance peak may be between 100 Hz and 2000 Hz, and the frequency of the second resonance peak may be between 800 Hz and 20000 Hz.
  • the vibration of the vibration element 110 and the mass element 130 may generate at least one resonance valley between the first resonance peak and the second resonance peak.
  • the amplitude difference between the first resonance peak or the second resonance peak and the at least one resonance valley may be less than a preset threshold.
  • the amplitude difference between the first resonance peak or the second resonance peak and the at least one resonance valley may be less than 200 dB.
  • the amplitude difference between the first resonance peak or the second resonance peak and the at least one resonance valley may be less than 150 dB.
  • the amplitude difference between the first resonance peak or the second resonance peak and the at least one resonance valley may be less than 80 dB.
  • the amplitude difference between the first resonance peak or the second resonance peak and the at least one resonance valley may be less than 50 dB.
  • the amplitude difference between the first resonance peak or the second resonance peak and the at least one resonance valley may be less than 30 dB.
  • the amplitude difference between the first resonance peak or the second resonance peak and the at least one resonance valley is less than a preset threshold, and a relatively flat frequency response between the first resonance peak or the second resonance peak can be obtained. curve, thereby improving the sound quality of the acoustic output device 100.
  • the elastic coefficient of the vibration element 120 can be adjusted by adjusting the length of the vibration element 110 (beam structure), thereby adjusting the frequency range of the resonant frequency corresponding to the first resonance peak. For example, the greater the length of the beam structure, the smaller its elastic coefficient. When the mass of the mass element 130 is constant, the resonant frequency corresponding to the first resonance peak is lower. However, if the length of the beam structure is too large, it will be detrimental to the miniaturization design of the acoustic output device 100 .
  • the length of the beam structure may be less than 20 mm. In some embodiments, the length of the beam structure may be less than 30mm. In some embodiments, the length of the beam structure may be less than 40 mm. In some embodiments, the length of the beam structure may be less than 50 mm. In some embodiments, the length of the beam structure may be less than 60 mm.
  • the frequency range of the resonant frequency corresponding to the first resonant peak can be adjusted by adjusting the mass of the mass element 130 .
  • the mass of the mass element 130 may be less than 5g.
  • mass element 130 may have a mass of less than 6 g.
  • the mass of mass element 130 may be less than 8 g.
  • the mass of mass element 130 may be less than 10 g.
  • the vibration of the vibrating element 110 (acoustic output device 100) can be transmitted to the user through the mass element 130 in a bone conduction manner.
  • the vibration of the vibrating element 110 is transmitted through the mass element 130 to the bones and/or muscles of the user's face and ultimately to the user's ears.
  • the mass element 130 may not be in direct contact with the human body.
  • the vibration of the vibration element 110 may be transmitted to the shell of the acoustic output device through the mass element 130, and then transmitted to the user's facial bones and/or muscles through the shell, and finally transmitted to the user's body. ears.
  • the vibration of the vibration element 110 can also be transmitted to the user through the mass element 130 in an air conduction manner.
  • the mass element 130 can directly drive the air around it to vibrate, thereby transmitting it to the user's ear through the air.
  • the mass element 130 can be further connected to the diaphragm, and the vibration of the mass element 130 can be transmitted to the diaphragm, and then the diaphragm drives the air to vibrate, thereby transmitting it to the user's ear through the air.
  • the acoustic output device 100 may also include a second piezoelectric element 140 .
  • the second piezoelectric element 140 may have a similar structure, material, etc. as the piezoelectric element 120 (or referred to as the first piezoelectric element 120).
  • the second piezoelectric element 140 is attached to the third position of the beam structure.
  • the piezoelectric element 120 and the second piezoelectric element 140 can be spaced apart in the length direction of the vibrating element, and the piezoelectric element 120 and the second piezoelectric element 140
  • the input electrical signals are the same, so the piezoelectric element 120 and the second piezoelectric element 140 can be regarded as being connected in series.
  • the piezoelectric element 120 and the second piezoelectric element 140 may be in the d31 working mode, and the deformation direction of the piezoelectric element 120 and the second piezoelectric element 140 may be perpendicular to the vibration direction of the vibration element 110 .
  • the piezoelectric element 120 and the second piezoelectric element 140 undergo reciprocating deformation along a direction perpendicular to the polarization direction, driving the vibration element 110 to vibrate along the polarization direction.
  • the beam structure may include a fixed end and a free end (that is, the vibrating element 110 is a cantilever beam structure), wherein the fixed end may be fixed to other components of the acoustic output device 100 (for example, on the inner wall of the housing), and the free end may The end may be connected to mass element 130 .
  • the spacing between the piezoelectric element 120 and the second piezoelectric element 140 in the length direction of the beam structure higher-order modes generated when the vibrating element 110 and the mass element 130 vibrate can be reduced or eliminated.
  • the resonance peak (or resonance valley) generated by the vibration of the vibrating element 110 and the mass element 130 driven by the piezoelectric element 120 in the mid-to-high frequency range can be consistent with the vibration of the vibrating element 110 and the mass element.
  • 130 The vibrations driven by the second piezoelectric element 140 merge with the resonance valleys (or resonance peaks) generated in the mid-to-high frequency band (for example, 500Hz-2000Hz), thereby eliminating the vibration of the acoustic output device 100 in the mid- to high-frequency band.
  • the high-order modes in the frequency response curve make the frequency response curve smoother, ensuring that the sound quality of the acoustic output device 100 can be improved.
  • the resonance valleys and resonance peaks that can be merged may refer to resonance valleys and resonance peaks with similar or identical frequencies.
  • the second piezoelectric element 140 of the acoustic output device 100 please refer to FIG. 9 and its related descriptions, which will not be described again here.
  • the acoustic output device 100 may also include a second mass element 150 .
  • the mass element 130 also called the first mass element 130
  • the second mass element 150 can be located on both sides of the piezoelectric element 120 respectively.
  • the beam structure can be fixed toward one side of the second mass element 150 (that is, equivalent to the fixed end mentioned above), thereby solving the problem
  • the fixed end of the beam structure is difficult to find a fixed boundary in the acoustic output device 100 (for example, a housing) and is not easily fixed.
  • the resonant frequency corresponding to the first resonant peak can be adjusted.
  • the acoustic output device 100 also including the second mass element 150 please refer to FIG. 7 and its related description, which will not be described again here.
  • the piezoelectric element 120 may be in the working mode of d33, and the deformation direction of the piezoelectric element 120 may be parallel to the vibration direction of the vibrating element 110 .
  • the deformation can drive the vibrating element 110 to also vibrate along the polarization direction.
  • one end of the piezoelectric element 120 along the vibration direction is fixed (for example, fixed on other components of the acoustic output device 100, such as the housing), and the other end is connected to the beam structure at the first position (for example, attached to the beam structure). attached to the beam structure).
  • the acoustic output device 100 can be adjusted in the low frequency band.
  • the resonance frequency corresponding to the resonance peak in the acoustic output device 100 can be improved in different frequency bands to be suitable for more usage scenarios.
  • the acoustic output device 100 may further include a second vibration element 160 , and the vibration element 110 (also referred to as the first vibration element 110 ) and the second vibration element 160 are symmetrically arranged on both sides of the mass element 130 .
  • the vibration element 110 and the second vibration element 160 are respectively fixedly arranged at one end away from the mass element 130 .
  • the acoustic output device 100 may further include a third piezoelectric element 170 connected to the second vibration element 160 , wherein the third piezoelectric element 170 and the piezoelectric element 120 are symmetrically arranged on both sides of the mass element 130 , this can be regarded as the third piezoelectric element 170 and the piezoelectric element 120 being connected in parallel.
  • the resonance valley of the frequency response curve of the acoustic output device 100 in the audible range of the human ear can be reduced or eliminated, ensuring that the frequency response curve of the acoustic output device 100 is smoother and has better sound quality.
  • FIG. 17 For more description about the acoustic output device also including the second vibration element 160 and the third piezoelectric element 170, please refer to FIG. 17 and its related description, which will not be described again here.
  • the acoustic output device 100 may include a third vibration element 180 connected to the mass element 130 .
  • the ratio of the length of the third vibration element 180 to the length of the vibration element 110 may be greater than 0.7, and the vibration direction of the third vibration element 180 is parallel to the vibration direction of the vibration element 110 .
  • the acoustic output device 100 may further include a fourth piezoelectric element 190 connected to the third vibration element 180 . Wherein, the fourth piezoelectric element 190 is in the d31 working mode, and the deformation direction of the fourth piezoelectric element 190 is perpendicular to the vibration direction of the third vibration element 180 .
  • the resonance peak in the low frequency band generated by the vibration of the third vibration element 180 and the mass element 130 can supplement the resonance valley generated by the vibration of the vibration element 110 and the mass element 110 , thereby making the frequency of the acoustic output device 100 higher.
  • the sound curve is smoother and the sound quality is better, and the third vibration element 180 can increase the vibration amplitude of the mass element 130 in the low frequency band, thereby improving the sensitivity of the acoustic output device 100 in the low frequency band.
  • the acoustic output device including the third vibration element 180 and the fourth piezoelectric element 190 please refer to FIG. 19 and its related description, which will not be described again here.
  • the acoustic output device 100 may also include a housing structure 210 .
  • the housing structure 210 may be configured to carry other components of the acoustic output device 100 (eg, the vibrating element 110, the second vibrating element 160, the third vibrating element 180, the piezoelectric element 120, the second piezoelectric element 140, the third piezoelectric element electrical element 170, fourth piezoelectric element 190, mass element 130, second mass element 150, etc., or combinations thereof).
  • the housing structure 210 may be a closed or semi-enclosed structure with a hollow interior, and other components of the acoustic output device 100 are located within or on the housing structure.
  • the shape of the housing structure may be a regular or irregular three-dimensional structure such as a cuboid, a cylinder, a truncated cone, or the like.
  • the housing structure When the user wears the acoustic output device 100, the housing structure may be positioned proximate the user's ears.
  • the housing structure may be located peripherally (eg, anterior or posterior) of the user's auricle.
  • the housing structure may be positioned over the user's ear without blocking or covering the user's ear canal.
  • the acoustic output device 100 may be a bone conduction earphone, and at least one side of the housing structure may be in contact with the user's skin.
  • the acoustic driver assembly (e.g., the combination of piezoelectric element 120, vibrating element 110, and mass element 130) in the bone conduction earphone converts the audio signal into mechanical vibration, which can be transmitted to the user's hearing through the shell structure and the user's bones. nerve.
  • the acoustic output device 100 may be an air conduction earphone, and at least one side of the housing structure may or may not be in contact with the user's skin.
  • the side wall of the housing structure includes at least one sound guide hole.
  • the acoustic driver component in the air conduction earphone converts the audio signal into air conduction sound.
  • the air conduction sound can be radiated in the direction of the user's ear through the sound guide hole.
  • acoustic output device 100 may include fixed structure 220 .
  • the securing structure 220 may be configured to mount the acoustic output device 100 near a user's ear.
  • the fixing structure 220 may be physically connected to the housing structure 210 of the acoustic output device 100 (eg, glued, clipped, threaded, etc.).
  • the housing structure 210 of the acoustic output device 100 may be part of the fixed structure 220 .
  • the fixing structure 220 may include ear hooks, back hooks, elastic bands, spectacle legs, etc., so that the acoustic output device 100 can be more firmly installed near the user's ears to prevent the user from falling during use.
  • the securing structure 220 may be an earhook, which may be configured to be worn around the ear region.
  • the earhook can be a continuous hook and can be elastically stretched to be worn on the user's ear.
  • the earhook can also exert pressure on the user's auricle to make the acoustic output device 100 secure. It is fixed on the user's ear or head at a specific position.
  • the ear loops may be discontinuous straps.
  • an earhook may include a rigid portion and a flexible portion.
  • the rigid part may be made of rigid material (eg, plastic or metal), and the rigid part may be fixed with the housing structure 210 of the acoustic output device 100 through physical connection (eg, snap connection, screw connection, etc.).
  • the flexible portion may be made of elastic material (eg, cloth, composite, or/and neoprene).
  • the securing structure 220 may be a neck strap configured to be worn around the neck/shoulder area.
  • the fixing structure 220 may be a temple, which is a part of the glasses and is installed on the user's ears.
  • the acoustic output device 100 may also include one or more components (eg, signal transceiver, interaction module, battery, etc.). In some embodiments, one or more components of the acoustic output device 100 may be replaced with other components that perform similar functions.
  • the acoustic output device 100 may not include the fixed structure 220, and the housing structure 210 or a part thereof may have a human ear-adaptive shape (such as a circular ring, an ellipse, a polygon (regular or irregular), a U-shape, a V-shape , semicircular) shell structure so that the shell structure can be hung near the user's ears.
  • a human ear-adaptive shape such as a circular ring, an ellipse, a polygon (regular or irregular), a U-shape, a V-shape , semicircular
  • FIG. 2A is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • the acoustic output device 200 may include a vibration element 110 , a piezoelectric element 120 and a mass element 130 .
  • the vibration element 110 has a beam structure along the length direction (ie, X direction).
  • the piezoelectric element 120 can be attached to the first position of the beam structure, and the mass element 130 can be connected to the free end 112 of the beam structure (ie, the second position).
  • the first position and the second position are spaced apart in the length direction of the beam structure.
  • the first position may be located anywhere along the length of the beam structure.
  • the first location may be located in the center of the length of the beam structure.
  • the piezoelectric element 120 may cover the beam structure along the length direction of the beam structure, that is, the first position may cover the beam structure.
  • the actual contact surface of the piezoelectric element 120 with the beam structure may be referred to as the attachment area of the piezoelectric element 120 .
  • the resonant frequency and amplitude corresponding to the resonant peak generated by the low-frequency band of the acoustic output device 200 can be adjusted by adjusting the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure to accommodate more The scene is beneficial to improving the sensitivity of the acoustic output device 200 in the low frequency band.
  • FIGS. 3A and 3B For more description on adjusting the size of the attachment area of the piezoelectric element 120, please refer to FIGS. 3A and 3B and their related descriptions, which will not be described again here.
  • the vibrating element 110 may have a cantilever beam structure having a fixed end 111 and a free end 112 .
  • the fixed end 111 can be fixed on other components of the acoustic output device 100 (for example, on the inner wall of the housing), and the free end 112 can be connected with the mass element 130 to output vibration.
  • the piezoelectric element 120 can drive the vibrating element 110 and the mass element 130 to vibrate along the polarization direction of the piezoelectric element 120 (ie, the Z direction), so that the vibrating element 110 and the mass element 130 are in a low frequency range (for example, 50Hz-2000Hz)
  • the first resonance peak (or can be called a low-frequency peak) is generated, thereby improving the sensitivity of the acoustic output device 200 in the low-frequency band.
  • the beam structure (or cantilever beam) may be a cuboid structure.
  • the cuboid structure may have a length along the X direction, a width along the Y direction, and a thickness along the Z direction.
  • the rectangular parallelepiped beam structure shown in FIG. 2A is only used for illustrative purposes and is not intended to limit the scope of protection of this specification.
  • various changes and modifications may be made based on the guidance of this application.
  • the structure, dimensions, and material parameters of the beam structure or at least a portion thereof may be adjusted.
  • the beam structure in this specification may not be limited to the above-mentioned rectangular parallelepiped structure, but may also be of other shapes.
  • the cross-sectional shape of the beam structure along the length direction i.e., the X direction
  • the width and/or thickness at different locations on the beam structure may be the same or different.
  • the shapes at different locations on the beam structure can be the same or different.
  • FIG. 2B is a cross-sectional view of the acoustic output device shown in FIG. 2A along a direction perpendicular to the length direction of the vibrating element (ie, Y direction).
  • the deformation direction of the piezoelectric element 120 in the acoustic output device 200 can be parallel to the length direction of the vibrating element 110, thereby driving the vibrating element 110 to generate vibration along the polarization direction of the piezoelectric element 120, that is, the vibrating element
  • the vibration direction of piezoelectric element 110 may be parallel to the polarization direction of piezoelectric element 120 .
  • the piezoelectric element 120 may include two piezoelectric sheets (ie, a piezoelectric sheet 121 and a piezoelectric sheet 122 ).
  • the piezoelectric sheet 121 and the piezoelectric sheet 122 can be respectively attached to opposite sides of the vibrating element 110 (the first position), and the polarization directions of the piezoelectric sheet 121 and the piezoelectric sheet 122 are perpendicular to the attachment surface.
  • the vibration element 110 may vibrate perpendicular to the attachment surface in response to the deformation of the piezoelectric sheet 121 and the piezoelectric sheet 122 .
  • piezoelectric sheet 121 and piezoelectric sheet 122 may be components configured to provide a piezoelectric effect and/or an inverse piezoelectric effect.
  • the piezoelectric sheet can cover one or more surfaces of the vibrating element 110 and deform under the action of the driving voltage to drive the vibrating element 110 to warp, thereby realizing the piezoelectric element 120 to output vibration.
  • the piezoelectric sheet 121 and the piezoelectric sheet 122 are respectively attached to opposite sides of the vibrating element 110.
  • the vibrating element 110 can be configured according to the piezoelectric sheet.
  • the expansion and contraction of the piezoelectric element 121 and the piezoelectric piece 122 along the length direction of the piezoelectric element 120 generates vibration.
  • the piezoelectric sheet eg, piezoelectric sheet 121 located on one side of the vibrating element 110 can shrink along its length direction
  • the piezoelectric sheet eg, piezoelectric sheet 122 located on one side of the vibrating element 120 can shrink along its length.
  • the vibration element 110 is elongated in the direction, thereby driving the vibration element 110 to warp in the direction perpendicular to its surface (ie, the thickness direction BB') to generate vibration.
  • the material of the piezoelectric sheets 121 and/or 122 may include piezoelectric ceramics, piezoelectric quartz, piezoelectric crystals, piezoelectric polymers, etc., or any combination thereof.
  • the piezoelectric element 120 shown in FIG. 2B is only used for illustrative purposes and is not intended to limit the scope of protection of this specification.
  • the number of piezoelectric sheets in the piezoelectric element 120 may not be limited to the two shown in FIG. 2B.
  • the piezoelectric element 120 may include a piezoelectric piece, which is attached to one side of the vibrating element 110 (the first position) and can deform under the action of the driving voltage, thereby driving the vibrating element 110 to vibrate. Warp to achieve the piezoelectric element 120 to output vibration.
  • the resonant frequency and amplitude corresponding to the resonant peak generated by the acoustic output device in the low frequency band can be adjusted by adjusting the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure to accommodate more scene and is conducive to improving the sensitivity of the acoustic output device in the low frequency band.
  • FIG. 3A is a structural diagram of an acoustic output device according to some embodiments of the present specification. As shown in FIG.
  • the piezoelectric element 120 starts from the fixed end 111 and covers (attaches to) at least a part of the beam structure (ie, the vibrating element 110 ) along the length direction of the beam structure.
  • the ratio between the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure and the length of the beam structure may affect the elasticity of the beam structure.
  • the covered portion when the cross-sectional height of the portion of the beam structure to which the piezoelectric element 120 is attached (referred to as the covered portion) along the length direction (i.e., the X direction) is greater than that of the portion to which the piezoelectric element 120 is not attached (referred to as the uncovered portion),
  • the flexural modulus of the covered part is greater than that of the uncovered part, that is, the covered part has a higher elastic coefficient than the uncovered part, making it less likely to bend.
  • the elastic coefficient of the entire beam structure increases, so that the acoustic output device 300 The resonant frequency corresponding to the low-frequency peak in the frequency response curve also increases.
  • Figure 3B is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • curve L31 is when the ratio between the size of the attachment area of the piezoelectric element 120 of the acoustic output device 300 along the length direction of the beam structure and the length of the beam structure (represented by per in FIG. 3B ) is 0.2.
  • Curve L32 is a frequency response curve when the ratio between the size of the attachment area of the piezoelectric element 120 of the acoustic output device 300 along the length direction of the beam structure and the length of the beam structure is 0.4.
  • Curve L33 is a frequency response curve when the ratio between the size of the attachment area of the piezoelectric element 120 of the acoustic output device 300 along the length direction of the beam structure and the length of the beam structure is 0.6.
  • Curve L34 is a frequency response curve when the ratio between the size of the attachment area of the piezoelectric element 120 of the acoustic output device 300 along the length direction of the beam structure and the length of the beam structure is 0.8.
  • Curve L35 is a frequency response curve when the ratio between the size of the attachment area of the piezoelectric element 120 of the acoustic output device 300 along the length direction of the beam structure and the length of the beam structure is 0.9.
  • Curve L36 is a frequency response curve when the ratio between the size of the attachment area of the piezoelectric element 120 of the acoustic output device 300 along the length direction of the beam structure and the length of the beam structure is 1.
  • the resonance peak in the dotted circle C is the first resonance generated by the acoustic output device 300 in the low frequency band when the size of the attachment area of the piezoelectric element 120 along the length of the beam structure has different ratios to the length of the beam structure. peak.
  • the acoustic output device eg, the acoustic output device 300
  • the resonant frequency corresponding to the first resonant peak in the low frequency band gradually increases (for example, the resonant frequency corresponding to the first resonant peak in the curve L31-L36 gradually increases).
  • the resonant frequency corresponding to the first resonant peak in the curve L35 is the same as the first resonant peak in the curve L36
  • the corresponding resonant frequencies are almost the same, and when the ratio between the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure and the length of the beam structure is 80% or less, curve L34, curve L33, curve L32, The resonance frequency corresponding to the first resonance peak in curve L31 will decrease as the ratio decreases.
  • the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure may not exceed 80% of the size along the length direction of the beam structure. In some embodiments, the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure may not exceed 60% of the size along the length direction of the beam structure.
  • the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure may not exceed 50% of the size along the length direction of the beam structure. In some embodiments, the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure may not exceed 40% of the size along the length direction of the beam structure.
  • the attachment area of the piezoelectric element 120 is along the length direction of the beam structure.
  • the dimensions may be greater than 5% of the lengthwise dimension of the beam structure.
  • the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure may be greater than 10% of the size along the length direction of the beam structure.
  • the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure may be greater than 20% of the size along the length direction of the beam structure.
  • the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure may be greater than 30% of the size along the length direction of the beam structure.
  • Figure 4 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • the acoustic output device 400 and the acoustic output device 200 have similar structures. The difference lies in the arrangement and working mode of the piezoelectric element 120 in the acoustic output device 400 and the piezoelectric element 110 in the acoustic output device 200 . .
  • the deformation direction of the piezoelectric element 120 may be parallel to the vibration direction of the vibrating element 110 .
  • the piezoelectric element 120 is attached to one side of the vibrating element 110 along the vibration direction of the vibrating element 110 .
  • the piezoelectric element 120 may have a stacked structure.
  • the piezoelectric element 120 may include multiple layers of piezoelectric sheets, and the multiple layers of piezoelectric sheets may be stacked along the polarization direction of the piezoelectric sheets to form the piezoelectric element 120 .
  • the distance between the fixed end 111 and the piezoelectric element 120 (or the first position) is different along the length direction of the beam structure, and the frequency response curve of the acoustic output device 400 resonates in the low frequency band.
