WO2023193189A1 - 声学输出装置 - Google Patents

声学输出装置 Download PDF

Info

Publication number
WO2023193189A1
WO2023193189A1 PCT/CN2022/085561 CN2022085561W WO2023193189A1 WO 2023193189 A1 WO2023193189 A1 WO 2023193189A1 CN 2022085561 W CN2022085561 W CN 2022085561W WO 2023193189 A1 WO2023193189 A1 WO 2023193189A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
vibration
output device
acoustic output
piezoelectric
Prior art date
Application number
PCT/CN2022/085561
Other languages
English (en)
French (fr)
Inventor
朱光远
张磊
齐心
王庆依
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to BR112023007702A priority Critical patent/BR112023007702A2/pt
Priority to MX2023005370A priority patent/MX2023005370A/es
Priority to JP2023534192A priority patent/JP2024516051A/ja
Priority to KR1020237017113A priority patent/KR20230145032A/ko
Priority to EP22877659.7A priority patent/EP4284017A1/en
Priority to CN202280006548.XA priority patent/CN117203980A/zh
Priority to PCT/CN2022/085561 priority patent/WO2023193189A1/zh
Priority to US18/298,396 priority patent/US20230328458A1/en
Publication of WO2023193189A1 publication Critical patent/WO2023193189A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2811Enclosures comprising vibrating or resonating arrangements for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type

Definitions

  • This specification relates to the field of acoustic technology, and in particular to an acoustic output device.
  • Piezoelectric acoustic output devices use the inverse piezoelectric effect of piezoelectric materials to generate vibrations and radiate sound waves outward. Compared with transmission electric speakers, they have the advantages of high electromechanical energy conversion efficiency, low energy consumption, small size, and high integration. . Under the current trend of device miniaturization and integration, piezoelectric acoustic output devices have extremely broad prospects and future. However, piezoelectric acoustic output devices have problems such as poor low-frequency response and many vibration modes in the audible range of the human ear (for example, 20Hz-20kHz). As a result, they cannot form a relatively flat frequency in the audible range. sound curve, causing poor sound quality.
  • an acoustic output device that can improve the low-frequency response of the piezoelectric acoustic output device, and at the same time form a relatively flat frequency response curve in the audible range, thereby improving the sound quality of the acoustic output device.
  • Embodiments of this specification may provide an acoustic output device, including a first vibration element, a second vibration element, and a piezoelectric element.
  • the first vibration element is physically connected to a first position of the piezoelectric element
  • the second vibration element is physically connected to a first position of the piezoelectric element.
  • the vibration element is connected to the second position of the piezoelectric element at least through an elastic element, wherein the piezoelectric element drives the first vibration element and the second vibration element to vibrate in response to an electrical signal, and the vibration generates Two resonance peaks within the audible range of the human ear.
  • the resonance of the second vibration element and the elastic element generates a first resonance peak with a lower frequency among the two resonance peaks, and the resonance of the piezoelectric element and the first vibration element A second resonance peak with a higher frequency among the two resonance peaks is generated.
  • the frequency of the first resonance peak is in the range of 50Hz-2000Hz, and the frequency of the second resonance is in the range of 1kHz-10kHz.
  • the second vibrating element and the elastic element are connected to the second position of the piezoelectric element through the connecting piece.
  • the piezoelectric element includes a beam-like structure, and the first position is located at the center of the length direction of the beam-like structure.
  • the second position is located at an end of the lengthwise extension of the beam-like structure.
  • the size of the second vibrating element is not smaller than the size of the piezoelectric element in the length extension direction of the beam-like structure.
  • the vibration is transmitted to the user in a bone conduction manner through the second vibration element.
  • the acoustic output device further includes a second piezoelectric element, the second piezoelectric element receives the vibration of the second vibrating element, and the second piezoelectric element resonates at a frequency higher than the two The third resonance peak of the resonance peak.
  • the frequency of the third resonance peak is in the range of 10kHz-40kHz.
  • the acoustic output device further includes: a fourth vibration element, the fourth vibration element is connected to the third position of the second piezoelectric element at least through a third elastic element, the third elastic element and The fourth vibration element resonates to generate a fifth resonance peak with a frequency lower than the third resonance peak frequency, wherein the absolute value of the difference between the frequencies corresponding to the second resonance peak and the fifth resonance peak is The ratio between frequencies corresponding to the second resonance peak ranges from 0 to 4.
  • the piezoelectric element and the second piezoelectric element each include a beam-like structure, and the length of the beam-like structure of the second piezoelectric element is shorter than the length of the beam-like structure of the piezoelectric element. length.
  • the ratio between the length of the beam-like structure of the second piezoelectric element and the length of the beam-like structure of the piezoelectric element is in the range of 0.1-1.
  • the absolute value of the phase difference between the excitation signals of the piezoelectric element and the second piezoelectric element is in the range of 45°-135°.
  • the acoustic output device further includes a third piezoelectric element, the third piezoelectric element vibrates and is transmitted to the second piezoelectric element, the third piezoelectric element resonates at a frequency lower than the The fourth resonance peak of the third resonance peak.
  • the acoustic output device further includes a third vibration element, the third vibration element is connected to the third piezoelectric element at least through a second elastic element, and the vibration of the third piezoelectric element passes through the The third vibration element is transmitted to the second piezoelectric element.
  • the piezoelectric element includes a beam-like structure
  • the first vibration element includes two sub-vibration elements, wherein the two sub-vibration elements are respectively connected at two ends of the length extension direction of the piezoelectric element. end.
  • the two sub-vibration elements have the same mass, and the two first positions where the two sub-vibration elements are connected to the piezoelectric element are symmetrical with respect to the center of the piezoelectric element.
  • the length of the piezoelectric element ranges from 3 mm to 30 mm.
  • the piezoelectric element includes two layers of piezoelectric sheets and a substrate.
  • the two layers of piezoelectric sheets are respectively attached to opposite sides of the substrate.
  • the substrate is based on the two layers of piezoelectric sheets. The stretching along the length creates vibrations.
  • FIG. 1 is a structural block diagram of an exemplary acoustic output device according to some embodiments of the present specification
  • Figure 2 is a schematic structural diagram of an exemplary acoustic output device according to some embodiments of the present application.
  • Figure 3 is a piezoelectric cantilever beam model according to some embodiments of this specification.
  • Figure 4 is an output frequency response curve diagram of an elastic mass end and a mass end of an exemplary acoustic output device according to some embodiments of this specification;
  • Figure 5 is a comparison diagram of the frequency response of the free end output of a piezoelectric cantilever beam according to some embodiments of the present specification and the frequency response of an acoustic output device including a single beam structure of the same beam length;
  • Figure 6 is a frequency response curve of an acoustic output device including first vibrating elements of different masses according to some embodiments of this specification;
  • Figure 7 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 8 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 9 is a frequency response curve when the vibration signal of the acoustic output device having a single-beam structure, a double-beam structure, and a four-beam structure is output from the elastic mass end according to some embodiments of this specification;
  • Figure 10 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 11 is an output frequency response curve of an exemplary acoustic output device according to some embodiments of the present specification.
  • Figure 12 is the frequency response curve of the acoustic output device corresponding to different excitation signal phase differences
  • Figure 13 is the frequency response curve of the acoustic output device corresponding to different excitation signal phase differences
  • Figure 14 is a schematic structural diagram of an exemplary acoustic output device according to some embodiments of this specification.
  • Figure 15 is an output frequency response curve diagram of acoustic output devices with different structures shown according to some embodiments of this specification.
  • Figure 16 is a schematic structural diagram of an exemplary acoustic output device according to some embodiments of this specification.
  • Figure 17 is a schematic structural diagram of an exemplary acoustic output device according to some embodiments of this specification.
  • Figure 18 is a frequency response curve diagram when the vibration signal of the acoustic output device having a single beam structure, a double beam structure, and a four-beam structure respectively shown in some embodiments of this specification is output from the elastic mass end.
  • system means of distinguishing between different components, elements, parts, portions or assemblies at different levels.
  • said words may be replaced by other expressions if they serve the same purpose.
  • connection can refer to a fixed connection, a detachable connection, or an integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be two The connection within an element or the interaction between two elements, unless otherwise expressly limited.
  • connection can refer to a fixed connection, a detachable connection, or an integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be two The connection within an element or the interaction between two elements, unless otherwise expressly limited.
  • the acoustic output device can utilize the inverse piezoelectric effect to generate vibration through the piezoelectric element to output sound.
  • piezoelectric elements can adopt two working modes: d33 and d31.
  • the vibration direction of the piezoelectric element also called the displacement output direction
  • the electrical direction also called the polarization direction. Its resonant frequency is high, the output amplitude is small, and the low-frequency response is poor.
  • the vibration direction of the piezoelectric element is perpendicular to the electrical direction.
  • the piezoelectric element In the d31 operating mode, although by increasing the length of the piezoelectric element, a sufficiently low frequency peak can be provided, and the output amplitude is also significantly increased, but in this case, the piezoelectric element is within the audible range (for example, 20Hz-20kHz) There are more vibration modes, which are manifested in more peaks and valleys in the frequency response curve, so the sound quality of the acoustic output device (or piezoelectric speaker) is still poor.
  • the acoustic output device may include a first vibrating element, a second vibrating element and a piezoelectric element.
  • the first vibration element is physically connected to the first position of the piezoelectric element
  • the second vibration element is connected to the second position of the piezoelectric element at least through the elastic element.
  • the piezoelectric element can drive the first vibration element and the second vibration element to vibrate in response to the electrical signal. This vibration can generate two resonance peaks (eg, a first resonance peak and a second resonance peak) within the audible range of the human ear.
  • the low-frequency response of the piezoelectric element can be improved by utilizing the resonance of the second vibration element and the elastic element to generate a first resonance peak with a lower frequency (eg, 50 Hz-2000 Hz) among the two resonance peaks.
  • a second resonance peak with a higher frequency for example, 1kHz-10kHz
  • the frequency response between the first resonance peak and the second resonance peak can be The curve is flatter, thereby improving the sound quality of the acoustic output device.
  • the sensitivity of the acoustic output device in the mid-to-high frequency band can be improved, which is beneficial to the application of the acoustic output device in special scenarios.
  • FIG. 1 is a structural block diagram of an exemplary acoustic output device according to some embodiments of the present specification.
  • the acoustic output device 100 may be a bone conduction acoustic output device, an air conduction acoustic output device, or a combined bone-air conduction acoustic output device.
  • the acoustic output device 100 may include speakers, headphones, glasses, hearing aids, augmented reality (Augmented Reality, AR) devices, virtual reality (VR) devices, etc. or other devices with audio playback functions (such as mobile phones, computers, etc.).
  • the acoustic output device 100 may be an open acoustic output device. As shown in FIG. 1 , the acoustic output device 100 may include a first vibration element 110 , a second vibration element 120 , a piezoelectric element 130 and an elastic element 140 .
  • Both the first vibration element 110 and the second vibration element 120 can be mass blocks with a certain mass.
  • the first vibration element 110 and/or the second vibration element 120 may include a vibration plate, a diaphragm, etc., so that the acoustic output device 100 outputs vibration through the first vibration element 110 and/or the second vibration element 120 .
  • the material of the mass block may include, but is not limited to, metals (for example, copper, iron, magnesium, aluminum, tungsten, etc.), alloys (aluminum alloy, titanium alloy, tungsten alloy, etc.), polymer materials (for example, PTFE, silicone rubber, etc.) and other materials.
  • the material of the first vibration element 110 and the material of the second vibration element 120 may be the same or different. In some embodiments, the mass of the first vibration element 110 and the mass of the second vibration element 120 may be the same or different. In some embodiments, the mass of the first vibration element 110 or the second vibration element 120 may be less than 10 g. In some embodiments, the mass of the first vibration element 110 or the second vibration element 120 may be less than 8g. In some embodiments, the mass of the first vibration element 110 or the second vibration element 120 may be less than 6g. In some embodiments, the mass of the first vibration element 110 or the second vibration element 120 may be less than 5g.
  • the first vibration element 110 can be physically connected (for example, glued, clamped, threaded, welded, etc.) to the first position of the piezoelectric element 130
  • the second vibration element 120 can be connected to the piezoelectric element 130 at least through the elastic element 140 second position.
  • the first location may be the same as or different from the second location.
  • both the first position and the second position may be located at the end of the length direction of the beam-like structure of the piezoelectric element 130 .
  • the first position and the second position may be respectively located at both ends of the length extension direction of the beam-like structure of the piezoelectric element 130 .
  • the first position may be located at the center of the piezoelectric element 130
  • the second position may be located at any end of the length direction of the beam-like structure of the piezoelectric element 130 .
  • the length extension direction of the beam-like structure of the piezoelectric element 130 may refer to a direction in which the characteristic size of the beam-like structure in this extension direction is more than one time larger than the characteristic size of the beam-like structure in any other direction.
  • the beam-like structure may include a linear beam-like structure, a curved beam-like structure, etc.
  • a linear beam-like structure will be used as an example for description, which is not intended to limit the scope of this specification.
  • the elastic element 140 can be directly connected to the second location of the piezoelectric element 130 .
  • acoustic output device 100 may include connections (not shown).
  • the second vibration element 120 and the elastic element 140 may be connected to the second position of the piezoelectric element 130 through a connecting piece.
  • the second vibration element 120 and the elastic element 140 can be connected to the end of the piezoelectric element 130 (ie, the second position) through the connecting member 190 .
  • the first vibration element 110 and the second vibration element 120 may respectively generate vibrations in response to the vibration of the piezoelectric element 130 .
  • the piezoelectric element 130 can directly transmit vibration to the first vibration element 110 , and the vibration of the piezoelectric element 130 can be transmitted to the second vibration element 120 through the elastic element 140 .
  • the first vibration element 110 directly connected to the piezoelectric element 130 can be called a mass end
  • the second vibration element 120 connected to the piezoelectric element 130 through the elastic element 140 can be called an elastic mass end.
  • the material of the elastic element 140 may be any material that has the ability to transmit vibration.
  • the material of the elastic element 140 can be silicone, foam, plastic, rubber, metal, etc., or any combination thereof.
  • the elastic element 140 may be a component with good elasticity (that is, easy to undergo elastic deformation).
  • the elastic element 140 may include a spring (such as an air spring, a mechanical spring, an electromagnetic spring, etc.), a vibration transmitting piece, an elastic piece, a substrate, etc., or any combination thereof.
  • the number of elastic elements 140 may be one or more.
  • the second vibration element 120 can be connected to the piezoelectric element 130 through an elastic element 140 .
  • the second vibration element 120 can be connected to the piezoelectric element 130 through four elastic elements 140 .
  • the shape of the elastic element 140 may be a ring shape, a rod-like structure, etc.
  • the elastic elements 140 may be axially symmetrically distributed with an axis over the center of the piezoelectric element 130 .
  • the piezoelectric element 130 may be an electrical energy conversion device capable of converting electrical energy into mechanical energy using the inverse piezoelectric effect.
  • the piezoelectric element 130 may be composed of materials with piezoelectric effects such as piezoelectric ceramics, piezoelectric quartz, piezoelectric crystals, and piezoelectric polymers.
  • the piezoelectric element 130 can be in the shape of a sheet, annular, prismatic, rectangular, columnar, spherical, etc., or any combination thereof, or can be in other irregular shapes.
  • piezoelectric element 130 may include a beam-like structure (as shown in Figures 2, 7, 16, etc.).
  • it may include two layers of piezoelectric sheets and a substrate, with the two layers of piezoelectric sheets attached to opposite sides of the substrate respectively.
