WO2024108332A1 - 一种声学输出装置 - Google Patents

一种声学输出装置 Download PDF

Info

Publication number
WO2024108332A1
WO2024108332A1 PCT/CN2022/133228 CN2022133228W WO2024108332A1 WO 2024108332 A1 WO2024108332 A1 WO 2024108332A1 CN 2022133228 W CN2022133228 W CN 2022133228W WO 2024108332 A1 WO2024108332 A1 WO 2024108332A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic output
output device
panel
vibration
shell
Prior art date
Application number
PCT/CN2022/133228
Other languages
English (en)
French (fr)
Inventor
张磊
朱光远
付峻江
王力维
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to PCT/CN2022/133228 priority Critical patent/WO2024108332A1/zh
Publication of WO2024108332A1 publication Critical patent/WO2024108332A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details

Definitions

  • the present application relates to the field of acoustic technology, and in particular to an acoustic output device.
  • Speakers generally include bone conduction speakers and air conduction speakers.
  • bone conduction speakers can convert electrical signals into mechanical vibration signals, and transmit the mechanical vibration signals to the human auditory nerves through human tissues and bones, so that the wearer can hear the sound.
  • the additional devices for example, microphones, sensors, air conduction speakers, batteries, circuit boards, etc.
  • the additional devices for example, microphones, sensors, air conduction speakers, batteries, circuit boards, etc.
  • an acoustic output device which includes: a transducer configured to generate mechanical vibrations based on an electrical signal; a housing configured to accommodate the transducer, the housing including a panel and a shell, the transducer connected to the panel, and the transducer transmits the mechanical vibrations to a user through the panel; and an additional element elastically connected to the panel via a vibration path including at least one elastic element.
  • FIG1 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • FIG2 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG3 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG4 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG5 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG6 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG7 is a schematic diagram of the structure of an acoustic output device provided according to some embodiments of the present application.
  • FIG8 is a frequency response curve of different acoustic output devices provided according to some embodiments of the present application.
  • FIG9 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG10 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG11 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG12 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG13 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG14 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG15 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG16 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG17 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG18 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG20 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG. 21 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG22 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG. 23 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG24 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG25 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG26 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG27 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG. 28 is a graph showing a leakage frequency response curve of the acoustic output device 2 according to some embodiments of the present specification.
  • FIG29 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG30 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG31 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG32 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG33 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG35 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG36 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG37 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG38 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG39 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG40 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG41 is a schematic diagram of the structure of an acoustic output device according to some embodiments of this specification.
  • FIG42 is a frequency response curve of an acoustic output device according to some embodiments of the present specification.
  • FIG43 is a frequency response curve of an acoustic output device according to some embodiments of the present specification.
  • FIG. 44 is a leakage sound frequency response curve of an acoustic output device according to some embodiments of the present specification.
  • FIG. 45 is a leakage sound frequency response curve of an acoustic output device according to some embodiments of the present specification.
  • FIG46 is a schematic diagram of a top view of a vibration transmission sheet according to some embodiments of the present specification.
  • FIG47 is a schematic diagram of a three-dimensional structure of a vibration transmission sheet according to some embodiments of this specification.
  • FIG48 is a schematic diagram of wearing a speaker according to some embodiments of the present specification.
  • FIG49A is a schematic diagram of the structure of a speaker according to some embodiments of the present specification.
  • FIG49B is a schematic diagram of the structure of a magnetic conductive cover according to some embodiments of the present specification.
  • FIG49C is a schematic diagram showing the positions of an exemplary first magnetic conductive plate and a first coil according to some embodiments of the present specification
  • FIG50 is a schematic diagram of the structure of a speaker according to some embodiments of this specification.
  • FIG51 is a schematic diagram of the structure of a speaker according to some embodiments of this specification.
  • FIG52A is a schematic diagram of the structure of a speaker according to some embodiments of this specification.
  • FIG52B is a comparison diagram of the effect of different distances between a bone conduction speaker and an air conduction speaker on the magnetic field of the coil according to some embodiments of the present application;
  • FIG53 is a schematic diagram of the structure of a transducer device according to some embodiments of this specification.
  • FIG54A is an exploded view of a transducer device according to some embodiments of the present specification.
  • FIG54B is an impedance comparison diagram of a transducer device with a single voice coil and a dual voice coil structure according to some embodiments of the present application;
  • FIG54C is a partial schematic diagram of a cylindrical magnetic conductive cover according to some embodiments of the present application.
  • FIG54D is a schematic diagram of a bowl-shaped magnetic conductive cover according to some embodiments of the present application.
  • FIG55 is a comparison diagram of the frequency response curves when the magnetic shield is slotted and when it is not slotted;
  • FIG56 is a schematic diagram of a top view of a magnetic conductive plate according to some embodiments of the present specification.
  • FIG57 is a comparison diagram of frequency response curves of a magnetic conductive plate without openings and with openings according to some embodiments of this specification.
  • FIG58 is a comparison diagram of frequency response curves of a magnetic conductive plate without openings and with openings according to some embodiments of the present specification
  • FIG59 is a comparison diagram of BL value curves when the second hole on the magnetic conductive plate is at different distances from the center of the magnetic conductive plate according to some embodiments of this specification;
  • FIG60 is a comparison diagram of frequency response curves of second holes with different diameters according to some embodiments of this specification.
  • FIG61 is a comparison diagram of BL value curves when the second hole has different diameters according to some embodiments of this specification and a comparison diagram of acceleration curves of a speaker in a mass range of 2g-5g;
  • FIG62 is a schematic diagram of the structure of a magnetic circuit assembly in the form of a Halbach Array according to some embodiments of this specification.
  • FIG. 63 is a comparison diagram of BL value curves of magnetic circuit assemblies having different magnetic portion arrays according to some embodiments of the present specification.
  • the acoustic output unit of the acoustic output device can be a bone conduction speaker.
  • the acoustic output device includes a transducer, a housing, and an additional element.
  • the transducer can generate mechanical vibrations based on electrical signals;
  • the housing includes a panel and a shell, and the panel and the shell can form a housing for accommodating the transducer.
  • the panel can fit the user's face, the transducer is directly connected to the panel or connected to the panel through the housing, and finally the mechanical vibration is transmitted to the user through the panel.
  • the acoustic output device provided in the embodiments of this specification also includes an additional element, and the additional element is connected to the panel through a vibration path including at least one elastic element.
  • the additional element is rigidly connected to the shell, and the panel is elastically connected to the shell with the additional element through an elastic element.
  • the additional element is elastically connected to the shell through an elastic element, and the panel is rigidly connected to the shell.
  • the acoustic output device may also include a support, the panel may be rigidly connected to the side wall (back plate) of the shell opposite to the panel, the additional element is rigidly connected to the support, and the support is elastically connected to the panel and the shell respectively through elastic elements.
  • an additional element is rigidly connected to the shell and the panel is elastically connected to the shell with the additional element through an elastic element as an example for explanation.
  • the panel and the shell can be approximately regarded as a rigid connection
  • the transducer drives the panel to vibrate
  • the panel drives the shell and the additional element to vibrate together through the elastic element. Since the additional element has a certain mass, the sensitivity of the acoustic output device with the additional element will be relatively low.
  • the panel, the elastic element and the shell can be approximately regarded as a resonant system
  • the transducer drives the panel to vibrate, and under the action of the elastic element, the panel and the shell and the device rigidly connected to the shell (for example, the additional element) relative motion occurs.
  • the vibration of the panel is at a minimum value (for example, the vibration of the panel is very small or does not vibrate), and the shell and the additional element vibrate strongly.
  • it can be regarded as the first resonant position of the resonant system, and the resonant frequency corresponding to the resonant system being at the first resonant position is the first resonant frequency.
  • the frequency response curve of the acoustic output device has a resonant valley at the first resonant frequency. It is understandable that in some other embodiments of the resonant system, the frequency response curve of the acoustic output device may not have an obvious resonance valley at the first resonant frequency. As the vibration frequency of the resonant system increases further, the panel and the shell and the additional element rigidly connected to the shell all vibrate strongly until the panel and the shell (and the additional element) vibrate in opposite directions and the distance between the two reaches the maximum.
  • the frequency response curve of the acoustic output device has a resonance peak at the second resonant frequency. It is understandable that in some other embodiments of the resonant system, the frequency response curve of the acoustic output device may not have an obvious resonance peak at the second resonant frequency.
  • the panel and the shell move together first, at this time, the panel and the shell and the additional element connected to the shell vibrate together, at this time, the phase difference between the panel and the shell is 0°; as the frequency increases, the panel, the shell and the additional element first move in the same direction until the vibration of the panel is very small or does not vibrate, and the shell and the additional element vibrate strongly, that is, the first resonance position mentioned above.
  • the value corresponding to the phase of the resonance system increases, and the panel, the shell and the additional element rigidly connected to the shell all vibrate strongly, until the panel and the shell (and the additional element) vibrate in opposite directions and the distance between the two reaches the maximum, that is, the second resonance position mentioned above, at this time the phase difference between the panel and the shell is in the range of 150°-210°, and the resonance system is in the second resonance position.
  • the value corresponding to the phase of the resonance system gradually decreases.
  • the panel and the shell with the additional element are connected by an elastic element, so that the panel and the shell with the additional element can resonate, and can generate a second resonance frequency whose resonance frequency is within the target frequency range.
  • the vibration transmission between the additional element and the panel will be suppressed, that is, the influence of the additional element on the vibration of the panel will be reduced, thereby ensuring that the sensitivity of the bone conduction speaker in the acoustic output device is not affected or is less affected by the additional element in the frequency range greater than the resonant frequency corresponding to the second resonant frequency.
  • the frequency range in which the sensitivity of the bone conduction speaker in the acoustic output device decreases due to the additional element being additionally provided on the acoustic output device can be reduced.
  • the frequency response curve of the acoustic output device is flatter, which can ensure that the acoustic output device has a better acoustic output effect in a larger frequency range, thereby improving the user's auditory experience.
  • FIG. 1 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the acoustic output device 100 may include a transducer 10 and a housing 20 for accommodating the transducer 10.
  • the housing 20 may include a panel 21 and a shell 22, the shell 22 being a hollow structure, the panel 21 and the shell 22 may form a receiving cavity to accommodate the transducer 10, the transducer 10 may be connected to the panel 21, and the transducer 10 may transmit mechanical vibration to the user through the panel 21.
  • the panel 21 and the shell 22 may be an integral structure.
  • the shell 22 may be an integral structure or a structure formed by connecting multiple components.
  • the shell 22 may include an annular side plate and a back plate, the back plate being fixed to the side of the annular side plate opposite to the panel 21 and forming the shell 22.
  • the panel 21 and the housing 22 may also be independent structures, wherein the housing 22 is a structure with a hollow interior and an open opening at one end, and the panel 21 is rigidly connected to the end of the housing 22 with an open opening, and covers the open opening of the housing 22 to form a housing cavity for accommodating the transducer 10.
  • the panel 21 when the user wears the acoustic output device 100, the panel 21 may fit the user's head, and then transmit the mechanical vibration to the user's auditory nerve through human tissue and bones, so that the user can hear bone conduction sound.
  • the rigid connection involved in this specification may refer to two connectors (for example, the panel 21 and the housing 22), when one of the connectors is displaced or stressed, the other connector connected thereto will not be displaced or relatively deformed relative to the first connector, that is, the two connectors can be basically regarded as a whole during the vibration process.
  • the two connectors are directly connected, and the tensile strength (Pa) of the two connectors as a whole is greater than 50% of the tensile strength of any substrate of the two connectors.
  • two connectors are connected by a rigid connecting element, and the tensile strength of the rigid connecting element itself is greater than the tensile strength of any of the base materials of the two connectors.
  • Rigid connection can also refer to the ability to effectively transmit high-frequency vibrations (for example, vibrations greater than 6KHz, greater than 8KHz, or greater than 10KHz) between the two connectors.
  • rigid connection can also refer to the resonant frequency generated by the transmission of vibrations between the two connectors being located at a very high frequency position.
  • the resonant frequency generated by the transmission of vibrations between the two connectors is greater than 6000Hz.
  • the resonant frequency generated by the transmission of vibrations between the two connectors is greater than 8000Hz.
  • the resonant frequency generated by the transmission of vibrations between the two connectors is greater than 10000Hz.
  • the transducer device 10 can be used to convert electrical signals into mechanical vibrations, which are then transmitted to the user through the panel 21.
  • the transducer device 10 may include a magnetic circuit component 11, a coil 12, and a vibration transmission plate 13 (also referred to as an elastic support member).
  • the magnetic circuit component 11 may include at least one magnet 111, and the magnet 111 may generate a magnetic field.
  • the magnet 111 may include a magnetic conductive member 1111 and a magnetic member 1112.
  • the magnetic conductive member 1111 may be a structure having a concave groove, and the magnetic member 1112 may be located in the concave groove and fixedly connected to the magnetic conductive member 1111, and a magnetic gap 1113 is formed between the side wall of the magnetic conductive member 1111 corresponding to the concave groove and the peripheral side wall of the magnetic member 1112.
  • the magnetic conductive member 1111 may be made of soft magnetic material.
  • the soft magnetic material may include metal materials, metal alloys, metal oxide materials, amorphous metal materials, etc., such as iron, iron-silicon alloys, iron-aluminum alloys, nickel-iron alloys, iron-cobalt alloys, low-carbon steel, silicon steel sheets, silicon steel sheets, ferrites, etc.
  • the magnetic component 1112 may refer to any element capable of generating a magnetic field.
  • the magnetic component 1112 may include metal alloy magnets, ferrites, etc.
  • the metal alloy magnet may include neodymium iron boron, samarium cobalt, aluminum nickel cobalt, iron chromium cobalt, aluminum iron boron, iron carbon aluminum, or the like, or a combination of multiple thereof.
  • the ferrite may include barium ferrite, steel ferrite, manganese ferrite, lithium manganese ferrite, or the like, or a combination of multiple thereof.
  • the magnetic circuit assembly 11 may be elastically connected to the housing 20 via a vibration transmission piece 13. In some embodiments, the magnetic circuit assembly 11 and the panel 21 may be elastically connected via a vibration transmission piece 13. In some embodiments, the magnetic circuit assembly 11 and the housing 22 (for example, a side wall of the housing 21 adjacent to or opposite to the panel 21) may be elastically connected via a vibration transmission piece 13. In some embodiments, the magnetic circuit assembly 11 may be elastically connected to the panel 21 and the housing 22 respectively via different vibration transmission pieces 13.
  • the vibration transmission piece 13 may include a first vibration transmission piece and a second vibration transmission piece, the first vibration transmission piece being located between the magnetic circuit assembly 11 and the panel 21, and the magnetic circuit assembly 11 and the panel 21 being elastically connected via the first vibration transmission piece.
  • the second vibration transmission piece is located between the magnetic circuit assembly 11 and the side wall of the housing 22 opposite to the panel 21, and the magnetic circuit assembly 11 and the housing 22 are elastically connected via the second vibration transmission piece.
  • at least a portion of the coil 12 may be disposed in the magnetic circuit assembly 11.
  • one end of the coil 12 can be connected to the panel 21, and the other end of the coil 12 extends into the magnetic gap 1113 of the magnetic circuit assembly 11.
  • the magnetic circuit assembly 11 will be subjected to a reaction force opposite to the coil.
  • the "elastic connection" involved in this specification may refer to two elastically connected connectors. When one of the connectors is displaced or stressed, the other connector has the ability to displace or deform relative to the connector, or the two connectors are connected by an elastic member.
  • the elastic connection may also refer to the overall structure formed by the connection of the two connectors having a specific resonant frequency, and the resonance is less than the target threshold.
  • the target threshold may be 400Hz, 600Hz, 800Hz, 1500Hz or 2000Hz, as well as other values.
  • vibration transmission plate 13 For more descriptions about the vibration transmission plate 13, please refer to the relevant descriptions elsewhere in this specification (for example, Figures 46 and 47 and their related descriptions).
  • the energy conversion method in the transducer device 10 in the embodiment of this specification can be the moving coil type described above, or it can be an electrostatic type, a piezoelectric type, a moving iron type, a pneumatic type, an electromagnetic type, etc.
  • the acoustic output device (for example, the acoustic output device 100) provided in the embodiment of this specification can be any one of a speaker, an earphone, a hearing aid, glasses, an augmented reality (AR) device, a virtual reality (VR) device, or a helmet.
  • the above-mentioned transducer device 10, panel 21, housing 22, magnetic circuit assembly 11, coil 12, vibration transmission plate 13 and other elements can be regarded as an acoustic output unit (also called a bone conduction speaker) of the acoustic output device 100 to provide sound.
  • an acoustic output unit also called a bone conduction speaker
  • the acoustic output device 100 may further include a support structure 30, which may be used to wear the bone conduction speaker of the acoustic output device 100 on the user's ear or head area (e.g., the mastoid process, temporal bone, parietal bone, frontal bone, etc. of the head, or the left and right sides of the head and located in front of the user's ear on the sagittal axis of the human body), without blocking the user's ear canal.
  • the support structure 30 may be connected to the housing 20 (e.g., the panel 21 or the housing 22).
  • the support structure 30 may also be configured as an ear hook and a rear hanging structure to be arranged around the back of the head.
  • the support structure 30 may be configured as a head beam structure and arranged around the top of the user's head.
  • the support structure 30 may be a structure having a shape that fits the human ear, such as a circular ring, an elliptical shape, a polygon (regular or irregular), a U-shaped shape, a V-shaped shape, or a semicircular shape, so that the support structure 30 may be directly hung on the user's ear.
  • users can wear two bone conduction speakers at the same time (i.e., one bone conduction speaker for each left ear and right ear) so that users can hear stereo sound.
  • stereo sound is not very demanding (for example, hearing aids for hearing-impaired patients, live broadcast prompts for hosts, etc.), users can also wear only one bone conduction speaker.
  • the support structure 30 may include a rear hanging component and two ear hanging components, the two ends of the rear hanging component are respectively connected to one end of a corresponding ear hanging component, and the other end of each ear hanging component away from the rear hanging component is respectively connected to a corresponding bone conduction speaker.
  • the rear hanging component can be arranged in a curved shape for being arranged around the back of the user's head, and the ear hanging component can also be arranged in a curved shape for being hung between the user's ear and head, thereby facilitating the wearing requirement of wearing two bone conduction speakers at the same time.
  • the two bone conduction speakers are respectively located on the left and right sides of the user's head, and the two bone conduction speakers are also attached to the user's ears or head area (for example, the facial area in front of the auricle) with the cooperation of the support structure 30, and the user can also hear the sound output by the two bone conduction speakers.
  • the acoustic output device usually needs to be equipped with some additional components (e.g., microphones, sensors, air conduction speakers, etc.) on the basis of the bone conduction speaker to meet more functional requirements.
  • a microphone can be set on the bone conduction speaker to collect the user's voice.
  • a sensor e.g., temperature sensor, humidity sensor, speed sensor, displacement sensor, etc.
  • user information e.g., the user's health status, exercise status, etc.
  • environmental information e.g., environmental information.
  • an air conduction speaker can be set on the basis of the bone conduction speaker to make it a bone-air combined speaker to output bone conduction sound and/or air conduction sound to the user to ensure that the user has a better auditory experience.
  • the internal components of the acoustic output device e.g., batteries, circuit boards, etc.
  • these internal components of the acoustic output device and the above-mentioned additional components can be regarded as additional components of the bone conduction speaker. These additional components can be directly integrated into the housing of the bone conduction speaker or attached to the magnetic circuit component 11.
  • FIG. 2 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the acoustic output device 200 is an acoustic output device 100 with an additional element 40 provided thereon.
  • the additional element 40 is rigidly connected to the housing 22.
  • the additional element 40 is directly rigidly connected to the housing 22 so that the load mass of the structure (panel 21, housing 22, additional element 40) driven by the transducer 10 increases relative to the load mass when the additional element 40 is not provided, which in turn causes the sensitivity of the acoustic output device 200 to decrease, so that the volume of the bone conduction sound output by the acoustic output device 200 decreases.
  • the additional element 40 can be provided in the accommodation cavity formed by the panel 21 and the housing 22, or can be fixed outside the accommodation cavity.
  • the additional element 40 can be located on the outer surface of the housing 22.
  • FIG3 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification.
  • the horizontal axis is frequency (Hz)
  • the vertical axis is the sound pressure (dB) corresponding to the acoustic output device at different frequencies
  • the curve L31 is the frequency response curve of the acoustic output device 100
  • the curve L32 is the frequency response curve of the acoustic output device 200.
  • the vibration force level of the bone-conducted sound of the acoustic output device is characterized by measuring the sound pressure level of the air-conducted sound near the panel 21.
  • a sound sensor e.g., a microphone
  • the determination of the frequency response curve of the acoustic output device involved in this specification can be achieved by the above method.
  • the sound pressure of the acoustic output device 200 is generally lower than that of the acoustic output device 100, that is, the sensitivity of the acoustic output device 200 is lower than that of the acoustic output device 100.
  • the additional element will affect the sensitivity of the bone conduction speaker, which is specifically manifested as a decrease in the sensitivity of the bone conduction speaker. This is because the additional element 40 has a certain mass, which increases the vibration load mass of the transducer device 10.
  • the vibration load mass of the transducer device 10 increases (at this time, the vibration load mass of the transducer device 10 may at least include the mass of the panel 21, the housing 22 and the additional element 40), the sensitivity of the bone conduction speaker will decrease, resulting in a lower volume of the sound (bone conduction sound) output by the acoustic output device 200.
  • an embodiment of the present specification provides an acoustic output device.
  • the additional element and the panel can be connected through a vibration path including at least one elastic element.
  • the panel, the elastic element, the shell and the additional element form a resonance system, and the resonance system can be in a second resonance position.
  • the resonance system generates a second resonance frequency located in the target frequency range at the second resonance position.
  • the vibration transmission between the additional element and the panel will be suppressed, that is, the influence of the additional element on the vibration of the panel will be reduced, thereby ensuring that its sensitivity is not affected or less affected by the additional element in the frequency range greater than the second resonance frequency.
  • the frequency range in which the sensitivity of the bone conduction speaker decreases due to the additional element being set on the bone conduction speaker can be reduced.
  • the frequency response curve of the acoustic output device is flatter, which can ensure that the acoustic output device has a better acoustic output effect in a wider frequency range, thereby improving the user's auditory experience.
  • the second resonant frequency is generated when the panel and the additional element vibrate in opposite directions and the distance between them reaches a maximum value.
  • the transducer When the transducer generates low-frequency (frequency range lower than the second resonant frequency) mechanical vibration, the low-frequency vibration of the panel (vibration lower than the second resonant frequency) will be transmitted to the additional element to drive the additional element to vibrate together, and the mass of the additional element will increase the vibration load mass of the transducer, so that the sensitivity of the speaker will be affected by the additional element in the range below the second resonant frequency (similar to the acoustic output device 200), and the transducer generates high-frequency (higher than the second resonant frequency) mechanical vibration.
  • the high-frequency vibration of the panel will hardly drive the additional element to vibrate together, and the mass of the additional element will not affect the vibration load mass of the transducer, thereby ensuring that the sensitivity of the acoustic output device will not be or less affected by the additional element in the frequency range higher than the second resonant frequency.
  • the additional elements may contain magnetic components (for example, components made of magnetic materials such as metal alloy magnets, ferrites, etc., energized coils, etc.) or magnetically conductive components (for example, components made of soft magnetic materials such as iron, nickel-iron alloys, etc.), they will attract or repel each other with the magnetic circuit components in the transducer device in the acoustic output device, causing the magnetic circuit components in the transducer device to flip and deform, thereby affecting the stability of the vibration of the transducer device and resulting in poor acoustic output effect of the acoustic output device.
  • magnetic components for example, components made of magnetic materials such as metal alloy magnets, ferrites, etc., energized coils, etc.
  • magnetically conductive components for example, components made of soft magnetic materials such as iron, nickel-iron alloys, etc.
  • the vibration transmission piece (also called elastic support) in the transducer device can connect the magnetic circuit component and the side wall of the shell adjacent to the panel, that is, the vibration transmission piece connects the magnetic circuit component and the side wall of the shell provided with the additional element.
  • the transducer device may include at least two vibration transmission pieces, one of which is located on the side of the transducer device facing the panel to elastically connect the transducer device to the panel; the other vibration transmission piece is located on the side of the transducer device facing away from the panel to connect the transducer device to the shell and support the transducer device to ensure that the transducer device can vibrate stably in the axial direction.
  • the vibration transmission piece located on the side of the transducer device facing away from the panel can connect the magnetic circuit component and the side wall of the shell provided with the additional element, thereby reducing or avoiding the problem that the additional element and the magnetic circuit component in the transducer device may attract or repel each other, causing the magnetic circuit component to flip and deform.
  • the vibration transmission piece of the transducer device when the additional element is rigidly connected to the support, can connect the magnetic circuit assembly and the support. At this time, the vibration transmission piece can provide support for the relative movement direction of the magnetic circuit assembly and the additional element, so that the vibration transmission piece can play a better supporting role for the magnetic circuit assembly, improve the stability between the magnetic circuit assembly and the shell, so as to avoid the additional element and the magnetic circuit assembly in the transducer device from attracting or repelling each other, causing the magnetic circuit assembly to flip and deform, and ensure that the vibration of the transducer device is relatively stable.
  • the connection end of the vibration transmission piece connected to the side wall of the shell is at least partially located in the positive projection of the additional element on the side wall of the shell.
  • at least one support rod of the vibration transmission piece is located in the positive projection of the additional element on the side wall of the shell.
  • the vibration transmission piece may include a central area and a plurality of support rods, and the plurality of support rods are spaced and distributed along the peripheral side of the central area, wherein the central area of the vibration transmission piece is connected to the side of the magnetic circuit assembly away from the panel, and the end of the support rod away from the central area is connected to the shell.
  • the vibration transmission plate is connected to the side of the magnetic circuit assembly facing away from the panel, and is connected to the middle area of the side of the magnetic circuit assembly facing away from the panel, and the middle area may refer to the geometric center area of the side of the magnetic circuit assembly facing away from the panel.
  • the center area of the vibration transmission plate is connected to the middle area of the side of the magnetic circuit assembly facing away from the panel.
  • the number of support rods may be 4, and the structure of the vibration transmission plate may be approximately regarded as an "X" type structure.
  • the "X" type structure may provide elasticity in the vibration direction of the transducer device.
  • the plurality of support rods have a high structural strength in the vibration direction perpendicular to the transducer device, and may provide a high support effect for the magnetic circuit assembly, thereby ensuring that the transducer device is flipped and deformed when it vibrates.
  • the vibration transmission plate may also include an edge area, the edge area is connected to the end of the support rod away from the center area, and the peripheral side of the edge area may be connected to the shell.
  • Fig. 4 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the structures of the transducer 410 (including the magnetic circuit component 411, the coil 412, the vibration transmission piece 413A), the shell 420 (including the panel 421, the shell 422), the support structure 430, etc. in the acoustic output device 400 shown in Fig. 4 can be respectively similar to the transducer 10 (including the magnetic circuit component 11, the coil 12, the vibration transmission piece 13), the shell 20 (including the panel 21, the shell 22), the support structure 30, etc. in the acoustic output device 200 shown in Fig. 2, and no further description is given here.
  • the main difference between the acoustic output device 400 shown in FIG4 and the acoustic output device 200 shown in FIG2 is that the additional element 440 is connected to the panel 421 through a vibration path including an elastic element 450, that is, the panel 421 is elastically connected to the shell 422 through the elastic element 450, that is, the panel 421 and the structure rigidly connected to the panel 421 (for example, the coil 412), the elastic element 450, the shell 422 and the structure rigidly connected to the shell 422 (for example, the additional element 400, the support structure 430) form a resonant system. It should be noted that when other structures are rigidly connected to the panel 421 or the shell 422, these structures are also regarded as part of the resonant system.
  • the housing 422 is a structure that is hollow inside and has an open end, and the panel 421 is located at the end of the housing 422 that has an open end, wherein the elastic element 450 is located between the panel 421 and the housing 422 to realize elastic connection between the panel 421 and the housing 422.
  • the elastic element 450 here can also be regarded as a part of the housing 420 in the acoustic output device 400, and the panel 421, the housing 422 and the elastic element 450 form a receiving cavity for accommodating the transducer device 10.
  • the elastic element 450 can be an elastic ring structure, and the panel 421 and the housing 422 can be elastically connected through the ring structure to form a receiving cavity for accommodating the transducer device 410.
  • the elastic element 450 can be a ring structure made of elastic materials such as silicone and polyurethane.
  • the ring structure may be a single ring structure with pre-deformation capability or a structure with multiple folded rings. When the panel 421 and the shell 422 are connected by the ring structure, the ring structure with pre-deformation capability may play a certain supporting role for the panel 421 and the shell 422, thereby improving the structural stability of the acoustic output device.
  • the panel 421 and the shell 422 may be elastically connected by gluing, wherein the glue used to bond the panel 421 and the shell 422 may have a certain elasticity and may be regarded as an elastic element 450.
  • the glue used to bond the panel 421 and the shell 422 may include but is not limited to gel, organic silica gel, acrylic, polyurethane, rubber, epoxy, hot melt, light curing, etc., preferably, organic silicone adhesive glue and organic silicone sealing glue.
  • the additional element 440 may be directly or indirectly rigidly connected to the shell 422.
  • the additional element 440 can be rigidly connected to the side wall of the housing 422 (for example, the side wall of the housing 422 adjacent to the panel 421 or the side wall of the housing 422 opposite to the panel 421) by welding, clamping, threading, adhesive connection, etc.
  • the additional element 440 can be rigidly connected to the housing 422 by a connecting member such as a bracket and a connecting rod.
  • the additional element 440 shown in FIG. 4 may include an element sensitive to the vibration direction (for example, a speaker, an air conduction microphone, an acceleration sensor). In the embodiment shown in FIG.
  • the additional element 440 is an air conduction microphone sensitive to the vibration direction, and the vibration direction of the diaphragm 441 of the air conduction microphone (the "second direction” shown in FIG. 4) is approximately perpendicular to the vibration direction of the transducer 410 (the "first direction” shown in FIG. 4).
  • the approximately perpendicular can be understood as the angle formed by the vibration direction of the transducer and the vibration direction of the diaphragm in the air conduction speaker is 75° to 100°, for example, 80°, 90° or 95°.
  • the diaphragm vibrates.
  • the vibration direction of the transducer device When the vibration direction of the transducer device is approximately perpendicular to the vibration direction of the diaphragm in the air conduction speaker, the vibration generated by the diaphragm and the vibration generated by the transducer device have almost no superposition effect. That is to say, the diaphragm vibrates.
  • the vibration direction of the transducer device is approximately perpendicular to the vibration direction of the diaphragm in the air conduction speaker, the sound leakage volume generated by the acoustic output device is low, so that the acoustic output device has a better sound leakage reduction effect when the element sensitive to the vibration direction is set.
  • the additional element 440 is not limited to the element sensitive to the vibration direction shown in Figure 4, and can also be a battery, a circuit board, or a sensor insensitive to the vibration direction (for example, a temperature sensor, a humidity sensor, etc.), and the additional element can be located at any position of the housing 422.
  • the additional element 440 can include both an element sensitive to the vibration direction and an element insensitive to the vibration direction.
  • the element sensitive to the vibration direction is an acceleration sensor
  • the element insensitive to the vibration direction is a circuit board.
  • the circuit board is fixedly connected to the housing 422, and the acceleration sensor is arranged on the circuit board.
  • the panel 421 and the structure rigidly connected to the panel 421 (for example, the coil 412), the shell 422 and the structure rigidly connected to the shell 422 (for example, the additional element 440) are elastically connected through the elastic element 450, and can be approximately regarded as a resonant system.
  • the resonant system can be in a second resonant position, generating a second resonant frequency whose resonant frequency is within the target frequency range, and in the frequency range after the resonant frequency corresponding to the second resonant frequency, the vibration transmission between the additional element 440 and the panel 421 will be suppressed, that is, the influence of the additional element 440 on the vibration of the panel 421 will be reduced, thereby ensuring that its sensitivity is not affected or less affected by the additional element 440 in the frequency range greater than the resonant frequency corresponding to the second resonant frequency.
  • the frequency range in which the sensitivity of the acoustic output device 400 decreases due to the additional element 440 can be reduced.
  • the frequency response curve of the acoustic output device 400 is flatter, which can ensure that the acoustic output device 400 has a good acoustic output effect in a wider frequency range, and improve the user's auditory experience.
  • the resonant frequency corresponding to the second resonant frequency can be adjusted by adjusting the ratio of the sum of the mass of the panel 421 and the element rigidly connected to the panel 421 to the sum of the mass of the shell 422 and the element fixedly connected to the shell 422, the elastic coefficient of the elastic element 450, etc., so that the resonant frequency corresponding to the second resonant frequency is located in a specific low frequency range (also referred to as a target frequency range).
  • the target frequency range can be 20Hz to 800Hz.
  • the target frequency range can be 100Hz to 600Hz.
  • the target frequency range can be 150Hz to 500Hz. More preferably, the target frequency range may be 200 Hz to 400 Hz.
  • the harmonic frequency please refer to FIG. 6 and its related description.
  • the acoustic output device 400 can also generate a first resonant frequency whose resonant frequency is in the target frequency range.
  • the first resonant frequency can be less than the second resonant frequency.
  • the difference between the frequency corresponding to the second resonant frequency and the frequency corresponding to the first resonant frequency may be no more than 300 Hz.
  • the difference between the frequency corresponding to the second resonant frequency and the frequency corresponding to the first resonant frequency may be no more than 200 Hz.
  • the difference between the frequency corresponding to the second resonant frequency and the frequency corresponding to the first resonant frequency may be no greater than 100 Hz.
  • FIG5 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG5 shows the frequency response curves of an acoustic output device 100 and an acoustic output device 400.
  • the horizontal axis is the frequency (Hz)
  • the vertical axis is the sound pressure (dB) corresponding to the speaker at different frequencies
  • curve L51 is the frequency response curve of the acoustic output device 100
  • curve L52 is the frequency response curve of the acoustic output device 400
  • curve L53 is the frequency response curve of the acoustic output device 400 after adding damping.
  • the frequency response curve of the acoustic output device 400 has a resonance valley at the first resonant frequency
  • the frequency response curve of the acoustic output device 400 has a resonance peak at the second resonant frequency.
  • the frequency response curve of the acoustic output device in the present application may not have an obvious resonance valley at the first resonant frequency, and may not have an obvious resonance peak at the second resonant frequency.
  • the resonance peak in region A is generated by the resonance system when the distance between the panel 421 and the shell 422 is at a maximum value
  • the resonance valley in region B is generated by the resonance system when the panel 421 does not vibrate or the vibration of the panel 421 is at a minimum value and the shell 422 vibrates.
  • curve L52 within the frequency range of 200 Hz to 600 Hz, the acoustic output device 400 generates a resonance peak and a resonance valley.
  • the resonance peak is generated when the panel 421 and the additional element 440 vibrate in opposite directions and the distance between the panel 421 and the additional element 440 reaches a maximum value
  • the resonance valley is generated when the panel 421 does not vibrate or the vibration of the panel 421 is at a minimum value and the shell 422 vibrates.
  • the sensitivity of the acoustic output device 100 without additional elements in Figure 3 is generally greater than the sensitivity of the acoustic output device 200 with additional elements.
  • the frequency response curves of the acoustic output device 400 and the acoustic output device 100 approximately overlap. It can be seen that in a specific frequency band (for example, a frequency range greater than the resonant frequency corresponding to the resonance peak A), the acoustic output device 400 (the additional element 440 is connected to the panel 421 through a vibration path including the elastic element 450) has a higher sensitivity than the acoustic output device 200 shown in FIG2 (the panel 21 is rigidly connected to the housing 22 having the additional element 40).
  • curves L51, L52 and L53 in the frequency range greater than the resonant frequency corresponding to the resonance peak, curves L152, L153 basically overlap with L151 and are relatively flat. It can be seen that when the frequency is greater than the resonant frequency corresponding to the resonance peak, the frequency response curve of the acoustic output device 400 is relatively flat, and the additional element 440 in the acoustic output device 400 (for example, an air conduction speaker, a sensor, a battery, a circuit board, etc.) will not affect the sensitivity of the speaker 400 in a frequency range higher than the resonant frequency corresponding to the resonance peak.
  • the additional element 440 in the acoustic output device 400 for example, an air conduction speaker, a sensor, a battery, a circuit board, etc.
  • the resonant frequency corresponding to the resonance peak can be adjusted by adjusting the ratio of the mass of the panel 421 to the sum of the masses of the housing 422 and the additional element 440, the elastic coefficient of the elastic element 450, etc., so that the resonant frequency corresponding to the resonance peak is within a specific frequency range (for example, less than 2000Hz, less than 1500Hz, less than 800Hz, less than 600Hz).
  • a specific frequency range for example, less than 2000Hz, less than 1500Hz, less than 800Hz, less than 600Hz.
  • a damping material can be set in the elastic element 450 to increase the damping of the acoustic output device 400.
  • the damping material can include butyl, acrylate, polysulfide, nitrile and silicone rubber, polyurethane, polyvinyl chloride and epoxy resin, etc. or a combination thereof.
  • FIG6 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG6 shows the frequency response curves of the acoustic output device 400 corresponding to different ratios between the mass of the panel 421 and the sum of the masses of the shell 422 and the additional element 440.
  • the horizontal axis is the frequency (Hz)
  • the vertical axis is the sound pressure (dB) corresponding to the speaker at different frequencies
  • the curve L61 is the frequency response curve of the acoustic output device 400 when the ratio between the sum of the mass of the panel 421 and the element rigidly connected to the panel 421 (for example, the coil 412) and the sum of the mass of the shell 422 and the element rigidly connected to the shell 422 (for example, the additional element 440) is 0.16 and the elastic coefficient is 588 N/m
  • the curve L62 is the frequency response curve of the acoustic output device 400 when the ratio between the sum of the mass of the panel 421 and the element rigidly connected to the panel 421 and the sum of the mass of the shell 422 and the element rigidly connected to the shell 422 is 0.36 and the elastic coefficient is 2000 N/m.
  • curve L63 is the frequency response curve of the acoustic output device 400 when the ratio between the sum of the mass of the panel 421 and the element rigidly connected to the panel 421 and the sum of the mass of the shell 422 and the element rigidly connected to the shell 422 is 1.03
  • curve L64 is the frequency response curve of the acoustic output device 400 when the ratio between the sum of the mass of the panel 421 and the element rigidly connected to the panel 421 and the sum of the mass of the shell 422 and the element rigidly connected to the shell 422 is 3.07
  • curve L65 is the frequency response curve of the acoustic output device 400 when the ratio between the sum of the mass of the panel 421 and the element rigidly connected to the panel 421 and the sum of the mass of the shell 422 and the element rigidly connected to the shell 422 is 5.14.
  • the resonance peak in region C is the resonance peak generated by the resonance system formed by the panel 421, the additional element 440 and the elastic element 450 during the vibration process, wherein the resonance peaks of curves L61 to L65 in region C overlap.
  • the resonance valley in the region D is a resonance valley generated during the vibration of the resonance system formed by the panel 421 , the additional element 440 and the elastic element 450 .
  • the frequency response curve of the acoustic output device 400 is relatively flat in the frequency range higher than the resonant frequency corresponding to the resonance peak, so that the acoustic output device 400 can output better sound quality in the frequency range higher than the resonant frequency corresponding to the resonance peak.
  • the frequency corresponding to the resonance valley increases accordingly, the difference between the frequency corresponding to the resonance valley and the frequency corresponding to the resonance peak is smaller, the difference between the resonance valley and the resonance peak is smaller, the effect of the additional element 440 on the frequency response of the acoustic output device 400 is smaller, the frequency response curve of the acoustic output device 400 is flatter, and the acoustic output device 400 has better sound quality.
  • the effect of the additional element 440 on the frequency response of the acoustic output device 400 can be reduced by adjusting the ratio between the sum of the mass of the panel 421 and the element rigidly connected to the panel 421 and the sum of the mass of the shell 422 and the element rigidly connected to the shell 422.
  • the ratio between the sum of the mass of the panel 421 and the element rigidly connected to the panel 421 and the sum of the mass of the shell 422 and the element rigidly connected to the shell 422 can be in the range of 0.16 to 7.
  • the ratio of the sum of the mass of the panel 421 and the elements rigidly connected to the panel 421 to the sum of the mass of the shell 422 and the elements rigidly connected to the shell 422 may be 0.36 to 6. In some embodiments, the ratio of the sum of the mass of the panel 421 and the elements rigidly connected to the panel 421 to the sum of the mass of the shell 422 and the additional element 440 may be 1.03 to 5.14. In some embodiments, the ratio of the sum of the mass of the panel 421 and the elements rigidly connected to the panel 421 to the sum of the mass of the shell 422 and the elements rigidly connected to the shell 422 may be 1.03 to 3.07.
  • the acoustic output device 400 may further include a support structure 430, and the support structure 430 may be rigidly connected to the housing 422.
  • the support structure 430 may be rigidly connected to a side wall of the housing 422 opposite to the panel 421.
  • FIG7 is a schematic diagram of the structure of an acoustic output device provided according to some embodiments of the present application. As shown in FIG7 , the support structure 430 in the acoustic output device 700 may be rigidly connected to the panel 421 .
  • the connection between the support structure 430 and the panel 421 or the housing 422 has little effect on the frequency response of the acoustic output device.
  • the support structure 430 can be an ear hook, which is usually made of a flexible material and has a good ability to undergo elastic deformation. Accordingly, the support structure 430 usually affects the vibration of the bone conduction speaker in a very low frequency band (for example, around 20 Hz and below), and this frequency band is usually a frequency band that is inaudible to the human ear. See Figure 8 and its related description for details.
  • Figure 8 is a frequency response curve diagram of an acoustic output device shown in some embodiments of this specification.
  • FIG8 shows the frequency response curves of the acoustic output device 400 and the acoustic output device 700.
  • the horizontal axis is the frequency (Hz)
  • the vertical axis is the sound pressure (dB) corresponding to the acoustic output device 400 at different frequencies
  • the curve L71 is the frequency response curve when the support structure 430 in the acoustic output device 400 is rigidly connected to the shell 422
  • the curve L72 is the frequency response curve when the support structure 430 in the acoustic output device 700 is rigidly connected to the panel 421.
  • the rigid connection of the support structure 430 to the panel 421 or the rigid connection to the shell 422 has almost no effect on the frequency response of the acoustic output device 400. Therefore, in the acoustic output device 400 of the embodiment of the present specification, the support structure 430 can be rigidly connected to the panel 421 or rigidly connected to the shell 422.
  • the magnetic circuit component 411 and the panel 421 are connected by the vibration transmission piece 413A, which may cause the magnetic circuit component 411 and the additional element 440 to attract or repel each other, causing the magnetic circuit component to flip and deform, thereby affecting the vibration stability of the transducer device 410.
  • the vibration transmission piece 413A between the magnetic circuit component 411 and the panel 421 can be replaced by a vibration transmission piece 413B (indicated by the dotted line in Figures 4 and 7).
  • the vibration transmission piece 413B is located between the magnetic circuit component 411 and the side wall of the housing 422 opposite to the panel 421, wherein one side of the vibration transmission piece 413B can be connected to the side of the magnetic circuit component 411 away from the panel 421, and the peripheral side of the vibration transmission piece 413B can be connected to the side wall of the housing 422 adjacent to the panel 421.
  • the vibration transmission piece 413B is located between the magnetic circuit assembly 411 and the side wall of the housing 422 opposite to the panel 421.
  • the vibration transmission piece 413B can strengthen the support effect of the magnetic circuit assembly 411 near the additional element 440, and improve the vibration stability of the transducer device, especially the magnetic circuit assembly 411.
  • the acoustic output device 400 or 700 can include both the vibration transmission piece 413A and the vibration transmission piece 413B.
  • FIG9 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the structures of the transducer device 910 including a magnetic circuit component 911, a coil 912, a vibration-transmitting piece 913A, a vibration-transmitting piece 913B), a housing 920 (including a panel 921), a support structure 930, an additional element 940, an elastic element 950, etc.
  • the transducer device 410 including a magnetic circuit component 411, a coil 412, a vibration-transmitting piece 413A, a vibration-transmitting piece 413B), a housing 420 (including a panel 421), a support structure 430, an additional element 440, and an elastic element 450 in the acoustic output device 400, and no further description is given here.
  • the main difference between the acoustic output device 900 shown in FIG9 and the acoustic output device 700 shown in FIG7 is that in the acoustic output device 900, the housing 922 includes one or more pressure relief holes 9221 for connecting the air inside and outside the housing 920.
  • the pressure relief hole 9221 can be provided on the side wall of the housing 922 that is opposite and/or adjacent to the panel 921. In some embodiments, the pressure relief hole 9221 can also be provided at the elastic element 950. For example, when the elastic element 950 is a ring structure having elasticity, the pressure relief hole 9221 can be provided at the ring structure. For another example, in some embodiments, the elastic element 950 can also be a reed or an elastic net having a through hole, and the slits on the through hole or the elastic net can replace the pressure relief hole 9221 to connect the air outside and inside the housing 922.
  • the pressure relief hole 9221 here can also be used in the acoustic output devices provided in other embodiments of this specification, for example, the acoustic output devices 300, 400, 700, 1200, 1300, 1500, 1700, 1800, 1900, 2000, 2200, 2400, 2500, 2600, 2700, 2900, 3000, 3100, etc.
  • the magnetic circuit assembly 911 and the panel 921 are connected by the vibration transmission piece 913A, which may cause the magnetic circuit assembly 911 and the additional element 940 to attract or repel each other, causing the magnetic circuit assembly to flip and deform, thereby affecting the vibration stability of the transducer device 910.
  • the vibration transmission piece 913A between the magnetic circuit assembly 911 and the panel 921 can be replaced by a vibration transmission piece 913B (indicated by the dotted line in FIG. 9).
  • the vibration transmission piece 913B is located between the magnetic circuit assembly 911 and the side wall of the housing 922 opposite to the panel 921, wherein one side of the vibration transmission piece 913B can be connected to the side of the magnetic circuit assembly 911 away from the panel 921, and the peripheral side of the vibration transmission piece 913B can be connected to the side wall of the housing 922 adjacent to the panel 921.
  • the vibration transmission piece 913B is located between the magnetic circuit assembly 911 and the side wall of the housing 922 opposite to the panel 921.
  • the vibration transmission piece 913B can strengthen the support effect of the magnetic circuit assembly 911 near the additional element 940, and improve the vibration stability of the transducer device, especially the magnetic circuit assembly 911.
  • the acoustic output device 900 can include both the vibration transmission piece 913A and the vibration transmission piece 913B.
  • FIG10 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • FIG10 shows frequency response curves of an acoustic output device 700 and an acoustic output device 900.
  • the horizontal axis is frequency (Hz)
  • the vertical axis is the sound pressure (dB) corresponding to the acoustic output device at different frequencies
  • curve L101 is the frequency response curve of the acoustic output device 700, which has a resonance peak 1011
  • curve L102 is the frequency response curve of the acoustic output device 900, which has a resonance peak 1021.
  • the resonance frequency corresponding to the resonance peak 1011 is higher than the resonance frequency corresponding to the resonance peak 1021, and the frequency range in which the sensitivity of the acoustic output device 900 is not or less affected by the additional element (i.e., the frequency range greater than the resonance frequency corresponding to the resonance peak 1021) is wider than the frequency range in which the sensitivity of the acoustic output device 700 is not or less affected by the additional element (i.e., the frequency range greater than the resonance frequency corresponding to the resonance peak 1011).
  • the resonance frequency corresponding to the resonance peak generated by the elastic element driving the additional element relative to the panel vibration can be reduced, so as to broaden the frequency range in which the sensitivity of the acoustic output device is not or is less affected by the additional element.
  • the vibration of the shell and/or the panel will drive the vibration of the external air to generate sound leakage.
  • Providing a pressure relief hole on the shell of the acoustic output device can also reduce the sound leakage volume of the acoustic output device.
  • the pressure relief hole can guide the sound generated by the vibration of the magnetic circuit component inside the accommodating cavity to the outside world, and offset the sound leakage generated by the vibration of the shell and/or the panel, thereby reducing the sound leakage volume of the acoustic output device.
  • the mass of the additional element can be adjusted to reduce the sound leakage volume of the acoustic output device in a frequency range higher than the resonant frequency corresponding to the above-mentioned resonant peak.
  • FIG11 is a frequency response curve diagram of the acoustic output device shown in some embodiments of the present specification.
  • FIG11 shows the sound leakage frequency response curve of the back panel side (i.e., the side of the side wall of the housing 922 opposite to the panel 921) and the frequency response curve of the panel 921 side of the acoustic output device 900 when the additional element has different masses.
  • the abscissa is frequency (Hz)
  • the ordinate is the sound pressure (dB) corresponding to the acoustic output device at different frequencies
  • curve L111 is the leakage sound response curve of the acoustic output device 900 when the mass of the additional element is 0g
  • curve L112 is the leakage sound response curve of the acoustic output device 900 when the mass of the additional element is 0.7g
  • curve L113 is the leakage sound response curve of the acoustic output device 900 when the mass of the additional element is 1.4g
  • curve L114 is the leakage sound response curve of the acoustic output device 900 when the mass of the additional element is 2.1g
  • region 1101 is the frequency response curve of the acoustic output device 900 when the additional element has different masses
  • region 1102 is the resonance peak region of the acoustic output device 900 when the additional element has different masses.
  • the leakage sound response curve of the acoustic output device 900 can be measured by collecting the air conduction sound on the side of the side wall of the housing 922 opposite to the panel 921, and the frequency response curve of the acoustic output device 900 can be measured by collecting the air conduction sound on the side of the panel 921. As shown in the regions 1101 and 1102 of FIG.
  • the sensitivity of the acoustic output device 900 is substantially the same, that is, the sensitivity of the acoustic output device 900 does not increase with the increase of the mass of the additional element.
  • the curves L111 to L114 it can be seen from the curves L111 to L114 that as the mass of the additional element increases, the resonant frequency corresponding to the resonant peak in the leakage sound response curve of the acoustic output device 900 will decrease.
  • the mass of the additional element can be adjusted so that the resonant frequency corresponding to the resonant peak in the leakage sound response curve of the acoustic output device is less than the resonant frequency corresponding to the resonant peak in the frequency response curve of the acoustic output device, thereby making the acoustic output device 900 produce a smaller leakage sound volume in the frequency band where its sensitivity is not affected by the mass of the additional element (for example, 300 Hz to 8000 Hz).
  • the resonance frequency corresponding to the resonance peak in the leakage sound frequency curve of the acoustic output device may be no greater than 700 Hz.
  • the resonance frequency corresponding to the resonance peak in the leakage sound frequency curve of the acoustic output device may be no greater than 500 Hz. Further preferably, the resonance frequency corresponding to the resonance peak in the leakage sound frequency curve of the acoustic output device may be no greater than 300 Hz. More preferably, the resonance frequency corresponding to the resonance peak in the leakage sound frequency curve of the acoustic output device may be no greater than 200 Hz.
  • the pressure relief hole and the scheme for adjusting the mass of the additional component are not only applicable to the acoustic output device 900, but also applicable to other acoustic output devices provided in the embodiments of this specification (for example, the acoustic output devices 400, 700, 1200, etc.).
  • Fig. 12 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the transducer 1210 (including magnetic circuit assembly 1211, coil 1212, vibration transmission piece 1213A, vibration transmission piece 1213B), housing 1220 (including panel 1221), support structure 1230, and additional element 1240 in the acoustic output device 1200 shown in Fig. 12 can be similar to the transducer 410 (including magnetic circuit assembly 411, coil 412, vibration transmission piece 413A, vibration transmission piece 413B), housing 420 (including panel 421), support structure 430, and additional element 440 in the acoustic output device 700, and no further description is given here.
  • the main difference between the acoustic output device 1200 and the acoustic output device 700 is that the side wall (also referred to as the back plate 12221) in the shell 1222 of the acoustic output device 1200 is connected to the other side walls (the side wall adjacent to the panel 1221, also referred to as the shell body 12222) in the shell 1222 through the elastic element 1260.
  • the elastic element 1260 can be a ring structure, which can be made of an elastic material.
  • the shell 1222 can include a shell body 12222 and a back plate 12221, wherein the shell body 12222 is a side wall on the shell 1222 adjacent to the panel 1221, and the back plate 12221 is a side wall on the shell 1222 opposite to the panel 1221.
  • the back plate 1221 is independently arranged relative to the shell body, and the ring structure is arranged around the circumference of the back plate 12221, and the circumference of the ring structure is connected to the side wall of the shell body 12222.
  • the structure of the elastic element 1260 shown in Figure 12 is only an example and is not intended to limit it.
  • the elastic element 1260 can also be a structure made of elastic material with other shapes (for example, strips, sheets, plates, etc.).
  • the elastic material may include polycarbonate (PC), polyamides (PA), acrylonitrile butadiene styrene (ABS), polystyrene (PS), high impact polystyrene (HIPS), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyurethanes (PU), polyethylene (PE), phenolic resin (PF), urea-formaldehyde resin (UF), melamine-formaldehyde resin (MF), polyarylate (PAR), polyetherimide (PEI), poly Any one of polyimide (PI), polyethylene naphthalate two formic acid glycol ester (PEN), polyetheretherketone (PEEK), carbon fiber, graphene, silicone, etc.
  • PC polycarbonate
  • PA polyamides
  • ABS acrylonitrile butadiene
  • the elastic element 1260 may be an elastic structure, which may mean that the structure itself has elasticity. Even if the material is relatively hard, the elastic element 1260 itself has elasticity because the structure itself has elasticity.
  • the elastic structure may include a structure such as a reed structure, that is, the elastic element 1260 may be a reed structure.
  • the elastic element 1260 may also be a glue with a certain elasticity for bonding the housing body 12222 and the back plate 12221.
  • the glue with a certain elasticity may be silicone adhesive glue, silicone water, etc.
  • the connection between the housing body 12222 and the back plate 12221 may be a sealed connection.
  • connection between the shell body 12222 and the back plate 12221 may not be a sealed connection.
  • the gap between the shell body 12222 and the back plate 12221 may serve as a pressure relief hole to connect the air inside and outside the shell 1222 to reduce the resonant frequency corresponding to the resonance peak of the acoustic output device 1200, so that the frequency range in which the sensitivity of the acoustic output device 1200 is not affected by additional components (or corresponding to a flat frequency response curve) is wider.
  • the back plate 12221 in the acoustic output device 1200 is connected to the shell body 12222 through the elastic element 1260.
  • the back plate 12221 and the elastic element 1260 can be equivalent to a mass-elasticity module, which can have a vibration isolation effect, so that the high-frequency vibration generated by the transducer 1210 cannot be transmitted to the back plate 12221, thereby avoiding high-frequency sound leakage caused by high-frequency vibration of the back plate 12221.
  • the back panel and the shell body of other acoustic output devices provided in the embodiments of this specification (for example, the acoustic output device 400 shown in Figure 4, the acoustic output device 900 shown in Figure 9, the acoustic output device 1300 shown in Figure 13, etc.) can also be connected by an elastic element to avoid high-frequency sound leakage on the back panel side of the acoustic output device.
  • the magnetic circuit component 1211 and the panel 1221 are connected by the vibration transmission piece 1213A, and the magnetic circuit component 1211 and the additional element 1240 may attract or repel each other, causing the magnetic circuit component to flip and deform, thereby affecting the vibration stability of the transducer device 1210.
  • the vibration transmission piece 1213A between the magnetic circuit component 1211 and the panel 1221 can be replaced by a vibration transmission piece 1213B (indicated by the dotted line in FIG. 12).
  • the vibration transmission piece 1213B is located between the magnetic circuit assembly 1211 and the side wall of the housing 1222 opposite to the panel 1221, wherein one side of the vibration transmission piece 1213B can be connected to the side of the magnetic circuit assembly 1211 away from the panel 1221, and the peripheral side of the vibration transmission piece 1213B can be connected to the side wall of the housing 1222 adjacent to the panel 421 (housing body 1222).
  • the vibration transmission piece 1213B is located between the magnetic circuit assembly 1211 and the side wall of the housing 1222 opposite to the panel 1221, and the vibration transmission piece 1213B can strengthen the support effect of the position of the magnetic circuit assembly 1211 close to the additional element 1240, and improve the vibration stability of the transducer device, especially the magnetic circuit assembly.
  • the acoustic output device 1200 can include both the vibration transmission piece 1213A and the vibration transmission piece 1213B.
  • the magnetic circuit assembly 1211 may include a hole 12111 and a positioning rod 12112.
  • the hole 12111 may penetrate the magnetic circuit assembly 12111 along the vibration direction of the transducer device 1210 (the first direction shown in FIG. 12 ).
  • the end of the positioning rod 12112 away from the panel 1221 is connected to the back plate 12221, and the other end passes through the hole 12111 and is connected to the panel 1221.
  • the other end of the positioning rod 12112 may be connected to the panel 1221, so that the panel 1221 can drive the back plate 12221 to vibrate together, thereby reducing the sound leakage caused by the asynchronous vibration of the panel 1221 and the back plate 12221.
  • the cooperation between the positioning rod 12112 and the hole 12111 can further increase the stability of the magnetic circuit assembly 1211, and reduce the risk of the magnetic circuit assembly 1211 being attracted or repelled by the additional element 1240 and flipping and deforming.
  • the magnetic circuit assembly including the hole portion 12111 and the positioning rod 12112 is also applicable to other acoustic output devices in the embodiments of this specification, for example, the acoustic output device 400 shown in Figure 4, the acoustic output device 700 shown in Figure 7, the acoustic output device 900 shown in Figure 9, the acoustic output device 1300 shown in Figure 13, the acoustic output device 1500 shown in Figure 15, etc.
  • FIG. 13 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the acoustic output device 1300 includes a transducer 1310, a housing 1320, a support structure 1330, an additional element 1340, and an elastic element 1350.
  • the transducer 1310 may include a magnetic circuit assembly 1311, a coil 1312, a vibration transmission piece 1313A, and a vibration plate 1314, and the vibration plate 1314 is elastically connected to the magnetic circuit assembly 1311 through the vibration transmission piece 1313A.
  • the housing 1320 may include a panel 1321 and a housing 1322.
  • the housing 1322 may include a back plate 13221 opposite to the panel 1321 and a housing body 13222 adjacent to the panel 1321.
  • the support structure 1330 may be rigidly connected to the panel 1321 or rigidly connected to the housing 1322 (e.g., the back plate 13221 or the housing body 13222).
  • the elastic element 1350 may be a vibration damping sheet
  • the panel 1321 may be elastically connected to the housing 1322 through the vibration damping sheet
  • the additional element 1340 may be rigidly connected to the housing 1322
  • the panel 1321 is rigidly connected to the vibration plate 1314
  • the housing 1322 is connected to the vibration plate 1314 and the panel 1321 through the vibration damping sheet.
  • the vibration plate 1314 may be connected to the coil 1312, and when the transducer 1310 is working, the coil 1312 can drive the vibration plate 1314 and the panel 1321 to vibrate mechanically.
  • the vibration plate 1314 and the panel 1321 may be rigidly connected through a rigid member (for example, a connecting rod), and the rigid member may be connected to the housing 1322 (the side wall of the housing 1322 adjacent to the panel 1321) through the vibration damping sheet, thereby realizing the connection between the housing 1322 and the vibration plate 1314 and the panel 1321.
  • a rigid member for example, a connecting rod
  • the panel 1321 and the structure rigidly connected to the panel form a resonant system.
  • the resonance system can generate a resonance peak within the target frequency range.
  • the vibration transmission between the additional element 1340 and the panel 1321 will be suppressed, that is, the influence of the additional element 1340 on the vibration of the panel 1321 will be reduced, thereby ensuring that its sensitivity is not affected or less affected by the additional element 1340 within the frequency range greater than the resonance frequency corresponding to the resonance peak.
  • the resonance frequency corresponding to the resonance peak at a lower frequency position, the frequency range in which the sensitivity of the acoustic output device 1300 decreases due to the additional element 1340 can be reduced.
  • the frequency response curve of the acoustic output device 1300 is flatter, which can ensure that the acoustic output device 1300 has a better acoustic output effect within a wider frequency range, thereby improving the user's auditory experience.
  • the shell 1322, supporting structure 1330, additional element 1340, magnetic circuit assembly 1311, coil 1312 and vibration-transmitting plate 1313A can be respectively similar to the shell 422, supporting structure 430, additional element 440, magnetic circuit assembly 411, coil 412 and vibration-transmitting plate 413A in the acoustic output device 400, and are not further elaborated here.
  • the vibration damping sheet may be a sheet structure made of an elastic material (e.g., silicone, polyurethane, etc.).
  • the vibration damping sheet may be an elastic structure (e.g., a reed structure) that is elastic in structure itself.
  • the mechanical vibration generated by the transducer 1310 may be less or even not transmitted to the housing 1322, so that the mass of the housing 1322 and the additional element 1340 will not cause an increase in the vibration load mass of the transducer 1310 in a frequency range higher than the resonant frequency corresponding to the resonance peak, and the sensitivity of the acoustic output device 1300 in a frequency range higher than the resonant frequency corresponding to the resonance peak will not be affected by the additional element 1340 and the housing 1322 (and related components arranged in the housing 1322, such as the support structure 1330, the battery, and the circuit board), and the frequency response curve of the acoustic output device 1300 is relatively flat in a frequency range higher than the resonant frequency corresponding to the resonance peak, thereby ensuring that the acoustic output device 1300 can output better sound quality.
  • the side wall of the housing 1322 opposite to the panel 1321 can be connected to the other side walls of the housing 1322 (e.g., the housing body 13222) through an elastic element.
  • the method of connecting the housing body 12222 and the back plate 12221 through the elastic element 1260 in the acoustic output device 1200 shown in FIG. 12 is also applicable to the connection between the housing body 13222 and the back plate 13221 in the acoustic output device 1300.
  • FIG. 14 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • FIG. 14 shows frequency response curves of the acoustic output device 200 and the acoustic output device 1300 when the additional elements have different masses.
  • the abscissa is frequency (Hz)
  • the ordinate is the sound pressure (dB) corresponding to the acoustic output device at different frequencies
  • curve L141 is the frequency response curve of the acoustic output device 200 when the mass of the additional element 40 is 0g
  • curve L142 is the frequency response curve of the acoustic output device 200 when the mass of the additional element 40 is 1
  • curve L144 is the frequency response curve of the acoustic output device 200 when the mass of the additional element 40 is 2g
  • curve L145 is the frequency response curve of the acoustic output device 200 when the mass of the additional element 40 is 3g
  • curve L146 is the frequency response curve of the acoustic output device 1300 when the mass of the additional element 1340 is 2g
  • curve L147 is the frequency response curve of the acoustic output device
  • the acoustic output device 1300 can solve the problem of low sensitivity caused by setting an additional element on the bone conduction acoustic output device.
  • the frequency response curve of the acoustic output device 200 within the frequency range of 500Hz-5000Hz, as the mass of the additional element 40 increases, the sound pressure of the acoustic output device 200 will decrease as a whole, that is, the sensitivity of the acoustic output device 200 is decreasing. It can be seen that the sensitivity of the acoustic output device 200 will be affected by the mass of the additional element 40.
  • the frequency response curve of the acoustic output device 1300 it can be seen that within the frequency range of 500 Hz-5000 Hz, the frequency response curve of the acoustic output device 1300 is relatively flat, and as the mass of the additional element 1340 increases, the sound pressure of the acoustic output device 1300 does not change as a whole, that is, the sensitivity of the acoustic output device 1300 does not change.
  • the sensitivity of the acoustic output device 1300 will not be affected by the mass of the additional element 1340 and will not change, so that the acoustic output device 1300 has a relatively flat frequency response curve within the frequency range of 500 Hz-5000 Hz, thus ensuring that the acoustic output device 1300 can output better sound quality.
  • the magnetic circuit component 1311 and the vibration plate 1314 are connected by the vibration transmission piece 1313A, and the magnetic circuit component 1311 and the additional element 1340 may attract or repel each other, causing the magnetic circuit component to flip and deform, thereby affecting the vibration stability of the transducer device 1310.
  • the vibration transmission piece 1313A between the magnetic circuit component 1311 and the vibration plate 1314 can be replaced by a vibration transmission piece 1313B (shown by the dotted line in FIG. 13).
  • the vibration transmission piece 1313B is located between the magnetic circuit assembly 1311 and the side wall of the housing 1322 opposite to the panel 1321, wherein one side of the vibration transmission piece 1313B can be connected to the side of the magnetic circuit assembly 1311 away from the panel 1321, and the peripheral side of the vibration transmission piece 1313B can be connected to the side wall of the housing 1322 adjacent to the panel 1321 (housing body 1322).
  • the vibration transmission piece 1313B is located between the magnetic circuit assembly 1311 and the side wall of the housing 1322 opposite to the panel 1321, and the vibration transmission piece 1313B can strengthen the support effect of the position of the magnetic circuit assembly 1311 close to the additional element 1340, and improve the vibration stability of the transducer device, especially the magnetic circuit assembly 1311.
  • the acoustic output device 1300 can include both the vibration transmission piece 1313A and the vibration transmission piece 1313B.
  • FIG. 15 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the transducer device 1510 (including the magnetic circuit component 1511, the coil 1512, the vibration-transmitting plate 1513A), the panel 1521, the shell 1520 (including the panel 1521 and the shell 1522), the support structure 1530, the additional component 1540 and other structures in the acoustic output device 1500 can be respectively similar to the transducer device 410 (including the magnetic circuit component 411, the coil 412, the vibration-transmitting plate 413A), the shell 420 (including the panel 421, the shell 422), the support structure 430, the additional component 440 and other structures in the acoustic output device 400, and are not further elaborated here.
  • the difference between the acoustic output device 1500 and the acoustic output device 400 is that in the acoustic output device 1500, the panel 1521 is rigidly connected to the shell 1522, the additional element 1540 can be connected to the side wall of the shell 1522 through the elastic element 1550, and the additional element 1540 and the elastic element 1550 can serve as at least a partial structure of the side wall of the shell 1522.
  • the side wall of the shell 1522 may include a side wall opposite to the panel 1521 (i.e., the back plate 15221) and a side wall adjacent to the panel 1521 (i.e., the shell body 15222).
  • the elastic element 1550 may be an elastic ring structure, and the additional element 1540 may be connected to the side wall of the shell 1522 through the ring structure.
  • a hole or groove matching the shape of the additional element 1540 is provided on the side wall of the housing 1522, and the ring structure is sleeved on the peripheral side of the additional element 1540.
  • the additional element 1540 sleeved with the ring structure can be embedded in the hole or groove on the side wall of the housing 1522, so that the additional element 1540 and the elastic element 1550 can be used as part of the side wall.
  • the elastic ring structure can be replaced with elastic glue to bond the peripheral side of the additional element 1540 to the inner wall of the hole or groove on the side wall of the housing 1522.
  • the elastic element 1550 may be a leaf spring structure, the additional element 1540 is connected to the leaf spring structure on the surface, or is embedded in the leaf spring structure, and the peripheral side of the leaf spring structure may be connected to the panel 1521 and/or other side walls of the housing 1522, so that the additional element 1540 and the elastic element 1550 may completely serve as one of the side walls of the housing 1522 or a part thereof, and in this case, the elastic element 1550, the additional element 1540, the panel 1521, and the housing 1522 may together form a receiving cavity.
  • the leaf spring structure may be a sheet-like structure having elasticity made of metal material (e.g., iron, aluminum, copper, etc.) or non-metal material (e.g., rubber, polyurethane material, etc.).