  • the resonance frequencies corresponding to the peaks are different.
  • the first position here may refer to the position of the edge of the piezoelectric element 120 close to the fixed end 111 . Therefore, the resonant frequency corresponding to the resonant peak in the low frequency band of the frequency response curve of the acoustic output device 400 can be changed by adjusting the distance between the fixed end 111 and the piezoelectric element 120 in the length direction of the beam structure, thereby benefiting the acoustics.
  • the sensitivity of the output device in different frequency bands has been improved to suit more scenarios. A detailed description will be given below in conjunction with the frequency response curve of the acoustic output device.
  • Figure 5 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • curve L51 is a frequency response curve when the ratio of the distance between the fixed end 111 of the acoustic output device 400 and the piezoelectric element 120 to the length of the beam structure (represented by p in FIG. 5 ) is 0.2.
  • Curve L52 is a frequency response curve when the ratio of the distance between the fixed end 111 of the acoustic output device 400 and the piezoelectric element 120 to the length of the beam structure is 0.4.
  • Curve L53 is a frequency response curve when the ratio of the distance between the fixed end 111 of the acoustic output device 400 and the piezoelectric element 120 to the length of the beam structure is 0.6.
  • Curve L54 is a frequency response curve when the ratio between the fixed end 111 of the acoustic output device 400 and the piezoelectric element 120 and the length of the beam structure is 0.8.
  • the resonance peak in the dotted circle Y is the first resonance peak generated by the acoustic output device 400 in the low frequency band.
  • the distance between the first position and the fixed end is equal to the distance between the first position and the fixed end of the beam.
  • the ratio between the lengths of structures can be less than 0.8. In some embodiments, the ratio between the distance between the first position and the fixed end and the length of the beam structure may be less than 0.6. In some embodiments, the ratio between the distance between the first position and the fixed end and the length of the beam structure may be less than 0.4.
  • Figure 6 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • curve L61 is when the damping coefficient (expressed by eta in FIG. 6 ) of the acoustic output device (for example, the acoustic output device 400 ) is 0, the fixed end of the acoustic output device (for example, the fixed end 111 ) and the piezoelectric
  • the frequency response curve of the acoustic output device when the ratio of the distance between the elements 120 to the length of the beam structure (represented by p in FIG. 6 ) is 0.2 and the piezoelectric element 120 is in the d33 operating mode.
  • Curve L62 is when the damping coefficient of the acoustic output device (eg, the acoustic output device 200 ) is 0, the ratio of the distance between the fixed end of the acoustic output device and the piezoelectric element 120 to the length of the beam structure is 0.2, and the piezoelectric element 120 is at d31 Frequency response curve of the acoustic output device in working mode and when the width of the piezoelectric element 120 is 2 mm.
  • the damping coefficient of the acoustic output device eg, the acoustic output device 200
  • the ratio of the distance between the fixed end of the acoustic output device and the piezoelectric element 120 to the length of the beam structure is 0.2
  • the piezoelectric element 120 is at d31 Frequency response curve of the acoustic output device in working mode and when the width of the piezoelectric element 120 is 2 mm.
  • Curve L63 is when the damping coefficient of the acoustic output device (eg, the acoustic output device 200 ) is 1, the ratio of the distance between the fixed end of the acoustic output device and the piezoelectric element 120 to the length of the beam structure is 0.2, and the piezoelectric element 120 is at d31 Frequency response curve of the acoustic output device in working mode and when the width of the piezoelectric element 120 is 2 mm. In some embodiments, the width of piezoelectric element 120 may be the same as the width of the beam structure.
  • the first resonance peak (or low frequency peak) in the dotted circle X may be generated by the resonance of the vibration element 110 and the mass element 130 . This first resonance peak is beneficial to improving the sensitivity of the acoustic output device 200 in the low frequency band.
  • the vibration element 110 and the mass element 120 can generate a first resonance peak in the range of 50Hz-2000Hz. In some embodiments, the vibration element 110 and the mass element 120 may generate a first resonance peak in the range of 100Hz-2000Hz. In some embodiments, the vibration element 110 and the mass element 120 may generate a first resonance peak in the range of 200Hz-2000Hz. In some embodiments, the vibration element 110 and the mass element 120 may generate a first resonance peak in the range of 500Hz-1500Hz. In some embodiments, the vibration element 110 and the mass element 120 may generate a first resonance peak in the range of 500Hz-1000Hz.
  • a damping structure can be added to the acoustic output device to increase the damping coefficient of the acoustic output device so that the vibration response curve of the acoustic output device is relatively smooth, thereby further improving the sound quality of the acoustic output device.
  • the vibrating element 110 may be made using a damping material (eg, nitrile).
  • a damping material can be added to the vibrating element 110 , for example, damping paint is coated on the surface of the vibrating element 110 or penetrates into the interior of the vibrating element 110 .
  • the damping coefficient of the acoustic output device may be 0-1. In some embodiments, the damping coefficient of the acoustic output device may be 0-0.8. In some embodiments, the acoustic output device may have a damping coefficient of 0.1-0.7. In some embodiments, the acoustic output device may have a damping coefficient of 0.2-0.5.
  • Figure 7 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • the structure of the acoustic output device 700 can be regarded as a change based on the structure of the acoustic output device 200 .
  • the difference between the acoustic output device 700 and the acoustic output device 200 is that the fixed end 111 in the acoustic output device 200 is set as a free end 111' in the acoustic output device 700.
  • the acoustic output device 700 may also include a second mass element. 150.
  • the mass element 130 and the second mass element 150 may be located on both sides of the piezoelectric element 120 respectively.
  • the mass element 130 and the second mass element 150 can be connected to both ends of the beam structure in the length direction, for example, the second mass element 150 is connected to the free end 111', and the mass element 130 is connected to the free end 112.
  • the masses of mass element 130 and second mass element 150 may be the same or different. As shown in FIG. 1 , the frequency range of the resonant frequency corresponding to the first resonant peak can be adjusted by adjusting the mass of the mass element 130 . When the length of the beam structure is constant, the greater the mass of the mass element 130, the smaller the resonant frequency corresponding to the first resonant peak. In some embodiments, the mass of mass element 130 may be less than 5 g. In some embodiments, mass element 130 may have a mass of less than 6 g. In some embodiments, the mass of mass element 130 may be less than 8 g. In some embodiments, the mass of mass element 130 may be less than 10 g.
  • FIG. 8 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • curve L81 indicates that the mass of the second mass element 150 of the acoustic output device 700 is much smaller than the mass of the mass element 130 (which can be approximately regarded as the ratio of the mass of the second mass element 150 to the mass of the mass element 130 ( FIG. 8 np is used to represent the frequency response curve when ) is 0).
  • Curve L82 is a frequency response curve when the ratio of the mass of the second mass element 150 to the mass of the mass element 130 of the acoustic output device 700 is 2.
  • Curve L83 is a frequency response curve when the ratio of the mass of the second mass element 150 to the mass element 130 of the acoustic output device 700 is 100.
  • the resonant frequencies corresponding to the first resonant peaks 831 are gradually decreasing.
  • the resonant frequency corresponding to the first resonant peak 811 is about 350 Hz
  • the resonant frequency corresponding to the first resonant peak 821 is about 250 Hz
  • the resonant frequency corresponding to the first resonant peak 831 is about 75 Hz.
  • the mass of the second mass element 150 may be greater than the mass of the mass element 130 . Further, by adjusting the ratio between the mass of the second mass element 150 and the mass of the mass element 130, the resonant frequency corresponding to the resonant peak of the acoustic output device 700 can be changed. Specifically, the greater the ratio between the mass of the second mass element 150 and the mass of the mass element 130, the smaller the resonant frequency corresponding to the resonant peak of the acoustic output device 700 is.
  • the ratio between the mass of the second mass element 150 and the mass of the mass element 130 may be in the range of 0-5. In some embodiments, the ratio between the mass of the second mass element 150 and the mass of the mass element 130 may be in the range of 0-10. In some embodiments, the ratio between the mass of the second mass element 150 and the mass of the mass element 130 may be in the range of 0-20. In some embodiments, the ratio between the mass of the second mass element 150 and the mass of the mass element 130 may be in the range of 0-50. In some embodiments, the ratio between the mass of the second mass element 150 and the mass of the mass element 130 may be in the range of 0-100.
  • the vibration element 110 (beam structure) can be fixed toward one end of the second mass element 150 , and the end of the beam structure connected to the second mass element 150 can be regarded as a fixed end.
  • the acoustic output device 700 can be equivalent to an acoustic output Device 200.
  • the second mass element 150 can be used as a fixed boundary (fixed end) of the beam structure, thereby solving the problem that it is difficult to find a fixed boundary for fixing the fixed end of the beam structure in the acoustic output device (for example, within the shell structure). question.
  • the acoustic output device 700 when the mass of the second mass element 150 is much greater than the mass of the mass element 130 , the acoustic output device 700 may be equivalent to the acoustic output device 200 . Therefore, according to the relevant description of the acoustic output device 200, in order to ensure that the acoustic output device 700 can generate the first resonance peak in the low frequency band, the distance between the second mass element 150 and the piezoelectric element 120 and the length of the beam structure must be The ratio can be less than 0.8. In some embodiments, the ratio between the distance between the second mass element 150 and the piezoelectric element 120 and the length of the beam structure may be less than 0.6. In some embodiments, the ratio between the distance between the second mass element 150 and the piezoelectric element 120 and the length of the beam structure may be less than 0.4.
  • Figure 9 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • the structure of the acoustic output device 900 can be regarded as a change based on the structure of the acoustic output device 200 .
  • the difference between the acoustic output device 900 and the acoustic output device 200 is that the acoustic output device 900 may further include a second piezoelectric element 140 .
  • the second piezoelectric element 140 may be attached to the third position of the beam structure, wherein the piezoelectric element 120 and the second piezoelectric element 140 may be spaced apart in the length direction of the vibrating element 110 (or referred to as the beam structure).
  • the second piezoelectric element 140 and the piezoelectric element 120 may have the same or similar structure, material, etc.
  • the piezoelectric element 120 and the second piezoelectric element 140 are spaced apart in the length direction of the vibration element 110 (or referred to as the beam structure), and the electric power input by the piezoelectric element 120 and the second piezoelectric element 140 is The signals can be the same, so that the piezoelectric element 120 and the second piezoelectric element 140 can be regarded as being connected in series.
  • the second piezoelectric element 140 and the piezoelectric element 120 may be in the d31 working mode, and the deformation direction of the piezoelectric element 120 and the second piezoelectric element 140 may be perpendicular to the vibration direction of the vibration element 110 .
  • the piezoelectric element 120 and the second piezoelectric element 140 may be located on the same side of the beam structure in the vibration direction of the vibration element 110 .
  • the piezoelectric element 120 and the second piezoelectric element 140 can be respectively attached to the first position and the third position of the beam structure and located on the same side of the beam structure.
  • the piezoelectric element 120 and the second piezoelectric element 140 may be located on opposite sides of the beam structure in the vibration direction of the vibration element 110 .
  • the piezoelectric element 120 and the second piezoelectric element 140 can be attached to the first and third positions of the beam structure respectively and located on opposite sides of the beam structure.
  • the acoustic output device 900 may also include more than two piezoelectric elements, for example, 3, 4, 5, etc. Wherein, two or more piezoelectric elements can be arranged at intervals in the length direction of the beam structure. In some embodiments, the distance between two adjacent piezoelectric elements among the two or more piezoelectric elements in the length direction of the beam structure may be the same or different. In some embodiments, as shown in FIG. 9 , piezoelectric element 120 and second piezoelectric element 140 may be located on the same side of mass element 130 .
  • the piezoelectric element 120 and the second piezoelectric element 140 can also be located on both sides of the mass element 130 respectively.
  • the piezoelectric element 120, the mass element 130 and the second piezoelectric element 140 are arranged in sequence.
  • the acoustic output device 900 will be described in detail below with reference to the frequency curve diagram of the acoustic output device 900 .
  • Figure 10 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • FIG. 10 shows that when the length of the beam structure of the acoustic output device 900 is 50 mm, the length of the piezoelectric element 120 and the second piezoelectric element 140 (that is, the attachment area of the piezoelectric element 120 and the beam structure along the length direction of the beam structure) size) are both 5mm, and the piezoelectric element 120 or the second piezoelectric element 140 is 4mm away from the fixed end (indicated by p1 in the figure), the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure Different frequency response curves of the acoustic output device 900 with different distances (indicated by p12 in the figure).
  • the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure may refer to the distance between the center point (eg, centroid) of the piezoelectric element 120 and the center point of the second piezoelectric element 140 distance.
  • curve L101, curve L102 and curve L103 are the frequency response curves of the acoustic output device 900 when the distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure are 14 mm, 18 mm and 22 mm respectively.
  • the dotted circle Z represents the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz).
  • the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure may refer to the separation area between the piezoelectric element 120 and the second piezoelectric element 140 in the length direction of the beam structure. length.
  • the frequency response curve (ie, curve L102) of the acoustic output device 900 is in the mid-to-high frequency range (for example, 200Hz-2000Hz ) is relatively smooth. Specifically, the curve L102 has small or no resonance peaks and/or resonance valleys in the mid-to-high frequency range.
  • the frequency response curve of the acoustic output device 900 (ie, the curve L101 or L103) has a resonance peak and/or a resonance valley in the mid-to-high frequency range.
  • the curve L101 has a resonance peak 1011 and a resonance valley 1012 within 200 Hz-2000 Hz
  • the curve L103 has a resonance valley 1031 and a resonance peak 1032 within 200 Hz-2000 Hz.
  • the resonance valley and resonance peak generated by the acoustic output device 900 in the mid-to-high frequency range can be made (for example, the resonance peak 1011 and the resonance valley 1012, the resonance valley 1031 and the resonance peak 1032) are combined (or called offset), so that the frequency response curve (for example, the curve L102) of the acoustic output device 900 is relatively flat, thereby ensuring that the acoustic The output device 900 has better sound quality.
  • Figure 11 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • Figure 11 shows that when the length of the beam structure of the acoustic output device 900 is 50mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 are both 5mm, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end is 5mm. , different frequency response curves of the acoustic output device 900 when there are different distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure.
  • curve L111, curve L112 and curve L113 are the frequency response curves of the acoustic output device 900 when the distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure are 12 mm, 14 mm and 18 mm respectively.
  • the dotted circle M represents the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz).
  • the frequency response curve (ie, curve L112) of the acoustic output device 900 is in the mid-to-high frequency range (for example, 200Hz-2000Hz)
  • the frequency response curve of the acoustic output device 900 ie, the curve L111 or L113
  • the frequency response curve of the acoustic output device 900 has a resonance peak and/or a resonance valley in the mid-to-high frequency range.
  • curve L111 has a resonance valley 1111 and a resonance peak 1112 within 200Hz-2000Hz
  • curve L113 has a resonance valley 1131 and a resonance peak 1132 within 200Hz-2000Hz.
  • the resonance valley 1111 and the resonance peak 1112, the resonance valley 1131 and the resonance peak 1132 are merged (or called canceled), so that the frequency response curve (for example, the curve L112) of the acoustic output device 900 is relatively flat, This ensures that the acoustic output device 900 has better sound quality.
  • Figure 12 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • Figure 12 shows that when the length of the beam structure of the acoustic output device 900 is 50mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 are both 5mm, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end is 6mm. , corresponding to different frequency response curves of the acoustic output device 900 when there are different distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure.
  • curve L121, curve L122 and curve L123 are the frequency response curves of the acoustic output device 900 when the distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure are 10 mm, 12 mm and 14 mm respectively.
  • the dotted circle N represents the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz).
  • the frequency response curve (ie, curve L122) of the acoustic output device 900 is in the mid-to-high frequency range (for example, 200Hz-2000Hz)
  • the frequency response curve of the acoustic output device 900 ie, the curve L121 or L123
  • the frequency response curve of the acoustic output device 900 has a resonance peak and/or a resonance valley in the mid-to-high frequency range.
  • the curve L121 has a resonance valley 1211 and a resonance peak 1212 within 200 Hz-2000 Hz
  • the curve L123 has a resonance valley 1231 and a resonance peak 1232 within 200 Hz-2000 Hz. It can be concluded that by reasonably designing the distance (for example, 12 mm) between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure, the resonance valley generated by the acoustic output device 900 in the mid-to-high frequency range can be achieved.
  • the resonance valley 1211 and the resonance peak 1212, the resonance valley 1231 and the resonance peak 1232 are merged (or called canceled), so that the frequency response curve (for example, the curve L122) of the acoustic output device 900 is relatively flat, This ensures that the acoustic output device 900 has better sound quality.
  • the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 can be adjusted based on the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure. distance. For example only, when the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 increases, the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can be appropriately reduced, so that Merging the resonance peaks and resonance valleys makes the frequency response curve of the acoustic output device 900 relatively flat, thereby improving the sound quality of the acoustic output device 900 .
  • the ratio between the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 and the length of the beam structure is greater than 0.05, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 along the length direction of the beam structure
  • the ratio to the length of the beam structure can be less than 0.5.
  • the ratio between the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 and the length of the beam structure is greater than 0.08, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is greater than 0.08.
  • the ratio between the distance and the length of the beam structure can be less than 0.4.
  • the ratio between the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 and the length of the beam structure is greater than 0.1, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is greater than 0.1.
  • the ratio between the distance and the length of the beam structure can be less than 0.3.
  • the ratio between the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 and the length of the beam structure is greater than 0.12.
  • the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is greater than 0.12.
  • the ratio between the distance and the length of the beam structure can be less than 0.25.
  • Figure 13 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • Figure 13 shows that when the length of the beam structure of the acoustic output device 900 (indicated by lb in the figure) is 37.5mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 are both 5mm, the piezoelectric element 120 or the second piezoelectric element 140 When the electrical element 140 is 4 mm away from the fixed end, there are different frequency response curves of the acoustic output device 900 corresponding to different distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure.
  • the curve L131, the curve L132, and the curve L133 are respectively the frequency response curves of the acoustic output device 900 when the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is 8 mm.
  • the dotted circle O is the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz).
  • the frequency response curve (ie, curve L132) of the acoustic output device 900 is in the mid-to-high frequency range (for example, 200Hz-2000Hz ) is relatively smooth. Specifically, the curve L132 has small or no resonance peaks and/or resonance valleys in the mid-to-high frequency range.
  • the frequency response curve of the acoustic output device 900 (ie, the curve L131 or L133) has a resonance peak and/or a resonance valley in the mid-to-high frequency range.
  • curve L131 has a resonance valley 1311 and a resonance peak 1312 within 200Hz-2000Hz
  • curve L133 has a resonance valley 1331 and a resonance peak 1332 within 200Hz-2000Hz.
  • the resonance valley generated by the acoustic output device 900 in the mid-to-high frequency range can be achieved. and the resonance peaks (for example, the resonance valley 1311 and the resonance peak 1312, the resonance valley 1331 and the resonance peak 1332) are combined (or called offset), so that the frequency response curve of the acoustic output device 900 is relatively flat, thereby ensuring that the acoustic output device 900 Has better sound quality.
  • Figure 14 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • Figure 14 shows that when the length of the beam structure of the acoustic output device 900 is 37.5mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 are both 5mm, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end is 5mm.
  • the acoustic output device 900 has different frequency response curves.
  • curve L141, curve L142 and curve L143 are the frequency response curves of the acoustic output device 900 when the distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure are 5.6mm, 6.2mm and 6.8mm respectively.
  • the dotted circle P is the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz).
  • the frequency response curve (ie, curve L142) of the acoustic output device 900 is in the mid-to-high frequency band (for example, 200Hz- 2000Hz) is relatively smooth, specifically as curve L142 has small or no resonance peaks and/or resonance valleys in the mid-to-high frequency range, while when the piezoelectric element 120 and the second piezoelectric element 140 move along the length direction of the beam structure
  • the frequency response curve of the acoustic output device 900 ie, the curve L141 or L143 has a
  • the curve L141 has a resonance valley 1411 and a resonance peak 1412 within 200 Hz-2000 Hz
  • the curve L143 has a resonance valley 1431 and a resonance peak 1432 within 200 Hz-2000 Hz. It can be concluded that by rationally designing the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure (for example, 6.2 mm), the resonance generated by the acoustic output device 900 in the mid-to-high frequency range can be achieved.
  • the valleys and resonance peaks are merged (or called offset), so that the frequency response curve of the acoustic output device 900 is relatively flat, thereby ensuring that the acoustic output device 900 has better sound quality.
  • the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 can be adjusted based on the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure. distance. For example only, when the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 increases, the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can be appropriately reduced, so that Merging the resonance peaks and resonance valleys makes the frequency response curve of the acoustic output device 900 relatively flat, thereby improving the sound quality of the acoustic output device 900 .
  • the ratio between the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 and the length of the beam structure is greater than 0.1, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 along the length direction of the beam structure
  • the ratio to the length of the beam structure can be less than 0.25.
  • the ratio between the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 and the length of the beam structure is greater than 0.13.
  • the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is greater than 0.13.
  • the ratio between the distance and the length of the beam structure can be less than 0.2.
  • Figure 15 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • Figure 15 shows that when the length of the beam structure of the acoustic output device 900 is 25mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 are both 5mm, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end is 4mm. , corresponding to different frequency response curves of the acoustic output device 900 when there are different distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure.
  • curve L151, curve L152 and curve L153 are respectively the frequency response curves of the acoustic output device 900 when the distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure are 0.5mm, 1.5mm and 2.5mm.
  • the dotted circle Q is the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz).
  • the frequency response curve (ie, curve L152) of the acoustic output device 900 is in the mid-to-high frequency range (for example, 300Hz-3000Hz ) is relatively smooth. Specifically, the curve L152 has small or no resonance peaks and/or resonance valleys in the mid-to-high frequency range.
  • the frequency response curve of the acoustic output device 900 (ie, the curve L151 or L153) has a resonance peak and/or a resonance valley in the mid-to-high frequency range.
  • curve L151 has a resonance valley 1511 and a resonance peak 1512 within 300Hz-3000Hz
  • curve L153 has a resonance valley 1531 and a resonance peak 1532 within 300Hz-3000Hz.
  • the resonance generated by the acoustic output device 900 in the mid-to-high frequency range can be achieved.
  • the valleys and resonance peaks (for example, the resonance valley 1511 and the resonance peak 1512, the resonance valley 1531 and the resonance peak 1532) are merged (or called offset), so that the frequency response curve of the acoustic output device 900 is relatively flat, thereby ensuring that the acoustic output device 900 has better sound quality.