  • the substrate can vibrate according to the expansion and contraction of the two piezoelectric sheets along the length direction of the beam-like structure (for example, vibrating in a direction perpendicular to the surface of the substrate). More description of the beam-like structure can be found in Figure 2 and its description.
  • the first position and the second position may be respectively located at two ends of the piezoelectric element 130 (as shown in FIG. 2 ).
  • the first position when the piezoelectric element 130 includes a beam-like structure, the first position may be located at the center of the lengthwise extension of the beam-like structure.
  • the second position may be located at an end of the length direction of the beam-like structure (as shown in Figure 7).
  • the first vibration element 110 may include two sub-vibration elements, wherein the two sub-vibration elements may be respectively connected at both ends of the length extension direction of the piezoelectric element 130 (i.e. the first position) (as shown in Figure 17).
  • the second position may be located at the center of the length direction of the piezoelectric element 130 .
  • the piezoelectric element 130 can deform under the action of a driving voltage (or excitation signal), thereby generating vibration. This vibration can drive the first vibration element 110 and the second vibration element 120 to vibrate, thereby generating two resonance peaks within the audible range of the human ear (for example, 20 Hz-20 kHz).
  • the resonance of the second vibration element 120 and the elastic element 140 can generate a first resonance peak with a lower frequency (for example, 20Hz-2000Hz) among the two resonance peaks (such as the resonance in the dotted circle X in Figure 4 peak), the resonance of the piezoelectric element 130 and the first vibration element 110 can generate a second resonance peak with a higher frequency (for example, 1kHz-10kHz) among the two resonance peaks (as shown in the dotted circle Y in Figure 4 resonance peak).
  • the frequency corresponding to the second resonant peak also called the second resonant frequency
  • the first resonant peak also called the first resonant frequency
  • the frequency range of the first resonant frequency corresponding to the first resonant peak can be adjusted by adjusting the mass of the second vibration element 120 and/or the elastic coefficient of the elastic element 140 .
  • the first resonant frequency may range from 20 Hz to 2000 Hz. In some embodiments, the first resonant frequency may range from 50 Hz to 1500 Hz. In some embodiments, the first resonant frequency may range from 100 Hz to 1000 Hz. In some embodiments, the first resonant frequency may range from 150 Hz to 500 Hz. In some embodiments, the first resonant frequency may range from 150 Hz to 200 Hz.
  • the frequency range of the second resonant frequency corresponding to the second resonant peak can be adjusted by adjusting the performance parameters of the piezoelectric element 130 .
  • the performance parameters of the piezoelectric element 130 may include geometric parameters, material parameters, and the like. Exemplary geometric parameters may include thickness, length, etc. Exemplary material parameters may include elastic modulus, density, etc.
  • the second resonant frequency may be the natural frequency of piezoelectric element 130 . In some embodiments, the second resonant frequency may range from 1 kHz to 10 kHz. In some embodiments, the second resonant frequency may range from 1 kHz to 9 kHz.
  • the second resonant frequency may range from 1 kHz to 8 kHz. In some embodiments, the second resonant frequency may range from 1 kHz to 7 kHz. In some embodiments, the second resonant frequency may range from 1 kHz to 6 kHz. In some embodiments, the second resonant frequency may range from 2 kHz to 5 kHz. In some embodiments, the second resonant frequency may range from 3 kHz to 4 kHz.
  • additional damping may be added to one or more elements in the acoustic output device 100 to smooth the frequency response curve of the output of the acoustic output device 100 .
  • the elastic element 140 can be made of materials with greater damping effects (eg, silicone, rubber, foam, etc.).
  • a damping material may be coated on the piezoelectric element 130 .
  • damping material or electromagnetic damping may be coated on the first vibration element 110 and/or the second vibration element 120 .
  • the vibration of the piezoelectric element 130 may be transmitted to the user through the first vibration element 110 and/or the second vibration element 120 in a bone conduction manner.
  • the second vibration element 120 may be in direct contact with the user's head skin, and the vibration of the piezoelectric element 130 is transmitted to the bones and/or muscles of the user's face through the second vibration element 120, and finally to the user's ears.
  • the second vibration element 120 may not be in direct contact with the human body.
  • the vibration of the piezoelectric element 130 may be transmitted to the housing of the acoustic output device through the second vibration element 120, and then transmitted to the user's facial bones and/or muscles through the housing.
  • the vibration of the piezoelectric element 130 can also be transmitted to the user through the first vibration element 110 and/or the second vibration element 120 in an air conduction manner.
  • the second vibrating element 120 can directly drive the air around it to vibrate, thereby transmitting it to the user's ear through the air.
  • the second vibration element 120 can be further connected to the diaphragm, and the vibration of the second vibration element 120 can be transmitted to the diaphragm, and then the diaphragm drives the air to vibrate, thereby transmitting it to the user's ear through the air.
  • the acoustic output device 100 may also include a second piezoelectric element 150 .
  • both the piezoelectric element 130 (which may also be referred to as the first piezoelectric element 130) and the second piezoelectric element 150 may include beam-like structures.
  • the length of the beam-like structure of the second piezoelectric element 150 ie, the dimension along the length extension direction of the beam-like structure, which can also be called the second length
  • the second piezoelectric element 150 may be directly connected to the second vibration element 120 .
  • the second piezoelectric element 150 can be directly attached to the second vibration element 120 .
  • the second piezoelectric element 150 may receive the vibration of the second vibration element 120 .
  • the resonance of the second piezoelectric element 150 may generate a third resonance peak with a frequency higher than the first resonance peak and the second resonance peak.
  • the frequency range of the third resonant frequency corresponding to the third resonant peak can be adjusted by adjusting the performance parameters (eg, geometric parameters, material parameters, etc.) of the second piezoelectric element 150 .
  • the third resonant frequency may range from 10 kHz to 40 kHz. For more description about the second piezoelectric element 150, see FIG. 10 and will not be described again here.
  • the acoustic output device 100 may also include a third piezoelectric element 160 .
  • the third piezoelectric element 160 may generate vibration in response to the electrical signal and transmit the vibration to the second piezoelectric element 150 .
  • the vibration of the third piezoelectric element 160 may be transmitted to the second piezoelectric element 150 through the third vibration element.
  • the third vibration element may be connected to the third piezoelectric element 160 at least through the second elastic element.
  • the resonance of the third piezoelectric element 160 may generate a fourth resonance peak with a lower frequency than the third resonance peak.
  • the acoustic output device 100 may also include a housing structure 170 .
  • the housing structure 170 may be configured to carry other components of the acoustic output device 100 (eg, the first vibrating element 110, the second vibrating element 120, the piezoelectric element 130, the elastic element 140, etc.).
  • the housing structure 170 may be a closed or semi-enclosed structure with a hollow interior, and other components of the acoustic output device 100 are located within or on the housing structure.
  • the shape of the housing structure may be a regular or irregular three-dimensional structure such as a cuboid, a cylinder, a truncated cone, or the like.
  • the housing structure When the user wears the acoustic output device 100, the housing structure may be positioned proximate the user's ears.
  • the housing structure may be located peripherally (eg, anterior or posterior) of the user's auricle.
  • the housing structure may be positioned over the user's ear without blocking or covering the user's ear canal.
  • the acoustic output device 100 may be a bone conduction earphone, and at least one side of the housing structure may be in contact with the user's skin.
  • the acoustic driver assembly (eg, the combination of the piezoelectric element 130, the first vibration element 110, the elastic element 140, and the second vibration element 120) in the bone conduction earphone converts the audio signal into mechanical vibration, which can pass through the shell structure and The user's bones transmit to the user's auditory nerve.
  • the acoustic output device 100 may be an air conduction earphone, and at least one side of the housing structure may or may not be in contact with the user's skin.
  • the side wall of the housing structure includes at least one sound guide hole.
  • the acoustic driver component in the air conduction earphone converts the audio signal into air conduction sound.
  • the air conduction sound can be radiated in the direction of the user's ear through the sound guide hole.
  • acoustic output device 100 may include fixed structure 180 .
  • the securing structure 180 may be configured to secure the acoustic output device 100 near the user's ear.
  • the fixing structure 180 may be physically connected to the housing structure 170 of the acoustic output device 100 (eg, glued, snapped, threaded, etc.).
  • the housing structure 170 of the acoustic output device 100 may be part of the fixed structure 180 .
  • the fixing structure 180 may include ear hooks, back hooks, elastic bands, spectacle legs, etc., so that the acoustic output device 100 can be better fixed near the user's ears and prevent the user from falling during use.
  • the securing structure 180 may be an earhook, which may be configured to be worn around the ear region.
  • the earhook can be a continuous hook and can be elastically stretched to be worn on the user's ear.
  • the earhook can also exert pressure on the user's auricle to make the acoustic output device 100 secure. It is fixed on the user's ear or head at a specific position.
  • the ear loops may be discontinuous straps.
  • an earhook may include a rigid portion and a flexible portion.
  • the rigid part may be made of rigid material (eg, plastic or metal), and the rigid part may be fixed with the housing structure 170 of the acoustic output device 100 through physical connection (eg, snapping, threaded connection, etc.).
  • the flexible portion may be made of elastic material (eg, cloth, composite, or/and neoprene).
  • the securing structure 180 may be a neck strap configured to be worn around the neck/shoulder area.
  • the fixing structure 180 may be a temple, which is a part of the glasses and is installed on the user's ears.
  • the acoustic output device 100 may also include one or more components (eg, signal transceiver, interaction module, battery, etc.). In some embodiments, one or more components of the acoustic output device 100 may be replaced with other components that perform similar functions.
  • the acoustic output device 100 may not include the fixed structure 180, and the housing structure 170 or a part thereof may have a human ear-adaptive shape (such as a circular ring, an ellipse, a polygon (regular or irregular), a U-shape, a V-shape). , semicircular) shell structure so that the shell structure can be hung near the user's ears.
  • a human ear-adaptive shape such as a circular ring, an ellipse, a polygon (regular or irregular), a U-shape, a V-shape.
  • semicircular shell structure so that the shell structure can be hung near the user's ears.
  • FIG. 2 is a schematic structural diagram of an exemplary acoustic output device according to some embodiments of the present application.
  • Figure 3 is a piezoelectric cantilever model illustrated in accordance with some embodiments of the present specification.
  • the acoustic output device 200 may include a first vibration element 110 , a second vibration element 120 , a piezoelectric element 130 and an elastic element 140 .
  • Piezoelectric element 130 may include a beam-like structure.
  • the first vibration element 110 is connected to one end of the piezoelectric element 130 (ie, the first position)
  • the second vibration element 120 is connected to the other end of the piezoelectric element 130 (ie, the second position) through the elastic element 140 .
  • the piezoelectric element 130 can drive the first vibration element 110 and the second vibration element 120 to vibrate. This vibration can produce two resonance peaks within the audible range of the human ear (as shown in Figure 4). What needs to be known is that when the piezoelectric element 130 vibrates, the amplitude of the end of the beam-like structure along the length extension direction is larger and the sensitivity is higher. Therefore, the first position and the second position are set at the end of the beam-like structure along the length extension direction. end, the sensitivity of the frequency response of the acoustic output device 200 can be improved.
  • the acoustic output device 200 may further include a securing structure (not shown) that may be configured to secure the acoustic output device 200 near the user's ear such that the piezoelectric element 130 is in contact with the first vibrating element 110 ( and/or the second vibrating element 120) constitute a cantilever beam structure.
  • a securing structure (not shown) that may be configured to secure the acoustic output device 200 near the user's ear such that the piezoelectric element 130 is in contact with the first vibrating element 110 ( and/or the second vibrating element 120) constitute a cantilever beam structure.
  • the structure in which one end of the piezoelectric element with a beam-like structure in the length direction is connected to a vibrating element and the other end is connected to another vibrating element through an elastic element can be simply called a single beam structure.
  • piezoelectric element 130 may include two piezoelectric sheets (ie, piezoelectric sheet 132 and piezoelectric sheet 134) and a substrate 136.
  • the substrate 136 may be configured as a carrier for components and components that deform in response to vibration.
  • the material of the substrate 136 may include one or a combination of metal (such as copper-clad foil, steel, etc.), phenolic resin, cross-linked polystyrene, etc.
  • the shape of substrate 136 may be determined based on the shape of piezoelectric element 130 . For example, if the piezoelectric element 130 includes a beam-like structure, the substrate 136 may be correspondingly configured in a strip shape. For another example, if the piezoelectric element 130 is a piezoelectric film, the substrate 136 can be configured in a plate shape or a sheet shape accordingly.
  • Piezoelectric sheets 132 and 134 may be components configured to provide a piezoelectric effect and/or an inverse piezoelectric effect.
  • the piezoelectric sheet can cover one or more surfaces of the substrate 136 and deform under the action of the driving voltage to drive the substrate 136 to deform, thereby realizing the piezoelectric element 130 to output vibration.
  • the piezoelectric sheet 132 and the piezoelectric sheet 134 are respectively attached to opposite sides of the substrate 136.
  • the substrate 136 can be configured according to the piezoelectric sheet 132 and the piezoelectric sheet 134.
  • the electric piece 134 expands and contracts along the length direction of the piezoelectric element 130 (as shown by arrow AA' in the figure) to generate vibration.
  • the piezoelectric piece located on one side of the substrate 136 can shrink along its length extension direction
  • the piezoelectric piece located on the other side of the substrate 136 can shrink along its length extension direction.
  • the material of the piezoelectric sheets 132 and/or 134 may include piezoelectric ceramics, piezoelectric quartz, piezoelectric crystals, piezoelectric polymers, etc., or any combination thereof.
  • Exemplary piezoelectric crystals may include crystal, sphalerite, harzburgite, tourmaline, red zincite, GaAs, barium titanate and its derivative structure crystals, KH2PO4, NaKC4H4O6 ⁇ 4H2O (Rosine salt), etc.
  • Exemplary piezoelectric ceramic materials may include barium titanate (BT), lead zirconate titanate (PZT), lead barium lithium niobate (PBLN), modified lead titanate (PT), aluminum nitride (AIN), zinc oxide (ZnO), etc., or any combination thereof.
  • Exemplary piezoelectric polymer materials may include polyvinylidene fluoride (PVDF) and the like.
  • the resonance of the elastic mass end composed of the second vibration element 120 and the elastic element 140 can generate a first resonance peak with a lower frequency, and the resonance of the piezoelectric element 130 and the first vibration element 110 can generate a second resonance peak with a higher frequency.
  • the first resonant frequency f 0 corresponding to the first resonant peak may range from 50 Hz to 2000 Hz
  • the second resonant frequency f 1 corresponding to the second resonant peak may range from 1 kHz to 10 kHz.
  • the vibration signal when the vibration signal is output from the mass element at the elastic mass end (ie, the second vibration element 120), a flat line is formed between the first resonance peak and the second resonance peak of the frequency response curve of the acoustic output device 200.
  • the frequency response curve (shown as curve L41 in Figure 4).
  • the size of the first resonant frequency corresponding to the first resonant peak is affected by the mass of the second vibration element 120 and the elastic coefficient of the elastic element 140 .
  • the first resonant frequency of the first resonant peak may be determined according to formula (1):
  • f 0 represents the first resonant frequency
  • k represents the elastic coefficient of the elastic element 140
  • m represents the mass of the second vibrating element 120 .
  • the second resonant frequency f 1 of the second resonant peak can be approximately determined by the first-order resonant peak of the frequency response of the free end 138 of the piezoelectric cantilever beam that is the same length as the piezoelectric element 130 of the beam-like structure.
  • the second resonant frequency of the second resonant peak can be determined according to formula (2):
  • b is the width of the piezoelectric element 130
  • E b is the elastic modulus of the material of the substrate 136
  • I b is the moment of inertia of the substrate 136 area
  • E p is the elastic modulus of the material of the piezoelectric sheet 132 or 134
  • I p is the pressure
  • ⁇ l is the density per unit length of the piezoelectric piece 132 or 134
  • l is the length of the piezoelectric element 130.