  • the acoustic output device 1500 may include a support plate (not shown in Figure 15), the additional element 1540 may be arranged on the support plate, and the support plate is connected to the side wall of the shell 1522 through the elastic element 1550, wherein the support plate can be located inside or outside the shell 1522, or the elastic element 1550 and the support plate can serve as one of the side walls or part of the side wall of the shell 1522.
  • the panel 1521 and the housing 1522, as well as structures rigidly connected to the panel 1521 or the housing 1522 (e.g., coil 1512, support structure 1530, etc.), and the additional element 1540 are elastically connected by elastic elements 1550 to form a resonant system. It should be noted that when other structures are rigidly connected to the panel 1521 or the housing 1522, these structures are also considered to be part of the resonant system.
  • the resonant system can generate a resonant peak within the target frequency range.
  • the vibration transmission between the additional element 1540 and the panel 1521 will be suppressed, that is, the influence of the additional element 1540 on the vibration of the panel 1521 will be reduced, thereby ensuring that its sensitivity is not affected or less affected by the additional element 1540 within the frequency range greater than the resonant frequency corresponding to the resonant peak.
  • the frequency range in which the sensitivity of the acoustic output device 1500 decreases due to the additional element 1540 can be reduced.
  • the frequency response curve of the acoustic output device 1500 is flatter, which can ensure that the acoustic output device 1500 has a good acoustic output effect in a wider frequency range, thereby improving the user's auditory experience.
  • the elastic element 1550 can drive the additional element 1540 to vibrate relative to the panel 1521 to produce a resonance valley within the target frequency range.
  • the target frequency range may be 20Hz to 800Hz.
  • the target frequency range may be 100Hz to 600Hz.
  • the target frequency range may be 150Hz to 500Hz.
  • the target frequency range may be 200Hz to 400Hz.
  • the frequency corresponding to the resonance valley may be less than the frequency corresponding to the resonance peak.
  • the difference between the frequency corresponding to the resonance peak and the frequency corresponding to the resonance valley may be no more than 300Hz.
  • the difference between the frequency corresponding to the resonance peak and the frequency corresponding to the resonance valley may be no more than 200Hz.
  • the difference between the frequency corresponding to the resonance peak and the frequency corresponding to the resonance valley may be no more than 100Hz.
  • the difference between the resonance peak and the resonance valley may be in the range of 20dB to 100dB.
  • the difference between the resonance peak and the resonance valley may be in the range of 20dB to 60dB.
  • the difference between the resonance peak and the resonance valley may be in the range of 20dB to 40dB.
  • the elastic coefficient of the elastic element 1550 and the mass of the additional element 1540 can be adjusted to make the resonance peak within the target frequency range be located within a specific frequency range, so that the acoustic output device 1500 can reduce the frequency range in which the additional element 440 affects the acoustic output device 400, and have a flat frequency response curve within a wider frequency band to output better sound quality, while ensuring that the sensitivity of the acoustic output device 1500 will not be affected by the additional element 1540 within a wider frequency band, as shown in Figure 16 for details.
  • FIG. 16 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • FIG16 shows the frequency response curves when the elastic element 1550 in the acoustic output device 1500 has different elastic coefficients and the additional element 1540 has different masses.
  • the horizontal axis is the frequency (Hz), and the vertical axis is the sound pressure (dB) corresponding to the acoustic output device at different frequencies.
  • Curve L161 is the frequency response curve of the acoustic output device 1500 when the elastic coefficient of the elastic element 1550 is 8800 N/m and the mass of the additional element 1540 is 2g.
  • Curve L162 is the frequency response curve of the acoustic output device 1500 when the elastic coefficient of the elastic element 1550 is 16500 N/m and the mass of the additional element 1540 is 2g.
  • Curve L163 is the frequency response curve of the acoustic output device 1500 when the elastic coefficient of the elastic element 1550 is 16500 N/m and the mass of the additional element 1540 is 0.3g.
  • the resonance peak in region E is the resonance peak generated by the elastic element 1550 driving the additional element 1540 to vibrate relative to the panel 1521 and is within the target frequency range.
  • the resonance valley in region F is a resonance valley within the target frequency range generated by the elastic element 1550 driving the additional element 1540 to vibrate relative to the panel 1521.
  • the elastic coefficient of the elastic element 1550 and/or the mass of the additional element 1540 can be adjusted so that the resonance frequency is within the target frequency range to broaden the frequency range in which the sensitivity of the acoustic output device 1500 is not affected by the additional element 1540.
  • the target frequency range may be no greater than 700 Hz.
  • the target frequency range may be no greater than 500 Hz.
  • the target frequency range may be no greater than 500 Hz.
  • the target frequency range may be no greater than 300 Hz. More preferably, the target frequency range may be no greater than 200 Hz, and so on.
  • the magnetic circuit assembly 1511 and the panel 1521 are connected via the vibration transmission piece 1513A, and the magnetic circuit assembly 1511 and the additional element 1540 may attract or repel each other, causing the magnetic circuit assembly to flip and deform, thereby affecting the vibration stability of the transducer 1510.
  • the vibration transmission piece 1513A between the magnetic circuit assembly 1511 and the panel 1221 can be replaced by a vibration transmission piece 1513B (shown by the dotted line in FIG. 15).
  • the vibration transmission piece 1513B is located between the magnetic circuit assembly 1211 and the side wall of the housing 1222 opposite to the panel 1221, wherein one side of the vibration transmission piece 1513B can be connected to the side of the magnetic circuit assembly 1511 away from the panel 1521, and the peripheral side of the vibration transmission piece 1513B can be connected to the side wall of the housing 1522 adjacent to the panel 1521 (housing body 1522).
  • the vibration transmission piece 1513B is located between the magnetic circuit assembly 1511 and the side wall of the housing 1522 opposite to the panel 1521, and the vibration transmission piece 1513B can strengthen the support effect of the position of the magnetic circuit assembly 1511 close to the additional element 1540, and improve the vibration stability of the transducer device, especially the magnetic circuit assembly 1511.
  • the acoustic output device 1500 can include both the vibration transmission piece 1513A and the vibration transmission piece 1513B.
  • FIG. 17 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the transducer 1710 (including the magnetic circuit assembly 1711, the coil 1712, the vibration transmission piece 1713A), the panel 1721 in the housing 1720, the support structure 1730, the additional element 1740 and other structures in the acoustic output device 1700 can be respectively similar to the transducer 1510 (including the magnetic circuit assembly 1511, the coil 1512, the vibration transmission piece 1513A), the panel 1521 in the housing 1520, the support structure 1530, the additional element 1540 and other structures in the acoustic output device 1500 shown in FIG15 , and no further description is given here.
  • the additional element 1740 is independently arranged relative to the housing 1720, and the additional element 1740 is connected to the housing 1722 through the elastic element 1750.
  • the additional element 1740 can be independently arranged outside the housing 1720.
  • the additional element 1740 can be independently disposed inside the housing 1720.
  • the elastic element 1750 can be a reed structure, one end of which can be connected to the additional element 1740, and the other end can be connected to the side wall of the housing 1722 (housing body 17222 and/or back plate 17221).
  • the elastic element 1750 can be an elastic ring structure.
  • the additional element 1740 can be located inside the housing 1722 and independently disposed relative to the housing 1722, the inner contour of the ring structure can be connected to the peripheral side of the additional element 1740, and the outer contour of the ring structure can be connected to the inner wall of the housing body 17222.
  • the additional element 1740 here can be a battery, a circuit board, or a sensor that is not sensitive to the vibration direction (for example, a temperature sensor and a humidity sensor), etc.
  • the magnetic circuit assembly 1711 and the panel 1721 are connected by the vibration transmission piece 1713A, and the magnetic circuit assembly 1711 and the additional element 1740 may attract or repel each other, causing the magnetic circuit assembly to flip and deform, thereby affecting the vibration stability of the transducer device 1710.
  • the vibration transmission piece 1713A between the magnetic circuit assembly 1711 and the panel 1721 can be replaced by a vibration transmission piece 1713B (shown by the dotted line in FIG. 17 ).
  • the vibration transmission piece 1713B is located between the magnetic circuit assembly 1711 and the side wall of the housing 1722 opposite to the panel 1721, wherein one side of the vibration transmission piece 1713B can be connected to the side of the magnetic circuit assembly 1711 away from the panel 1721, and the peripheral side of the vibration transmission piece 1713B can be connected to the side wall of the housing 1722 adjacent to the panel 1721 (housing body 1722).
  • the vibration transmission piece 1713B is located between the magnetic circuit assembly 1711 and the side wall of the housing 1722 opposite to the panel 1721, and the vibration transmission piece 1713B can strengthen the support effect of the position of the magnetic circuit assembly 1711 close to the additional element 1740, and improve the vibration stability of the transducer device, especially the magnetic circuit assembly 1711.
  • the acoustic output device 1700 can include both the vibration transmission piece 1713A and the vibration transmission piece 1713B.
  • 18 and 19 are schematic diagrams of structures of acoustic output devices according to some embodiments of the present specification.
  • the additional element 1740 in the acoustic output device 1800 can be elastically connected to the panel 1721 through the elastic element 1750.
  • the additional element 1740 in the acoustic output device 1900 can be elastically connected to the transducer 1710 through the elastic element 1750.
  • the additional element 1740 shown in FIG. 18 and FIG. 19 can be a battery, a circuit board, or a sensor that is not sensitive to the vibration direction (for example, a temperature sensor and a humidity sensor), etc. It should be noted that the additional element 1740 can also be directly bonded to the housing 1722 by glue.
  • the additional element 1740 can be bonded to the housing body 17222 by glue.
  • the solidified glue has a certain elasticity and can play the same role as the elastic element 1750.
  • the glue can include but is not limited to gel, organic silica gel, acrylic, polyurethane, rubber, epoxy, hot melt, light curing, etc., preferably, it can be organic silicone adhesive glue and organic silicone glue.
  • FIG. 20 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the acoustic output device 2000 may include a transducer 2010, a housing 2020, a support structure 2030, and an additional element 2040.
  • the housing 2020 may include a panel 2021, a shell 2022, and a support member 2023.
  • the shell 2022 may include a back plate 20221 and a shell body 20222 (shown by dotted lines in the figure).
  • the shell body 20222 may be a columnar structure having an internal hollow and open openings at both ends, and the panel 2021 and the back plate 20221 are respectively located at the two ends of the shell body 20222 having an open opening, and are rigidly connected through the shell body 20222.
  • the shell 2022 may also be an integrated structure, for example, the shell 2022 may be a structure having an internal hollow and an open opening at one end, and the panel 2021 is located at one end of the shell 2022 having an open opening.
  • the support member 2023 may be independently disposed on the outside of the shell 2022, or may be independently disposed on the inside of the shell 2022.
  • the support member 2023 may be a cylindrical structure, which may be disposed around the side wall (also referred to as the housing body 20222 or the connector) adjacent to the panel 2021 on the housing 2022.
  • the housing body 2022 may be a columnar structure with openings at both ends, and the cylindrical structure may be disposed around the housing body 2022.
  • the support member 2023 may be disposed independently of the housing 2022, the panel 2021 is rigidly connected to the housing 2022, the additional element 2040 is rigidly connected to the support member 2023, and the support member 2023 may be connected to the housing 2022 or the panel 2021 through the elastic element 2050, so as to realize that the elastic element 2050 is on the vibration path where the additional element 2040 is connected to the panel 2021.
  • the transducer device 2010 (including the magnetic circuit component 2011, the coil 2012, the vibration-transmitting plate 2013A), the support structure 2030, the additional element 2040 and other structures in the acoustic output device 2000 can be similar to the transducer device 10 (including the magnetic circuit component 11, the coil 12, the vibration-transmitting plate 13), the support structure 30, the additional element 40 and other structures in the acoustic output device 200, and are not further elaborated here.
  • the magnetic circuit assembly 2011 may include a hole 20111 and a positioning rod 20112, the hole 20111 may penetrate the magnetic circuit assembly 20111 along the vibration direction of the transducer 2010 (the first direction shown in FIG. 20), the positioning rod 20112 is connected to the back plate 20221 in the housing 2022, which is opposite to the panel 2021, at one end away from the panel 2021, and the other end passes through the hole 20111 and is connected to the panel 2021.
  • the positioning rod 20112 may also play a role in fixing the panel 2021 and the back plate 20221, in which case the housing body 20222 may not be provided, or the panel 2021 and the back plate 20221 may not be fixedly connected to the housing body 20222.
  • the positioning rod 20112 and the housing body 20222 may also be provided at the same time.
  • the hole portion 20111 and the positioning rod 20112 please refer to the relevant description of the hole portion 12111 and the positioning rod 12112 shown in Figure 12, which will not be repeated here.
  • the elastic element 2050 may include a first elastic element 2051 and a second elastic element 2052, one end of the support 2023 may be connected to the panel 2021 through the first elastic element 2051, and the other end of the support 2023 may be connected to the side wall (or back plate 20221) in the housing 2022 opposite to the panel 2021 through the second elastic element.
  • a resonant system is formed between the first elastic element 2051 and the second elastic element 2052, the support 2023 and the additional element 2040 attached thereto, the panel 2021 and the housing 2022, and the structure rigidly connected to the panel 2021 or the housing 2022 (for example, the coil 2012, the support structure 2030, etc.).
  • the resonant system can generate resonant peaks and resonant valleys in the target frequency range. In the frequency range greater than the resonant frequency corresponding to the resonance peak, the vibration transmission between the additional element 2040 and the panel 2021 will be suppressed, that is, the influence of the additional element 2040 on the vibration of the panel 2021 will be reduced, thereby ensuring that its sensitivity is not affected or less affected by the additional element 2040 in the frequency range greater than the resonant frequency corresponding to the resonance peak.
  • the frequency range in which the sensitivity of the acoustic output device 2000 decreases due to the additional element 2040 can be reduced.
  • the frequency response curve of the acoustic output device 2000 is flatter, which can ensure that the acoustic output device 400 has a better acoustic output effect in a wider frequency range, thereby improving the user's auditory experience.
  • the arrangement of the first elastic element 2051, the second elastic element 2052 and the support member 2023 can realize stable support for the additional element 2040, so as to reduce the shaking of the additional element 2040, thereby avoiding affecting the sensitivity of the acoustic output device 200. It should be noted that, in some embodiments, there may be only the first elastic element 2051 or the second elastic element 2052 .
  • the shell body 20222 can be a plate-like structure or a rod-like structure, and the two ends of the shell body 20222 are rigidly connected to the panel 2021 and the back panel 20221 respectively.
  • the shell body 20222 can be two plate-like structures, and the two ends of the two plate-like structures are rigidly connected to the panel 2021 and the back panel 20221 respectively.
  • FIG. 21 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • the horizontal axis is frequency (Hz)
  • the vertical axis is the sound pressure (dB) corresponding to the acoustic output device at different frequencies
  • curve L211 is a frequency response curve when the mass of the additional element 2040 in the acoustic output device 2000 is 0 (equivalent to the acoustic output device 2000 not including the additional element 2040), and has a resonance peak 2111 and a resonance valley 2112 in the frequency range of 200 Hz to 2000 Hz.
  • Curve L212 is a frequency response curve when the additional element 2040 in the acoustic output device 2000 has a certain mass, and has a resonance peak 2121 and a resonance valley 2122 in the frequency range of 200 Hz to 2000 Hz.
  • the acoustic output device 2000 has a relatively flat frequency response curve, and at this time, the acoustic output device 2000 can output better sound quality.
  • the resonance frequency corresponding to the resonance peak 2121 is less than the resonance frequency corresponding to the resonance peak 2111, indicating that the resonance frequency of the acoustic output device is negatively correlated with the mass of the additional element, that is, as the mass of the additional element 2040 increases, the resonance frequency corresponding to the resonance peak of the acoustic output device 2000 becomes lower (closer to the low frequency).
  • the mass of the additional element 2040 can be adjusted (for example, the mass of the additional element 2040 is increased) so that the acoustic output device 2000 can have a flat frequency response curve in a wider frequency range.
  • the first elastic element 2051 and the second elastic element 2052 may be reed structures, and the first elastic element 2051 and the second elastic element 2052 may be respectively located on both sides of the transducer device 2010 along its vibration direction, the side of the first elastic element 2051 facing the panel 2021 may be connected to the panel 2021, the peripheral side of the first elastic element 2051 may be connected to one end of the support member 2023, and the side of the second elastic element 2051 away from the transducer device 2010 may be connected to the side wall (back plate 20221) of the housing 2022 opposite to the panel 2021.
  • the support structure 2030 may be rigidly connected to the support member 2023, or to the panel 2021 or the back plate 20221.
  • FIG. 22 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the first elastic element 2051 and the second elastic element 2052 in the acoustic output device 2200 may be elastic ring structures, and the first elastic element 2051 and the second elastic element 2052 may be respectively located at the two ends of the support member 2023, and one end of the support member 2023 may be connected to the panel through the first elastic element 2051, and the other end of the support member 2023 may be connected to the side wall (or back plate 20221) of the housing 2022 opposite to the panel 2021 through the second elastic element.
  • the support member 2023 may be a structure (e.g., a sleeve structure) with a hollow interior and open openings at both ends, the inner contour of the ring structure may be connected to the peripheral sides of the panel 2021 and the back plate 20221, and the outer contour of the ring structure may be connected to the openings at both ends of the support member 2023.
  • the ring structure may be made of elastic materials such as silicone and polyurethane.
  • FIG. 23 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • the horizontal axis is frequency (Hz)
  • the vertical axis is the sound pressure (dB) corresponding to the acoustic output device at different frequencies
  • curve L231 is the frequency response curve of the acoustic output device 2200 when the mass of the additional element 2040 is 2g
  • curve L232 is the frequency response curve of the acoustic output device 2200 when the mass of the additional element 2040 is 3.5g.
  • the first elastic element 2051 and the second elastic element 2052 may also be elastic glue, and the first elastic element 2051 may bond one end of the support member 2023 to the panel 2021, and the second elastic element 2052 may bond the other end of the support member 2023 to the back plate 20221.
  • the glue may include but is not limited to gel, organic silicone, acrylic, polyurethane, rubber, epoxy, hot melt, light curing, etc., and may preferably be organic silicone adhesive glue or organic silicone glue.
  • FIG. 24 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the support member 2023 in the acoustic output device 2400 may be a plate-like structure, and the plate-like structure may be independently arranged relative to the housing 2022.
  • the additional element 2040 may be rigidly connected to the plate-like structure.
  • One end of the plate-like structure may be connected to the panel 2021 via a first elastic element 2051, and the other end of the plate-like structure may be connected to the side wall (back plate 20221) of the housing 2022 opposite to the panel 2021 via a second elastic element 2052.
  • the first elastic element 2051 and the second elastic element 2052 in the acoustic output device 2400 may be a reed structure.
  • a first gap 20223 and a second gap 20224 for the spring structure to pass through can be opened on the side wall of the shell body 20222 facing the support member 2023, and the side of the first elastic element 2051 close to the panel 2021 can be connected to the panel 2021, the peripheral side of the first elastic element 2051 located in the shell 2022 can be connected to the other side walls in the shell body 20222, and the remaining peripheral side of the first elastic element 2051 can pass through the first gap 20223 and connect to one end of the support member 2023.
  • the side of the second elastic element 2052 facing away from the transducer device 2010 can be connected to the back plate 20221, the peripheral side of the second elastic element 2052 located in the shell 2022 can be connected to the other side walls in the shell body 20222, and the remaining peripheral side of the second elastic element 2052 can pass through the second gap 20224 and connect to the other end of the support member 2023.
  • the first gap 20223 and the second gap 20224 for the spring structure to pass through may not be provided on the side wall of the housing body 20222 facing the support member 2023.
  • a notch for placing the support member 2023 may be provided at the housing body 20222, and the support member 2023 may be elastically connected to the housing 2022 or the panel 2021 through the first elastic element 2051 and the second elastic element 2052, or may be connected to the housing body 20222 through an elastic element or glue.
  • the peripheral side of the support member 2023 is provided with an elastic element (for example, a spring, a ring structure with elasticity), and the support member 2023 is elastically connected to the housing body 20222 through the elastic element.
  • the peripheral side of the support member 2020 and the housing body 20222 may be bonded by glue, and the cured glue plays the role of an elastic element.
  • FIG. 25 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the support member 2023 in the acoustic output device 2500 may be a plate-like structure
  • the first elastic element 2051 and the second elastic element 2052 may be elastic springs, reeds, membrane structures, etc.
  • the first elastic element 2051 and the second elastic element 2052 are respectively located at both ends of the plate-like structure, one end of the plate-like structure is connected to the panel 2021 through the first elastic element 2051, and the other end of the plate-like structure is connected to the back plate 20221 through the second elastic element 2051.
  • a notch for placing the support member 2023 may be provided at the shell body 20222, and the support member 2023 may be elastically connected to the shell body 2022 or the panel 2021 through the first elastic element 2051 and the second elastic element 2052, or may be connected to the shell body 20222 through an elastic element or glue.
  • an elastic element e.g., a spring leaf or an elastic ring structure
  • the support member 2023 is elastically connected to the housing body 20222 through the elastic element.
  • the support member 2020 and the housing body 20222 can be bonded together by glue, and the cured glue acts as an elastic element.
  • FIG. 26 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the support member 2023 in the acoustic output device 2600 may be a cylindrical structure, and the cylindrical structure may be sleeved on the outside of the shell body 20222.
  • the additional element 2040 is rigidly connected to the cylindrical structure.
  • One end of the cylindrical structure may be connected to the panel 2021 through a first elastic element 2051, and the other end of the cylindrical structure may be connected to the back plate 20221 through a second elastic element 2052.
  • the first elastic element 2051 and the second elastic element 2052 in the acoustic output device 2600 may be a reed structure.
  • the shell body 20222 may be provided with a first gap 20223 and a second gap 20224 for the reed structure to pass through.
  • the side of the first elastic element 2051 close to the panel 2021 can be connected to the panel 2021, and the peripheral side of the first elastic element 2051 can pass through the first gap 20223 to connect to one end of the support member 2023; the side of the second elastic element 2052 away from the transducer device 2010 can be connected to the back plate 20221, and the peripheral side of the second elastic element 2052 can pass through the second gap 20224 to connect to the other end of the support member 2023.
  • the housing body 20222 may not be provided with the first gap 20223 and the second gap 20224 for the reed structure to pass through.
  • FIG. 27 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the support member 2023 in the acoustic output device 2700 may be a cylindrical structure, and the first elastic element 2051 and the second elastic element 2052 may be elastic ring structures.
  • the first elastic element 2051 and the second elastic element 2052 are respectively located at both ends of the cylindrical structure, the inner contour of the first elastic element 2051 may be connected to the peripheral side of the panel 2021, the outer contour of the first elastic element 2051 may be connected to one end of the cylindrical structure, the inner contour of the second elastic element 2052 may be connected to the peripheral side of the back plate 20221, and the outer contour of the second elastic element 2052 may be connected to the other end of the cylindrical structure.
  • the side wall outside the panel 2021 or the shell 2022 in the acoustic output device 2700 may be covered with a vibration transmission layer.
  • the vibration transmission layer may be used to contact the user's skin, that is, the side wall outside the panel 2021 or the shell may contact the user's skin through the vibration transmission layer.
  • the Shore hardness of the vibration transmission layer may be less than the Shore hardness of the side wall outside the panel 2021 or the shell 2022, that is, the vibration transmission layer may be softer than the side wall outside the panel 2021 or the shell 2022.
  • the material of the vibration transmission layer is a soft material such as silica gel
  • the material of the side wall outside the panel 2021 or the shell 2022 is a hard material such as polycarbonate and glass fiber reinforced plastic.
  • the vibration transmission layer may be detachably connected to the side wall outside the panel 2021 or the shell 2022 for easy replacement by the user.
  • covering the vibration transmission layer on the side wall outside the panel or the shell is not only applicable to the acoustic output device 2700, but also to the acoustic output devices in other embodiments of the present specification, for example, the acoustic output device 400 shown in Figure 4, the acoustic output device 700 shown in Figure 7, the acoustic output device 900 shown in Figure 9, the acoustic output device 1200 shown in Figure 12, the acoustic output device 1300 shown in Figure 13, the acoustic output device 1500 shown in Figure 15, etc.
  • the magnetic circuit assembly 2011 and the panel 2021 are connected via the vibration transmission plate 2013A.
  • the magnetic circuit assembly 2011 and the additional element 2040 may attract or repel each other, causing the magnetic circuit assembly to flip and deform, thereby affecting the vibration stability of the transducer device 2010.
  • the vibration-transmitting plate 2013A between the magnetic circuit component 2011 and the panel 2021 can be replaced by a vibration-transmitting plate 2013B (as shown by the dotted lines in Figures 20, 22, 24, 25, 26 and 27), or, in some embodiments of the present application, the acoustic output devices 2000, 2200, 2400, 2500, 2600 and 2700 can include both the vibration-transmitting plate 2013A and the vibration-transmitting plate 2013B.
  • the vibration transmission piece 2013A and the vibration transmission piece 2013B may include a central area and a plurality of support rods, and the plurality of support rods are spaced apart along the peripheral side of the central area, wherein the central area is connected to the side of the magnetic circuit assembly away from the panel, and the end of the support rod away from the central area is connected to the shell.
  • the number of support rods may be 4, and the structure of the vibration transmission piece 2013A and the vibration transmission piece 2013B may be approximately regarded as an "X"-shaped structure, and the "X"-shaped structure may provide elasticity in the vibration direction of the transducer device.
  • the plurality of support rods have a high structural strength in the vibration direction perpendicular to the transducer device, and may provide a high support effect for the magnetic circuit assembly 2011, thereby ensuring that the transducer device is flipped and deformed when it vibrates.
  • the vibration transmission piece 2013A and the vibration transmission piece 2013B may also include an edge area, and the edge area is connected to the end of the support rod away from the central area, and the peripheral side of the edge area may be connected to the shell.
  • the edge area is connected to the end of the support rod away from the central area, and the peripheral side of the edge area may be connected to the shell.
  • the support member 2023 may be a plate-like structure
  • the vibration transmission piece 2013B is located between the magnetic circuit assembly 2011 and the side wall of the housing 2022 opposite to the panel 2021 (i.e., the back plate 20221)
  • one side of the vibration transmission piece 2013B may be connected to the side of the magnetic circuit assembly 2011 away from the panel 2021
  • the vibration transmission piece 2013B may be connected to the housing body 20222 through the peripheral side.
  • the support member 2032 is a cylindrical structure
  • one side of the vibration transmission piece 2013B may be connected to the side of the magnetic circuit assembly 2011 away from the panel 2021
  • the peripheral side of the vibration transmission piece 2013B may be connected to the housing body 20222.
  • the vibration transmission piece 2013B is located between the magnetic circuit assembly 2011 and the side wall of the housing 2022 opposite to the panel 2021, and the vibration transmission piece 2013B and the side wall provided with the additional element 2040 are connected, so that the vibration transmission piece 2013B can provide support for the relative movement direction of the magnetic circuit assembly 2011 and the additional element 2040, and the vibration transmission piece 2013B can strengthen the support effect of the position of the magnetic circuit assembly 2011 close to the additional element 2040, and improve the vibration stability of the transducer device, especially the magnetic circuit assembly 2011.
  • the acoustic output device 2000, 2200, 2400, 2500, 2600 or 2700 can include both the vibration transmission piece 2013A and the vibration transmission piece 2013B.
  • the two ends of the support member 2023 shown in FIG. 20 and FIG. 22 can also be rigidly connected to the panel 2021 and the back panel 20221, respectively, and the additional element 2040 can be bonded to the support member 2023 by glue, and the solidified glue has a certain elasticity and can play the same role as the elastic element 2050.
  • the glue can include but is not limited to gel, organic silicone, acrylic, polyurethane, rubber, epoxy, hot melt, light curing, etc., preferably, it can be organic silicone adhesive glue or organic silicone glue.
  • the additional element is connected to the panel through a vibration path including at least one elastic element, which can solve the problem of reduced sensitivity caused by additionally setting an additional element on the basis of the bone conduction acoustic output device.
  • the additional element set on the basis of the bone conduction speaker is an air conduction speaker, the sound leakage of the acoustic output device may also be increased.
  • the mechanical vibration generated by the transducer device will drive the diaphragm in the air conduction speaker to vibrate, so that the sound leakage generated by the acoustic output device comes not only from the vibration of the air outside the acoustic output device driven by the shell, but also from the vibration of the diaphragm in the air conduction speaker caused by the vibration of the transducer device, thereby increasing the overall sound leakage of the speaker, resulting in a decrease in the user's auditory experience.
  • the following will be combined with the bone conduction acoustic output device 100 and the sound leakage frequency response curve of the acoustic output device 200 when the additional element 40 is an air conduction speaker to explain in detail the influence of the sound leakage of the acoustic output device when the additional element 40 is an air conduction speaker.
  • FIG. 28 is a graph showing a leakage frequency response curve of an acoustic output device according to some embodiments of the present specification.
  • the horizontal axis is frequency (Hz)
  • the vertical axis is the leakage sound pressure (dB) corresponding to the acoustic output device at different frequencies
  • curve L281 is the leakage sound frequency response curve of the bone conduction acoustic output device 100 measured at the side wall adjacent to the panel 21 on its shell 22
  • curve L282 is the leakage sound frequency response curve of the acoustic output device 200 measured at the side wall adjacent to the panel 21 on its shell 22 when the additional element 40 is an air conduction speaker and the vibration direction of the diaphragm of the air conduction speaker is parallel to the vibration direction of the transducer device
  • curve L283 is the leakage sound frequency response curve of the acoustic output device 200 measured at the side wall adjacent to the panel 21 on its shell 22 when the additional element 40 is an air conduction speaker and the vibration direction of the diaphragm of the air conduction speaker is approximately perpendicular to the vibration direction of the transducer device 10.
  • the sound leakage frequency response curves of the acoustic output device 100 and the acoustic output device 200 can be measured by detecting the air conduction sound at the side wall adjacent to the panel 21 on the housing of the acoustic output device 100 and the acoustic output device 200, which is also applicable to the collection of the sound leakage frequency response curves of other speakers in the embodiments of this specification.
  • curves L281 and L282 it can be seen that when the vibration direction of the diaphragm in the air conduction speaker is parallel to the vibration direction of the transducer device 10, the overall sound leakage sound pressure of the speaker 200 in the mid-high frequency band (5000Hz ⁇ 10000Hz) is higher than the sound leakage sound pressure of the bone conduction speaker 100.
  • the embodiment of this specification provides an acoustic output device, in which the vibration direction of the transducer device in the acoustic output device is approximately perpendicular to the vibration direction of the diaphragm in the air conduction speaker.
  • the approximately perpendicular can be understood as the angle formed by the vibration direction of the transducer device and the vibration direction of the diaphragm in the air conduction speaker is 75° to 100°, which can effectively reduce the sound leakage of the acoustic output device and ensure that the user can have a better auditory experience.
  • the acoustic output device 400 shown in Figure 4 will be specifically described below.
  • the additional element in the acoustic output device 400 may be an air conduction speaker, and the air conduction speaker may include a diaphragm 441, which may vibrate under the drive of the transducer device in the air conduction speaker to drive the air to vibrate, so that the user can hear the air conduction sound.
  • the second direction shown in FIG4 is the vibration direction of the transducer device 410, and the first direction may be the vibration direction of the diaphragm 441.
  • the angle a formed by the first direction and the second direction may be 75° to 100°.
  • the angle a formed by the first direction and the second direction may be 80° to 95°.
  • the angle a formed by the first direction and the second direction may be 90°.
  • the air conduction speaker may be disposed on a side wall of the housing 422 adjacent to the panel 421 (also referred to as a housing body).
  • Fig. 29 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification. As shown in Fig. 29, in some embodiments, the air conduction speaker in the acoustic output device 2900 can also be arranged at the side wall (or referred to as the back plate) of the housing 422 opposite to the panel position.
  • the vibration direction of the diaphragm of the air conduction speaker and the vibration direction of the transducer device form a certain angle to reduce the sound leakage of the acoustic output device. It can be applied not only to the acoustic output device 400, but also to other acoustic output devices provided in the embodiments of this specification, such as the acoustic output device 700 shown in FIG. 7, the acoustic output device 900 shown in FIG. 9, the acoustic output device 1200 shown in FIG. 12, the acoustic output device 1300 shown in FIG. 13, and the acoustic output device 1500 shown in FIG. 15.
  • the additional element is a device such as a vibration sensor, an inertial acceleration sensor, a microphone, etc. that is sensitive to a certain vibration direction
  • the vibration direction to which these devices are sensitive can be made to have a certain angle (for example, 75° to 100°) with the vibration direction of the transducer device to avoid the operation of these devices being affected by the vibration of the transducer device in the acoustic output device.
  • the additional element can also be other components or structures that are not sensitive to the vibration direction, such as a circuit board, a battery, etc., and can be arranged at any position of the housing.
  • FIG. 30 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the additional element may be disposed inside the housing 422.
  • the additional element is rigidly connected to the inner side of the side wall of the housing 422 adjacent to or opposite to the panel 421.
  • a sound conduction hole (not shown in the figure) may be provided on the housing 422, and the sound conduction hole may output the sound generated by the air conduction speaker to the external environment.
  • the magnetic circuit component of the transducer 410 is a magnet.
  • the additional element is a component that is sensitive to the vibration direction (for example, an air conduction speaker, an air conduction microphone, etc.)
  • the air conduction speaker is used as an example for explanation.
  • FIG31 in some embodiments, along the vibration direction of the diaphragm 441 in the air conduction speaker, there is a spacing d between the air conduction speaker and the transducer 410.
  • the larger the spacing d the smaller the mutual interference of the magnetic fields between the air conduction speaker and the transducer 410.
  • the spacing d may be not less than 0.8 mm. In some embodiments, the spacing d may be not less than 1 mm. In some embodiments, the spacing d may be not less than 1.2 mm.
  • a partition 442 may be provided between the air conduction speaker and the transducer device 410, and the air conduction speaker and the transducer device 410 may be located on both sides of the partition 442, respectively.
  • the partition 442 may be a plate-like structure, wherein the greater the thickness t of the partition 442, the smaller the mutual interference of the magnetic field between the air conduction speaker and the transducer device 410.
  • the thickness t of the partition 442 may be not less than 0.8 mm. In some embodiments, the thickness t of the partition 442 may be not less than 1 mm.
  • the thickness t of the partition 442 may be not less than 1.2 mm.
  • other components e.g., batteries, circuit boards, etc.
  • the acoustic output device 3000 may also be provided as a partition 442 between the transducer device 410 and the air conduction speaker.
  • the air conduction speaker is located inside the shell, so that there is a certain distance between the air conduction speaker and the transducer device in the vibration direction of the diaphragm and/or a partition is provided between the air conduction speaker and the transducer device.
  • This is also applicable to the acoustic output devices in other embodiments of the present specification, for example, the acoustic output device 700 shown in FIG. 7 , the acoustic output device 900 shown in FIG. 9 , the acoustic output device 1200 shown in FIG. 12 , the acoustic output device 1300 shown in FIG. 13 , the acoustic output device 1500 shown in FIG. 15 , and the like.
  • FIG. 31 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the sound outlet 4401 of the air conduction speaker faces the ear canal of the user.
  • the air conduction sound output by the air conduction speaker can be directly transmitted to the ear canal of the user, so as to ensure that the sound output by the air conduction speaker has a sufficient volume to be heard by the user.
  • FIG32 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the air conduction speaker may include a first air conduction speaker 470 and a second air conduction speaker 480, and the first air conduction speaker 470 and the second air conduction speaker 480 may be distributed on both sides of the housing 422, and the first air conduction speaker 470 and the second air conduction speaker 480 are approximately symmetrically arranged about the symmetry axis i of the transducer device 410, so as to avoid shaking of the acoustic output device 3200 due to the asymmetry of the additional mass, thereby affecting the sound quality of the acoustic output device 3200.
  • the sound outlet 4701 of the first air conduction speaker 470 can be facing the user's ear canal, and the sound outlet 4801 of the second air conduction speaker 480 can be away from the user's ear canal.
  • Such a configuration can ensure that the air conduction sound output by the first air conduction speaker 470 can be directly transmitted to the user's ear canal, avoiding the sound output by the second air conduction speaker 480 from interfering with the air conduction sound output by the first air conduction speaker 470, so that the sound output by the first air conduction speaker 470 has a sufficient volume to be heard by the user.
  • the phase of the sound wave output by the first air conduction speaker 470 and the sound wave output by the second air conduction speaker 480 can meet a specific condition (for example, the phase is opposite or approximately opposite), and the sound wave output at the sound outlet 4701 of the first air conduction speaker 470 and the sound wave output at the sound outlet 4801 of the second air conduction speaker 480 can be approximately regarded as two point sound sources.
  • the sound wave output by the second air conduction speaker 480 can be counteracted with the sound wave output by the first air conduction speaker 470 in reverse phase to reduce the sound leakage volume of the acoustic output device 400 in the far field.
  • the second air conduction speaker 480 can be replaced by other additional components such as batteries, circuit boards, sensors, etc., and these additional components and the first air conduction speaker 470 can be arranged approximately symmetrically with respect to the symmetry axis of the transducer device 410.
  • the air conduction speakers including the first air conduction speaker 470 and the second air conduction speaker 480 are also applicable to the acoustic output devices in other embodiments of the present specification, for example, the acoustic output device 700 shown in FIG. 7 , the acoustic output device 900 shown in FIG. 9 , the acoustic output device 1200 shown in FIG. 12 , the acoustic output device 1300 shown in FIG. 13 , the acoustic output device 1500 shown in FIG. 15 , and the like.
  • the acoustic output device 400 can have a flat frequency response curve in the middle and high frequency band (within the frequency range higher than the resonant frequency corresponding to the resonance peak), that is, the middle and high frequency bone conduction sound output by the acoustic output device 400 can have good sound quality. Therefore, in order to ensure that the acoustic output device 400 can have a good acoustic output effect in the full frequency band, the additional element in the acoustic output device 400 can be an air conduction acoustic output device, and the low-frequency sound can be output by the air conduction speaker.
  • the acoustic output device 400 can also include a frequency division module, which can divide the initial electrical signal based on the frequency division point to generate a middle and high frequency signal and a low frequency signal.
  • the electrical signal with a frequency less than the frequency corresponding to the frequency division point is a low frequency signal
  • the electrical signal with a frequency higher than the frequency corresponding to the frequency division point is a middle and high frequency signal.
  • the frequency division point can be in the range of 200Hz to 800Hz.
  • the frequency division point can be in the range of 200Hz to 700Hz.
  • the frequency division point can be in the range of 200Hz to 600Hz. More preferably, the frequency division point can be between 300Hz and 500Hz.
  • the transducer 410 in the acoustic output device 400 can output bone conduction sound based on the medium and high frequency signal, and the air conduction speaker can output air conduction sound based on the low frequency signal. Further, the transducer 410 can generate medium and high frequency vibrations based on the electrical signal to drive the medium and high frequency vibrations of the panel 421.
  • the panel 421 can transmit the medium and high frequency vibrations to the user's auditory nerve through the bone conduction path by fitting with the user, so that the user can hear the medium and high frequency bone conduction sound.
  • the transducer in the air conduction speaker can drive the diaphragm 441 to vibrate based on the low frequency signal, and the diaphragm 441 drives the air to vibrate so that the user can hear the low frequency air conduction sound.
  • the low frequency air conduction sound and the medium and high frequency bone conduction sound enable the acoustic output device 400 to have a good acoustic output effect in the full frequency band.
  • the frequency corresponding to the frequency division point is not less than the maximum value in the target frequency range. In some embodiments, the frequency corresponding to the frequency division point is not less than the resonant frequency corresponding to the resonant peak in the target frequency range.
  • the additional element air conduction speaker
  • the air conduction speaker can output air conduction sound based on the low-frequency signal to make up for the defect of the poor low-frequency output effect of the bone conduction speaker.
  • the difference between the crossover frequency and the resonant frequency can be no less than 100Hz.
  • the difference between the crossover frequency and the resonant frequency can be no less than 200Hz.
  • the sound output by the bone conduction speaker and the air conduction speaker can also have overlapping parts in the frequency domain, and the frequency domain of the overlapping part can cover the resonant frequency corresponding to the resonant peak in the above-mentioned target frequency range.
  • the introduction of the additional element reduces the sensitivity of the bone conduction speaker near the resonant frequency
  • the air conduction sound emitted by the air conduction acoustic output device near the resonant frequency can make up for the defect of the low sensitivity of the bone conduction speaker. With the combination of bone conduction sound and air conduction sound, the user can still clearly hear the sound near the resonant frequency.
  • the frequency division module is also applicable to the acoustic output devices in other embodiments of the present specification, for example, the acoustic output device 700 shown in FIG. 7 , the acoustic output device 900 shown in FIG. 9 , the acoustic output device 1200 shown in FIG. 12 , the acoustic output device 1300 shown in FIG. 13 , the acoustic output device 1500 shown in FIG. 15 , etc.
  • the embodiment of this specification also provides an acoustic output device.
  • the acoustic output device may include a transducer, a housing, and an additional element.
  • the transducer can generate mechanical vibration based on an electrical signal
  • the transducer includes a magnetic circuit component, a coil, and a vibration transmission piece
  • the housing can be used to accommodate the transducer, and the housing includes a panel and a shell, and the transducer transmits the mechanical vibration to the user through the panel.
  • the vibration transmission piece is elastic
  • the magnetic circuit component is elastically connected to the shell through the vibration transmission piece
  • the additional element is connected to the magnetic circuit component to maintain an elastic connection with the panel.
  • the magnetic circuit component can be elastically connected to the panel through the vibration transmission piece, so that the additional element can maintain an elastic connection with the panel when connected to the magnetic circuit component.
  • the magnetic circuit component can be connected to the side wall (or back plate) of the shell opposite to the panel through the vibration transmission piece.
  • the number of vibration-transmitting plates may be multiple, and the multiple vibration-transmitting plates include a first vibration-transmitting plate and a second vibration-transmitting plate.
  • the magnetic circuit assembly may be connected to the panel and the back panel respectively through the first vibration-transmitting plate and the second vibration-transmitting plate, so that the additional element can maintain an elastic connection with the panel when connected to the magnetic circuit assembly.
  • the connection between the additional element and the magnetic circuit assembly may be a direct connection or an indirect connection.
  • the additional element may be directly rigidly connected to the magnetic circuit assembly.
  • the additional element and the magnetic circuit assembly are both rigidly connected to the shell.
  • the acoustic output device also includes a support member, the additional element is rigidly connected to the support member, and the support member is rigidly connected to the magnetic circuit assembly.
  • the additional element is connected to the magnetic circuit assembly, which can avoid mutual attraction or repulsion between the additional element and the magnetic circuit assembly, which causes the magnetic circuit assembly to flip and deform and affect the vibration stability of the transducer device.
  • the additional element and the magnetic circuit assembly can vibrate relative to the panel to generate a resonance peak within the target frequency, which can ensure that the sensitivity of the acoustic output device is not affected by the additional element in the frequency range greater than the resonance frequency corresponding to the resonance peak, so that the sensitivity of the acoustic output device with the additional element in the frequency range greater than the resonance frequency is not affected by the additional element, which can avoid the problem of additionally setting additional elements on the bone conduction speaker and causing the sensitivity of the bone conduction acoustic output device to decrease.
  • the frequency response curve of the acoustic output device provided in the embodiment of the present specification is relatively flat when the frequency range is greater than the resonance frequency corresponding to the resonance peak, which can ensure that the acoustic output device has a good acoustic output effect and improve the user's auditory experience.
  • the transducer when the transducer generates low-frequency (frequency range lower than the resonant frequency corresponding to the resonance peak) mechanical vibration, the low-frequency vibration of the panel (vibration lower than the resonant frequency corresponding to the resonance peak) will be transmitted to the additional element to drive the additional element to vibrate together, and the mass of the additional element will increase the vibration load mass of the transducer, so that the sensitivity of the acoustic output device will be affected by the additional element in the frequency range lower than the resonant frequency corresponding to the resonance peak (similar to the acoustic output device 200).
  • the transducer When the transducer generates high-frequency (frequency range higher than the resonant frequency range corresponding to the resonance peak) mechanical vibration, since the additional element and the magnetic circuit assembly maintain an elastic connection with the panel (for example, the presence of a vibration transmission plate), the high-frequency vibration of the panel will hardly drive the additional element to vibrate together, and the mass of the additional element will not affect the vibration load mass of the transducer, thereby ensuring that the sensitivity of the acoustic output device will not be affected by the additional element in the frequency range higher than the resonant frequency corresponding to the resonance peak.
  • FIG33 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the acoustic output device 3300 includes a transducer 3310, a housing 3320, a support structure 3330, and an additional element 3340.
  • the transducer 3310 includes a magnetic circuit assembly 3311, a coil 3312, and a vibration transmission sheet 3313, wherein the coil 3312 is disposed in the magnetic circuit assembly 3311.
  • the housing 3320 includes a panel 3321 and a shell 3322, wherein the panel 3321 and the shell 3322 may form a receiving cavity for accommodating the transducer 3310, and the coil 3312 is connected to the panel 3321.
  • the shell 3322 may include a back plate 33221 opposite to the panel 3321 and a shell body 33222 adjacent to the panel 3321.
  • the support structure 3330 may be rigidly connected to the panel 3321.
  • the structures of the magnetic circuit assembly 3311, the coil 3312, the panel 3321, the shell 3322 (including the back plate 33221 and the shell body 33222), the support member 3323, the support structure 3330 and the additional element 3340 can be respectively similar to the structures of the magnetic circuit assembly 2011, the coil 2012, the panel 2021, the shell 2022 (including the back plate 20221 and the shell body 20222), the support member 2023, the support structure 2030 and the additional element 2040 in the acoustic output device 2000, and are not repeated here.
  • the panel 3321 and the back plate 33221 are respectively located at the two ends of the shell body 33222, and are rigidly connected to the shell body 33222, so that the panel 3321 and the back plate 33221 can vibrate together, reducing the generation of sound leakage.
  • the shell body 33222 can be a columnar structure with a hollow interior and open openings at both ends, and the panel 3321 and the back plate 33221 are respectively located at the two ends of the shell body 33222 with open openings, and are rigidly connected through the shell body 33222.
  • the shell 3322 can also be an integrated structure, for example, the shell 3322 can be a structure with a hollow interior and an open opening at one end, and the panel 3321 is located at one end of the shell 3322 with an open opening.
  • the housing body 33222 may include a notch (not shown in FIG. 33 ), and the peripheral side of the magnetic circuit assembly 3311 may extend from the notch to the outside of the housing body 3322 and be rigidly connected to the support member 3323, and the additional element 3340 may be rigidly connected to the support member 3323.
  • the support member 3323 may have a good supporting effect on the magnetic circuit assembly 3311, and the magnetic circuit assembly 3311 may be prevented from being attracted or repelled by the additional element 3340 and being turned over and deformed, thereby affecting the vibration stability of the transducer device 3310.
  • the vibration transmission piece 3313 may include a first vibration transmission piece 33131 and a second vibration transmission piece 33132.
  • the first vibration transmission piece 33131 is located between the magnetic circuit assembly 3311 and the panel 3321, and elastically connects the magnetic circuit assembly 3311 to the panel 3321.
  • the second vibration transmission piece 33132 is located between the magnetic circuit assembly 3311 and the back plate 33221, and elastically connects the magnetic circuit assembly 3311 to the back plate 33221.
  • the side of the magnetic circuit assembly 3311 close to the panel 3321 may be elastically connected to the panel 3321 through the first vibration transmission piece 33131, and the side of the magnetic circuit assembly 3311 close to the back plate 3321 may be elastically connected to the back plate 33221 through the second vibration transmission piece 33132.
  • the number of vibration transmission pieces may also be one.
  • the vibration transmission piece 3313 may include a first vibration transmission piece 33131, and the magnetic circuit assembly 3311 may be elastically connected to the panel 3321 through the first vibration transmission piece 33131.
  • the first vibration transmitting piece 33131 or the second vibration transmitting piece 33132) and the shell vibration transmitting piece 3313 may include a first vibration transmitting piece 33131, and the magnetic circuit assembly 3311 may be elastically connected to the back plate 33221 through the second vibration transmitting piece 33132.
  • the first vibration transmitting piece 33131 and the second vibration transmitting piece 33132 may include a central area and a plurality of support rods, and the plurality of support rods are spaced and distributed along the circumference of the central area, wherein the central area is connected to the side of the magnetic circuit assembly 3311 away from the panel, and the end of the support rod away from the central area is connected to the shell.
  • the number of support rods may be 4, and in this case, the structure of the first vibration transmitting piece 33131 and the second vibration transmitting piece 33132 may be approximately regarded as an "X" type structure, and the "X" type structure may provide elasticity in the vibration direction of the transducer device.
  • the plurality of support rods have a high structural strength in the vibration direction perpendicular to the transducer device, and may provide a high support effect for the magnetic circuit assembly 3311, thereby ensuring that the transducer device is flipped and deformed when it vibrates.
  • the first vibration transmission piece 33131 and the second vibration transmission piece 33132 may further include an edge region, the edge region is connected to the end of the support rod away from the central region, and the peripheral side of the edge region may be connected to the housing.
  • the additional element 3340 and the magnetic circuit assembly 3311 vibrate relative to the panel 3321 to generate a resonance peak within the target frequency range.
  • the vibration transmission between the additional element 3340 and the panel 3321 will be suppressed, that is, the influence of the additional element 3340 on the vibration of the panel 3321 will be reduced, thereby ensuring that its sensitivity is not affected or less affected by the additional element 3340 within the frequency range greater than the resonance frequency corresponding to the resonance peak.
  • the sensitivity of the acoustic output device 3300 may not be affected by the additional element 3340.
  • the acoustic output device 3300 can have a flat frequency response curve in a wider frequency band.
  • the frequency range in which the additional element 3340 affects the acoustic output device 3300 and the acoustic output device 3300 can have a flat frequency response curve in a wider frequency band can be reduced by adjusting the elastic coefficient of the first vibration transmission piece 33131 and/or the second vibration transmission piece 33132 and the mass of the additional element 3340 to adjust the resonance frequency corresponding to the resonance peak.
  • the target frequency range may be 20 Hz to 800 Hz.
  • the target frequency range may be 100 Hz to 600 Hz.
  • the target frequency range may be 150 Hz to 500 Hz. More preferably, the target frequency range may be 200 Hz to 400 Hz.
  • the additional element 3340 and the magnetic circuit assembly 3311 vibrate relative to the panel 3321 to generate a resonance valley within the target frequency range. Further, the closer the corresponding frequencies of the resonance peak and the resonance valley are, the smaller the impact on the flatness of the frequency response curve of the overall frequency band of the acoustic output device 3300.
  • the frequency corresponding to the resonance valley may be less than the frequency corresponding to the resonance peak. In some embodiments, the difference between the frequency corresponding to the resonance peak and the frequency corresponding to the resonance valley may be no greater than 300 Hz.
  • the difference between the frequency corresponding to the resonance peak and the frequency corresponding to the resonance valley may be no greater than 200 Hz. In some embodiments, the difference between the frequency corresponding to the resonance peak and the frequency corresponding to the resonance valley may be no greater than 100 Hz.
  • the difference between the resonance peak and the resonance valley also has a certain influence on the flatness of the frequency response curve of the acoustic output device 3300. For example, the smaller the difference between the resonance peak and the resonance valley, the flatter the frequency response curve of the acoustic output device 3300 in the overall frequency band.
  • the difference between the resonance peak and the resonance valley can be in the range of 20dB to 100dB. In some embodiments, the difference between the resonance peak and the resonance valley can be in the range of 20dB to 60dB. In some embodiments, the difference between the resonance peak and the resonance valley can be in the range of 20dB to 40dB.
  • elastic elements may be connected between the two ends of the support member 3323 and the panel 3321 and the back plate 33221, so as to seal the gaps between the two ends of the support member 3323 and the panel 3321 and the back plate 33221 through the elastic elements.
  • the gaps between the two ends of the support member 3323 and the panel 3321 and the back plate 33221 may be provided with filling materials or connected with elastic elements to form the housing 3320 of the acoustic output device 3300.
  • the filling materials or elastic elements may be elastic materials such as silicone and polyurethane, so that the filling materials or connections may further reduce the vibration transmission from the panel 3321 and the back plate 33221 to the additional element 3340, thereby further reducing the influence of the mass of the additional element on the vibration load mass of the transducer device, thereby reducing the influence of the additional element on the sensitivity of the acoustic output device 3300.
  • the shell body 33222 can also be a plate-like structure or a rod-like structure, and the two ends of the shell body 33222 are rigidly connected to the panel 3321 and the back panel 33221 respectively.
  • the shell body 33222 can be two plate-like structures, and the two ends of the two plate-like structures are rigidly connected to the panel 3321 and the back panel 33221 respectively.
  • FIG. 34 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.
  • the horizontal axis is the frequency (Hz)
  • the vertical axis is the sound pressure (dB) corresponding to the acoustic output device at different frequencies
  • the curve L341 is the frequency response curve of the acoustic output device 3300 when the additional element 3340 is not provided
  • the curve L342 is the frequency response curve of the acoustic output device 3300 with the additional element 3340. Combining the curves L341 and L342, it can be seen that the acoustic output device 3300 generates a resonance peak in the frequency range of 10 Hz to 100 Hz.
  • the curves L341 and L342 tend to overlap, and have a relatively flat frequency response curve in the frequency range of 200 Hz to 10000 Hz. It can be seen that the sensitivity of the acoustic output device 3300 is not affected by the mass of the additional element 3340 in the resonance frequency range higher than the resonance peak, and has a relatively flat frequency response curve, ensuring that the acoustic output device has a good acoustic output effect.
  • FIG35 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the difference between the acoustic output device 3500 shown in FIG35 and the acoustic output device 3300 shown in FIG33 is that the support structure 3330 in the acoustic output device 3500 can be rigidly connected to the support member 3323 .
  • FIG36 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification.
  • the horizontal axis is the frequency (Hz)
  • the vertical axis is the sound pressure (dB) corresponding to the acoustic output device at different frequencies
  • curve L361 is the frequency response curve of the acoustic output device 3500 when the mass of the additional element 3340 is 0
  • curve L362 is the frequency response curve of the acoustic output device 3500 when the additional element 3340 has a certain mass (the mass is not 0). Combining curves L361 and L362, it can be seen that within the frequency range of 10Hz to 100Hz, the acoustic output device 3300 generates a resonance peak.
  • curves L361 and L362 tend to overlap, and have a relatively flat frequency response curve within the frequency range of 200Hz to 10000Hz. It can be seen that the sensitivity of the acoustic output device 3500 is not affected by the mass of the additional element 3340 within the resonant frequency range corresponding to the resonance peak, and can have a relatively flat frequency response curve, ensuring that the acoustic output device has a good acoustic output effect.
  • the support structure 3330 can also be rigidly connected to the back plate 33221.
  • FIG. 37 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the support member 3323 in the acoustic output device 3700 may be a cylindrical structure, and the cylindrical structure may be arranged around the circumference of the magnetic circuit assembly 3311 along the circumference of the shell body 33222, the circumference of the magnetic circuit assembly 3311 is rigidly connected to the inner surface of the cylindrical structure, and the additional element 3340 is rigidly connected to the cylindrical structure.
  • the circumference of the magnetic circuit assembly 3311 may extend to the outside of the shell 3022 through the notch provided on the shell body 33222 and be rigidly connected to the support member 3323.
  • the support member 3323 may also be located inside the shell 3322, and the circumference of the magnetic circuit assembly 3311 may be rigidly connected to the support member 3323 without passing through the shell body 33222.
  • elastic elements may be connected between the two ends of the support member 3323 and the panel 3021 and the back plate 33221, so as to seal the gaps between the two ends of the support member 3323 and the panel 3321 and the back plate 33221 through the elastic elements.
  • the gaps between the two ends of the support member 3323 and the panel 3321 and the back plate 33221 may be provided with filling materials or connected with elastic elements to form the housing 3320 of the acoustic output device 3300.
  • the filling materials or elastic elements may be elastic materials such as silicone and polyurethane, which can further reduce the vibration transmission from the panel 3321 and the back plate 33221 to the additional element 3340, thereby further reducing the influence of the mass of the additional element on the vibration load mass of the transducer device, thereby reducing the influence of the additional element on the sensitivity of the acoustic output device 3300.
  • FIG. 38 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the support member 3323 in the acoustic output device 3800 may be a plate-like structure, which is disposed on one side of the shell body 33222, and the two ends of the support member 3323 are elastically connected to the panel 33222 and the back plate 33221 respectively through elastic elements, the magnetic circuit assembly 3311 is rigidly connected to the plate-like structure, and the additional element 3340 is rigidly connected to the plate-like structure.
  • the elastic element may be a spring, a vibration plate or other elastic structure.
  • the elastic element includes a first vibration plate 33131 and a second vibration plate 33132 located on both sides of the magnetic circuit assembly 3311, and the first vibration plate 33131 and the second vibration plate 33132 respectively connect the magnetic circuit assembly 3311 with the panel 33222 and the magnetic circuit assembly 3311 with the back plate 33221.
  • the side of the magnetic circuit assembly 3311 close to the plate-like structure toward the housing body 33222 can extend to the outside of the housing 3322 through the notch provided on the housing body 33222 and be rigidly connected to the plate-like structure.
  • the plate-like structure can also be located on the inner side of the housing 3322, and one side of the magnetic circuit assembly 3311 can be connected to the plate-like structure without passing through the housing body 33222. In some embodiments, the plate-like structure can also be located at the notch, and the two ends of the plate-like structure and the housing body 3322 are connected by elastic elements or filled with elastic materials to achieve an elastic connection between the two.
  • the support structure 3300 in Figure 38 is not limited to being rigidly connected to the panel 3321, and can also be rigidly connected to the housing body 33222 or the back plate 33221.
  • the number of plate-like structures is not limited to one shown in Figure 38, and can also be two, three or more.
  • FIG. 39 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the difference between the acoustic output device 3900 and the acoustic output device 3300 shown in FIG33 is that the vibration transmission piece 3313 in the acoustic output device 3900 only includes one vibration transmission piece (for the convenience of description, the vibration transmission piece is still represented by the vibration transmission piece 3313 in FIG39 ), and the vibration transmission piece 3313 is located between the magnetic circuit component 3311 and the panel 3321, and elastically connects the magnetic circuit component 3311 to the panel 3321.
  • the support structure 3300 in FIG39 is not limited to being rigidly connected to the panel 3321, and can also be rigidly connected to the shell body 33222 or the back plate 33221.
  • FIG. 40 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the difference between the acoustic output device 4000 and the acoustic output device 3300 shown in FIG33 is that the vibration-transmitting plate 3313 in the acoustic output device 4000 includes only one vibration-transmitting plate (for the convenience of description, the vibration-transmitting plate is still represented by the vibration-transmitting plate 3313 in FIG39 ), and the vibration-transmitting plate 3313 is located between the magnetic circuit assembly 3311 and the back plate 33221, and elastically connects the magnetic circuit assembly 3311 to the back plate 33221.
  • the support member is a cylindrical structure or a plate-like structure and is also applicable to the support member 3323 in the acoustic output device 3900, 4000.
  • the acoustic output device 3700 shown in Figure 37 or the acoustic output device 3800 shown in Figure 38 please refer to the acoustic output device 3700 shown in Figure 37 or the acoustic output device 3800 shown in Figure 38, which will not be repeated here.
  • the support structure 3300 in Figure 40 is not limited to being rigidly connected to the panel 3321, but can also be rigidly connected to the shell body 33222 or the back plate 33221.
  • FIG. 41 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification.
  • the transducer device 4110 (including a magnetic circuit assembly 4111, a coil 4112, and a vibration-transmitting plate 4113), the housing 4120 (including a panel 4121 and a shell 4122), the support structure 4130, the additional element 4140 and other structures in the acoustic output device 4100 may be similar to the transducer device 400 (including a magnetic circuit assembly 411, a coil 412, and a vibration-transmitting plate 413A), the support structure 430, the additional element 440 and other structures in the acoustic output device 3900, respectively.
  • the main difference between the acoustic output device 4100 and the acoustic output device 400 is that the additional element 4140 in the acoustic output device 4100 is rigidly connected to the side wall of the shell 4122 adjacent to the panel 4121 (i.e., the shell body 41222), and the magnetic circuit assembly 4111 is rigidly connected to the shell body 41222.
  • the shell body 41222 has a better supporting effect on the magnetic circuit component 4111, thereby preventing the magnetic circuit component 4111 from being attracted or repelled by the additional element 4140 and being flipped and deformed, thereby affecting the vibration stability of the transducer device 4110.
  • the housing 4122 can be regarded as a structure that is hollow inside and has an open opening at one end facing the panel 4121.
  • the housing 4122 can include a back plate 41221 (a side wall on the housing 4122 opposite to the panel) and a housing body 41222 (a side wall on the housing 4122 adjacent to the panel 4121), and the panel 4121 and the back plate 41221 can be located at two ends of the housing body 41222, respectively.
  • the vibration transmission sheet 4113 can be located between the panel 4121 and the magnetic circuit assembly 412, and elastically connect the magnetic circuit assembly 4111 to the panel 4121.
  • an elastic element 4450 may be used to connect the panel 4121 to one end of the housing body 41222. Due to the presence of the vibration transmission piece 4113 and the elastic element 4150, the additional element 4140 and the magnetic circuit assembly 4111 may vibrate relative to the panel 4221 to generate a resonance peak within a target frequency range.
  • the vibration transmission piece 4113 and the elastic element 4150 may reduce or prevent the panel 4121 from transmitting vibrations within a frequency range higher than the resonance frequency corresponding to the resonance peak to the additional element 4140, so that within a frequency range higher than the resonance frequency corresponding to the resonance peak, the mass of the additional element will not affect the mass of the vibration load of the transducer device, thereby ensuring that the sensitivity of the acoustic output device will not be affected by the additional element within a frequency range higher than the resonance frequency corresponding to the resonance peak.
  • the elastic element is a reed structure, an elastic ring structure or an elastic glue, which is also applicable to the elastic element 4150 in the acoustic output device 4100, and specific reference may be made to the acoustic output device 400 shown in FIG. 4 .
  • middle support structure 4100 of Figure 41 is not limited to being rigidly connected to the panel 4121, but can also be rigidly connected to the shell body 41222 or the back plate 41221.
  • a pressure relief hole 9221 is provided on the shell 922 to reduce the resonant frequency corresponding to the resonant peak generated by the elastic element driving the additional element to vibrate relative to the panel, so as to broaden the frequency range in which the sensitivity of the acoustic output device is not or less affected by the additional element.
  • the scheme of the acoustic output device 1200 in which the back panel is elastically connected to the side wall of the shell adjacent to the panel to reduce high-frequency sound leakage is also applicable to the acoustic output device 4100.
  • the additional element Since the additional element has a certain mass, there will be a certain distance between the center of mass of the entire acoustic output device and the driving force direction of the magnetic circuit component in the transducer device, which will cause the magnetic circuit component in the transducer device to vibrate and shake, which will not only affect the vibration stability of the transducer device, but also increase the sound leakage of the acoustic output device.
  • the influence of the additional element on the sound leakage of the acoustic output device will be specifically described below in conjunction with Figure 42.
  • FIG. 42 is a frequency response curve of an acoustic output device according to some embodiments of the present specification.
  • curve L441 is a sound leakage frequency response curve corresponding to the side of the shell body 33222 of the acoustic output device 3300 on which the additional element is provided
  • curve L442 is a sound leakage frequency response curve corresponding to the side of the shell body 33222 of the acoustic output device 3300 that is opposite to the side on which the additional element is provided.
  • the sound leakage frequency response curves L441 and L442 can be measured by collecting air-conducted sound on one side of the shell body 33222 of the acoustic output device 3300.
  • the acoustic output device 3300 generates a sound leakage resonance peak 4411.
  • the sound leakage resonance peak 4411 is generated by the magnetic circuit component 3311 when vibration and shaking occur. Due to the existence of the sound leakage resonance peak 4421, the acoustic output device 3300 will generate a large sound leakage within the working frequency band (for example, within 500 Hz to 2000 Hz).
  • the position of the sound leakage resonance peak 4411 can be adjusted so that the resonance frequency corresponding to the sound leakage resonance peak is as far away from the working frequency band as possible, so as to avoid the acoustic output device having a large sound leakage in the working frequency band.
  • the resonance frequency corresponding to the sound leakage resonance peak can be adjusted by adjusting the elastic coefficient of the first vibration transmission plate 33131 and/or the second vibration transmission plate 33132. For example, the ease of reed flipping and deformation can be reduced by adjusting the elastic coefficient of the vibration transmission plate, or adjusting the position of the connection point between the reed and other structures.
  • FIG43 is a frequency response curve of an acoustic output device according to some embodiments of the present specification.
  • the frequency response curve in FIG43 can be measured by collecting the air-conducted sound on the side of the panel 3321 in the acoustic output device.
  • L451 is the frequency response curve of the acoustic output device 3300 when the elastic coefficient of the first vibration plate 33131 and the second vibration plate 33132 is K1
  • L452 is the frequency response curve of the acoustic output device 3300 when the elastic coefficient of the first vibration plate 33131 and the second vibration plate 33132 is K2
  • L453 is the frequency response curve of the acoustic output device 3300 when the elastic coefficient of the first vibration plate 33131 and the second vibration plate 33132 is K3, wherein K1 ⁇ K2 ⁇ K3.
  • the resonance peak in region L is the resonance peak generated by the additional element 3340 and the magnetic circuit component 3311 in the acoustic output device 3300 relative to the panel 3321 within the target frequency range.
  • the acoustic output device 3300 has a relatively flat frequency response curve and has a better acoustic output effect.
  • the elastic coefficients of the first vibration transmission plate 33131 and the second vibration transmission plate 33132 increase, the resonant frequency corresponding to the resonance peak increases.
  • the elastic coefficients of the first vibration transmission plate 33131 and the second vibration transmission plate 33132 and/or the mass of the additional element can be adjusted so that the resonant frequency corresponding to the resonance peak is within the target frequency range.
  • the target frequency range may be no greater than 800 Hz.
  • the target frequency range may be no greater than 700 Hz.
  • the target frequency range may be no greater than 500 Hz.
  • the target frequency range may be no greater than 300 Hz. More preferably, the target frequency range may be no greater than 200 Hz.
  • FIG44 is a leakage sound frequency response curve of the acoustic output device shown in some embodiments of the present specification.
  • the leakage sound frequency response curve in FIG44 can be measured by collecting the air conduction sound on the side of the shell 3322 of the acoustic output device 3300 opposite to the additional element 3340.
  • L461 is the leakage sound frequency response curve of the acoustic output device 3300 when the elastic coefficient of the first vibration plate 33131 and the second vibration plate 33132 is K1;
  • L462 is the leakage sound frequency response curve of the acoustic output device 3300 when the elastic coefficient of the first vibration plate 33131 and the second vibration plate 33132 is K2;
  • L463 is the leakage sound frequency response curve of the acoustic output device 3300 when the elastic coefficient of the first vibration plate 33131 and the second vibration plate 33132 is K3, wherein K1 ⁇ K2 ⁇ K3.
  • the leakage sound resonance peak in region M is the leakage sound resonance peak on each leakage sound frequency response curve.
  • the resonant frequency corresponding to the resonance of the leakage sound response curve can be adjusted to be less than the resonant frequency of the frequency response curve of the acoustic output device, so that the side of the shell 3322 in the acoustic output device 3300 opposite to the additional element 3340 has less leakage.
  • the resonant frequency corresponding to the resonance of the leakage sound response curve can be less than 700 Hz.
  • the resonant frequency corresponding to the resonance of the leakage sound response curve can be less than 500 Hz. Further preferably, the resonant frequency corresponding to the resonance of the leakage sound response curve can be less than 300 Hz. More preferably, the resonant frequency corresponding to the resonance of the leakage sound response curve can be less than 200 Hz.
  • Fig. 45 is a leakage sound frequency response curve of an acoustic output device according to some embodiments of the present specification.
  • the leakage sound frequency response curve in Fig. 45 can be measured by collecting air conduction sound on one side of the housing 3322 of the acoustic output device 3300 where the additional element 3340 is located.
  • L471 is the sound leakage frequency response curve of the acoustic output device 3300 when the elastic coefficient of the first vibration plate 33131 and the second vibration plate 33132 is K1;
  • L472 is the sound leakage frequency response curve of the acoustic output device 3300 when the elastic coefficient of the first vibration plate 33131 and the second vibration plate 33132 is K2;
  • L473 is the sound leakage frequency response curve of the acoustic output device 3300 when the elastic coefficient of the first vibration plate 33131 and the second vibration plate 33132 is K3, wherein K1 ⁇ K2 ⁇ K3.
  • the sound leakage resonance peak in region N is the sound leakage resonance peak on each sound leakage frequency response curve.
  • the elastic coefficients of the first vibration transmitting plate 33131 and the second vibration transmitting plate 33132 can be adjusted so that the resonance frequency corresponding to the resonance of the leakage sound response curve is less than the resonance frequency of the frequency response curve of the acoustic output device, so that the side of the housing 3322 of the acoustic output device 3300 having the additional element 3340 has less sound leakage.
  • the resonance frequency corresponding to the resonance of the leakage sound response curve can be less than 700 Hz.