  • the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can be adjusted based on the lengths of different beam structures. For example only, when the length of the beam structure is reduced, the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can be appropriately reduced, thereby merging the resonant peaks and resonant valleys, so that the acoustic output device 900 The frequency response curve is relatively flat, which improves the sound quality of the acoustic output device 900 .
  • the ratio between the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure and the length of the beam structure may be less than 0.6.
  • the ratio between the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure and the length of the beam structure may be less than 0.4.
  • the ratio between the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure and the length of the beam structure may be less than 0.2.
  • the ratio between the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure and the length of the beam structure may be less than 0.1.
  • Figure 16 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • Figure 16 shows that when the length of the beam structure of the acoustic output device 900 is 50mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 (indicated by lp in the figure) are both 25mm, the piezoelectric element 120 or the second piezoelectric element 140 is When the element 140 is 4 mm away from the fixed end, there are different frequency response curves of the acoustic output device 900 corresponding to different distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure.
  • curve L161, curve L162 and curve L163 are the frequency responses of the acoustic output device 900 when the distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure are -4mm, -2.5mm and -1mm respectively.
  • curve. Inside the dotted circle R is the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz).
  • the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure may refer to the distance between the center point (eg, centroid) of the piezoelectric element 120 and the center point of the second piezoelectric element 140 distance.
  • the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is 0, it can be understood that the center point of the piezoelectric element 120 and the center point of the second piezoelectric element 140 are along the The projections of the vibration directions of the beam structure coincide.
  • the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is a positive number, it can be understood that the position of one of the piezoelectric elements (for example, the second piezoelectric element 140) does not change, and the position of the other piezoelectric element 140 does not change.
  • the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is a negative number, it can be understood that the position of one of the piezoelectric elements (for example, the second piezoelectric element 140) does not change, and the position of the other piezoelectric element does not change.
  • the distance between the center points of the piezoelectric element 120 and the second piezoelectric element 140 when the fixed end 111 is deflected along the length direction of the beam structure for example, the piezoelectric element 120 ).
  • the frequency response curve (ie, curve L162) of the acoustic output device 900 is in the mid-to-high frequency band (for example, 300Hz- 3000Hz) is relatively smooth, specifically as curve L162 has small or no resonance peaks and/or resonance valleys in the mid-to-high frequency range, while when the piezoelectric element 120 and the second piezoelectric element 140 move along the length direction of the beam structure
  • the frequency response curve of the acoustic output device 900 ie, the curve L161
  • curve L161 has a resonance valley 1611 and a resonance peak 1612 within 300Hz-3000Hz
  • curve L163 has a resonance valley 1631 and a resonance peak 1632 within 300Hz-3000Hz.
  • the resonance valley and the resonance peak are combined (or called offset), so that the frequency response curve of the acoustic output device 900 is relatively flat, thereby ensuring the acoustic output Device 900 has better sound quality.
  • the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can be adjusted based on the lengths of the different piezoelectric elements 120 and the second piezoelectric element 140 .
  • the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can be appropriately reduced, thereby harmonizing the resonance peak.
  • the vibration valleys are merged so that the frequency response curve of the acoustic output device 900 is relatively flat, thereby improving the sound quality of the acoustic output device 900 .
  • the ratio between the lengths of the piezoelectric element 120 and the second piezoelectric element 140 and the length of the beam structure is greater than 0.05, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is less than the length of the beam structure.
  • the ratio between lengths can be less than 0.4.
  • the ratio between the lengths of the piezoelectric element 120 and the second piezoelectric element 140 and the length of the beam structure is greater than 0.1, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is less than the length of the beam structure.
  • the ratio between the lengths can be less than 0.3.
  • the ratio between the lengths of the piezoelectric element 120 and the second piezoelectric element 140 and the length of the beam structure is greater than 0.2, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is less than the length of the beam structure.
  • the ratio between the lengths can be less than 0.1.
  • the ratio between the lengths of the piezoelectric element 120 and the second piezoelectric element 140 and the length of the beam structure is greater than 0.4, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is less than the length of the beam structure.
  • the ratio between the lengths can be less than 0.
  • the frequency response curve of the acoustic output device 900 (for example, curves L102, L112, L122, L132, L142, L152 and L162) are relatively smooth in the mid-to-high frequency band, so that the acoustic output device 900 can have better sound quality.
  • the length of the beam structure may be less than 50 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than 25 mm.
  • the length of the beam structure may be less than 50 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than 22 mm. In some embodiments, the length of the beam structure may be less than 50 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than 18 mm. In some embodiments, the length of the beam structure may be less than 50 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than 14 mm. In some embodiments, the length of the beam structure may be less than 40 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than 10 mm.
  • the length of the beam structure may be less than 40 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than 7 mm. In some embodiments, the length of the beam structure may be less than 40 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than 2.5 mm. In some embodiments, the length of the beam structure may be less than 30 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than -1 mm.
  • the peak value of the first resonance peak of the curve L101 in the dotted circle Z is around 170dB
  • the peak value of the first resonance peak of the curve 112 in the dotted circle M is around 175dB
  • the peak value of the first resonance peak of the curve L123 in the dotted circle N is around 175dB.
  • the peak value of a resonance peak is around 180dB.
  • the first resonance peak-to-peak value of the acoustic output device 900 in the low frequency band can be increased by increasing the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end, thereby improving the acoustic output device 900 Sensitivity in the low frequency band.
  • the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end may be greater than 3 mm. In some embodiments, the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end may be greater than 4 mm. In some embodiments, the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end may be greater than 5 mm. In some embodiments, the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end may be greater than 6 mm. In some embodiments, the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end may be greater than 7 mm.
  • Figure 17 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • the structure of the acoustic output device 1700 can be regarded as a change based on the structure of the acoustic output device 200 .
  • the difference between the acoustic output device 1700 and the acoustic output device 200 is that the acoustic output device 1700 may also include a second vibration element 160 , and the vibration element 110 and the second vibration element 160 are symmetrically arranged on both sides of the mass element 130 .
  • the acoustic output device 1700 may include a third piezoelectric element 170 connected (or attached) to the second vibration element 160 .
  • the third piezoelectric element 170 and the piezoelectric element 120 are symmetrically arranged on both sides of the mass element 130 .
  • the piezoelectric element 120 and the third piezoelectric element 170 are respectively disposed on two piezoelectric beams located on both sides of the mass element 130, and the electrical signals input by the piezoelectric element 120 and the third piezoelectric element 170 They may be the same and can be regarded as the piezoelectric element 120 and the third piezoelectric element 170 being connected in parallel.
  • the second vibration element 160 vibrates in the same direction as the vibration element 110 .
  • the piezoelectric element 120 and the third piezoelectric element 170 can be in the d31 working mode, and the deformation directions of the piezoelectric element 120 and the third piezoelectric element 170 can be consistent with the directions of the vibration element 110 and the second vibration element 160 .
  • the vibration direction is vertical.
  • the piezoelectric element 120 and the third piezoelectric element 170 may be in the working mode of d33, and the deformation direction of the piezoelectric element 120 and the third piezoelectric element 170 may be parallel to the vibration direction of the vibration element 110 .
  • one end of the vibrating element 110 and the second vibrating element 160 away from the mass element 130 is fixedly arranged (ie, the fixed end).
  • one end of the vibrating element 110 and the second vibrating element 160 away from the mass element 130 can be fixed on other components of the acoustic output device 1700 (eg, the housing).
  • the piezoelectric element 120 and the third piezoelectric element 170 can be in the working mode of d33, with one end of the piezoelectric element 120 and the third piezoelectric element 170 fixed along the vibration direction of the vibrating element 110 and the second vibrating element 160, and the other end.
  • One end is respectively attached to the end of the vibration element 110 and the second vibration element 160 away from the mass element 130 , so that the ends of the vibration element 110 and the second vibration element 160 away from the mass element 130 can be fixedly arranged relative to the mass element 130 .
  • the second vibration element 160 and the third piezoelectric element 170 please refer to the relevant descriptions of the vibration element 110 and the piezoelectric element 120 respectively, which will not be described again here.
  • Figure 18 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • curve L181 is the frequency response curve when a massless element is connected between the vibrating element 110 and the second vibrating element 160 (or the vibrating element 110 and the second vibrating element 160 are unloaded).
  • Curve L182 is a frequency response curve when a mass element (or load of the vibrating element 110 and the second vibrating element 160 ) is connected between the vibrating element 110 and the second vibrating element 160 .
  • the curves between adjacent resonance peaks on curve L181 and curve L182 are relatively smooth, and there is no resonance valley. It can be concluded that by arranging a structure in which piezoelectric sheets are connected in parallel, the frequency response curve of the acoustic output device 1700 will not produce a resonance valley, making the frequency response curve smoother and conducive to improving the sound quality of the acoustic output device 1700 .
  • the resonant peak 1811 of the curve L181 and the resonant peak 1821 of the curve L192 it can be found that when the mass element 130 is connected between the vibrating element 110 and the second vibrating element 160, the resonant frequency corresponding to the resonant peak will decrease. . Therefore, the resonant frequency corresponding to the resonant peak generated by the acoustic output device 1700 in the low frequency band (eg, 100 Hz-1000 Hz) can be changed by changing the mass of the mass element 130 .
  • Figure 19 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • the structure of the acoustic output device 1900 can be regarded as a change based on the structure of the acoustic output device 200 .
  • the difference between the acoustic output device 1900 and the acoustic output device 200 is that the acoustic output device 1900 may also include a third vibration element 180, and the third vibration element 180 is connected to the mass element 130.
  • the vibration direction of the third vibration element 180 is parallel to the vibration direction of the vibration element 110 .
  • the acoustic output device 1900 may also include a fourth piezoelectric element 190 , and the fourth piezoelectric element 190 may be connected to the third vibration element 180 .
  • the fourth piezoelectric element 190 is in the d31 working mode, and the deformation direction of the fourth piezoelectric element 190 is perpendicular to the vibration direction of the third vibration element 180 .
  • the third vibration element 180 and the vibration element 110 may have the same or different structures, materials, etc.
  • the fourth piezoelectric element 190 and the piezoelectric element 120 may have the same or different structures, materials, etc.
  • the beam structure of the third vibrating element 180 located on both sides of the mass element 130 can be arranged symmetrically.
  • the fourth piezoelectric element 190 may include two piezoelectric sheets located on both sides of the mass element 130 .
  • the fourth piezoelectric element 190 may include a piezoelectric sheet, and the piezoelectric sheet may completely cover the third vibration element 180 or partially cover the third vibration element 180 .
  • the piezoelectric sheet may completely cover the third vibration element 180 or partially cover the third vibration element 180 .
  • the acoustic output device 1900 shown in FIG. 19 is only used for illustrative purposes and is not intended to limit the scope of protection of this specification.
  • the fourth piezoelectric element 190 may include a piezoelectric sheet, and the piezoelectric sheet may completely cover the third vibration element 180 or partially cover the third vibration element 180 .
  • the piezoelectric element 120 may include a piezoelectric sheet, and the piezoelectric sheet may completely cover the vibrating element 110 .
  • vibrating element 110 may have a cantilever beam structure.
  • the cantilever beam has a fixed end 111 and a free end 112 .
  • the mass element 130 is connected to the vibration element 110 at its free end 112 .
  • the third vibration element 180 may have a beam structure.
  • the third vibration element 180 may be a free beam, at least a part of the free beam (for example, a central region in the length direction) is connected to the mass element 130 , and both ends of the free beam are free ends.
  • the length direction of the third vibration element 180 (ie, the long axis direction of the free beam) is consistent with the length direction of the vibration element 110 The angle between them can be 90°.
  • the connection position between the mass element 130 and the third vibration element 180 can be located at the center of the length direction of the third vibration element 180 , that is, the vibration element 110 and the third vibration element 180 can form a "T"-shaped structure (or called a T-beam).
  • the angle between the length direction of the third vibration element 180 and the length direction of the vibration element 110 may also be less than 90° or greater than 90°.
  • the connection position between the mass element 130 and the third vibration element 180 can be located at any position along the length direction of the third vibration element 180 .
  • the vibration element 110 and the third vibration element 180 may be an integrally formed “T”-shaped structure or other configurations.
  • Other configurations include that different positions of the vibrating element 110 have different widths (ie, the y direction in the figure) along the length direction of the vibrating element 110 (i.e., the x direction in the figure). For example, the width is larger closer to the free end, or the width is larger. The width becomes smaller near the free end, etc.
  • Figure 20 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • curve L201 is the frequency response curve generated when the piezoelectric element 120 is excited alone (that is, the frequency response curve generated when the vibrating element 110 (or cantilever beam) drives the mass element 130 to vibrate).
  • Curve L202 is the frequency response curve generated when the fourth piezoelectric element 190 is excited alone (that is, the frequency response curve generated when the third vibrating element 180 (also known as the free beam) and the mass element 130 vibrate).
  • Curve L203 is the frequency response curve when the piezoelectric element 120 and the fourth piezoelectric element 190 in the acoustic output device 1900 are excited at the same time (that is, the vibrating element 110, the third vibrating element 180 and the mass element 130 are simultaneously excited (or called a T-beam) Frequency response curve produced during vibration).
  • curve L201 has at least two resonance peaks (eg, a first resonance peak 2011 and a second resonance peak 2012) within the audible range of the human ear (eg, 20 Hz-20000 Hz). There is a resonance valley 2013 between the first resonance peak 2011 and the second resonance peak 2012. In some embodiments, the frequency of the first resonance peak 2011 may be in the range of 50Hz-2000Hz. The frequency of resonance valley 2013 is around 1330Hz.
  • Curve L202 has at least one resonance peak (eg, resonance peak 2021) within the audible range of the human ear (eg, 20 Hz-20000 Hz). Among them, the frequency of resonance peak 2021 is around 1330Hz.
  • Curve L203 has at least two resonance peaks (eg, first resonance peak 2031 and second resonance peak 2032) within the audible range of the human ear (eg, 20 Hz-20000 Hz). As can be seen from FIG. 20 , the curve L203 does not have a resonance valley between the first resonance peak 2031 and the second resonance peak 2032 . This is because the resonance peak 2021 complements the resonance valley 2013 with the same frequency, so that the curve L203 does not have a resonance valley between the first resonance peak 2031 and the second resonance peak 2032 . In addition, in the frequency range greater than 100 Hz, the amplitude of curve L203 is improved compared to curve L201.
  • first resonance peak 2031 and second resonance peak 2032 within the audible range of the human ear
  • the resonance peak (for convenience of description, hereafter referred to as the corresponding resonance peak of the third vibration element 180 ) generated by the vibration of the third vibration element 180 and the mass element 130 in a low frequency band (for example, 50Hz-2000Hz) can be resonance peak) to supplement the resonance valley between the first resonance peak and the second resonance peak produced by the vibration of the vibration element 110 and the mass element 130 (for convenience of description, hereafter referred to as the resonance valley corresponding to the vibration element 110), thereby making the acoustic output
  • the frequency response curve of the device 1900 does not have a resonance valley between the first resonance peak and the second resonance peak, thereby making the curve between the first resonance peak and the second resonance peak smoother, which is beneficial to improving the sound quality of the acoustic output device.
  • the ratio between the frequency f 0 of the first resonance peak and the frequency f 1 of the second resonance peak corresponding to the vibration element 110 may be in the range of 5-30. In some embodiments, the ratio between the frequency f 0 of the first resonance peak and the frequency f 1 of the second resonance peak corresponding to the vibration element 110 may be in the range of 6-25. In some embodiments, the ratio between the frequency f 0 of the first resonance peak and the frequency f 1 of the second resonance peak corresponding to the vibration element 110 may be in the range of 8-20. In some embodiments, the ratio between the frequency f 0 of the first resonance peak and the frequency f 1 of the second resonance peak corresponding to the vibration element 110 may be in the range of 10-18.
  • the resonant frequency of the beam structure (for example, the cantilever beam corresponding to the vibrating element 110 or the free beam corresponding to the third vibrating element 180) can be determined according to formula (2):
  • l represents the length of the beam structure
  • EI represents the bending stiffness of the beam structure
  • ⁇ i represents the density per unit length of the beam structure
  • ⁇ i l represents the coefficient related to the i-th order resonance eigenvalue.
  • the frequency equation of the vibration element 110 (cantilever beam) connected to the mass element 130 can be expressed as:
  • represents the ratio between the mass of the mass element 130 and the mass of the vibration element 110
  • ⁇ i l 1 represents the coefficient related to the i-th order resonance eigenvalue corresponding to the cantilever beam.
  • the frequency equation of the third vibration element 180 (free beam) can be expressed as:
  • ⁇ i l 2 represents the coefficient related to the i-th order resonance eigenvalue corresponding to the free beam.
  • the frequency f′ 1 of the resonance peak corresponding to the third vibration element 180 is equal to the second resonance corresponding to the vibration element 110
  • the ratio between the frequencies f 1 corresponding to the peaks can be less than 2.
  • the ratio between the frequency f' 0 of the resonance peak corresponding to the third vibration element 180 and the frequency f 1 of the second resonance peak corresponding to the vibration element 110 may be less than 1.5.
  • the ratio between the frequency f' 0 of the resonance peak corresponding to the third vibration element 180 and the frequency f 1 of the second resonance peak corresponding to the vibration element 110 may be less than 1.
  • the ratio between the frequency f' 0 of the resonance peak corresponding to the third vibration element 180 and the frequency f 1 of the second resonance peak corresponding to the vibration element 110 may be less than 0.5.
  • the frequency f′ 0 corresponding to the resonance peak of the third vibration element 180 may be located at the resonance valley corresponding to the vibration element 110 near the frequency (for example, the resonance frequencies corresponding to the resonance valley 2013 and the resonance peak 2021 are both around 1330 Hz), therefore, the frequency f′ 0 of the resonance peak corresponding to the third vibration element 180 can be smaller than the second resonance corresponding to the vibration element 110
  • the resonant frequency f 1 corresponding to the peak is
  • the ratio between the length of the third vibration element 180 and the length of the vibration element 120 may be greater than 0.7. In some embodiments, the ratio between the length of the third vibration element 180 and the length of the vibration element 120 may be greater than 1. In some embodiments, the ratio between the length of the third vibration element 180 and the length of the vibration element 120 may be greater than 1.2.
  • the third vibration element 180 can increase the vibration amplitude of the mass element 130 in a range greater than 100 Hz. Therefore, by adopting the same or similar structure of the acoustic output device 1900, the acoustic output device can have better sensitivity in the mid-to-high frequency band.
  • Figure 21 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • curve L211 is the frequency response curve when the piezoelectric element 120 is excited alone (that is, the frequency response curve generated when the vibration element 110 (or cantilever beam) drives the mass element 130 to vibrate).
  • Curve L212 is the frequency response curve when the fourth piezoelectric element 190 is excited alone (that is, the frequency response curve generated when the third vibration element 180 (also known as the free beam) and the mass element 130 vibrate).
  • Curve L213, curve L214, curve L215 and curve L216 are respectively when the piezoelectric element 120 and the fourth piezoelectric element 190 in the acoustic output device 1900 are excited at the same time, the phase difference of the excitation signal (represented by theta in the figure) is 0° and 45 Frequency response curves at °, 135° and 180°.
  • the phase difference between the excitation signals of the piezoelectric element 120 and the fourth piezoelectric element 190 may be less than or equal to 135°. In some embodiments, the phase difference between the excitation signals of the piezoelectric element 120 and the fourth piezoelectric element 190 may be less than or equal to 90°. In some embodiments, the phase difference between the excitation signals of the piezoelectric element 120 and the fourth piezoelectric element 190 may be less than or equal to 60°.
  • the phase difference between the excitation signals of the piezoelectric element 120 and the fourth piezoelectric element 190 may be less than or equal to 45°. In some embodiments, the phase difference between the excitation signals of the piezoelectric element 120 and the fourth piezoelectric element 190 may be less than or equal to 30°. In some embodiments, the phase difference between the excitation signals of the piezoelectric element 120 and the fourth piezoelectric element 190 may be 0°.
  • Figure 22 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • curve L221, curve L222, curve L223, curve L224 and curve L225 respectively represent the length of the third vibration element 180 of the acoustic output device 1900 (represented by lp_d2 in the figure), which is 0 mm (that is, it can be regarded as the acoustic output device 1900 Excluding the third vibrating element 180, it is equivalent to the frequency response curve at 20 mm, 22 mm, 24 mm and 30 mm of the acoustic output device 200).
  • the length of the vibrating elements 110 (indicated by lp_d in the figure) is 20 mm.
  • the curve L221, the curve L222, the curve L223, the curve L224 and the curve L225 it can be seen that when the length of the third vibration element 180 is less than 24mm, the curve L221, the curve L222 and the curve L223 all have resonance valleys near 2250Hz, and the third vibration element 180
  • the increase in length can only increase the amplitude of the frequency response curve of the acoustic output device 1900 in the mid-to-high frequency band (for example, 2000Hz-20000Hz), that is, the sensitivity of the acoustic output device 1900 in the mid-to-high frequency range is increased.
  • the length of the third vibrating element 180 increases, the resonance peak of the frequency response curve of the acoustic output device 1900 in the mid-to-high frequency range (eg, 2000 Hz-20000 Hz) shifts to the left (that is, moves to low frequency). Therefore, the length of the third vibration element 180 can be adjusted to meet the vibration performance requirements of the acoustic output device 1900 .
  • the mid-to-high frequency range eg, 2000 Hz-20000 Hz
  • the sensitivity and sound quality of the acoustic output device 1900 can be improved by increasing the length of the third vibrating element 180.
  • the length of the vibration element 110 may be 20 mm, and the length of the third vibration element 180 may be greater than 24 mm.
  • the length of the third vibrating element 180 may be greater than 26 mm.
  • the length of the third vibration element 180 may be greater than 28 mm.
  • the length of the third vibration element 180 may be greater than 30 mm.
  • numbers are used to describe the quantities of components and properties. It should be understood that such numbers used to describe the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Grooming. Unless otherwise stated, “about,” “approximately,” or “substantially” means that the stated number is allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending on the desired features of the individual embodiment. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical ranges and parameters used to identify the breadth of ranges in some embodiments of this specification are approximations, in specific embodiments, such numerical values are set as accurately as is feasible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本说明书实施例提供一种声学输出装置,包括:振动元件,所述振动元件具有沿着长度方向延伸的梁结构;压电元件,用于响应电信号而发生形变,所述形变带动所述振动元件振动,其中,所述压电元件贴附于所述梁结构的第一位置,并且贴附区域沿着所述长度方向的尺寸不超过所述梁结构沿着所述长度方向尺寸的80%;以及质量元件,所述质量元件连接于所述梁结构的第二位置,其中,所述第一位置与所述第二位置在所述长度方向上间隔分布,所述振动元件的振动带动所述质量元件在垂直于所述长度方向的方向上振动。