  • the piezoelectric cantilever beam may refer to the structure when the elastic element 140 and the second vibrating element 120 are not connected to the piezoelectric element 130 in the single beam structure as shown in FIG. 2 .
  • h b is the thickness of the substrate 136 .
  • h p is the thickness of the piezoelectric sheet 132 or 134.
  • the piezoelectric element 130 unit length density ⁇ l satisfies:
  • ⁇ b is the density of the substrate 136
  • ⁇ p is the material density of the piezoelectric sheet 132 or 134 .
  • the acoustic output device can be adjusted by designing the performance parameters (eg, material parameters (including elastic modulus, density), geometric parameters (including thickness, length), etc.) of the piezoelectric element 130 The second resonant frequency f 1 of 200.
  • performance parameters eg, material parameters (including elastic modulus, density), geometric parameters (including thickness, length), etc.
  • the flat curve range in the frequency response curve of the acoustic output device 200 can be adjusted by adjusting the length of the piezoelectric element 130 .
  • the beam-like structure of the piezoelectric element 130 should as short as possible.
  • the length of the beam-like structure of the piezoelectric element 130 cannot be too short.
  • the length of the piezoelectric element 130 in order to improve the sensitivity of the acoustic output device 200 in the low frequency band (for example, 100Hz-1000Hz) and have a flat frequency response curve in the range of 100Hz-500Hz, the length of the piezoelectric element 130 can be between 20mm and 30mm. between. In some embodiments, in order not to reduce the sensitivity of the acoustic output device 200 in the low frequency band (for example, 100Hz-800Hz) and to have a flat frequency response curve in the range of 200Hz-2000Hz, the length of the piezoelectric element 130 may be between 10mm and 20mm. between.
  • the length of the piezoelectric element 130 may be between 3 mm and 10 mm.
  • fine-tuning the resonance peak eg, the first resonance peak and/or the second resonance peak
  • the mass of the mass end ie, the first piezoelectric element 110
  • the range of the first resonant frequency f 0 and the second resonant frequency f 1 can first be determined (for example, 50Hz ⁇ f 0 ⁇ 2000Hz, 200Hz ⁇ f 1 ⁇ 40kHz, where f 0 ⁇ f 1 ).
  • the mass of the second vibration element 120 eg, vibration plate
  • the width of the piezoelectric element 130 can be determined according to the size requirements of the acoustic output device 200 (mainly according to the spatial dimensions).
  • the thickness of the substrate 136 and the thickness of the piezoelectric sheet may be determined based on the manufacturing process technology capabilities of the piezoelectric sheet.
  • the elastic coefficient of the elastic element 140 can be calculated:
  • the length of the piezoelectric element 130 can then be determined based on the material parameters (eg, elastic modulus, density, etc.) and geometric parameters (eg, thickness, length, etc.) of the piezoelectric element 130 .
  • curve L41 represents the frequency response curve of the acoustic output device 200 when the vibration signal is output from the elastic mass end.
  • Curve L42 represents the frequency response curve of the acoustic output device 200 when the vibration signal is output from the mass end.
  • the first resonance peak in the dotted circle X may be generated by the resonance of the second vibration element 120 and the elastic element 140 .
  • the second resonance peak in the dotted coil Y may be generated by the resonance of the piezoelectric element 130 and the first vibration element 110 .
  • curves L41 and L42 respectively have 2 resonance peaks in the range of 20Hz-2kHz.
  • the acoustic output device 200 has higher sensitivity in the mid-to-high frequency band (such as 600Hz-5kHz).
  • the vibration signal may be preferably output through the mass end.
  • the acoustic output device 200 When the vibration signal is output from the elastic mass end (corresponding to curve L41), the acoustic output device 200 has a relatively flat frequency response curve between the first resonance peak and the second resonance peak, so that the acoustic output device 200 has a frequency response curve in the audible range. Better sound quality.
  • FIG. 5 is a comparison diagram of the frequency response of the free end output of a piezoelectric cantilever beam and the frequency response of an acoustic output device including a single beam structure of the same beam length according to some embodiments of the present specification.
  • curves L51, L52, and L53 represent the frequency response curves of piezoelectric cantilever beams with lengths of 25 mm, 15 mm, and 5 mm respectively.
  • L51’, L52’, and L53’ respectively represent the frequency response curves of the acoustic output device with a single beam structure with beam lengths of 25mm, 15mm, and 5mm.
  • the beam-like structure of the piezoelectric element 130 in the single-beam structure should be as short as possible.
  • the first resonant frequency of the single beam structure ie, the single beam structure
  • the frequency of the resonance peak generated by the resonance between the elastic element 140 and the second vibration element 120 in the structure increases slightly due to the shortening of the beam and the reduction in mass, and at the first resonance peak A straight curve is formed between the second resonance peak and the second resonance peak.
  • FIG. 6 is a frequency response curve of an acoustic output device including first vibrating elements of different masses according to some embodiments of this specification. As shown in FIG. 6 , when the lengths of the piezoelectric elements 130 are equal, as the mass of the mass end (first vibration element 110 ) increases, the resonance peak of the acoustic output device 200 moves toward low frequency.
  • the mass of the mass end (the first vibrating element 110) can be increased or decreased to move the overall frequency response curve of the acoustic output device 200 left or right, thereby achieving the adjustment of the first resonant peak position (dashed circle O Fine-tuning of the resonant peak in ) and the second resonant peak (resonant peak in dotted circle P).
  • the quality of the first vibration element 110 can be adjusted according to the actually required flat frequency response range. For example, if the flat frequency response range of the acoustic output device needs to be biased toward low frequencies, a larger first vibrating element 110 may be provided.
  • the mass of the first vibration element 110 may be in the range of 0-10g.
  • the mass of the first vibrating element 110 may be between 0g and 0.5g.
  • the mass of the first vibrating element 110 may be between 0.5g and 1g.
  • the mass of the first vibrating element 110 may be between 1g and 2g.
  • the flat area of the frequency response curve of the acoustic output device 200 can be located between the first resonance peak and the second resonance peak. Therefore, it is necessary to make the frequency response curve of the acoustic output device 200 fall within a wider frequency range.
  • the distance between the first resonant peak and the second resonant peak can be increased, that is, the first resonant frequency can be reduced and/or the second resonant frequency can be increased. It can be seen from formula (2) that when a shorter piezoelectric element 130 is selected, the second resonant frequency increases.
  • the acoustic output device 200 may adopt a structure (which may also be called a single beam structure) as shown in FIG. 2 (for example, two structures symmetrically arranged in FIG. 7 or 17 ), which can improve sensitivity without affecting the overall output sound quality of the acoustic output device 200.
  • the symmetrical structure can also reduce unnecessary shaking and deflection to avoid adverse effects on the output sound quality of the acoustic output device 200 .
  • the symmetrical structure may include a plurality of piezoelectric elements 130 with a mass end (the first vibration element 110) in a centrally symmetrical structure, and a plurality of piezoelectric elements 130 with an elastic mass end (the elastic element 140 and the second vibration element 120) in a centrally symmetrical structure.
  • the structure is centrally symmetrical. For details, see Figure 7, Figure 8, Figure 16, Figure 17 and their related descriptions.
  • FIG. 7 is a schematic structural diagram of an acoustic output device shown in some embodiments of this specification.
  • the acoustic output device 700 may include a piezoelectric element 130 , a first vibration element 110 , a second vibration element 120 , and an elastic element 140 .
  • the piezoelectric element 130 may include a beam-like structure, and the first vibration element 110 is connected to the first position of the piezoelectric element 130 .
  • the second vibration element 120 may be connected to the second position of the piezoelectric element 130 through the elastic element 140 .
  • What needs to be known is that when the piezoelectric element 130 of the beam-like structure vibrates, the amplitude of its end is larger. Therefore, when the first position or the second position is located at the end of the beam-like structure, the output of the corresponding vibration element end is The response sensitivity is higher and the sound quality is better.
  • the first position may be located at the center of the length direction of the beam-like structure (for example, the first vibration element 110 may be attached to the middle position of a surface of the piezoelectric element 130 .)
  • the second position can be located at both ends of the length direction of the beam-like structure (for example, the elastic element 140 can be attached to both ends of the other side of the piezoelectric element 130), so that the piezoelectric element 130 can pass through the first position and be vertical.
  • a symmetrical structure in which the plane along the length extension direction of the beam-like structure is a plane of symmetry.
  • the piezoelectric element 130 can be regarded as including two sub-piezoelectric elements, and the first vibration element 110 and the second vibration element 120 can be regarded as including two sub-vibration elements respectively.
  • the structure in the dotted frame C or C' is the same as the single beam structure shown in Figure 2, that is, one end of the piezoelectric element is connected to the vibrating element, and the other end is connected to another vibrating element through an elastic element. Therefore, the structure of the acoustic output device 700 including two single-beam structures as shown in FIG. 7 may be called a double-beam structure.
  • piezoelectric element 130 may include two sub-piezoelectric elements.
  • each sub-piezoelectric element can be connected to a sub-vibration element.
  • the other end of each sub-piezoelectric element may be connected to the second vibration element 120 through the elastic member 140 .
  • each sub-piezoelectric element can belong to a single beam structure.
  • the piezoelectric elements in the two single beam structures can be in a straight line.
  • Two single beam structures can be arranged symmetrically.
  • acoustic device 700 may include a four-beam structure. In other words, the acoustic output device 700 may include 4 single beam structures.
  • the acoustic output device 700 may further include another piezoelectric element, which may be arranged in a "ten" shape with the piezoelectric element 130 .
  • the other piezoelectric element can be connected to the second vibrating element through an elastic element.
  • the multi-beam structure does not need to include a corresponding number of piezoelectric elements 130 , as long as the structure of the acoustic output device can be equivalent to a plurality of single-beam structures.
  • the dual-beam structure shown in FIG. 7 may include only one piezoelectric element 130.
  • a "cross"-shaped four-beam structure may only include two piezoelectric elements 130 arranged crosswise with each other.
  • the acoustic output device 700 may further include a connecting member 190 through which the second vibrating element 120 and the elastic element 140 may be connected to the second position of the piezoelectric element 130 .
  • the connecting piece 190 is disposed at the second position of the piezoelectric element 130 .
  • One end of the elastic element 140 is connected to the connecting piece 190 , and the other end of the elastic element 140 is connected to the second vibration element 120 .
  • the arrangement of the connecting member 190 allows the vibration at the second position of the piezoelectric element 130 to be transmitted to the elastic element 140 and the second vibrating element 120, and also allows the structure of the elastic element 140 to be arranged more flexibly.
  • the elastic element 140 may include a plurality of elastic rods.
  • the elastic rod can be connected to the piezoelectric element 130 through the connecting piece 190 .
  • the elastic rod may have longitudinal elasticity in the vibration direction of the second vibration element 120 , and may also have transverse elasticity in the vibration direction perpendicular to the second vibration element 120 .
  • the elastic element 140 may be a spring.
  • the second vibration element 120 may be a vibration plate. The length of the vibrating plate may be longer than or equal to the length of the beam-like structure.
  • the plurality of elastic rods may be axially symmetrically distributed about an axis passing through the center of the second vibration element 120 .
  • the acoustic output device 700 may include four elastic rods, and the four elastic rods are distributed on both sides of the second vibrating element 120 in an “X” shape.
  • the second vibration element 120 can correspond to the middle position of the beam-like structure, so that the second vibration element 120 is less likely to shake in a non-vibration direction, thereby improving the output response curve of the elastic mass end of the acoustic output device 700 Straightness.
  • FIG. 8 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • the acoustic output device 800 may have a similar structure to the acoustic output device 700 .
  • the acoustic output device 800 may include a piezoelectric element 130, a first vibration element 110, a second vibration element 120, and an elastic element 140.
  • the piezoelectric element 130 may include a beam-shaped structure, and the first vibration element 110 is connected to the center of the beam-shaped structure in its length extension direction.
  • the second vibrating element 120 can be connected to both ends of the length direction of the beam-like structure through the elastic element 140 .
  • the length of the second vibration element 120 may be longer than or equal to the length of the piezoelectric element 130 (or beam-like structure).
  • the second vibration element 120 may be a vibration plate having the same shape as the piezoelectric element 130 .
  • the vibration plate and the piezoelectric element 130 may be arranged opposite to each other.
  • the elastic element 140 may be a spring, or a rod made of other materials with a smaller elastic coefficient.
  • the elastic element 140 may be vertically arranged between the second vibration element 120 and the piezoelectric element 130 .
  • the number of the second vibration element 120 may be one or multiple.
  • the piezoelectric element 130 can be connected to the same second vibration element 120 through multiple elastic elements 140 (as shown in FIG. 8 ).
  • each second position of the piezoelectric element 130 may respectively correspond to a second vibration element 120 , and the piezoelectric element 130 may be connected to the corresponding second vibration element 120 through one or more elastic elements 140 .
  • Figure 9 is a frequency response curve when the vibration signal of the acoustic output device having a single beam structure, a double beam structure, and a four-beam structure is output from the elastic mass end according to some embodiments of this specification.
  • curve L91 represents the frequency response curve of an acoustic output device (for example, the acoustic output device 200 ) having a single beam structure when the vibration signal is output from the elastic mass end.
  • Curve L92 represents the frequency response curve of an acoustic output device (for example, the acoustic output device 700 ) with a double-beam structure when the vibration signal is output from the mass end.
  • Curve L93 represents the frequency response curve when the vibration signal of the acoustic output device with a four-beam structure is output from the mass end. It can be seen from Figure 9 that the output sensitivity of the acoustic output device using a double-beam structure (corresponding to curve L92) is higher than that of an acoustic output device with a single-beam structure (corresponding to curve L91). The sensitivity of the flat curve segment between the first resonant peak and the second resonant peak is increased by about 6dB.
  • the sensitivity of the flat curve segment between the first resonant peak and the second resonant peak of the acoustic output device with a four-beam structure is improved by approximately 12dB.
  • an additional second piezoelectric element 150 may be used to supplement the amplitude of the frequency band of the acoustic output device after the second resonance peak.
  • FIG. 10 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • the acoustic output device 1000 may include a first vibration element 110 , a second vibration element 120 , a first piezoelectric element 130 , an elastic element 140 and a connecting member 190 .
  • the acoustic output device 1000 may also include a second piezoelectric element 150 .
  • Each of the first piezoelectric element 130 and the second piezoelectric element 150 may include a beam-like structure.
  • the first vibration element 110 may be connected to the center position of the length extension direction of the piezoelectric element 130 .
  • the second vibration element 120 may be connected to the end of the piezoelectric element 130 through the elastic element 140 .
  • the length of the beam-like structure of the second piezoelectric element 150 (which may also be referred to as the second length) may be shorter than the length of the beam-like structure of the first piezoelectric element 130 (which may also be referred to as the first length). ).
  • the ratio between the second length and the first length may be in the range of 0.1-1. In some embodiments, the ratio between the second length and the first length may be in the range of 0.2-0.8. In some embodiments, the ratio between the second length and the first length may be in the range of 0.3-0.7. In some embodiments, the ratio between the second length and the first length may be in the range of 0.4-0.6.
  • the ratio between the second length and the first length may be 0.5. It can be seen from Figure 5 that when the length of the piezoelectric element is shorter, the frequency response of its output moves to high frequency. Therefore, piezoelectric elements with longer beam-like structures can be called low-frequency piezoelectric elements, and piezoelectric elements with shorter beam-like structures can be called high-frequency piezoelectric elements.