  • the resonance frequency corresponding to the resonance of the leakage sound response curve can be less than 500 Hz. Further preferably, the resonance frequency corresponding to the resonance of the leakage sound response curve can be less than 300 Hz. More preferably, the resonance frequency corresponding to the resonance of the leakage sound response curve can be less than 200 Hz.
  • the elastic coefficients of the first vibration transmitting plate 33131 and the second vibration transmitting plate 33132 are related to their structures.
  • the first vibration transmitting plate 33131 and the second vibration transmitting plate 33132 can have larger elastic coefficients, so that the resonance frequency of the sound leakage resonance peak of the acoustic output device 3300 is far away from the working frequency band.
  • the elastic coefficients of the first vibration transmitting plate 33131 and the second vibration transmitting plate 33132 are larger, and the acoustic output device 3300 can have smaller sound leakage in a wider working frequency band.
  • the structure of the vibration transmitting plate will be described in detail below in conjunction with FIG. 46.
  • Figure 46 (a) to (c) are schematic diagrams of the top view structure of the vibration transmission sheet according to some embodiments of this specification.
  • Figure 47 (a) to (c) are schematic diagrams of the three-dimensional structure of the vibration transmission sheet according to some embodiments of this specification.
  • the vibration transmission piece 4800 may include a central region 4810 and an edge region 4820 and a plurality of supporting rods 4830 connecting the central region 4810 and the edge region 4820.
  • the vibration transmission piece 4800 When the vibration transmission piece 4800 is used to connect a magnetic circuit component and a housing (e.g., a panel or a back panel) in an acoustic output device, the central region 4820 of the vibration transmission piece 4800 may be connected to the magnetic circuit component, and the edge region 4820 of the vibration transmission piece 4800 may be connected to the housing.
  • the central area 4810 of the vibration-transmitting plate 4800 can be connected to the side of the magnetic circuit assembly 3311 close to the panel 3321, and the edge area 4820 of the vibration-transmitting plate 4800 can be connected to the panel 3321;
  • the central area 4810 of the vibration-transmitting plate 4800 can be connected to the side of the magnetic circuit assembly 3311 close to the back plate 33221, and the edge area 4820 of the vibration-transmitting plate 4800 can be connected to the back plate 33221.
  • the edge area 4820 of the vibration transmission piece 4800 and the central area 4810 of the vibration transmission piece 4800 may not be coplanar.
  • a preload force can be generated when the magnetic circuit component in the acoustic output device is connected to the panel and/or the back plate.
  • the existence of the preload force can prevent the vibration transmission piece 4800 from having a zero elastic force when the transducer device vibrates, which is beneficial to improving the stability of the vibration of the transducer device in the acoustic output device.
  • the natural state of the vibration transmission piece 4800 may refer to the structural state when the vibration transmission piece 4800 is assembled on the transducer device of the acoustic output device and the transducer device does not input an excitation signal and does not generate mechanical vibration. It should be noted that the edge area 4820, the central area 4810 of the vibration transmission piece 4800 and the support rod 4830 may also be in the same plane.
  • the number of support rods 4830 in the vibration transmission plate 4800 can be four.
  • the four support rods 4830 can be arranged at intervals along the circumference of the central area 4810 of the vibration transmission plate 4800 and are symmetrically distributed about the center line of the central area 4810. This is conducive to increasing the overall elastic coefficient of the vibration transmission plate 4800.
  • the support rod 4830 may include one or more circuitous bending structures 4831 arranged along the extension direction thereof.
  • a through hole 4811 may be provided on the central region 4810 of the vibration transmission plate 4800.
  • the through hole 4811 may be used for inserting a boss on the magnetic circuit assembly, thereby achieving a fixed connection between the central region 4810 and the magnetic circuit assembly through the cooperation between the boss and the through hole.
  • the stiffness of the vibration transmission piece 4800 in any direction (hereinafter referred to as radial direction) in the plane perpendicular to the vibration direction can be greater than the stiffness threshold. For example, according to the width of the magnetic gap and the magnetic attraction between the magnetic circuit component and the additional element, it can be determined that the equivalent stiffness of the vibration transmission piece 4800 in the radial direction is greater than 4.7 ⁇ 10 4 N/m.
  • the equivalent stiffness of the vibration transmission piece 4800 in the radial direction can be greater than 6.4 ⁇ 10 4 N/m.
  • the magnetic circuit assembly 49123 may also include a magnet assembly 491231 and a magnetic cover 491232 (not shown in the figure) and at least one vibration transmission piece 49122, and the vibration transmission piece 49122 may be connected between the magnetic cover 491232 and the magnet assembly 491231, and is used to elastically support the magnet assembly 49123 in the magnetic cover 491232.
  • the transducer device includes two vibration transmission pieces, namely a first vibration transmission piece and a second vibration transmission piece, which are respectively distributed on both sides of the magnet assembly along the vibration direction of the magnet assembly, and are used to elastically support the magnet assembly respectively.
  • the vibration transmission piece and the magnetic circuit assembly 49123 can be arranged along the vibration direction, and the side of the vibration transmission piece perpendicular to the vibration direction can be connected to the end of the magnetic cover perpendicular to the vibration direction to achieve the fixation of the magnet assembly.
  • the vibration transmission piece and the magnetic circuit assembly 49123 can be arranged along the vibration direction, and the side of the vibration transmission piece perpendicular to the vibration direction can be connected to the end of the magnetic cover perpendicular to the vibration direction to achieve the fixation of the magnet assembly.
  • the radial equivalent stiffness of at least one vibration transmission plate can be greater than 4.7 ⁇ 10 4 N/m.
  • the transducer device can include only at least one vibration transmission plate.
  • the transducer device can include only at least two vibration transmission plates 4800, for example, a first vibration transmission plate and a second vibration transmission plate.
  • the radial equivalent stiffness of each vibration transmission plate in the first vibration transmission plate and the second vibration transmission plate can be greater than 4.7 ⁇ 10 4 N/m.
  • the relevant dimension data of the vibration transmission piece 4800 can be determined based on the equivalent stiffness requirement in the radial direction of the vibration transmission piece 4800.
  • the ratio of the distance between the starting point and the end point of the support rod 4830 to the length of the support rod 4830 itself can be in the range of 0-1.2.
  • the distance between the starting point and the end point of the support rod 4830 along the length direction of the vibration transmission piece 4800 refers to the distance between the connection point between the support rod 4830 and the central area 4810 of the vibration transmission piece and the connection point between the support rod 4830 and the edge area 4820 of the vibration transmission piece along the length direction of the vibration transmission piece 4800. For example, in FIG.
  • the ratio of the distance SE between the starting point S and the end point E of the support rod 4830 to the total length of the curved support rod 4830 can be in the range of 0.7-0.85. In some embodiments, the ratio of the distance between the starting point and the end point of the support rod 4830 along the width direction of the vibration transmission sheet 4800 to the length of the support rod 4830 itself can be in the range of 0-0.5.
  • the distance between the starting point and the end point of the support rod 4830 along the width direction of the vibration transmission sheet 4800 refers to the distance between the connection point between the support rod 4830 and the central area 4810 of the vibration transmission sheet and the connection point between the support rod 4830 and the edge area 4820 of the vibration transmission sheet along the width direction of the vibration transmission sheet 4830.
  • the ratio of the distance S'E' between the starting point S and the end point E of the support rod 4830 along the width direction of the vibration transmission sheet 4800 to the total length of the curved support rod 4830 can be in the range of 0.15-0.35.
  • the length of the support rod 4830 may be in the range of 7mm-25mm.
  • the thickness of the support rod along the axial direction of the transducer device i.e., the thickness of the transducer plate
  • the ratio of the thickness of the transducer plate along the axial direction of the transducer device to the width of any one of the support rods 4830 along the radial plane of the transducer device may be in the range of 0.16-0.75. Exemplary ratios of thickness to width may include: 0.2-0.7, 0.26-0.65, 0.3-0.6, 0.36-0.55, or 0.4-0.5, etc.
  • the thickness of the transducer plate 4800 may be in the range of 0.1mm-0.2mm, and the width of the support rod 4830 may be in the range of 0.25mm-0.5mm.
  • the thickness of the transducer plate 4800 may be in the range of 0.1mm-0.15mm, and the width of the support rod 4830 may be in the range of 0.4mm-0.48mm.
  • the structure of the vibration transducer 4800 shown in Figures 46 and 47 can be applicable to the vibration transducer in any acoustic output device provided in the embodiments of this specification, for example, the first vibration transducer 33131 and/or the second vibration transducer 33132 in the acoustic output device 3300, the vibration transducer 3313 in the acoustic output device 3900 and the acoustic output device 4000, the vibration transducer 413A and the vibration transducer 413B in the acoustic output devices 400 and 700, the vibration transducer 913A and the vibration transducer 913B in the acoustic output device 900, the vibration transducer 1213A and the vibration transducer 1213B in the acoustic output device 1200, the vibration transducer 2013A and the vibration transducer 2013B in the acoustic output devices 2000, 2200, 2400, 2500, 2600, 2700, etc.
  • the acoustic output device 4900 may include an acoustic output unit 4910 and a support structure 4920, and the acoustic output unit 4910 is connected to the support structure 4920.
  • the support structure 4920 can be used to support the acoustic output unit 4910 to be worn to the wearing position.
  • the wearing position may be a specific position on the user's head.
  • the wearing position may include the ear, mastoid, temporal bone, parietal bone, frontal bone, etc.
  • the wearing position may include the left and right sides of the head and the position located in front of the user's ear on the sagittal axis of the human body.
  • the acoustic output unit 4910 may include a transducer, which may be used to convert an electrical signal (including sound information) into a mechanical vibration so that the user can hear the sound through the acoustic output device 4900.
  • the mechanical vibration generated by the acoustic output unit 4910 may be mainly transmitted through a medium such as the user's skull (i.e., bone conduction) to form bone conduction sound, or it may be mainly transmitted through a medium such as air (i.e., air conduction) to form air conduction sound, or the sound may be conducted in a bone-air combination manner.
  • a medium such as the user's skull (i.e., bone conduction) to form bone conduction sound
  • air i.e., air conduction
  • the sound may be conducted in a bone-air combination manner.
  • the support structure 4920 may be arranged in a ring shape and be arranged around the user's head through the user's forehead and the back of the head. In some embodiments, the support structure 4920 may be a rear hanging structure forming a curved shape, adapted to the back of the user's head. In some embodiments, the support structure 4920 may be an ear hanging structure, and the ear hanging structure for hanging above the user's auricle has a curved portion adapted to the human ear. In some embodiments, the support structure 4920 may be a frame structure, and the frame structure has a nose pad and temples on both sides, which can be worn on the user's face and ears. For more embodiments of the support structure 4920, see (a)-(c) in Figure 48 and related descriptions.
  • FIG. 48 are wearing schematic diagrams of the acoustic output device 4900 shown in some embodiments of this specification.
  • the support structure 4920 can be arranged in a ring shape and wrapped around the ear of the user, so that the acoustic output unit 4910 is fixed to the face of the user and close to the ear canal of the user.
  • the acoustic output unit 4910 is fixed to the face of the user and close to the ear canal of the user.
  • the support structure 4920 can be set as an ear hook and a rear hanging structure, which is arranged around the back of the user's head and the auricle, so that the acoustic output unit 4910 is fixed to the face of the user and close to the ear canal of the user.
  • the support structure 4920 can be a head beam structure forming a curved shape, which is arranged around the top of the user's head, so that the acoustic output unit 4910 is fixed to the face of the user and close to the ear canal of the user.
  • the acoustic output device 4900 may include at least two acoustic output units 4910. At least two acoustic output units 4910 may convert electrical signals into mechanical vibrations to enable the acoustic output device 4900 to achieve stereo sound effects.
  • the acoustic output device 4900 may include two acoustic output units 4910. The two acoustic output units 4910 may be respectively arranged on the left ear side and the right ear side of the user. In some application scenarios where the requirements for stereo sound are not particularly high (such as hearing aid for hearing patients, live prompting by hosts, etc.), the acoustic output device 4900 may also be provided with only one acoustic output unit 4910.
  • the support structure 4920 may include two ear-hook components and a rear-hook component, and the two ends of the rear-hook component are respectively connected to one end of a corresponding ear-hook component, and the other end of each ear-hook component away from the rear-hook component is respectively connected to a corresponding acoustic output unit 4910.
  • the rear-hook component can be set in a curved shape to be arranged around the back of the user's head, and the ear-hook component can also be set in a curved shape to be hung between the user's ear and head, thereby facilitating the wearing requirements of the acoustic output device 4900.
  • the two acoustic output units 4910 are respectively located on the left and right sides of the user's head, and the two acoustic output units 4910 also press the user's head under the cooperation of the support structure 4920, and the user can also hear the sound output by the acoustic output device 4900.
  • the acoustic output unit 4910 in this specification may be a bone conduction speaker and/or an air conduction speaker.
  • the acoustic output device 4900 may be an electronic device with an audio function, for example, the acoustic output device 4900 may be a music headset, a hearing aid headset, a bone conduction headset, a hearing aid, audio glasses, a smart helmet, a VR device, an AR device, or other electronic device.
  • FIG49A is a schematic diagram of the structure of an acoustic output unit 4910 according to some embodiments of the present specification.
  • the acoustic output unit 4910 may include a housing 4911, a transducer 4912, and a panel 4913 (also referred to as a vibration plate).
  • a housing cavity may be formed in the housing 4911 for accommodating the transducer 4912.
  • the transducer 4912 may be disposed in the housing cavity of the housing 4911, and the panel 4913 may be connected to the transducer 4912 and used to transmit the mechanical vibration generated by the transducer 4912 to the user.
  • the support structure 4920 may be connected to the outside of the housing 4911.
  • the transducer 4912 may convert an electrical signal into a mechanical vibration
  • the panel 4913 may be in contact with the user's skin in a worn state, and the mechanical vibration generated by the transducer 4912 is transmitted to the panel, and acts on the user's auditory nerve through the user's skin, bones, and/or tissues, thereby forming bone conduction sound.
  • the shell 4911 can be rectangular, circular, diamond-shaped, polygonal, or any irregular shape and combinations thereof, and is not limited to the shapes shown in the figure.
  • the acoustic output unit 4910 may further include a vibration damping sheet 4914.
  • the transducer 4912 may be suspended in the accommodating cavity of the housing 4911 through the vibration damping sheet 4914.
  • the panel 4913 may not be in contact with the housing 4911.
  • the mechanical vibration generated by the transducer 4912 may be less or even not transmitted to the housing 4911, thereby avoiding the housing 4911 to drive the air vibration outside the acoustic output unit 4910 to a certain extent, which is conducive to reducing the sound leakage of the acoustic output unit 4910.
  • the housing 4911 may have an open end, and the panel 4913 is disposed outside the housing 4911 and opposite to the open end. In other words, the edge of the panel 4913 is disconnected from the open end of the housing 4911.
  • a connecting rod 49131 is disposed between the panel 4913 and the transducer 4912. One end of the connecting rod 49131 is connected to the transducer 4912, and the other end passes through the open end of the housing 4911 to connect to the panel 4913, so that the vibrating panel 4913 and the transducer 4912 do not contact the housing 4911, thereby reducing the sound leakage of the acoustic output unit 4910.
  • the vibration-damping sheet 4914 may be connected between the connecting rod 49131 and the housing 4911 to achieve the suspension of the panel 4913 and the transducer 4912.
  • at least one through hole also called a "leakage reduction hole" for connecting the accommodating cavity of the shell 4911 with the outside of the acoustic output unit 4910 may be opened on the shell 4911 to reduce sound leakage of the acoustic output unit 4910.
  • the acoustic output unit 4910 may further include a face cover (not shown) connected to the panel 4913, and the face cover is used to contact the user's skin, that is, the panel 4913 can contact the user's skin through the face cover.
  • the Shore hardness of the face cover can be less than the Shore hardness of the panel 4913, that is, the face cover can be softer than the panel 4913.
  • the material of the face cover can be a soft material such as silicone
  • the material of the panel 4913 is a hard material such as polycarbonate and glass fiber reinforced plastic.
  • the face cover can be detachably connected to the panel 4913 for user replacement.
  • the face cover can be set on the panel 4913.
  • the transducer device 4912 may include a bracket 49121, a vibration transmitting piece 49122, a magnetic circuit assembly 49123, and a coil 49124.
  • the panel 4913 may be connected to the bracket 49121.
  • the bracket 49121 may be connected to an end of the connecting rod 49131 away from the panel 4913.
  • the bracket 49121 may be connected to the magnetic circuit assembly 49123 through the vibration transmitting piece 49122 to suspend the magnetic circuit assembly 49123 in the receiving cavity of the housing 4911.
  • the vibration damping piece 4914 may connect the bracket 49121 and the housing 4911 to suspend the transducer device 4912 in the receiving cavity of the housing 4911.
  • the coil 49124 may extend into the magnetic gap of the magnetic circuit assembly 49123 along the vibration direction of the transducer device 4912.
  • the magnetic circuit assembly 49123 may include a magnet assembly 491231 and a magnetic cover 491232.
  • the magnetic cover 491232 may be sleeved on the coil 49124, and the magnet assembly 491231 may be disposed inside the coil 49124.
  • the magnetic cover 491232 and the magnet assembly 491231 are spaced apart in a direction perpendicular to the vibration direction, and the aforementioned magnetic gap is formed between the inner side wall of the magnetic cover 491232 and the outer side of the magnet assembly 491231.
  • the coil 49124 may be sleeved on the outer side of the magnet assembly 491231 around an axis parallel to the vibration direction of the transducer device 4912.
  • the magnetic shield 491232 of the magnetic circuit assembly 49123 is sleeved on the outside of the coil 49124 around an axis parallel to the vibration direction of the transducer device 4912, that is, the magnetic shield 491232 and the magnet assembly 491231 are spaced apart in a direction perpendicular to the vibration direction of the transducer device 4912.
  • the coil 49124 can be connected to the magnetic shield 491232.
  • the coil 49124 is attached to the inner wall of the magnetic shield 491232.
  • the vibration transmission sheet 49122 can be connected between the magnetic shield 491232 and the magnet assembly 491231 to elastically support the magnet assembly 491231.
  • the vibration transmission piece 49122 and the magnetic circuit assembly 49123 can be arranged along the vibration direction, and the side of the vibration transmission piece 49122 perpendicular to the vibration direction can be connected to the end of the magnetic cover 491232 perpendicular to the vibration direction to achieve the fixation of the magnetic circuit assembly 49123.
  • the periphery of the vibration transmission piece 49122 can also be connected to the inner wall or other positions of the magnetic cover 491232 to achieve the fixation of the magnetic circuit assembly 49123 relative to the magnetic cover 491232.
  • the coil 49124 may include a first coil 491241 and a second coil 491242.
  • the first coil 491241 and the second coil 49124 are spaced apart in the vibration direction of the transducer 4912.
  • the first coil 491241 may extend into the magnetic gap of the magnetic circuit assembly 49123 from the side close to the panel 4913 along the vibration direction
  • the second coil 491242 may extend into the magnetic gap of the magnetic circuit assembly 49123 from the side away from the panel 4913 along the vibration direction.
  • the first coil 491241 and the second coil 491242 may extend into the magnetic gap of the magnetic circuit assembly 49123 together from the side close to the panel 4913.
  • the transducer 4912 may further include a retaining portion, which is used to retain and shape the first coil 491241 and the second coil 491242.
  • the first coil 491241 and the second coil 491242 may be an integrated structure.
  • the first coil 491241 and the second coil 491242 can be wound on the shaping material, and then the retaining part (for example, retaining materials such as high-temperature tape) is used to stick to the outside of the first coil 491241 and the second coil 491242, so that the first coil 491241 and the second coil 491242 form an integrated structure.
  • the two coils are formed by winding the same metal wire, or a section of the two coils is connected, so that the input and output wires of the two coils have only two leads, which can facilitate routing and facilitate subsequent electrical connection with other structures.
  • the vibration transmitting piece 49122 may include a first vibration transmitting piece 49125 and a second vibration transmitting piece 49126.
  • the first vibration transmitting piece 49125 may include a central area 491252 and an edge area 491253 distributed along its circumference, and a support rod 491251 connecting the two.
  • the second vibration transmitting piece 49126 may include a central area 491262 and an edge area 491263 distributed along its circumference, and a support rod connecting the two.
  • the first vibration transmitting piece 49125 and the second vibration transmitting piece 49126 may elastically support the magnet assembly 491231 from opposite sides of the magnet assembly 491231, respectively.
  • the magnet assembly 491231 in the embodiment of the present specification is elastically supported on opposite sides of the vibration direction of the transducer device 4912, so that there is no abnormal vibration such as obvious shaking, which is conducive to increasing the stability of the vibration of the transducer device 4912.
  • the edge regions 491253 on opposite sides of the first vibration transmitting piece 49125 are respectively connected to the side of the bracket 49121 close to the magnetic circuit assembly 49123 and the side of the magnetic cover 491232 close to the bracket 49121.
  • the edge region 491263 of the second vibration transmitting piece 49126 is connected to the side of the magnetic cover 491232 away from the bracket 49121.
  • the magnetic cover 491232 can be a cylindrical structure with both ends open (for example, as shown in FIG49A-FIG49B ), a bowl-shaped structure with one end open (for example, as shown in FIG54D ), etc.
  • drilling holes on the magnetic cover 491232 can reduce the sound cavity effect of the magnetic circuit assembly 49123, thereby reducing the sound leakage of the acoustic output device 4900.
  • the magnetic cover 491232 can be a closed structure so that the sound generated in the magnetic circuit assembly 49123 does not leak out.
  • FIG. 49B is a schematic diagram of the structure of the magnetic cover 491232 shown in some embodiments of the present specification. As shown in FIG.
  • the cylindrical structure with open ends can be closed at both ends along the vibration direction of the transducer device by cover plates 491232-1 and cover plates 491232-2 to form a closed magnetic cover 491232.
  • cover is only an example, and the two ends of the cylindrical structure with open ends along the vibration direction can also be closed by other means (for example, a cover film, etc.) to form a closed magnetic cover 491232.
  • the magnetic cover 491232 can also be replaced by a non-magnetic part such as a plastic bracket. Based on this, the edge area of the first vibration transmission plate 49125 and the edge area of the second vibration transmission plate 49126 can be connected to the two ends of a plastic bracket respectively.
  • the magnet assembly 491231 may include a magnet 491233 and a magnetic conductive plate.
  • the magnet 491233 and the magnetic conductive plate are arranged along the vibration direction of the transducer device 4912.
  • the magnetic conductive plate may be arranged on one side or both sides of the magnet 491233 in the vibration direction of the transducer device 4912.
  • the magnetic conductive plate may include a first magnetic conductive plate 491234 and a second magnetic conductive plate 491235 located on opposite sides of the magnet 491233 in the vibration direction of the transducer device 4912.
  • the first vibration transmission plate 49125 may support the magnet assembly 491231 from the side of the first magnetic conductive plate 491234 facing away from the second magnetic conductive plate 491235, and the second vibration transmission plate 49126 may support the magnet assembly 491231 from the side of the second magnetic conductive plate 491235 facing away from the first magnetic conductive plate 491234.
  • the central area 491252 of the first vibration transmitting plate 49125 is connected to the side of the first magnetic conductive plate 491234 away from the second magnetic conductive plate 491235, and the central area 491262 of the second vibration transmitting plate 49126 is connected to the side of the second magnetic conductive plate 491235 away from the first magnetic conductive plate 491234.
  • the corners of the magnetic conductive plates (e.g., the first magnetic conductive plate 491234 and/or the second magnetic conductive plate 491235) away from the magnet 491233 may be chamfered.
  • the corners on the opposite sides of the first magnetic conductive plate 491234 and the second magnetic conductive plate 491235 i.e., the corners away from the magnet 491233 may be chamfered to adjust the distribution of the magnetic field formed by the magnetic circuit assembly 49123 to make the magnetic field more concentrated.
  • the half height of the first coil 491241 and the half thickness of the side line of the first magnetic plate 491234 parallel to the vibration direction can be at the same height
  • the half height of the second coil 491242 and the half thickness of the side line of the second magnetic plate 491235 parallel to the vibration direction can be at the same height, so that the magnetic field can be concentrated on the rectangular part of the first magnetic plate 491234 and/or the second magnetic plate 491235 except the chamfered part.
  • FIG49C is a schematic diagram of the positions of the exemplary first magnetic plate 491234 and the first coil 491241 shown in some embodiments of the present specification.
  • the half height H1 of the first coil 491241 and the half thickness H2 of the side line 491234-1 of the first magnetic plate 491234 parallel to the vibration direction are at the same height, and both are on the contour line L.
  • the corners of the magnetic conductive plate (e.g., the first magnetic conductive plate 491234 and/or the second magnetic conductive plate 491235) away from the magnet 491233 may be right angles.
  • the corners on the opposite sides of the first magnetic conductive plate 491234 and the second magnetic conductive plate 491235 may not be chamfered.
  • the half height of the first coil 491241 and the half thickness of the first magnetic conductive plate 491234 may be equal in height
  • the half height of the second coil 491242 and the half thickness of the second magnetic conductive plate 491235 may be equal in height, so that the magnetic field can be concentrated on the first magnetic conductive plate 491234 and/or the second magnetic conductive plate 491235.
  • the thickness of the first magnetic conductive plate 491234 and the second magnetic conductive plate 491235 that are not chamfered can be smaller, so as to achieve the purpose of reducing the weight and volume of the entire transducer device 4912.
  • the magnetic cover 491232 can be connected to the bracket 49121, and the bracket 49121 can be connected to the shell 4911 through the vibration-damping sheet 4914, so as to suspend the transducer 4912 in the accommodating cavity of the shell 4911.
  • the edge region 491253 of the first vibration-transmitting sheet 49125 can be connected to the bracket 49121 and the magnetic cover 491232 at two ends perpendicular to the vibration direction
  • the edge region 491263 of the second vibration-transmitting sheet 49126 can be connected to the magnetic cover 491232 at two ends perpendicular to the vibration direction
  • the panel 4913 can be connected to the bracket 49121 and disconnected from the open end of the shell 4911.
  • the magnetic circuit assembly 49123 is difficult to be stably suspended in the housing 4911 by the vibration damping sheet 4914, which easily leads to poor stability of the transducer 4912 during vibration; on the contrary, if the stiffness of the vibration damping sheet 4914 is too large, the vibration of the transducer 4912 is easily transmitted to the housing 4911 via the vibration damping sheet 4914, which easily leads to excessive sound leakage of the acoustic output unit 4910.
  • the ratio between the stiffness of the vibration damping sheet 4914 and the stiffness of the first vibration transmitting sheet 49125 (or the second vibration transmitting sheet 49126) can be in the range of 0.1 to 5.
  • the vibration transmitting sheet e.g., the first vibration transmitting sheet 49125, the second vibration transmitting sheet 49126
  • FIG. 50 is a schematic diagram of the structure of the acoustic output unit 4910 shown in some embodiments of the present specification.
  • the acoustic output unit 4910 of this embodiment is basically the same as the embodiment shown in FIG. 49A , wherein the main difference is that in this embodiment, the magnetic cover 491232 is configured to be rigidly connected to the shell 4911 or the panel 4913, that is, the vibration damping plate 4914 may not exist in this embodiment.
  • the magnetic cover 491232 is attached to the inner wall of the shell 4911, making full use of the internal space of the shell 4911, which is conducive to the miniaturization of the acoustic output unit 4910.
  • the magnetic finder 1232 can also be rigidly connected to the shell 4911 or the panel 4913 through other fixed structures.
  • the edge region (e.g., edge region 491253 or edge region 491263) of any one of the first vibration transmitting plate 49125 and the second vibration transmitting plate 49126 can be connected to the open end of the housing 4911 by one or a combination of assembly methods such as snap-fitting and gluing, and the panel 4913 is connected to the open end of the housing 4911 to form a closed cavity.
  • the side of any one of the first vibration transmitting plate 49125 and the second vibration transmitting plate 49126 close to the panel 4913 is connected to the panel 4913, and the panel 4913 is connected to the open end of the housing 4911.
  • the panel 4913 can be made of the same material as the housing 4911 and formed in one piece.
  • the panel 4913 can be made of different materials from the housing 4911 and connected by one or a combination of assembly methods such as snap-fitting and gluing.
  • the acoustic output unit 4910 may further include additional elements, which are arranged in the accommodating cavity of the housing 4911 or attached to the outside of the housing 4911.
  • the additional elements may include vibration sensitive elements and non-vibration sensitive elements.
  • the vibration sensitive elements may include air conduction speakers, acceleration sensors, etc.
  • Non-vibration sensitive elements may include batteries, circuit boards, etc. Among them, the battery can be used to supply energy to the acoustic output unit 4910 so that the acoustic output unit 4910 can operate.
  • the circuit board may be integrated with a signal processing circuit, and the signal processing circuit is used to perform signal processing on the electrical signal.
  • the signal processing may include frequency modulation processing, amplitude modulation processing, filtering processing, noise reduction processing, etc.
  • the air conduction speaker can be used to convert the electrical signal into a vibration signal (sound wave), which is conducted to the auditory nerve through the air and perceived by the user.
  • the acceleration sensor can be used to measure the vibration acceleration of the panel 4913.
  • the acoustic output unit 4910 may be a bone conduction speaker.
  • the acoustic output device 4900 may be implemented as a bone-air conduction speaker or a bone-air conduction earphone will be described below in conjunction with Figures 4 to 56.
  • FIG51 is a schematic diagram of the structure of an acoustic output unit 4910 according to some embodiments of the present specification.
  • the acoustic output unit 4910 shown in FIG51 is substantially the same as the acoustic output unit 4910 shown in FIG49A, wherein the main difference is that the additional element of the acoustic output unit 4910 includes an air conduction speaker, and the air conduction speaker is disposed in the accommodating cavity of the housing 4911.
  • the acoustic output unit 4910 includes a transducer 4912 and a housing 4911 for accommodating the transducer 4912, and the transducer 4912 includes a magnetic circuit assembly 49123 (including a magnetic conductive cover 491232 and a magnet assembly 491231), a coil 49124 (including a first coil 491241 and a second coil 491242), and a vibration transmission sheet 49122 (including a first vibration transmission sheet 49125 and a second vibration transmission sheet 49126).
  • the coil 49124 is arranged in the magnetic circuit assembly 49123 so that the magnetic field of the magnetic circuit assembly 49123 passes through the coil 49124.
  • the first vibration transmission plate 49125 and the second vibration transmission plate 49126 elastically support the magnet assembly 491231.
  • the air conduction speaker includes a diaphragm 4915 connected between the magnet assembly 491231 and the shell 4911, and the diaphragm 4915 divides the internal space of the shell 4911 (that is, the above-mentioned accommodating cavity) into a front cavity 49111 close to the skin contact area (for example, the panel 4913) and a rear cavity 49112 away from the aforementioned skin contact area.
  • the front cavity 49111 can be closer to the user than the rear cavity 49112.
  • the housing 4911 is provided with a sound outlet 49113 connected to the rear cavity 49112, and the diaphragm 4915 can generate air-conducted sound transmitted to the human ear through the sound outlet 49113 during the relative movement between the transducer 4912 and the housing 4911.
  • the sound generated in the rear cavity 49112 can be transmitted through the sound outlet 49113, and then act on the user's eardrum through the air, so that the user can also hear the air-conducted sound through the acoustic output unit 4910.
  • the diaphragm 4915 of the air conduction speaker is connected between the magnet assembly 491231 and the housing 4911 of the transducer device 4912, and the vibration direction of the diaphragm 4915 is parallel to the vibration direction of the transducer device 4912.
  • the transducer device 4912 causes the skin contact area to move toward the direction close to the user's face, it can be simply regarded as bone conduction sound enhancement.
  • the portion of the housing 4911 corresponding to the skin contact area moves toward the direction close to the user's face, and the magnet assembly 491231 moves toward the direction away from the user's face due to the relationship between the action force and the reaction force, so that the air in the back cavity 49112 is squeezed, corresponding to the increase in air pressure, and the result is that the sound transmitted through the sound outlet 49113 is enhanced, which can be simply regarded as air conduction sound enhancement. Therefore, the bone conduction sound and air conduction sound of the acoustic output unit 4910 can be enhanced at the same time, and accordingly, when the bone conduction sound is weakened, the air conduction sound is also weakened.
  • the bone-conducted sound and the air-conducted sound generated by the acoustic output unit 4910 have the same phase characteristics.
  • the front cavity 49111 is a closed cavity, since the front cavity 49111 and the rear cavity 49112 are generally separated by the diaphragm 4915 and the transducer 4912 and other structural parts, the change law of the air pressure in the front cavity 49111 is exactly opposite to the change law of the air pressure in the rear cavity 49112.
  • the housing 4911 can also be provided with a pressure relief hole connected to the front cavity 49111 or the front cavity 49111 is set to be open, so that the front cavity 49111 can be connected to the external environment, that is, air can freely enter and exit the front cavity 49111.
  • the change of the air pressure in the rear cavity 49112 can be as little as possible.
  • the front cavity 49111 can be blocked, which can effectively improve the acoustic expression of the air-conducted sound generated by the acoustic output unit 4910.
  • the pressure relief hole provided in the front cavity 49111 can be staggered with the sound outlet hole 49113 provided in the rear cavity 49112, that is, the two are not adjacent.
  • the pressure relief hole is provided on one side of the housing 4911, and the sound outlet hole 49113 is provided on the other side of the housing 4911 relative to the pressure relief hole, so as to avoid the silencing phenomenon due to the opposite phase between the two as much as possible.
  • FIG. 5 is a schematic diagram of the structure of the acoustic output unit 4910 shown in some embodiments of the present specification. As shown in FIG. 5, an air conduction speaker 4916 is arranged in the side wall of the housing 4911.
  • the air conduction speaker 4916 is connected to the transducer device 4912, and the transducer device 4912 and the housing 4911 in the acoustic output unit 4910 form a bone conduction speaker, which is combined with the air conduction speaker 4916 to form a bone-air conduction speaker.
  • the air conduction vibration direction of the air conduction speaker 4916 is different from the vibration direction of the transducer device 4912 (i.e., the bone conduction vibration direction).
  • the vibration direction of the transducer device 4912 and the air conduction vibration direction of the air conduction speaker 4916 can be arranged approximately vertically.
  • the vibration direction of the transducer 4912 can be set approximately perpendicular to the vibration direction of the diaphragm of the air conduction speaker 4916 to reduce sound leakage of the air conduction speaker.
  • the "approximately perpendicular” mentioned in this specification refers to the angle between the corresponding two parts being within the range of 90° ⁇ 20°.
  • the vibration direction of the transducer 4912 and the air conduction vibration direction of the air conduction speaker 4916 (or the diaphragm of the air conduction speaker 4916) are within the range of 90° ⁇ 20°.
  • the vibration direction of the transducer 4912 can be set perpendicular to the diaphragm of the air conduction speaker 4916.
  • the distance between the bone conduction speaker and the air conduction speaker 4916 can be greater than the distance threshold, so as to avoid the electromagnetic field generated between the electromagnetic components of the bone conduction speaker and the air conduction speaker 4916 and affect the vibration output of the bone conduction speaker and the air conduction speaker 4916.
  • the "distance between the bone conduction speaker and the air conduction speaker 4916" mentioned in this specification refers to the minimum distance between the magnetic component of the bone conduction speaker and the magnetic component of the air conduction speaker 4916.
  • FIG. 52B is a comparison diagram of the influence of different distances between the bone conduction speaker and the air conduction speaker 4916 on the magnetic field of the coil according to some embodiments of the present application. As shown in FIG.
  • the distance between the bone conduction speaker and the air conduction speaker 4916 can be greater than 0.3 mm.
  • the distance between the bone conduction speaker and the air conduction speaker 4916 can be greater than 0.4 mm.
  • the vibration direction of the transducer 4912 can be made approximately perpendicular to the vibration sensitive end of the acceleration sensor.
  • the additional element is a vibration sensitive element such as an air conduction speaker or an acceleration sensor
  • the vibration direction of the vibration sensitive element is approximately perpendicular to the transducer device 4912 to avoid the vibration of the transducer device.
  • the "vibration sensitive element is approximately perpendicular to the vibration direction of the transducer device 4912" mentioned in this specification means that when the vibration sensitive element is an air conduction speaker, the vibration direction of the transducer device 4912 is approximately perpendicular to the vibration direction of the diaphragm of the air conduction speaker; when the vibration sensitive element is an acceleration sensor, the vibration direction of the transducer device 4912 is approximately perpendicular to the vibration sensitive end of the acceleration sensor.
  • the additional element is a non-vibration sensitive element such as a battery or a circuit board
  • the battery or circuit board can be placed at any position in the housing 4911 to achieve an integrated design of the acoustic output device 4900.
  • the additional element may include a vibration sensitive element and a non-vibration sensitive element, wherein the vibration sensitive element may be approximately perpendicular to the vibration direction of the transducer device 4912.
  • the additional element includes an acceleration sensor that is sensitive to vibration and a circuit board that is not sensitive to vibration, and the acceleration sensor is disposed on the circuit board and accommodated in the housing of the acoustic output unit 4910 to achieve the integration of the acoustic output device.
  • the acceleration sensor may be approximately perpendicular to the vibration direction of the transducer device 4912.
  • FIG. 53 is a schematic diagram of the structure of the transducer device 4912 according to some embodiments of the present specification.
  • FIG. 54A is an exploded view of the transducer device 4912 according to some embodiments of the present specification.
  • the transducer device 4912 shown in FIG. 53 and FIG. 54A can be used for any acoustic output unit 4910 shown in FIG. 49A to FIG. 52A.
  • the transducer device 4912 may include a vibration transmission plate 49122, a magnetic circuit assembly 49123 and a coil 49124.
  • the magnetic circuit assembly 49123 may include a magnet assembly 491231 and a magnetic conductive cover 491232, and the magnet assembly 491231 may include a magnet 491233, and a first magnetic conductive plate 491234 and a second magnetic conductive plate 491235 located on opposite sides of the magnet 491233 in the vibration direction of the transducer device 4912.
  • the magnetic conductive cover 491232 may be arranged on the outside of the magnet assembly 491231 around the axis.
  • the coil 49124 may be within the magnetic field of the magnet assembly 491231.
  • the coil 49124 may extend into the magnetic gap formed between the magnetic cover 491232 and the magnet assembly 491231 along the vibration direction of the transducer 4912, and the magnetic cover 491232 is sleeved on the outside of the coil 49124.
  • the inner wall of the magnetic cover 491232 may fit the outer wall of the coil 49124.
  • the vibration transmission piece 49122 may include a first vibration transmission piece 49125 and a second vibration transmission piece 49126.
  • the first vibration transmission piece 49125 elastically supports the magnet assembly 491231 from the side of the first magnetic plate 491234 that is away from the second magnetic plate 491235, and the second vibration transmission piece 49126 elastically supports the magnet assembly 491231 from the side of the second magnetic plate 491235 that is away from the first magnetic plate 491234.
  • the edge area 491253 of the first vibration transmission plate 49125 is connected to one end of the magnetic cover 491232 along the vibration direction of the transducer device 4912
  • the edge area 491263 of the second vibration transmission plate 49126 is connected to the other end of the magnetic cover 491232 along the vibration direction of the transducer device 4912.
  • the input and output wires of the coil 49124 are located at the same position of the magnetic cover 491232, and the number of coils of the coil 49124 along the radial direction of the transducer 4912 can be an even number.
  • the radial number of coils is 2, 4, 6, 8, etc.
  • the radial direction of the transducer 4912 is a direction perpendicular to the axis of the transducer 4912 (or the vibration direction of the transducer 4912).
  • the coil 49124 may include a first coil 491241 and a second coil 491242.
  • the first coil 491241 and the second coil 491242 may be arranged along the vibration direction of the transducer 4912.
  • the first coil 491241 and the second coil 491242 are connected in series or in parallel.
  • the first coil 491241 and the second coil 491242 connected in series or in parallel, the line entry position of each coil and the line exit position of the coil are located at the same position of the magnetic cover 491232, so as to facilitate the assembly of the leads of the first coil 491241 and the second coil 491242.
  • the line entry position of the first coil 491241 and the line exit position of the first coil 491241 may be located at the same position of the magnetic cover 491232, and the line entry position of the second coil 491242 and the line exit position of the second coil 491242 may be located at the same position of the magnetic cover 491232.
  • the line entry position of the first coil 491241, the line exit position of the first coil 491241, the line entry position of the second coil 491242, and the line exit position of the second coil 491242 may all be located in the middle of the magnetic cover 491232 (for example, in the middle of the magnetic cover 491232 in a direction perpendicular to the vibration direction of the transducer device 4912).
  • the winding directions of the first coil 491241 and the second coil 491242 may be opposite or the directions of the currents in the first coil 491241 and the second coil 491242 may be opposite, and the transducer device 4912 vibrates relatively under the drive of the double coil (i.e., the coil 49124 includes the first coil 491241 and the second coil 491242), which may increase the vibration magnitude of the transducer device 4912 relative to a single voice coil.
  • the coil 49124 includes the first coil 491241 and the second coil 491242
  • Fig. 54B is an impedance comparison diagram of a transducer device 4912 with a single voice coil and a dual voice coil structure according to some embodiments of the present application. As shown in Fig. 54B, compared with the single voice coil structure, the dual voice coil has a lower high frequency impedance.
  • the overall DC impedance of coil 49124 can be in the range of 6 ⁇ -10 ⁇ .
  • the first coil 491241 and the second coil 491242 in the transducer device 4912 can be designed according to the following requirements:
  • the range of DC impedance of a single coil can be different according to different connection modes (series or parallel). For example, in order to ensure that the overall DC impedance of coil 49124 is 8 ⁇ , when the two coils are connected in series, the DC impedance of a single coil (first coil 491241 and second coil 491242) is 4 ⁇ , and when the two coils are connected in parallel, the DC impedance of a single coil (first coil 491241 and second coil 491242) is 16 ⁇ .
  • the inner wall of the magnetic cover 491232 can be fitted with the outer wall of the coil 49124 (including the first coil 491241 and the second coil 491242), and the spacing between the first coil 491241 and the second coil 491242 along the vibration direction of the transducer 4912 is within the range of 1.5 mm to 2 mm.
  • the shape of coil 49124 (first coil 491241 and second coil 491242) can be made into a "slender" shape, that is, the axial height of coil 49124 is increased and the radial width of coil 49124 is reduced.
  • the inner diameter of magnetic cover 491232 is also reduced.
  • the outer diameter of magnetic cover 491232 is reduced synchronously, so that the mass of magnetic cover 491232 and the overall mass of acoustic output unit 4910 can also be reduced accordingly.
  • the shape of coil 49124 (first coil 491241 and second coil 491242) can be made into a "slender" shape to meet the above requirements.
  • the ratio of the axial height to the radial width of the first coil or the second coil may be no less than 3.
  • the ratio of the axial height to the radial width of the first coil or the second coil may be no less than 3.5.
  • the axial height of the transducer device 4912 is mainly limited by the size of the internal magnet assembly 491231, in order to meet the size requirements of the transducer device 4912 (for example, when the acoustic output device 4900 is an earphone, in order to meet the height of the acoustic output unit 4910 in the earphone within a range of less than 5.7 mm), the axial height of a single coil (the first coil 491241 and/or the second coil 491242) can be set within a range of less than 2.85 mm.
  • the axial height of a single coil (the first coil 491241 and/or the second coil 491242) can be about 2 mm.
  • the first coil 491241 and the second coil 491242 can be connected in series.
  • the DC impedance of the first coil 491241 and/or the second coil 491242 can be within the range of 4 ⁇ 1 ⁇ .
  • the DC impedance of the first coil 491241 and/or the second coil 491242 can be within the range of 3.5 ⁇ -4.5 ⁇ .
  • the DC impedance of the first coil 491241 and/or the second coil 491242 can be within the range of 4 ⁇ 0.4 ⁇ .
  • the diameter of the wire in the first coil 491241 and the second coil 491242 can be within the range of 0.11mm-0.13mm.
  • the first coil 491241 and/or the second coil 491242 may meet one of the following characteristics: the wire diameter is 0.11 mm, the radial number of turns is 2 to 6 turns, and the axial number of layers is 8 to 20; the wire diameter is 0.12 mm, the radial number of turns is 2 to 6 turns, and the axial number of layers is 9 to 20; the wire diameter is 0.13 mm, the radial number of turns is 2 to 6 turns, and the axial number of layers is 10 to 22.
  • the wire diameter of the first coil 491241 and/or the second coil 491242 may be 0.11 mm, the radial number of turns may be 3 to 5 turns, and the axial number of layers may be 12 to 20.
  • the wire diameter of the first coil 491241 and/or the second coil 491242 may be 0.12 mm, the radial number of turns may be 3 to 5 turns, and the axial number of layers may be 14 to 20.
  • the wire diameter of the first coil 491241 and/or the second coil 491242 can be 0.13 mm, the number of radial turns can be 3 to 4 turns, and the number of axial layers can be 15 to 22 layers.
  • the relationship between the wire diameter, radial number of turns, axial number of layers and DC impedance of a single coil (first coil 491241 and/or second coil 491242) connected in series is shown in Table 1.
  • the wire diameter of the exemplary first coil 491241 and/or the second coil 491242 can be 0.11mm, the number of radial turns can be 4 turns, and the number of axial layers can be 12 layers.
  • the DC impedance of the first coil 491241 and/or the second coil 491242 is 4 ⁇ .
  • the wire diameter can be 0.12mm, the number of radial turns can be 4 turns, and the number of axial layers can be 14 layers.
  • the DC impedance of the first coil 491241 and/or the second coil 491242 is 3.93 ⁇ .
  • the wire diameter can be 0.12mm
  • the number of radial turns can be 4 turns
  • the number of axial layers can be 15 layers.
  • the DC impedance of the first coil 491241 and/or the second coil 491242 is 4 ⁇ .
  • the wire diameter may be 0.13 mm
  • the radial number of turns may be 4, and the axial number of layers may be 18.
  • the DC impedance of the first coil 491241 and/or the second coil 491242 is 4.08 ⁇ .
  • the first coil 491241 and the second coil 491242 can be connected in parallel.
  • the DC impedance of the first coil 491241 and/or the second coil 491242 is within the range of 12 ⁇ -20 ⁇ .
  • the DC impedance of the first coil 491241 and/or the second coil 491242 can be within the range of 16 ⁇ 1.6 ⁇ .
  • the diameter of the wire in the first coil 491241 and the second coil 491242 can be within the range of 0.07mm-0.08mm.
  • the radial number of turns of the first coil 491241 and/or the second coil 491242 may be 4 to 8, and the number of axial layers may be 16 to 22.
  • the radial number of turns of the first coil 491241 and/or the second coil 491242 may be 4 to 6, and the number of axial layers may be 17 to 20.
  • the wire diameter, radial number of turns, axial number of layers and DC impedance of the exemplary single coils (the first coil 491241 and/or the second coil 491242) in parallel are shown in Table 2.
  • the wire diameter of the single coils (the first coil 491241 and/or the second coil 491242) in parallel can be 0.08mm
  • the radial number of turns can be 6
  • the axial number of layers can be 17, and the corresponding DC impedance is 16.16 ⁇ .
  • the wire diameter of the single coils (the first coil 491241 and/or the second coil 491242) in parallel can be 0.07mm
  • the radial number of turns can be 4
  • the axial number of layers can be 20
  • the corresponding DC impedance is 16.27 ⁇ .
  • the coil 49124 is sleeved on the outside of the magnet assembly 491231 around an axis parallel to the vibration direction, and the magnetic cover 491232 is sleeved on the outside of the coil 49124 around the axis, and a magnetic gap A1 is provided between the coil 49124 and the magnet assembly 491231.
  • the magnetic gap A1 refers to the gap formed between the inner wall of the coil 49124 and the outer wall of the magnet 491233 in the magnet assembly 491231.
  • a magnetic gap A1 that is too large will reduce the magnetic field strength, and a magnetic gap A1 that is too small will make the processing technology more difficult to achieve.
  • the width of the magnetic gap A1 along the radial direction can be in the range of 0.25mm-0.35mm.
  • the magnetic gap A1 can be in the range of 0.27mm-0.33mm.
  • the magnetic gap A1 can be in the range of 0.29mm-0.31mm.
  • the magnetic gap A1 between the coil 49124 and the magnet assembly 491231 can be 0.3 mm.
  • the radial elasticity of the vibration transmission piece (such as the first vibration transmission piece 49125 and the second vibration transmission piece 49126) can be designed on the premise of meeting the width requirement of the magnetic gap A1, so as to obtain the conditions that need to be met to resist the suction force of the magnet 491233.
  • the thickness of the magnetic shield 491232 along the radial direction of the transducer 4912 cannot be too thin.
  • the thickness of the magnetic shield 491232 along the radial direction of the transducer 4912 may be no less than 0.3 mm.
  • a too thick magnetic shield 491232 will increase the thickness of the transducer 4912, so the thickness of the magnetic shield 491232 cannot be too thick. Therefore, in order to reduce weight and avoid magnetic saturation, the thickness of the magnetic shield 491232 along the radial direction of the transducer 4912 may be in the range of 0.3 mm-1 mm.
  • the thickness of the magnetic shield 491232 may be in the range of 0.4 mm-0.9 mm.
  • the thickness of the magnetic shield 491232 may be in the range of 0.5 mm-0.8 mm.
  • the magnetic cover 491232 in order to further reduce the mass of the transducer device 4912 (and thus reduce the mass of the acoustic output unit 4910 ), the magnetic cover 491232 may have a weight reduction structure 491232a.
  • the weight reduction structure 491232a may include a weight reduction groove, a weight reduction hole, etc., which are provided on the magnetic cover 491232.
  • the weight reduction groove or the weight reduction hole may be a removal structure of any shape or any structure.
  • the weight reduction groove may be a through groove or a groove having any cross section on the magnetic cover 491232.
  • the weight reduction groove may be an annular groove provided on the inner wall of the magnetic cover 491232.
  • the weight reduction groove may be a rectangular through groove which penetrates the side wall of the magnetic cover 491232 and extends to an end face of the magnetic cover 491232 along the vibration direction.
  • FIG. 54C is a partial schematic diagram of a cylindrical magnetic cover 491232 shown in some embodiments of the present application
  • FIG. 54D is a schematic diagram of a bowl-shaped magnetic cover 491232 shown in some embodiments of the present application. As shown in Fig.
  • the weight reduction structure 491232a may include weight reduction holes opened on the side wall of the cylindrical magnetic cover 491232. As shown in Fig. 54D, the weight reduction structure 491232a may include weight reduction holes opened on the side wall and/or bottom of the bowl-shaped magnetic cover 491232.
  • FIG55 is a comparison of the frequency response curves of the magnetic shield 491232 when slotted and when not slotted.
  • the horizontal axis represents frequency (Hz)
  • the vertical axis represents frequency response (dB)
  • curve 81 is the frequency response curve of the transducer device 4912 when not slotted
  • curve 82 is the frequency response curve of the transducer device 4912 when slotted.
  • the frequency corresponding to the resonance peak of curve 82 is higher than the frequency corresponding to the resonance peak of curve 81. Therefore, after slotting, the mass of the magnetic shield 491232 is reduced, which reduces the mass of the transducer device 4912, thereby increasing the resonant frequency of the transducer device 4912.
  • the frequency response of the transducer device 4912 after slotting is greater than the frequency response of the transducer device 4912 without slotting, thereby enhancing the sound quality of the transducer device 4912.
  • the outer diameter shape of the magnetic cover 491232 may be rectangular, elliptical, circular, runway-shaped, polygonal, etc.
  • the outer diameter shape of the magnetic cover 491232 may be runway-shaped, and the length of the equivalent rectangle corresponding to the runway shape may be less than 20 mm, and the width may be less than 12 mm.
  • the length and width of the equivalent rectangle corresponding to the magnetic cover 491232 are 18.1 and 10.1 mm, respectively.
  • the runway shape described in this specification is usually a closed ring formed by connecting the two ends of two arcs to the two ends of two straight lines.
  • the runway shape may also be a rounded rectangle, that is, the four right angles of the rectangle are replaced with rounded corners.
  • the length/width of the equivalent rectangle mentioned here refers to the length/width of the rectangle corresponding to the runway shape (that is, the shape after the four rounded corners of the runway shape are replaced with right angles).
  • the magnet assembly 491231 may include a magnet 491233 and a magnetic conductive plate disposed on one side of the magnet 491233 in the vibration direction of the transducer device 4912.
  • the magnetic conductive plate is too thin, it is easy to be magnetically saturated, and the magnetic field strength at the coil is correspondingly reduced; and when the magnetic conductive plate is too thick, due to the limitation of the overall volume of the magnet assembly 491231, if the magnetic conductive plate is too thick, it is easy to cause the magnet 491233 to be too thin, and the magnetic field strength generated is too low. Therefore, in order to increase the strength of the magnetic field and avoid magnetic saturation, the ratio of the thickness of the magnetic conductive plate to the thickness of the magnet 491233 can be in the range of 0.05-0.35.
  • the ratio of the thickness of the magnetic conductive plate to the thickness of the magnet 491233 can be in the range of 0.15-0.3.
  • the magnetic conductive plate may include a first magnetic conductive plate 491234 and a second magnetic conductive plate 491235.
  • the first magnetic conductive plate 491234 is located on one side of the magnet 491233 in the vibration direction of the transducer device 4912
  • the second magnetic conductive plate 491235 is located on the other side of the magnet 491233 in the vibration direction of the transducer device 4912.
  • the ratio of the thickness of the first magnetic conductive plate 491234 or the second magnetic conductive plate 491235 (hereinafter referred to as the magnetic conductive plate) to the thickness of the magnet 491233 is in the range of 0.05-0.35.
  • the thickness of the magnetic conductive plate (the first magnetic conductive plate 491234 or the second magnetic conductive plate 491235) can be in the range of 0.5mm-1mm.
  • the thickness of the magnetic conductive plate (the first magnetic conductive plate 491234 or the second magnetic conductive plate 491235) can be in the range of 0.6mm-0.7mm.
  • a hole may be opened on the magnet 491233 and/or the magnetic conductive plate (the first magnetic conductive plate 491234 and/or the second magnetic conductive plate 491235). For example, as shown in FIG.
  • the magnet 491233 is provided with a first hole 491233a
  • the magnetic conductive plate is provided with a second hole 491234a
  • the second hole 491234a and the first hole 491233a may be arranged correspondingly, so as to facilitate the assembly and positioning of the magnet 491233 and the magnetic conductive plate (the first magnetic conductive plate 491234 and/or the second magnetic conductive plate 491235).
  • the number of second holes 491234a on the magnetic conductive plate can be at least two.
  • the number of first holes 491233a on the magnet 491233 can also be at least two, each corresponding to the second hole 491234a.
  • Figure 56 (a)-(c) is a schematic diagram of the top view structure of the magnetic conductive plate shown in various embodiments of this specification. As shown in Figure 56 (a), the magnetic conductive plate is a rounded rectangular structure, and the two second holes 491234a are arranged along the length direction of the magnetic conductive plate (shown in Figure 56 (a)). In some embodiments, the two second holes 491234a are arranged on the center line of the magnetic conductive plate along the length direction.
  • the magnetic conductive plate is a rounded rectangular structure, and the two second holes 491234a are arranged along the diagonal direction of the magnetic conductive plate.
  • the magnetic conductive plate is a rounded rectangular structure, and the second holes 491234a are respectively arranged near the four rounded corners.
  • FIG57 is a comparison of the frequency response curves when the magnetic plate has no openings and when it has openings.
  • FIG58 is a comparison of the BL value curves in the length direction when the magnetic plate has no openings and when it has openings.
  • curve 101 is the frequency response curve when the magnetic plate has no openings
  • curve 102 is the frequency response curve when the magnetic plate has two holes arranged on the midline along the length direction (as shown in FIG56 (a))
  • curve 103 is the frequency response curve when the magnetic plate has two holes arranged along the diagonal (as shown in FIG56 (b))
  • curve 104 is the frequency response curve when the magnetic plate has four holes arranged along the diagonal (as shown in FIG56 (c)).
  • the hole reduces the mass of the transducer device 4912, and at the same time facilitates the assembly and positioning of the magnet 491233 and the magnetic conductive plate (the first magnetic conductive plate 491234 and/or the second magnetic conductive plate 491235).
  • curve 1111 is the BL value curve when the magnetic conductive plate has no openings
  • curve 1112 is the BL value curve when the magnetic conductive plate is provided with two holes along the center line in the length direction (as shown in FIG. 56 (a))
  • curve 1113 is the BL value curve when the magnetic conductive plate is provided with two holes along the diagonal line (as shown in FIG. 56 (b))
  • curve 1114 is the BL value curve when the magnetic conductive plate is provided with four holes along the diagonal line (as shown in FIG. 56 (c)).
  • the BL value is used to reflect the electromagnetic characteristics, which refers to the product of the magnetic field strength and the length of the coil conductor. As shown in FIG.
  • the hole reduces the mass of the transducer device 4912, and at the same time facilitates the assembly and positioning of the magnet 491233 and the magnetic conductive plate (the first magnetic conductive plate 491234 and/or the second magnetic conductive plate 491235).
  • the setting position of the second hole 491234a on the magnetic conductive plate has a greater influence on the BL value of the transducer device 4912.
  • FIG. 59 is a comparison diagram of BL value curves when the second holes on the magnetic conductive plate are at different distances from the center of the magnetic conductive plate. As shown in FIG.
  • curve 1211 is the BL value curve when the second hole 491234a is 5 mm away from the center of the magnetic conductive plate
  • curve 1212 is the BL value curve when the second hole 491234a is 5.5 mm away from the center of the magnetic conductive plate
  • curve 1213 is the BL value curve when the second hole 491234a is 6 mm away from the center of the magnetic conductive plate
  • curve 1214 is the BL value curve when the second hole 491234a is 6.5 mm away from the center of the magnetic conductive plate.
  • curves 1211, 1212, 1213 and 1214 decrease in sequence, and curve 1214 is significantly lower than the other three curves.
  • the center of the magnetic plate here refers to the geometric center of the magnetic plate.
  • the ratio of the opening area of the second hole 491234a to the area of the surface of the magnetic plate where the second hole 491234a is located is less than 36%, and the opening shape and opening position of the second hole 491234a are not limited.
  • the distance between the edge of the second hole 491234a and the edge of the magnetic conductive plate is as shown in FIG. 56 (a).
  • the line connecting the hole center W2 of the second hole 123a and the geometric center W1 of the magnetic conductive plate extends to the edge of the magnetic conductive plate to form a straight line LA.
  • the intersection of the straight line LA and the edge of the magnetic conductive plate is point B.
  • the intersection of the straight line LA and the edge of the second hole 123a close to point B is point C.
  • the distance between the edge of the second hole 491234a and the edge of the magnetic conductive plate refers to the distance between point B and point C on the straight line LA.
  • the distance between the edge of the second hole 491234a and the edge of the magnetic conductive plate can be greater than 0.2 mm, which can prevent the second hole from being too close to the edge and reducing the structural strength. At the same time, it can also reduce the influence of the second hole on the magnetic field strength, ensuring that the speaker sensitivity is not significantly reduced.
  • FIG60 is a comparison diagram of frequency response curves when the second hole 491234a has different diameters.
  • curve 1311 is the frequency response curve when the diameter of the second hole 491234a is 1 mm
  • curve 1312 is the frequency response curve when the diameter of the second hole 491234a is 1.5 mm
  • curve 1313 is the frequency response curve when the diameter of the second hole 491234a is 2 mm.
  • the frequency response of the transducer device 4912 decreases accordingly. For every 0.5 mm increase in diameter, the frequency response of the transducer device 4912 decreases by about 0.5 dB.
  • FIG61 is a comparison diagram of BL value curves when the second hole 491234a has different diameters.
  • curve 141 is a BL value curve when the diameter of the second hole 491234a is 1 mm
  • curve 142 is a BL value curve when the diameter of the second hole 491234a is 1.5 mm
  • curve 143 is a BL value curve when the diameter of the second hole 491234a is 2 mm.
  • the diameter of the second hole 491234a can be in the range of 1.5 mm-2.5 mm.
  • the diameter of the second hole 491234a can be in the range of 1.8 mm-2.3 mm.
  • the ratio of the punching area of the second hole 491234a to the area of the surface of the magnetic conductive plate where the second hole 491234a is located is less than 36%.
  • the mass of the transducer device 4912 (and thus the mass of the acoustic output unit 4910) can be reduced.
  • the inner diameter of the magnetic cover 491232 can be reduced to reduce the mass of the transducer device 4912 (and thus the mass of the acoustic output unit 4910).
  • the mass of the transducer 4912 (and thus the mass of the acoustic output unit 4910) can be reduced by providing a weight reduction groove on the magnetic cover 491232 or by opening a hole on the magnet 491233 and/or the magnetic plate (the first magnetic plate 491234 and/or the second magnetic plate 491235).
  • the mass m of the acoustic output unit 4910 after weight reduction can be in the range of 2g-5g.
  • the mass m of the acoustic output unit 4910 can be in the range of 3.8g-4.5g.
  • FIG61(b) is a comparison diagram of the acceleration curves of the transducer device 4912 in the mass range of 2g-5g according to some embodiments of the present specification.
  • d0 represents the wire diameter of the coil (the first coil and the second coil)
  • N represents the radial number of turns and the axial number of layers (for example, N5*12 represents the radial number of turns is 5, the axial number of layers is 12)
  • N0 represents the product of the radial number of turns and the axial number of layers
  • "parallel" represents the two coils in parallel.
  • the acceleration range at 1kHz is 70dB-110dB under the excitation of the test voltage.
  • the acceleration curve shown in (b) of Figure 61 is measured in the following manner: under the test voltage, the transducer device 4012 of the present application is stimulated to generate vibration, and the displacement generated by the transducer device 4912 driving the panel 1913 is measured by laser testing, and then the displacement is normalized by data processing, that is, the displacement of the corresponding frequency band is divided by the corresponding test voltage, and then the acceleration dB value is obtained by comparing it with 1mm/ s2 .
  • the sensitivity of the transducer device 4912 can be improved by adjusting to a suitable acceleration range, thereby achieving the purpose of improving the sound quality of the acoustic output unit 49100. Even if the amplitude of the BL value curve decreases after weight reduction, the frequency response acceleration is improved.
  • the acceleration curve shown in (b) of Figure 61 is obtained by measuring the vibration acceleration of the panel 4913 when the support structure 4920 is fixed.
  • the acoustic output unit 4910 may include an air conduction speaker and a bone conduction speaker (for example, as shown in FIG. 51 or FIG. 52A).
  • the crossover point of bone conduction and air conduction may be set in the mid-low frequency range, for example, in the range of 400Hz-500Hz, and the sound greater than the crossover point is generated by the bone conduction speaker, and the sound less than the crossover point is generated by the air conduction speaker, so as to prevent the bone conduction speaker from vibrating in the low frequency band and causing the user to feel obvious vibration; at the same time, since the bone conduction speaker has a relatively flat frequency response curve for a distance after the resonant peak frequency, the output distortion of this part of the frequency band is small, therefore, the resonant peak frequency of the bone conduction speaker may be set at a position lower than the crossover point and kept at a certain distance from the crossover point. In some embodiments, the resonant peak frequency of the transducer 4912 may be less than 300Hz
  • the ratio range of the total axial (parallel to the vibration direction) elastic coefficient k of the transducer 49122 to the mass m of the transducer device 4912 can be set to:
  • the mass of the transducer 4912 may include the sum of the masses of the magnetic shield 491232, the coil 49124, and the housing 4911, or include the sum of the masses of the air conduction speaker 4916, the magnetic shield 491232, the coil 49124, and the housing 4911.
  • the unit of the elastic coefficient k is N/m (Newton/meter), and the unit of the mass m is g (gram).
  • the mass m of the transducer 4912 may be in the range of 2g-5g.
  • the mass of the transducer 4912 may be in the range of 2.2g-4.8g.
  • the mass of the transducer 4912 may be in the range of 3.8g-4.5g.
  • the transducer plate 49122 includes a first transducer plate 49125 and a second transducer plate 49126 connected in parallel as shown in FIG. 51.
  • the axial elastic coefficient k0 of the first transducer plate 49125 and the second transducer plate 49126 can be the same, and the axial elastic coefficient k0 of each transducer plate can be less than 9000 N/m.
  • the axial elastic coefficient k0 of the first transducer plate 49125 and the second transducer plate 49126 can be different, but the total axial elastic coefficient k provided by the two together is less than 18000 N/m.
  • the bone conduction resonance peak frequency can be achieved by adjusting the mass range of the double vibration plates connected by the first vibration plate 49125 and the second vibration plate 49126 and/or the elastic coefficient of the double vibration plates.
  • the mass of the mass block mentioned here refers to the mass of all components that need to be pushed by the double vibration plates.
  • the mass of the mass block is the total mass of the coil 49124, the magnetic cover 491232, the bracket 49121, the panel 13 and the vibration damping plate 4914.
  • the mass of the mass block is the total mass of the coil 49124, the magnetic cover 491232, the panel 13 and the shell 4911.
  • the mass of the mass block also includes the mass of the air conduction speaker.
  • the mass of the mass block may also include the mass of other necessary connecting components.
  • the bone conduction resonance peak frequency can be achieved by adjusting the mass range of the mass block connected by the double vibration plates formed by the first vibration plate 49125 and the second vibration plate 49126 and/or the elastic coefficient of the double vibration plates.
  • the mass of the mass block mentioned here refers to the mass of all components that need to be pushed by the double vibration plates.
  • the mass of the mass block is the overall mass of the coil 49124, the magnetic cover 491232, the bracket 49121, the panel 13 and the vibration damping plate 4914.
  • the mass of the mass block is the overall mass of the coil 49124, the magnetic cover 491232, the panel 13 and the shell 4911.
  • the mass of the mass block also includes the mass of the air conduction speaker.
  • the mass of the mass block may also include the mass of other necessary connecting components.
  • Figure 62 (a)-(g) are schematic diagrams of the structure of the magnetic circuit assembly 49123 in the form of a Halbach Array shown in various embodiments of this specification. It should be noted that Figure 62 shows the central section of the magnetic circuit assembly 49123, and is the right half of the two-dimensional axisymmetric figure.
  • the transducer 4912 may include a magnetic circuit assembly 49123 and a coil 49124.
  • the magnetic circuit assembly 49123 may include a magnet assembly 491231 and a magnetic shield 491232.
  • the coil 49124 may be sleeved on the outside of the magnet assembly 491231 around an axis parallel to the vibration direction, and the magnetic shield 491232 may be sleeved on the outside of the coil 49124 around the axis.
  • at least one of the magnet 491233, the magnetic plate or the magnetic shield 491232 included in the magnet assembly 491231 may include a plurality of magnetic parts with different magnetization directions.
  • the magnet assembly 491231 and/or the magnetic shield 491232 may include a plurality of magnetic parts (e.g., magnets) with different magnetization directions.
  • a plurality of magnetic parts with different magnetization directions may form a Halbach array (e.g., as shown in (a)-(g) in FIG. 62). Through a specific array arrangement, the magnetic field may be concentrated on one side of the magnetic assembly 1231, thereby increasing the magnetic field strength at the coil 49124.
  • the magnet 491233, the magnetic plate or the magnetic cover 491232 may have an array of multiple magnetic parts with different magnetization directions.
  • the magnetization directions of the multiple magnetic parts rotate in a clockwise or counterclockwise direction on a surface parallel to the vibration direction of the transducer.
  • the magnetic cover 491232 may include three layers of magnetic parts arranged axially, and the magnetization directions of the three layers of magnetic parts are radially outward, axially downward, and radially inward from top to bottom.
  • FIG. 62 there may be no magnetic part array in the magnet 491233 and the magnetic plate (the first magnetic plate 491234 and/or the second magnetic plate 491235), and the magnetic cover 491232 may include three layers of magnetic parts arranged axially, and the magnetization directions of the three layers of magnetic parts are radially outward, axially downward, and radially inward from top to bottom.
  • the magnetic cover 491232 and the magnet 491233 may not have a magnetic portion array
  • the magnetic plate (the first magnetic plate 491234 and/or the second magnetic plate 491235) may include four magnetic portions arranged radially, and the uppermost magnetic portion and the lowermost magnetic portion each include two magnetic portions arranged radially, and the magnetization directions of the two magnetic portions of the uppermost magnetic portion are axially upward and radially outward from left to right, respectively, and the magnetization directions of the two magnetic portions of the lowermost magnetic portion are axially upward and radially inward from left to right, respectively.
  • the magnetic plate (the first magnetic plate 491234 and/or the second magnetic plate 491235) and the magnetic cover 491232 may both have a magnetic portion array.
  • the magnetic portion array of the magnetic conductive plate (the first magnetic conductive plate 491234 and/or the second magnetic conductive plate 491235) is similar to the magnetic portion array of the magnetic conductive plate shown in (b) of FIG. 62
  • the magnetic portion array of the magnetic conductive cover 491232 is similar to the magnetic portion array of the magnetic conductive cover 491232 shown in (a) of FIG. 62
  • the magnet 491233, the magnetic conductive plate and/or the magnetic conductive cover 491232 may have more magnetic portion arrays. As shown in (d) of FIG.
  • magnet 491233 there may be no magnetic portion array in the magnet 491233 and the magnetic conductive plate (the first magnetic conductive plate 491234 and/or the second magnetic conductive plate 491235), and the magnetic conductive cover 491232 may include five layers of magnetic portions arranged along the axial direction, and the magnetization directions of the five layers of magnetic portions are axially upward, radially outward, axially downward, radially inward, and axially upward from top to bottom.
  • magnet 491233 may be a hollow annular structure. As shown in (e) of FIG.
  • magnet 491233 may include three layers of magnetic parts arranged axially, and the magnetization directions of the three layers of magnetic parts are radially outward, axially upward, and radially inward from top to bottom. As shown in (f) of FIG. 62 , magnet 491233 may include five layers of magnetic parts arranged axially, and the magnetization directions of the five layers of magnetic parts are axially downward, radially outward, axially upward, radially inward, and axially downward from top to bottom. As shown in (g) of FIG.
  • magnet 491233 may include three layers of magnetic parts arranged axially, and the magnetization directions of the three layers of magnetic parts are radially outward, axially upward, and radially inward from top to bottom, respectively, and magnetic shield 491232 may include three layers of magnetic parts arranged axially, and the magnetization directions of the three layers of magnetic parts are radially outward, axially downward, and radially inward from top to bottom.
  • the magnetization directions of at least two adjacent magnetic parts among the multiple magnetic parts may be perpendicular to each other.
  • FIG63 is a comparison chart of BL value curves of magnetic circuit components 49123 with different magnetic part arrays.
  • curve 181 is the BL value curve of magnetic circuit component 49123 without a magnetic part array
  • curves 182-188 are respectively the BL value curves of magnetic circuit component 49123 when magnetic circuit component 49123 has magnetic part arrays as shown in (a)-(g) in FIG62.
  • the magnetic shield and/or the magnet component having a magnetic part array both improve the magnetic field strength.
  • the magnetic shield having a magnetic part array improves the magnetic field strength more significantly than not having a magnetic part array, which is improved by about 12%.
  • magnet 491233 By setting magnet 491233 into a hollow annular magnetic part array, the magnetic field strength is still improved by about 6% compared with not having a magnetic part array.
  • the beneficial effects that may be brought about by the acoustic output device 4900 of the embodiment of this specification include but are not limited to: (1) by setting the number of coils 49124 along the radial direction of the transducer 4912 to an even number, so that the input line and the output line of the first coil 491241 or the second coil 491242 are located at the same position of the magnetic cover 491232, so that the inner wall of the magnetic cover 491232 fits the outer wall of the coil 49124, the mass of the transducer 4912 (and thus the mass of the acoustic output unit 4910) can be reduced; (2) by making the shape of the coil 49124 (the first coil 491241 and the second coil 491242) into a "slender" shape, the line can be selected.
  • the inner diameter of the magnetic shield 491232 can be reduced to reduce the mass of the transducer device 4912 (and thereby reduce the mass of the acoustic output unit 4910); (2) by providing a weight-reducing groove on the magnetic shield 491232 or by opening a hole in the magnet 491233 and/or the magnetic plate (the first magnetic plate 491234 and/or the second magnetic plate 491235), the mass of the transducer device 4912 (and thereby reduce the mass of the acoustic output unit 4910); (3) by providing a weight-reducing groove on the magnetic shield 491232 or by opening a hole in the magnet 491233 and/or the magnetic plate (the first magnetic plate 491234 and/or the second magnetic plate 491235), the mass of the transducer device 4912 (and thereby reduce the mass of the acoustic output unit 4910); (4) by adjusting the mass of the acoustic output unit 4910 and the total axial elastic coefficient of the vibration transmission plate 49122,
  • sensitivity by adopting a double coil (a first coil 491241 and a second coil 491242), dual drive is realized, and the high-frequency impedance of the coil is reduced, thereby improving the sensitivity of the transducer device 4912; (9) by fixing the double vibration-transmitting plate 49122 on both sides of the magnet 491233, high-sensitivity output is ensured, and the stability of the vibration of the magnet 491233 is ensured by the support of the double vibration-transmitting plate 49122; (10) the coil 49124 is attached to the magnetic cover 491232, so that the magnetic gap between the magnetic cover 491232 and the coil 49124 becomes smaller, so that the magnetic field is more concentrated, thereby improving the sensitivity of the transducer device 4912.
  • the present application uses specific words to describe the embodiments of the present application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” refer to a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment.
  • some features, structures or characteristics in one or more embodiments of the present application can be appropriately combined.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