Description

一种声学输出装置 技术领域
本申请涉及声学技术领域,特别涉及一种声学输出装置。
背景技术
压电式的声学输出装置是利用压电材料的逆压电效应产生振动向外辐射声波,与传动电动式扬声器相比,具有机电换能效率高、能耗低、体积小、集成度高等优势。在当今器件小型化和集成化的趋势下,压电式的声学输出装置具有极其广阔的前景与未来。但是,压电式的声学输出装置存在有低频响应较差等问题,从而导致其在低频(例如,50Hz-2000Hz)范围内灵敏度较低的问题。
因此,希望提供一种声学输出装置,以提升压电式声学输出装置的低频响应,从而提升声学输出装置在低频范围内的灵敏度。
发明内容
本说明书实施例提供一种声学输出装置,包括:振动元件,所述振动元件具有沿着长度方向延伸的梁结构;压电元件,用于响应电信号而发生形变,所述形变带动所述振动元件振动,其中,所述压电元件贴附于所述梁结构的第一位置,并且贴附区域沿着所述长度方向的尺寸不超过所述梁结构沿着所述长度方向尺寸的80%;以及质量元件,所述质量元件连接于所述梁结构的第二位置,其中,所述第一位置与所述第二位置在所述长度方向上间隔分布,所述振动元件的振动带动所述质量元件在垂直于所述长度方向的方向上振动。
在一些实施例中,所述振动元件与所述质量元件谐振产生第一谐振峰,所述第一谐振峰的频率范围为50Hz-2000Hz。
在一些实施例中,所述振动元件与所述质量元件的振动具有第二谐振峰,所述第二谐振峰的频率与所述第一谐振峰的频率之比大于5。
在一些实施例中,在所述第一谐振峰和所述第二谐振峰之间,所述振动元件与所述质量元件的振动产生至少一个谐振谷,其中,所述第一谐振峰或所述第二谐振峰与所述至少一个谐振谷之间的幅值差小于80dB。
在一些实施例中,所述梁结构的长度小于50mm。
在一些实施例中,所述质量元件的质量小于10g。
在一些实施例中,所述压电元件的形变方向与所述振动元件的振动方向垂直。
在一些实施例中,所述压电元件的长度在3mm-30mm范围内。
在一些实施例中,还包括第二压电元件,所述第二压电元件贴附于所述梁结构的第三位置,其中,所述压电元件与所述第二压电元件在所述振动元件的长度方向上间隔设置。
在一些实施例中,所述压电元件与所述第二压电元件之间的距离小于25mm。
在一些实施例中,所述梁结构包括固定端,所述压电元件或所述第二压电元件与所述固定端的距离大于3mm。
在一些实施例中,在所述梁结构的振动方向上,所述压电元件和所述第二压电元件位于所述梁结构的同一侧。
在一些实施例中,在所述梁结构的振动方向上,所述压电元件和所述第二压电元件分别位于所述梁结构的两侧。
在一些实施例中,还包括第二质量元件,其中,在所述振动元件的长度方向上,所述质量元件与所述第二质量元件分别位于所述压电元件的两侧。
在一些实施例中,所述第二质量元件的质量大于所述质量元件的质量。
在一些实施例中,所述第二质量元件的质量与所述质量元件的质量间的比值在0-10范围内。
在一些实施例中,所述压电元件的形变方向与所述振动元件的振动方向平行。
在一些实施例中,所述压电元件沿振动方向的一端固定,另一端在所述第一位置与所述梁结构连接。
在一些实施例中,所述梁结构包括固定端,所述第一位置与所述固定端的距离与所述梁结构的长度间的比值小于0.6。
在一些实施例中,还包括第二振动元件,所述振动元件与所述第二振动元件在所述质量元件的两侧对称设置。
在一些实施例中,还包括与所述第二振动元件连接的第三压电元件,其中,所述第三压电元件与所述压电元件在所述质量元件的两侧对称设置。
在一些实施例中,所述振动元件与所述第二振动元件远离所述质量元件的一端固定设置。
在一些实施例中,还包括第三振动元件,所述第三振动元件与所述质量元件连接。
在一些实施例中,在大于100Hz的频率范围内,所述第三振动元件增加所述质量元件的振动幅度。
在一些实施例中,所述第三振动元件的长度与所述振动元件的长度之比大于0.7。
在一些实施例中,所述第三振动元件的振动方向与所述振动元件的振动方向平行。
在一些实施例中,还包括第四压电元件,所述第四压电元件与所述第三振动元件连接。
在一些实施例中,所述第四压电元件的形变方向与所述第三振动元件的振动方向垂直。
在一些实施例中,所述压电元件和所述第四压电元件所接收的电信号具有相位差,所述相位差小于135°。
附图说明
图1是根据本说明书一些实施例所示的声学输出装置的结构框图;
图2A是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图2B是图2A所示的声学输出装置沿垂直于振动元件的长度方向的方向上的截面图;
图3A是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图3B是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图4是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图5是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图6是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图7是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图8是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图9是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图10是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图11是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图12是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图13是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图14是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图15是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图16是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图17是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图18是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图19是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图20是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图21是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图22是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
本说明书实施例提供的声学输出装置可以利用逆压电效应通过压电元件产生振动而输出声音。通常,压电元件可以采用d33与d31两种工作模式。在d33工作模式下,压电元件的形变方向(也可以称为位移输出方向)与电学方向(也可以称为极化方向)相同,其谐振频率较高且输出振幅小,低频响应较差。在d31工作模式下,压电元件的形变方向与电学方向垂直。在d31工作模 式下,虽然通过增长压电元件的长度可以提供频率足够低的低频峰,输出振幅也显著增加,但在这种情况下,压电元件在可听域内(例如,20Hz-20kHz)存在较多的振动模态,表现为频响曲线峰谷较多,因此声学输出装置(或压电式扬声器)的音质仍然较差。
为解决压电式扬声器的低频响应差以及可听域内模态较多的问题,本说明书实施例提供的声学输出装置可以包括振动元件、压电元件以及质量元件。其中,振动元件具有沿着长度方向延伸的梁结构。压电元件可以响应与电信号而发生形变,所述形变可以带动振动元件振动。压电元件贴附于梁结构的第一位置,并且贴附区域沿梁结构的长度方向的尺寸不超过梁结构沿其长度方向的尺寸的80%。质量元件可以连接于梁结构的第二位置。第一位置和第二位置在梁结构的长度方向上间隔分布,压电元件的振动可以带动质量元件垂直于梁结构的长度方向上振动。压电元件和质量元件的谐振能够使得声学输出装置的频响曲线在低频段(例如,50Hz~2000Hz)内具有第一谐振峰,从而使得声学输出装置在低频段内的灵敏度有所提升。另外,压电元件和质量元件的振动在高频段(例如,2000Hz~20000Hz)内具有第二谐振峰,且第一谐振峰和第二谐振峰之间具有至少一个谐振谷,所述第一谐振峰或第二谐振峰与所述至少一个谐振谷之间的幅值差小于80dB,从而获得从低频到高频范围内较为平坦的振动响应曲线,进而提升声学输出装置的音质。
本说明书实施例提供的声学输出装置通过压电元件贴附在具有梁结构的振动元件上,利用具有一定长度的梁结构提供的弹性和质量元件提供的质量组成的弹性质量系统来输出振动,使得声学输出装置的频响曲线在低频段内具有谐振峰,从而有效地提升声学输出装置在低频段内的灵敏度。在一些实施例中,本说明书实施例提供的声学输出装置还能进一步减少在人耳可听域内存在的振动模态,例如,使频响曲线没有或具有较少的谐振谷,或者减少谐振峰与谐振谷之间的幅值差,使得声学输出装置在可听域内的频响曲线较为平坦,保证声学输出装置能够具有较好的音质。
下面将结合附图对本说明书实施例提供的声学输出装置进行详细说明。
图1是根据本说明书一些实施例所示的声学输出装置的结构框图。在一些实施例中,声学输出装置100可以为骨传导声学输出装置、气导声学输出装置或骨气导结合的声学输出装置。在一些实施例中,声学输出装置100可以包括音响、耳机、眼镜、助听器、增强现实(Augmented Reality,AR)设备、虚拟现实(Virtual Reality,VR)设备等或具有音频播放功能的其他设备(如手机、电脑等)。在一些实施例中,声学输出装置100可以包括振动元件110、压电元件120以及质量元件130。
振动元件110能够基于压电元件120的形变而产生振动,使得声学输出装置100能够通过质量元件130输出振动。例如,压电元件120可以响应于电信号而发生形变,压电元件120的形变可以带动振动元件110沿着压电元件120的极化方向发生振动,进而带动质量元件130沿着压电元件120的极化方向振动。在一些实施例中,质量元件130的振动方向与振动元件110的长度方向垂直。在一些实施例中,振动元件110可以是具有沿着长度方向延伸的梁结构,压电元件120可以贴附于梁结构的第一位置,质量元件130可以连接于梁结构的第二位置。其中,第一位置和第二位置在振动元件110(或称为梁结构)的长度方向间隔分布。例如,第一位置和第二位置可以分别位于梁结构的长度方向的两端。又例如,第一位置可以位于梁结构的长度方向的中心,第二位置可以位于梁结构长度方向的任意一端。再例如,第一位置和第二位置可以分别位于梁结构长度方向的任意两个位置,且第一位置和第二位置之间存在有预设间距。
在一些实施例中,压电元件120可以直接通过胶接的方式贴附于振动元件110的第一位置。在一些实施例中,压电元件120可以通过卡接、扣接等方式连接于振动元件110的第一位置。在一些实施例中,压电元件120可以通过物理沉积或化学沉积的方式附着于振动元件110的第一位置。在一些实施例中,质量元件130可以通过胶接、卡接、焊接、螺纹连接等方式连接于振动元件110的第二位置。
在一些实施例中,可以通过调整压电元件120与梁结构的第一位置的贴附区域(即压电元件120与振动元件110的实际接触面)沿梁结构的长度方向的尺寸,来使得声学输出装置100的频响曲线在人耳可听域内的平直曲线的范围增大,从而可以有效提高声学输出装置100的音质。在一些实施例中,为了保证声学输出装置100的音质,减少声学输出装置100在人耳可听域内的高阶模态(或振动模态),增大声学输出装置100的频响曲线中的平直曲线范围,可以通过减小压电元件120与梁结构的第一位置的贴附区域沿梁结构的长度方向的尺寸来实现。在一些实施例中,压电元件120与梁结构的第一位置的贴附区域沿梁结构的长度方向的尺寸可以在1mm-50mm范围内。在一些实施例中,压电元件120与梁结构的第一位置的贴附区域沿梁结构的长度方向的尺寸可以在1mm-45mm范围内。在一些实施例中,压电元件120与梁结构的第一位置的贴附区域沿梁结构的长度方向的尺寸可以在2mm-40mm范围内。在一些实施例中,压电元件120与梁结构的第一位置的 贴附区域沿梁结构的长度方向的尺寸可以在3mm-30mm范围内。在一些实施例中,压电元件120与梁结构的第一位置的贴附区域沿梁结构的长度方向的尺寸可以在5mm-20mm范围内。
在一些实施例中,压电元件120与梁结构的第一位置的贴附区域沿梁结构的长度方向的尺寸可以不超过梁结构沿长度方向尺寸的80%。在一些实施例中,压电元件120与梁结构的第一位置的贴附区域沿梁结构的长度方向的尺寸可以不超过梁结构沿长度方向尺寸的80%。在一些实施例中,压电元件120与梁结构的第一位置的贴附区域沿梁结构的长度方向的尺寸可以不超过梁结构沿长度方向尺寸的70%。在一些实施例中,压电元件120与梁结构的第一位置的贴附区域沿梁结构的长度方向的尺寸可以不超过梁结构沿长度方向尺寸的60%。在一些实施例中,压电元件120与梁结构的第一位置的贴附区域沿梁结构的长度方向的尺寸可以不超过梁结构沿长度方向尺寸的50%。
在一些实施例中,还可以通过在声学输出装置100中的一个或多个元件上附加阻尼,以增大声学输出装置100的阻尼系数,从而使得声学输出装置100的频响曲线在人耳可听域内更加平滑(例如,图6所示的曲线L63),以提高声学输出装置100的音质。例如,可以使用具有阻尼效果的材料(例如,硅胶、橡胶、泡棉等)来制备振动元件110。又例如,可以在压电元件120上涂覆阻尼材料。再例如,可以在振动元件110和/或质量元件130上填充阻尼材料或电磁阻尼。
在一些实施例中,振动元件110还可以为片状、杆状结构等。在一些实施例中,振动元件110的材料可以为具有传输振动能力的材料。例如,振动元件110的材料可以为硅胶、泡棉、塑胶、橡胶、金属等,或其任意组合。在一些实施例中,振动元件110可以是具有良好弹性(即易发生弹性形变)的元器件。例如,振动元件110可以包括弹簧(例如,空气弹簧、机械弹簧、电磁弹簧等)、传振片、弹片、基板等,或其任意组合。
压电元件120可以是能利用逆压电效应将电能转换为机械能的电能转换设备。在一些实施例中,压电元件120可以由压电陶瓷、压电石英、压电晶体、压电聚合物等具有压电效应(逆压电效应)的材料组成。在一些实施例中,压电元件120可以为片状、环状、棱型、长方体型、柱型、球型等形状,或其任意组合,也可以为其他不规则形状。在一些实施例中,压电元件120可以是具有沿其长度方向的梁结构或片状结构以及块状结构等。在一些实施例中,压电元件120与振动元件110可以是具有相同宽度的梁结构。在一些实施例中,压电元件110可以是一个整体结构,压电元件120位于振动元件110的一侧,当压电元件120沿压电元件120的极化方向发生形变时,能够带动振动元件110进行相同方向上的振动,即压电元件120可以为d33工作模式。在一些实施例中,压电元件120可以包括两层压电片,两层压电片分别贴附在振动元件的相对两侧。当压电元件120沿垂直于压电元件120的极化方向发生形变时,振动元件110可以根据两层压电片的形变产生沿压电元件120的极化方向的振动,即压电元件120可以为d31工作模式。更多关于压电元件120的描述可以参见图2A、2B及其描述。
质量元件130可以为具有一定质量的质量块。在一些实施例中,质量元件130可以包括振动板、振膜等,以使声学输出装置100能够通过质量元件130输出振动。在一些实施例中,质量元件130的材质可以包括但不限于金属(例如,铜、铁、镁、铝、钨等)、合金(铝合金、钛合金、钨合金等)、高分子材料(例如,聚四氟乙烯、硅橡胶等)等材质。
压电元件120可以在驱动电压(或电信号)的作用下发生形变。该形变可以带动振动元件110振动,从而带动质量元件130振动。在一些实施例中,振动元件110与质量元件130可以谐振产生第一谐振峰(例如,图6所示的第一谐振峰621)。
在一些实施例中,振动元件110和质量元件130谐振所产生的第一谐振峰对应的谐振频率可以根据公式(1)确定:
Figure PCTCN2022089572-appb-000001
其中,f 0表示谐振频率,k表示振动元件110的弹性系数,m表示质量元件130的质量。
在一些实施例中,根据公式(1)可知,可以通过调整质量元件130的质量和/或振动元件110的弹性系数来调整第一谐振峰对应的谐振频率的频率范围。在一些实施例中,第一谐振峰的频率范围可以为50Hz-2000Hz。在一些实施例中,第一谐振峰的频率范围可以为50Hz-1500Hz。在一些实施例中,第一谐振峰的频率范围可以为100Hz-1000Hz。在一些实施例中,第一谐振峰的频率范围可以为150Hz-500Hz。在一些实施例中,第一谐振峰的频率范围可以为150Hz-200Hz。
在一些实施例中,振动元件110与质量元件130的振动可以具有第二谐振峰(例如,图6所示的第二谐振峰622)。在一些实施例中,所述第二谐振峰可以由振动元件110与质量元件130的谐振(例如,与产生第一谐振峰的谐振相比更高阶的谐振)产生。在一些实施例中,第二谐振峰 的频率与第一谐振峰的频率之比可以大于5。例如,第一谐振峰的频率可以在50Hz-200Hz之间,第二谐振峰的频率可以在500Hz-2000Hz之间。再例如,第一谐振峰的频率可以在100Hz-500Hz之间,第二谐振峰的频率可以在500Hz-5000Hz之间。再例如,第一谐振峰的频率可以在100Hz-1000Hz之间,第二谐振峰的频率可以在600Hz-20000Hz之间。再例如,第一谐振峰的频率可以在100Hz-2000Hz之间,第二谐振峰的频率可以在800Hz-20000Hz之间。在一些实施例中,在第一谐振峰和第二谐振峰之间,振动元件110与质量元件130的振动可以产生至少一个谐振谷。在一些实施例中,第一谐振峰或第二谐振峰与所述至少一个谐振谷之间的幅值差可以小于预设阈值。例如,第一谐振峰或第二谐振峰与所述至少一个谐振谷之间的幅值差可以小于200dB。再例如,第一谐振峰或第二谐振峰与所述至少一个谐振谷之间的幅值差可以小于150dB。再例如,第一谐振峰或第二谐振峰与所述至少一个谐振谷之间的幅值差可以小于80dB。再例如,第一谐振峰或第二谐振峰与所述至少一个谐振谷之间的幅值差可以小于50dB。再例如,第一谐振峰或第二谐振峰与所述至少一个谐振谷之间的幅值差可以小于30dB。在一些实施例中,第一谐振峰或第二谐振峰与所述至少一个谐振谷之间的幅值差小于预设阈值,可以获得第一谐振峰或第二谐振峰之间较为平坦的频响曲线,从而提升声学输出装置100的音质。
在一些实施例中,可以通过调节振动元件110(梁结构)的长度来调节振动元件120的弹性系数,以此达到调整第一谐振峰对应的谐振频率的频率范围。例如,梁结构的长度越大,其弹性系数就越小,在质量元件130的质量一定的情况下,第一谐振峰对应的谐振频率就越低。但是,如果梁结构的长度过大,会不利于声学输出装置100的小型化设计。为了保证声学输出装置100在低频段内能够产生第一谐振峰,从而在该频段内的灵敏度有所提升,同时实现器件小型化,在一些实施例中,梁结构的长度可以小于20mm。在一些实施例中,梁结构的长度可以小于30mm。在一些实施例中,梁结构的长度可以小于40mm。在一些实施例中,梁结构的长度可以小于50mm。在一些实施例中,梁结构的长度可以小于60mm。
在一些实施例中,可以通过调整质量元件130的质量来调整第一谐振峰对应的谐振频率的频率范围。例如,在梁结构的长度一定的情况下,质量元件130的质量越大,第一谐振峰对应的谐振频率就越小。但是,如果质量元件130的质量过大,会不利于声学输出装置100的小型化设计。为了保证声学输出装置100在低频段内能够产生第一谐振峰,从而在该频段内的灵敏度有所提升,同时实现器件小型化,在一些实施例中,质量元件130的质量可以小于5g。在一些实施例中,质量元件130的质量可以小于6g。在一些实施例中,质量元件130的质量可以小于8g。在一些实施例中,质量元件130的质量可以小于10g。
在一些实施例中,振动元件110(声学输出装置100)的振动可以通过质量元件130以骨传导的方式传递给用户。作为示例性说明,振动元件110的振动通过质量元件130传递至用户面部的骨骼和/或肌肉,最终传递到用户的耳部。又例如,质量元件130也可以不与人体直接接触,振动元件110的振动可以通过质量元件130传递至声学输出装置的外壳,再由外壳传递至用户面部骨骼和/或肌肉,最终传递到用户的耳部。在一些实施例中,振动元件110的振动也可以通过质量元件130以气传导的方式传递给用户。示例性地,质量元件130可以直接带动其周围的空气振动,从而通过空气传递至用户耳部。又例如,质量元件130可以进一步地与振膜相连,质量元件130的振动可以传递至振膜,再由振膜带动空气振动,从而通过空气传递至用户耳部。
在一些实施例中,声学输出装置100还可以包括第二压电元件140。第二压电元件140可以与压电元件120(或称为第一压电元件120)具有相似结构、材质等。第二压电元件140贴附于梁结构的第三位置,压电元件120和第二压电元件140可以在振动元件的长度方向上间隔设置,且压电元件120和第二压电元件140输入的电信号相同,这样可以看作是压电元件120和第二压电元件140串联。在一些实施例中,压电元件120和第二压电元件140可以处于d31工作模式下,压电元件120和第二压电元件140的形变方向可以与振动元件110的振动方向垂直。例如,压电元件120和第二压电元件140沿着与极化方向垂直的方向发生往复形变,带动振动元件110沿极化方向振动。在一些实施例中,梁结构可以包括固定端和自由端(即振动元件110为悬臂梁结构),其中,固定端可以固定于声学输出装置100的其他部件(例如,壳体内壁上),自由端可以与质量元件130连接。在一些实施例中,通过调整压电元件120和第二压电元件140在梁结构的长度方向上的间距,可以减少或消除振动元件110与质量元件130在振动时产生的高阶模态。例如,振动元件110与质量元件130在压电元件120的驱动下进行的振动在中高频段内(例如,500Hz-2000Hz)所产生的谐振峰(或谐振谷)能够与振动元件110与质量元件130在第二压电元件140的驱动下进行的振动在中高频段内(例如,500Hz-2000Hz)所产生的谐振谷(或谐振峰)进行合并,从而可以消除声学 输出装置100在中高频段内的高阶模态,使得频响曲线更加平滑,保证声学输出装置100的音质能够有所提升。在一些实施例中,能够进行合并的谐振谷以及谐振峰,可以是指具有相近或相同的频率的谐振谷和谐振峰。更多关于声学输出装置100的第二压电元件140的描述可以参见图9及其相关描述,在此不再赘述。
在一些实施例中,声学输出装置100还可以包括第二质量元件150。其中,在振动元件110的长度方向上,质量元件130(又称为第一质量元件130)与第二质量元件150可以分别位于压电元件120的两侧。在一些实施例中,通过使第二质量元件150的质量大于质量元件130,可以使得梁结构趋向于第二质量元件150的一侧固定(即相当于上文所述的固定端),从而解决梁结构的固定端在声学输出装置100(例如,壳体)内难以找到固定边界、不好固定的问题。在一些实施例中,通过调整第二质量元件150的质量和质量元件130的质量之间的比值,可以实现对第一谐振峰对应的谐振频率的调整。更多关于声学输出装置100还包括第二质量元件150的描述可以参见图7及其相关描述,在此不再赘述。
在一些实施例中,压电元件120可以处在d33的工作模式下,压电元件120的形变方向可以与振动元件110的振动方向平行。例如,当压电元件120沿压电元件120的极化方向发生形变时,所述形变可以带动振动元件110也沿着极化方向振动。在一些实施例中,压电元件120沿振动方向的一端固定(例如,固定于声学输出装置100的其他部件上,例如,壳体),另一端在第一位置与梁结构连接(例如,贴附在梁结构上)。在一些实施例中,通过调整压电元件120在梁结构上的位置,例如,调整第一位置到梁结构固定端的距离与梁结构的长度之间的比值,可以调整声学输出装置100在低频段内的谐振峰对应的谐振频率,以使得声学输出装置100可以在不同频段内的灵敏度都能提升,以适用更多的使用场景。更多关于声学输出装置100中压电元件120的形变方向与振动元件110的振动方向平行的描述可以参考图4及其相关描述,在此不再赘述。
在一些实施例中,声学输出装置100还可以包括第二振动元件160,振动元件110(又称为第一振动元件110)与第二振动元件160在质量元件130的两侧对称设置。其中,振动元件110与第二振动元件160远离质量元件130的一端各自固定设置。在一些实施例中,声学输出装置100还可以包括与第二振动元件160连接的第三压电元件170,其中,第三压电元件170与压电元件120在质量元件130的两侧对称设置,这样可以看作是第三压电元件170与压电元件120并联。通过该设置,可以减少或消除声学输出装置100的频响曲线在人耳可听域内的谐振谷,保证声学输出装置100的频响曲线较为平滑,具有较好的音质。更多关于声学输出装置还包括第二振动元件160以及第三压电元件170的描述可以参见图17及其相关描述,在此不再赘述。
在一些实施例中,声学输出装置100可以包括第三振动元件180,第三振动元件180与质量元件130连接。在一些实施例中,第三振动元件180的长度与振动元件110的长度之比可以大于0.7,并且第三振动元件180的振动方向与振动元件110的振动方向平行。在一些实施例中,声学输出装置100还可以包括第四压电元件190,第四压电元件190与第三振动元件180连接。其中,第四压电元件190处于d31工作模式下,第四压电元件190的形变方向与第三振动元件180的振动方向垂直。由此,可以使得第三振动元件180与质量元件130的振动所产生的在低频段的谐振峰可以补充振动元件110与质量元件110的振动所产生的谐振谷,从而使得声学输出装置100的频响曲线更加平滑,音质更好,并且第三振动元件180可以增加质量元件130在低频段内的振动幅度,从而提高声学输出装置100在低频段内的灵敏度。更多关于声学输出装置包括第三振动元件180以及第四压电元件190的描述可以参见图19及其相关描述,在此不再赘述。
在一些实施例中,声学输出装置100还可以包括壳体结构210。壳体结构210可以被配置为承载声学输出装置100的其他部件(例如,振动元件110、第二振动元件160、第三振动元件180、压电元件120、第二压电元件140、第三压电元件170、第四压电元件190、质量元件130、第二质量元件150等,或其组合)。在一些实施例中,壳体结构210可以是内部中空的封闭式或半封闭式结构,且声学输出装置100的其他部件位于壳体结构内或上。在一些实施例中,壳体结构的形状可以为长方体、圆柱体、圆台等规则或不规则形状的立体结构。当用户佩戴声学输出装置100时,壳体结构可以位于靠近用户耳朵附近的位置。例如,壳体结构可以位于用户耳廓的周侧(例如,前侧或后侧)。又例如,壳体结构可以位于用户耳朵上但不堵塞或覆盖用户的耳道。在一些实施例中,声学输出装置100可以为骨导耳机,壳体结构的至少一侧可以与用户的皮肤接触。骨导耳机中声学驱动器组件(例如,压电元件120、振动元件110和质量元件130的组合)将音频信号转换为机械振动,该机械振动可以通过壳体结构以及用户的骨骼传递至用户的听觉神经。在一些实施例中,声学输出装置100可以为气导耳机,壳体结构的至少一侧可以与用户的皮肤接触或不接触。壳体结构 的侧壁上包括至少一个导声孔,气导耳机中的声学驱动器组件将音频信号转换为气导声音,该气导声音可以通过导声孔向用户耳朵的方向进行辐射。
在一些实施例中,声学输出装置100可以包括固定结构220。固定结构220可以被配置为将声学输出装置100架设在用户耳朵附近。在一些实施例中,固定结构220可以与声学输出装置100的壳体结构210物理连接(例如,胶接、卡接、螺纹连接等)。在一些实施例中,声学输出装置100的壳体结构210可以为固定结构220的一部分。在一些实施例中,固定结构220可以包括耳挂、后挂、弹性带、眼镜腿等,使得声学输出装置100可以更稳固地架设在用户耳朵附近位置,防止用户在使用时发生掉落。例如,固定结构220可以为耳挂,耳挂可以被配置为围绕耳部区域佩戴。在一些实施例中,耳挂可以是连续的钩状物,并可以被弹性地拉伸以佩戴在用户的耳部,同时耳挂还可以对用户的耳廓施加压力,使得声学输出装置100牢固地固定在用户的耳部或头部的特定位置上。在一些实施例中,耳挂可以是不连续的带状物。例如,耳挂可以包括刚性部分和柔性部分。刚性部分可以由刚性材料(例如,塑料或金属)制成,刚性部分可以与声学输出装置100的壳体结构210通过物理连接(例如,卡接、螺纹连接等)的方式进行固定。柔性部分可以由弹性材料(例如,布料、复合材料或/和氯丁橡胶)制成。又例如,固定结构220可以为颈带,被配置为围绕颈/肩区域佩戴。再例如,固定结构220可以为眼镜腿,其作为眼镜的一部分,被架设在用户耳部。
应当注意的是,以上关于图1的描述仅仅是出于说明的目的而提供的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,根据本申请的指导可以做出多种变化和修改。例如,在一些实施例中,声学输出装置100还可以包括一个或多个部件(例如,信号收发器、交互模块、电池等)。在一些实施例中,声学输出装置100中的一个或多个部件可以被其他能实现类似功能的元件替代。例如,声学输出装置100可以不包括固定结构220,壳体结构210或其一部分可以为具有人体耳朵适配形状(例如圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形)的壳体结构,以便壳体结构可以挂靠在用户的耳朵附近。这些变化和修改不会背离本说明书的范围。
图2A是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图2A所示,声学输出装置200可以包括振动元件110、压电元件120以及质量元件130。振动元件110具有沿长度方向(即X方向)的梁结构。压电元件120可以贴附于梁结构的第一位置,质量元件130可以连接于梁结构的自由端112(即第二位置),第一位置和第二位置在梁结构的长度方向间隔分布。在一些实施例中,第一位置可以位于梁结构长度方向上的任意位置。例如,第一位置可以位于梁结构的长度方向的中心。再例如,压电元件120可以沿着梁结构的长度方向覆盖梁结构,即第一位置可以为覆盖梁结构。在一些实施例中,压电元件120与梁结构的实际接触面可以称为压电元件120的贴附区域。在一些实施例中,可以通过调整压电元件120的贴附区域沿梁结构的长度方向的尺寸来调整声学输出装置200低频段产生的谐振峰对应的谐振频率和幅值,以适应更多的场景并有利于提高声学输出装置200在低频段内的灵敏度。关于调整压电元件120的贴附区域尺寸的更多描述可以参见图3A、3B及其相关描述,在此不再赘述。
在一些实施例中,振动元件110可以具有悬臂梁结构,所述悬臂梁结构具有固定端111和自由端112。固定端111可以固定于声学输出装置100的其他部件(例如,壳体内壁上),自由端112可以与质量元件130连接以输出振动。压电元件120可以带动振动元件110和质量元件130在沿着压电元件120的极化方向(即Z方向)振动,使得振动元件110与质量元件130在低频段(例如,50Hz-2000Hz)内产生第一谐振峰(或可以称为低频峰),从而可以提高声学输出装置200在低频段内的灵敏度。