  • the entire structure of the acoustic output device 700 in FIG. 7 or the acoustic output device 800 in FIG. 8 may form a unit.
  • the acoustic output device 1000 may include a low frequency unit 1010 including a low frequency piezoelectric element and a second piezoelectric element 150.
  • the second piezoelectric element 150 may be connected to the second vibration element 120 so that it receives the vibration of the second vibration element 150 .
  • the second piezoelectric element 150 may be attached to the second vibration element 120.
  • the resonance of the second piezoelectric element 150 may generate a third resonance peak with a frequency higher than the second resonance frequency of the low frequency unit 1010 .
  • the third resonance frequency corresponding to the third resonance peak may range from 10 kHz to 40 kHz.
  • the third resonant frequency may range from 15 kHz to 35 kHz.
  • the third resonant frequency may range from 20 kHz to 30 kHz.
  • the acoustic output device 1000 may further include an elastic element 142 and a vibrating element 125 .
  • the vibration element 125 can be connected to the second piezoelectric element 150 through the elastic element 142 .
  • the second vibration element 120 , the vibration element 125 , the second piezoelectric element 150 and the elastic element 142 may constitute the high-frequency unit 1020 of the acoustic output device 1000 .
  • the acoustic output device 1000 may include a low frequency unit 1010 and a high frequency unit 1020.
  • the high frequency unit 1020 and the low frequency unit 1010 may be connected through the second vibration element 120 .
  • the elastic mass end of the low-frequency unit 1010 and the mass end of the high-frequency unit 1020 can share a vibrating element (ie, the second vibrating element 120), thereby realizing the connection between the high-frequency unit 1020 and the low-frequency unit 1010.
  • the vibration of the acoustic output device 1000 may be output through the first vibration element 110 and/or the vibration element 125 .
  • the second length of the second piezoelectric element 150 in the high frequency unit 1020 is shorter than the first length of the first piezoelectric element 130 in the low frequency unit 1010 .
  • the resonance of the second piezoelectric element 150 and the second vibration unit 130 may provide the acoustic output device 1000 with the above-mentioned third resonance peak.
  • the resonance of the elastic element 142 and the vibration element 125 of the high-frequency unit 1020 can also provide the acoustic output device 1000 with a fifth resonance peak.
  • the frequency response curve between the first resonant peak (ie, the fifth resonant peak) and the second resonant peak (ie, the third resonant peak) of the high-frequency unit 1020 is relatively flat.
  • the fifth resonant frequency corresponding to the fifth resonant peak may be smaller than or greater than the second resonant frequency corresponding to the second resonant peak.
  • the fifth resonant frequency can be made equal to The second resonant frequency is close, thereby reducing the frequency range in which the output frequency response of the high-frequency unit 1020 and the output frequency response of the low-frequency unit 1010 may interfere with each other, thereby improving the sound quality of the acoustic output device 1000.
  • the relationship between the second resonant peak (ie, the second resonant peak) of the low-frequency unit 1010 and the first resonant peak (ie, the fifth resonant peak) of the high-frequency unit 1020 may satisfy the following formula:
  • f 1 represents the frequency of the second resonant peak of the low-frequency unit 1010 (ie, the second resonant frequency);
  • f′ 0 represents the frequency of the first resonant peak of the high-frequency unit 1020 (ie, the fifth resonant frequency).
  • the fifth resonant frequency may be between 5kHz and 40kHz.
  • the fifth resonant frequency may be between 4kHz and 25kHz.
  • the fifth resonant frequency when the second resonant frequency is between 2kHz and 5kHz, the fifth resonant frequency may be between 100Hz and 10kHz. In some embodiments, when the second resonant frequency is between 1 kHz and 3 kHz, the fifth resonant frequency may be between 100 Hz and 5 kHz.
  • the number of the first piezoelectric element 130 of the low frequency unit 1010 of the acoustic output device 1000 and the number of the second piezoelectric element 150 of the high frequency unit 1020 may be one or more, and the number of the first piezoelectric element 130
  • the number of the second piezoelectric elements 150 may be the same or different.
  • the acoustic output device 1000 may only include one piezoelectric element 130 and a second piezoelectric element 150.
  • the vibration element 125 can be connected to both ends of the second piezoelectric element 150 through the elastic element 142.
  • the vibration element 120 may be connected to both ends of the second piezoelectric element 150 through the elastic element 140 .
  • the acoustic output device 1000 may also include two first piezoelectric elements 130 and a second piezoelectric element 150.
  • the vibration element 125 may be connected to both ends of the second piezoelectric element 150 through the elastic element 142.
  • the second vibration element 120 may be respectively connected to one end of each first piezoelectric element 130 through the elastic element 140.
  • the other end of each first piezoelectric element 130 may be connected to the first vibration element 110 .
  • Figure 11 is an output frequency response curve of an exemplary acoustic output device according to some embodiments of the present specification.
  • Figure 12 is the frequency response curve of the acoustic output device corresponding to different excitation signal phase differences.
  • Figure 13 is the frequency response curve of the acoustic output device corresponding to different excitation signal phase differences.
  • curve L111 represents the frequency response curve of the acoustic output device with a single beam structure when the vibration signal is output from the elastic mass end.
  • Curve L112 represents the frequency response curve of the acoustic output device with a double-beam structure when the vibration signal is output from the elastic mass end.
  • Curve L113 represents the frequency response curve of an acoustic output device with a dual-unit structure (ie, a high-frequency unit and a low-frequency unit) when the vibration signal is output from the elastic mass end.
  • the acoustic output device with a dual-unit structure may have the structure of the acoustic output device 1000 as shown in FIG. 10 , and the excitation signal (eg, excitation voltage) of the high-frequency unit 1020 has a phase difference with the excitation signal of the low-frequency unit 1010 is 0°. It can be seen from FIG. 11 that the acoustic output device 1000 will generate a resonance valley after the first resonance peak, which is caused by the resonance of the second vibrating element 120 in the middle.
  • the resonance valley can be filled by adjusting the phase between the excitation signals of the second piezoelectric element 150 of the high-frequency unit 1020 and the first piezoelectric element 130 of the low-frequency unit 1010 .
  • the absolute value of the phase difference between the high- and low-frequency unit excitation signals ie, the phase difference between the second piezoelectric element 150 and the piezoelectric element 130 ) ranges from 45° to 180°. It should be noted that, as shown in FIG.
  • the absolute value of the phase difference between the second piezoelectric element 150 and the first piezoelectric element 130 may range from 45° to 135°. In some embodiments, the absolute value of the phase difference between the second piezoelectric element 150 and the piezoelectric element 130 may range from 45° to 125°. In some embodiments, the absolute value of the phase difference between the second piezoelectric element 150 and the piezoelectric element 130 may range from 50° to 110°.
  • the absolute value of the phase difference between the second piezoelectric element 150 and the piezoelectric element 130 may range from 60° to 100°. In some embodiments, the absolute value of the phase difference between the second piezoelectric element 150 and the piezoelectric element 130 may range from 70° to 90°. In some embodiments, the range of the absolute value of the phase difference between the second piezoelectric element 150 and the piezoelectric element 130 may be 80°.
  • FIG. 14 is a schematic structural diagram of an exemplary acoustic output device according to some embodiments of this specification.
  • the acoustic output device 1400 may further include a third piezoelectric element 160 .
  • the third piezoelectric element 160 may vibrate in response to the driving piezoelectric element and transmit the vibration to the second piezoelectric element 150 .
  • each of the first piezoelectric element 130, the second piezoelectric element 150, and the third piezoelectric element 160 may include a beam-like structure.
  • the length of the beam-like structure of the third piezoelectric element 160 may be longer than the length of the beam-like structure of the second piezoelectric element 150 (ie, the second length).
  • the third length of the third piezoelectric element 160 may be between the second length of the second piezoelectric element 150 and the first length of the first piezoelectric element 130 .
  • the third length of third piezoelectric element 160 may be equal to the first length of first piezoelectric element 130 .
  • the third length of the third piezoelectric element 160 is less than the second length of the second piezoelectric element 150, and the third piezoelectric element 160 can resonate to generate a fourth resonance peak with a frequency lower than the third resonance peak.
  • the acoustic output device 1400 may also include a third vibrating element 127.
  • the third vibration element 127 may be connected to the second piezoelectric element 150 and is connected to the third piezoelectric element 160 at least through the second elastic element 145 . Therefore, the vibration of the third piezoelectric element 160 can be transmitted to the second piezoelectric element 150 through the third vibration element 127 .
  • the acoustic output device 1400 may also include a vibrating element 129.
  • the vibration element 129 may be located at the center of the length direction of the third piezoelectric element 160 .
  • the third vibration element 127, the vibration element 129, the third piezoelectric element 160 and the second elastic element 145 may constitute a second low frequency unit 1015 with a structure similar to the low frequency unit 1010 (which may also be referred to as the first low frequency unit).
  • the acoustic output device 1000 may include a low frequency unit 1010, a second low frequency unit 1015, and a high frequency unit 1020.
  • the low frequency unit 1010 and the second low frequency unit 1015 may be connected in parallel to improve the low frequency response of the acoustic output device 1400 (as shown in FIG. 15 ).
  • the acoustic output device 1000 includes a low frequency unit 1010, a second low frequency unit 1015, and a high frequency unit 1020, which may also be referred to as the acoustic output device 1000 including a three-unit structure.
  • the first piezoelectric element 130 and the third piezoelectric element 160 may be arranged in parallel.
  • the elastic mass end of the low frequency unit 1010 ie, the second vibration element 120
  • the second piezoelectric element 150 may be directly connected to the connected second vibration element 120 and/or the third vibration element 127 .
  • the entire connected second vibration element 120 and the third vibration element 127 can serve as the mass end of the high-frequency unit 1020 .
  • the mass end of the low-frequency unit 1010 ie, the first vibration element 110
  • the mass end of the second low-frequency unit 1015 ie, the vibration unit 129) may be connected (as shown in Figure 14), or may be Detached.
  • the separated structure allows the mass end of the low-frequency unit 1010 and the mass end of the second low-frequency unit 1015 to vibrate separately.
  • the connected structure can make the vibration output frequency responses of the mass end of the low-frequency unit 1010 and the mass end of the second low-frequency unit 1015 consistent.
  • the mass terminal of the low frequency unit 1010 may be connected to the mass terminal of the second low frequency unit 1015 .
  • the structures of the low-frequency unit 1010, the low-frequency unit 1015, and the high-frequency unit 1020 may be the same or different.
  • the low frequency unit 1010 and the low frequency unit 1015 may each have a structure like the acoustic output device 800
  • the high frequency unit 1020 may have a structure like the acoustic output device 700
  • the low frequency unit 1010, the low frequency unit 1015, and the high frequency unit 1020 may each have a structure such as the acoustic output device 800.
  • the acoustic output device 1400 may not include the third vibrating element 127.
  • the vibration of the third piezoelectric element 160 of the low frequency unit 1015 can be transmitted to the second vibration element 120 through the second elastic element 145, and then transmitted to the second piezoelectric element 150 from the second vibration element 120.
  • the second vibration element 120 and the third vibration element 127 can be regarded as a whole, and the vibration of the piezoelectric element 130 of the low frequency unit 1010 and the vibration of the third piezoelectric element 160 of the low frequency unit 1015 are equal. Passed to the same second vibrating element, thereby reducing the number of vibrating elements and saving resources.
  • Figure 15 is an output frequency response curve diagram of acoustic output devices with different structures according to some embodiments of this specification.
  • curve L151 represents the frequency response curve of an acoustic output device (for example, the acoustic output device 1000 ) with a dual-unit structure (ie, a high-frequency unit and a low-frequency unit) when the vibration signal is output from the elastic mass end.
  • Curve L152 represents the frequency response curve of the acoustic output device 1400 including the low frequency unit 1010, the second low frequency unit 1015 and the high frequency unit 1020 when the vibration signal is output from the mass end. It can be seen from FIG. 15 that the low-frequency response of the acoustic output device 1400 (corresponding to 20Hz-500Hz in the curve L152) is significantly higher than the low-frequency response of the acoustic output device 1000 with a dual-unit structure.
  • FIG. 16 is a schematic structural diagram of an exemplary acoustic output device according to some embodiments of this specification.
  • the acoustic output device 1600 may include a first vibration element 110 , a second vibration element 120 , a piezoelectric element 130 , and an elastic element 140 .
  • the piezoelectric element 130 may include a beam-like structure
  • the first vibration element 110 may include sub-vibration elements 112 and 114 .
  • the sub-vibration elements 112 and 114 may be respectively connected at both ends (also referred to as the first position) of the length extension direction of the piezoelectric element 130 .
  • the second vibration element 120 can be connected to the second position of the piezoelectric element 130 through the elastic element 140.
  • the second vibration element 120 can be disposed at the center position (ie, the second position) of the length extension direction of the piezoelectric element 130 through the connecting member 190 and the elastic element 140 .
  • piezoelectric element 130 may include two sub-piezoelectric elements. One end of each sub-piezoelectric element can be connected to a sub-vibrating element (112 or 114) respectively. The other end of each sub-piezoelectric element can be connected through a connector 190 .
  • the structure of the acoustic output device 1600 can be considered to include two single beam structures as shown in FIG. 2 .
  • the masses of the sub-vibration elements 112 and 114 can be the same, and the two first positions where the sub-vibration elements 112 and 114 are connected to the piezoelectric element 130 are symmetrical with respect to the center of the piezoelectric element 130, so that the sub-vibration elements 112 and 114 are connected to the piezoelectric element 130.
  • Elements 112 and 114 are symmetrical about the center of piezoelectric element 130 .
  • the symmetrical structure balances each other to reduce unnecessary shaking of the sub-vibrating element 112 and improve the flatness of the frequency response curve of the acoustic output device 1600.
  • the number of piezoelectric elements 130 may include one or more.
  • the number of first vibration elements 110 directly connected to the piezoelectric element 130 may include multiple.
  • the number of piezoelectric elements 130 may be two.
  • the two piezoelectric elements 130 may be cross-connected together in a "X" shape through connectors.
  • the first vibration element 110 may be disposed at an end of each piezoelectric element 130 .
  • the second vibrating element 120 can be connected at the intersection position of the "X" shape through the elastic element 140 .
  • the number of piezoelectric elements 130 can be four, and one end of the four piezoelectric elements 130 can be connected through the connecting member 190, so that the four piezoelectric elements 130 are arranged in a "cross" shape around the connecting member 190.
  • each piezoelectric element 130 can be connected to a first vibration element 110 .
  • multiple piezoelectric elements 130 may also correspond to one first vibration element 110 .
  • four piezoelectric elements 130 are centered on the connecting piece 190 and are arranged in a "cross" shape on the peripheral side of the connecting piece 190.
  • Each piezoelectric element 130 can be connected to an annular first vibration element 110. .
  • the elastic element 140 may include a plurality of elastic rods.
  • the elastic rod can be connected to the piezoelectric element 130 through the connecting piece 190 .
  • the elastic rod may have a first elastic coefficient in the vibration direction of the second vibration element 120
  • the elastic rod may also have a second elastic coefficient in a vibration direction perpendicular to the second vibration element 120 .
  • the second elastic coefficient can be Much larger than the first elastic coefficient.
  • the ratio of the second elastic coefficient to the first elastic coefficient may be greater than or equal to 1 ⁇ 10 3 .
  • the ratio of the second elastic coefficient to the first elastic coefficient may be 1 ⁇ 10 3 , 1 ⁇ 10 4 , 1 ⁇ 10 5 , 1 ⁇ 10 6 , 1 ⁇ 10 10 and so on.
  • the elastic element 140 may be a vibration transmitting plate.