本说明书实施例提供一种声学输出装置,所述声学输出装置包括:换能装置,被配置为基于电信号产生机械振动;外壳,被配置为容纳所述换能装置,所述外壳包括面板和壳体,所述换能装置与所述面板连接,所述换能装置通过所述面板将所述机械振动传递给用户;以及附加元件,与所述面板通过至少包括一弹性元件的振动路径进行弹性连接。

Description

一种声学输出装置 技术领域
本申请涉及一种声学技术领域,特别涉及一种声学输出装置。
背景技术
一些声学输出装置(例如,耳机、助听器、眼镜、头盔、AR/VR设备)的设计中,除了扬声器以外,通常还需要设置其他的器件以实现扬声器的正常工作,或者丰富声学输出装置的功能。扬声器一般可以包括骨传导扬声器和气传导扬声器。其中,骨传导扬声器能将电信号转换为机械振动信号,并将机械振动信号通过人体组织及骨骼传入人体的听觉神经,使佩戴者听到声音。但是,在骨导扬声器的基础上额外设置的器件(例如,麦克风、传感器、气传导扬声器、电池、电路板等)具有一定质量,会影响骨导扬声器的振动输出而降低骨传导扬声器的灵敏度。
因此,如何降低骨传导扬声器上额外设置的器件的质量对骨传导扬声器振动输出的影响以保证骨传导扬声器具有较高的灵敏度是目前亟需解决的问题。
发明内容
本申请实施例之一提供一种声学输出装置,所述声学输出装置包括:换能装置,被配置为基于电信号产生机械振动;外壳,被配置为容纳所述换能装置,所述外壳包括面板和壳体,所述换能装置与所述面板连接,所述换能装置通过所述面板将所述机械振动传递给用户;以及附加元件,与所述面板通过至少包括一弹性元件的振动路径进行弹性连接。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图2是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图3是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图4是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图5是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图;
图6是根据本说明书一些实施例所示的声学输出装置的频响曲线图;
图7是根据本申请一些实施例提供的声学输出装置的结构示意图;
图8是根据本申请一些实施例提供的不同声学输出装置的频率响应曲线;
图9是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图10是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图;
图11是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图;
图12是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图13是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图14是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图;
图15是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图16是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图;
图17是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图18是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图19是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图20是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图21是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图;
图22是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图23是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图;
图24是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图25是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图26是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图27是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图28是根据本说明书一些实施例所示2的声学输出装置的漏音频率响应曲线图;
图29是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图30是根据本说明书一些实施例中所示的声学输出装置的结构示意图;
图31是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图32是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图33是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图34是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图;
图35是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图36是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图;
图37是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图38是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图39是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图40是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图41是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图42是根据本说明书一些实施例所示的声学输出装置的频率响应曲线;
图43是根据本说明书一些实施例所示的声学输出装置的频率响应曲线;
图44是根据本说明书一些实施例所示的声学输出装置的漏音频率响应曲线;
图45是根据本说明书一些实施例所示的声学输出装置的漏音频率响应曲线;
图46是根据本说明书一些实施例所示的传振片的俯视结构示意图;
图47是根据本说明书一些实施例所示的传振片的立体结构示意图;
图48是根据本说明书一些实施例所示的扬声器的佩戴示意图;
图49A是根据本说明书一些实施例所示的扬声器的结构示意图;
图49B是根据本说明书一些实施例所示的导磁罩的结构示意图;
图49C是根据本说明书一些实施例所示的示例性第一导磁板与第一线圈的位置示意图;
图50是根据本说明书一些实施例所示的扬声器的结构示意图;
图51是根据本说明书一些实施例所示的扬声器的结构示意图;
图52A是根据本说明书一些实施例所示的扬声器的结构示意图;
图52B是根据本申请一些实施例所示的骨导扬声器与气导扬声器之间不同距离对线圈的磁场影响的对比图;
图53是根据本说明书一些实施例所示的换能装置的结构示意图;
图54A是根据本说明书一些实施例所示的换能装置的爆炸图;
图54B是根据本申请一些实施例所示的单音圈和双音圈结构的换能装置的阻抗对比图;
图54C是根据本申请的一些实施例所示的筒状导磁罩的部分示意图;
图54D是根据本申请的一些实施例所示的碗状导磁罩的示意图;
图55是导磁罩开槽时和未开槽时的频响曲线对比图;
图56是根据本说明书一些实施例所示的导磁板的俯视结构示意图;
图57是根据本说明书一些实施例所示的导磁板无开孔时及开孔时的频响曲线对比图;
图58是根据本说明书一些实施例所示的导磁板无开孔时及开孔时的频响曲线对比图;
图59是根据本说明书一些实施例所示的导磁板上第二孔距离导磁板中心不同时的BL值曲线对比图;
图60是根据本说明书一些实施例所示的第二孔具有不同直径时的频响曲线对比图;
图61是根据本说明书一些实施例所示的第二孔具有不同直径时的BL值曲线对比图和扬声器在质量在2g-5g范围内的加速度曲线对比图;
图62是根据本说明书一些实施例所示的海尔贝克阵列(Halbach Array)形式的磁路组件的结构示意图;以及
图63是根据本说明书一些实施例所示的磁路组件具有不同磁性部阵列的BL值曲线对比图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
本说明书实施例描述一种声学输出装置。在一些实施例中,声学输出装置的声学输出单元可以是骨传导扬声器。该声学输出装置包括换能装置、外壳以及附加元件。其中,换能装置可以基于电信号产生机械振动;外壳,包括面板和壳体,面板和壳体可以形成用于容纳换能装置的容置腔。进一步地,面板可以与用户的脸部贴合,换能装置与面板直接连接或者通过外壳与面板连接,最终通过面板将机械振动传递给用户。进一步地,本说明书实施例提供的声学输出装置还包括附加元件,附加元件与面板通过至少包括一弹性元件的振动路径连接。例如,附加元件与壳体刚性连接,面板与具有附加元件的壳体通过弹性元件弹性连接。又例如,附加元件与壳体通过弹性元件弹性连接,面板与壳体刚性连接。再例如,声学输出装置还可以包括支撑件,面板可以与壳体上与面板相对的侧壁(背板)刚性连接,附加元件与支撑件刚性连接,支撑件与面板和壳体之间分别通过弹性元件弹性连接。
这里以附加元件与壳体刚性连接且面板与具有附加元件的壳体通过弹性元件弹性连接作为示例进行说明,在较低频段时(例如,小于20Hz的频段范围内),面板和壳体之间可以近似视为刚性连接,换能装置驱动面板振动,面板通过弹性元件带动壳体和附加元件一并振动,由于附加元件具有一定质量,具有附加元件的声学输出装置的灵敏度会相对较低。在较高频段时(例如,大于20Hz的频段范围内),面板、弹性元件和壳体可以近似视为一个谐振系统,换能装置驱动面板产生振动,在弹性元件的作用下,面板和壳体及与壳体刚性连接的器件(例如,附加元件)之间发生相对运动。具体地,面板的振动处于极小值(例如,面板的振动很小或者不振动),壳体和附加元件发生较强的振动,此时可以视为谐振系统的第一谐振位置,谐振系统处于该第一谐振位置对应的谐振频率为第一谐振频率。一些实施方式的谐振系统中,声学输出装置的频率响应曲线在第一谐振频率时具有谐振谷。可以理解的是,在一些其它的实施方式的谐振系统中,声学输出装置的频率响应曲线在第一谐振频率时也可能没有明显的谐振谷。随着谐振系统的振动频率进一步增大,面板与壳体及与壳体刚性连接的附加元件均发生较强的振动,直至面板与壳体(和附加元件)在相反方向上进行振动并且两者之间的距离达到最大,此时可以视为谐振系统的第二谐振位置,谐振系统处于该第二谐振位置对应的谐振频率为第二谐振频率。一些实施方式的谐振系统中,声学输出装置的频率响应曲线在第二谐振频率时具有谐振峰。可以理解的是,在一些其它的实施方式的谐振系统中,声学输出装置的频率响应曲线在第二谐振频率时也可能没有明显的谐振峰。当频率大于该谐振频率时,面板与壳体(和附加元件)沿相反的方向振动,此时,壳体及附加元件和面板之间的振动传递会被抑制,也就是说,壳体和附加元件对面板的振动的影响会降低。
从谐振系统的相位上来看,面板与壳体先共同运动,此时,面板与壳体及连接于壳体上的附加元件共同振动,此时,面板与壳体的相位差0°;随着频率的增大,面板与壳体和附加元件先沿相同的方向运动,直至面板的振动很小或者不振动,壳体和附加元件发生较强的振动,即上述的第一谐振位置。随着频率继续增大,谐振系统的相位对应的数值增大,面板与壳体及与壳体刚性连接的附加元件均发生较强的振动,直至面板与壳体(和附加元件)在相反方向上进行振动并且两者之间的距离达到最大,即上述的第二谐振位置,此时面板与壳体的相位差在150°-210°范围内,此时谐振系统处于第二谐振位置。再随着频率继续增大,谐振系统的相位对应的数值逐渐变小。在本说明书实施例提供的声学输出装置中,面板和具有附加元件的壳体通过弹性元件连接,可以使得面板和具有附加元件的壳体发生谐振,并能够产生谐振频率位于目标频率范围内的第二谐振频率。在大于第二谐振频率的频率范围内,附加元件和面板之间的振动传递会被抑制,也就是说附加元件对面板的振动的影响会降低,由此可以保证声学输出装置中骨传导扬声器的灵敏度在大于第二谐振频率对应的谐振频率的频率范围内不受或较少受到附加元件的影响。在一些实施例中,通过将第二谐振频率设置在较低的频率位置,能够减小在声学输出装置上额外设置附加元件导致声学输出装置中骨传导扬声器灵敏度下降的频率范围。此外,在大于第二谐振频率的频率范围内,由于附加元件对面板振动的影响较小,声学输出装置的频率响应曲线更为平坦,可以保证声学输出装置在较大的频率范围内具有较好的声学输出效果,提高用户的听觉体验。
可以理解的是,若面板上刚性连接有其他结构,或者壳体上刚性连接有其他结构,例如,面板及与面板刚性连接的结构、弹性元件和壳体及与壳体刚性连接的结构形成谐振系统。
图1是根据本说明书一些实施例所示的声学输出装置的结构示意图。如图1所示,在一些实施例中,声学输出装置100可以包括换能装置10和用于容纳换能装置10的外壳20。在一些实施例中,外壳20可以包括面板21和壳体22,壳体22为内部中空的结构体,面板21和壳体22可以形成容置腔以容纳换能装置10,换能装置10可以与面板21连接,换能装置10可以通过面板21将机械振动传递给用户。在一些实施例中,面板21和壳体22可以为一体式结构。在一些实施例中,壳体22可以为一体结构,也可以为多个部件连接形成的结构。例如,一些实施例中,壳体22可以包括环形侧板及背板,背板固定于环形侧板上与面板21相对的一侧并形成壳体22。在一些实施例中,面板21和壳体22也可以为相互独立的结构,其中,壳体22为内部中空且一端具有开放式敞口的结构体,面板21与壳体22具有开放式敞口的一端刚性连接,并覆盖壳体22的开放式敞口,以形成容纳换能装置10的容置腔。在一些实施例中,用户在佩戴 声学输出装置100时,面板21可以与用户头部贴合,然后将机械振动通过人体组织及骨骼传递至用户的听觉神经,使用户能够听到骨导声。需要说明的是,本说明书所涉及的刚性连接可以是指两个连接件(例如,面板21与壳体22)之间,当其中一个连接件产生位移或受力时,与之相连的另一个连接件基本不会相对于第一个连接件产生位移或相对变形,即两个连接件在振动过程中基本可以看作一个整体。例如,两个连接件直接连接,两个连接件整体的抗拉强度(Pa)大于两个连接件中任一个基材的抗拉强度的50%。又例如,两个连接件通过刚性的连接元件连接,刚性的连接元件本身的抗拉强度大于两个连接件中任一个基材的抗拉强度。刚性连接也可以是指两个连接件之间能够有效传递高频率的振动(例如,大于6KHz、大于8KHz或大于10KHz的振动)。此外,刚性连接也可以是指两个连接件之间传递振动产生的谐振频率位于很高的频率位置。例如,两个连接件之间传递振动产生的谐振频率大于6000Hz。又例如,两个连接件之间传递振动产生的谐振频率大于8000Hz。再例如,两个连接件之间传递振动产生的谐振频率大于10000Hz。
换能装置10可以用于将电信号转化为机械振动,然后通过面板21传递给用户。在一些实施例中,换能装置10可以包括磁路组件11、线圈12和传振片13(也被称为弹性支撑件)。在一些实施例中,磁路组件11可以包括至少一个磁体111,磁体111可以产生磁场。在一些实施例中,磁体111可以包括导磁件1111和磁性件1112。其中,导磁件1111可以为具有凹型槽的结构体,磁性件1112可以位于该凹型槽中并与导磁件1111固定连接,凹型槽对应的导磁件1111的侧壁与磁性件1112的周侧侧壁之间形成磁间隙1113。在一些实施例中,导磁件1111可以由软磁材料加工而成。在一些实施例中,软磁材料可以包括金属材料、金属合金、金属氧化物材料、非晶金属材料等,例如铁、铁硅系合金、铁铝系合金、镍铁系合金、铁钴系合金、低碳钢、硅钢片、矽钢片、铁氧体等。在一些实施例中,磁性件1112可以是指任何能够产生磁场的元件。在一些实施例中,磁性件1112可以包括金属合金磁铁,铁氧体等。其中,金属合金磁铁可以包括钕铁硼、钐钴、铝镍钴、铁铬钴、铝铁硼、铁碳铝,或类似的,或其中多种的组合。铁氧体可以包括钡铁氧体,钢铁氧体,美锰铁氧体,锂锰铁氧体,或类似的,或其中多种组合。
在一些实施例中,磁路组件11可以通过传振片13与外壳20弹性连接。在一些实施例中,磁路组件11和面板21之间可以通过传振片13弹性连接。在一些实施例中,磁路组件11和壳体22(例如,壳体21中与面板21相邻或相对的侧壁)之间可以通过传振片13弹性连接。在一些实施例中,磁路组件11可以通过不同的传振片13分别与面板21和壳体22弹性连接。例如,传振片13可以包括第一传振片和第二传振片,第一传振片位于磁路组件11和面板21之间,磁路组件11和面板21通过第一传振片弹性连接。第二传振片位于磁路组件11和壳体22上与面板21相对的侧壁之间,磁路组件11和壳体22通过第二传振片弹性连接。在一些实施例中,线圈12的至少部分可以设置在磁路组件11中。例如,在一些实施例中,线圈12的一端可以与面板21连接,线圈12的另一端伸入磁路组件11的磁间隙1113中。当换能装置10工作时,线圈12通入信号电流,线圈12处于磁体111产生的磁场中,受到安培力的作用以产生机械振动,以带动面板21及壳体22进行机械振动,同时,磁路组件11会受到与线圈相反的反作用力。需要说明的是,本说明书中所涉及的“弹性连接”可以是指弹性连接的两个连接件之间,当其中一个连接件产生位移或受力时,另一个连接件相对于该连接件具有产生位移或变形的能力,或者说两个连接件之间通过具有弹性的构件连接。除此之外,弹性连接也可以是指两个连接件连接后形成的整体结构具有特定的谐振频率,且该谐振小于目标阈值。在一些实施例中,目标阈值可以为400Hz、600Hz、800Hz、1500Hz或2000Hz,以及其他数值。
更多关于传振片13的描述可以参考本说明书其他地方(例如,图46和图47及其相关描述)的相关描述。
需要说明的是,本说明书实施例中的换能装置10中的能量转换方式可以是上文所描述的动圈式,还可以是静电式、压电式、动铁式、气动式、电磁式等。本说明实施例中提供的声学输出装置(例如,声学输出装置100)可以为扬声器、耳机、助听器、眼镜、增强现实(AR)设备、虚拟现实(VR)设备或头盔等中的任意一种。进一步地,上述的换能装置10、面板21、壳体22、磁路组件11、线圈12、传振片13等元件可以视为声学输出装置100的声学输出单元(也被称为骨传导扬声器),以提供声音。
在一些实施例中,声学输出装置100还可以包括支撑结构30,支撑结构30可以用于将声学输出装置100的骨传导扬声器佩戴在用户耳朵或头部区域(例如头部的乳突、颞骨、顶骨、额骨等,或者头部的左右两侧且在人体矢状轴上位于用户耳部前侧的位置),且不堵塞用户耳道。在一些实施例中,支撑结构30可以与外壳20(例如,面板21或壳体22)连接。在一些实施例中,支撑结构30还可以设置成耳挂及后挂结构配合以绕设在头部的后侧。在一些实施例中,支撑结构30可以设置成头梁结构并绕设在用户的头顶上。在一些实施例中,支撑结构30可以为具有人体耳朵适配形状的结构,例如圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形,以便支撑结构30可以直接挂靠在用户的耳朵处。
需要说明的是,在实际中,用户可以同时佩戴两个骨传导扬声器(即左耳和右耳各佩戴一个骨传 导扬声器),以便于用户可以听到立体声。在某些对立体声要求并不是很高的应用场景下(例如,听力患者助听、主持人直播提词等),用户也可以仅佩戴一个骨传导扬声器。
在一些实施例中,当用户同时佩戴两个骨传导扬声器时,支撑结构30可以包括后挂组件和两个耳挂组件,后挂组件的两端分别与对应的一个耳挂组件的一端连接,每一个耳挂组件背离后挂组件的另一端分别与对应的一个骨传导扬声器连接。进一步地,后挂组件可以设置呈弯曲状,以用于绕设在用户的头部后侧,耳挂组件也可以设置呈弯曲状,以用于挂设在用户的耳部和头部之间,进而便于实现同时佩戴两个骨传导扬声器的佩戴需求。如此,两个骨传导扬声器分别位于用户的头部的左侧和右侧,两个骨传导扬声器也在支撑结构30的配合作用下贴合在用户耳朵或头部区域(例如,耳廓前侧的面部区域),用户也能够听到两个骨传导扬声器输出的声音。
声学输出装置通常需要在骨传导扬声器的基础上额外设置一些附加元器件(例如,麦克风、传感器、气导扬声器等)才能满足更多的功能需求。例如,可以在骨传导扬声器上设置麦克风,以用于采集用户声音。又例如,可以在骨传导扬声器上设置传感器(例如,温度传感器、湿度传感器、速度传感器、位移传感器等),以用于采集用户信息(例如,用户的健康状态、运动情况等)或环境信息等。再例如,可以在骨传导扬声器的基础上设置气导扬声器,使之成为骨气结合的扬声器,以用于向用户输出骨导声和/或气导声,以保证用户具有较好的听觉体验。除此之外,声学输出装置的内部元件(例如,电池、电路板等)也可以集成在骨传导扬声器中,这些声学输出装置的内部元件以及上述的附加元器件可以视为骨传导扬声器的附加元件,这些附加元件可以直接集成在骨传导扬声器的外壳上,也可以贴附在磁路组件11上。
图2是根据本说明书一些实施例所示的声学输出装置的结构示意图。如图2所示,声学输出装置200是在声学输出装置100的基础上设置了附加元件40。在一些实施例中,附加元件40刚性连接在壳体22上。附加元件40直接与壳体22刚性连接使得换能装置10所驱动的结构(面板21、壳体22、附加元件40)振动的负载质量相对于未设置附加元件40时的负载质量增加,进而会导致声学输出装置200的灵敏度下降,使得声学输出装置200输出的骨导声的音量降低。下面将结合声学输出装置100和声学输出装置200的频率响应曲线来具体说明附加元件对扬声器(骨传导扬声器)的影响。需要说明的是,本申请中,附加元件40可以设置于面板21和壳体22形成的容置腔内,也可以固定于容置腔外,例如,附加元件40可以位于壳体22的外表面。
图3是根据本说明书一些实施例所示的声学输出装置的频响曲线图。如图3所示,横坐标为频率(Hz),纵坐标为声学输出装置在不同频率下对应的声压(dB),曲线L31为声学输出装置100的频率响应曲线,曲线L32为声学输出装置200的频率响应曲线。面板21振动的同时也带动面板21侧的空气振动产生气导声,为了便于测量声学输出装置100进和声学输出装置200的频率响应曲线,本说明书实施例中通过测量面板21附近的气导声声压级来表征声学输出装置的骨导声音的振动力级。仅作为示例性说明,可以在靠近面板21处设置声音传感器(例如,麦克风),以检测面板21振动带动面板21侧的空气振动产生的气导声的声压级。可以理解的是,在没有特殊说明的情况下,本说明书中所涉及到的声学输出装置的频率响应曲线的确定均可以采用上述方法来实现。
结合频率响应曲线L31和L32可知,在20Hz-8000Hz的频率范围内,声学输出装置200的声压整体小于声学输出装置100的声压,也就是说,声学输出装置200的灵敏度小于声学输出装置100的灵敏度。由此可见,在声学输出装置中的骨传导扬声器上额外设置附加元件时,附加元件会影响骨传导扬声器的灵敏度,具体表现为骨传导扬声器的灵敏度下降,这是由于附加元件40具有一定质量,增加了换能装置10的振动负载质量,换能装置10的振动负载质量增大(此时换能装置10振动负载质量至少可以包括面板21、壳体22以及附加元件40的质量),骨传导扬声器的灵敏度就会下降,导致声学输出装置200输出的声音(骨导声)的音量较低。
基于上述声学输出装置200中骨传导扬声器在设置附加元件的情况下,骨传导扬声器的灵敏度下降的问题,本说明书实施例提供一种声学输出装置。在一些实施例中,附加元件与面板可以通过至少包括一弹性元件的振动路径连接。本说明书实施例提供的扬声器中,面板、弹性元件、壳体及附加元件形成谐振系统,谐振系统能够处于第二谐振位置,谐振系统在第二谐振位置产生位于目标频率范围内的第二谐振频率,在第二谐振频率之后的频率范围内,附加元件和面板之间的振动传递会被抑制,也就是说附加元件对面板的振动的影响会降低,由此可以保证其灵敏度在大于第二谐振频率的频率范围内不受或较少受到附加元件的影响。在一些实施例中,通过将第二谐振频率设置在较低的频率位置,能够减小在骨传导扬声器上额外设置附加元件而导致骨传导扬声器灵敏度下降的频率范围。此外,在大于第二谐振频率的频率范围内,由于附加元件对面板振动的影响较小,声学输出装置的频率响应曲线更为平坦,可以保证声学输出装置在较宽的频率范围内具有较好的声学输出效果,提高用户的听觉体验。在一些实施例中,上述的第二谐振频率是由面板与附加元件在相反方向上进行振动并且两者之间的距离达到最大值时所产生的。换能装置产生低频(低于第二谐振频率的频率范围)的机械振动时,面板的低频振动(低于第二谐振频率的振动) 会传递至附加元件带动附加元件一起振动,附加元件的质量会使得换能装置的振动负载质量增加,而使得扬声器的灵敏度在低于第二谐振频率内会受到附加元件的影响(类似于声学输出装置200),而换能装置产生高频(高于第二谐振频率)的机械振动,由于弹性元件的存在,面板的高频振动几乎不会带动附加元件一起振动,附加元件的质量对换能装置的振动负载质量不会产生影响,从而保证声学输出装置的灵敏度在高于第二谐振频率的频率范围内不会或较少受到附加元件的影响。
在一些具体应用场景中,由于附加元件中可能具有磁性部件(例如,诸如金属合金磁铁,铁氧体等磁性材料制成的部件、通电线圈等)或导磁性部件(例如,由诸如铁、镍铁系合金等软磁材料制成的部件),会与声学输出装置中的换能装置中的磁路组件相互吸引或排斥,而导致换能装置中的磁路组件发生翻转变形,而影响换能装置振动的稳定性,导致声学输出装置的声学输出效果较差。
基于附加元件与换能装置中的磁路组件可能存在相互吸引或排斥而造成磁路组件发生翻转变形的问题,当附加元件位于壳体上与面板相邻的侧壁处,在一些实施例中,换能装置中的传振片(也被称为弹性支撑件)可以连接磁路组件与壳体上与面板相邻的侧壁,也就是说,传振片连接磁路组件和设置有附加元件的壳体侧壁。在一些实施例中,换能装置可以包括至少两块传振片,其中一块传振片位于换能装置朝向面板的一侧,以将换能装置与面板弹性连接;另一块传振片位于换能装置背向面板的一侧,以将连接换能装置与壳体,并对换能装置起到支撑作用,保证换能装置能够沿轴向方向稳定的振动。并且,位于换能装置背向面板的一侧的传振片能够连接磁路组件和设置有附加元件的壳体侧壁,从而能够减小或避免附加元件与换能装置中的磁路组件可能存在相互吸引或排斥而造成磁路组件发生翻转变形的问题。在一些实施例中,当附加元件与支撑件刚性连接时,换能装置的传振片可以连接磁路组件与支撑件。此时,传振片可以为磁路组件和附加元件的相对运动方向上提供支撑,使得传振片可以对磁路组件起到更加好的支撑作用,提高磁路组件与壳体之间的稳定性,从而能够避免附加元件与换能装置中的磁路组件相互吸引或排斥而导致磁路组件发生翻转变形,保证换能装置的振动较为稳定。为了提高传振片对磁路组件的支撑效果,在一些实施例中,传振片与壳体侧壁连接的连接端至少部分位于附加元件在该壳体侧壁上的正投影内。例如,传振片的至少一个支杆位于附加元件在该壳体侧壁上的正投影内。在一些实施例中,传振片可以包括中心区域和多个支杆,多个支杆沿该中心区域的周侧间隔分布,其中,传振片的中心区域与磁路组件远离面板的一侧连接,支杆远离中心区域的端部与壳体连接。在一些实施例中,传振片连接于磁路组件背离面板的一侧,且与磁路组件背离面板一侧的中间区域连接,该中间区域可以是指磁路组件背离面板一侧的几何中心区域。作为优选地,传振片的中心区域与磁路组件背离面板一侧的中间区域连接。仅作为示例性说明,支杆的数量可以为4个,此时传振片的结构可以近似视为“X”型结构,“X”型结构在换能装置的振动方向上可以提供弹性,此外,多个支杆在垂直换能装置的振动方向上具有较高的结构强度,可以为磁路组件提供较高的支撑效果,从而保证换能装置在其振动时发生翻转变形。在一些实施例中,传振片还可以包括边缘区域,边缘区域与支杆远离中心区域的端部连接,边缘区域的周侧可以与壳体连接。关于传振片的具体结构可以参考本申请说明书其它地方的内容,例如,图46和图47及其相关描述。
下面将结合附图(图4-图32)对本说明书实施例提供的声学输出装置进行详细说明。
图4是根据本说明书一些实施例所示的声学输出装置的结构示意图。图4所示的声学输出装置400中的换能装置410(包括磁路组件411、线圈412、传振片413A)、外壳420(包括面板421、壳体422)、支撑结构430等结构可以分别与图2所示的声学输出装置200中的换能装置10(包括磁路组件11、线圈12、传振片13)、外壳20(包括面板21、壳体22)、支撑结构30等结构相类似,这里不做进一步赘述。图4所示的声学输出装置400与图2所示的声学输出装置200的主要区别之处在于:附加元件440与面板421通过包括弹性元件450的振动路径连接,也就是说,面板421与壳体422通过弹性元件450弹性连接,即面板421和与面板421刚性连接的结构(例如,线圈412)、弹性元件450、壳体422和与壳体422刚性连接的结构(例如,附加元件400、支撑结构430)形成一个谐振系统。需要注意的是,当面板421或壳体422上刚性连接有其他结构时,这些结构也被视为谐振系统中的一部分。
如图4所示,在一些实施例中,壳体422为内部中空且一端具有开放式敞口的结构体,面板421位于壳体422具有开放式敞口的一端,其中,弹性元件450位于面板421和壳体422之间,以实现面板421与壳体422弹性连接。这里的弹性元件450也可以视为声学输出装置400中外壳420的一部分,面板421、壳体422以及弹性元件450形成容纳换能装置10的容置腔。在一些实施例中,弹性元件450可以是具有弹性的环结构,面板421与壳体422之间可以通过环结构弹性连接,并形成容纳换能装置410的容置腔。在一些实施例中,弹性元件450可以是由硅胶、聚氨酯等弹性材料所制成的环结构。在一些实施例中,环结构可以为具有预变形能力的单环结构或者具有多个折环的结构,当面板421与壳体422之间通过环结构连接时,具有预变形能力的环结构可以对面板421和壳体422起到一定的支撑作用,提高声学输出装置的结构稳定性。在一些实施例中,面板421与壳体422之间可以通过胶接的方式进行弹性连接,其中,用于粘接面板421与壳体422的胶可以具有一定弹性,可以看作是弹性元件450。在一些实施例中,用于粘接 面板421与壳体422的胶可以包括但不限于凝胶类、有机硅胶、丙烯酸类、聚氨酯类、橡胶类、环氧类、热熔类、光固化类等等,优选地可为有机硅粘接类胶水、有机硅密封类胶水。在一些实施例中,附加元件440可以与壳体422直接或间接刚性连接。例如,在一些实施例中,附加元件440可以通过焊接、卡接、螺纹、粘接连接等方式实现与壳体422的侧壁(例如,壳体422上与面板421相邻的侧壁或壳体422上与面板421相对的侧壁上)的刚性连接。又例如,附加元件440可以通过支架、连接杆等连接件与壳体422实现刚性连接。在一些实施例中,图4中所示的附加元件440可以包括对振动方向敏感的元件(例如,扬声器、气导麦克风、加速度传感器)。图4所示的实施方式中,附件元件440为对振动方向敏感的气导麦克风,该气导麦克风的振膜441的振动方向(图4中示出的“第二方向”)与换能装置410的振动方向(图4中示出的“第一方向”)近似垂直,这里的近似垂直可以理解为换能装置的振动方向与气导扬声器中的振膜的振动方向形成的夹角为75°~100°,例如,80°、90°或95°等。气导扬声器在工作过程中,振膜产生振动,当换能装置的振动方向与气导扬声器中振膜的振动方向近似垂直时,振膜产生的振动与换能装置产生的振动几乎没有叠加效应,也就是说,振膜产生振动,当换能装置的振动方向与气导扬声器中振膜的振动方向近似垂直时,声学输出装置产生的漏音音量较低,从而使得声学输出装置在设置对振动方向敏感的元件时,具有较好的降漏音效果。关于附加元件为对振动方向敏感的器件的具体内容可以参考本申请说明书其它地方关于图4和图28的描述。需要注意的是,附加元件440不限于图4中所示的对振动方向敏感的元件,也可以为电池、电路板或者对振动方向不敏感的传感器(例如,温度传感器、湿度传感器等),此时附加元件可以位于壳体422的任意位置。在一些实施例中,附加元件440可以同时包括对振动方向敏感的元件和对振动方向不敏感的元件。例如,对振动方向敏感的元件为加速度传感器,对振动方向不敏感的元件为电路板,电路板与壳体422固定连接,加速度传感器设置在电路板上。
面板421和与面板421刚性连接的结构(例如,线圈412)、壳体422和与壳体422刚性连接的结构(例如,附加元件440)之间通过弹性元件450弹性连接,可以近似视为一个谐振系统。在一些实施例中,该谐振系统能够处于第二谐振位置,产生谐振频率位于目标频率范围内的第二谐振频率,在第二谐振频率对应的谐振频率之后的频率范围内,附加元件440和面板421之间的振动传递会被抑制,也就是说附加元件440对面板421的振动的影响会降低,由此可以保证其灵敏度在大于第二谐振频率对应的谐振频率的频率范围内不受或较少受到附加元件440的影响。在一些实施例中,通过将第二谐振频率对应的谐振频率设置在较低的频率位置,能够减小在声学输出装置400中因附加元件440而导致其灵敏度下降的频率范围。此外,在大于第二谐振频率对应的谐振频率的频率范围内,由于附加元件440对面板421振动的影响较小,声学输出装置400的频率响应曲线更为平坦,可以保证声学输出装置400在较宽的频率范围内具有较好的声学输出效果,提高用户的听觉体验。为了减小附加元件440对声学输出装置400产生影响的频率范围,以及使得声学输出装置400可以在较宽的频段具有平坦的频率响应曲线,在一些实施例中,可以通过调整面板421和与面板421刚性连接的元件质量之和与壳体422和与壳体422固定连接的元件的质量之和的比值、弹性元件450的弹性系数等,使得第二谐振频率对应的谐振频率位于特定的低频范围(也被称为目标频率范围)内。在一些实施例中,目标频率范围可以为20Hz~800Hz。优选地,目标频率范围可以为100Hz~600Hz。进一步优选的地,目标频率范围可以为150Hz~500Hz。更为优选地,目标频率范围可以为200Hz~400Hz。关于调整谐频频率的具体内容可以参考图6及其相关描述。
面板421和与面板421刚性连接的结构(例如,线圈412)和、具有附加元件440的壳体422和与壳体422刚性连接的结构(例如,附加元件440)之间通过弹性元件450弹性连接形成的谐振系统中,当面板421基本不振动时,壳体422继续振动,此时声学输出装置400还可以产生谐振频率位于目标频率范围的第一谐振频率。在一些实施例中,第一谐振频率可以小于第二谐振频率。进一步地,第一谐振频率和第二谐振频率的对应的频率越是接近,对声学输出装置400的整体频段的频率响应曲线的平坦度影响越小,相应地,声学输出装置400在整体频段的音质也越好,为了使得声学输出装置400在整体频段的频率响应曲线更为平坦,在一些实施例中,第二谐振频率对应的频率与第一谐振频率对应的频率差值可以不大于300Hz。优选地,第二谐振频率对应的频率与第一谐振频率对应的频率差值可以不大于200Hz。进一步优选地,第二谐振频率对应的频率与第一谐振频率对应的频率差值可以不大于100Hz。
图5是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图。图5示出了声学输出装置100与声学输出装置400的频率响应曲线。其中,横坐标为频率(Hz),纵坐标为扬声器在不同频率下对应的声压(dB),曲线L51为声学输出装置100的频率响应曲线,曲线L52声学输出装置400的频率响应曲线,曲线L53为声学输出装置400增加了阻尼后的频率响应曲线。图5所示实施方式中,声学输出装置400的频率响应曲线在第一谐振频率时具有谐振谷,声学输出装置400的频率响应曲线在第二谐振频率时具有谐振峰。需要说明的是,本申请中,为了方便进行描述,仅以声学输出装置的频率响应曲线在第一谐振频率时有明显的谐振谷,在第二谐振频率时有明显的谐振峰的方案进行举例描述说明。可以理解的是,本申请中声学输出装置的频率响应曲线在第一谐振频率时也可以没有明显的谐振谷,在第二谐振频率时也 可以没有明显的谐振峰。区域A内的谐振峰为面板421与壳体422之间的距离处于最大值时谐振系统产生,区域B内的谐振谷为面板421不振动或面板421的振动处于极小值且壳体422振动时谐振系统产生。根据曲线L52可知,在200Hz~600Hz的频率范围内,声学输出装置400产生了谐振峰和谐振谷。其中,谐振峰是由面板421与附加元件440在相反方向上振动,并且面板421与附加元件440之间的距离达到最大值时所产生的,谐振谷是面板421不振动或面板421的振动处于极小值且壳体422振动时所产生的。请再参考图3,在200Hz-8000Hz的频率范围内,图3中未设置附加元件的声学输出装置100的灵敏度整体大于具有附加元件的声学输出装置200的灵敏度。在图5中,结合曲线L51、L52以及L53,在大于谐振频率的频率范围内,声学输出装置400与声学输出装置100的频率响应曲线近似重合。由此可知,在特定频段(例如,大于谐振峰A对应的谐振频率的频段范围),声学输出装置400(附加元件440与面板421通过包括弹性元件450的振动路径连接),相较于图2所示的声学输出装置200(面板21与具有附加元件40的壳体22刚性连接)具有较高的灵敏度。进一步地,结合曲线L51、L52以及L53,在大于谐振峰对应的谐振频率的频率范围内,曲线L152、L153与L151基本重合,并且较为平坦。由此可知,当频率大于谐振峰对应的谐振频率时,声学输出装置400的频率响应曲线较为平坦,声学输出装置400中的附加元件440(例如,气传导扬声器、传感器、电池、电路板等)不会影响扬声器400在高于谐振峰对应的谐振频率的频率范围内的灵敏度。为了使得声学输出装置400可以在较宽的频段具有平坦的频率响应曲线,在一些实施例中,可以通过调整面板421的质量与壳体422和附加元件440的质量之和的比值、弹性元件450的弹性系数等,使得谐振峰对应的谐振频率位于特定的频率范围(例如,小于2000Hz、小于1500Hz、小于800Hz、小于600Hz)内。关于调整谐频频率的具体内容可以参考图6及其相关描述。
在一些实施例中,由曲线L53可知,在声学输出装置400上增加阻尼后,其谐振峰和谐振谷的陡峭程度下降,变得较为平缓,这样可以使得声学输出装置400在更宽的频率范围内具有较为平坦的频响曲线,使得声学输出装置400能够输出更宽的频率范围内输出较好的音质。在一些实施例中,可以在弹性元件450中设置阻尼材料来增加声学输出装置器400的阻尼。在一些实施例中,阻尼材料可以包括丁基、丙烯酸酯、聚硫、丁腈和硅橡胶、聚氨酯、聚氯乙烯和环氧树脂等或其组合。
图6是根据本说明书一些实施例所示的声学输出装置的频响曲线图。图6示出了面板421质量与壳体422和附加元件440的质量之和之间具有不同比值时所对应的声学输出装置400的频率响应曲线。其中,横坐标为频率(Hz),纵坐标为扬声器在不同频率下对应的声压(dB),曲线L61为面板421和与面板421刚性连接的元件(例如,线圈412)的质量之和与壳体422和与壳体422刚性连接的元件(例如,附加元件440)的质量之和之间的比值为0.16且弹性系数为588N/m时声学输出装置400的频率响应曲线,曲线L62为面板421和与面板421刚性连接的元件的质量之和与壳体422和与壳体422刚性连接的元件的质量之和之间的比值为0.36且弹性系数为2000N/m时声学输出装置400的频率响应曲线,曲线L63为面板421和与面板421刚性连接的元件的质量之和与壳体422和与壳体422刚性连接的元件的质量之和之间的比值为1.03时声学输出装置400的频率响应曲线,曲线L64为面板421和与面板421刚性连接的元件的质量之和与壳体422和与壳体422刚性连接的元件的质量之和之间的比值为3.07时声学输出装置400的频率响应曲线,曲线L65为面板421和与面板421刚性连接的元件的质量之和与壳体422和与壳体422刚性连接的元件的质量之和之间的比值为5.14时声学输出装置400的频率响应曲线。区域C内的谐振峰为由面板421、附加元件440和弹性元件450形成的谐振系统在振动过程中产生的谐振峰,其中,曲线L61~L65在区域C内的谐振峰重叠在一起。区域D内的谐振谷为由面板421、附加元件440和弹性元件450形成的谐振系统在振动过程中产生的谐振谷。
在一些实施例中,结合曲线L61~L65可知,声学输出装置400的频率响应曲线在高于谐振峰对应的谐振频率的频率范围内较为平坦,这样可以使得声学输出装置400在高于谐振峰对应的谐振频率的频率范围内能够输出较好的音质。
继续参见图6所示,随着面板421和与面板421刚性连接的元件的质量之和与壳体422和与壳体422刚性连接的元件的质量之和之间的比值增大,谐振谷对应的频率在随之增大,谐振谷对应的频率与谐振峰对应的频率之间的差值就越小,谐振谷与谐振峰之间的差值越小,附加元件440对声学输出装置400的频响的影响就越小,声学输出装置400的频响曲线就更为平坦,声学输出装置400具有更好的音质。因此,可以通过调整面板421和与面板421刚性连接的元件的质量之和与壳体422和与壳体422刚性连接的元件的质量之和之间的比值来降低附加元件440对声学输出装置400的频响的影响。在一些实施例中,面板421和与面板421刚性连接的元件的质量之和与壳体422和与壳体422刚性连接的元件的质量之和之间的比值可以在0.16~7的范围内。在一些实施例中,面板421和与面板421刚性连接的元件的质量之和与壳体422和与壳体422刚性连接的元件的质量之和之间的比值可以为0.36~6。在一些实施例中,面板421和与面板421刚性连接的元件的质量之和与壳体422和附加元件440的质量之和之间的比值可以为1.03~5.14。在一些实施例中,面板421和与面板421刚性连接的元件的质量之和与壳体422和与壳体422刚性连接的 元件的质量之和之间的比值可以为1.03~3.07。
如图4所示,声学输出装置400还可以包括支撑结构430,支撑结构430可以与壳体422刚性连接。例如,支撑结构430可以与壳体422中与面板421相对的侧壁刚性连接。
图7是根据本申请一些实施例提供的声学输出装置的结构示意图。如图7所示,声学输出装置700中的支撑结构430可以与面板421刚性连接。
在一些实施例中,支撑结构430与面板421或壳体422连接对于声学输出装置的频率响应的影响较小。以声学输出装置为耳机或助听器作为示例进行说明,支撑结构430可以为耳挂,耳挂通常是有柔性材料制成,具有较好的发生弹性形变的能力。相应地,支撑结构430通常在很低的频段(例如,20Hz附近及以下)影响骨传导扬声器振动,而且该频段通常是人耳不可闻的频段。具体见图8及其相关描述。图8是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图。
图8示出了声学输出装置400和声学输出装置700的频率响应曲线。其中,横坐标为频率(Hz),纵坐标为声学输出装置400在不同频率下对应的声压(dB),曲线L71为声学输出装置400中支撑结构430与壳体422刚性连接时的频率响应曲线,曲线L72为声学输出装置700中支撑结构430与面板421刚性连接的频率应响曲线。结合曲线L71和L72可知,可以发现支撑结构430与面板421刚性连接或与壳体422刚性连接对声学输出装置400的频率响应几乎没有影响。因此,在本说明书实施例的声学输出装置400中,支撑结构430可以与面板421刚性连接或与壳体422刚性连接。
在声学输出装置400或700中,磁路组件411和面板421之间通过传振片413A连接,可能会造成磁路组件411与附加元件440相互吸引或排斥而导致磁路组件发生翻转变形从而影响换能装置410的振动稳定性的问题。为了避免磁路组件411与附加元件440相互吸引或排斥而造成磁路组件发生翻转变形,而影响换能装置的振动稳定性,在一些实施例中,磁路组件411和面板421之间的传振片413A可以替换为传振片413B(图4和图7中虚线表示)。作为示例性说明,传振片413B位于磁路组件411和壳体422上与面板421相对的侧壁之间,其中,传振片413B的一侧可以与磁路组件411背离面板421的一侧连接,传振片413B的周侧可以与壳体422与面板421相邻的侧壁连接。这里将传振片413B位于磁路组件411和壳体422上与面板421相对的侧壁之间,传振片413B可以加强对磁路组件411靠近附加元件440的位置的支撑效果,提高换能装置尤其是磁路组件411的振动稳定性。在一些实施例中,为了进一步提高换能装置410的振动稳定性,声学输出装置400或700中可以同时包含传振片413A和传振片413B。
图9是根据本说明书一些实施例所示的声学输出装置的结构示意图。图9示出的换能装置910(包括磁路组件911、线圈912、传振片913A、传振片913B)、外壳920(包括面板921)、支撑结构930、附加元件940、弹性元件950等结构可以分别与声学输出装置400中的换能装置410(包括磁路组件411、线圈412、传振片413A、传振片413B)、外壳420(包括面板421)、支撑结构430、附加元件440、弹性元件450类似,这里不做进一步描述。图9所示的声学输出装置900与图7所示的声学输出装置700的主要区别之处在于:在声学输出装置900中,壳体922包括一个或多个泄压孔9221,用于连通外壳920内部和外部的空气。在一些实施例中,泄压孔9221可以开设在壳体922与面板921位置相对和/或相邻的侧壁上。在一些实施例中,泄压孔9221也可以设置在弹性元件950处。例如,弹性元件950为具有弹性的环结构时,泄压孔9221可以设置在环结构处。又例如,在一些实施例中,弹性元件950还可以是具有通孔的簧片或者弹性网,通孔或者弹性网上的缝隙可以代替泄压孔9221以连通壳体922的外部和内部的空气。需要说明的是,这里的泄压孔9221也可以应用与本说明书其他实施例提供的声学输出装置中,例如,声学输出装置300、400、700、1200、1300、1500、1700、1800、1900、2000、2200、2400、2500、2600、2700、2900、3000、3100等。
在声学输出装置900中,磁路组件911和面板921之间通过传振片913A连接,可能会造成磁路组件911与附加元件940相互吸引或排斥而导致磁路组件发生翻转变形从而影响换能装置910的振动稳定性的问题。为了避免磁路组件911与附加元件940相互吸引或排斥而造成磁路组件发生翻转变形,而影响换能装置的振动稳定性,在一些实施例中,磁路组件911和面板921之间的传振片913A可以替换为传振片913B(图9中虚线表示)。作为示例性说明,传振片913B位于磁路组件911和壳体922上与面板921位置相对的侧壁之间,其中,传振片913B的一侧可以与磁路组件911背离面板921的一侧连接,传振片913B的周侧可以与壳体922与面板921相邻的侧壁连接。这里将传振片913B位于磁路组件911和壳体922上与面板921相对的侧壁之间,传振片913B可以加强对磁路组件911靠近附加元件940的位置的支撑效果,提高换能装置尤其是磁路组件911的振动稳定性。在一些实施例中,为了进一步提高换能装置910的振动稳定性,声学输出装置900中可以同时包含传振片913A和传振片913B。
图10是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图。图10示出了声学输出装置700和声学输出装置900的频率响应曲线。其中,横坐标为频率(Hz),纵坐标为声学输出装置在不同频率下对应的声压(dB),曲线L101为声学输出装置700的频响曲线,其具有谐振峰1011,曲线L102 为声学输出装置900的频响曲线,具有谐振峰1021。结合曲线L101和L102可知,谐振峰1011对应的谐振频率高于谐振峰1021对应的谐振频率,声学输出装置900灵敏度不受或较少受到附加元件影响的频率范围(即大于谐振峰1021对应的谐振频率的频率范围)比声学输出装置700灵敏度不受或较少受到附加元件影响的频率范围(即大于谐振峰1011对应的谐振频率的频率范围)宽。由此可得,通过在壳体上开设泄压孔,可以降低弹性元件带动附加元件相对于面板振动产生的谐振峰对应的谐振频率,以拓宽声学输出装置灵敏度不受或较少受到附加元件影响的频率范围。除此之外,壳体和/或面板振动会带动的外界空气振动从而产生的漏音,在声学输出装置的壳体上开设泄压孔,也可以降低声学输出装置的漏音音量。具体地,泄压孔可以将磁路组件在容置腔内部振动产生的声音导出到外界,与壳体和/或面板振动产生的漏音相抵消,从而降低声学输出装置的漏音音量。
在一些实施例中,可以通过调整附加元件的质量以降低声学输出装置在高于上述谐振峰对应的谐振频率的频率范围的漏音音量。图11是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图。图11示出了声学输出装置900在附加元件具有不同质量时的背板侧(即,壳体922中与面板921位置相对的侧壁一侧)的漏音频率响应曲线和面板921侧的频率响应曲线。其中,横坐标为频率(Hz),纵坐标为声学输出装置在不同频率下对应的声压(dB),曲线L111为附加元件质量为0g时声学输出装置900的漏音频响曲线,曲线L112为附加元件质量为0.7g时声学输出装置900的漏音频响曲线,曲线L113为附加元件质量为1.4g时声学输出装置900的漏音频响曲线,曲线L114为附加元件质量为2.1g时声学输出装置900的漏音频响曲线,区域1101为具有不同质量的附加元件时声学输出装置900频率响应曲线,区域1102为具有不同质量的附加元件时声学输出装置900的谐振峰区域。在一些实施例中,声学输出装置900的漏音频响曲线可以通过采集壳体922中与面板921位置相对的侧壁一侧的气导声所测得,声学输出装置900的频率响应曲线可以通过采集面板921侧的气导声所测得。如图11所示的区域1101和区域1102,在高于谐振峰区域(区域1102)对应的谐振频率的频率范围内(包括区域1101对应的频率范围),声学输出装置900在具有不同质量的附加元件时,声学输出装置900的灵敏度基本相同,也就是说,声学输出装置900的灵敏度不随附加元件质量的增加而增加。在一些实施例中,结合曲线L111~L114可知,随着附加元件的质量增加,声学输出装置900的漏音频响曲线中的谐振峰对应的谐振频率会变小。在一些实施例中,可以通过调整附加元件的质量以使得声学输出装置的漏音频响曲线中谐振峰对应的谐振频率小于声学输出装置的频率响应曲线中谐振峰对应的谐振频率,进而使得声学输出装置900在其灵敏度不受附加元件质量影响的频段范围内(例如,300Hz~8000Hz)产生的漏音音量较小。在一些实施例中,声学输出装置的漏音频响曲线中谐振峰对应的谐振频率可以不大于700Hz优选地,声学输出装置的漏音频响曲线中谐振峰对应的谐振频率可以不大于500Hz。进一步地优选地,声学输出装置的漏音频响曲线中谐振峰对应的谐振频率可以不大于300Hz。更为优选地,声学输出装置的漏音频响曲线中谐振峰对应的谐振频率可以不大于200Hz。
需要说明的是,泄压孔以及调整附加元件质量的方案不仅适用于声学输出装置900,同样适用于本说明书实施例提供的其他声学输出装置(例如,声学输出装置400、700、1200等)。
图12是根据本说明书一些实施例所示的声学输出装置的结构示意图。图12所示的声学输出装置1200中的换能装置1210(包括磁路组件1211、线圈1212、传振片1213A、传振片1213B)、外壳1220(包括面板1221)、支撑结构1230、附加元件1240可以分别与声学输出装置700中的换能装置410(包括磁路组件411、线圈412、传振片413A、传振片413B)、外壳420(包括面板421)、支撑结构430、附加元件440类似,在此不做进一步赘述。声学输出装置1200与声学输出装置700的主要区别之处在于:声学输出装置1200中的壳体1222中与面板1221相对的侧壁(也被称为背板12221)通过弹性元件1260与壳体1222中的其他侧壁(与面板1221相邻的侧壁,也被称为壳体主体12222)连接。在一些实施例中,如图12所示,弹性元件1260可以是环结构,该环结构可以由弹性材料制成。作为示例性说明,在一些实施例中,壳体1222可以包括壳体主体12222和背板12221,其中,壳体主体12222为壳体1222上与面板1221相邻的侧壁,背板12221为壳体1222上与面板1221相对的侧壁。其中,背板1221相对于壳体主体独立设置,环结构环绕设置于背板12221的周侧,环结构的周侧与壳体主体12222的侧壁连接。需要说明的是,图12示出的弹性元件1260的结构仅作为示例,并无意于对其进行限制。在一些实施例中,弹性元件1260还可以是由弹性材料制成的具有其他形状(例如,条状、片状、板状等)的结构。在一些实施例中,弹性材料可以包括聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High Impact Polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene Terephthalate,PET)、聚氯乙烯(Polyvinyl Chloride,PVC)、聚氨酯(Polyurethanes,PU)、聚乙烯(Polyethylene,PE)、酚醛树脂(Phenol Formaldehyde,PF)、尿素-甲醛树脂(Urea-Formaldehyde,UF)、三聚氰胺-甲醛树脂(Melamine-Formaldehyde,MF)、聚芳酯(Polyarylate,PAR)、聚醚酰亚胺(Polyetherimide,PEI)、聚 酰亚胺(Polyimide,PI)、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate two formic acid glycol ester,PEN)、聚醚醚酮(Polyetheretherketone,PEEK)、碳纤维、石墨烯、硅胶等中的任意一种或其组合。在一些实施例中,弹性元件1260可以是弹性结构体,弹性结构体可以是指结构本身具有弹性,即便材料较硬,但是由于结构本身具有弹性,使得弹性元件1260本身具有弹性。在一些实施例中,弹性结构体可以包括诸如簧片结构的结构体,即弹性元件1260可以为簧片结构。在一些实施例中,弹性元件1260还可以是用于粘接壳体主体12222与背板12221的具有一定弹性的胶水。在一些实施例中,具有一定弹性的胶可以是有机硅粘接类胶水、有机硅胶水等。在一些实施例中,壳体主体12222与背板12221之间的连接可以是密封连接。在一些实施例中,壳体主体12222与背板12221之间的连接也可以不是密封连接,壳体主体12222与背板12221之间的缝隙可以充当泄压孔,连通壳体1222内部和外部的空气,以降低声学输出装置1200谐振峰对应的谐振频率,使得声学输出装置1200灵敏度不受附加元件影响的(或平坦的频响曲线所对应的)频率范围更宽。
声学输出装置1200中的背板12221通过弹性元件1260与壳体主体12222连接,背板12221与弹性元件1260可以等效成一个质量-弹性模块,该质量-弹性模块可以起到隔振的效果,使得换能装置1210产生的高频振动传递不到背板12221,从而可以避免背板12221进行高频振动而产生高频漏音。
需要说明的是,本说明书实施例提供的其他声学输出装置(例如,图4所示的声学输出装置400、图9所示的声学输出装置900、图13所示的声学输出装置1300等)中的背板与壳体主体也可以通过弹性元件连接,以避免声学输出装置在背板一侧产生高频漏音。
在声学输出装置1200中,磁路组件1211和面板1221之间通过传振片1213A连接,可能会出现磁路组件1211与附加元件1240相互吸引或排斥而造成磁路组件发生翻转变形影响换能装置1210的振动稳定性的问题。为了避免磁路组件1211与附加元件1240相互吸引或排斥而造成磁路组件1211发生翻转变形,而影响换能装置1210的振动稳定性,在一些实施例中,磁路组件1211和面板1221之间的传振片1213A可以替换为传振片1213B(图12中虚线表示)。作为示例性说明,传振片1213B位于磁路组件1211和壳体1222上与面板1221相对的侧壁之间,其中,传振片1213B的一侧可以与磁路组件1211背离面板1221的一侧连接,传振片1213B的周侧可以与壳体1222与面板421相邻的侧壁(壳体主体1222)连接。这里将传振片1213B位于磁路组件1211和壳体1222上与面板1221相对的侧壁之间,传振片1213B可以加强对磁路组件1211靠近附加元件1240的位置的支撑效果,提高换能装置尤其是磁路组件的振动稳定性。在一些实施例中,为了进一步提高换能装置1210的振动稳定性,声学输出装置1200中可以同时包含传振片1213A和传振片1213B。
在一些实施例中,如图12所示,磁路组件1211可以包括孔部12111和定位杆12112,孔部12111可以沿换能装置1210的振动方向(图12所示的第一方向)贯穿磁路组件12111,定位杆12112远离面板1221的一端与背板12221连接,另一端穿过孔部12111并与面板1221连接。在一些实施例中,定位杆12112的另一端可以与面板1221连接,使得面板1221可以带动背板12221一同振动,减小由于面板1221与背板12221不同步振动而产生的漏音。同时,定位杆12112与孔部12111的配合,可以进一步增加磁路组件1211的稳定性,降低磁路组件1211受到附加元件1240的吸引或排斥而发生翻转变形的风险。
需要说明的是,磁路组件包括孔部12111和定位杆12112同样适用于本说明书实施例中的其他声学输出装置,例如,图4所示的声学输出装置400、图7所示的声学输出装置700、图9所示的声学输出装置900、图13所示的声学输出装置1300、图15所示的声学输出装置1500等。
图13是根据本说明书一些实施例所示的声学输出装置的结构示意图。如图13所示,声学输出装置1300包括换能装置1310、外壳1320、支撑结构1330和附加元件1340和弹性元件1350。其中,换能装置1310可以包括磁路组件1311、线圈1312、传振片1313A以及振动板1314,振动板1314与磁路组件1311之间通过传振片1313A弹性连接。在一些实施例中,外壳1320可以包括面板1321和壳体1322。在一些实施例中,壳体1322可以包括与面板1321位置相对的背板13221和与面板1321位置相邻的壳体主体13222。支撑结构1330可以与面板1321刚性连接或与壳体1322(例如,背板13221或壳体主体13222)刚性连接。在一些实施例中,弹性元件1350可以为减振片,面板1321可以通过减振片与壳体1322弹性连接,附加元件1340可以与壳体1322刚性连接,面板1321与振动板1314刚性连接,壳体1322与振动板1314和面板1321通过减振片连接。作为示例性说明,振动板1314可以与线圈1312连接,当换能装置1310工作时,线圈1312能够带动振动板1314连同面板1321进行机械振动。其中,振动板1314与面板1321之间可以通过一刚性件(例如,连接杆)进行刚性连接,该刚性件可以通过减振片与壳体1322(壳体1322中与面板1321相邻的侧壁)连接,从而实现壳体1322与振动板1314和面板1321之间的连接。在一些实施例中,面板1321和与面板刚性连接的结构(例如,振动板1314、线圈1312等、弹性元件1350、壳体1322和与壳体1322刚性连接的结构(例如,附加元件1340、支撑结构1330等)形成一个谐振系统。需要注意的是,当面板1321或壳体1322上刚性连接有其他结构时,这些结构也被视为谐振系统中的一部 分。该谐振系统可以产生位于目标频率范围内的谐振峰,在谐振峰对应的谐振频率之后的频率范围内,附加元件1340和面板1321之间的振动传递会被抑制,也就是说附加元件1340对面板1321的振动的影响会降低,由此可以保证其灵敏度在大于谐振峰对应的谐振频率的频率范围内不受或较少受到附加元件1340的影响。在一些实施例中,通过将谐振峰对应的谐振频率设置在较低的频率位置,能够减小在声学输出装置1300中因附加元件1340而导致其灵敏度下降的频率范围。此外,在大于谐振峰对应的谐振频率的频率范围内,由于附加元件1340对面板1321振动的影响较小,声学输出装置1300的频率响应曲线更为平坦,可以保证声学输出装置1300在较宽的频率范围内具有较好的声学输出效果,提高用户的听觉体验。
关于壳体1322、支撑结构1330、附加元件1340、磁路组件1311、线圈1312和传振片1313A等可以分别与声学输出装置400中的壳体422、支撑结构430、附加元件440、磁路组件411、线圈412和传振片413A等类似,在此不做进一步赘述。
在一些实施例中,减振片可以为由弹性材料(例如,硅胶、聚氨酯等)制成的片状结构。在一些实施例中,减振片可以为结构本身具有弹性的弹性结构体(例如,簧片结构)。由于减振片的存在,换能装置1310产生的机械振动可以较少甚至不传递至壳体1322,使得壳体1322以及附加元件1340的质量在高于谐振峰对应的谐振频率的频率范围内不会引起换能装置1310的振动负载质量增加,而保证声学输出装置1300在高于谐振峰对应的谐振频率的频率范围内的灵敏度不会受到附加元件1340以及壳体1322(以及设置在壳体1322的相关部件,例如,支撑结构1330、电池、电路板)的影响,声学输出装置1300的频响曲线在高于谐振峰对应的谐振频率的频率范围内的较为平坦,从而保证声学输出装置1300能够输出较好的音质。
在一些实施例中,为了避免声学输出装置1300在壳体1322与面板1321相对的一侧产生高频漏音,可以将壳体1322与面板1321位置相对的侧壁(即,背板13221)通过弹性元件与壳体1322的其他侧壁(例如,壳体主体13222)连接。在一些实施例中,如图12所示的声学输出装置1200中壳体主体12222与背板12221通过弹性元件1260连接的方式同样适用于声学输出装置1300中壳体主体13222与背板13221之间的连接。
图14是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图。
图14示出了声学输出装置200和声学输出装置1300在附加元件具有不同质量时的频率响应曲线。其中,横坐标为频率(Hz),纵坐标为声学输出装置在不同频率下对应的声压(dB),曲线L141为附加元件40的质量为0g时声学输出装置200的频率响应曲线,曲线L142为附加元件40的质量为1时声学输出装置200的频率响应曲线,曲线L144为附加元件40的质量为2g时声学输出装置200的频响曲线,曲线L145为附加元件40的质量为3g时声学输出装置200的频响响应曲线,曲线L146为附加元件1340的质量为2g时声学输出装置1300的频率响应曲线,曲线L147为附加元件1340的质量为0g时声学输出装置1300的频率响应曲线,曲线L148为附加元件1340的质量为3g时声学输出装置1300的频率响应曲线,曲线L149为附加元件1340的质量为1g时声学输出装置1300的频率响应曲线。
结合声学输出装置200的频响频率响应曲线和声学输出装置1300的频率响应曲线可知,在500Hz-5000Hz的频率范围内,声学输出装置1300输出的声压整体大于声学输出装置200输出的声压,也就是说,在500Hz-5000Hz的频率范围内,声学输出装置1300的灵敏度大于声学输出装置200的灵敏度。因此,声学输出装置1300相对于声学输出装置200来说,可以解决在骨传导声学输出装置上设置附加元件而造成灵敏度较低的问题。另外,根据声学输出装置200的频率响应曲线可知,在500Hz-5000Hz的频率范围内,随着附加元件40的质量增加,声学输出装置200的声压整体会下降,即声学输出装置200的灵敏度在下降。由此可见,声学输出装置200的灵敏度会受到附加元件40的质量影响。而根据声学输出装置1300的频率响应曲线可知,在500Hz-5000Hz的频率范围内,声学输出装置1500的频响曲线较为平坦,并且随着附加元件1340的质量增加,声学输出装置1300的声压整体上没有变化,即声学输出装置1300的灵敏度没有变化。由此可见,在500Hz-5000Hz的频率范围内,声学输出装置1300的灵敏度不会受到附加元件1340的质量影响而发生改变,使得声学输出装置1300在500Hz-5000Hz的频率范围内,具有较为平坦的频率响应曲线,这样保证声学输出装置1300能够输出较好的音质。
在声学输出装置1300中,磁路组件1311和振动板1314之间通过传振片1313A连接,可能会出现磁路组件1311与附加元件1340相互吸引或排斥而造成磁路组件发生翻转变形影响换能装置1310的振动稳定性的问题。为了避免磁路组件1311与附加元件1340相互吸引或排斥而造成磁路组件1311发生翻转变形,而影响换能装置1310的振动稳定性,在一些实施例中,磁路组件1311和振动板1314之间的传振片1313A可以替换为传振片1313B(图13中虚线所示)。作为示例性说明,传振片1313B位于磁路组件1311和壳体1322上与面板1321相对的侧壁之间,其中,传振片1313B的一侧可以与磁路组件1311背离面板1321的一侧连接,传振片1313B的周侧可以与壳体1322与面板1321相邻的侧壁(壳体主体1322)连接。这里将传振片1313B位于磁路组件1311和壳体1322上与面板1321相对的侧壁之间,传振片1313B 可以加强对磁路组件1311靠近附加元件1340的位置的支撑效果,提高换能装置尤其是磁路组件1311的振动稳定性。在一些实施例中,为了进一步提高换能装置1310的振动稳定性,声学输出装置1300中可以同时包含传振片1313A和传振片1313B。
图15是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图15所示,声学输出装置1500中的换能装置1510(包括磁路组件1511、线圈1512、传振片1513A)、面板1521、外壳1520(包括面板1521和壳体1522)、支撑结构1530、附加元件1540等结构可以分别与声学输出装置400中换能装置410(包括磁路组件411、线圈412、传振片413A)、外壳420(包括面板421、壳体422)、支撑结构430、附加元件440等结构相类似,在此不做进一步赘述。声学输出装置1500与声学输出装置400的区别之处在于;在声学输出装置1500中,面板1521与壳体1522刚性连接,附加元件1540可以与壳体1522的侧壁通过弹性元件1550连接,附加元件1540和弹性元件1550可以作为壳体1522的侧壁的至少部分结构。其中,壳体1522的侧壁可以包括与面板1521位置相对的侧壁(即背板15221)和与面板1521位置相邻的侧壁(即壳体主体15222)。在一些实施例中,弹性元件1550可以是具有弹性的环结构,附加元件1540可以通过环结构与壳体1522的侧壁连接。作为示例性说明,壳体1522的侧壁上开设有与附加元件1540形状匹配的孔或槽,环结构套接在附加元件1540的周侧,套接有环结构的附加元件1540可以嵌设在壳体1522的侧壁上的孔或槽内,使得附加元件1540和弹性元件1550可以作为侧壁的一部分。在一些实施例中,可以用具有弹性的胶来代替具有弹性的环结构,将附加元件1540周侧与壳体1522的侧壁上的孔或槽的内壁进行粘接。在一些实施例中,弹性元件1550可以是簧片结构,附加元件1540与该簧片结构的以表面连接,或嵌接在该簧片结构上,簧片结构的周侧可以连接面板1521和/或壳体1522其他侧壁,使得附加元件1540和弹性元件1550可以完全作为壳体1522的其中一个侧壁或其一部分,此时,弹性元件1550、附加元件1540与面板1521、壳体1522可以共同围成容置腔。在一些实施例中,簧片结构可以是由金属材质(例如,铁、铝、铜等)或非金属材质(例如,橡胶、聚氨酯类材料等)制成具有弹性的片状结构。在一些实施例中,声学输出装置1500可以包括支撑板(图15中未示出),附加元件1540可以设置在支撑板上,支撑板通过弹性元件1550与壳体1522的侧壁连接,其中,支撑板可以位于壳体1522的内部或外部,或者弹性元件1550和支撑板可以作为壳体1522的其中一个侧壁或侧壁的一部分。