在一些实施例中,如图2A所示,梁结构(或悬臂梁)可以为长方体结构。所述长方体结构可以具有沿X方向的长度、沿Y方向的宽度以及沿Z方向的厚度。需要说明的是,图2A中所示的长方体梁结构仅用来示例性说明,并无意于限制本说明书的保护范围。对于本领域的普通技术人员来说,根据本申请的指导可以做出多种变化和修改。在一些实施例中,可以对梁结构或其至少一部分的结构、尺寸、材料参数进行调整。例如,本说明书中的梁结构可以不限于上述的长方体结构,还可以为其他形状,例如,梁结构沿长度方向(即X方向)的截面形状可以为三角形、半圆形、菱形、五边形、六边形等规则或不规则形状。再例如,梁结构上不同位置处的宽度和/或厚度可以相同或不同。再例如,梁结构上不同位置处的形状可以相同或不同。
图2B是图2A所示的声学输出装置沿垂直于振动元件的长度方向的方向(即Y方向)上的截面图。
在一些实施例中,声学输出装置200中的压电元件120的形变方向可以与振动元件110的长度方向平行,从而带动振动元件110产生沿压电元件120的极化方向的振动,即振动元件110的 振动方向可以与压电元件120的极化方向平行。具体地,如图2B所示,压电元件120可以包括两个压电片(即压电片121和压电片122)。压电片121和压电片122可以分别贴附振动元件110(的第一位置)相反的两侧,压电片121和压电片122的极化方向垂直于贴附面。其中,振动元件110可以响应于压电片121和压电片122的形变发生沿垂直于贴附面的振动。
在一些实施例中,压电片121和压电片122可以为被配置为提供压电效应和/或逆压电效应的组件。在一些实施例中,压电片可以覆盖于振动元件110的一个或多个表面,并在驱动电压的作用下发生形变带动振动元件110发生翘曲,从而实现压电元件120输出振动。例如,沿压电元件120的极化方向(如图箭头BB’所示),压电片121和压电片122分别贴附在振动元件110的相反两侧,振动元件110可以根据压电片121和压电片122沿压电元件120长度方向(如图箭头AA’所示)的伸缩而产生振动。具体地,位于振动元件110一侧的压电片(例如,压电片121)可以沿其长度方向收缩,位于振动元件120一侧的压电片(例如,压电片122)可以沿其长度方向伸长,从而带动振动元件110沿垂直于其表面的方向(即厚度方向BB’)翘曲以产生振动。在一些实施例中,压电片121和/或122的材质可以包括压电陶瓷、压电石英、压电晶体、压电聚合物等,或其任意组合。
需要说明的是,图2B中所示的压电元件120仅用来示例性说明,并无意于限制本说明书的保护范围。在一些实施例中,压电元件120中压电片的数量可以不限于图2B所示的两个。例如,压电元件120可以包括一个压电片,所述压电片贴附在振动元件110(的第一位置)的一侧并可以在驱动电压的作用下发生形变,从而带动振动元件110发生翘曲,实现压电元件120输出振动。
在一些实施例中,可以通过调整压电元件120的贴附区域沿梁结构的长度方向的尺寸来调整声学输出装置在低频段产生的谐振峰对应的谐振频率和幅值,以适应更多的场景并有利于提高声学输出装置在低频段内的灵敏度。仅作为示例,图3A是根据本说明书一些实施例所示的声学输出装置的结构意图。如图3A所示,在声学输出装置300中,压电元件120从固定端111开始,沿着梁结构的长度方向覆盖(贴附于)梁结构(即振动元件110)的至少一部分。在一些实施例中,压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间的比值可以影响梁结构的弹性。例如,当梁结构贴附有压电元件120的部分(简称为覆盖部分)沿长度方向(即X方向)的截面高度大于未贴附有压电元件120的部分(简称为未覆盖部分)沿长度方向的截面高度时,则覆盖部分的抗弯模量大于未覆盖部分的抗弯模量,即覆盖部分比未覆盖部分弹性系数更高,表现为更不易弯曲。在一些实施例中,随着压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间的比值的增加,梁结构整体的弹性系数增加,从而使得声学输出装置300的频响曲线中的低频峰对应的谐振频率也有所增加。
图3B是根据本说明书一些实施例所示的声学输出装置的频响曲线图。如图3B所示,曲线L31为声学输出装置300的压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间的比值(图3B中用per表示)为0.2时的频响曲线。曲线L32为声学输出装置300的压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间的比值为0.4时的频响曲线。曲线L33为声学输出装置300的压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间的比值为0.6时的频响曲线。曲线L34为声学输出装置300的压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间的比值为0.8时的频响曲线。曲线L35为声学输出装置300的压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间的比值为0.9时的频响曲线。曲线L36为声学输出装置300的压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间的比值为1时的频响曲线。其中,虚线圈C内的谐振峰为压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间具有不同比值时声学输出装置300在低频段内产生的第一谐振峰。
从图3B中可以看出,随着压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间的比值的增加,声学输出装置(例如,声学输出装置300)在低频段内的第一谐振峰对应的谐振频率逐渐增加(例如,曲线L31-L36中第一谐振峰对应的谐振频率逐渐增加)。当压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间的比值达到90%时,曲线L35中第一谐振峰对应的谐振频率与曲线L36中第一谐振峰对应的谐振频率几乎相同,而当压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间的比值在80%及以下时,曲线L34、曲线L33、曲线L32、曲线L31中第一谐振峰对应的谐振频率会随比值的减小而降低。为了保证声学输出装置(例如,声学输出装置300)在较低的频段内能够产生谐振峰(即第一谐振峰),从而达到提升声学输出装置在低频段的灵敏度的目的,在一些实施例中,压电元件120的贴附区域沿梁结构的长度方向的尺寸可以不超过梁结构沿长度方向尺寸的80%。在一些实施例中,压电元件120的贴 附区域沿梁结构的长度方向的尺寸可以不超过梁结构沿长度方向尺寸的60%。在一些实施例中,压电元件120的贴附区域沿梁结构的长度方向的尺寸可以不超过梁结构沿长度方向尺寸的50%。在一些实施例中,压电元件120的贴附区域沿梁结构的长度方向的尺寸可以不超过梁结构沿长度方向尺寸的40%。
除此之外,从图3B中也可以看出,随着压电元件120的贴附区域沿梁结构的长度方向的尺寸与梁结构的长度之间的比值减小,曲线L36-L31中第一谐振峰对应的峰值降低,这是由于压电元件120沿梁结构的长度方向的尺寸减少,导致其输出力也随之降低,从而导致谐振峰的峰值也在减小。为了保证声学输出装置在低频段的谐振峰能够具有较高的峰值,从而在该频段内的灵敏度有所提升,在一些实施例中,压电元件120的贴附区域沿梁结构的长度方向的尺寸可以大于梁结构沿长度方向尺寸的5%。在一些实施例中,压电元件120的贴附区域沿梁结构的长度方向的尺寸可以大于梁结构沿长度方向尺寸的10%。在一些实施例中,压电元件120的贴附区域沿梁结构的长度方向的尺寸可以大于梁结构沿长度方向尺寸的20%。在一些实施例中,压电元件120的贴附区域沿梁结构的长度方向的尺寸可以大于梁结构沿长度方向尺寸的30%。
图4是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图4所示,声学输出装置400与声学输出装置200具有相似的结构,区别在于声学输出装置400中的压电元件120与声学输出装置200中的压电元件110的设置方式以及工作模式不同。在声学输出装置400中,压电元件120处于d33的工作模式下,压电元件120的形变方向可以与振动元件110的振动方向平行。具体地,在声学输出装置400中,压电元件120贴附于振动元件110沿振动元件110的振动方向上的一侧。进一步地,压电元件120沿极化方向的一端固定,另一端在第一位置与梁结构连接(贴附)。通过这样设置,当压电元件120沿着其极化方向发生形变时,可以带动振动元件110进行同方向振动。在一些实施例中,压电元件120可以具有叠堆式结构。作为示例性说明,压电元件120可以包括多层压电片,多层压电片可以沿压电片的极化方向堆叠成为压电元件120。
在一些实施例中,在沿着梁结构的长度方向上,固定端111与压电元件120(或第一位置)之间的距离不同,声学输出装置400的频响曲线在低频段内的谐振峰对应的谐振频率不同。这里的第一位置可以指压电元件120靠近固定端111的边缘所在位置。因此,可以通过调整固定端111与压电元件120之间在梁结构长度方向上的间距,来改变声学输出装置400的频响曲线在低频段内的谐振峰对应的谐振频率,从而有利于声学输出装置在不同频段内的灵敏度提升,以适用更多场景。下面将结合声学输出装置的频响曲线进行详细说明。
图5是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
在图5中,曲线L51为声学输出装置400的固定端111与压电元件120之间的距离与梁结构的长度的比值(图5中用p表示)为0.2时的频响曲线。曲线L52为声学输出装置400的固定端111与压电元件120之间的距离与梁结构的长度的比值为0.4时的频响曲线。曲线L53为声学输出装置400的固定端111与压电元件120之间的距离与梁结构的长度的比值为0.6时的频响曲线。曲线L54为声学输出装置400的固定端111与压电元件120之间与梁结构的长度的比值为0.8时的频响曲线。其中,虚线圈Y内的谐振峰为声学输出装置400在低频段内产生的第一谐振峰。
从图5中可以看出,当声学输出装置(例如,声学输出装置400)中的压电元件与固定端之间的距离增大时,声学输出装置在低频段内的谐振峰对应的谐振频率也在增加(例如,曲线L51、曲线L52、曲线L53和曲线L54中谐振峰对应的谐振频率逐渐增加)。为了保证声学输出装置(例如,声学输出装置400)在低频段内能够产生第一谐振峰,从而在该频段内的灵敏度有所提升,在一些实施例中,第一位置与固定端的距离与梁结构的长度之间的比值可以小于0.8。在一些实施例中,第一位置与固定端的距离与梁结构的长度之间的比值可以小于0.6。在一些实施例中,第一位置与固定端的距离可以与梁结构的长度之间的比值可以小于0.4。
图6是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
如图6所示,曲线L61为声学输出装置(例如,声学输出装置400)的阻尼系数(图6中用eta表示)为0、声学输出装置的固定端(例如,固定端111)与压电元件120之间的距离与梁结构的长度的比值(图6中用p表示)为0.2、且压电元件120处于d33工作模式下时声学输出装置的频响曲线。曲线L62为声学输出装置(例如,声学输出装置200)阻尼系数为0、声学输出装置的固定端与压电元件120之间的距离与梁结构的长度的比值为0.2、压电元件120处于d31工作模式下且压电元件120的宽度为2mm时声学输出装置的频响曲线。曲线L63为声学输出装置(例如,声学输出装置200)阻尼系数为1、声学输出装置的固定端与压电元件120之间的距离与梁结构的 长度的比值为0.2、压电元件120处于d31工作模式下且压电元件120的宽度为2mm时声学输出装置的频响曲线。在一些实施例中,压电元件120的宽度可以与梁结构的宽度相同。虚线圈X中的第一谐振峰(或称为低频峰)可以由振动元件110和质量元件130谐振产生。该第一谐振峰有利于提高声学输出装置200在低频段内的灵敏度。
结合图6所示,在一些实施例中,振动元件110和质量元件120可以在50Hz-2000Hz范围内产生第一谐振峰。在一些实施例中,振动元件110和质量元件120可以在100Hz-2000Hz范围内产生第一谐振峰。在一些实施例中,振动元件110和质量元件120可以在200Hz-2000Hz范围内产生第一谐振峰。在一些实施例中,振动元件110和质量元件120可以在500Hz-1500Hz范围内产生第一谐振峰。在一些实施例中,振动元件110和质量元件120可以在500Hz-1000Hz范围内产生第一谐振峰。
结合曲线L61和曲线L62可知,相较于压电元件120处于d33工作模式,当压电元件120处于d31工作模式下时,声学输出装置能够在低频段内产生峰值较高的第一谐振峰。由此,在一些实施例中,通过使压电元件120处于d31工作模式下能够使声学输出装置在低频段内的灵敏度有着较好的提升。
在一些实施例中,可以在声学输出装置中加入阻尼结构,以增加声学输出装置的阻尼系数,使得声学输出装置的振动响应曲线相对平滑,从而进一步提升声学输出装置的音质。例如,可以使用阻尼材料(例如,丁腈)制成振动元件110。再例如,可以向振动元件110中加入阻尼材料,例如阻尼涂料涂覆于振动元件110表面或渗透入振动元件110内部。结合曲线L62和曲线L63可知,L63相对于L62更为平滑,但曲线L61的第一谐振峰的峰值明显小于L63的第一谐振峰峰值。由此,在一些实施例中,通过适当增加声学输出装置的阻尼系数,能够使得其频响曲线较为平坦,使其具有较好的音质。然而,当声学输出装置的阻尼系数过大时,则会引起声学输出装置在低频段内的第一谐振峰峰值下降,而导致声学输出装置在低频段的灵敏度降低。为了保证声学输出装置具有较好的音质,且在低频段内具有较好的灵敏度,在一些实施例中,声学输出装置的阻尼系数可以为0-1。在一些实施例中,声学输出装置的阻尼系数可以为0-0.8。在一些实施例中,声学输出装置的阻尼系数可以为0.1-0.7。在一些实施例中,声学输出装置的阻尼系数可以为0.2-0.5。
图7是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图7所示,声学输出装置700的结构可以看作是在声学输出装置200结构的基础上进行了变化。具体地,声学输出装置700与声学输出装置200的区别在于:声学输出装置200中的固定端111在声学输出装置700设置为自由端111',另外,声学输出装置700还可以包括第二质量元件150。其中,在振动元件110的长度方向上,质量元件130和第二质量元件150可以分别位于压电元件120的两侧。作为示例性说明,质量元件130和第二质量元件150可以分别连接于梁结构长度方向的两端,例如,第二质量元件150与自由端111'连接,质量元件130与自由端112连接。
在一些实施例中,质量元件130和第二质量元件150的质量可以相同或不同。如图1所述,可以通过调整质量元件130的质量来调整第一谐振峰对应的谐振频率的频率范围。在梁结构的长度一定的情况下,质量元件130的质量越大,第一谐振峰对应的谐振频率就越小。在一些实施例中,质量元件130的质量可以小于5g。在一些实施例中,质量元件130的质量可以小于6g。在一些实施例中,质量元件130的质量可以小于8g。在一些实施例中,质量元件130的质量可以小于10g。
图8是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
在图8中,曲线L81为声学输出装置700的第二质量元件150的质量远小于质量元件130的质量(可近似看成第二质量元件150的质量与质量元件130的质量的比值(图8中用np表示)为0)时的频响曲线。曲线L82为声学输出装置700的第二质量元件150的质量与质量元件130的质量的比值为2时的频响曲线。曲线L83为声学输出装置700的第二质量元件150的质量与质量元件130的比值为100时的频响曲线。
从图8中可以看出,随着第二质量元件150的质量与质量元件130的质量的比值增大,曲线L81上的第一谐振峰811、曲线L82上的第一谐振峰821以及曲线L83上的第一谐振峰831分别对应的谐振频率在逐渐减小。作为示例性说明,如图8所示,第一谐振峰811对应的谐振频率在350Hz左右,第一谐振峰821对应的谐振频率在250Hz左右,第一谐振峰831对应的谐振频率在75Hz左右。由此,在一些实施例中,为了保证声学输出装置700在更低频段内产生第一谐振峰,第二质量元件150的质量可以大于质量元件130的质量。进一步地,通过调整第二质量元件150的质量与质量元件130的质量间的比值,可以使得声学输出装置700的谐振峰对应的谐振频率发生变化。具体地,第二质量元件150的质量与质量元件130的质量间的比值越大,声学输出装置700的 谐振峰对应的谐振频率越小。在一些实施例中,第二质量元件150的质量与质量元件130的质量间的比值可以在0-5范围内。在一些实施例中,第二质量元件150的质量与质量元件130的质量间的比值可以在0-10范围内。在一些实施例中,第二质量元件150的质量与质量元件130的质量间的比值可以在0-20范围内。在一些实施例中,第二质量元件150的质量与质量元件130的质量间的比值可以在0-50范围内。在一些实施例中,第二质量元件150的质量与质量元件130的质量间的比值可以在0-100范围内。
在一些实施例中,在声学输出装置700中,当第二质量元件150的质量远大于质量元件130的质量(例如,第二质量元件150的质量与质量元件130间的比值大于或等于100)时,振动元件110(梁结构)可以趋向于第二质量元件150的一端固定,梁结构连接第二质量元件150的一端可以看作是固定端,此时声学输出装置700可以等效于声学输出装置200。通过这样设置,第二质量元件150可以作为梁结构的固定边界(固定端),从而可以解决梁结构的固定端在声学输出装置(例如,壳体结构内)不好找固定边界以进行固定的问题。
在一些实施例中,在声学输出装置700中,当第二质量元件150的质量远大于质量元件130的质量时,声学输出装置700可以等效于声学输出装置200。因此,根据声学输出装置200的相关描述可得,为了保证声学输出装置700在低频段内能够产生第一谐振峰,第二质量元件150与压电元件120间的距离与梁结构的长度之间的比值可以小于0.8。在一些实施例中,第二质量元件150与压电元件120间的距离与梁结构的长度之间的比值可以小于0.6。在一些实施例中,第二质量元件150与压电元件120间的距离与梁结构的长度之间的比值可以小于0.4。
图9是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图9所示,声学输出装置900的结构可以看作是在声学输出装置200结构的基础上进行了变化。具体地,声学输出装置900与声学输出装置200的区别在于:声学输出装置900还可以包括第二压电元件140。第二压电元件140可以贴附于梁结构的第三位置,其中,压电元件120和第二压电元件140可以在振动元件110(或称为梁结构)的长度方向上间隔设置。
在一些实施例中,第二压电元件140和压电元件120可以具有相同或相似的结构、材质等。在一些实施例中,压电元件120和第二压电元件140在振动元件110(或称为梁结构)的长度方向上间隔设置,且压电元件120和第二压电元件140输入的电信号可以相同,这样可以看作是压电元件120和第二压电元件140串联。在一些实施例中,第二压电元件140和压电元件120可以处于d31工作模式下,压电元件120和第二压电元件140的形变方向可以与振动元件110的振动方向垂直。
在一些实施例中,在振动元件110的振动方向上,压电元件120和第二压电元件140可以位于梁结构的同一侧。例如,如图9所示,压电元件120和第二压电元件140可以分别贴附于梁结构的第一位置和第三位置并位于梁结构的同一侧。在一些实施例中,在振动元件110的振动方向上,压电元件120和第二压电元件140可以位于梁结构相反的两侧。例如,压电元件120和第二压电元件140可以分别贴附于梁结构的第一位置和第三位置并位于梁结构相反的两侧。
需要说明的是,图9中所示的压电元件的数量仅用来示例性说明,并无意于限制本说明书的保护范围。在一些实施例中,声学输出装置900还可以包括两个以上的压电元件,例如,3个、4个、5个等。其中,两个以上的压电元件可以在梁结构的长度方向间隔设置。在一些实施例中,两个以上压电元件中的相邻两个压电元件在梁结构的长度方向上的距离可以相同或不同。在一些实施例中,如图9所示,压电元件120和第二压电元件140可以位于质量元件130的同一侧。在一些实施例中,压电元件120和第二压电元件140还可以分别位于质量元件130的两侧。例如,在梁结构的长度方向上,压电元件120、质量元件130以及第二压电元件140依次布置。
下面将结合声学输出装置900的频率曲线图对声学输出装置900进行详细说明。
图10是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
图10示出了当声学输出装置900的梁结构长度为50mm、压电元件120和第二压电元件140的长度(即压电元件120与梁结构的贴附区域沿梁结构长度方向上的尺寸)均为5mm、压电元件120或第二压电元件140距离固定端4mm(图中用p1表示)时,压电元件120与第二压电元件140之间沿梁结构的长度方向上具有不同距离(图中用p12表示)时声学输出装置900的不同频响曲线。压电元件120与第二压电元件140之间沿梁结构的长度方向上的距离可以指压电元件120的中心点(例如,形心)与第二压电元件140的中心点之间的距离。其中,曲线L101、曲线L102以及曲线L103分别为压电元件120与第二压电元件140沿梁结构的长度方向上的距离为14mm、18mm以及22mm时声学输出装置900的频响曲线。虚线圈Z表示振动元件110与质量元件130在低频段(例如,50Hz-2000Hz)内产生的第一谐振峰。在一些实施例中,压电元件120与第二压电元 件140沿梁结构的长度方向上的距离可以指压电元件120与第二压电元件140在梁结构的长度方向上的间隔区域的长度。
从图10中可以看出,当声学输出装置900的梁结构长度为50mm、压电元件120和第二压电元件140的长度均为5mm、压电元件120或第二压电元件140距离固定端4mm,并且压电元件120与第二压电元件140沿梁结构长度方向上的距离为18mm时,声学输出装置900的频响曲线(即曲线L102)在中高频段(例如,200Hz-2000Hz)内的曲线较为平滑,具体表现为曲线L102在中高频段内具有较小或没有谐振峰和/或谐振谷,而当压电元件120与第二压电元件140沿梁结构长度方向上的距离为14mm或22mm时,声学输出装置900的频响曲线(即曲线L101或L103)在中高频段内具有谐振峰和/或谐振谷。作为示例性说明,如图10所示,曲线L101在200Hz-2000Hz内具有谐振峰1011和谐振谷1012,曲线L103在200Hz-2000Hz内具有谐振谷1031和谐振峰1032。由此,通过合理设计压电元件120与第二压电元件140沿梁结构长度方向上的距离(例如,18mm),可以使得声学输出装置900在中高频段内的产生的谐振谷和谐振峰(例如,谐振峰1011和谐振谷1012、谐振谷1031和谐振峰1032)进行合并(或称为抵消),从而使得声学输出装置900的频响曲线(例如,曲线L102)较为平坦,从而保证声学输出装置900具有较好的音质。
图11是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
图11示出了当声学输出装置900的梁结构长度为50mm、压电元件120和第二压电元件140的长度均为5mm、压电元件120或第二压电元件140距离固定端5mm时,压电元件120与第二压电元件140之间沿梁结构的长度方向上具有不同距离时声学输出装置900的不同频响曲线。其中,曲线L111、曲线L112以及曲线L113分别为压电元件120与第二压电元件140沿梁结构的长度方向上的距离为12mm、14mm以及18mm时声学输出装置900的频响曲线。虚线圈M表示振动元件110与质量元件130在低频段(例如,50Hz-2000Hz)内产生的第一谐振峰。
从图11中可以看出,当声学输出装置900的梁结构长度为50mm、压电元件120和第二压电元件140的长度为5mm、压电元件120或第二压电元件140距离固定端5mm,并且压电元件120与第二压电元件140沿梁结构长度方向上的距离为14mm时,声学输出装置900的频响曲线(即曲线L112)在中高频段(例如,200Hz-2000Hz)内的曲线较为平滑,具体表现为曲线L112在中高频段内具有较小或没有谐振峰和/或谐振谷,而当压电元件120与第二压电元件140沿梁结构长度方向上的距离为10mm或18mm时,声学输出装置900的频响曲线(即曲线L111或L113)在中高频段内具有谐振峰和/或谐振谷。作为示例性说明,如图11所示,曲线L111在200Hz-2000Hz内具有谐振谷1111和谐振峰1112,曲线L113在200Hz-2000Hz内具有谐振谷1131和谐振峰1132。由此可以得出,通过合理设计压电元件120与第二压电元件140沿梁结构长度方向上的距离(例如,14mm),可以使得声学输出装置900在中高频段内的产生的谐振谷和谐振峰(例如,谐振谷1111和谐振峰1112、谐振谷1131和谐振峰1132)进行合并(或称为抵消),从而使得声学输出装置900的频响曲线(例如,曲线L112)较为平坦,从而保证声学输出装置900具有较好的音质。
图12是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
图12示出了当声学输出装置900的梁结构长度为50mm、压电元件120和第二压电元件140的长度均为5mm、压电元件120或第二压电元件140距离固定端6mm时,压电元件120与第二压电元件140之间沿梁结构的长度方向上具有不同距离时所对应的声学输出装置900的不同频响曲线。其中,曲线L121、曲线L122以及曲线L123分别为压电元件120与第二压电元件140沿梁结构的长度方向上的距离为10mm、12mm以及14mm时声学输出装置900的频响曲线。虚线圈N表示振动元件110与质量元件130在低频段(例如,50Hz-2000Hz)内产生的第一谐振峰。
从图12中可以看出,当声学输出装置900的梁结构长度为50mm、压电元件120和第二压电元件140的长度为5mm、压电元件120或第二压电元件140距离固定端6mm,并且压电元件120与第二压电元件140沿梁结构长度方向上的距离为12mm时,声学输出装置900的频响曲线(即曲线L122)在中高频段(例如,200Hz-2000Hz)内的曲线较为平滑,具体表现为曲线L122在中高频段内具有较小或没有谐振峰和/或谐振谷,而当压电元件120与第二压电元件140沿梁结构长度方向上的距离为10mm或14mm时,声学输出装置900的频响曲线(即曲线L121或L123)在中高频段内具有谐振峰和/或谐振谷。作为示例性说明,如图12所示,曲线L121在200Hz-2000Hz内具有谐振谷1211和谐振峰1212,曲线L123在200Hz-2000Hz内具有谐振谷1231和谐振峰1232。由此可以得出,通过合理设计压电元件120与第二压电元件140沿梁结构长度方向上的距离(例如,12mm),可以使得声学输出装置900在中高频段内的产生的谐振谷和谐振峰(例如,谐振谷1211和谐振峰1212、谐振谷1231和谐振峰1232)进行合并(或称为抵消),从而使得声学输出装置900 的频响曲线(例如,曲线L122)较为平坦,从而保证声学输出装置900具有较好的音质。
结合图10-12,当梁结构的长度、压电元件120和第二压电元件140的长度不变时,随着压电元件120或第二压电元件140与固定端111的距离增加(例如,图10-12依次为4mm、5mm、6mm),合并谐振峰和谐振谷所对应的压电元件120与第二压电元件140沿梁结构长度方向上的距离逐渐减小(例如,图10-12依次为18mm、14mm、12mm)。由此,在一些实施例中,可以基于不同的压电元件120或第二压电元件140与固定端111的距离来调整压电元件120与第二压电元件140沿梁结构长度方向上的距离。仅作为示例,当压电元件120或第二压电元件140与固定端111的距离增加时,可以适当减小压电元件120与第二压电元件140沿梁结构长度方向上的距离,从而将谐振峰和谐振谷进行合并,使得声学输出装置900的频响曲线较为平坦,提升声学输出装置900的音质。例如,压电元件120或第二压电元件140与固定端111的距离与梁结构的长度之间的比值大于0.05,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.5。再例如,压电元件120或第二压电元件140与固定端111的距离与梁结构的长度之间的比值大于0.08,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.4。再例如,压电元件120或第二压电元件140与固定端111的距离与梁结构的长度之间的比值大于0.1,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.3。再例如,压电元件120或第二压电元件140与固定端111的距离与梁结构的长度之间的比值大于0.12,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.25。
图13是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
图13示出了当声学输出装置900的梁结构长度(图中用lb表示)为37.5mm、压电元件120和第二压电元件140的长度均为5mm、压电元件120或第二压电元件140距离固定端4mm时,压电元件120与第二压电元件140之间沿梁结构的长度方向上具有不同距离时所对应的声学输出装置900的不同频响曲线。其中,曲线L131、曲线L132以及曲线L133分别为压电元件120与第二压电元件140沿梁结构的长度方向上的距离为8mm时声学输出装置900的频响曲线。虚线圈O内为振动元件110与质量元件130在低频段(例如,50Hz-2000Hz)内产生的第一谐振峰。
从图13中可以看出,当声学输出装置900的梁结构长度为37.5mm、压电元件120和第二压电元件140的长度为5mm、压电元件120或第二压电元件140距离固定端4mm,并且压电元件120与第二压电元件140沿梁结构长度方向上的距离为9mm时,声学输出装置900的频响曲线(即曲线L132)在中高频段(例如,200Hz-2000Hz)内的曲线较为平滑,具体表现为曲线L132在中高频段内具有较小或没有谐振峰和/或谐振谷,而当压电元件120与第二压电元件140沿梁结构长度方向上的距离为8mm或10mm时,声学输出装置900的频响曲线(即曲线L131或L133)在中高频段内具有谐振峰和/或谐振谷。作为示例性说明,如图13所示,曲线L131在200Hz-2000Hz内具有谐振谷1311和谐振峰1312,曲线L133在200Hz-2000Hz内具有谐振谷1331和谐振峰1332。由此可以得出,通过合理设计压电元件120与第二压电元件140沿梁结构长度方向上的距离(例如,9mm),可以使得声学输出装置900在中高频段内的产生的谐振谷和谐振峰(例如,谐振谷1311和谐振峰1312、谐振谷1331和谐振峰1332)进行合并(或称为抵消),从而使得声学输出装置900的频响曲线较为平坦,从而保证声学输出装置900具有较好的音质。