  • FIG. 17 is a schematic structural diagram of an exemplary acoustic output device according to some embodiments of this specification.
  • the acoustic output device 1700 may have a similar structure to the acoustic output device 1600 .
  • the elastic element 140 may also be a spring or a rod made of other materials with a smaller elastic coefficient.
  • the elastic element 140 may be vertically arranged between the second vibration element 120 and the piezoelectric element 130 .
  • Figure 18 is a frequency response curve diagram when the vibration signal of the acoustic output device having a single beam structure, a double beam structure, and a four-beam structure respectively shown in some embodiments of this specification is output from the elastic mass end.
  • curve L181 represents the frequency response curve of an acoustic output device (for example, the acoustic output device 200 ) having a single beam structure when the vibration signal is output from the elastic mass end.
  • Curve L182 represents the frequency response curve when the vibration signal of an acoustic output device (for example, the acoustic output device 1600 ) having a double-beam structure and the elastic mass end is located at the middle position in the length direction of the piezoelectric element is outputted from the elastic mass end.
  • Curve L183 represents the frequency response curve when the vibration signal of the acoustic output device having a four-beam structure and the elastic mass end is located at the middle position in the length direction of the piezoelectric element is output from the elastic mass end.
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” means a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned two or more times in different places in this application does not necessarily refer to the same embodiment. .
  • certain features, structures or characteristics in one or more embodiments of the present application may be appropriately combined.
  • aspects of the present application may be illustrated and described in several patentable categories or circumstances, including any new and useful process, machine, product, or combination of matter, or combination thereof. any new and useful improvements. Accordingly, various aspects of the present application may be executed entirely by hardware, may be entirely executed by software (including firmware, resident software, microcode, etc.), or may be executed by a combination of hardware and software.
  • the above hardware or software may be referred to as "data block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of the present application may be embodied as a computer product including computer-readable program code located on one or more computer-readable media.
  • Computer storage media may contain a propagated data signal embodying the computer program code, such as at baseband or as part of a carrier wave.
  • the propagated signal may have multiple manifestations, including electromagnetic form, optical form, etc., or a suitable combination.
  • Computer storage media may be any computer-readable media other than computer-readable storage media that enables communication, propagation, or transfer of a program for use in connection with an instruction execution system, apparatus, or device.
  • Program code located on a computer storage medium may be transmitted via any suitable medium, including radio, electrical cable, fiber optic cable, RF, or similar media, or a combination of any of the foregoing.
  • numbers are used to describe the quantities of components and properties. It should be understood that such numbers used to describe the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Grooming. Unless otherwise stated, “about,” “approximately,” or “substantially” means that the stated number is allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending on the desired features of the individual embodiment. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical fields and parameters used to confirm the breadth of the ranges in some embodiments of the present application are approximations, in specific embodiments, such numerical values are set as accurately as feasible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Multimedia (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

本说明书实施例提供一种声学输出装置,其包括第一振动元件、第二振动元件以及压电元件。所述第一振动元件物理连接于所述压电元件的第一位置,所述第二振动元件至少通过弹性元件连接于所述压电元件的第二位置。所述压电元件响应于电信号而带动所述第一振动元件和所述第二振动元件振动,所述振动产生人耳可听范围内的两个谐振峰。

Description

声学输出装置 技术领域
本说明书涉及声学技术领域,特别涉及一种声学输出装置。
背景技术
压电式的声学输出装置是利用压电材料的逆压电效应产生振动向外辐射声波,与传动电动式扬声器相比,具有机电换能效率高、能耗低、体积小、集成度高等优势。在当今器件小型化和集成化的趋势下,压电式的声学输出装置具有极其广阔的前景与未来。但是,压电式的声学输出装置存在低频响应差、在人耳可听域内(例如,20Hz-20kHz)的振动模态较多等问题,从而导致其无法在可听域内形成较为平直的频响曲线,造成音质较差的问题。
因此,希望提供一种声学输出装置,以提升压电式声学输出装置的低频响应,同时能在可听域内形成较为平直的频响曲线,提升声学输出装置的音质效果。
发明内容
本说明书实施例可以提供一种声学输出装置,包括第一振动元件、第二振动元件以及压电元件,所述第一振动元件物理连接于所述压电元件的第一位置,所述第二振动元件至少通过弹性元件连接于所述压电元件的第二位置,其中,所述压电元件响应于电信号而带动所述第一振动元件和所述第二振动元件振动,所述振动产生人耳可听范围内的两个谐振峰。
在一些实施例中,所述第二振动元件和所述弹性元件的谐振产生所述两个谐振峰中频率较低的第一谐振峰,所述压电元件和所述第一振动元件的谐振产生所述两个谐振峰中频率较高的第二谐振峰。
在一些实施例中,所述第一谐振峰的频率在50Hz-2000Hz范围内,所述第二谐振的频率在1kHz-10kHz范围内。
在一些实施例中,所述第二振动元件和所述弹性元件通过所述连接件连接于所述压电元件的所述第二位置。
在一些实施例中,所述压电元件包括梁状结构,所述第一位置位于所述梁状结构的长度延伸方向的中心。
在一些实施例中,所述第二位置位于所述梁状结构的所述长度延伸方向的端部。
在一些实施例中,在所述梁状结构的所述长度延伸方向上,所述第二振动元件的尺寸不小于所述压电元件的尺寸。
在一些实施例中,所述振动通过所述第二振动元件以骨传导的方式传递给用户。
在一些实施例中,声学输出装置还包括第二压电元件,所述第二压电元件接收所述第二振动元件的振动,所述第二压电元件谐振产生频率高于所述两个谐振峰的第三谐振峰。
在一些实施例中,所述第三谐振峰的频率在10kHz-40kHz范围内。
在一些实施例中,声学输出装置还包括:第四振动元件,所述第四振动元件至少通过第三弹性元件连接在所述第二压电元件的第三位置,所述第三弹性元件和所述第四振动元件谐振产生频率低于所述第三谐振峰频率的第五谐振峰,其中,所述第二谐振峰与所述第五谐振峰对应的频率之间的差值的绝对值与所述第二谐振峰对应的频率之间的比值范围为0-4。
在一些实施例中,所述压电元件和所述第二压电元件均包括梁状结构,所述第二压电元件的梁状结构的长度短于所述压电元件的梁状结构的长度。
在一些实施例中,所述第二压电元件的梁状结构的长度与所述压电元件的梁状结 构的长度之间的比值在0.1-1范围内。
在一些实施例中,所述压电元件与所述第二压电元件的激励信号的相位差的绝对值在45°-135°范围内。
在一些实施例中,声学输出装置还包括第三压电元件,所述第三压电元件振动并传递给所述第二压电元件,所述第三压电元件谐振产生频率低于所述第三谐振峰的第四谐振峰。
在一些实施例中,声学输出装置还包括第三振动元件,所述第三振动元件至少通过第二弹性元件与所述第三压电元件相连,所述第三压电元件的振动通过所述第三振动元件传递给所述第二压电元件。
在一些实施例中,所述压电元件包括梁状结构,所述第一振动元件包括两个子振动元件,其中,所述两个子振动元件分别连接在所述压电元件的长度延伸方向的两端。
在一些实施例中,所述两个子振动元件的质量相同,且所述两个子振动元件与所述压电元件连接的两个第一位置相对于所述压电元件的中心对称。
在一些实施例中,所述压电元件的长度在3mm-30mm范围内。
在一些实施例中,所述压电元件包括两层压电片和基板,所述两层压电片分别贴附在所述基板的相反两侧,所述基板根据所述两层压电片沿长度延伸方向的伸缩产生振动。
本申请的一部分附加特性可以在下面的描述中进行说明。通过对以下描述和相应附图的研究或者对实施例的生产或操作的了解,本申请的一部分附加特性对于本领域技术人员是明显的。本申请的特征可以通过实践或使用以下详细实例中阐述的方法、工具和组合的各个方面来实现和获得。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书的一些实施例所示的示例性声学输出装置的结构框图;
图2是根据本申请的一些实施例所示的示例性声学输出装置的结构示意图;
图3是根据本说明书一些实施例所示的压电悬臂梁模型;
图4是根据本说明书一些实施例所示的示例性声学输出装置的弹性质量端与质量端的输出频响曲线图;
图5是根据本说明书一些实施例所示的压电悬臂梁自由端输出的频响与包括相同梁长度的单梁结构的声学输出装置的频响的对比图;
图6是根据本说明书一些实施例所示的包括不同质量的第一振动元件的声学输出装置的频响曲线;
图7是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图8是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图9是根据本说明书一些实施例所示的分别具有单梁结构、双梁结构和四梁结构的声学输出装置的振动信号由弹性质量端输出时的频响曲线;
图10是根据本说明书一些实施例所示的声学输出装置的结构示意图;
图11是根据本说明书一些实施例所示的示例性声学输出装置的输出频响曲线;
图12是不同的激励信号相位差所对应声学输出装置的频响曲线;
图13是不同的激励信号相位差所对应声学输出装置的频响曲线;
图14是根据本说明书一些实施例所示的示例性声学输出装置的结构示意图;
图15是根据本说明书一些实施例所示的不同结构的声学输出装置的输出频响曲线 图;
图16是根据本说明书一些实施例所示的示例性声学输出装置的结构示意图;
图17是根据本说明书一些实施例所示的示例性声学输出装置的结构示意图;
图18是根据本说明书一些实施例所示的分别具有单梁结构、双梁结构和四梁结构的声学输出装置的振动信号由弹性质量端输出时的频响曲线图。
具体实施例
为了更清楚地说明本说明书的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其他类似情景。应当理解,给出这些示例性实施例仅仅是为了使相关领域的技术人员能够更好地理解进而实现本说明书,而并非以任何方式限制本说明书的范围。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。
在本说明书的描述中,需要理解的是,术语“第一”、“第二”、“第三”、“第四”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括至少一个该特征。在本说明书的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本说明书中,除非另有明确的规定和限定,术语“连接”、“固定”等术语应做广义理解。例如,术语“连接”可以指固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本说明书中的具体含义。