在一些实施例中,面板1521和壳体1522以及与面板1521或壳体1522刚性连接的结构(例如,线圈1512、支撑结构1530等)、附加元件1540之间通过弹性元件1550弹性连接形成一个谐振系统。需要注意的是,当面板1521或壳体1522上刚性连接有其他结构时,这些结构也被视为谐振系统中的一部分。该谐振系统可以产生目标频率范围内的谐振峰,在谐振峰对应的谐振频率之后的频率范围内,附加元件1540和面板1521之间的振动传递会被抑制,也就是说附加元件1540对面板1521的振动的影响会降低,由此可以保证其灵敏度在大于谐振峰对应的谐振频率的频率范围内不受或较少受到附加元件1540的影响。在一些实施例中,通过将谐振峰对应的谐振频率设置在较低的频率位置,能够减小在声学输出装置1500中因附加元件1540而导致其灵敏度下降的频率范围。此外,在大于谐振峰对应的谐振频率的频率范围内,由于附加元件1540对面板1521振动的影响较小,声学输出装置1500的频率响应曲线更为平坦,可以保证声学输出装置1500在较宽的频率范围内具有较好的声学输出效果,提高用户的听觉体验。在一些实施例中,弹性元件1550能够带动附加元件1540相对于面板1521振动产生目标频率范围内的谐振谷。在一些实施例中,目标频率范围可以为20Hz~800Hz。优选地,目标频率范围可以为100Hz~600Hz。进一步优选的地,目标频率范围可以为150Hz~500Hz。更为优选地,目标频率范围可以为200Hz~400Hz。一些实施例中,谐振谷对应的频率可以小于谐振峰对应的频率。在一些实施例中,谐振峰对应的频率与谐振谷对应的频率差值可以不大于300Hz。在一些实施例中,谐振峰对应的频率与谐振谷对应的频率差值可以不大于200Hz。在一些实施例中,谐振峰对应的频率与谐振谷对应的频率差值可以不大于100Hz。在一些实施例中,谐振峰与谐振谷的差值可以在20dB~100dB的范围内。在一些实施例中,谐振峰与谐振谷的差值可以在20dB~60dB的范围内。在一些实施例中,谐振峰与谐振谷的差值可以在20dB~40dB的范围内。
在一些实施例中,可以通过调整弹性元件1550的弹性系数、附加元件1540的质量来使得目标频率范围内的谐振峰位于特定的频率范围内,从而使得声学输出装置1500可以减小附加元件440对声学输出装置400影响的频率范围,以及在较宽的频段内具有平坦的频响曲线,以输出较好的音质,同时保证声学输出装置1500的灵敏度能够在较宽频段内不会受到附加元件1540的影响,具体请参见图16所示。
图16是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图。
图16示出了声学输出装置1500中弹性元件1550具有不同弹性系数、附加元件1540具有不同质量时的频率响应曲线。其中,横坐标为频率(Hz),纵坐标为声学输出装置在不同频率下对应的声压(dB),曲线L161为弹性元件1550的弹性系数为8800N/m、附加元件1540的质量为2g时声学输出装置1500的频率响应曲线,曲线L162为弹性元件1550的弹性系数为16500N/m、附加元件1540的质量为2g时声学 输出装置1500的频率响应曲线。曲线L163为弹性元件1550的弹性系数为16500N/m、附加元件1540的质量为0.3g时声学输出装置1500的频率响应曲线。区域E内的谐振峰为弹性元件1550带动附加元件1540相对于面板1521振动产生位于目标频率范围内的谐振峰。区域F内的谐振谷为弹性元件1550带动附加元件1540相对于面板1521振动产生位于目标频率范围内的谐振谷。结合曲线L161和L162可知,随着弹性元件1450的弹性系数增加,谐振峰对应的谐振频率增大,声学输出装置1500灵敏度不受附加元件1540影响的频率范围越窄。结合曲线L162和L163可知,随着附加元件1540的质量增加,谐振峰对应的谐振频率下降,声学输出装置1500灵敏度不受附加元件1540影响的频率范围越宽。在一些实施例中,可以通过调整弹性元件1550的弹性系数和/或附加元件1540的质量,以使谐振频率在目标频率范围内,以拓宽声学输出装置1500灵敏度不受附加元件1540影响的频率范围。在一些实施例中,目标频率范围可以为不大于700Hz。优选地,目标频率范围可以为不大于500Hz。进一步优选地,目标频率范围可以为不大于500Hz。较为优选地,目标频率范围可以为不大于300Hz。更为优选地,目标频率范围可以为不大于200Hz等等。
在声学输出装置1500中,磁路组件1511和面板1521之间通过传振片1513A连接,可能会出现磁路组件1511与附加元件1540相互吸引或排斥而造成磁路组件发生翻转变形影响换能装置1510的振动稳定性的问题。为了避免磁路组件1511与附加元件1540相互吸引或排斥而造成磁路组件1511发生翻转变形,而影响换能装置1510的振动稳定性,在一些实施例中,磁路组件1511和面板1221之间的传振片1513A连接可以替换为传振片1513B(图15中虚线所示)。作为示例性说明,传振片1513B位于磁路组件1211和壳体1222上与面板1221相对的侧壁之间,其中,传振片1513B的一侧可以与磁路组件1511背离面板1521的一侧连接,传振片1513B的周侧可以与壳体1522与面板1521相邻的侧壁(壳体主体1522)连接。这里将传振片1513B位于磁路组件1511和壳体1522上与面板1521相对的侧壁之间,传振片1513B可以加强对磁路组件1511靠近附加元件1540的位置的支撑效果,提高换能装置尤其是磁路组件1511的振动稳定性。在一些实施例中,为了进一步提高换能装置1510的振动稳定性,声学输出装置1500中可以同时包含传振片1513A和传振片1513B。
图17是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图17所示,声学输出装置1700中的换能装置1710(包括磁路组件1711、线圈1712、传振片1713A)、外壳1720中的面板1721、支撑结构1730、附加元件1740等结构可以分别与图15所示的声学输出装置1500中的换能装置1510(包括磁路组件1511、线圈1512、传振片1513A)、外壳1520中的面板1521、支撑结构1530、附加元件1540等结构相类似,这里不做进一步赘述。声学输出装置1700与声学输出装置200的区别之处在于:附加元件1740相对于壳体1720独立设置,附加元件1740通过弹性元件1750与壳体1722连接。在一些实施例中,附加元件1740可以独立设置在壳体1720的外部。在一些实施例中,如图17所示,附加元件1740可以独立设置在壳体1720的内部。在一些实施例中,弹性元件1750可以是簧片结构,簧片结构的一端可以连接附加元件1740,另一端可以连接壳体1722的侧壁(壳体主体17222和/或背板17221)。在一些实施例中,弹性元件1750可以是具有弹性的环结构。作为示例性说明,附加元件1740可以位于壳体1722的内部且相对于壳体1722独立设置,环结构的内轮廓可以附加元件1740的周侧连接,环结构的外轮廓可以与壳体主体17222的内壁连接。需要说明的是,这里的附加元件1740可以为电池、电路板或者不对振动方向敏感的传感器(例如,温度传感器和湿度传感器)等。
在声学输出装置1700中,磁路组件1711和面板1721之间通过传振片1713A连接,可能会出现磁路组件1711与附加元件1740相互吸引或排斥而造成磁路组件发生翻转变形影响换能装置1710的振动稳定性的问题。为了避免磁路组件1711与附加元件1740相互吸引或排斥而造成磁路组件1711发生翻转变形,而影响换能装置1710的振动稳定性,在一些实施例中,磁路组件1711和面板1721之间的传振片1713A可以替换为传振片1713B(图17中虚线所示)。作为示例性说明,传振片1713B位于磁路组件1711和壳体1722上与面板1721相对的侧壁之间,其中,传振片1713B的一侧可以与磁路组件1711背离面板1721的一侧连接,传振片1713B的周侧可以与壳体1722与面板1721相邻的侧壁(壳体主体1722)连接。这里将传振片1713B位于磁路组件1711和壳体1722上与面板1721相对的侧壁之间,传振片1713B可以加强对磁路组件1711靠近附加元件1740的位置的支撑效果,提高换能装置尤其是磁路组件1711的振动稳定性。在一些实施例中,为了进一步提高换能装置1710的振动稳定性,声学输出装置1700中可以同时包含传振片1713A和传振片1713B。
图18和19是根据本说明书一些实施例所示的声学输出装置的结构示意图。
在一些实施例中,如图18所示,声学输出装置1800中的附加元件1740可以通过弹性元件1750与面板1721弹性连接。在一些实施例中,如图19所示,声学输出装置1900中的附加元件1740可以通过弹性元件1750与换能装置1710弹性连接。需要说明的是,图18和图19所示的附加元件1740可以为电池、电路板或者不对振动方向敏感的传感器(例如,温度传感器和湿度传感器)等。需要注意的是,附加元件1740也可以通过胶水直接与壳体1722进行粘接,例如,附加元件1740可以通过胶水与壳体主体 17222粘接,凝固后的胶水具有一定的弹性,可以起到与弹性元件1750相同的作用。在一些实施例中,胶水可以包括但不限于凝胶类、有机硅胶、丙烯酸类、聚氨酯类、橡胶类、环氧类、热熔类、光固化类等等,优选地可为有机硅粘接类胶水、有机硅类胶水。
图20是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图20所示,声学输出装置2000可以包括换能装置2010、外壳2020、支撑结构2030以及附加元件2040。外壳2020可以包括面板2021、壳体2022以及支撑件2023。在一些实施例中,壳体2022可以包括背板20221和壳体主体20222(图中虚线所示)。在一些实施例中,壳体主体20222可以为内部中空且两端具有开放式敞口的柱状结构体,面板2021和背板20221分别位于壳体主体20222具有开放式敞口的两端,并通过壳体主体20222实现刚性连接。在一些实施例中,壳体2022也可以为一体式结构,例如,壳体2022可以为内部中空且一端具有开放式敞口的结构体,面板2021位于壳体2022具有开放式敞口的一端。在一些实施例中,支撑件2023可以独立设置于壳体2022的外部,也可以独立设置于壳体2022的内部。在一些实施例中,支撑件2023可以为筒状结构,筒状结构可以环绕设置在壳体2022上与面板2021相邻的侧壁(也被称为壳体主体20222或连接件)处。在一些实施例中,壳体主体20222可以是两端具有敞口的柱状体结构,筒状结构可以环绕设置在壳体主体20222上。在一些实施例中,支撑件2023可以相对于壳体2022独立设置,面板2021与壳体2022刚性连接,附加元件2040与支撑件2023刚性连接,支撑件2023可以通过弹性元件2050与壳体2022或面板2021连接,以此实现弹性元件2050在附加元件2040与面板2021连接的振动路径上。声学输出装置2000中的换能装置2010(包括磁路组件2011、线圈2012、传振片2013A)、支撑结构2030、附加元件2040等结构可以分别与声学输出装置200中的换能装置10(包括磁路组件11、线圈12、传振片13)、支撑结构30、附加元件40等结构类似,在此不做进一步赘述。
在一些实施例中,磁路组件2011可以包括孔部20111和定位杆20112,孔部20111可以沿换能装置2010的振动方向(图20所示的第一方向)贯穿磁路组件20111,定位杆20112远离面板2021的一端与壳体2022中与面板2021位置相对的背板20221连接,另一端穿过孔部20111并与面板2021连接。需要说明的是,定位杆20112也可以起到固定面板2021和背板20221的作用,此时可以不设置壳体主体20222或者面板2021与背板20221可以与壳体主体20222不进行固定连接。在一些实施例中,也可以同时设置定位杆20112和壳体主体20222。关于孔部20111和定位杆20112更多描述,可以参考图12中示出的孔部12111和定位杆12112的相关描述,在此不再赘述。
在一些实施例中,弹性元件2050可以包括第一弹性元件2051和第二弹性元件2052,支撑件2023的一端可以通过第一弹性元件2051和面板2021连接,支撑件2023的另一端可以通过第二弹性元件与壳体2022中与面板2021位置相对的侧壁(或称为背板20221)连接。如此设置,第一弹性元件2051和第二弹性元件2052、支撑件2023以及附在其上的附加元件2040、面板2021和壳体2022以及与面板2021或壳体2022刚性连接的结构(例如,线圈2012、支撑结构2030等)之间形成一个谐振系统。需要注意的是,当面板2021或壳体2022上刚性连接有其他结构、支撑件2023上刚性连接有其他结构时,这些结构也被视为谐振系统中的一部分。该谐振系统可以产生目标频率范围的谐振峰和谐振谷。在大于谐振峰对应的谐振频率的频率范围内,附加元件2040和面板2021之间的振动传递会被抑制,也就是说附加元件2040对面板2021的振动的影响会降低,由此可以保证其灵敏度在大于谐振峰对应的谐振频率的频率范围内不受或较少受到附加元件2040的影响。在一些实施例中,通过将谐振峰对应的谐振频率设置在较低的频率位置,能够减小在声学输出装置2000中因附加元件2040而导致其灵敏度下降的频率范围。此外,在大于谐振峰对应的谐振频率的频率范围内,由于附加元件2040对面板2021振动的影响较小,声学输出装置2000的频率响应曲线更为平坦,可以保证声学输出装置400在较宽的频率范围内具有较好的声学输出效果,提高用户的听觉体验。另外,第一弹性元件2051和第二弹性元件2052以及支撑件2023的设置可以实现对附加元件2040稳定地支撑,以减少附加元件2040的晃动,从而避免对声学输出装置200的灵敏度造成影响。需要注意的是,在一些实施例中,也可以仅有第一弹性元件2051或第二弹性元件2052。
在一些实施例中,壳体主体20222可以为板状结构或杆状结构,壳体主体20222的两端分别与面板2021和背板20221刚性连接,比如,壳体主体20222可以为两个板状结构,两个板状结构的两端分别与面板2021和背板20221刚性连接。
图21是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图。
如图21所示,其中,横坐标为频率(Hz),纵坐标为声学输出装置在不同频率下对应的声压(dB),曲线L211为声学输出装置2000中的附加元件2040质量为0时(相当于声学输出装置2000不包括附加元件2040)的频率响应曲线,在200Hz~2000Hz的频率范围内,具有谐振峰2111和谐振谷2112。曲线L212为声学输出装置2000中的附加元件2040具有一定质量时的频率响应曲线,在200Hz~2000Hz的频率范围内,具有谐振峰2121和谐振谷2122。结合曲线L211和L212可知,在高于谐振峰对应的谐振频率的频率范围内,声学输出装置2000具有较为平坦的频响曲线,此时声学输出装置2000能够输出较好的音质。 除此之外,谐振峰2121对应的谐振频率小于谐振峰2111对应的谐振频率可知,声学输出装置的谐振频率与附加元件的质量呈负相关,也就是说,随着附加元件2040的质量增加,声学输出装置2000谐振峰对应的谐振频率越低(越靠近低频)。在一些实施例中,可以通过调整附加元件2040的质量(例如,增加附加元件2040的质量)使得声学输出装置2000可以在更宽的频率范围内具有平坦的频率响应曲线。
在一些实施例中,如图20所示,第一弹性元件2051和第二弹性元件2052可以为簧片结构,第一弹性元件2051和第二弹性元件2052可以分别位于换能装置2010沿其振动方向的两侧,第一弹性元件2051朝向面板2021的一侧可以与面板2021连接,第一弹性元件2051的周侧则可以与支撑件2023的一端连接,第二弹性元件2051背离换能装置2010的一侧可以与壳体2022中与面板2021位置相对的侧壁(背板20221)连接。在一些实施例中,支撑结构2030可以与支撑件2023刚性连接,也可以与面板2021或背板20221刚性连接。
图22是根据本说明书一些实施例所示的声学输出装置的结构示意图。
在一些实施例中,如图22所示,声学输出装置2200中的第一弹性元件2051和第二弹性元件2052可以为具有弹性的环结构,第一弹性元件2051和第二弹性元件2052可以分别位于支撑件2023的两端,支撑件2023的一端可以通过第一弹性元件2051与面板连接,支撑件2023的另一端可以通过第二弹性元件与壳体2022中与面板2021位置相对的侧壁(或背板20221)连接。作为示例性说明,支撑件2023可以内部中空且两端具有开放式敞口的结构体(例如,套筒结构),环结构的内轮廓可以与面板2021以及背板20221的周侧连接,环结构的外轮廓则可以与支撑件2023两端的敞口连接。在一些实施例中,环结构可以由硅胶、聚氨酯等弹性材料制作而成。
图23是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图。
如图23所示,其中,横坐标为频率(Hz),纵坐标为声学输出装置在不同频率下对应的声压(dB),曲线L231为附加元件2040的质量为2g时声学输出装置2200的频率响应曲线,曲线L232为附加元件2040的质量为3.5g时声学输出装置2200的频率响应曲线。结合曲线L231和L232可知,曲线L231在1000Hz~5000Hz的频率范围内的部分与曲线L232在1000Hz~5000Hz的频率范围内的部分较为平坦,并且基本重合。由此可得,在1000Hz~5000Hz的频率范围内,声学输出装置2200的灵敏度并不受附加元件2040质量的影响。
在一些实施例中,第一弹性元件2051和第二弹性元件2052还可以为具有弹性的胶水,第一弹性元件2051可以将支撑件2023的一端与面板2021粘接在一起,第二弹性元件2052可以将支撑件2023的另一端与背板20221粘接在一起。在一些实施例中,胶水可以包括但不限于凝胶类、有机硅胶、丙烯酸类、聚氨酯类、橡胶类、环氧类、热熔类、光固化类等等,优选地可为有机硅粘接类胶水、有机硅类胶水。
图24是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图24所示,在一些实施例中,声学输出装置2400中的支撑件2023可以为板状结构,板状结构可以相对于壳体2022独立设置。附加元件2040可以与板状结构刚性连接。板状结构的一端可以通过第一弹性元件2051与面板2021连接,板状结构的另一端可以通过第二弹性元件2052与壳体2022中与面板2021位置相对的侧壁(背板20221)连接。在一些实施例中,如图24所示,声学输出装置2400中的第一弹性元件2051和第二弹性元件2052可以是簧片结构。作为示例性说明,当支撑件2023独立设置于壳体2022的外侧时,壳体主体20222中朝向支撑件2023的侧壁上可以开设有供簧片结构穿过的第一间隙20223和第二间隙20224,第一弹性元件2051靠近面板2021的一侧可以与面板2021连接,第一弹性元件2051位于壳体2022内的周侧可以与壳体主体20222中的其他侧壁连接并且第一弹性元件2051的其余周侧可以穿过第一间隙20223与支撑件2023的一端连接。第二弹性元件2052背离换能装置2010的一侧可以与背板20221连接,第二弹性元件2052位于壳体2022内的周侧可以与壳体主体20222中的其他侧壁连接并且第二弹性元件2052的其余周侧可以穿过第二间隙20224与支撑件2023的另一端连接。在一些实施例中,当支撑件2023独立设置于壳体2022的内侧时,壳体主体20222中面向支撑件2023的侧壁上可以不用开设有供簧片结构穿过的第一间隙20223和第二间隙20224。在其他实施例中,壳体主体20222处可以开设用于放置支撑件2023的缺口,该支撑件2023可以通过第一弹性元件2051和第二弹性元件2052与壳体2022或面板2021弹性连接,也可以通过弹性元件或胶水与壳体主体20222连接。例如,支撑件2023的周侧设置有弹性元件(例如,簧片、具有弹性的环结构),支撑件2023与壳体主体20222通过弹性元件弹性连接。又例如,支撑件2020的周侧与壳体主体20222可以通过胶水进行粘接,固化后的胶水起到弹性元件的作用。
图25是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图25所示,在一些实施例中,声学输出装置2500中的支撑件2023可以为板状结构,第一弹性元件2051和第二弹性元件2052可以为具有弹性的弹簧、簧片、膜结构等。作为示例性说明,第一弹性元件2051和第二弹性元件2052分别位于板状结构的两端,板状结构的一端通过第一弹性元件2051与面 板2021连接,板状结构的另一端通过第二弹性元件2051与背板20221连接。在其他实施例中,壳体主体20222处可以开设用于放置支撑件2023的缺口,该支撑件2023可以通过第一弹性元件2051和第二弹性元件2052与壳体2022或面板2021弹性连接,也可以通过弹性元件或胶水与壳体主体20222连接。例如,支撑件2023的周侧设置有弹性元件(例如,簧片、具有弹性的环结构),支撑件2023与壳体主体20222通过弹性元件与弹性连接。又例如,支撑件2020的周侧与壳体主体20222可以通过胶水进行粘接,固化后的胶水起到弹性元件的作用。
图26是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图26所示,在一些实施例中,声学输出装置2600中的支撑件2023可以是筒状结构,筒状结构可以套设在壳体主体20222的外部。附加元件2040与筒状结构刚性连接。筒状结构的一端可以通过第一弹性元件2051与面板2021连接,筒状结构的另一端可以通过第二弹性元件2052与背板20221连接。在一些实施例中,如图26所示,声学输出装置2600中的第一弹性元件2051和第二弹性元件2052可以是簧片结构。作为示例性说明,当筒状结构套设在壳体主体20222的外部时,壳体主体20222上可以开设有供簧片结构穿过的第一间隙20223和第二间隙20224。第一弹性元件2051靠近面板2021的一侧可以与面板2021连接,第一弹性元件2051的周侧可以穿过第一间隙20223与支撑件2023的一端连接;第二弹性元件2052背离换能装置2010的一侧可以与背板20221连接,第二弹性元件2052的周侧可以穿过第二间隙20224与支撑件2023的另一端连接。在一些实施例中,当套筒结构位于壳体2022的内侧时,壳体主体20222可以不用开设有供簧片结构穿过的第一间隙20223和第二间隙20224。
图27是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图27所示,在一些实施例中,声学输出装置2700中的支撑件2023可以为筒状结构,第一弹性元件2051和第二弹性元件2052可以为具有弹性的环结构。作为示例性说明,第一弹性元件2051和第二弹性元件2052分别位于筒状结构的两端,第一弹性元件2051的内轮廓可以与面板2021的周侧连接,第一弹性元件2051的外轮廓可以与筒状结构的一端连接,第二弹性元件2052的内轮廓可以与背板20221的周侧连接,第二弹性元件2052的外轮廓可以与筒状结构的另一端连接。
在一些实施例中,声学输出装置2700中的面板2021或壳体2022外部的侧壁上可以覆盖有振动传递层。振动传递层可以用于与用户的皮肤接触,也即面板2021或壳体外部的侧壁可以通过振动传递层与用户的皮肤接触。在一些实施例中,振动传递层的邵氏硬度可以小于面板2021或壳体2022外部的侧壁的邵氏硬度,即振动传递层可以比面板2021或壳体2022外部的侧壁更加柔软。在一些实施例中,振动传递层的材质为诸如硅胶的软质材料,面板2021或壳体2022外部的侧壁材质为诸如聚碳酸酯、玻璃纤维增强塑料的硬质材料。如此,以改善声学输出装置2700的佩戴舒适度,并使得声学输出装置2700与用户的皮肤更加贴合,进而改善声学输出装置2700的音质。在一些实施例中,振动传递层可以与面板2021或壳体2022外部的侧壁可拆卸连接,以便于用户更换。需要说明的是,在面板或壳体外部的侧壁上覆盖振动传递层不仅可以适用于声学输出装置2700,还可以适用于本说明书其他实施例中的声学输出装置,例如,图4所示的声学输出装置400、图7所示的声学输出装置700、图9所示的声学输出装置900、图12所示的声学输出装置1200、图13所示的声学输出装置1300、图15所示的声学输出装置1500等。
在声学输出装置2000、2200、2400、2500、2600以及2700中,磁路组件2011和面板2021之间通过传振片2013A连接,可能会出现磁路组件2011与附加元件2040相互吸引或排斥而造成磁路组件发生翻转变形影响换能装置2010的振动稳定性的问题。为了避免磁路组件2011与附加元件2040相互吸引或排斥而造成磁路组件2011发生翻转变形,而影响换能装置2010的振动稳定性,在一些实施例中,磁路组件2011和面板2021之间的传振片2013A可以替换为传振片2013B(图20、图22、图24、图25、图26以及图27中虚线所示),或者,本申请的一些实施例中,在声学输出装置2000、2200、2400、2500、2600以及2700中,可以同时包括传振片2013A及传振片2013B,通过传振片2013A及传振片2013B对磁路组件2011的支撑,保证换能装置2010的振动能够更加的稳定。在一些实施例中,传振片2013A和传振片2013B可以包括中心区域和多个支杆,多个支杆沿该中心区域的周侧间隔分布,其中,中心区域与磁路组件远离面板的一侧连接,支杆远离中心区域的端部与壳体连接。仅作为示例性说明,支杆的数量可以为4个,此时传振片2013A和传振片2013B的结构可以近似视为“X”型结构,“X”型结构在换能装置的振动方向上可以提供弹性,此外,多个支杆在垂直换能装置的振动方向上具有较高的结构强度,可以为磁路组件2011提供较高的支撑效果,从而保证换能装置在其振动时发生翻转变形。在一些实施例中,传振片2013A和传振片2013B还可以包括边缘区域,边缘区域与支杆远离中心区域的端部连接,边缘区域的周侧可以与壳体连接。关于传振片的具体结构可以参考本申请说明书其它地方的内容,例如,图46和图47及其相关描述。
作为示例性说明,如图24和25所示,支撑件2023可以为板状结构,传振片2013B位于磁路组件2011和壳体2022上与面板2021相对的侧壁(即背板20221)之间,传振片2013B的一侧可以与磁路 组件2011背离面板2021的一侧连接,传振片2013B通过周侧可以与壳体主体20222连接。如图26和27所示,当支撑件2032为筒状结构时,传振片2013B的一侧可以与磁路组件2011背离面板2021的一侧连接,传振片2013B的周侧可以与壳体主体20222连接。这里将传振片2013B位于磁路组件2011和壳体2022上与面板2021相对的侧壁之间,并连接传振片2013B及设置有附加元件2040的侧壁,从而使传振片2013B可以为磁路组件2011和附加元件2040的相对运动方向上提供支撑,传振片2013B可以加强对磁路组件2011靠近附加元件2040的位置的支撑效果,提高换能装置尤其是磁路组件2011的振动稳定性。为了进一步提高换能装置2010的振动稳定性,声学输出装置2000、2200、2400、2500、2600或2700中可以同时包含传振片2013A和传振片2013B。
需要注意的是,图20、图22所示的支撑件2023的两端还可以分别与面板2021和背板20221刚性连接,附加元件2040可以通过胶水与支撑件2023粘接,凝固后的胶水具有一定的弹性,可以起到与弹性元件2050相同的作用。在一些实施例中,胶水可以包括但不限于凝胶类、有机硅胶、丙烯酸类、聚氨酯类、橡胶类、环氧类、热熔类、光固化类等等,优选地可为有机硅粘接类胶水、有机硅类胶水。
本说明书实施例提供的声学输出装置,附加元件与面板通过至少包括一弹性元件的振动路径连接,能够解决在骨传导声学输出装置的基础上额外设置附加元件而导致其灵敏度下降的问题。然而在骨传导扬声器的基础上设置的附加元件为气导扬声器时,还可能会增大声学输出装置的漏音。具体地,当附加元件为气导扬声器时,换能装置产生的机械振动会带动气导扬声器内的振膜振动,使得声学输出装置产生的漏音不仅来自壳体带动声学输出装置外部的空气振动,还来自气导扬声器中的振膜受换能装置的振动所产生的振动,从而增大了扬声器的整体漏音,而导致用户的听觉体验降低。下面将结合骨传导声学输出装置100和附加元件40为气导扬声器时的声学输出装置200的漏音频率响应曲线来详细说明附加元件40为气导扬声器时声学输出装置漏音的影响。
图28是根据本说明书一些实施例所示的声学输出装置的漏音频率响应曲线图。
如图28所示,其中,横坐标为频率(Hz),纵坐标为声学输出装置在不同频率下对应的漏音声压(dB),曲线L281为骨传导声学输出装置100在其壳体22上与面板21相邻的侧壁处所测得的漏音频率响应曲线,曲线L282为附加元件40为气导扬声器,并且气导扬声器的振膜的振动方向与换能装置10的振动方向平行时的声学输出装置200在其壳体22上与面板21相邻的侧壁处所测得的漏音频率响应曲线,曲线L283为附加元件40为气导扬声器,并且气导扬声器的振膜的振动方向与换能装置10的振动方向近似垂直时的声学输出装置200在其壳体22上与面板21相邻的侧壁处所测得的漏音频率响应曲线。其中,声学输出装置100以及声学输出装置200的漏音频率响应曲线可以通过检测声学输出装置100和声学输出装置200壳体上与面板21相邻的侧壁处的气导声来测得,这同样适用于本说明书实施例中其他扬声器的漏音频率响应曲线的采集。结合曲线L281和L282可知,气导扬声器中的振膜的振动方向与换能装置10的振动方向平行时,扬声器200在中高频段内(5000Hz~10000Hz)漏音声压整体高于骨传导扬声器100的漏音声压。由此可见,在骨传导扬声器基础上设置气导扬声器时,如果气导扬声器中的振膜的振动方向与换能装置的振动方向平行,会增大声学输出装置的漏音。结合曲线L281、曲线L282以及曲线L283可知,气导扬声器中的振膜的振动方向与换能装置10的振动方向近似垂直时,声学输出装置200在中高频段内(500Hz~10000Hz)的漏音声压低于骨传导声学输出装置100的漏音声压或与骨传导扬声器100的漏音声压持平。由此可见,在骨传导扬声器基础上设置气导扬声器时,如果气导扬声器中的振膜的振动方向与换能装置的振动方向近似垂直,有利于降低声学输出装置的漏音。
基于上述在骨传导扬声器设置气导扬声器会增大声学输出装置漏音的问题,本说明书实施例提供了一种声学输出装置,该声学输出装置中的换能装置的振动方向与气导扬声器中的振膜的振动方向近似垂直,这里的近似垂直可以理解为换能装置的振动方向与气导扬声器中的振膜的振动方向形成的夹角为75°~100°,能够有效降低声学输出装置漏音,保证用户能够具有较好的听觉体验。下面将结合图4所示的声学输出装置400进行具体说明。
如图4所示,声学输出装置400中的附加元件可以为气导扬声器,气导扬声器可以包括振膜441,振膜441可以在气导扬声器中的换能装置的带动下产生振动,以带动空气振动,使用户可以听到气导声。其中,图4中所示的第二方向为换能装置410的振动方向,第一方向可以为振膜441的振动方向。为了使得气导扬声器不会增大声学输出装置400的漏音,在一些实施例中,第一方向与第二方向形成的夹角a可以为75°~100°。优选地,第一方向与第二方向形成的夹角a可以为80°~95°。例如,示例性地,第一方向与第二方向形成的夹角a可以为90°。
如图4所示,在一些实施例中,气导扬声器可以设置在壳体422中与面板421位置相邻的侧壁上(也被称为壳体主体)。
图29是根据本说明书一些实施例所示的声学输出装置的结构示意图。如图29所示,在一些实施例中,声学输出装置2900中的气导扬声器还可以设置在壳体422中与面板位置相对的侧壁处(或被称为 背板)。
需要说明的是,当附加元件为气导扬声器时,使气导扬声器的振膜的振动方向与换能装置的振动方向之间形成一定夹角来降低声学输出装置漏音不仅可以适用于声学输出装置400,还可以适用于本说明书实施例提供的其他声学输出装置,例如,图7所示的声学输出装置700、图9所示的声学输出装置900、图12所示的声学输出装置1200、图13所示的声学输出装置1300、图15所示的声学输出装置1500等。另外,当附加元件为诸如振动传感器、惯性加速度传感器、麦克风等对某一振动方向较为敏感的器件时,可以使得这些器件所敏感的振动方向与换能装置的振动方向之间具有一定夹角(例如,75°~100°),来避免这些器件的工作受到声学输出装置中换能装置振动的影响。另外,一些实施例中,附加元件也可以为电路板、电池等其它对振动方向不敏感的元器件或结构,可以设于壳体的任意位置。
图30是根据本说明书一些实施例中所示的声学输出装置的结构示意图。
为了降低声学输出装置3000的整体体积,如图30所示,附加元件可以设置在壳体422的内部。当附加元件位于壳体422的内部时,附加元件与壳体422中与面板421位置相邻或相对的侧壁的内侧刚性连接。在一些实施例中,附加元件为气导扬声器时,壳体422上可以设置有导声孔(图中未示出),导声孔可以将气导扬声器产生的声音输出至外部环境中。
换能装置410的磁路组件为磁体,当附加元件为对振动方向敏感的元器件(例如,气导扬声器、气导麦克风等)时,气导扬声器设置于壳体422中并靠近换能装置时,会出现气导扬声器与换能装置410磁场相互干扰的问题。这里以气导扬声器作为示例进行说明,如图31所示,在一些实施例中,沿气导扬声器中振膜441的振动方向,气导扬声器与换能装置410之间存在间距d。在一些实施例中,间距d越大,气导扬声器与换能装置410之间的磁场相互干扰就越小。在一些实施例中,间距d可以不小于0.8mm。在一些实施例中,间距d可以不小于1mm。在一些实施例中,间距d可以不小于1.2mm。
为了避免出现气导扬声器与换能装置410磁场相互干扰的问题,在一些实施例中,气导扬声器和换能装置410之间可以具有分隔件442,气导扬声器和换能装置410可以分别位于分隔件442的两侧。在一些实施例中,分隔件442可以为板状结构,其中,分隔件442的厚度t越大,气导扬声器与换能装置410之间的磁场相互干扰就越小。在一些实施例中,分隔件442的厚度t可以不小于0.8mm。在一些实施例中,分隔件442的厚度t可以不小于1mm。在一些实施例中,分隔件442的厚度t可以不小于1.2mm。在一些实施例中,为了进一步降低声学输出装置3100的整体体积,还可以将声学输出装置3000中的其他部件(例如,电池、电路板等)作为分隔件442设置在换能装置410和气导扬声器之间。
需要说明的是,气导扬声器位于壳体内部,使气导扬声器与换能装置在振膜的振动方向上存在一定间距和/或在气导扬声器与换能装置之间设置分隔件同样适用于本说明书其他实施例中的声学输出装置,例如,图7所示的声学输出装置700、图9所示的声学输出装置900、图12所示的声学输出装置1200、图13所示的声学输出装置1300、图15所示的声学输出装置1500等。
图31是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图31所示,当用户佩戴声学输出装置3100时,气导扬声器的出声口4401朝向用户的耳道。如此设置,可以使得气导扬声器输出的气导声可以直接传递至用户的耳道内,以保证气导扬声器输出的声音具有足够的音量被用户听到。
图32是根据本说明书一些实施例所示的声学输出装置的结构示意图。如图32所示,在声学输出装置3200中,气导扬声器可以包括第一气导扬声器470和第二气导扬声器480,第一气导扬声器470和第二气导扬声器480可以分布于壳体422的两侧,第一气导扬声器470和第二气导扬声器480关于换能装置410的对称轴i近似对称设置,这样可以避免因附加质量的不对称而造成声学输出装置3200晃动,影响声学输出装置3200的音质。在一些实施例中,当用户佩戴声学输出装置3200,第一气导扬声器470的出声口4701可以朝向用户的耳道,第二气导扬声器480的出声口4801可以背离用户的耳道,如此设置,可以保证第一气导扬声器470输出的气导声能够直接传递到用户的耳道内,避免第二气导扬声器480输出的声音对第一气导扬声器470输出的气导声造成干扰,使得第一气导扬声器470输出的声音具有足够的音量被用户所听到。在一些实施例中,第一气导扬声器470输出的声波与第二气导扬声器480输出的声波的相位可以满足特定条件(例如,相位相反或近似相反),第一气导扬声器470的出声口4701处输出的声波与第二气导扬声器480的出声口4801处输出的声波可以近似视为两个点声源,在远离人体耳道口的位置,第二气导扬声器480输出的声波可以与第一气导扬声器470输出的声波反相抵消,以降低声学输出装置400在远场的漏音音量。在一些实施例中,第二气导扬声器480可以用诸如电池、电路板、传感器等其他附加元件来代替,这些附加元件与第一气导扬声器470可以关于换能装置410的对称轴近似对称设置。
需要说明的是,气导扬声器包括第一气导扬声器470和第二气导扬声器480同样适用于本说明书其他实施例中的声学输出装置,例如,图7所示的声学输出装置700、图9所示的声学输出装置900、图12所示的声学输出装置1200、图13所示的声学输出装置1300、图15所示的声学输出装置1500等。
结合图5所示,声学输出装置400能够在中高频段内(高于谐振峰对应的谐振频率的频率范围内)具有平坦的频率响应曲线,即声学输出装置400所输出中高频的骨导声能够具有较好的音质。因此,为了保证声学输出装置400能够在全频段内具有较好的声学输出效果,声学输出装置400中的附加元件可以为气导声学输出装置,低频声音则可以由气导扬声器来输出。进一步地,声学输出装置400还可以包括分频模块,分频模块可以基于分频点对初始电信号进行分频处理,以产生中高频信号和低频信号。其中,小于分频点对应的频率的电信号为低频信号,高于分频点对应的频率的电信号为中高频信号。在一些实施例中,分频点可以在200Hz~800Hz的范围内。优选地,分频点可以在200Hz~700Hz。进一步优选地,分频点可以在200Hz~600Hz。更为优选地,优选地,分频点可以在300Hz~500Hz。声学输出装置400中的换能装置410可以基于中高频信号输出骨导声音,气导扬声器可以基于低频信号输出气导声音。进一步地,换能装置410可以基于电信号产生中高频振动,以带动面板421中高频振动,面板421通过与用户贴合能够将中高频振动通过骨传导的路径传递到用户的听觉神经,使用户可以听到中高频的骨导声音。气导扬声器中的换能装置能够基于低频信号带动振膜441振动,振膜441带动空气振动使用户可以听到低频的气导声音。低频的气导声音和中高频的骨导声音使得声学输出装置400在全频段内具有较好的声学输出效果。在一些实施例中,分频点对应的频率不小于目标频率范围内的最大值。在一些实施例中,分频点对应的频率不小于目标频率范围内谐振峰对应的谐振频率。当分频点大于谐振频率时,附加元件(气导扬声器)对骨导扬声器的灵敏度的影响很小,可以使得骨传导扬声器在中高频段具有较好的声学输出效果。与此同时,气导扬声器可以基于低频信号输出气导声音,以弥补骨传导扬声器在低频输出效果不佳的缺陷。在一些实施例中,为了使得骨传导扬声器在发声频段都能具有较高的灵敏度,分频点和谐振频率的差值可以不小于100Hz。优选地,分频点和谐振频率的差值可以不小于200Hz。在一些实施例中,骨传导扬声器和气导扬声器输出的声音在频域上也可以具有重叠的部分,重叠的部分的频域可以覆盖上述目标频率范围内谐振峰对应的谐振频率。此时,尽管附加元件的引入降低了骨导扬声器在该谐振频率附近的灵敏度,但气导声学输出装置在该谐振频率附近发出的气导声音可以弥补骨传导扬声器灵敏度不高的缺陷。在骨导声音和气导声音的结合下,用户仍然能够明显听到该谐振频率附近的声音。
需要说明的是,分频模块同样适用于本说明书其他实施例中的声学输出装置,例如,图7所示的声学输出装置700、图9所示的声学输出装置900、图12所示的声学输出装置1200、图13所示的声学输出装置1300、图15所示的声学输出装置1500等。
针对在骨传导扬声器的基础上设置附加元件,声学输出装置的灵敏度下降以及换能装置中的磁路组件会受到附加元件的吸引或排斥发生翻转变形而造成换能装置的振动稳定性下降的问题,本说明书实施例还提供一种声学输出装置。在一些实施例中,声学输出装置可以包括换能装置、外壳以及附加元件。其中,换能装置可以基于电信号产生机械振动,换能装置包括磁路组件、线圈和传振片;外壳,可以用于容纳换能装置,外壳包括面板和壳体,换能装置通过面板将机械振动传递给用户。本说明书实施例提供的声学输出装置中,传振片具有弹性,磁路组件通过传振片与外壳弹性连接,附加元件与磁路组件连接以与面板保持弹性连接。例如,磁路组件可以通过传振片与面板弹性连接,使得附加元件与磁路组件连接时可以与面板保持弹性连接。又例如,磁路组件可以通过传振片与壳体中与面板位置相对的侧壁(或称为背板)连接。再例如,传振片的数量可以为多个,多个传振片中包括第一传振片及第二传振片,磁路组件可以通过第一传振片和第二传振片分别与面板和背板连接,使得附加元件与磁路组件连接时可以与面板保持弹性连接。其中,附加元件与磁路组件连接可以是直接连接或间接连接。例如,附加元件可以直接与磁路组件刚性连接。又例如,附加元件和磁路组件均与壳体刚性连接。再例如,声学输出装置还包括支撑件,附加元件与支撑件刚性连接,支撑件与磁路组件刚性连接。本说明书实施例中提供的声学输出装置中,附加元件与磁路组件连接,可以避免附加元件与磁路组件之间相互吸引或排斥,而导致磁路组件发生翻转变形而影响换能装置的振动稳定性。本说明实施例提供的声学输出装置中,附加元件和磁路组件可以相对于面板振动,产生位于目标频率内的谐振峰,可以保证声学输出装置灵敏度在大于谐振峰对应的谐振频率的频率范围内不受附加元件的影响,从而使得具有附加元件的声学输出装置在大于谐振频率的频段范围内的灵敏度不受附加元件的影响,能够避免在骨传导扬声器上额外设置附加元件而导致骨传导声学输出装置灵敏度下降的问题。此外,本说明书实施例提供的声学输出装置在大于谐振峰对应的谐振频率的频率范围时,声学输出装置的频率响应曲线较为平坦,可以保证声学输出装置具有较好的声学输出效果,提高用户的听觉体验。进一步地,换能装置产生低频(低于谐振峰对应的谐振频率的频率范围)的机械振动时,面板的低频振动(低于谐振峰对应谐振频率的振动)会传递至附加元件带动附加元件一起振动,附加元件的质量会使得换能装置的振动负载质量增加,而使得声学输出装置的灵敏度在低于谐振峰对应的谐振频率的频率范围内会受到附加元件的影响(类似于声学输出装置200),而换能装置产生高频(高于谐振峰对应的谐振频率范围)的机械振动时,由于附加元件和磁路组件与面板之间保持着弹性连接(例如,传振片的存在),面板的高频振动几乎不会带动附加元件一起振动,附加元件的质量对换能装置的振动负载质量不会产生影 响,从而保证声学输出装置的灵敏度在高于谐振峰对应的谐振频率的频率范围内不会受到附加元件的影响。
下面将结合图33-图46对本说明书实施例提供的声学输出装置进行详细说明。
图33是根据本说明书一些实施例所示的声学输出装置的结构示意图。如图33所示,声学输出装置3300包括换能装置3310、外壳3320、支撑结构3330和附加元件3340。换能装置3310包括磁路组件3311、线圈3312和传振片3313,线圈3312设置在磁路组件3311中。外壳3320包括面板3321、壳体3322,面板3321和壳体3322可以形成用于容纳换能装置3310的容置腔,线圈3312与面板3321连接。进一步地,壳体3322可以包括与面板3321位置相对的背板33221以及与面板3321位置相邻的壳体主体33222。支撑结构3330可以与面板3321刚性连接。关于磁路组件3311、线圈3312、面板3321、壳体3322(包括背板33221和壳体主体33222)、支撑件3323、支撑结构3330以及附加元件3340等结构可以分别与声学输出装置2000中的磁路组件2011、线圈2012、面板2021、壳体2022(包括背板20221和壳体主体20222)、支撑件2023、支撑结构2030以及附加元件2040等结构类似,在此不再赘述。
在一些实施例中,如图33所示,面板3321与背板33221分别位于壳体主体33222的两端,并且与壳体主体33222刚性连接,使得面板3321与背板33221能够一起振动,减小漏音的产生。在一些实施例中,壳体主体33222可以为内部中空且两端具有开放式敞口的柱状结构体,面板3321和背板33221分别位于壳体主体33222具有开放式敞口的两端,并通过壳体主体33222实现刚性连接。在一些实施例中,壳体3322也可以为一体式结构,例如,壳体3322可以为内部中空且一端具有开放式敞口的结构体,面板3321位于壳体3322具有开放式敞口的一端。在一些实施例中,壳体主体33222处可以包括缺口(图33中未示出),磁路组件3311的周侧可以从缺口伸出至壳体主体3322的外部并与支撑件3323刚性连接,附加元件3340可以与支撑件3323刚性连接。如此设置,可以使得支撑件3323对磁路组件3311具有较好的支撑作用,避免磁路组件3311被附加元件3340的吸引或排斥而发生翻转变形,影响换能装置3310的振动稳定性。
传振片3313可以包括第一传振片33131和第二传振片33132。第一传振片33131位于磁路组件3311和面板3321之间,并将磁路组件3311与面板3321弹性连接。第二传振片33132位于磁路组件3311和背板33221之间,并将磁路组件3311与背板33221弹性连接。作为示例性说明,磁路组件3311靠近面板3321的一侧可以通过第一传振片33131与面板3321弹性连接,磁路组件3311靠近背板3321的一侧可以通过第二传振片33132与背板33221弹性连接。在一些实施例中,传振片的数量还可以为一个。例如,传振片3313可以包括第一传振片33131,磁路组件3311可以,通过第一传振片33131与面板3321弹性连接。又例如,或第二传振片33132)与壳体传振片3313可以包括第一传振片33131,磁路组件3311可以,通过第二传振片33132与背板33221弹性连接。在一些实施例中,第一传振片33131和第二传振片33132可以包括中心区域和多个支杆,多个支杆沿该中心区域的周侧间隔分布,其中,中心区域与磁路组件3311远离面板的一侧连接,支杆远离中心区域的端部与壳体连接。仅作为示例性说明,支杆的数量可以为4个,此时第一传振片33131和第二传振片33132的结构可以近似视为“X”型结构,“X”型结构在换能装置的振动方向上可以提供弹性,此外,多个支杆在垂直换能装置的振动方向上具有较高的结构强度,可以为磁路组件3311提供较高的支撑效果,从而保证换能装置在其振动时发生翻转变形。在一些实施例中,第一传振片33131和第二传振片33132还可以包括边缘区域,边缘区域与支杆远离中心区域的端部连接,边缘区域的周侧可以与壳体连接。关于传振片的具体结构可以参考本申请说明书其它地方的内容,例如,图46和图47及其相关描述。
在一些实施例中,附加元件3340与磁路组件3311相对于面板3321振动,可以产生位于目标频率范围内的谐振峰。在谐振峰对应的谐振频率之后的频率范围内,附加元件3340和面板3321之间的振动传递会被抑制,也就是说附加元件3340对面板3321的振动的影响会降低,由此可以保证其灵敏度在大于谐振峰对应的谐振频率的频率范围内不受或较少受到附加元件3340的影响。在一些实施例中,在高于谐振峰对应的谐振频率的频率范围内,声学输出装置3300的灵敏度可以不受附加元件3340的影响。在一些实施例中,目标频率范围内的谐振峰对应的谐振频率越低,声学输出装置3300可以在越宽的频段具有平坦的频率响应曲线。在一些实施例中,减小附加元件3340对声学输出装置3300影响的频率范围以及使得其可以在较宽的频段具有平坦的频率响应曲线,可以通过调整第一传振片33131和/或第二传振片33132的弹性系数、附加元件3340的质量来调整谐振峰对应的谐振频率。在一些实施例中,目标频率范围可以为20Hz~800Hz。优选地,目标频率范围可以为100Hz~600Hz。进一步优选的地,目标频率范围可以为150Hz~500Hz。更为优选地,目标频率范围可以为200Hz~400Hz。
在一些实施例中,附加元件3340与磁路组件3311相对于面板3321振动,可以产生位于目标频率范围内的谐振谷。进一步地,谐振峰和谐振谷的对应的频率越是越近,对声学输出装置3300的整体频段的频率响应曲线的平坦度影响越小,为了使得声学输出装置43300在整体频段的频率响应曲线更为平坦,在一些实施例中,谐振谷对应的频率可以小于谐振峰对应的频率。在一些实施例中,谐振峰对应的频率与 谐振谷对应的频率差值可以不大于300Hz。在一些实施例中,谐振峰对应的频率与谐振谷对应的频率差值可以不大于200Hz。在一些实施例中,谐振峰对应的频率与谐振谷对应的频率差值可以不大于100Hz。谐振峰和谐振谷的差值对声学输出装置3300的频率响应曲线的平坦度也有一定影响,例如,谐振峰和谐振谷的差值越小,声学输出装置3300在整体频段的频率响应曲线的也就越平坦,为了使得声学输出装置3300在整体频段的频率响应曲线更为平坦,在一些实施例中,谐振峰与谐振谷的差值可以在20dB~100dB的范围内。在一些实施例中,谐振峰与谐振谷的差值可以在20dB~60dB的范围内。在一些实施例中,谐振峰与谐振谷的差值可以在20dB~40dB的范围内。
在一些实施例中,支撑件3323的两端与面板3321和背板33221之间可以连接弹性元件,以通过弹性元件密封支撑件3323的两端与面板3321和背板33221之间的空隙。或者,支撑件3323的两端与面板3321和背板33221之间的空隙可以设有填充材料或连接弹性元件,以形成声学输出装置3300的外壳3320。在一些实施例中,填充材料或弹性元件均可以为硅胶、聚氨酯等弹性材料,这样填充材料或连接可以进一步减少面板3321和背板33221到附加元件3340的振动传递,从而进一步减小附加元件的质量对换能装置振动负载质量的影响,从而减小附加元件对声学输出装置3300的灵敏度影响。
在一些实施例中,壳体主体33222还可以为板状结构或杆状结构,壳体主体33222的两端分别与面板3321和背板33221刚性连接,比如,壳体主体33222可以为两个板状结构,两个板状结构的两端分别与面板3321和背板33221刚性连接。
图34是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图。
如图34所示,其中,横坐标为频率(Hz),纵坐标为声学输出装置在不同频率下对应的声压(dB),曲线L341为未设置附加元件3340时声学输出装置3300的频率响应曲线,曲线L342为具有附加元件3340的声学输出装置3300的频率响应曲线。结合曲线L341和L342可知,在10Hz~100Hz的频率范围内,声学输出装置3300产生了谐振峰。在高于谐振峰对应的谐振频率范围内,曲线L341和曲线L342趋近于重合,并且在200Hz~10000Hz的频率范围内具有较为平坦的频率响应曲线。由此可见,声学输出装置3300的灵敏度在高于谐振峰对应的谐振频率范围内可以不受附加元件3340的质量的影响,并且具有较为平坦的频率响应曲线,保证声学输出装置具有较好的声学输出效果。
图35是根据本说明书一些实施例所示的声学输出装置的结构示意图。图35所示的声学输出装置3500与图33所示的声学输出装置3300的区别之处在于:声学输出装置3500中的支撑结构3330可以与支撑件3323刚性连接。
图36是根据本说明书一些实施例所示的声学输出装置的频率响应曲线图。如图36所示,其中,横坐标为频率(Hz),纵坐标为声学输出装置在不同频率下对应的声压(dB),曲线L361为附加元件3340质量为0时声学输出装置3500的频率响应曲线;曲线L362为附加元件3340具有一定质量(质量不为0)时声学输出装置3500的频率响应曲线。结合曲线L361和L362可知,在10Hz~100Hz的频率范围内,声学输出装置3300产生了谐振峰。在高于谐振峰对应的谐振频率范围内,曲线L361和曲线L362趋近于重合,并且在200Hz~10000Hz的频率范围内具有较为平坦的频率响应曲线。由此可见,声学输出装置3500的灵敏度在在高于谐振峰对应的谐振频率范围内可以不受附加元件3340的质量的影响,并且可以具有较为平坦的频率响应曲线,保证声学输出装置具有较好的声学输出效果。在一些实施例中,支撑结构3330还可以与背板33221刚性连接。
图37是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图37所示,声学输出装置3700中的支撑件3323可以为筒状结构,筒状结构可以沿壳体主体33222的周侧围绕设置磁路组件3311的周侧,磁路组件3311的周侧与筒状结构的内表面刚性连接,附加元件3340与筒状结构刚性连接。作为示例性说明,当支撑件3023位于壳体3022的外侧时,磁路组件3311的周侧可以通过壳体主体33222上设置的缺口伸出至壳体3022的外部并与支撑件3323刚性连接。在一些实施例中,支撑件3323也可以位于壳体3322的内侧,磁路组件3311的周侧可以不用穿过壳体主体33222便能与支撑件3323刚性连接。在一些实施例中,支撑件3323的两端与面板3021和背板33221之间可以连接弹性元件,以通过弹性元件密封支撑件3323的两端与面板3321和背板33221之间的空隙。或者,支撑件3323的两端与面板3321和背板33221之间的空隙可以设有填充材料或连接弹性元件,以形成声学输出装置3300的外壳3320。在一些实施例中,填充材料或弹性元件均可以为硅胶、聚氨酯等弹性材料,这样可以进一步减少面板3321和背板33221到附加元件3340的振动传递,从而进一步减小附加元件的质量对换能装置振动负载质量的影响,从而减小附加元件对声学输出装置3300的灵敏度影响。
图38是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图38所示,声学输出装置3800中的支撑件3323可以为板状结构,板状结构设置在壳体主体33222的一侧,支撑件3323的两端分别与面板33222和背板33221通过弹性元件弹性连接,磁路组件3311与板状结构刚性连接,附加元件3340与板状结构刚性连接。本申请实施方式中,弹性元件可以为弹簧、传 振片或其它具有弹性的结构。本申请实施方式中,弹性元件包括位于磁路组件3311两侧的第一传振片33131及第二传振片33132,第一传振片33131与第二传振片33132分别连接磁路组件3311与面板板33222及磁路组件3311与背板33221。作为示例性说明,当板状结构位于壳体3022的外侧时,磁路组件3311朝向壳体主体33222靠近板状结构的一侧可以通过壳体主体33222上设置的缺口伸出至壳体3322的外部并与板状结构刚性连接。在一些实施例中,板状结构也可以位于壳体3322的内侧,磁路组件3311的一侧可以不用穿过壳体主体33222与板状结构连接。在一些实施例中,板状结构也可以位于缺口处,板状结构的两端与壳体主体3322之间通过弹性元件或者填充弹性材料以实现二者之间的弹性连接。需要说明的是,图38中支撑结构3300不限于与面板3321刚性连接,还可以与壳体主体33222或背板33221刚性连接。此外,板状结构的数量也不限于图38中所示出的一个,还可以为两个、三个或者更多数量。
图39是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图39所示,声学输出装置3900和图33所示的声学输出装置3300区别之处在于:声学输出装置3900中的传振片3313仅包括一个传振片(为方便描述,该传振片在图39中仍用传振片3313表示),传振片3313位于磁路组件3311和面板3321之间,并将磁路组件3311与面板3321弹性连接。需要说明的是,图39中支撑结构3300不限于与面板3321刚性连接,还可以与壳体主体33222或背板33221刚性连接。
图40是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图40所示,声学输出装置4000和图33所示的声学输出装置3300区别之处在于:声学输出装置4000中的传振片3313仅包括一个传振片(为方便描述,该传振片在图39中仍用传振片3313表示),传振片3313位于磁路组件3311和背板33221之间,并将磁路组件3311与背板33221弹性连接。
需要说明的是,支撑件为筒状结构或板状结构同样适用于声学输出装置3900、4000中的支撑件3323,具体可以参考图37所示的声学输出装置3700或图38所示的声学输出装置3800,在此不再赘述。此外,图40中支撑结构3300不限于与面板3321刚性连接,还可以与壳体主体33222或背板33221刚性连接。
图41是根据本说明书一些实施例所示的声学输出装置的结构示意图。
如图41所示,声学输出装置4100中的换能装置4110(包括磁路组件4111、线圈4112、传振片4113)、外壳4120(包括面板4121、壳体4122)、支撑结构4130、附加元件4140等结构可以分别与声学输出装置3900中的换能装置400(包括磁路组件411、线圈412、传振片413A)、支撑结构430、附加元件440等结构类似,声学输出装置4100和声学输出装置400的主要区别之处在于:声学输出装置4100中的附加元件4140与壳体4122中与面板4121位置相邻的侧壁(即壳体主体41222)刚性连接,磁路组件4111与壳体主体41222刚性连接。如此设置,可以使得壳体主体41222对磁路组件4111具有较好的支撑作用,避免磁路组件4111被附加元件4140的吸引或排斥而发生翻转变形,影响换能装置4110的振动稳定性。
在一些实施例中,如图41所示,壳体4122可以看作是内部中空且朝向面板4121的一端具有开放式敞口的结构体。进一步地,壳体4122可以包括背板41221(壳体4122上与面板位置相对的侧壁)和壳体主体41222(壳体4122上与面板4121位置相邻的侧壁),面板4121与背板41221可以分别位于壳体主体41222的两端。传振片4113可以位于面板4121和磁路组件412之间,并将磁路组件4111与面板4121弹性连接。
在一些实施例中,如图41所示,面板4121与壳体主体41222的一端之间可以采用弹性元件4450连接。由于传振片4113和弹性元件4150的存在,附加元件4140和磁路组件4111可以相对于面板4221振动产生目标频率范围内的谐振峰。进一步地,传振片4113和弹性元件4150可以减少或避免面板4121将高于谐振峰对应的谐振频率的频率范围内的振动传递到附加元件4140,使得在高于谐振峰对应的谐振频率的频率范围内,附加元件的质量对换能装置振动负载质量不会产生影响,从而保证声学输出装置的灵敏度在高于谐振峰对应的谐振频率的频率范围内不会受到附加元件的影响。需要说明的是,弹性元件为簧片结构、具有弹性的环结构或具有弹性的胶同样适用于声学输出装置4100中的弹性元件4150,具体可参考图4所示的声学输出装置400。
需要说明的是,图41的中支撑结构4100不限于与面板4121刚性连接,还可以与壳体主体41222或背板41221刚性连接。
需要说明的是,图9所示的声学输出装置900中,在壳体922上开设泄压孔9221以降低可以降低弹性元件带动附加元件相对于面板振动产生的谐振峰对应的谐振频率,以拓宽声学输出装置灵敏度不受或较少受到附加元件影响的频率范围的方案,以及声学输出装置1200的将背板与壳体上与面板相邻的侧壁弹性连接以降低高频漏音的方案同样适用于声学输出装置4100。
由于附加元件存在一定质量,会使得整个声学输出装置的质心与换能装置中的磁路组件的驱动力 方向存在一定距离,而导致换能装置中的磁路组件的振动晃动,这样不仅会影响换能装置的振动稳定性,还会增大声学输出装置的漏音。下面将结合图42具体说明附加元件对声学输出装置漏音的影响。
图42是根据本说明书一些实施例所示的声学输出装置的频率响应曲线。
如图42所示,曲线L441为声学输出装置3300的壳体主体33222上设置有附加元件的一侧对应漏音频率响应曲线,曲线L442为声学输出装置3300的壳体主体33222上与设置有附加元件的一侧相背离的一侧处对应的漏音频率响应曲线。漏音频率响应曲线L441和L442可以通过采集声学输出装置3300中壳体主体33222一侧的气导声测得。由曲线L441和L442可知,在500Hz~2000Hz的频率范围内,声学输出装置3300产生漏音谐振峰4411。其中,漏音谐振峰4411是由磁路组件3311在出现振动晃动时所产生的。由于漏音谐振峰4421的存在,会使得声学输出装置3300在工作频段(例如,500Hz~2000Hz内)内产生较大的漏音。因此,在一些实施例中,可以通过调整漏音谐振峰4411的位置,使得漏音谐振峰对应的谐振频率尽可能远离工作频段,来避免声学输出装置在工作频段内具有较大的漏音。在一些实施例中,可以通过调整第一传振片33131和/或第二传振片33132的弹性系数,来调整漏音谐振峰对应的谐振频率。例如,可以通过调传振片的弹性系数,或者调节簧片与其他结构连接点的位置,来减小簧片翻转变形的容易程度现在样品做出来最有效的方法还是调节传振片的弹性系数,进而调整传振片的翻转刚度(翻转变形的难易程度),通过设计X形的传振片,能够比较好的得到较大的翻转刚度,同时尽可能保持传振片的弹性系数(沿振动方向变形)关于如何调整漏音谐振峰对应的谐振频率的描述可以参见图44和图45及其相关描述。
图43是根据本说明书一些实施例所示的声学输出装置的频率响应曲线。图43中的频率响应曲线可以通过采集声学输出装置中面板3321侧的气导声来测得。如图43所示,L451为第一传振片33131和第二传振片33132的弹性系数为K1时声学输出装置3300的频率响应曲线;L452为第一传振片33131和第二传振片33132的弹性系数为K2时声学输出装置3300的频率响应曲线;L453为第一传振片33131和第二传振片33132的弹性系数为K3时声学输出装置3300的频率响应曲线,其中,K1<K2<K3。区域L内的谐振峰为声学输出装置3300中附加元件3340和磁路组件3311相对于面板3321在目标频率范围内产生的谐振峰。结合曲线L451、L452以及L453可知,在高于谐振峰对应的谐振频率范围内,声学输出装置3300具有较为平坦的频率响应曲线,具有较好的声学输出效果。并且随着第一传振片33131和第二传振片33132的弹性系数增大,谐振峰对应的谐振频率增大。为了使得在更宽的频率范围内具有较为平坦的频率响应曲线,在一些实施例中,可以通过调整第一传振片33131、第二传振片33132的弹性系数和或附加元件的质量,以使得谐振峰对应的谐振频率在目标频率范围内。在一些实施中,目标频率范围可以不大于800Hz。优选地,目标频率范围可以不大于700Hz。进一步优选地,目标频率范围可以不大于500Hz。较为优选地,目标频率范围可以不大于300Hz。更为优选地,目标频率范围可以不大于200Hz。
图44是根据本说明书一些实施例所示的声学输出装置的漏音频率响应曲线。图44中的漏音频率响应曲线可以通过采集声学输出装置3300中壳体3322上与附加元件3340相对的一侧的气导声来测得。如图44所示,L461为第一传振片33131和第二传振片33132的弹性系数为K1时声学输出装置3300的漏音频率响应曲线;L462为第一传振片33131和第二传振片33132的弹性系数为K2时声学输出装置3300的漏音频率响应曲线;L463为第一传振片33131和第二传振片33132的弹性系数为K3时声学输出装置3300的漏音频率响应曲线,其中,K1<K2<K3。区域M内的漏音谐振峰为各漏音频率响应曲线上的漏音谐振峰。结合曲线L461、L462以及L463可知,随着第一传振片33131和第二传振片33132的弹性系数增大,漏音谐振峰对应的谐振频率增大。在一些实施例中,可以通过调整第一传振片33131和第二传振片33132的弹性系数使得漏音频响曲线的谐振对应的谐振频率小于声学输出装置频率响应曲线的谐振频率,以使声学输出装置3300中壳体3322上与附加元件3340相对的一侧具有较小的漏音。在一些实施例中,漏音频响曲线的谐振对应的谐振频率可以小于700Hz。优选地,漏音频响曲线的谐振对应的谐振频率可以小于500Hz。进一步优选地,漏音频响曲线的谐振对应的谐振频率可以小于300Hz。更为优选地,漏音频响曲线的谐振对应的谐振频率可以小于200Hz。
图45是根据本说明书一些实施例所示的声学输出装置的漏音频率响应曲线。图45中的漏音频率响应曲线可以通过采集声学输出装置3300中壳体3322上附加元件3340所在的一侧的气导声来测得。
如图45所示,L471为第一传振片33131和第二传振片33132的弹性系数为K1时声学输出装置3300的漏音频率响应曲线;L472为第一传振片33131和第二传振片33132的弹性系数为K2时声学输出装置3300的漏音频率响应曲线;L473为第一传振片33131和第二传振片33132的弹性系数为K3时声学输出装置3300的漏音频率响应曲线,其中,K1<K2<K3。区域N内的漏音谐振峰为各漏音频率响应曲线上的漏音谐振峰。结合曲线L471、L472以及L473可知,随着第一传振片33131和第二传振片33132的弹性系数增大,漏音谐振峰对应的谐振频率增大。在一些实施例中,可以通过调整第一传振片33131和第二传振片33132的弹性系数,使得漏音频响曲线的谐振对应的谐振频率小于声学输出装置频率响应曲线的谐 振频率,以使声学输出装置3300中壳体3322上具有附加元件3340的一侧具有较小的漏音。在一些实施例中,漏音频响曲线的谐振对应的谐振频率可以小于700Hz。优选地,漏音频响曲线的谐振对应的谐振频率可以小于500Hz。进一步优选地,漏音频响曲线的谐振对应的谐振频率可以小于300Hz。更为优选地,漏音频响曲线的谐振对应的谐振频率可以小于200Hz。在一些实施例中,第一传振片33131和第二传振片33132的弹性系数与其结构相关,通过对第一传振片33131和第二传振片33132的结构进行设计,可以使得第一传振片33131和第二传振片33132具有较大的弹性系数,从而使得声学输出装置3300的漏音谐振峰的谐振频率远离工作频段。在一些实施例中,当第一传振片33131和第二传振片33132采用图46所示的传振片4800的结构时,第一传振片33131和第二传振片33132的弹性系数较大,声学输出装置3300可以在较宽的工作频段内具有较小的漏音。下面将结合图46对传振片结构进行详细描述。
图46中(a)至(c)是根据本说明书一些实施例所示的传振片的俯视结构示意图。图47中(a)至(c)是根据本说明书一些实施例所示的传振片的立体结构示意图。
如图46和图47所示,传振片4800可以包括中心区域4810和边缘区域4820以及连接中心区域4810和边缘区域4820的多个支杆4830。当传振片4800用于连接声学输出装置中的磁路组件与外壳(例如,面板或背板)时,传振片4800的中心区域4820可以与磁路组件连接,传振片4800的边缘区域4820可以与外壳连接。作为示例性说明,当声学输出装置3300中的第一传振片33131为传振片4800时,传振片4800的中心区域4810可以与磁路组件3311靠近面板3321的一侧连接,传振片4800的边缘区域4820可以与面板3321连接;当声学输出装置3300中的第二传振片33132为传振片4800时,传振片4800的中心区域4810可以与磁路组件3311靠近背板33221的一侧连接,传振片4800的边缘区域4820可以与背板33221连接。