图14是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
图14示出了当声学输出装置900的梁结构长度为37.5mm、压电元件120和第二压电元件140的长度均为5mm、压电元件120或第二压电元件140距离固定端5mm时,压电元件120与第二压电元件140之间沿梁结构的长度方向上具有不同距离时声学输出装置900的不同频响曲线。其中,曲线L141、曲线L142以及曲线L143分别为压电元件120与第二压电元件140沿梁结构的长度方向上的距离为5.6mm、6.2mm以及6.8mm时声学输出装置900的频响曲线。虚线圈P内为振动元件110与质量元件130在低频段(例如,50Hz-2000Hz)内产生的第一谐振峰。
从图14中可以看出,当声学输出装置900的梁结构长度为37.5mm、压电元件120和第二压电元件140的长度为5mm、压电元件120或第二压电元件140距离固定端5mm,并且压电元件120与第二压电元件140沿梁结构长度方向上的距离为6.2mm时,声学输出装置900的频响曲线(即曲线L142)在中高频段(例如,200Hz-2000Hz)内的曲线较为平滑,具体表现为曲线L142在中高频段内具有较小或没有谐振峰和/或谐振谷,而当压电元件120与第二压电元件140沿梁结构长度方向上的距离为5.6mm或6.8mm时,声学输出装置900的频响曲线(即曲线L141或L143)在中高频段内具有谐振峰和/或谐振谷。作为示例性说明,如图14所示,曲线L141在200Hz-2000Hz 内具有谐振谷1411和谐振峰1412,曲线L143在200Hz-2000Hz内具有谐振谷1431和谐振峰1432。由此可以得出,通过合理设计压电元件120与第二压电元件140沿梁结构长度方向上的距离(例如,6.2mm),可以使得声学输出装置900在中高频段内的产生的谐振谷和谐振峰(例如,谐振谷1411和谐振峰1412、谐振谷1431和谐振峰1432)进行合并(或称为抵消),从而使得声学输出装置900的频响曲线较为平坦,从而保证声学输出装置900具有较好的音质。
结合图13和14,当梁结构的长度、压电元件120和第二压电元件140的长度不变时,随着压电元件120或第二压电元件140与固定端111的距离增加(例如,图13和14依次为4mm、5mm),合并谐振峰和谐振谷所对应的压电元件120与第二压电元件140沿梁结构长度方向上的距离逐渐减小(例如,图13和14依次为9mm、6.2mm)。由此,在一些实施例中,可以基于不同的压电元件120或第二压电元件140与固定端111的距离来调整压电元件120与第二压电元件140沿梁结构长度方向上的距离。仅作为示例,当压电元件120或第二压电元件140与固定端111的距离增加时,可以适当减小压电元件120与第二压电元件140沿梁结构长度方向上的距离,从而将谐振峰和谐振谷进行合并,使得声学输出装置900的频响曲线较为平坦,提升声学输出装置900的音质。例如,压电元件120或第二压电元件140与固定端111的距离与梁结构的长度之间的比值大于0.1,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.25。再例如,压电元件120或第二压电元件140与固定端111的距离与梁结构的长度之间的比值大于0.13,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.2。
图15是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
图15示出了当声学输出装置900的梁结构长度为25mm、压电元件120和第二压电元件140的长度均为5mm、压电元件120或第二压电元件140距离固定端4mm时,压电元件120与第二压电元件140之间沿梁结构的长度方向上具有不同距离时所对应的声学输出装置900的不同频响曲线。其中,曲线L151、曲线L152以及曲线L153分别为压电元件120与第二压电元件140沿梁结构的长度方向上的距离为0.5mm、1.5mm以及2.5mm时声学输出装置900的频响曲线。虚线圈Q内为振动元件110与质量元件130在低频段(例如,50Hz-2000Hz)内产生的第一谐振峰。
从图15中可以看出,当声学输出装置900的梁结构长度为25mm、压电元件120和第二压电元件140的长度为5mm、压电元件120或第二压电元件140距离固定端4mm,并且压电元件120与第二压电元件140沿梁结构长度方向上的距离为1.5mm时,声学输出装置900的频响曲线(即曲线L152)在中高频段(例如,300Hz-3000Hz)内的曲线较为平滑,具体表现为曲线L152在中高频段内具有较小或没有谐振峰和/或谐振谷,而当压电元件120与第二压电元件140沿梁结构长度方向上的距离为0.5mm或2.5mm时,声学输出装置900的频响曲线(即曲线L151或L153)在中高频段内具有谐振峰和/或谐振谷。作为示例性说明,如图15所示,曲线L151在300Hz-3000Hz内具有谐振谷1511和谐振峰1512,曲线L153在300Hz-3000Hz内具有谐振谷1531和谐振峰1532。由此可以得出,通过合理设计压电元件120与第二压电元件140沿梁结构长度方向上的距离(例如,1.5mm),可以使得声学输出装置900在中高频段内的产生的谐振谷和谐振峰(例如,谐振谷1511和谐振峰1512、谐振谷1531和谐振峰1532)进行合并(或称为抵消),从而使得声学输出装置900的频响曲线较为平坦,从而保证声学输出装置900具有较好的音质。
结合图10、13和15,当压电元件120和第二压电元件140的长度、压电元件120或第二压电元件140与固定端111的距离不变时,随着梁结构的长度减小(例如,图10、13和15依次为50mm、37.5mm、25mm),合并谐振峰和谐振谷所对应的压电元件120与第二压电元件140沿梁结构长度方向上的距离逐渐减小(例如,图10、13和15依次为18mm、9mm、1.5mm)。由此,在一些实施例中,可以基于不同的梁结构的长度来调整压电元件120与第二压电元件140沿梁结构长度方向上的距离。仅作为示例,梁结构的长度减小时,可以适当减小压电元件120与第二压电元件140沿梁结构长度方向上的距离,从而将谐振峰和谐振谷进行合并,使得声学输出装置900的频响曲线较为平坦,提升声学输出装置900的音质。例如,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.6。再例如,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.4。再例如,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.2。再例如,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.1。
图16是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
图16示出了当声学输出装置900的梁结构长度为50mm、压电元件120和第二压电元件140的长度(图中用lp表示)均为25mm、压电元件120或第二压电元件140距离固定端4mm时,压电元件120与第二压电元件140之间沿梁结构的长度方向上具有不同距离时所对应的声学输出装置900的不同频响曲线。其中,曲线L161、曲线L162以及曲线L163分别为压电元件120与第二压电元件140沿梁结构的长度方向上的距离为-4mm、-2.5mm以及-1mm时声学输出装置900的频响曲线。虚线圈R内为振动元件110与质量元件130在低频段(例如,50Hz-2000Hz)内产生的第一谐振峰。压电元件120与第二压电元件140之间沿梁结构的长度方向上的距离可以指压电元件120的中心点(例如,形心)与第二压电元件140的中心点之间的距离。需要说明的是,压电元件120与第二压电元件140沿梁结构的长度方向上的距离为0时可以理解为压电元件120的中心点与第二压电元件140的中心点沿着梁结构振动方向的投影重合。压电元件120与第二压电元件140沿梁结构的长度方向上的距离为正数时可以理解为其中一个压电元件(例如,第二压电元件140)位置不变,另一压电元件(例如,压电元件120)沿梁结构的长度方向像质量元件130偏移时,压电元件120与第二压电元件140的中心点之间的距离。压电元件120与第二压电元件140沿梁结构的长度方向上的距离为负数时可以理解为其中一个压电元件(例如,第二压电元件140)位置不变,另一压电元件(例如,压电元件120)沿梁结构的长度方向像固定端111偏移时,压电元件120与第二压电元件140的中心点之间的距离。
从图16中可以看出,当声学输出装置900的梁结构长度为50mm、压电元件120和第二压电元件140的长度为25mm、压电元件120或第二压电元件140距离固定端4mm,并且压电元件120与第二压电元件140沿梁结构长度方向上的距离为-2.5mm时,声学输出装置900的频响曲线(即曲线L162)在中高频段(例如,300Hz-3000Hz)内的曲线较为平滑,具体表现为曲线L162在中高频段内具有较小或没有谐振峰和/或谐振谷,而当压电元件120与第二压电元件140沿梁结构长度方向上的距离为-4mm或-1mm时,声学输出装置900的频响曲线(即曲线L161或L163)在中高频段内具有谐振峰和/或谐振谷。作为示例性说明,如图16所示,曲线L161在300Hz-3000Hz内具有谐振谷1611和谐振峰1612,曲线L163在300Hz-3000Hz内具有谐振谷1631和谐振峰1632。由此可以得出,通过合理设计压电元件120与第二压电元件140沿梁结构长度方向上的距离(例如,-2.5mm),可以使得声学输出装置900在中高频段内的产生的谐振谷和谐振峰(例如,谐振谷1611和谐振峰1612、谐振谷1631和谐振峰1632)进行合并(或称为抵消),从而使得声学输出装置900的频响曲线较为平坦,从而保证声学输出装置900具有较好的音质。
结合图10和16,当梁结构的长度、压电元件120或第二压电元件140与固定端111的距离不变时,随着压电元件120和第二压电元件140的长度增加(例如,图10和16依次为5mm、25mm),合并谐振峰和谐振谷所对应的压电元件120与第二压电元件140沿梁结构长度方向上的距离逐渐减小(例如,图10和16依次为18mm、-2.5mm)。由此,在一些实施例中,可以基于不同压电元件120和第二压电元件140的长度来调整压电元件120与第二压电元件140沿梁结构长度方向上的距离。仅作为示例,当压电元件120和第二压电元件140的长度增加时,可以适当减小压电元件120与第二压电元件140沿梁结构长度方向上的距离,从而将谐振峰和谐振谷进行合并,使得声学输出装置900的频响曲线较为平坦,提升声学输出装置900的音质。例如,压电元件120和第二压电元件140的长度与梁结构的长度之间的比值大于0.05,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.4。再例如,压电元件120和第二压电元件140的长度与梁结构的长度之间的比值大于0.1,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.3。再例如,压电元件120和第二压电元件140的长度与梁结构的长度之间的比值大于0.2,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0.1。再例如,压电元件120和第二压电元件140的长度与梁结构的长度之间的比值大于0.4,压电元件120与第二压电元件140沿梁结构长度方向上的距离与梁结构的长度之间的比值可以小于0。
结合图10-16所示,通过合理设计压电元件120与第二压电元件140之间的距离可以使得声学输出装置900的频响曲线(例如,曲线L102、L112、L122、L132、L142、L152以及L162)在中高频段内较为平滑,从而可以使声学输出装置900具有较好的音质。在一些实施例中,梁结构的长度可以小于50mm,压电元件120和第二压电元件140之间的距离可以小于25mm。在一些实施例中,梁结构的长度可以小于50mm,压电元件120和第二压电元件140之间的距离可以小于22mm。在一些实施例中,梁结构的长度可以小于50mm,压电元件120和第二压电元件140之间的距离可以小于18mm。在一些实施例中,梁结构的长度可以小于50mm,压电元件120和第二压电 元件140之间的距离可以小于14mm。在一些实施例中,梁结构的长度可以小于40mm,压电元件120和第二压电元件140之间的距离可以小于10mm。在一些实施例中,梁结构的长度可以小于40mm,压电元件120和第二压电元件140之间的距离可以小于7mm。在一些实施例中,梁结构的长度可以小于40mm,压电元件120和第二压电元件140之间的距离可以小于2.5mm。在一些实施例中,梁结构的长度可以小于30mm,压电元件120和第二压电元件140之间的距离可以小于-1mm。
结合曲线L101、曲线L112以及曲线L123可知,在梁结构长度、压电元件120长度以及压电元件120和第二压电元件140之间的间距一定的情况下,压电元件120或第二压电元件140与固定端之间的距离(例如,图9所示的第二压电元件140与固定端的距离)增大时,声学输出装置900在低频段内产生的第一谐振峰的峰值在增大。作为示例性说明,曲线L101在虚线圈Z内的第一谐振峰的峰值在170dB左右,曲线112在虚线圈M内的第一谐振峰的峰值在175dB左右,曲线L123在虚线圈N内的第一谐振峰的峰值在180dB左右。在一些实施例中,可以通过增加压电元件120或第二压电元件140与固定端之间的距离来提高声学输出装置900在低频段内的第一谐振峰峰值,从而提高声学输出装置900在低频段内的灵敏度。在一些实施例中,压电元件120或第二压电元件140与固定端之间的距离可以大于3mm。在一些实施例中,压电元件120或第二压电元件140与固定端之间的距离可以大于4mm。在一些实施例中,压电元件120或第二压电元件140与固定端之间的距离可以大于5mm。在一些实施例中,压电元件120或第二压电元件140与固定端之间的距离可以大于6mm。在一些实施例中,压电元件120或第二压电元件140与固定端之间的距离可以大于7mm。
图17是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图17所示,声学输出装置1700的结构可以看作是在声学输出装置200结构的基础上进行了变化。具体地,声学输出装置1700与声学输出装置200的区别在于:声学输出装置1700还可以包括第二振动元件160,振动元件110和第二振动元件160在质量元件130的两侧对称设置。声学输出装置1700可以包括与第二振动元件160连接(或贴附)的第三压电元件170,第三压电元件170与压电元件120在质量元件130的两侧对称设置。在一些实施例中,压电元件120和第三压电元件170分别设置在位于质量元件130两侧的两个压电梁上,且压电元件120和第三压电元件170输入的电信号可以相同,可以看作是压电元件120与第三压电元件170并联。在一些实施例中,第二振动元件160与振动元件110的振动方向相同。在一些实施例中,压电元件120和第三压电元件170可以处于d31工作模式下,压电元件120和第三压电元件170的形变方向可以与振动元件110和第二振动元件160的振动方向垂直。在一些实施例中,压电元件120和第三压电元件170可以处在d33的工作模式下,压电元件120和第三压电元件170的形变方向可以与振动元件110的振动方向平行。在一些实施例中,振动元件110和第二振动元件160远离质量元件130的一端固定设置(即为固定端)。例如,振动元件110和第二振动元件160远离质量元件130的一端可以固定于声学输出装置1700的其他部件(例如,壳体)上。再例如,压电元件120与第三压电元件170可以处于d33的工作模式下,压电元件120与第三压电元件170沿振动元件110和第二振动元件160振动方向的一端固定,另一端分别贴附在振动元件110和第二振动元件160远离质量元件130的一端,从而使得振动元件110和第二振动元件160远离质量元件130的一端可以相对于质量元件130固定设置。关于第二振动元件160以及第三压电元件170的更多描述可以分别参考振动元件110和压电元件120的相关描述,在此不再赘述。
图18是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
在图18中,曲线L181为振动元件110和第二振动元件160中间无质量元件连接(或称为振动元件110和第二振动元件160空载)时的频响曲线。曲线L182为振动元件110和第二振动元件160中间连接有质量元件(或称为振动元件110和第二振动元件160负载)时的频响曲线。
如图18所示,曲线L181和曲线L182上相邻谐振峰之间的曲线较为平滑,不存在谐振谷。由此可以得出,通过设置压电片并联的结构可以使得声学输出装置1700的频响曲线不产生谐振谷,使得频响曲线更加平滑,有利于提高声学输出装置1700音质。除此之外,通过比较曲线L181的谐振峰1811和曲线L192的谐振峰1821可以发现,当振动元件110和第二振动元件160中间连接有质量元件130时,谐振峰对应的谐振频率会减小。因此,可以通过改变质量元件130的质量,来改变声学输出装置1700在低频段(例如,100Hz-1000Hz)产生的谐振峰对应的谐振频率。
图19是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图19所示,声学输出装置1900的结构可以看作是在声学输出装置200结构的基础上进行了变化。具体地,声学输出装置1900与声学输出装置200的区别在于:声学输出装置1900还可 以包括第三振动元件180,第三振动元件180与质量元件130连接。其中,第三振动元件180的振动方向与振动元件110的振动方向平行。进一步地,声学输出装置1900还可以包括第四压电元件190,第四压电元件190可以与第三振动元件180连接。在一些实施例中,第四压电元件190处于d31工作模式下,第四压电元件190的形变方向与第三振动元件180的振动方向垂直。在一些实施例中,第三振动元件180与振动元件110可以具有相同或不同的结构、材质等。在一些实施例中,第四压电元件190与压电元件120可以具有相同或不同的结构、材质等。在一些实施例中,如图19所示,第三振动元件180位于质量元件130两侧的梁结构可以对称设置。在一些实施例中,第四压电元件190可以包括位于质量元件130两侧的两个压电片。在一些实施例中,第四压电元件190可以包括一个压电片,所述一个压电片可以完全覆盖第三振动元件180或部分覆盖第三振动元件180。关于第三振动元件180、第四压电元件190的更多描述可以分别参考振动元件110、压电元件120的相关描述,在此不再赘述。
需要说明的是,图19中所示的声学输出装置1900仅用来示例性说明,并无意于限制本说明书的保护范围。对于本领域的普通技术人员来说,根据本申请的指导可以做出多种变化和修改。例如,第四压电元件190可以包括一个压电片,所述一个压电片可以完全覆盖第三振动元件180或部分覆盖第三振动元件180。再例如,压电元件120可以包括一个压电片,所述一个压电片可以完全覆盖振动元件110。
在一些实施例中,振动元件110可以具有悬臂梁结构。所述悬臂梁具有固定端111和自由端112。质量元件130在自由端112与振动元件110连接。在一些实施例中,第三振动元件180可以具有梁结构。例如,第三振动元件180可以为自由梁,所述自由梁的至少一部分(例如,长度方向的中心区域)与质量元件130连接,自由梁的两端为自由端。在一些实施例中,在沿着第三振动元件180或振动元件110的振动方向的投影平面上,第三振动元件180的长度方向(即自由梁的长轴方向)与振动元件110的长度方向之间的夹角可以为90°。在一些实施例中,质量元件130与第三振动元件180的连接位置可以位于第三振动元件180长度方向上的中心,即振动元件110和第三振动元件180可以形成“T”型结构(或称为T型梁)。在一些实施例中,第三振动元件180的长度方向与振动元件110的长度方向之间的夹角也可以小于90°或大于90°。在一些实施例中,质量元件130与第三振动元件180的连接位置可以位于第三振动元件180长度方向上的任意位置。
在一些实施例中,振动元件110和第三振动元件180可以是一体成型的“T”型结构或者其他构型的结构。其他构型包括在振动元件110的长度方向上(即图中x方向),振动元件110的不同位置具有不同的宽度(即图中y方向),例如,越靠近自由端宽度越大,或者越靠近自由端宽度越小等。
图20是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
在图20中,曲线L201为压电元件120单独激励时产生的频响曲线(即振动元件110(或称为悬臂梁)带动质量元件130振动时产生的频响曲线)。曲线L202为第四压电元件190单独激励时产生的频响曲线(即第三振动元件180(或称为自由梁)和质量元件130振动时产生的频响曲线)。曲线L203为声学输出装置1900中压电元件120和第四压电元件190同时激励时的频响曲线(即振动元件110、第三振动元件180以及质量元件130同时(或称为T型梁)振动时产生的频响曲线)。
如图20所示,曲线L201在人耳可听域(例如,20Hz-20000Hz)内至少存在两个谐振峰(例如,第一谐振峰2011和第二谐振峰2012)。其中,第一谐振峰2011和第二谐振峰2012之间存在有谐振谷2013。在一些实施例中,第一谐振峰2011的频率可以在50Hz-2000Hz的范围内。谐振谷2013的频率在1330Hz左右。曲线L202在人耳可听域(例如,20Hz-20000Hz)内至少存在一个谐振峰(例如,谐振峰2021)。其中,谐振峰2021的频率在1330Hz左右。曲线L203在人耳可听域(例如,20Hz-20000Hz)内至少存在两个谐振峰(例如,第一谐振峰2031和第二谐振峰2032)。从图20中可以看出,曲线L203在第一谐振峰2031和第二谐振峰2032之间并未出现谐振谷。这是因为谐振峰2021对频率相同的谐振谷2013进行了补充,使得曲线L203在第一谐振峰2031和第二谐振峰2032之间并未出现谐振谷。另外,在大于100Hz的频率范围内,曲线L203的幅值相比于曲线L201有所提升。
由此,在一些实施例中,可以通过第三振动元件180与质量元件130振动在低频段(例如,50Hz-2000Hz)产生的谐振峰(为便于描述,以下称为第三振动元件180对应的谐振峰)来补充振动元件110与质量元件130振动产生的在第一谐振峰和第二谐振峰之间的谐振谷(为便于描述,以下称为振动元件110对应的谐振谷),从而使得声学输出装置1900的频响曲线在第一谐振峰和第 二谐振峰之间不具有谐振谷,从而使第一谐振峰和第二谐振峰之间的曲线更加平滑,有利于提高声学输出装置的音质。
在一些实施例中,振动元件110对应的第一谐振峰的频率f 0和第二谐振峰的频率f 1之间的比值可以在5-30范围内。在一些实施例中,振动元件110对应的第一谐振峰的频率f 0和第二谐振峰的频率f 1之间的比值可以在6-25范围内。在一些实施例中,振动元件110对应的第一谐振峰的频率f 0和第二谐振峰的频率f 1之间的比值可以在8-20范围内。在一些实施例中,振动元件110对应的第一谐振峰的频率f 0和第二谐振峰的频率f 1之间的比值可以在10-18范围内。
在一些实施例中,梁结构(例如,振动元件110对应的悬臂梁或第三振动元件180对应的自由梁)的谐振频率可以根据公式(2)确定:
Figure PCTCN2022089572-appb-000002
其中,l表示梁结构的长度,EI表示梁结构的抗弯刚度,ρ i表示梁结构的单位长度密度,β il表示第i阶谐振本征值相关的系数。根据公式(2)可知,当梁结构的抗弯刚度EI以及ρ l固定不变时,梁结构的谐振频率随着β il的变化而改变。
在一些实施例中,与质量元件130连接的振动元件110(悬臂梁)的频率方程可以表示为:
cos(β il 1)·cosh(β il 1)+1=α·β il 1·(sin(β il 1)·cosh(β il 1)-cos(β il 1)·sinh(β il 1)),  (3)
其中,α表示质量元件130的质量与振动元件110的质量之间的比值,β il 1表示悬臂梁对应的第i阶谐振本征值相关的系数。求解公式(3)可得β il 1的值如下表1所示:
表1
Figure PCTCN2022089572-appb-000003
在一些实施例中,第三振动元件180(自由梁)的频率方程可以表示为:
cos(β il 2)cosh(β il 2)-1=0,     (4)
其中,β il 2表示自由梁对应的第i阶谐振本征值相关的系数。求解公式(4)可得β il 2的值为4.730、7.853…(i=1、2…)。
为了保证第三振动元件180对应的谐振峰能够补充振动元件110对应的谐振谷,在一些实施例中,第三振动元件180对应的谐振峰的频率f′ 1与振动元件110对应的第二谐振峰对应的频率f 1之间的比值可以小于2。在一些实施例中,第三振动元件180对应的谐振峰的频率f′ 0与振动元件110对应的第二谐振峰的频率f 1之间的比值可以小于1.5。在一些实施例中,第三振动元件180对应的谐振峰的频率f′ 0与振动元件110对应的第二谐振峰的频率f 1之间的比值可以小于1。在一些实施例中,第三振动元件180对应的谐振峰的频率f′ 0与振动元件110对应的第二谐振峰的频率f 1之间的比值可以小于0.5。在一些实施例中,为了保证第三振动元件180对应的谐振峰能够补充振动元件110对应的谐振谷,第三振动元件180对应的谐振峰的频率f′ 0可以位于振动元件110对应的谐振谷的频率附近(例如,谐振谷2013与谐振峰2021对应的谐振频率均在1330Hz左右),由此,第三振动元件180对应的谐振峰的频率f′ 0可以小于振动元件110对应的第二谐振峰对应的谐振频率f 1,即
Figure PCTCN2022089572-appb-000004
其中,β 1l 2的值为4.730,公式(5)可以表示为:
Figure PCTCN2022089572-appb-000005
根据公式(6)以及表1,在一些实施例中,第三振动元件180的长度与振动元件120的长 度间的比值可以大于0.7。在一些实施例中,第三振动元件180的长度与振动元件120的长度间的比值可以大于1。在一些实施例中,第三振动元件180的长度与振动元件120的长度间的比值可以大于1.2。
另外,结合曲线L201和L203可知,在中高频段(200Hz-20000Hz)内,曲线L203的幅值均大于曲线L201的幅值。由此,在一些实施例中,在大于100Hz的范围内,第三振动元件180可以增加质量元件130的振动幅度。因此,通过采用声学输出装置1900相同或相似的结构,可以使得声学输出装置在中高频段内能够具有较好的灵敏度。
图21是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
在图21中,曲线L211为压电元件120单独激励时的频响曲线(即振动元件110(或称为悬臂梁)带动质量元件130振动时产生的频响曲线)。曲线L212为第四压电元件190单独激励时的频响曲线(即第三振动元件180(或称为自由梁)和质量元件130振动时产生的频响曲线)。曲线L213、曲线L214、曲线L215以及曲线L216分别为声学输出装置1900中压电元件120和第四压电元件190同时激励时、激励信号的相位差(图中用theta表示)为0°、45°、135°以及180°时的频响曲线。
结合曲线L213、曲线L214、曲线L215以及曲线L216可知,当声学输出装置1900中压电元件120和第四压电元件190的激励信号的相位差超过135°时,声学输出装置1900的频响曲线在第一谐振峰和第二谐振峰之间会出现谐振谷(例如,曲线L216中的谐振谷2161),这是由于振动元件110和第三振动元件180的振动反相相消所导致的。因此,为了使声学输出装置1900的频响曲线在第一谐振峰和第二谐振峰之间不会出现谐振谷,具有较大的平直曲线范围,从而具有较好的音质,在一些实施例中,压电元件120和第四压电元件190的激励信号的相位差可以小于或等于135°。在一些实施例中,压电元件120和第四压电元件190的激励信号的相位差可以小于或等于90°。在一些实施例中,压电元件120和第四压电元件190的激励信号的相位差可以小于或等于60°。在一些实施例中,压电元件120和第四压电元件190的激励信号的相位差可以小于或等于45°。在一些实施例中,压电元件120和第四压电元件190的激励信号的相位差可以小于或等于30°。在一些实施例中,压电元件120和第四压电元件190的激励信号的相位差可以为0°。
图22是根据本说明书一些实施例所示的声学输出装置的频响曲线图。
在图22中,曲线L221、曲线L222、曲线L223、曲线L224以及曲线L225分别为声学输出装置1900第三振动元件180的长度(图中用lp_d2表示)为0mm(即可以看成声学输出装置1900不包括第三振动元件180,相当于声学输出装置200)、20mm、22mm、24mm以及30mm时的频响曲线。其中,振动元件110的长度(图中用lp_d表示)均为20mm。结合曲线L221、曲线L222、曲线L223、曲线L224以及曲线L225可知,当第三振动元件180的长度小于24mm时,曲线L221、曲线L222、曲线L223在2250Hz附近均具有谐振谷,第三振动元件180的长度增加仅能使得声学输出装置1900的频响曲线在中高频段(例如,2000Hz-20000Hz)内的幅度增加,即声学输出装置1900在中高频段内的灵敏度得以增加。当第三振动元件180的长度超过24mm时,曲线L224和曲线L225上在第一谐振峰和第二谐振峰之间并不具有谐振谷,这使得声学输出装置1900的频响曲线更为平坦,有利于提高音质。另外,结合曲线L224以及曲线L225可知,随着第三振动元件180的长度增加,频响曲线的幅值也在增加,有利于提高声学输出装置1900的灵敏度。另外,随着第三振动元件180的长度增加,声学输出装置1900的频响曲线在中高频段(例如,2000Hz-20000Hz)内的谐振峰左移(即向低频移动)。由此,可以通过调整第三振动元件180的长度以满足声学输出装置1900的振动性能的需求。
由上可得,在声学输出装置1900中,可以通过增大第三振动元件180的长度来提高声学输出装置1900的灵敏度和音质。在一些实施例中,振动元件110的长度可以为20mm,第三振动元件180的长度可以大于24mm。在一些实施例中,第三振动元件180的长度可以大于26mm。在一些实施例中,第三振动元件180的长度可以大于28mm。在一些实施例中,第三振动元件180的长度可以大于30mm。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并 注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (29)