本申请实施例提供的声学输出装置可以利用逆压电效应通过压电元件产生振动而输出声音。通常,压电元件可以采用d33与d31两种工作模式。在d33工作模式下,压电元件的振动方向(也可以称为位移输出方向)与电学方向(也可以称为极化方向)相同,其谐振频率较高且输出振幅小,低频响应较差。在d31工作模式下,压电元件的振动方向与电学方向垂直。在d31工作模式下,虽然通过增长压电元件的长度可以提供频率足够低的低频峰,输出振幅也显著增加,但在这种情况下,压电元件在可听域内(例如,20Hz-20kHz)存在较多的振动模态,表现为频响曲线峰谷较多,因此声学输出装置(或压电式扬声器)的音质仍然较差。
为解决压电式扬声器的低频响应差以及可听域内模态较多的问题,本说明书的实施例提供的声学输出装置可以包括第一振动元件、第二振动元件以及压电元件。其中,第一振动元件物理连接于压电元件的第一位置,第二振动元件至少通过弹性元件连接于压电元件的第二位置。压电元件可以响应于电信号而带动第一振动元件和第二振动元件振动。该振动能够产生人耳可听范围内的两个谐振峰(例如,第一谐振峰和第二谐振峰)。
根据本说明书的实施例,通过利用第二振动元件和弹性元件的谐振产生两个谐振峰中频率较低(例如,50Hz-2000Hz)的第一谐振峰,可以提升压电元件的低频响应。此外,由于压电元件和第一振动元件的谐振可以产生两个谐振峰中频率较高(例如,1kHz-10kHz)的第二谐振峰,当声音信号通过第二振动元件振动输出(例如第二振动元件与用户脸部贴合以向用户传递骨导声音,或者第二振动元件推动空气产生向用户耳朵辐射的气导声音)时,可以使得第一谐振峰和第二谐振峰之间的频响曲线较为平直,从而提升声学输出装置的音质。在一些实施例中,当声音信号通过第一振动元件振动输出(例如,第一振动元件与用户脸部贴合以向用户传递骨导声音,或者第一振动元件推动空气产生向用户耳朵辐射的气导声音)时,可以提升声学输出装置在中高频段(例如,500Hz–10kHz)的灵敏度,从而有利于声学输出装置在特殊场景下的应用。
下面结合附图对本申请实施例提供的声学输出装置进行详细说明。
图1是根据本说明书的一些实施例所示的示例性声学输出装置的结构框图。在一些实施例中,声学输出装置100可以为骨导声学输出装置、气导声学输出装置或骨气导结合的声学输出装置。在一些实施例中,声学输出装置100可以包括音响、耳机、眼镜、助听器、增强现实(Augmented Reality,AR)设备、虚拟现实(Virtual Reality,VR)设备等或具有音频播放功能的其他设备(如手机、电脑等)。在一些实施例中,声学输出装置100可以为开放式的声学输出装置。如图1所示,声学输出装置100可以包括第一振动元件110、第二振动元件120、压电元件130及弹性元件140。
第一振动元件110与第二振动元件120均可以为具有一定质量的质量块。在一些实施例中,第一振动元件110和/或第二振动元件120可以包括振动板、振膜等,以使声学输出装置100通过第一振动元件110和/或第二振动元件120输出振动。在一些实施例中,质量块的材质可以包括但不限于金属(例如,铜、铁、镁、铝、钨等)、合金(铝合金、钛合金、钨合金等)、高分子材料(例如,聚四氟乙烯、硅橡胶等)等材质。在一些实施例中,第一振动元件110的材质与第二振动元件120的材质可以相同也可以不同。在一些实施例中,第一振动元件110的质量与第二振动元件120的质量可以相同也可以不同。在一些实施例中,第一振动元件110或第二振动元件120的质量可以小于10g。在一些实施例中,第一振动元件110或第二振动元件120的质量可以小于8g。在一些实施例中,第一振动元件110或第二振动元件120的质量可以小于6g。在一些实施例中,第一振动元件110或第二振动元件120的质量可以小于5g。
第一振动元件110可以物理连接(例如,胶接、卡接、螺纹连接、焊接等)于压电元件130的第一位置,第二振动元件120可以至少通过弹性元件140连接于压电元件130的第二位置。在一些实施例中,第一位置可以与第二位置相同或不同。例如,当压电元件130具有梁状结构时,第一位置和第二位置都可以位于压电元件130的梁状结构长度延伸方向的端部。又例如,如图2所示,第一位置和第二位置可以分别位于压电元件130的梁状结构的长度延伸方向的两端。再例如,如图7所示,第一位置可以位于压电元件130的中心,第二位置可以位于压电元件130的梁状结构的长度延伸方向的任意一端。在本说明书中,压电元件130的梁状结构的长度延伸方向可以指梁状结构在该延伸方向上的特征尺寸大于梁状结构在其他任意方向的特征尺寸1倍以上的方向。在一些实施例中,梁状结构可以包括直线型的梁状结构、弯曲型的梁状结构等。在本说明书中,将以直线型的梁状结构作为示例进行说明,其并不旨在限制本说明书的范围。在一些实施例中,弹性元件140可以直接连接于压电元件130的第二位置。在一些实施例中,声学输出装置100可以包括连接件(未示出)。第二振动元件120和弹性元件140可以通过连接件连接于压电元件130的第二位置。例如,如图7所示,第二振动元件120和弹性元件140可以通过连接件190 连接于压电元件130的端部(即第二位置)。
第一振动元件110与第二振动元件120可以分别响应于压电元件130的振动而产生振动。具体地,压电元件130可以将振动直接传递给第一振动元件110,压电元件130的振动可以通过弹性元件140传递至第二振动元件120。在本说明书实施例中,直接与压电元件130连接的第一振动元件110可以称为质量端,而通过弹性元件140与压电元件130连接的第二振动元件120可以称为弹性质量端。
在一些实施例中,弹性元件140的材料可以为任何具有传输振动能力的材料。例如,弹性元件140的材料可以为硅胶、泡棉、塑胶、橡胶、金属等,或其任意组合。在一些实施例中,弹性元件140可以是具有良好弹性(即易发生弹性形变)的元器件。例如,弹性元件140可以包括弹簧(例如空气弹簧、机械弹簧、电磁弹簧等)、传振片、弹片、基板等,或其任意组合。在一些实施例中,弹性元件140的数量可以是一个或多个。例如,如图2所示,第二振动元件120可以通过一个弹性元件140与压电元件130连接。又例如,如图7所示,第二振动元件120可以通过4个弹性元件140与压电元件130连接。在一些实施例中,弹性元件140的形状可以是环形、杆状结构等。在一些实施例中,弹性元件140可以以过压电元件130的中心的轴成轴对称分布。
压电元件130可以是能利用逆压电效应将电能转换为机械能的电能转换设备。在一些实施例中,压电元件130可以由压电陶瓷、压电石英、压电晶体、压电聚合物等具有压电效应的材料组成。在一些实施例中,压电元件130可以为片状、环状、棱型、长方体型、柱型、球型等形状,或其任意组合,也可以为其他不规则形状。在一些实施例中,压电元件130可以包括梁状结构(如图2、图7、图16等所示)。作为示例,其可以包括两层压电片和基板,两层压电片分别贴附在基板的相反两侧。基板可以根据两层压电片沿梁状结构的长度延伸方向的伸缩产生振动(例如,沿着垂直于基板表面的方向振动)。更多关于梁状结构的描述可以参见图2及其描述。
在一些实施例中,当压电元件130包括梁状结构时,第一位置和第二位置可以分别位于压电元件130的两个端部(如图2所示)。在一些实施例中,当压电元件130包括梁状结构时,第一位置可以位于梁状结构的长度延伸方向的中心。第二位置可以位于梁状结构的长度延伸方向的端部(如图7所示)。在一些实施例中,当压电元件130包括梁状结构时,第一振动元件110可以包括两个子振动元件,其中,两个子振动元件可以分别连接在压电元件130的长度延伸方向的两端(即第一位置)(如图17所示)。第二位置可以位于压电元件130的长度延伸方向的中心。
压电元件130可以在驱动电压(或激励信号)的作用下发生变形,从而产生振动。该振动可以带动第一振动元件110和第二振动元件120振动,从而产生人耳可听范围内(例如,20Hz-20kHz)的两个谐振峰。具体地,第二振动元件120和弹性元件140的谐振可以产生所述两个谐振峰中频率较低(例如,20Hz-2000Hz)的第一谐振峰(如图4中的虚线圈X中的谐振峰),压电元件130和第一振动元件110的谐振可以产生所述两个谐振峰中频率较高(例如,1kHz-10kHz)的第二谐振峰(如图4中的虚线圈Y中的谐振峰)。第二谐振峰对应的频率(也可以称为第二谐振频率)可以高于第一谐振峰对应的频率(也可以称为第一谐振频率)。
在一些实施例中,通过调整第二振动元件120的质量和/或弹性元件140的弹性系数可以调整第一谐振峰对应的第一谐振频率的频率范围。在一些实施例中,第一谐振频率的频率范围可以为20Hz-2000Hz。在一些实施例中,第一谐振频率的频率范围可以为50Hz-1500Hz。在一些实施例中,第一谐振频率的频率范围可以为100Hz-1000Hz。在一些实施例中,第一谐振频率的频率范围可以为150Hz-500Hz。在一些实施例中,第一谐振频 率的频率范围可以为150Hz-200Hz。
在一些实施例中,通过调整压电元件130的性能参数可以调整第二谐振峰对应的第二谐振频率的频率范围。在一些实施例中,压电元件130的性能参数可以包括几何参数、材料参数等。示例性的几何参数可以包括厚度、长度等。示例性的材料参数可以包括弹性模量、密度等。在一些实施例中,第二谐振频率可以是压电元件130的固有频率。在一些实施例中,第二谐振频率的频率范围可以为1kHz-10kHz。在一些实施例中,第二谐振频率的频率范围可以为1kHz-9kHz。在一些实施例中,第二谐振频率的频率范围可以为1kHz-8kHz。在一些实施例中,第二谐振频率的频率范围可以为1kHz-7kHz。在一些实施例中,第二谐振频率的频率范围可以为1kHz-6kHz。在一些实施例中,第二谐振频率的频率范围可以为2kHz-5kHz。在一些实施例中,第二谐振频率的频率范围可以为3kHz-4kHz。
在一些实施例中,可以在声学输出装置100中的一个或多个元件上附加阻尼,从而使声学输出装置100的输出的频响曲线更加平滑。例如,可以使用阻尼效果较大的材料(例如,硅胶、橡胶、泡棉等)来制备弹性元件140。又例如,可以在压电元件130上涂覆阻尼材料。再例如,可以在第一振动元件110和/或第二振动元件120上涂覆阻尼材料或电磁阻尼。
在一些实施例中,压电元件130(或声学输出装置100)的振动可以通过第一振动元件110和/或第二振动元件120以骨传导的方式传递给用户。示例性的,第二振动元件120可以直接与用户的头部皮肤接触,压电元件130的振动通过第二振动元件120传递至用户面部的骨骼和/或肌肉,最终传递到用户的耳部。又例如,第二振动元件120也可以不与人体直接接触,压电元件130的振动可以通过第二振动元件120传递至声学输出装置的外壳,再由外壳传递至用户面部骨骼和/或肌肉,最终传递到用户的耳部。在一些实施例中,压电元件130的振动也可以通过第一振动元件110和/或第二振动元件120以气传导的方式传递给用户。示例性地,第二振动元件120可以直接带动其周围的空气振动,从而通过空气传递至用户耳部。又例如,第二振动元件120可以进一步地与振膜相连,第二振动元件120的振动可以传递至振膜,再由振膜带动空气振动,从而通过空气传递至用户耳部。
在一些实施例中,声学输出装置100还可以包括第二压电元件150。在一些实施例中,压电元件130(也可以称为第一压电元件130)和第二压电元件150均可以包括梁状结构。第二压电元件150的梁状结构的长度(即沿梁状结构的长度延伸方向的尺寸,也可以称为第二长度)可以短于第一压电元件130的梁状结构的长度(也可以称为第一长度)。在一些实施例中,第二压电元件150可以直接与第二振动元件120连接。例如,第二压电元件150可以直接贴附在第二振动元件120上。第二压电元件150可以接收第二振动元件120的振动。第二压电元件150谐振可以产生频率高于第一谐振峰和第二谐振峰的第三谐振峰。在一些实施例中,通过调整第二压电元件150的性能参数(例如,几何参数、材料参数等)可以调整第三谐振峰对应的第三谐振频率的频率范围。在一些实施例中,第三谐振频率的频率范围可以为10kHz-40kHz。更多关于第二压电元件150的描述可以参见图10,此处不再赘述。
在一些实施例中,声学输出装置100还可以包括第三压电元件160。第三压电元件160可以响应于电信号产生振动并将振动传递给第二压电元件150。在一些实施例中,第三压电元件160的振动可以通过第三振动元件传递给第二压电元件150。在一些实施例中,第三振动元件可以至少通过第二弹性元件与第三压电元件160相连。第三压电元件160谐振可以产生频率低于第三谐振峰的第四谐振峰。更多关于第三压电元件160的描述可以参见图14,此处不再赘述。
在一些实施例中,声学输出装置100还可以包括壳体结构170。壳体结构170可以被配置为承载声学输出装置100的其他部件(例如,第一振动元件110、第二振动元件120、压电元件130、弹性元件140等)。在一些实施例中,壳体结构170可以是内部中空的封闭式或半封闭式结构,且声学输出装置100的其他部件位于壳体结构内或上。在一些实施例中,壳体结构的形状可以为长方体、圆柱体、圆台等规则或不规则形状的立体结构。当用户佩戴声学输出装置100时,壳体结构可以位于靠近用户耳朵附近的位置。例如,壳体结构可以位于用户耳廓的周侧(例如,前侧或后侧)。又例如,壳体结构可以位于用户耳朵上但不堵塞或覆盖用户的耳道。在一些实施例中,声学输出装置100可以为骨导耳机,壳体结构的至少一侧可以与用户的皮肤接触。骨导耳机中声学驱动器组件(例如,压电元件130、第一振动元件110、弹性元件140和第二振动元件120的组合)将音频信号转换为机械振动,该机械振动可以通过壳体结构以及用户的骨骼传递至用户的听觉神经。在一些实施例中,声学输出装置100可以为气导耳机,壳体结构的至少一侧可以与用户的皮肤接触或不接触。壳体结构的侧壁上包括至少一个导声孔,气导耳机中的声学驱动器组件将音频信号转换为气导声音,该气导声音可以通过导声孔向用户耳朵的方向进行辐射。
在一些实施例中,声学输出装置100可以包括固定结构180。固定结构180可以被配置为将声学输出装置100固定在用户耳朵附近。在一些实施例中,固定结构180可以与声学输出装置100的壳体结构170物理连接(例如,胶接、卡接、螺纹连接等)。在一些实施例中,声学输出装置100的壳体结构170可以为固定结构180的一部分。在一些实施例中,固定结构180可以包括耳挂、后挂、弹性带、眼镜腿等,使得声学输出装置100可以更好地固定在用户耳朵附近位置,防止用户在使用时发生掉落。例如,固定结构180可以为耳挂,耳挂可以被配置为围绕耳部区域佩戴。在一些实施例中,耳挂可以是连续的钩状物,并可以被弹性地拉伸以佩戴在用户的耳部,同时耳挂还可以对用户的耳廓施加压力,使得声学输出装置100牢固地固定在用户的耳部或头部的特定位置上。在一些实施例中,耳挂可以是不连续的带状物。例如,耳挂可以包括刚性部分和柔性部分。刚性部分可以由刚性材料(例如,塑料或金属)制成,刚性部分可以与声学输出装置100的壳体结构170通过物理连接(例如,卡接、螺纹连接等)的方式进行固定。柔性部分可以由弹性材料(例如,布料、复合材料或/和氯丁橡胶)制成。又例如,固定结构180可以为颈带,被配置为围绕颈/肩区域佩戴。再例如,固定结构180可以为眼镜腿,其作为眼镜的一部分,被架设在用户耳部。
应当注意的是,以上关于图1的描述仅仅是出于说明的目的而提供的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,根据本申请的指导可以做出多种变化和修改。例如,在一些实施例中,声学输出装置100还可以包括一个或多个部件(例如,信号收发器、交互模块、电池等)。在一些实施例中,声学输出装置100中的一个或多个部件可以被其他能实现类似功能的元件替代。例如,声学输出装置100可以不包括固定结构180,壳体结构170或其一部分可以为具有人体耳朵适配形状(例如圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形)的壳体结构,以便壳体结构可以挂靠在用户的耳朵附近。这些变化和修改不会背离本申请的范围。
图2是根据本申请的一些实施例所示的示例性声学输出装置的结构示意图。图3是根据本说明书一些实施例所示的压电悬臂梁模型。如图2所示,声学输出装置200可以包括第一振动元件110、第二振动元件120、压电元件130及弹性元件140。压电元件130可以包括梁状结构。第一振动元件110连接在压电元件130的一端(即第一位置),第二振动元件120通过弹性元件140连接在压电元件130的另一端(即第二位置)。压电元件130可以带动第一振动元件110和第二振动元件120振动。该振动可以产生人耳可听范围内的 两个谐振峰(如图4所示)。需要知道的是,当压电元件130振动时,梁状结构沿长度延伸方向的端部的振幅较大,灵敏度较高,因此,第一位置和第二位置设于梁状结构沿长度延伸方向的端部,可以提升声学输出装置200的频响的灵敏度。在一些实施例中,声学输出装置200还可以包括固定结构(未示出),其可以被配置为将声学输出装置200固定在用户耳朵附近,从而使压电元件130与第一振动元件110(和/或第二振动元件120)构成悬臂梁结构。在本申请中,具有梁状结构的压电元件的长度延伸方向上一端连接一振动元件,另一端通过弹性元件连接另一振动元件的结构可以简称为单梁结构。