在一些实施例中,在传振片4800的自然状态下,传振片4800的边缘区域4820与传振片4800的中心区域4810可以不共面。如此设置,能够在声学输出装置中的磁路组件与面板和/或背板连接时产生预紧力,预紧力的存在,可以使得传振片4800在换能装置振动时不会出现弹力为零的情况,这样有利于提高声学输出装置中换能装置振动的稳定性。其中,传振片4800的自然状态可以是指传振片4800装配于声学输出装置的换能装置且换能装置没有输入激励信号而不产生机械振动的情况下的结构状态。需要说明的是,边缘区域4820、传振片4800的中心区域4810以及支杆4830也可以在同一平面内。
在一些实施例中,如图46和图47所示,传振片4800中的支杆4830的数量可以为四个,四个支杆4830可以沿传振片4800的中心区域4810的周侧间隔设置,并且关于中心区域4810的中心线呈对称分布,这样有利于增大传振片4800整体的弹性系数。
为了进一步增大传振片4800整体的弹性系数,在一些实施例中,如图46和图47所示,支杆4830可以包括沿其延伸方向设置的一个或多个迂回弯折结构4831。
在一些实施例中,如图47所示,传振片4800的中心区域4810上可以设有通孔4811,通孔4811可以用于供磁路组件上的凸柱插设,进而通过凸柱与通孔的配合实现中心区域4810与磁路组件的固定连接。
附加元件内部具有金属材质或磁体时,会与换能装置的磁路组件相互吸引,为了减少附加元件对磁路组件的磁吸影响,避免换能装置中磁路组件发生偏置,传振片4800在垂直于振动方向的平面内任意方向(以下简称径向)的刚度可以大于刚度阈值。例如,可以根据磁间隙的宽度以及磁路组件与附加元件(的磁吸力,确定传振片4800径向上的等效刚度大于4.7×10 4N/m。例如,传振片4800径向上的等效刚度可以大于6.4×10 4N/m。通过将具有弹性的传振片4800在垂直于振动方向的平面内长度和宽度方向的刚度进行优化,从而使其抵抗磁路组件与附加元件之间的磁吸力,进而实现在换能装置中的磁路组件中不发生偏置,保证振动时的稳定性。
请参阅图49B,图49B所示为本申请的其它一些实施方式的磁路组件的结构示意图。本申请一些实施方式中,磁路组件49123还可以包括磁体组件491231和导磁罩491232(图中未示出)及至少一个传振片49122,传振片49122可以连接在导磁罩491232和磁体组件491231之间,用于将磁体组件49123弹性支撑于导磁罩491232内。本申请一种实施方式中,换能装置包括的传振片为两个,分别为第一传振片和第二传振片,所述第一传振片和第二传振片沿所述磁体组件振动方向上分别分布在所述磁体组件的两侧,并用于分别弹性支撑所述磁体组件。一些实施方式中,传振片与磁路组件49123可以沿振动方向布置,传振片垂直于振动方向的侧面可以与导磁罩垂直于振动方向的端部连接,以实现磁体组件的固定。在一些实施例中,通过设置特定刚度传振片还可以抵抗磁体组件与导磁罩之间的磁吸力,避免换能装置中磁体组件发生偏置。在一些实施例中,至少一个传振片的径向上的等效刚度可以大于4.7×10 4N/m。例如,换能装置可以只包括至少一个传振片。再例如,换能装置可以只包括至少两个传振片4800,例如,第一传振片和第二传振片。第一传振片和第二传振片中每个传振片的径向上的等效刚度都可以大于4.7×10 4N/m。
在一些实施例中,可以基于传振片4800的径向上的等效刚度要求,确定传振片4800的相关尺寸 数据。在一些实施例中,沿传振片4800的长度方向上,支杆4830的起点和终点之间的距离与支杆4830本身的长度的比值可以在0-1.2范围内。支杆4830的起点和终点之间沿传振片4800的长度方向上的距离指支杆4830与传振片中心区域4810的连接点和支杆4830与传振片边缘区域4820的连接点之间沿所述传振片4800的长度方向的距离。例如,图47的(b)中,沿所述传振片4800的长度方向上,支杆4830的起点S和终点E之间的距离SE与弯曲型支杆4830的总长度的比值可以在0.7-0.85范围内。在一些实施例中,沿传振片4800的宽度方向上,支杆4830的起点和终点之间的距离与支杆4830本身的长度的比值可以在0-0.5范围内。支杆4830的起点和终点之间沿传振片4800的宽度方向上的距离指支杆4830与传振片中心区域4810的连接点和支杆4830与传振片边缘区域4820的连接点之间沿所述传振片4830的宽度方向的距离。例如,图47的(b)所示,沿所述传振片4800的宽度方向上,支杆4830的起点S和终点E之间的距离S’E’与弯曲型支杆4830的总长度的比值可以在0.15-0.35范围内。
在一些实施例中,支杆4830的长度可以在7mm-25mm范围内。在一些实施例中,支杆的沿换能装置轴向的厚度(即传振片的厚度)可以在0.1mm-0.2mm范围内。在一些实施例中,传振片沿换能装置轴向的厚度与所具有的任意一个支杆4830沿换能装置径向平面的宽度的比值范围可以在0.16-0.75范围内。示例性的厚度与宽度的比值范围可以包括:0.2-0.7、0.26-0.65、0.3-0.6、0.36-0.55或0.4-0.5等。在一些实施例中,传振片4800的厚度可以在0.1mm-0.2mm范围内,支杆4830的宽度范围可以在0.25mm-0.5mm范围内。例如,传振片4800的厚度范围可以在0.1mm-0.15mm范围内,支杆4830的宽度范围可以在0.4mm-0.48mm范围内。
需要说明的是,图46和图47所示的传振片4800的结构可以适用于本说明书实施例提供的任何声学输出装置中的传振片,例如,声学输出装置3300中的第一传振片33131和/或第二传振片33132、声学输出装置3900和声学输出装置4000中的传振片3313、声学输出装置400、700中的传振片413A和传振片413B、声学输出装置900中的传振片913A和传振片913B、声学输出装置1200中的传振片1213A和传振片1213B、声学输出装置2000、2200、2400、2500、2600、2700中的传振片2013A和传振片2013B等。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
本说明书实施例描述了一种声学输出装置4900。在一些实施例中,声学输出装置4900可以包括声学输出单元4910和支撑结构4920,声学输出单元4910与支撑结构4920连接。其中,支撑结构4920可以用于支撑声学输出单元4910佩戴至佩戴位。在一些实施例中,佩戴位可以为用户头部上的特定位置。例如,佩戴位可以包括耳部、乳突、颞骨、顶骨、额骨等。再例如,佩戴位可以包括头部的左右两侧且在人体矢状轴上位于用户耳部前侧的位置。在一些实施例中,声学输出单元4910可以包括换能装置,换能装置可以用于将电信号(包含声音信息)转化成机械振动,以使用户可以通过声学输出装置4900听到声音。具体地,声学输出单元4910产生的机械振动可以主要经由用户的头骨等媒介传递(也即骨传导)而形成骨导声,也可以主要经由空气等媒介传递(也即气传导)而形成气导声,或者可以采用骨气结合的方式传导声音。关于声学输出单元4910的更多说明可以参见本说明书的其它部分,例如图49A-图51及其相关描述。
在一些实施例中,支撑结构4920可以呈环状设置,并通过用户的前额和后脑部分绕设于用户的头部。在一些实施例中,支撑结构4920可以为形成弯曲形状的后挂结构,适配于用户的头部后侧。在一些实施例中,支撑结构4920可以为耳挂结构,用于悬挂在用户的耳廓上方的耳挂结构具有适配人耳的弯曲部。在一些实施例中,支撑结构4920可以为镜架结构,镜架结构具有鼻托和两侧的镜腿,可以佩戴于用户面部及耳部。关于支撑结构4920的更多实施方式可以参见图48中的(a)-(c)及其相关描述。
图48中的(a)-(c)是根据本说明书一些实施例所示的声学输出装置4900的佩戴示意图。在一些实施例中,如图48中的(a)所示,支撑结构4920可以呈环状设置,并绕设在用户的耳部上,使声学输出单元4910固定于用户的脸部,并靠近用户的耳道。在一些实施例中,如图48中(b)所示,支撑结构4920可以设置为耳挂及后挂结构,配合以绕设在用户的头部后侧及耳廓,使声学输出单元4910固定于用户的脸部,并靠近用户的耳道。在一些实施例中,如图48中(c)所示,支撑结构4920可以为形成弯曲形状的头梁结构,绕设在用户的头顶部位,使声学输出单元4910固定于用户的脸部,并靠近用户的耳道。
在一些实施例中,声学输出装置4900可以包括至少两个声学输出单元4910。至少两个声学输出单元4910均可以将电信号转化成机械振动,用于使声学输出装置4900实现立体声音效。例如,声学输出装置4900可以包括两个声学输出单元4910。两个声学输出单元4910可以分别设置于用户的左耳侧及右耳侧。在一些对立体声要求并不是特别高的应用场景(例如听力患者助听、主持人直播提词等)下,声学输 出装置4900也可以仅设置一个声学输出单元4910。
当声学输出装置4900包括两个声学输出单元4910时,作为示例,支撑结构4920可以包括两个耳挂组件和一个后挂组件,后挂组件的两端分别与对应的一个耳挂组件的一端连接,每一个耳挂组件背离后挂组件的另一端分别与对应的一个声学输出单元4910连接。具体地,后挂组件可以设置呈弯曲状,以用于绕设在用户的头部后侧,耳挂组件也可以设置呈弯曲状,以用于挂设在用户的耳部和头部之间,进而便于实现声学输出装置4900的佩戴需求。如此,以在声学输出装置4900处于佩戴状态时,两个声学输出单元4910分别位于用户的头部的左侧和右侧,两个声学输出单元4910也在支撑结构4920的配合作用下压持用户的头部,用户也能够听到声学输出装置4900输出的声音。
在一些实施例中,本说明书中的声学输出单元4910可以为骨传导扬声器和/或气传导扬声器。在一些实施例中,声学输出装置4900可以为具有音频功能的电子设备,例如,声学输出装置4900可以为音乐耳机、助听耳机、骨导耳机、助听器、音频眼镜、智能头盔、VR设备、AR设备等电子设备。
图49A是根据本说明书一些实施例所示的声学输出单元4910的结构示意图。如图49A所示,声学输出单元4910可以包括壳体4911、换能装置4912和面板4913(也被称为振动板)。壳体4911内可以形成容置腔,用于容纳换能装置4912。换能装置4912可以设置在壳体4911的容置腔内,面板4913可以与换能装置4912连接,并用于将换能装置4912产生的机械振动传递至用户。支撑结构4920可以与壳体4911的外侧连接。在一些实施例中,换能装置4912可以将电信号转化为机械振动,面板4913可以在佩戴状态下与用户的皮肤接触,换能装置4912产生的机械振动传递至面板,并通过用户的皮肤、骨骼和/或组织作用于用户的听神经,从而形成骨导声。需要知道的是,壳体4911可以为矩形、圆形、菱形或多边形等或任意不规则形状及其组合,并不限制于图中所示的形状。
在一些实施例中,声学输出单元4910还可以包括减振片4914。换能装置4912可以通过减振片4914悬挂在壳体4911的容置腔内。面板4913可以不与壳体4911接触,此时,因减振片4914的存在,换能装置4912产生的机械振动可以较少地、甚至不传递至壳体4911,从而在一定程度上避免壳体4911带动声学输出单元4910外部的空气振动,这样有利于降低声学输出单元4910的漏音。在一些实施例中,壳体4911可以具有敞开的开口端,面板4913设置于壳体4911外部并与开口端相对,也可以说是,面板4913的边缘与壳体4911的开口端断开,面板4913与换能装置4912之间设置有连接杆件49131,连接杆件49131一端与换能装置4912连接,另一端穿出壳体4911的开口端连接面板4913,以使振动的面板4913及换能装置4912不与壳体4911接触,从而降低声学输出单元4910的漏音。在一些实施例中,减振片4914可以连接于连接杆件49131与壳体4911之间,以实现面板4913及换能装置4912的悬挂。在一些实施例中,壳体4911上还可以开设至少一个用于连通壳体4911的容置腔与声学输出单元4910外部的通孔(又称“降漏音孔”),以降低声学输出单元4910的漏音。
在一些实施例中,声学输出单元4910还可以包括与面板4913连接的贴脸套(图中未示出),贴脸套用于与用户的皮肤接触,也即面板4913可以通过贴脸套与用户的皮肤接触。其中,贴脸套的邵氏硬度可以小于面板4913的邵氏硬度,也即贴脸套可以比面板4913更加柔软。例如:贴脸套的材质可以为诸如硅胶的软质材料,面板4913的材质为诸如聚碳酸酯、玻璃纤维增强塑料的硬质材料。如此,可以改善声学输出单元4910的佩戴舒适度,并使得声学输出单元4910与用户的皮肤更加贴合,进而改善声学输出单元4910的音质。在一些实施例中,贴脸套可以与面板4913可拆卸连接,以便于用户更换。例如,贴脸套可以套设在面板4913上。
参见图49A,换能装置4912可以包括支架49121、传振片49122、磁路组件49123和线圈49124。在一些实施例中,面板4913可以与支架49121连接。例如,如图49A所示,支架49121可以与连接杆件49131远离面板4913的一端连接。支架49121可以通过传振片49122与磁路组件49123连接,以将磁路组件49123悬挂在壳体4911的容置腔内。在一些实施例中,减振片4914可以连接支架49121和壳体4911,以将换能装置4912悬挂在壳体4911的容置腔内。线圈49124可以沿换能装置4912的振动方向伸入磁路组件49123的磁间隙内。
在一些实施例中,磁路组件49123可以包括磁体组件491231和导磁罩491232。导磁罩491232可以套设于线圈49124,磁体组件491231可以设置在线圈49124内,导磁罩491232与磁体组件491231在垂直于振动方向的方向上间隔设置,导磁罩491232的内侧壁与磁体组件491231的外侧之间形成前述磁间隙。在一些实施例中,线圈49124可以环绕一平行于换能装置4912的振动方向的轴线套设在磁体组件491231的外侧。在一些实施例中,磁路组件49123的导磁罩491232环绕平行于换能装置4912的振动方向的轴线套设在线圈49124外侧,也即导磁罩491232与磁体组件491231在垂直于换能装置4912的振动方向的方向上间隔设置。具体地,线圈49124可以与导磁罩491232连接。本申请一些实施例中,线圈49124贴合于导磁罩491232的内壁。在一些实施例中,传振片49122可以连接在所述导磁罩491232和磁体组件491231之间,用于弹性支撑所述磁体组件491231。例如,传振片49122与磁路组件49123可以沿振动方向布置, 传振片49122垂直于振动方向的侧面可以与导磁罩491232垂直于振动方向的端部连接,以实现磁路组件49123的固定。可以理解的是,本申请的其它实施方式中,传振片49122的周缘也可以连接于导磁罩491232的内壁或其它位置,以实现磁路组件49123相对于导磁罩491232的固定。
在一些实施例中,线圈49124可以包括第一线圈491241和第二线圈491242。在一些实施例中,第一线圈491241及第二线圈49124在换能装置4912的振动方向上间隔设置。第一线圈491241可以沿振动方向从靠近面板4913的一侧伸入磁路组件49123的磁间隙内,第二线圈491242可以沿振动方向从远离面板4913的一侧伸入磁路组件49123的磁间隙内。在一些实施例中,为了简化装配工艺,第一线圈491241和第二线圈491242可以从靠近面板4913的一侧一起伸入磁路组件49123的磁间隙中。在一些实施例中,换能装置4912还可以包括保持部,所述保持部用于第一线圈491241和第二线圈491242的保持定型。例如,第一线圈491241和第二线圈491242可以为一体式的结构。具体的,第一线圈491241和第二线圈491242可以绕设在定型材料上,再利用保持部(例如,高温胶带等保持材料)粘在第一线圈491241和第二线圈491242的外部,从而使第一线圈491241和第二线圈491242形成一体式的结构。固定在保持部上的第一线圈491241和第二线圈491242从面板4913的同一侧深入磁路组件49123的磁间隙中,因此简化了线圈49124的装配工艺。一些实施例中,两个线圈为同一条金属线缠绕形成,或者两个线圈的一段相连接,从而使得两个线圈的出入线只有两条引线,能够方便走线并方便后续与其它结构的电连接。
在一些实施例中,传振片49122(也被称为弹性支撑件)可以包括第一传振片49125和第二传振片49126。第一传振片49125可以包括中心区域491252和沿其周侧分布边缘区域491253以及连接二者的支杆491251。第二传振片49126可以包括中心区域491262和沿其周侧分布边缘区域491263以及连接二者的支杆。在换能装置4912的振动方向上,第一传振片49125和第二传振片49126可以分别从磁体组件491231的相背两侧弹性支撑磁体组件491231。如此,本说明书实施例中磁体组件491231在换能装置4912的振动方向上的相背两侧被弹性支撑,使之无明显晃动等异常振动,这样有利于增加换能装置4912振动的稳定性。
作为示例,如图49A所示,在振动方向上,第一传振片49125相背两侧的边缘区域491253分别与支架49121靠近磁路组件49123的一侧、导磁罩491232靠近支架49121的一侧连接。第二传振片49126的边缘区域491263与导磁罩491232远离支架49121的一侧连接。在一些实施例中,导磁罩491232可以为两端敞口的筒状结构(例如,如图49A-图49B所示)、一端敞口的碗状结构(例如,如图54D所示)等。在一些实施例中,在导磁罩491232上打孔(例如,在筒状结构的导磁罩侧壁打孔(例如,如图54C所示)、在碗状结构的导磁罩的底部和侧面分别或都打孔(例如,如图54D所示)等)可以降低磁路组件49123的音腔效应,从而降低声学输出装置4900的漏音。在一些实施例中,导磁罩491232可以为封闭结构,使得磁路组件49123中产生的声音不外泄。图49B是根据本说明书一些实施例所示的导磁罩491232的结构示意图。如图49B所示,沿换能装置的振动方向的两端可以通过盖板491232-1和盖板491232-2将两端敞口的筒状结构封闭,以形成封闭的导磁罩491232。应当理解的是,盖板仅为示例,还可以通过其他方式(例如,盖膜等)将两端敞口的筒状结构沿振动方向的两端封闭,以形成封闭的导磁罩491232。在其他一些诸如对磁体组件491231产生的磁场的集中度要求不是很高的实施方式中,导磁罩491232也可以替换成诸如塑胶支架的非磁性件。基于此,第一传振片49125的边缘区域和第二传振片49126的边缘区域可以分别与一塑胶支架的两端连接。
在一些实施例中,磁体组件491231可以包括磁体491233和导磁板。在一些实施例中,磁体491233和导磁板沿换能装置4912的振动方向上设置。在一些实施例中,导磁板可以设置在换能装置4912的振动方向上位于所述磁体491233的一侧或两侧。在一些实施例中,导磁板可以包括在换能装置4912的振动方向上位于磁体491233的相背两侧的第一导磁板491234和第二导磁板491235。第一传振片49125可以从第一导磁板491234背离第二导磁板491235的一侧支撑磁体组件491231,第二传振片49126可以从第二导磁板491235背离第一导磁板491234的一侧支撑磁体组件491231。例如,第一传振片49125的中心区域491252与第一导磁板491234背离第二导磁板491235的一侧连接,第二传振片49126的中心区域491262与第二导磁板491235背离第一导磁板491234的一侧连接。在一些实施例中,导磁板(例如,第一导磁板491234和/或第二导磁板491235)远离磁体491233的边角可以为倒角。例如,第一导磁板491234和第二导磁板491235相背两侧的边角(即远离磁体491233的边角)可以进行倒角处理,以调整磁路组件49123形成的磁场的分布情况,使磁场更集中。在一些实施例中,在换能装置4912的振动方向上,第一线圈491241的半高处与第一导磁板491234与振动方向平行的边线的半厚处可以等高,第二线圈491242的半高处与第二导磁板491235与振动方向平行的边线的半厚处可以等高,这样磁场可以集中分布在第一导磁板491234和/或第二导磁板491235上除了倒角部分以外的矩形部分。图49C是根据本说明书一些实施例所示的示例性第一导磁板491234与第一线圈491241的位置示意图。如图49C所示,沿换能装置4912的振动方向上,第一线圈491241的半高处H1与第一导磁板491234与振动方向平行的边线491234-1的半厚处H2等高, 均在等高线L上。在一些实施例中,为了简化导磁板(例如,第一导磁板491234和/或第二导磁板491235)的制作,导磁板(例如,第一导磁板491234和/或第二导磁板491235)远离磁体491233的边角可以为直角。例如,第一导磁板491234和第二导磁板491235相背两侧的边角(即远离磁体491233的边角)可以不进行倒角处理。在这种情况下,沿换能装置4912的振动方向上,第一线圈491241的半高处与第一导磁板491234的半厚处可以等高,第二线圈491242的半高处与第二导磁板491235的半厚处可以等高,这样磁场可以集中分布在第一导磁板491234和/或第二导磁板491235上。相对于进行倒角处理的第一导磁板491234和第二导磁板491235,不进行倒角处理的第一导磁板491234和第二导磁板491235的厚度可以更小,以达到整个换能装置4912减重及减小体积的目的。
在一些实施例中,导磁罩491232可以与支架49121连接,支架49121则可以通过减振片4914与壳体4911连接,以将换能装置4912悬挂在壳体4911的容置腔内。此时,如图49A所示,第一传振片49125的边缘区域491253沿垂直于振动方向的两端部可以与支架49121和导磁罩491232连接,第二传振片49126的边缘区域491263沿垂直于振动方向的两端部可以与导磁罩491232连接,面板4913可以与支架49121连接,并与壳体4911的开口端断开。
在一些实施例中,如果减振片4914的刚度太小,则磁路组件49123难以被减振片4914稳定地悬挂在壳体4911内,这样容易导致换能装置4912振动时的稳定性较差;反之,如果减振片4914的刚度太大,则换能装置4912的振动易于经由减振片4914传递至壳体4911,这样容易导致声学输出单元4910的漏音过大。在一些实施例中,为了使换能装置4912振动时的稳定性良好且减少声学输出单元4910的漏音,减振片4914的刚度与第一传振片49125(或第二传振片49126)的刚度之间的比值可以在0.1至5范围内。关于传振片(例如,第一传振片49125、第二传振片49126)的具体结构可以参考本申请说明书其它地方内容,例如,图46和图47及其相关描述。
图50是根据本说明书一些实施例所示的声学输出单元4910的结构示意图。参见图50,该实施例声学输出单元4910与图49A所示实施例基本相同,其中的主要区别在于:本实施例中,导磁罩491232设置成与壳体4911或面板4913刚性连接,即本实施例中可以不存在减振片4914。并且,本实施例中,导磁罩491232贴合于壳体4911的内壁,充分利用壳体4911的内部空间,有利于实现声学输出单元4910的小型化。可以理解的是,本申请的其它实施方式中,导磁找1232也可以通过其它的固定结构实现与壳体4911或面板4913的刚性连接。在一些实施例中,第一传振片49125和第二传振片49126中任意一者的边缘区域(例如,边缘区域491253或边缘区域491263)可以通过卡接、胶接等组装方式中的一种或其组合与壳体4911的开口端连接,并且面板4913连接在该壳体4911的开口端,形成闭合腔体。在一些实施例中,第一传振片49125和第二传振片49126中任意一者靠近面板4913的侧面与面板4913连接,并且面板4913连接在该壳体4911的开口端。在一些实施例中,面板4913可以与壳体4911为相同材质,并一体成型。在一些实施例中,面板4913可以与壳体4911可以为不同材质,并通过卡接、胶接等组装方式中的一种或其组合等方式连接。
在一些实施例中,声学输出单元4910还可以包括附加元件,附加元件设置于壳体4911的容置腔内或者贴合在壳体4911的外侧。在一些实施例中,附加元件可以包括振动敏感元件和非振动敏感元件。仅作为示例性说明,振动敏感元件可以包括气导扬声器、加速度传感器等。非振动敏感元件可以包括电池、电路板等。其中,电池可以用于声学输出单元4910的供能,以使声学输出单元4910能够运行。电路板可以集成有信号处理电路,信号处理电路用于对电信号进行信号处理。在一些实施例中,信号处理可以包括调频处理、调幅处理、滤波处理、降噪处理等。气导扬声器可以用于将电信号转化为振动信号(声波),经空气传导至听神经,被用户感知。加速度传感器可以用于测定面板4913的振动加速度。关于气导扬声器及加速度传感器设置的相关说明可以参见下文,例如,可以参见图51-图56的描述。
在图49A和图50示出的各种实施例中,声学输出单元4910可以为骨传导扬声器。以下将结合图4-图56等说明声学输出装置4900可以实施为骨气传导扬声器或骨气传导耳机的各种实施例。
图51是根据本说明书一些实施例所示的声学输出单元4910的结构示意图。图51所示的声学输出单元4910与图49A所示的声学输出单元4910基本相同,其中的主要区别在于:声学输出单元4910的附加元件包括气导扬声器,气导扬声器设置于壳体4911的容置腔内。如图51所示,声学输出单元4910包括换能装置4912和收容换能装置4912的壳体4911,换能装置4912包括磁路组件49123(包括导磁罩491232和磁体组件491231)、线圈49124(包括第一线圈491241和第二线圈491242)、传振片49122(包括第一传振片49125和第二传振片49126)。线圈49124设置在磁路组件49123中,以使磁路组件49123的磁场穿过线圈49124。第一传振片49125和第二传振片49126弹性支撑磁体组件491231。气导扬声器包括连接在磁体组件491231与壳体4911之间的振膜4915,振膜4915将壳体4911的内部空间(也即是上述容置腔)分隔为靠近皮肤接触区域(例如,面板4913)的前腔49111和远离前述皮肤接触区域的后腔49112。换言之,当用户佩戴声学输出单元4910时,前腔49111相较于后腔49112可以更靠近用户。在一些实施 例中,壳体4911设有与后腔49112连通的出声孔49113,振膜4915在换能装置4912与壳体4911相对运动的过程中能够产生经出声孔49113向人耳传输的气导声。如此,后腔49112中产生的声音能够通过出声孔49113传出,并随即通过空气作用于用户的鼓膜,使得用户还能够通过声学输出单元4910听到气导声。
在一些实施例中,气导扬声器的振膜4915连接在磁体组件491231和换能装置4912的壳体4911之间,所述振膜4915的振动方向与所述换能装置4912的振动方向平行。参阅图51,当换能装置4912使得皮肤接触区域朝向靠近用户的脸部的方向运动时,可以简单地视作骨导声增强。与此同时,壳体4911与皮肤接触区域对应的部分随之朝向靠近用户的脸部的方向运动,磁体组件491231则因作用力与反作用力的关系而朝向背离用户的脸部的方向运动,使得后腔49112中的空气受到挤压,对应于空气压强的增加,其结果是通过出声孔49113传出的声音增强,可以简单地视作气导声增强。因此,声学输出单元4910的骨导声和气导声可以同时增强,相应地,当骨导声减弱时,气导声也减弱。基于此,声学输出单元4910产生的骨导声和气导声具有相位相同的特点。进一步地,如果前腔49111为封闭腔,则由于前腔49111与后腔49112大体被振膜4915及换能装置4912等结构件分隔开,使得前腔49111中空气压强的变化规律恰好与后腔49112中空气压强的变化规律相反。在一些实施例中,壳体4911还可以设有与前腔49111连通的泄压孔或是将前腔49111设置成敞口,以使得前腔49111能够与外界环境连通,也即是空气能够自由地进出前腔49111。如此,后腔49112中空气压强的变化能够尽可能地不被前腔49111阻滞,这样可以有效地改善声学输出单元4910产生的气导声的声学表现力。在一些实施例中,前腔49111设置的泄压孔可以与后腔49112设置的出声孔49113彼此错开,也即是两者不相邻。例如,泄压孔设置于壳体4911的一侧,出声孔49113设置于壳体4911相对泄压孔的另一侧,以尽可能地避免两者因相位相反而出现消音现象。
在一些实施例中,为避免气导扬声器受换能装置4912振动的影响而谐振产生漏音峰,可以使气导扬声器的气导振动方向与换能装置4912的振动方向(即骨导振动方向)不同,以防止在同一方向上的相互影响。图5是根据本说明书一些实施例所示的声学输出单元4910的结构示意图。如图5所示,壳体4911的侧壁中设置气导扬声器4916。气导扬声器4916与换能装置4912连接,声学输出单元4910中的换能装置4912和壳体4911形成骨导扬声器,该骨导扬声器与气导扬声器4916结合形成一种骨气传导扬声器。在一些实施例中,气导扬声器4916的气导振动方向与换能装置4912的振动方向(即骨导振动方向)不同。在一些实施例中,换能装置4912的振动方向与气导扬声器4916的气导振动方向可以近似垂直设置。例如,换能装置4912的振动方向可以与气导扬声器4916的振膜的振动方向近似垂直设置,以减少气导扬声器的漏音。本说明书中所述的“近似垂直”指相应两部分的夹角在90°±20°范围内。例如,换能装置4912的振动方向与气导扬声器4916的气导振动方向(或气导扬声器4916的振膜)的夹角在90°±20°范围内。例如,换能装置4912的振动方向可以与气导扬声器4916的振膜垂直设置。在一些实施例中,骨导扬声器与气导扬声器4916之间的距离可以大于距离阈值,从而避免骨导扬声器与气导扬声器4916的电磁组件之间产生电磁场而影响骨导扬声器与气导扬声器4916的振动输出。本说明书中所述的“骨导扬声器与气导扬声器4916之间的距离”指骨导扬声器的磁性组件与气导扬声器4916的磁性组件之间的最小距离。图52B是根据本申请一些实施例所示的骨导扬声器与气导扬声器4916之间不同距离对线圈的磁场影响的对比图。如图52B所示,当如图52A所示的气导扬声器4916向右侧充磁,换能装置4912中的磁体组件491231向上充磁,导致换能装置4912中位于上方的线圈1处的平均磁场强度增加,位于下方的线圈2处的平均磁场强度降低。随着骨导扬声器的换能装置4912与气导扬声器4916之间距离的增加,线圈1和线圈2趋于侧面无磁铁的情况。因此,骨导扬声器的换能装置4912与气导扬声器4916之间距离越大,对于换能装置4912中线圈的磁场影响越小。在一些实施例中,为了降低骨导扬声器与气导扬声器4916的电磁组件之间产生电磁场对线圈中磁场的影响,骨导扬声器与气导扬声器4916之间的距离可以大于0.3mm。例如,骨导扬声器与气导扬声器4916之间的距离可以大于0.4mm。
在一些实施例中,为避免加速度传感器在测定面板4913的加速度时受换能装置4912振动的影响,可以使换能装置4912的振动方向与加速度传感器的振动敏感端近似垂直。
需要说明的是,当附加元件为气导扬声器或加速度传感器等振动敏感元件时,振动敏感元件与所述换能装置4912的振动方向近似垂直,以避免振动敏感元件受换能装置振动的影响。本说明书中所述的“振动敏感元件与所述换能装置4912的振动方向近似垂直”指当振动敏感元件为气导扬声器时,换能装置4912的振动方向与气导扬声器的振膜的振动方向近似垂直;当振动敏感元件为加速度传感器时,换能装置4912的振动方向与加速度传感器的振动敏感端近似垂直。当附加元件为电池或电路板等非振动敏感元件时,电池或电路板可以放置在壳体4911内的任意位置,以实现声学输出装置4900的集成化设计。
可以理解的是,一些实施例中,附加元件可以包括振动敏感元件及非振动敏感元件,其中,振动敏感元件可以与换能装置4912的振动方向近似垂直。例如,一些实施例中,附加元件包括对于振动敏感的加速度传感器以及非振动敏感的电路板,加速度传感器设置在电路板上,并收容于声学输出单元4910的壳体内,以实现声学输出设备的集成化。此时,加速度传感器可以与换能装置4912的振动方向近似垂直。
图53是根据本说明书一些实施例所示的换能装置4912的结构示意图。图54A是根据本说明书一些实施例所示的换能装置4912的爆炸图。图53及图54A示出的换能装置4912可以用于图49A-图52A所示的任一声学输出单元4910。如图53及图54A所示,换能装置4912可以包括传振片49122、磁路组件49123和线圈49124。其中,磁路组件49123可以包括磁体组件491231和导磁罩491232,磁体组件491231可以包括磁体491233,以及在换能装置4912的振动方向上位于磁体491233的相背两侧的第一导磁板491234和第二导磁板491235。在一些实施例中,导磁罩491232可以绕轴线设置于磁体组件491231的外侧。线圈49124可以在所述磁体组件491231的磁场范围内。在一些实施例中,线圈49124可以沿换能装置4912的振动方向伸入导磁罩491232与磁体组件491231之间形成的磁间隙内,导磁罩491232套设在线圈49124的外侧。在一些实施例中,导磁罩491232的内壁可以与线圈49124的外壁贴合。在一些实施例中,传振片49122可以包括第一传振片49125和第二传振片49126。第一传振片49125从第一导磁板491234背离第二导磁板491235的一侧弹性支撑磁体组件491231,第二传振片49126从第二导磁板491235背离第一导磁板491234的一侧弹性支撑磁体组件491231。例如,第一传振片49125的边缘区域491253与导磁罩491232的沿所述换能装置4912的振动方向的一端连接,第二传振片49126的边缘区域491263与导磁罩491232沿所述换能装置4912的振动方向的另一端连接。
在一些实施例中,为了方便线圈49124引线的装配,使线圈49124的入线和出线位于导磁罩491232的同一位置,线圈49124沿换能装置4912的径向的线圈数可以为偶数。例如,线圈的径向圈数为2、4、6、8等。其中,如图53所示,换能装置4912的径向为垂直于换能装置4912轴线(或换能装置4912的振动方向)的方向。
在一些实施例中,线圈49124可以包括第一线圈491241和第二线圈491242。在一些实施例中,第一线圈491241和第二线圈491242可以沿所述换能装置4912的振动方向排布。第一线圈491241和第二线圈491242串联或并联连接。其中,串联或并联的第一线圈491241和第二线圈491242,每个线圈的入线位置和该线圈的出线位置均位于导磁罩491232的同一位置,以方便第一线圈491241和第二线圈491242的引线的装配。第一线圈491241的入线位置和第一线圈491241的出线位置可以均位于导磁罩491232的同一位置,第二线圈491242的入线位置和第二线圈491242的出线位置可以均位于导磁罩491232的同一位置。例如,第一线圈491241的入线位置、第一线圈491241的出线位置、第二线圈491242的入线位置和第二线圈491242的出线位置可以均位于导磁罩491232的中间位置(例如,沿与换能装置4912的振动方向垂直的方向上,所述导磁罩491232的中间)。在一些实施例中,第一线圈491241和第二线圈491242的绕线方向可以相反或第一线圈491241和第二线圈491242中电流的方向可以相反,换能装置4912在双线圈(即线圈49124包括第一线圈491241和第二线圈491242)的驱动下相对振动,相对于单音圈可以增加换能装置4912的振动大小。在一些实施例中,通过采用双线圈的构造,可实现更低的高频阻抗。图54B是根据本申请一些实施例所示的单音圈和双音圈结构的换能装置4912的阻抗对比图。如图54B所示,相对于单音圈的结构,双音圈的高频阻抗更低。
在一些实施例中,太小的阻抗造成相同电池供电电压下电流的提高,一方面更耗电,同样电池容量下续航下降;另一方面如果电池无法输出提高的电流,则会发生削顶失真。太大的阻抗,造成相同电池供电电压下电流降低,灵敏度降低,表现为音量减小。因此,为了平衡电池续航、失真、灵敏度和音量等,线圈49124的整体直流阻抗可以在6Ω-10Ω范围内。在一些实施例中,对于换能装置4912中的第一线圈491241和第二线圈491242,可以根据以下需求进行设计:
首先,为了保证由第一线圈491241和第二线圈491242构成的线圈49124的整体直流阻抗在6Ω-10Ω范围内,单个线圈(第一线圈491241和第二线圈491242)的直流阻抗的范围可以根据不同的连接方式(串联或并联)而不同。例如,为了保证线圈49124的整体直流阻抗为8Ω,双线圈串联时,其中单个线圈(第一线圈491241和第二线圈491242)的直流阻抗为4Ω,双线圈并联时,其中单个线圈(第一线圈491241和第二线圈491242)的直流阻抗为16Ω。
其次,为了尽可能降低声学输出单元4910的整机质量,通过减小导磁罩491232的体积进而减小导磁罩491232的质量,可以将导磁罩491232的内壁与所述线圈49124(包括第一线圈491241和第二线圈491242)的外壁贴合,在满足第一线圈491241和第二线圈491242之间沿换能装置4912振动方向的间距在1.5mm-2mm范围内的前提下,可以将线圈49124(第一线圈491241和第二线圈491242)的形状做成“细长型”,即增加线圈49124的轴向高度,减小线圈49124的径向宽度,此时导磁罩491232的内径也随之减小,导磁罩491232的厚度不变的情况下导磁罩491232的外径同步减小,使得导磁罩491232的质量和声学输出单元4910的整机质量也可以相应地减小。在一些实施例中,通过设计线圈49124(包括第一线圈491241和第二线圈491242)的导线直径、径向圈数、轴线圈数等参数,可以将线圈49124(第一线圈491241和第二线圈491242)的形状做成“细长型”,以满足上述需求。在一些实施例中,为了使线圈49124(第一线圈491241和第二线圈491242)的形状为“细长型”,第一线圈或第二线圈的轴向高度与径向宽 度的比值可以不小于3。例如,第一线圈或第二线圈的轴向高度与径向宽度的比值可以不小于3.5。
再其次,由于换能装置4912的轴向高度主要由内部的磁体组件491231的尺寸限定,因此为了满足换能装置4912的尺寸要求(例如,当声学输出装置4900为耳机时,为了满足耳机中的声学输出单元4910的高度在小于5.7mm的范围内),可以将单个线圈(第一线圈491241和/或第二线圈491242)的轴向高度设定在小于2.85mm的范围内。例如,单个线圈(第一线圈491241和/或第二线圈491242)的轴向高度可以在2mm左右。
为了满足上述需求,在一些实施例中,第一线圈491241和第二线圈491242可以串联连接。为了使线圈49124的整体直流阻抗在6Ω-10Ω范围内,第一线圈491241和/或第二线圈491242的直流阻抗可以在4Ω±1Ω范围内。例如,为了满足线圈49124的整体直流阻抗在7Ω-9Ω范围内,第一线圈491241和/或第二线圈491242的直流阻抗可以在3.5Ω-4.5Ω范围内。再例如,为了满足线圈49124的整体直流阻抗在8Ω±0.8Ω范围内,第一线圈491241和/或第二线圈491242的直流阻抗可以在4Ω±0.4Ω范围内。在一些实施例中,第一线圈491241和第二线圈491242中导线的直径可以在0.11mm-0.13mm范围内。
为了满足上述需求,在一些实施例中,第一线圈491241和/或第二线圈491242可以满足以下特征之一:导线直径为0.11mm,径向圈数为2至6圈,轴向层数为8至20层;导线直径为0.12mm,径向圈数为2至6圈,轴向层数为9至20层;导线直径为0.13mm,径向圈数为2至6圈,轴向层数为10至22层。例如,第一线圈491241和/或第二线圈491242的导线直径可以为0.11mm,径向圈数可以为3至5圈,轴向层数可以为12至20层。再例如,第一线圈491241和/或第二线圈491242的导线直径可以为0.12mm,径向圈数可以为3至5圈,轴向层数可以为14至20层。再例如,第一线圈491241和/或第二线圈491242的导线直径可以为0.13mm,径向圈数可以为3至4圈,轴向层数可以为15至22层。
在一些实施例中,串联的单个线圈(第一线圈491241和/或第二线圈491242)的线径、径向圈数、轴向层数与直流阻抗的关系如表1所示。
表1
线径mm 径向圈数 轴向层数 直流阻抗Ω
0.11 4 12 4.00
0.11 4 13 4.33
0.11 5 11 3.66
0.12 4 14 3.93
0.12 4 15 4.21
0.13 4 17 4.08
0.13 4 18 4.32
0.13 4 16 3.84
根据表1,为了使单个线圈(第一线圈491241或第二线圈491242)的直流阻抗在4Ω±1Ω范围内,同时径向的线圈数为偶数,示例性的第一线圈491241和/或第二线圈491242的导线直径可以为0.11mm,径向圈数可以为4圈,轴向层数可以为12层。此时,第一线圈491241和/或第二线圈491242的直流阻抗为4Ω。再例如,导线直径可以为0.12mm,径向圈数可以为4圈,轴向层数可以为14层。此时,第一线圈491241和/或第二线圈491242的直流阻抗为3.93Ω。再例如,导线直径可以为0.12mm,径向圈数可以为4圈,轴向层数可以为15层。此时,第一线圈491241和/或第二线圈491242的直流阻抗为4Ω。再例如,导线直径可以为0.13mm,径向圈数可以为4圈,轴向层数可以为18层。此时,第一线圈491241和/或第二线圈491242的直流阻抗为4.08Ω。
在一些实施例中,第一线圈491241和第二线圈491242可以并联连接,为保证线圈49124的整体直流阻抗在6Ω-10Ω范围内,第一线圈491241和/或第二线圈491242的直流阻抗各自在12Ω-20Ω范围内。例如,为了满足线圈49124的整体直流阻抗在8Ω±0.8Ω范围内,第一线圈491241和/或第二线圈491242的直流阻抗可以在16Ω±1.6Ω范围内。在一些实施例中,第一线圈491241和第二线圈491242中导线的直径可以在0.07mm-0.08mm范围内。
为了满足上述需求,在一些实施例中,第一线圈491241和/或第二线圈491242的径向圈数可以为4至8圈,轴向层数可以为16至22层。例如,第一线圈491241和/或第二线圈491242的径向圈数可以为4至6圈,轴向层数可以为17至20层。
在一些实施例中,为了使单个线圈(第一线圈491241或第二线圈491242)的直流阻抗在16Ω±1.6Ω范围内,同时径向的线圈数为偶数,示例性的并联的单个线圈(第一线圈491241和/或第二线圈 491242)的线径、径向圈数、轴向层数与直流阻抗的如表2所示。例如,并联的单个线圈(第一线圈491241和/或第二线圈491242)的线径可以为0.08mm,径向圈数可以为6,轴向层数可以为17,对应的直流阻抗为16.16Ω。再例如,并联的单个线圈(第一线圈491241和/或第二线圈491242)的线径可以为0.07mm,径向圈数可以为4,轴向层数可以为20,对应的直流阻抗为16.27Ω。
表2
线径mm 径向圈数 轴向层数 直流阻抗Ω
0.08 6 17 16.16
0.07 4 20 16.27
在一些实施例中,如图51或图53所示,线圈49124绕平行于振动方向的轴线套设在磁体组件491231的外侧,导磁罩491232绕轴线套设在线圈49124的外侧,线圈49124与磁体组件491231之间具有磁间隙A1。其中,磁间隙A1指线圈49124的内壁与磁体组件491231中磁体491233的外壁之间形成的间隙。太大的磁间隙A1会降低磁场强度,太小的磁间隙A1则加工工艺较难实现。因此,在一些实施例中,为了兼顾磁场强度和加工工艺的实现,磁间隙A1沿径向的宽度可以在0.25mm-0.35mm范围内。例如,磁间隙A1可以在0.27mm-0.33mm范围内。再例如,磁间隙A1可以在0.29mm-0.31mm范围内。再例如,线圈49124与磁体组件491231之间的磁间隙A1可以为0.3mm。在一些实施例中,可以在满足磁间隙A1的宽度要求前提下,选定合适大小的磁体491233后,再设计传振片(例如第一传振片49125和第二传振片49126)的径向弹性,以获得抵抗磁体491233吸力需要满足的条件。
在一些实施例中,为了避免导磁罩491232因为磁饱和而不利于磁场强度的提升,导磁罩491232沿换能装置4912的径向的厚度不能太薄。在一些实施例中,导磁罩491232沿换能装置4912的径向的厚度可以不小于0.3mm。同时,太厚的导磁罩491232会增加换能装置4912的厚度,因此导磁罩491232的厚度也不能太厚。因此,兼顾减重并避免磁饱和的情况下,导磁罩491232沿换能装置4912的径向的厚度可以在0.3mm-1mm范围内。例如,导磁罩491232的厚度可以在0.4mm-0.9mm范围内。再例如,导磁罩491232的厚度可以0.5mm-0.8mm范围内。在一些实施例中,结合图54A所示,为进一步减小换能装置4912的质量(进而减小声学输出单元4910的质量),导磁罩491232上可以具有减重构造491232a。减重构造491232a可以包括开设在导磁罩491232上的减重槽、减重孔等。减重槽或减重孔可以为任意形状或任意构造的去除结构。例如,减重槽可以为导磁罩491232上具有任意截面的通槽或凹槽。又例如,减重槽可以为开设在导磁罩491232内壁上的环形槽。在一些实施例中,减重槽可以为贯穿导磁罩491232侧壁并延伸至导磁罩491232沿振动方向的一个端面的矩形通槽。图54C是根据本申请的一些实施例所示的筒状导磁罩491232的部分示意图;图54D是根据本申请的一些实施例所示的碗状导磁罩491232的示意图。如图54C所示,减重构造491232a可以包括开设在筒状导磁罩491232的侧壁上的减重孔。如图54D所示,减重构造491232a可以包括开设在碗状导磁罩491232的侧壁和/或底部上的减重孔。
图55是导磁罩491232开槽时和未开槽时的频响曲线对比图。如图55所示,横轴表示频率(Hz),纵轴表示频率响应(dB),曲线81为未开槽时换能装置4912的频响曲线,曲线82为开槽时换能装置4912的频响曲线。如图55所示,曲线82谐振峰对应的频率高于曲线81谐振峰对应的频率,因此,开槽后,导磁罩491232的质量降低,使换能装置4912的质量降低,从而使换能装置4912的谐振频率升高。同时,在谐振频率(100Hz左右)以后,在相同频率下,开槽后换能装置4912的频率响应大于未开槽的换能装置4912的频率响应,增强了换能装置4912的音质。
在一些实施例中,导磁罩491232的导磁罩外径形状可为矩形、椭圆形、圆形、跑道型、多边形等。例如,如图54A所示,导磁罩491232的导磁罩外径形状可以为跑道形,跑道形对应的等效矩形的长度可以小于20mm,宽度可以小于12mm。再例如,导磁罩491232对应的等效矩形的长度和宽度分别为18.1和10.1mm。本说明书中所述的跑道形通常为两段弧线的两端分别连接两段直线的两端而形成的封闭环形。例如,跑道形也可为圆角矩形,即将矩形的四个直角均替换为圆角。这里所说的等效矩形的长度/宽度指跑道型对应的矩形(即将跑道型的四个圆角替换为直角后的形状)的长度/宽度。
在一些实施例中,磁体组件491231可以包括磁体491233,以及在换能装置4912的振动方向上所述磁体491233的一侧设置的导磁板。导磁板过薄时,容易磁饱和,线圈处的磁场强度相应降低;而导磁板过厚时,由于磁体组件491231整体体积的限制,如果导磁板过厚,容易导致磁体491233过薄,进而产生的磁场强度过低。因此,为了提高磁场的强度,并避免磁饱和,导磁板的厚度与所述磁体491233的厚度的比值可以在0.05-0.35范围内。例如,导磁板的厚度与所述磁体491233的厚度的比值可以在0.15-0.3范围内。在一些实施例中,导磁板可以包括第一导磁板491234和第二导磁板491235。第一导磁板491234在换能装置4912的振动方向上位于磁体491233的一侧,第二导磁板491235在换能装置4912的振动方向上位于磁体491233的另一侧。其中,第一导磁板491234或第二导磁板491235(以下简称为导磁板)的厚度与 磁体491233的厚度的比值在0.05-0.35范围内。在一些实施例中,为了提高磁场的强度,并避免磁饱和,导磁板(第一导磁板491234或第二导磁板491235)的厚度可以在0.5mm-1mm范围内。例如,导磁板(第一导磁板491234或第二导磁板491235)的厚度可以在0.6mm-0.7mm范围内。
在一些实施例中,为了方便磁体491233与导磁板(第一导磁板491234和/或第二导磁板491235)的装配定位,也为了减小换能装置4912的质量(进一步减小声学输出装置4900的总体质量),可以在磁体491233和/或导磁板(第一导磁板491234和/或第二导磁板491235)上开孔。例如,如图54A所示,磁体491233设有第一孔491233a,导磁板设有第二孔491234a,第二孔491234a与第一孔491233a可以对应设置,以便于磁体491233与导磁板(第一导磁板491234和/或第二导磁板491235)的装配定位。
在一些实施例中,为了提高装配的精度,导磁板上的第二孔491234a的数量可以为至少两个。相应地,磁体491233上第一孔491233a的数量也可以为至少两个,每个与第二孔491234a相对应。图56中(a)-(c)是根据本说明书多种实施例所示的导磁板的俯视结构示意图。如图56中(a)所示,导磁板为圆角矩形结构,两个第二孔491234a沿导磁板的长度方向(图56中(a)示出)设置。在一些实施例中,两个第二孔491234a设置于导磁板沿长度方向的中线上。如图56中(b)所示,导磁板为圆角矩形结构,两个第二孔491234a沿导磁板的对角线方向设置。如图56中(c)所示,导磁板为圆角矩形结构,其上靠近四个圆角处分别设置有第二孔491234a。
图57是导磁板无开孔时及开孔时的频响曲线对比图。图58是导磁板无开孔时及开孔时的长度方向的BL值曲线对比图。在图57中,曲线101为导磁板无开孔时的频响曲线,曲线102为导磁板沿长度方向设置在中线上两孔(如图56中(a)所示)时的频响曲线,曲线103为导磁板沿对角线设置两孔(如图56中(b)所示)时的频响曲线,曲线104为导磁板沿对角线设置四孔(如图56中(c)所示)时频响曲线。如图57,对比曲线102和103可以看出,导磁板沿长度方向上的中线上设置两孔与沿对角线设置两孔时的频响曲线几乎一致;对比曲线103和104可以看出,同样在对角线上设置开孔,随开孔数量的增多,频率响应略微降低,降低幅度几乎在0.5dB范围内。对比曲线101和其他曲线(曲线102或103或104)可以看出,相对于在导磁板上不开孔,频率响应略微降低,降低幅度几乎在0.5dB,因此开孔对频率响应的影响不大。但从减重和便于装配定位的角度,开孔使得换能装置4912的质量下降,同时便于磁体491233与导磁板(第一导磁板491234和/或第二导磁板491235)的装配定位。
在图58中,曲线1111为导磁板无开孔时的BL值曲线,曲线1112为导磁板沿长度方向上的中线设置两孔(如图56中(a)所示)时的BL值曲线,曲线1113为导磁板沿对角线设置两孔(如图56中(b)所示)时的BL值曲线,曲线1114为导磁板沿对角线开设四孔(如图56中(c)所示)时BL值曲线。BL值用于反映电磁特征,指磁场强度和线圈导线长度的乘积。如图58所示,对比曲线1112和1113可以看出,导磁板沿长度方向上的中线上设置两孔与沿对角线设置两孔时的BL值曲线几乎一致;对比曲线1113和1114可以看出,同样在对角线上设置开孔,随开孔数量的增多,BL值略微降低。对比曲线1111和其他曲线(曲线1112或1113或1114)可以看出,相对于在导磁板上不开孔,BL值略微降低,降低幅度几乎在0.05T·m范围内,因此开孔对BL值的影响不大。但从减重和便于装配定位的角度,开孔使得换能装置4912的质量下降,同时便于磁体491233与导磁板(第一导磁板491234和/或第二导磁板491235)的装配定位。
在一些实施例中,导磁板上第二孔491234a的设置位置对换能装置4912的BL值影响较大。以导磁板沿长度方向的中线上设置两个第二孔491234a为例,图59是导磁板上第二孔距离导磁板中心不同时的BL值曲线对比图。如图59所示,曲线1211为第二孔491234a距离导磁板中心5mm时的BL值曲线,曲线1212为第二孔491234a距离导磁板中心5.5mm时的BL值曲线,曲线1213为第二孔491234a距离导磁板中心6mm时的BL值曲线,曲线1214为第二孔491234a距离导磁板中心6.5mm时的BL值曲线。在同一线圈偏移量下(例如,线圈偏移量为0mm),曲线1211、曲线1212、曲线1213和曲线1214依次降低,曲线1214明显低于其余三条曲线。这里的导磁板中心指导磁板的几何中心。由图59可知,第二孔491234a距离导磁板中心越远,越趋向于导磁板的边缘,换能装置4912的BL值下降约明显,故第二孔491234a应尽量不靠近导磁板边缘设置。需要说明的是,第二孔491234a与导磁板中心的距离是指第二孔中心与导磁板的几何中心之间的距离。在一些实施例中,为了提高换能装置4912的BL值,第二孔491234a的开孔面积与第二孔491234a所在的导磁板表面的面积的比值小于36%,第二孔491234a的开孔形状及开孔位置不做限定。需要说明的是,第二孔491234a的边缘距离导磁板的边缘的距离如图56中(a)所示,在第二孔123a的孔中心W2与导磁板的几何中心W1的连线并向导磁板边缘延伸形成直线LA,直线LA与导磁板边缘的交点为点B,直线LA与第二孔123a靠近点B一侧的边缘的交点为点C,第二孔491234a的边缘与导磁板的边缘的距离是指直线LA上点B与点C之间的距离。在一些实施例中,第二孔491234a的边缘距离导磁板的边缘的距离可以大于0.2mm,可以防止第二孔过于邻近边缘而降低结构强度,同时,还可以减小第二孔对磁场强度的影响,保证扬声器灵敏度不会明显降低。
图60是第二孔491234a具有不同直径时的频响曲线对比图。如图60所示,曲线1311为第二孔491234a的直径为1mm时的频响曲线,曲线1312为第二孔491234a的直径为1.5mm时的频响曲线,曲线1313为第二孔491234a的直径为2mm时的频响曲线。随第二孔491234a的孔径增大,换能装置4912的频率响应随之减小,直径每增加0.5mm,换能装置4912的频率响应下降0.5dB左右。图61是第二孔491234a具有不同直径时的BL值曲线对比图。如图61所示,曲线141为第二孔491234a的直径为1mm时的BL值曲线,曲线142为第二孔491234a的直径为1.5mm时的BL值曲线,曲线143为第二孔491234a的直径为2mm时的BL值曲线。随第二孔491234a的孔径增大,BL值随之减小。因此,第二孔491234a的直径越大,频率响应和BL值越小;但由于加工精度和结构强度的影响,第二孔491234a的直径也不能大小。因此,为避免第二孔491234a太小而导致对应的定位柱太细,从而为避免定位柱太细导致的结构强度不够且加工精度要求过高,同时为了避免直径太大降低频率响应和BL值,第二孔491234a的直径可以在1.5mm-2.5mm范围内。例如,第二孔491234a的直径可以在1.8mm-2.3mm范围内。在一些实施例中,为了兼顾磁场强度和换能装置4912的灵敏度,第二孔491234a的打孔面积与第二孔491234a所在的导磁板表面的面积的比值小于36%。
在一些实施例中,通过将线圈49124沿所述换能装置4912的径向的线圈数设置为偶数,以使所述第一线圈491241或第二线圈491242的入线和出线位于所述导磁罩491232的同一位置,使得导磁罩491232的内壁与线圈49124的外壁贴合,可以减少换能装置4912的质量(进而减小声学输出单元4910的质量)。此外,通过将线圈49124(第一线圈491241和第二线圈491242)的形状做成“细长型”,选择线圈49124的合适参数,都可以减小导磁罩491232的内径,以减少换能装置4912的质量(进而减小声学输出单元4910的质量)。在一些实施例中,通过在导磁罩491232上设置减重槽或通过在磁体491233和/或导磁板(第一导磁板491234和/或第二导磁板491235)上开孔都可以减少换能装置4912的质量(进而减小声学输出单元4910的质量)。在一些实施例中,减重后声学输出单元4910的质量m可以在2g-5g范围内。例如,声学输出单元4910的质量m可以在3.8g-4.5g范围内。
图61中(b)是根据本说明书一些实施例所示的换能装置4912在质量在2g-5g范围内的加速度曲线对比图。其中,d0表示线圈(第一线圈和第二线圈)的导线直径,N表示径向圈数与轴向层数(例如,N5*12表示径向圈数为5,轴向层数为12),N0表示径向圈数与轴向层数的乘积,“并联”表示两个线圈并联。如图61中(b)所示,经过本说明书一些实施例所示的减重(换能装置4912质量在2g-5g范围内)后的换能装置4912在测试电压的激励下,在1kHz处的加速度范围为70dB-110dB。其中,图61中(b)所示加速度曲线的测得方式为:在测试电压下,激励本申请的换能装置4012产生振动,并通过激光测试测得换能装置4912驱动面板1913产生的位移,之后通过数据处理将位移归一化,即对应频段位移除以相应的测试电压,再与1mm/s 2相比求得加速度dB值。在一些实施例中,可以通过调整至合适的加速度范围,使换能装置4912的灵敏度提升,从而达到提升声学输出单元49100音质的目的。即使减重后BL值曲线幅值下降,但是频响加速度得到提升。图61中(b)所示的加速度曲线是在固定支撑结构4920的情况下,测量面板4913的振动加速度获得。
在一些实施例中,声学输出单元4910可以包括气导扬声器和骨导扬声器(例如,如图51或图52A所示)。在一些实施例中,骨导和气导的分频点可以设置在中低频范围,例如,400Hz-500Hz范围内,大于分频点的声音由骨导扬声器产生,小于分频点的声音由气导扬声器产生,这样可以防止骨导扬声器在低频段振动而使用户感受到明显的振动;同时由于骨导扬声器在谐振峰频率之后一段距离具有较为平坦的频响曲线,对应的这部分频段的输出失真较小,因此,可以将骨导扬声器的谐振峰频率设置在低于分频点的位置,且与分频点保持一定距离。在一些实施例中,换能装置4912的谐振峰频率可以小于300Hz。
在一些实施例中,为使换能装置4912的谐振峰频率小于300Hz,可将传振片49122的总轴向(与振动方向平行)弹性系数k与换能装置4912的质量m的比值范围设置为:
Figure PCTCN2022133228-appb-000001
在一些实施例中,换能装置4912的质量可以包括导磁罩491232、线圈49124和壳体4911的质量之和,或者包括气导扬声器4916、导磁罩491232、线圈49124和壳体4911的质量之和。其中,弹性系数k的单位是N/m(牛顿/米),质量m的单位是g(克)。
在一些实施例中,为减少整机体量和质量,提升音质,换能装置4912的质量m可以在2g-5g范围内。例如,换能装置4912的质量可以在2.2g-4.8g范围内。再例如,换能装置4912的质量可以在3.8g-4.5g范围内。
在一些实施例中,基于换能装置4912的质量范围和传振片49122的总轴向弹性系数k与换能装置4912的质量m的比值范围,可以确定传振片49122的总轴向弹性系数k小于18000N/m。在一些实施例中,传振片49122包括如图51所示的并联的第一传振片49125和第二传振片49126。在一些实施例中, 第一传振片49125和第二传振片49126的轴向弹性系数k0可以相同,每个传振片的轴向弹性系数k0可以都小于9000N/m。在一些实施例中,第一传振片49125和第二传振片49126各自的轴向弹性系数k0可以不同,但二者共同提供的总轴向弹性系数k小于18000N/m。
因此,可以通过调整第一传振片49125和第二传振片49126构成的双传振片连接的质量块的质量范围和/或双传振片的弹性系数,实现骨导谐振峰频率不超过300Hz。在此指出,这里所述的质量块的质量是指双传振片所需推动的所有部件的质量。例如,在图49A所示的实施例中,质量块的质量是线圈49124、导磁罩491232、支架49121、面板13和减振片4914的总质量。又例如,在图50所示的实施例中,质量块的质量是线圈49124、导磁罩491232、面板13和壳体4911的总质量。此外,在骨气传导扬声器的实施例中,质量块的质量还包括气导扬声器的质量。在一些实施例中,质量块的质量还可包括其他必要的连接部件的质量。
因此,可以通过调整第一传振片49125和第二传振片49126构成的双传振片连接的质量块的质量范围和/或双传振片的弹性系数,实现骨导谐振峰频率不超过300Hz。在此指出,这里所述的质量块的质量是指双传振片所需推动的所有部件的质量。例如,在图49A所示的实施例中,质量块的质量是线圈49124、导磁罩491232、支架49121、面板13和减振片4914的整体质量。又例如,在图50所示的实施例中,质量块的质量是线圈49124、导磁罩491232、面板13和壳体4911的整体质量。此外,在骨气传导扬声器的实施例中,质量块的质量还包括气导扬声器的质量。另外,质量块的质量还可包括其他必要的连接部件的质量。
图62的中(a)-(g)是本说明书中多种实施例所示的海尔贝克阵列(Halbach Array)形式的磁路组件49123的结构示意图。需要知道的是,图62显示的是磁路组件49123的中心剖面,并且是二维轴对称图形的右半部。结合图51、图53和图62,换能装置4912可以包括磁路组件49123和线圈49124。磁路组件49123可以包括磁体组件491231和导磁罩491232。线圈49124可以绕平行于振动方向的轴线套设在磁体组件491231的外侧,导磁罩491232绕轴线套设在线圈49124的外侧。在一些实施例中,磁体组件491231中包括的磁体491233、导磁板或导磁罩491232中的至少一个可以包括多个磁化方向不同的磁性部。在一些实施例中,磁体组件491231和/或导磁罩491232可以包括多个磁化方向不同的磁性部(例如,磁铁)。多个磁化方向不同的磁性部可构成海尔贝克阵列(例如,如图62中(a)-(g)所示)。通过特定的阵列排布,磁场可以集中在磁性组件1231的某一侧,从而提升线圈49124处的磁场强度。
在一些实施例中,磁体491233、导磁板或导磁罩491232可以具有多个磁化方向不同的磁性部组成的阵列。在一些实施例中,多个磁性部的磁化方向在平行于换能装置的振动方向的表面按照顺时针或逆时针方向旋转。如图62中(a)所示,磁体491233和导磁板(第一导磁板491234和/或第二导磁板491235)中可以无磁性部阵列,导磁罩491232可以包括沿轴向排布的三层磁性部,这三层磁性部的磁化方向自上而下分别为径向向外、轴向向下和径向向内。如图62中(b)所示,导磁罩491232和磁体491233中可以无磁性部阵列,导磁板(第一导磁板491234和/或第二导磁板491235)中可以包括沿径向排布的四个磁性部,最上层磁性部和最下层磁性部均包括沿径向排布的两个磁性部,最上层磁性部的两个磁性部的磁化方向自左向右分别为轴向向上和径向向外,最下层磁性部的两个磁性部的磁化方向自左向右分别为轴向向上和径向向内。在一些实施例中,导磁板(第一导磁板491234和/或第二导磁板491235)及导磁罩491232中可以均具有磁性部阵列。如图62中(c)所示,导磁板(第一导磁板491234和/或第二导磁板491235)的磁性部阵列与如图62中(b)所示的导磁板的磁性部阵列类似,导磁罩491232的磁性部阵列与如图62中(a)所示的导磁罩491232的磁性部阵列类似。在一些实施例中,相较于三层磁性部阵列,磁体491233、导磁板和/或导磁罩491232可以具有更多的磁性部阵列。如图62中(d)所示,磁体491233和导磁板(第一导磁板491234和/或第二导磁板491235)中可以无磁性部阵列,导磁罩491232可以包括沿轴向排布的五层磁性部,这五层磁性部的磁化方向自上而下分别为轴向向上、径向向外、轴向向下、径向向内和轴向向上。在一些实施例中,磁体491233可以为中空环形结构。如图62中(e)所示,磁体491233可以包括沿轴向排布的三层磁性部,这三层磁性部的磁化方向自上而下分别为径向向外、轴向向上和径向向内。如图62中(f)所示,磁体491233可以包括沿轴向排布的五层磁性部,这五层磁性部的磁化方向自上而下分别为轴向向下、径向向外、轴向向上、径向向内和轴向向下。如图62中(g)所示,磁体491233可以包括沿轴向排布的三层磁性部,这三层磁性部的磁化方向自上而下分别为径向向外、轴向向上和径向向内,导磁罩491232可以包括沿轴向排布的三层磁性部,这三层磁性部的磁化方向自上而下分别为径向向外、轴向向下和径向向内。在一些实施例中,多个磁性部中至少两个相邻磁性部的磁化方向可以互相垂直。
图63是磁路组件49123具有不同磁性部阵列的BL值曲线对比图。在图63中,曲线181为磁路组件49123不具有磁性部阵列的BL值曲线,曲线182-188分别为磁路组件49123分别具有如图62中(a)-(g)所示的磁性部阵列时磁路组件49123的BL值曲线。由图63可知,相较于不设置磁性部阵列,导磁罩和/或磁体组件具有磁性部阵列均对磁场强度有所提升。导磁罩具有磁性部阵列相较于不设置磁性部阵列 对磁场强度提升更为明显,提升约12%。通过将磁体491233设置成中空的环形磁性部阵列,磁场强度相较于不设置磁性部阵列提升仍有约6%。
本说明书实施例声学输出装置4900可能带来的有益效果包括但不限于:(1)通过将线圈49124沿所述换能装置4912的径向的线圈数设置为偶数,以使所述第一线圈491241或第二线圈491242的入线和出线位于所述导磁罩491232的同一位置,使得导磁罩491232的内壁与线圈49124的外壁贴合,可以减少换能装置4912的质量(进而减小声学输出单元4910的质量);(2)通过将线圈49124(第一线圈491241和第二线圈491242)的形状做成“细长型”,选择线圈49124的合适参数,可以减小导磁罩491232的内径,以减少换能装置4912的质量(进而减小声学输出单元4910的质量);(3)通过在导磁罩491232上设置减重槽或通过在磁体491233和/或导磁板(第一导磁板491234和/或第二导磁板491235)上开孔,可以减少换能装置4912的质量(进而减小声学输出单元4910的质量);(4)可以通过调整声学输出单元4910的质量和传振片49122的总轴向弹性系数,使骨导谐振峰频率不超过300Hz,防止骨导扬声器在低频段振动而使用户感受到明显的振动;(5)通过设置传振片49122在垂直于振动方向的平面内任意方向(径向)的刚度,可以抵抗磁体组件491231的磁吸力,避免换能装置4912中发生磁铁偏置;(6)通过设置导磁板的厚度与磁体491233的厚度的比值,从而提高磁场的强度,并避免磁饱和,提升声学输出单元4910的灵敏度;(7)通过在磁体491233、导磁板和/或导磁罩491232中的至少一个中设置磁化方向不同的磁性部阵列,磁场强度得到提升,进而提升声学输出单元4910的灵敏度;(8)通过采用双线圈(第一线圈491241和第二线圈491242)的方式,实现双驱动,而且使线圈的高频阻抗降低,从而能够提高换能装置4912的灵敏度;(9)通过将双传振片49122固定在磁体491233的两侧,保证能够高灵敏度输出的同时,通过双传振片49122的支撑保证磁体491233振动的稳定;(10)线圈49124贴合在导磁罩491232上,使得导磁罩491232和线圈49124之间的磁间隙变小,因此磁场更集中,从而能够提高换能装置4912的灵敏度。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (39)