  1. 一种声学输出装置,包括:
    振动元件,所述振动元件具有沿着长度方向延伸的梁结构;
    压电元件,用于响应电信号而发生形变,所述形变带动所述振动元件振动,其中,所述压电元件贴附于所述梁结构的第一位置,并且贴附区域沿着所述长度方向的尺寸不超过所述梁结构沿着所述长度方向尺寸的80%;以及
    质量元件,所述质量元件连接于所述梁结构的第二位置,其中,所述第一位置与所述第二位置在所述长度方向上间隔分布,所述振动元件的振动带动所述质量元件在垂直于所述长度方向的方向上振动。
  2. 根据权利要求1所述的声学输出装置,其特征在于,所述振动元件与所述质量元件谐振产生第一谐振峰,所述第一谐振峰的频率范围为50Hz-2000Hz。
  3. 根据权利要求2所述的声学输出装置,其特征在于,所述振动元件与所述质量元件的振动具有第二谐振峰,所述第二谐振峰的频率与所述第一谐振峰的频率之比大于5。
  4. 根据权利要求3所述的声学输出装置,其特征在于,在所述第一谐振峰和所述第二谐振峰之间,所述振动元件与所述质量元件的振动产生至少一个谐振谷,其中,所述第一谐振峰或所述第二谐振峰与所述至少一个谐振谷之间的幅值差小于80dB。
  5. 根据权利要求1所述的声学输出装置,其特征在于,所述梁结构的长度小于50mm。
  6. 根据权利要求5所述的声学输出装置,其特征在于,所述质量元件的质量小于10g。
  7. 根据权利要求1所述的声学输出装置,其特征在于,所述压电元件的形变方向与所述振动元件的振动方向垂直。
  8. 根据权利要求7所述的声学输出装置,其特征在于,所述压电元件的长度在3mm-30mm范围内。
  9. 根据权利要求7所述的声学输出装置,其特征在于,还包括第二压电元件,所述第二压电元件贴附于所述梁结构的第三位置,其中,所述压电元件与所述第二压电元件在所述振动元件的长度方向上间隔设置。
  10. 根据权利要求9所述的声学输出装置,其特征在于,所述压电元件与所述第二压电元件之间的距离小于25mm。
  11. 根据权利要求9所述的声学输出装置,其特征在于,所述梁结构包括固定端,所述压电元件或所述第二压电元件与所述固定端的距离大于3mm。
  12. 根据权利要求9所述的声学输出装置,其特征在于,在所述梁结构的振动方向上,所述压电元件和所述第二压电元件位于所述梁结构的同一侧。
  13. 根据权利要求9所述的声学输出装置,其特征在于,在所述梁结构的振动方向上,所述压电元件和所述第二压电元件分别位于所述梁结构的两侧。
  14. 根据权利要求7所述的声学输出装置,其特征在于,还包括第二质量元件,其中,在所述振动元件的长度方向上,所述质量元件与所述第二质量元件分别位于所述压电元件的两侧。
  15. 根据权利要求14所述的声学输出装置,其特征在于,所述第二质量元件的质量大于所述质量元件的质量。
  16. 根据权利要求15所述的声学输出装置,其特征在于,所述第二质量元件的质量与所述质量元件的质量间的比值在0-10范围内。
  17. 根据权利要求1所述的声学输出装置,其特征在于,所述压电元件的形变方向与所述振动元件的振动方向平行。
  18. 根据权利要求17所述的声学输出装置,其特征在于,所述压电元件沿振动方向的一端固定,另一端在所述第一位置与所述梁结构连接。
  19. 根据权利要求18所述的声学输出装置,其特征在于,所述梁结构包括固定端,所述第一位 置与所述固定端的距离与所述梁结构的长度间的比值小于0.6。
  20. 根据权利要求1所述的声学输出装置,其特征在于,还包括第二振动元件,所述振动元件与所述第二振动元件在所述质量元件的两侧对称设置。
  21. 根据权利要求20所述的声学输出装置,其特征在于,还包括与所述第二振动元件连接的第三压电元件,其中,所述第三压电元件与所述压电元件在所述质量元件的两侧对称设置。
  22. 根据权利要求20所述的声学输出装置,其特征在于,所述振动元件与所述第二振动元件远离所述质量元件的一端固定设置。
  23. 根据权利要求1所述的声学输出装置,其特征在于,还包括第三振动元件,所述第三振动元件与所述质量元件连接。
  24. 根据权利要求23所述的声学输出装置,其特征在于,在大于100Hz的频率范围内,所述第三振动元件增加所述质量元件的振动幅度。
  25. 根据权利要求23所述的声学输出装置,其特征在于,所述第三振动元件的长度与所述振动元件的长度之比大于0.7。
  26. 根据权利要求23所述的声学输出装置,其特征在于,所述第三振动元件的振动方向与所述振动元件的振动方向平行。
  27. 根据权利要求26所述的声学输出装置,其特征在于,还包括第四压电元件,所述第四压电元件与所述第三振动元件连接。
  28. 根据权利要求27所述的声学输出装置,其特征在于,所述第四压电元件的形变方向与所述第三振动元件的振动方向垂直。
  29. 根据权利要求27所述的声学输出装置,其特征在于,所述压电元件和所述第四压电元件所接收的电信号具有相位差,所述相位差小于135°。
PCT/CN2022/089572 2022-04-27 2022-04-27 一种声学输出装置 WO2023206143A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202280006967.3A CN117643069A (zh) 2022-04-27 2022-04-27 一种声学输出装置
PCT/CN2022/089572 WO2023206143A1 (zh) 2022-04-27 2022-04-27 一种声学输出装置
KR1020237023704A KR20230153998A (ko) 2022-04-27 2022-04-27 음향출력장치
JP2023541984A JP2024518215A (ja) 2022-04-27 2022-04-27 音響出力装置
EP22893946.8A EP4294049A1 (en) 2022-04-27 2022-04-27 Acoustic output device
BR112023011239A BR112023011239A2 (pt) 2022-04-27 2022-04-27 Dispositivos de saída acústica
US18/322,573 US20230353948A1 (en) 2022-04-27 2023-05-23 Acoustic output devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089572 WO2023206143A1 (zh) 2022-04-27 2022-04-27 一种声学输出装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/322,573 Continuation US20230353948A1 (en) 2022-04-27 2023-05-23 Acoustic output devices