在一些实施例中,压电元件130可以包括两个压电片(即,压电片132和压电片134)与基板136。基板136可以被配置为承载元器件的载体以及响应振动发生形变的元件。在一些实施例中,基板136的材料可以包括金属(如覆铜箔、钢制等)、酚醛树脂、交联聚苯乙烯等中的一种或多种的组合。在一些实施例中,基板136的形状可以根据压电元件130的形状进行确定。例如,压电元件130包括梁状结构,则基板136可以对应设置为长条状。又例如,压电元件130为压电膜,则基板136可以对应设置为板状、片状。
压电片132和压电片134可以为被配置为提供压电效应和/或逆压电效应的组件。在一些实施例中,压电片可以覆盖于基板136的一个或多个表面,并在驱动电压的作用下发生形变带动基板136发生形变,从而实现压电元件130输出振动。例如,沿压电元件130的厚度方向(如图箭头BB’所示),压电片132和压电片134分别贴附在基板136的相反两侧,基板136可以根据压电片132和压电片134沿压电元件130长度延伸方向(如图箭头AA’所示)的伸缩而产生振动。具体地,当沿压电元件130的厚度方向BB’通电时,位于基板136一侧的压电片可以沿其长度延伸方向收缩,位于基板136另一侧的压电片可以沿其长度延伸方向伸长,从而带动基板136沿垂直于基板136表面的方向(即厚度方向BB’)弯曲振动。
在一些实施例中,压电片132和/或134的材质可以包括压电陶瓷、压电石英、压电晶体、压电聚合物等,或其任意组合。示例性压电晶体可以包括水晶、闪锌矿、方硼石、电气石、红锌矿、GaAs、钛酸钡及其衍生结构晶体、KH2PO4、NaKC4H4O6·4H2O(罗息盐)等。示例性压电陶瓷材料可以包括钛酸钡(BT)、锆钛酸铅(PZT)、铌酸铅钡锂(PBLN)、改性钛酸铅(PT)、氮化铝(AIN)、氧化锌(ZnO)等,或其任意组合。示例性压电聚合物材料可以包括聚偏氟乙烯(PVDF)等。
第二振动元件120和弹性元件140组成的弹性质量端的谐振可以产生频率较低的第一谐振峰,压电元件130和第一振动元件110的谐振可以产生频率较高的第二谐振峰。例如,第一谐振峰对应的第一谐振频率f 0的范围可以为50Hz-2000Hz,第二谐振峰对应的第二谐振频率f 1的范围可以为1kHz-10kHz。在一些实施例中,当振动信号从弹性质量端的质量元件(即第二振动元件120)输出时,在声学输出装置200的频响曲线的第一谐振峰和第二谐振峰之间形成了平直的频响曲线(如图4中曲线L41所示)。在一些实施例中,第一谐振峰对应的第一谐振频率的大小受第二振动元件120的质量和弹性元件140的弹性系数的影响。在一些实施例中,第一谐振峰的第一谐振频率可以根据公式(1)确定:
Figure PCTCN2022085561-appb-000001
其中,f 0表示第一谐振频率,k表示弹性元件140的弹性系数,m表示第二振动元件120的质量。
请参照图3,第二谐振峰的第二谐振频率f 1可近似由与梁状结构的压电元件130等长的压电悬臂梁自由端138的频响的一阶谐振峰确定。例如,第二谐振峰的第二谐振频率可以根据公式(2)确定:
Figure PCTCN2022085561-appb-000002
其中,b为压电元件130宽度,E b为基板136材料的弹性模量,I b为基板136区域的惯性矩,E p为压电片132或134材料的弹性模量,I p为压电片132或134区域的惯性矩,ρ l为压电片132或134的单位长度密度,l为压电元件130的长度。需要知道的是,本说明书中,压电悬臂梁可以指如图2所示的单梁结构中压电元件130上不连弹性元件140和第二振动元件120时的结构。
基板136区域的惯性矩I b满足:
Figure PCTCN2022085561-appb-000003
其中,h b为基板136的厚度。
压电片132或134区域的惯性矩I p满足:
Figure PCTCN2022085561-appb-000004
其中,h p为压电片132或134的厚度。
压电元件130单位长度密度ρ l满足:
ρ l=bh bρ b+2·bh pρ p,       (5)
其中,ρ b为基板136密度,ρ p为压电片132或134的材料密度。
因此,在一些实施例中,可以通过对压电元件130的性能参数(例如,材料参数(包括弹性模量、密度)、几何参数(包括厚度、长度)等)进行设计,以调整声学输出装置200的第二谐振频率f 1
具体地,在一些实施例中,可以通过调节压电元件130的长度来调节声学输出装置200的频响曲线中的平直曲线范围。在一些实施例中,如图5所示,为了保证音质,使在可听域(20Hz~20kHz)范围内出现尽量少的高阶模态(或振动模态),压电元件130的梁状结构应尽可能短。在一些实施例中,为了保证声学输出装置200在低频段(例如,100Hz-1000Hz)的灵敏度,压电元件130的梁状结构的长度不能太短。在一些实施例中,为了提高声学输出装置200在低频段(例如,100Hz-1000Hz)的灵敏度,且在100Hz-500Hz区间具有平坦的频响曲线,压电元件130的长度可以在20mm-30mm之间。在一些实施例中,为了不降低声学输出装置200在低频段(例如,100Hz-800Hz)的灵敏度,且在200Hz-2000Hz区间具有平坦的频响曲线,压电元件130的长度可以在10mm-20mm之间。在一些实施例中,为了使声学输出装置200在200Hz-5kHz区间具有平坦的频响曲线,压电元件130的长度可以在3mm-10mm之间。在一些实施例中,还可以通过调节质量端(即第一压电元件110)的质量来实现对谐振峰(例如,第一谐振峰和/或第二谐振峰)的微调(如图6所示)。
在一些实施例中,基于声学输出装置200的输出需求,可以设计声学输出装置200的具体结构参数。示例性的,可以根据实际需求,首先确定第一谐振频率f 0和第二谐振频率f 1的范围(例如,50Hz<f 0<2000Hz,200Hz<f 1<40kHz,其中,f 0<f 1)。其次,可以确定弹性质量端的第二振动元件120(例如,振动板)的质量。然后,可以根据声学输出装置200的尺寸需求(主要根据空间尺寸)确定压电元件130的宽度。最后,可以基于压电片的制作工艺技术能力确定基板136厚度与压电片厚度。
在确定上述参数之后,可以计算出弹性元件140的弹性系数:
k=(2πf 0) 2m,       (6)
然后可以根据压电元件130的材料参数(例如,弹性模量、密度等)和几何参数(例如,厚度、长度等),即可确定压电元件130的长度。
最终可以确定声学输出装置200的全部几何结构参数。
图4是根据本说明书一些实施例所示的示例性声学输出装置的弹性质量端与质量端的输出频响曲线图。如图4所示,曲线L41表示振动信号由弹性质量端输出时声学输出装置200的频响曲线。曲线L42表示振动信号由质量端输出时声学输出装置200的频响曲线。虚线圈X中的第一谐振峰可以由第二振动元件120和弹性元件140的谐振产生。虚线圈Y中的第二谐振峰可以由压电元件130和第一振动元件110的谐振产生。从图4中可以看出,曲线L41和L42在20Hz-2kHz范围内分别具有2个谐振峰。当振动信号由质量端输出时(对应曲线L42),声学输出装置200在中高频段(如600Hz-5kHz)具有更高的灵敏度。但在第一谐振峰与第二谐振峰之间存在一个谐振谷,从而影响声学输出装置200的中低频段(如200Hz-1000Hz)的音质。因此,当声学输出装置200的应用场景为中高频段需要较高灵敏度时,可以优选通过质量端输出振动信号。当振动信号由弹性质量端输出时(对应曲线L41),声学输出装置200在第一谐振峰与第二谐振峰之间具有较为平直的频响曲线,从而使得声学输出装置200在可听域内具有较好的音质。
图5是根据本说明书一些实施例所示的压电悬臂梁自由端输出的频响与包括相同梁长度的单梁结构的声学输出装置的频响的对比图。如图5所示,曲线L51、L52、L53分别表示长度为25mm、15mm、5mm的压电悬臂梁的频响曲线。L51’、L52’、L53’分别表示包含梁长度为25mm、15mm、5mm的单梁结构的声学输出装置的频响曲线。从图5中曲线L51、L52、L53可以看出,当压电悬臂梁越短时(如),其在可听域(20Hz~20kHz)范围内的高阶模态越少。从曲线L51和L51’、L52和L52’、L53和L53’的对比可以看出,当压电悬臂梁的梁长度与单梁结构的梁长度相同时,压电悬臂梁自由端输出的一阶谐振频率与包括相应梁长度的单梁结构的声学输出装置的第二谐振频率相近。因此,为了使声学输出装置在可听域范围内出现尽量少的高阶模态(或振动模态),单梁结构中压电元件130的梁状结构应尽可能短。此外,从曲线L51’、L52’、L53’可以看出,在各种梁长度(即,单梁结构中压电元件130的长度)下,单梁结构的第一谐振频率(即,单梁结构中的弹性元件140与第二振动元件120谐振产生的谐振峰的频率)(虚线圈M中的谐振峰对应的频率)由于梁变短质量减小而略微升高,且在第一谐振峰和第二谐振峰之间均形成平直曲线。
图6是根据本说明书一些实施例所示的包括不同质量的第一振动元件的声学输出装置的频响曲线。如图6所示,在压电元件130长度相等的情况下,随着质量端(第一振动元件110)质量的增加,声学输出装置200的谐振峰向低频移动。因此,在一些实施例中,可以通过增减质量端(第一振动元件110)的质量,以使声学输出装置200的频响曲线整体左右移动,从而实现对第一谐振峰位置(虚线圈O中的谐振峰)与第二谐振峰(虚线圈P中的谐振峰)的微调。在一些实施例中,可以根据实际需要的平坦频响范围,调整第一振动元件110的质量。例如,若需要使声学输出装置的平坦频响范围偏低频,可以设置较大质量的第一振动元件110。反之,若需要使声学输出装置的平坦频响范围偏高频,可以设置较小质量的第一振动元件110。在一些实施例中,第一振动元件110的质量可以在0-10g范围内。例如,当需要使声学输出装置在200Hz-900Hz的频响曲线平坦时,第一振动元件110的质量可以在0g-0.5g。又例如,当需要使声学输出装置在160Hz-800Hz的频响曲线平坦时,第一振动元件110的质量可以在0.5g-1g。再例如,当需要使声学输出装置在150Hz-700Hz的频响曲线平坦时,第一振动元件110的质量可以在1g-2g。
由图2-图6可知,声学输出装置200的频响曲线的平直区域可以位于第一谐振峰与第二谐振峰之间,因此要使声学输出装置200的频响曲线在较宽频段范围内平直,可使第一谐振峰和第二谐振峰之间的距离增加,即减小第一谐振频率和/或增大第二谐振频率。由公式(2)可知,当选用长度较短的压电元件130时,第二谐振频率增大。但是长度过短 的压电元件130可能会造成频响曲线整体幅值降低,从而使声学输出装置200的灵敏度降低。为了解决上述问题,在一些实施例中,声学输出装置200可以采用包含多个如图2所示的结构(也可以称为单梁结构)(例如,图7或17中对称布置的两个结构),其可以在不影响声学输出装置200整体输出音质的情况下,提升灵敏度。在一些实施例中,对称式的结构还能够降低非必要的晃动、偏移,避免对声学输出装置200的输出音质造成不利影响。对称式的结构可以包括多个压电元件130以质量端(第一振动元件110)呈中心对称的结构、多个压电元件130以弹性质量端(弹性元件140与第二振动元件120)呈中心对称的结构,具体内容可以参见如图7、图8、图16、图17及其相关描述。
图7是根据本说明书一些实施例中所示的声学输出装置的结构示意图。在一些实施例中,如图7所示,声学输出装置700可以包括压电元件130、第一振动元件110、第二振动元件120、弹性元件140。在一些实施例中,压电元件130可以包括梁状结构,第一振动元件110连接于压电元件130的第一位置。第二振动元件120可以通过弹性元件140连接于压电元件130的第二位置。需要知道的是,当梁状结构的压电元件130振动时,其端部的振幅幅度较大,因此第一位置或第二位置位于梁状结构的端部时,与其对应的振动元件端的输出响应灵敏度较高,音质较好。
在一些实施例中,如图7所示,第一位置可以位于梁状结构的长度延伸方向的中心(例如,第一振动元件110可以贴合在压电元件130的一表面的中间位置。),第二位置可以位于梁状结构长度延伸方向的两端(例如,弹性元件140可以贴合在压电元件130的另一面的两端),从而实现压电元件130以过第一位置且垂直于梁状结构的长度延伸方向的面为对称面的对称结构。在这种情况下,压电元件130可以视为包括两个子压电元件,第一振动元件110和第二振动元件120可以分别视为包括两个子振动元件。如图7所示,虚线框C或C’中的结构与图2所示单梁结构相同,即,压电元件的一端连接振动元件,其另一端通过弹性元件连接另一振动元件。因此,如图7所示的包含两个单梁结构的声学输出装置700的结构可称为双梁结构。在一些实施例中,压电元件130可以包括两个子压电元件。每个子压电元件的一端可以连接在一个子振动元件上。每个子压电元件的另一端可以通过弹性件140与第二振动元件120连接。在这种情况下,每个子压电元件可以属于一个单梁结构。在一些实施例中,两个单梁结构中的压电元件可以在一条直线上。两个单梁结构可以呈对称布置。在一些实施例中,声学装置700可以包括四梁结构。换句话说,声学输出装置700可以包括4个单梁结构。例如,声学输出装置700还可以包括另一压电元件,其可以与压电元件130呈“十”字设置。另一压电元件可以通过弹性元件与第二振动元件连接。需要知道的是,在本申请中,多梁结构可以不必包含对应个数的压电元件130,只要声学输出装置的结构可以与多个单梁结构等效即可。例如,如图7所示的双梁结构可以只包括一个压电元件130。又例如,对于“十”字形的四梁结构可以只包括相互交叉设置的2个压电元件130。
在一些实施例中,声学输出装置700还可以包括连接件190,第二振动元件120和弹性元件140可以通过连接件190连接于压电元件130的第二位置。连接件190设置于压电元件130的第二位置处,弹性元件140的一端与连接件190相连,弹性元件140的另一端与第二振动元件120相连。连接件190的设置使得压电元件130第二位置处的振动可以传递至弹性元件140与第二振动元件120的同时,还使得弹性元件140的结构可以设置得更加灵活。例如,如图7所示,弹性元件140可以包括多个弹性杆。弹性杆可以通过连接件190与压电元件130连接。在这种情况下,在第二振动元件120的振动方向上,弹性杆可以具有纵向弹性,且在垂直于第二振动元件120的振动方向上,弹性杆还可以具有横向弹性。又例如,如图8所示,弹性元件140可以为弹簧。第二振动元件120可以为振动板。 振动板的长度可以长于或等于梁状结构的长度。
在一些实施例中,多个弹性杆可以以过第二振动元件120中心的轴呈轴对称分布。示例性的,如图7所示,声学输出装置700可以包括4个弹性杆,4个弹性杆呈“Ⅹ”形分布于第二振动元件120的两侧。在一些实施例中,第二振动元件120可以对应梁状结构的中部位置,从而使得第二振动元件120不易产生非振动方向上的晃动,从而提升声学输出装置700的弹性质量端输出响应曲线的平直程度。
图8是根据本说明书一些实施例所示的声学输出装置的结构示意图。如图8所示,声学输出装置800可以与声学输出装置700具有类似的结构。例如,声学输出装置800可以包括压电元件130、第一振动元件110、第二振动元件120、弹性元件140。又例如,压电元件130可以包括梁状结构,第一振动元件110连接于梁状结构的长度延伸方向的中心。第二振动元件120可以通过弹性元件140连接于梁状结构长度延伸方向的两端。
在一些实施例中,如图8所示,第二振动元件120的长度可以长于或等于压电元件130(或梁状结构)的长度。例如,第二振动元件120可以为与压电元件130具有相同形状的振动板。振动板与压电元件130可以相对布置。弹性元件140可以是弹簧,或由其他弹性系数较小的材质制成的杆状物。弹性元件140可以竖直布置在第二振动元件120和压电元件130之间。
在一些实施例中,第二振动元件120的数量可以是1个,也可以是多个。例如,压电元件130可以通过多个弹性元件140与同一个第二振动元件120相连(如图8所示)。又例如,压电元件130的每个第二位置可以分别对应一个第二振动元件120,压电元件130可以通过一个或多个弹性元件140与对应的第二振动元件120相连。
图9是根据本说明书一些实施例所示的分别具有单梁结构、双梁结构和四梁结构的声学输出装置的振动信号由弹性质量端输出时的频响曲线。如图9所示,曲线L91表示具有单梁结构的声学输出装置(例如,声学输出装置200)的振动信号由弹性质量端输出时的频响曲线。曲线L92表示具有双梁结构的声学输出装置(例如,声学输出装置700)的振动信号由质量端输出时的频响曲线。曲线L93表示具有四梁结构的声学输出装置的振动信号由质量端输出时的频响曲线。从图9中可以看出,相较于具有单梁结构的声学输出装置(对应曲线L91),采用双梁结构的声学输出装置(对应曲线L92)的输出灵敏度更高。第一谐振峰与第二谐振峰之间的平直曲线段灵敏度提高了大约6dB。相较于具有单梁结构的声学输出装置(对应曲线L91),采用四梁结构的声学输出装置(对应曲线L93)的第一谐振峰与第二谐振峰之间的平直曲线段灵敏度提高了大约12dB。
从曲线L91、L92、L93可知,随着声学输出装置中的单梁结构的增多,第一谐振峰的频率逐渐向高频移动。这是由于多个单梁结构对称分布会引入多个弹性元件140并联,使得总体弹性系数增加,从而使第一谐振峰的频率升高。