  1. 一种声学输出装置,所述声学输出装置包括:
    换能装置,被配置为基于电信号产生机械振动;
    外壳,被配置为容纳所述换能装置,所述外壳包括面板和壳体,所述换能装置与所述面板连接,所述换能装置通过所述面板将所述机械振动传递给用户;以及
    附加元件,与所述面板通过至少包括一弹性元件的振动路径进行弹性连接。
  2. 根据权利要求1所述的声学输出装置,其中,所述附加元件和所述磁路组件相对于所述面板振动,产生位于目标频率范围内的谐振峰,其中,所述目标频率范围为20Hz至800Hz。
  3. 根据权利要求2所述的声学输出装置,其中,所述附加元件和所述磁路组件相对于所述面板振动,还产生位于目标频率范围内的谐振谷,所述谐振谷对应的频率小于所述谐振峰对应的频率。
  4. 根据权利要求3所述的声学输出装置,其中,所述谐振峰对应的频率与所述谐振谷对应的频率的差值不大于300Hz。
  5. 根据权利要求4所述的声学输出装置,其中,所述谐振峰对应的频率与所述谐振谷对应的频率的差值在40Hz-200Hz的范围内。
  6. 根据权利要求1-5任一项所述的声学输出装置,其中,所述弹性元件为减振片,所述面板通过所述减振片与所述壳体弹性连接,所述附加元件与所述壳体刚性连接。
  7. 根据权利要求6所述的声学输出装置,其中,所述换能装置还包括振动板,所述振动板与所述面板刚性连接,所述壳体与所述振动板、所述面板通过所述减振片连接。
  8. 根据权利要求6所述的声学输出装置,其中,所述声学输出装置还包括支撑结构,被配置为将所述声学输出装置佩戴在用户耳朵或头部区域,且不堵塞所述用户耳道,所述支撑结构与所述壳体刚性连接。
  9. 根据权利要求1-5任一项所述的声学输出装置,其中,所述弹性元件为具有弹性的环结构,所述面板与所述壳体之间通过所述环结构密封连接,并形成容纳所述换能装置的容置腔,所述附加元件与所述壳体刚性连接。
  10. 根据权利要求9所述的声学输出装置,其中,所述面板和与所述面板刚性连接的元件质量之和与所述壳体和与所述壳体固定连接的元件的质量之和的比值在0.16~7的范围内。
  11. 根据权利要求9所述的声学输出装置,其中,所述声学输出装置还包括支撑结构,被配置为将所述声学输出装置佩戴在用户耳朵或头部区域,且不堵塞所述用户耳道,所述支撑结构与所述壳体或所述面板刚性连接。
  12. 根据权利要求6或9所述的声学输出装置,其中,所述壳体与所述面板位置相对的侧壁通过弹性元件与所述壳体的其他侧壁连接。
  13. 根据权利要求1-5任一项所述的声学输出装置,其中,所述弹性元件为凝固后的胶材,所述面板与所述壳体刚性连接,所述附加元件通过所述胶材与所述壳体连接。
  14. 根据权利要求1-5任一项所述的声学输出装置,其中,所述面板与所述壳体刚性连接,所述附加元件与所述壳体的侧壁通过所述弹性元件连接,所述附加元件和所述弹性元件作为所述壳体侧壁的至少部分结构。
  15. 根据权利要求1-5任一项所述的声学输出装置,其中,所述面板与所述壳体刚性连接,所述附加元件相对于所述壳体独立设置,所述附加元件通过所述弹性元件与所述壳体、所述面板或所述换能装置连接。
  16. 根据权利要求14或15所述的声学输出装置,其中,所述弹性元件为簧片结构或具有弹性的环结 构。
  17. 根据权利要求14或15所述的声学输出装置,其中,所述声学输出装置还包括支撑结构,被配置为将所述声学输出装置佩戴在用户耳朵或头部区域,且不堵塞所述用户耳道,所述支撑结构与所述壳体或所述面板刚性连接。
  18. 根据权利要求1-5任一项所述的声学输出装置,其中,所述壳体与所述面板刚性连接,所述声学输出装置还包括支撑件,所述支撑件相对于所述壳体独立设置,所述附加元件与所述支撑件刚性连接;所述弹性元件包括第一弹性元件和第二弹性元件,所述支撑件的一端通过所述第一弹性元件与所述面板连接,所述支撑件的另一端通过所述第二弹性元件与所述壳体中与所述面板位置相对的侧壁连接。
  19. 根据权利要求18所述的声学输出装置,其中,所述支撑件为筒状结构,所述筒状结构套设于所述壳体中与所述面板相邻的侧壁外,并相对于所述壳体独立设置,所述附加元件与所述筒状结构刚性连接;所述筒状结构的一端通过所述第一弹性元件与所述面板连接,所述筒状结构的另一端通过所述第二弹性元件与所述壳体中与所述面板位置相对的侧壁连接。
  20. 根据权利要求18所述的声学输出装置,其中,所述支撑件为板状结构,所述板状结构相对于所述壳体上独立设置,所述附加元件与所述板状结构刚性连接;所述板状结构的一端通过所述第一弹性元件与所述面板连接,所述板状结构的另一端通过所述第二弹性元件与所述壳体中与所述面板位置相对的侧壁连接。
  21. 根据权利要求18所述的声学输出装置,其中,所述第一弹性元件和所述第二弹性元件为簧片结构,所述第一弹性元件和所述第二弹性元件位于所述换能装置沿其振动方向上的两侧;所述第一弹性元件通过其周侧与所述支撑件的一端连接,所述第二弹性元件通过其周侧与所述支撑件的另一端连接。
  22. 根据权利要求18所述的声学输出装置,其中,所述第一弹性元件和所述第二弹性元件为具有弹性的环结构,所述第一弹性元件和所述第二弹性元件分别位于所述支撑件的两端,所述支撑件的一端通过所述第一弹性元件与所述面板连接,所述支撑件的另一端通过所述第二弹性元件与所述壳体中与所述面板位置相对的侧壁连接。
  23. 根据权利要求18所述的声学输出装置,还包括支撑结构,被配置为将所述声学输出装置佩戴在用户或头部区域,且不堵塞所述用户耳道,所述支撑结构与所述面板、所述壳体或所述支撑件刚性连接。
  24. 根据权利要求1-23任一项所述的声学输出装置,其中,所述壳体包括一个或多个泄压孔,所述泄压孔用于连通所述外壳的内部和外部。
  25. 根据权利要求1-24任一项所述的声学输出装置,其中,所述面板或所述壳体外表面上覆盖有振动传递层。
  26. 根据权利要求1-25所述的声学输出装置,其中,所述附加元件位于所述壳体与所述面板相邻或相对的侧壁上。
  27. 根据权利要求1-26所述的声学输出装置,其中,所述附加元件包括气导扬声器,所述气导扬声器中振膜的振动方向与所述换能装置的振动方向形成的夹角为75°-100°。
  28. 根据权利要求27所述的声学输出装置,其中,沿所述振膜的振动方向,所述气导扬声器与所述换能装置之间具有间距,所述间距不小于0.8mm。
  29. 根据权利要求28所述的声学输出装置,其中,所述气导扬声器与所述换能装置之间具有分隔件,所述气导扬声器和所述换能装置分别位于所述分隔件的两侧,所述分隔件的厚度不小于0.8mm。
  30. 根据权利要求28所述的声学输出装置,其中,当用户佩戴所述声学输出装置时,所述气导扬声器的出声口朝向用户的耳道。
  31. 根据权利要求28所述的声学输出装置,其中,所述气导扬声器包括第一气导扬声器和第二气导 扬声器,所述第一气导扬声器和所述第二气导扬声器分布于所述壳体的两侧,所述第一气导扬声器和所述第二气导扬声器关于所述换能装置的对称轴对称设置。
  32. 根据权利要求31所述的声学输出装置,其中,所述第一气导扬声器输出的声波与所述第二气导扬声器输出的声波相位相反。
  33. 根据权利要求31所述的声学输出装置,当用户佩戴所述声学输出装置时,所述第一气导扬声器的出声口朝向用户的耳道,所述第一气导扬声器的出声口背离所述用户的耳道。
  34. 根据权利要求28所述的声学输出装置,还包括分频模块,所述分频模块基于分频点对初始电信号进行分频处理,以产生所述电信号和低频信号,所述电信号为中高频信号,所述换能装置基于所述电信号输出骨导声音,所述气导扬声器基于低频信号输出气导声音。
  35. 根据权利要求34所述的声学输出装置,所述分频点对应的频率不小于所述目标频率范围的最大值。
  36. 根据权利要求1-35任一项所述的声学输出装置,其中,所述换能装置包括磁路组件、线圈和传振片;所述磁路组件包括导磁罩及磁体,所述磁体固定于所述导磁罩上,且所述磁体与所述导磁罩的侧壁之间形成磁间隙,所述线圈设置在至少部分位于所述磁间隙中,所述传振片弹性连接所述磁体和所述外壳。
  37. 根据权利要求1-35任一项所述的声学输出装置,其中,所述换能装置包括磁路组件和至少一片传振片,所述至少一片传振片中包括第一传振片及第二传振片;所述磁路组件包括磁体组件及导磁罩,所述磁体组件收容于所述导磁罩内,所述第一传振片与第二传振片沿所述换能装置的振动方向上分别分布在所述磁体组件的两侧,用于弹性支撑所述磁体组件;所述导磁罩与所述外壳连接。
  38. 根据权利要求36-37所述的声学输出装置,其中,所述传振片径向上的等效刚度大于4.7×10 4N/m。
  39. 根据权利要求37所述的声学输出装置,其中,所述换能装置还包括线圈,所述线圈包括所述换能装置的振动方向上间隔设置的第一线圈及第二线圈,所述线圈的外壁与所述导磁罩的内壁贴合。
PCT/CN2022/133228 2022-11-21 2022-11-21 一种声学输出装置 WO2024108332A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133228 WO2024108332A1 (zh) 2022-11-21 2022-11-21 一种声学输出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133228 WO2024108332A1 (zh) 2022-11-21 2022-11-21 一种声学输出装置