Publications (1)

Publication Number Publication Date
WO2023206143A1 true WO2023206143A1 (zh) 2023-11-02

Family

ID=88511892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089572 WO2023206143A1 (zh) 2022-04-27 2022-04-27 一种声学输出装置

Country Status (7)

Country Link
US (1) US20230353948A1 (zh)
EP (1) EP4294049A1 (zh)
JP (1) JP2024518215A (zh)
KR (1) KR20230153998A (zh)
CN (1) CN117643069A (zh)
BR (1) BR112023011239A2 (zh)
WO (1) WO2023206143A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104565191A (zh) * 2015-01-22 2015-04-29 华南理工大学 基于行星减速器驱动摆动双智能柔性梁装置
CN105934835A (zh) * 2014-02-18 2016-09-07 晶致材料科技私人有限公司 超宽频声波及超声波换能器
CN110611865A (zh) * 2018-06-15 2019-12-24 深圳市韶音科技有限公司 一种骨传导扬声器及耳机
WO2021196626A1 (en) * 2020-03-31 2021-10-07 Shenzhen Voxtech Co., Ltd. Acoustic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934835A (zh) * 2014-02-18 2016-09-07 晶致材料科技私人有限公司 超宽频声波及超声波换能器
CN104565191A (zh) * 2015-01-22 2015-04-29 华南理工大学 基于行星减速器驱动摆动双智能柔性梁装置
CN110611865A (zh) * 2018-06-15 2019-12-24 深圳市韶音科技有限公司 一种骨传导扬声器及耳机
WO2021196626A1 (en) * 2020-03-31 2021-10-07 Shenzhen Voxtech Co., Ltd. Acoustic device

Also Published As

Publication number Publication date
KR20230153998A (ko) 2023-11-07
JP2024518215A (ja) 2024-05-01
CN117643069A (zh) 2024-03-01
US20230353948A1 (en) 2023-11-02
EP4294049A1 (en) 2023-12-20
BR112023011239A2 (pt) 2024-01-09

Similar Documents

Publication Publication Date Title
CN110611853B (zh) 一种骨传导扬声器
US7382079B2 (en) Piezoelectric device for generating acoustic signal
US20120257772A1 (en) Electro-acoustic transducer, electronic apparatus, electro-acoustic conversion method, and sound wave output method of electronic apparatus
TWI843498B (zh) 聲學輸出裝置
TW515220B (en) Loudspeakers
WO2023206143A1 (zh) 一种声学输出装置
TW202344073A (zh) 一種聲學輸出裝置
WO2023193189A1 (zh) 声学输出装置
WO2023193191A1 (zh) 一种声学输出装置
TWI843202B (zh) 聲學輸出裝置
RU2795203C1 (ru) Акустические выходные устройства
WO2023193195A1 (zh) 一种压电式扬声器
WO2024108334A1 (zh) 一种声学输出装置
WO2023173355A1 (zh) 一种声学输出装置
CN116939445A (zh) 一种压电扬声器
WO2024108332A1 (zh) 一种声学输出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280006967.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202317035710

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022893946

Country of ref document: EP

Effective date: 20230522

WWE Wipo information: entry into national phase

Ref document number: 2023541984

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023011239

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023011239

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230607