Publications (1)

Publication Number Publication Date
WO2024108332A1 true WO2024108332A1 (zh) 2024-05-30

Family

ID=91194846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133228 WO2024108332A1 (zh) 2022-11-21 2022-11-21 一种声学输出装置

Country Status (1)

Country Link
WO (1) WO2024108332A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418225A (zh) * 2018-04-26 2019-11-05 深圳市韶音科技有限公司 一种麦克风装置
KR102195959B1 (ko) * 2019-10-25 2020-12-29 허진숙 골전도 마이크를 구비한 골전도 헤드셋
CN114765715A (zh) * 2021-01-14 2022-07-19 深圳市韶音科技有限公司 一种骨传导扬声器
CN115250395A (zh) * 2021-04-27 2022-10-28 深圳市韶音科技有限公司 声学输入输出设备
CN115250392A (zh) * 2021-04-27 2022-10-28 深圳市韶音科技有限公司 声学输入输出设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418225A (zh) * 2018-04-26 2019-11-05 深圳市韶音科技有限公司 一种麦克风装置
KR102195959B1 (ko) * 2019-10-25 2020-12-29 허진숙 골전도 마이크를 구비한 골전도 헤드셋
CN114765715A (zh) * 2021-01-14 2022-07-19 深圳市韶音科技有限公司 一种骨传导扬声器
CN115250395A (zh) * 2021-04-27 2022-10-28 深圳市韶音科技有限公司 声学输入输出设备
CN115250392A (zh) * 2021-04-27 2022-10-28 深圳市韶音科技有限公司 声学输入输出设备

Similar Documents

Publication Publication Date Title
CN210868149U (zh) 一种骨传导扬声器
WO2022213459A1 (zh) 声学输出装置
JP6951491B2 (ja) 骨伝導スピーカー
US10560778B2 (en) System and method for a loudspeaker with a diaphragm
WO2022166388A1 (zh) 发声装置和耳机
US20240147161A1 (en) Speakers
WO2024108332A1 (zh) 一种声学输出装置
WO2024108329A1 (zh) 一种声学输出装置
WO2024108334A1 (zh) 一种声学输出装置
CN115209319A (zh) 一种发声装置
TW202423134A (zh) 聲學輸出裝置
CN118057844A (zh) 一种声学输出装置
WO2024021381A1 (zh) 换能装置、扬声器和声学输出装置
CN118057839A (zh) 一种声学输出装置
CN219592618U (zh) 一种骨传导喇叭及骨传导耳机
CN220043618U (zh) 双振动传导扬声器及耳机
CN217643688U (zh) 一种具有气传导功能的骨传导装置及骨传导耳机
CN216852336U (zh) 骨传导扬声器及骨传导耳机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966035

Country of ref document: EP

Kind code of ref document: A1