由图4中曲线L41可知,当振动由声学输出装置200的弹性质量端输出时,第一谐振峰和第二谐振峰之间的曲线平直,但大于第二谐振峰的高频段模态增加且幅值下降。为了解决这一问题,在一些实施例中,可利用额外的第二压电元件150补充声学输出装置在第二谐振峰之后的频段的幅值。
图10是根据本说明书一些实施例所示的声学输出装置的结构示意图。如图10所示,声学输出装置1000可以包括第一振动元件110、第二振动元件120、第一压电元件130、弹性元件140以及连接件190。在一些实施例中,声学输出装置1000还可以包括第二压电元件150。第一压电元件130和第二压电元件150均可以包括梁状结构。在一些实施例中,第一振动元件110可以连接于压电元件130的长度延伸方向的中心位置。第二振动元件120可以通过弹性元件140连接于压电元件130的端部。
在一些实施例中,第二压电元件150的梁状结构的长度(也可以称为第二长度)可以短于第一压电元件130的梁状结构的长度(也可以称为第一长度)。在一些实施例中,第二长度与第一长度之间的比值可以在0.1-1范围内。在一些实施例中,第二长度与第一长度之间的比值可以在0.2-0.8范围内。在一些实施例中,第二长度与第一长度之间的比值可以在0.3-0.7范围内。在一些实施例中,第二长度与第一长度之间的比值可以在0.4-0.6范围内。在一些实施例中,第二长度与第一长度之间的比值可以为0.5。从图5可知,当压电元件的长度越短,其输出的频响向高频移动。因此,具有较长的梁状结构的压电元件可以称为低频压电元件,具有较短的梁状结构的压电元件可以称为高频压电元件。在一些实施例中,如图7中的声学输出装置700或图8中的声学输出装置800的结构的整体可以构成一个单元。在一些实施例中,声学输出装置1000可以包括包含低频压电元件的低频单元1010和第二压电元件150。
第二压电元件150可以与第二振动元件120连接,从而使其接收第二振动元件150的振动。例如,第二压电元件150可以贴附在第二振动元件120上。第二压电元件150谐振可以产生频率高于低频单元1010的第二谐振频率的第三谐振峰。在一些实施例中,第三谐振峰对应的第三谐振频率的范围可以是10kHz-40kHz。在一些实施例中,第三谐振频率的频率范围可以为15kHz-35kHz。在一些实施例中,第三谐振频率的频率范围可以为20kHz-30kHz。
在一些实施例中,如图10所示,声学输出装置1000还可以包括弹性元件142和振动元件125。振动元件125可以通过弹性元件142与第二压电元件150连接。第二振动元件120、振动元件125、第二压电元件150和弹性元件142可以构成声学输出装置1000的高频单元1020。换句话说,声学输出装置1000可以包括低频单元1010和高频单元1020。高频单元1020与低频单元1010可以通过第二振动元件120进行连接。也就是说,低频单元1010的弹性质量端和高频单元1020的质量端可以共用一个振动元件(即第二振动元件120),从而实现高频单元1020与低频单元1010的连接。在这种情况下,声学输出装置1000的振动可以通过第一振动元件110和/或振动元件125输出。高频单元1020中的第二压电元件150的第二长度比低频单元1010中的第一压电元件130的第一长度短。第二压电元件150和第二振动单元130的谐振可以为声学输出装置1000提供上述第三谐振峰。此外,高频单元1020的弹性元件142和振动元件125的谐振还可以为声学输出装置1000提供第五谐振峰。高频单元1020的第一个谐振峰(即第五谐振峰)和第二个谐振峰(即第三谐振峰)之间的频响曲线较为平直。在一些实施例中,第五谐振峰对应的第五谐振频率可以小于或大于第二谐振峰对应的第二谐振频率。在一些实施例中,通过调控高频单元1020和/或低频单元1010的性能参数(例如,压电元件的材料参数或几何参数、质量端或弹性质量端的质量等)可以使第五谐振频率与第二谐振频率相近,从而可以减小高频单元1020的输出频响与低频单元1010的输出频响可能互相干扰的频段范围,提升声学输出装置1000的音质。在一些实施例中,低频单元1010的第二个谐振峰(即第二谐振峰)与高频单元1020的第一个谐振峰(即第五谐振峰)之间的关系可以满足下式:
Figure PCTCN2022085561-appb-000005
其中,f 1表示低频单元1010的第二个谐振峰的频率(即第二谐振频率);f′ 0表示高频单元1020的第一个谐振峰的频率(即第五谐振频率)。在一些实施例中,当第二谐振频率在8kHz-10kHz之间时,第五谐振频率可以在5kHz-40kHz之间。在一些实施例中,当第二谐振频率在5kHz-8kHz之间时,第五谐振频率可以在4kHz-25kHz之间。在一些实施例中,当第二谐振频率在2kHz-5kHz之间时,第五谐振频率可以在100Hz-10kHz之间。在一些 实施例中,当第二谐振频率在1kHz-3kHz之间时,第五谐振频率可以在100Hz-5kHz之间。
需要说明的是,声学输出装置1000的低频单元1010的第一压电元件130与高频单元1020的第二压电元件150的数量可以是一个或多个,且第一压电元件130的数量与第二压电元件150的数量可以相同,也可以不同。示例性的,声学输出装置1000可以只包括一个压电元件130与一个第二压电元件150,此时,振动元件125可以通过弹性元件142连接在第二压电元件150的两端,第二振动元件120可以通过弹性元件140连接在第二压电元件150的两端。又例如,声学输出装置1000也可以包括两个第一压电元件130与一个第二压电元件150,此时,振动元件125可以通过弹性元件142连接在第二压电元件150的两端,第二振动元件120可以通过弹性元件140分别连接在每个第一压电元件130的一端。每个第一压电元件130的另一端可以与第一振动元件110连接。
图11是根据本说明书一些实施例所示的示例性声学输出装置的输出频响曲线。图12是不同的激励信号相位差所对应声学输出装置的频响曲线。图13是不同的激励信号相位差所对应声学输出装置的频响曲线。如图11所示,曲线L111表示振动信号由弹性质量端输出时具有单梁结构的声学输出装置的频响曲线。曲线L112表示振动信号由弹性质量端输出时具有双梁结构的声学输出装置的频响曲线。曲线L113表示振动信号由弹性质量端输出时具有双单元结构(即高频单元和低频单元)的声学输出装置的频响曲线。其中,具有双单元结构的声学输出装置可以为具有如图10中所示的声学输出装置1000的结构,且高频单元1020的激励信号(例如,激励电压)与低频单元1010的激励信号相位差为0°。从图11中可以看出,声学输出装置1000在第一谐振峰后会产生的谐振谷,这是由于中间的第二振动元件120谐振导致的。在一些实施例中,可以通过调控高频单元1020的第二压电元件150与低频单元1010的第一压电元件130的激励信号之间的相位来填充谐振谷。如图12所示,随着高低频单元激励信号的相位差增加(对应曲线L121-124),该谐振谷幅值逐渐上升。在一些实施例中,高、低频单元激励信号相位差(即第二压电元件150与压电元件130的相位差)的绝对值的范围为45°-180°。需要注意的是,如图13所示,当第二压电元件150与第一压电元件130的相位差的绝对值大于135°后,第一谐振峰前的低频幅值有所降低,因此为了保证声学输出装置1000的低频幅值,第二压电元件150与压电元件130的相位差的绝对值的范围可以为45°-135°。在一些实施例中,第二压电元件150与压电元件130的相位差的绝对值的范围可以为45°-125°。在一些实施例中,第二压电元件150与压电元件130的相位差的绝对值的范围可以为50°-110°。在一些实施例中,第二压电元件150与压电元件130的相位差的绝对值的范围可以为60°-100°。在一些实施例中,第二压电元件150与压电元件130的相位差的绝对值的范围可以为70°-90°。在一些实施例中,第二压电元件150与压电元件130的相位差的绝对值的范围可以为80°。
图14是根据本说明书一些实施例所示的示例性声学输出装置的结构示意图。如图14所示,为了进一步提升声学输出装置的低频响应,在声学输出装置1000的结构的基础上,声学输出装置1400还可以包括第三压电元件160。第三压电元件160可以响应于驱动压电振动,并将振动传递给第二压电元件150。在一些实施例中,第一压电元件130、第二压电元件150和第三压电元件160均可以包括梁状结构。第三压电元件160的梁状结构的长度(也可以称为第三长度)可以长于第二压电元件150的梁状结构的长度(即第二长度)。在一些实施例中,第三压电元件160的第三长度可以介于第二压电元件150的二长度与第一压电元件130的第一长度之间。在一些实施例中,第三压电元件160的第三长度可以等于第一压电元件130的第一长度。在一些实施例中,第三压电元件160的第三长度小于第二压电元件150的第二长度,第三压电元件160可以谐振产生频率低于第三谐振峰的第四 谐振峰。
在一些实施例中,声学输出装置1400还可以包括第三振动元件127。第三振动元件127可以与第二压电元件150连接,且至少通过第二弹性元件145与第三压电元件160相连。因此,第三压电元件160的振动可以通过第三振动元件127传递给第二压电元件150。在一些实施例中,声学输出装置1400还可以包括振动元件129。振动元件129可以位于第三压电元件160的长度延伸方向的中心位置。第三振动元件127、振动元件129、第三压电元件160和第二弹性元件145可以构成结构类似于低频单元1010(也可以称为第一低频单元)的第二低频单元1015。换句话说,声学输出装置1000可以包括低频单元1010、第二低频单元1015和高频单元1020。在一些实施例中,低频单元1010与第二低频单元1015可以并联,从而提升声学输出装置1400的低频响应(如图15所示)。在一些实施例中,声学输出装置1000包括低频单元1010、第二低频单元1015和高频单元1020也可以称为声学输出装置1000包括三单元结构。
具体地,如图14所示,第一压电元件130和第三压电元件160可以平行布置。低频单元1010的弹性质量端(即第二振动元件120)可以和第二低频单元1015的弹性质量端(即第三振动元件127)连接。第二压电元件150可以直接连接在连接后的第二振动元件120和/或第三振动元件127上。连接后的第二振动元件120和第三振动元件127的整体可以作为高频单元1020的质量端。在一些实施例中,低频单元1010的质量端(即第一振动元件110)与第二低频单元1015的质量端(即振动单元129)可以是连接的(如图14所示),也可以是分离的。分离式结构可以使低频单元1010的质量端与第二低频单元1015的质量端能够各自产生振动。连接式的结构可以使低频单元1010的质量端与第二低频单元1015的质量端两者的振动输出频响一致。在一些实施例中,低频单元1010的质量端可以与第二低频单元1015的质量端相连。
在一些实施例中,低频单元1010、低频单元1015与高频单元1020的结构可以相同,也可以不同。例如,低频单元1010、低频单元1015均可以具有如声学输出装置800的结构,高频单元1020可以具有如声学输出装置700的结构。又例如,低频单元1010、低频单元1015与高频单元1020均可以具有如声学输出装置800的结构。
在一些实施例中,声学输出装置1400可以不包括第三振动元件127。低频单元1015的第三压电元件160的振动可以通过第二弹性元件145传递给第二振动元件120,再由第二振动元件120传递给第二压电元件150。换句话说,如图14中第二振动元件120和第三振动元件127可以看作是一个整体,低频单元1010的压电元件130的振动与低频单元1015的第三压电元件160的振动均传递给同一个第二振动元件,从而减少振动元件的数量,节约资源。
图15是根据本说明书一些实施例所示的不同结构的声学输出装置的输出频响曲线图。如图15所示,曲线L151表示振动信号由弹性质量端输出时具有双单元结构(即高频单元和低频单元)的声学输出装置(例如,声学输出装置1000)的频响曲线。曲线L152表示振动信号由质量端输出时包括低频单元1010、第二低频单元1015与高频单元1020的声学输出装置1400的频响曲线。从图15可知,声学输出装置1400的低频响应(对应曲线L152中20Hz-500Hz)明显高于具有双单元结构的声学输出装置1000的低频响应。
图16是根据本说明书一些实施例所示的示例性声学输出装置的结构示意图。如图16所示,声学输出装置1600可以包括第一振动元件110、第二振动元件120、压电元件130、弹性元件140。压电元件130可以包括梁状结构,第一振动元件110可以包括子振动元件112和114。在一些实施例中,子振动元件112和114可以分别连接在压电元件130的长度延伸方向的两端(也称为第一位置)。第二振动元件120可以通过弹性元件140连 接在压电元件130第二位置。例如,第二振动元件120可以通过连接件190和弹性元件140设置于压电元件130的长度延伸方向的中心位置(即第二位置)。在一些实施例中,压电元件130可以包括两个子压电元件。每个子压电元件的一端可以分别连接一个子振动元件(112或114)。每个子压电元件的另一端可以通过连接件190连接。在这种情况下,声学输出装置1600的结构可以视为包括两个如图2所示的单梁结构。
在一些实施例中,子振动元件112和114的质量可以相同,且子振动元件112和114与压电元件130连接的两个第一位置相对于压电元件130的中心对称,从而使得子振动元件112和114相对于压电元件130的中心对称。通过对称结构相互平衡以降低子振动元件112非必要的晃动,提升声学输出装置1600频响曲线的平直程度。
在一些实施例中,压电元件130的数量可以包括一个或多个。相应地,与压电元件130直接连接的第一振动元件110的数量可以包括多个。例如,压电元件130的个数可以为2个。两个压电元件130可以呈“十”字形通过连接件交叉连接在一起。进一步地,每个压电元件130的端部可以布置有第一振动元件110。第二振动元件120可以通过弹性元件140连接在“十”字形的交叉点位置。又例如,压电元件130的数量可以为4个,四个压电元件130可以通过连接件190将其一端连接,从而使4个压电元件130呈“十”字形设置于连接件190的周侧,每个压电元件130均可以与一个第一振动元件110相连。在一些实施例中,多个压电元件130也可以对应一个第一振动元件110。示例性的,四个压电元件130以连接件190为中心,呈“十”字形设置于连接件190的周侧,每个压电元件130可以均与一个环状的第一振动元件110相连。
在一些实施例中,如图16所示,弹性元件140可以包括多个弹性杆。弹性杆可以通过连接件190与压电元件130连接。在这种情况下,在第二振动元件120的振动方向上,弹性杆可以具有第一弹性系数,且在垂直于第二振动元件120的振动方向上,弹性杆还可以具有第二弹性系数。在一些实施例中,为了使第二振动元件120能在垂直于压电元件130的表面的方向上容易振动,而在平行于压电元件130长轴的方向上不易晃动,第二弹性系数可以远大于第一弹性系数。例如,第二弹性系数与第一弹性系数的比值可以大于或等于1×10 3。例如,第二弹性系数与第一弹性系数的比值可以为1×10 3、1×10 4、1×10 5、1×10 6、1×10 10等。在一些实施例中,弹性元件140可以为传振片。
图17是根据本说明书一些实施例所示的示例性声学输出装置的结构示意图。如图17所示,声学输出装置1700可以具有与声学输出装置1600类似的结构。在一些实施例中,如图17所示,弹性元件140还可以为弹簧或由其他弹性系数较小的材质制成的杆状物。弹性元件140可以竖直布置在第二振动元件120和压电元件130之间。
图18是根据本说明书一些实施例所示的分别具有单梁结构、双梁结构和四梁结构的声学输出装置的振动信号由弹性质量端输出时的频响曲线图。如图18所示,曲线L181表示具有单梁结构的声学输出装置(例如,声学输出装置200)的振动信号由弹性质量端输出时的频响曲线。曲线L182表示具有双梁结构且弹性质量端位于压电元件长度延伸方向的中间位置的声学输出装置(例如,声学输出装置1600)的振动信号由弹性质量端输出时的频响曲线。曲线L183表示具有四梁结构且弹性质量端位于压电元件长度延伸方向的中间位置的声学输出装置的振动信号由弹性质量端输出时的频响曲线。由图18可知,相较于单梁结构(对应曲线L181),采用多梁结构(对应曲线L182或L183)的声学输出装置的第一谐振峰向低频移动,因此采用多梁结构能够明显提升声学输出装置的低频响应性能。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能 会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本申请中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (19)

  1. 一种声学输出装置,包括:
    第一振动元件;
    第二振动元件;以及
    压电元件,所述第一振动元件物理连接于所述压电元件的第一位置,所述第二振动元件至少通过弹性元件连接于所述压电元件的第二位置,其中,所述压电元件响应于电信号而带动所述第一振动元件和所述第二振动元件振动,所述振动产生人耳可听范围内的两个谐振峰。
  2. 根据权利要求1所述的声学输出装置,其中,所述第二振动元件和所述弹性元件的谐振产生所述两个谐振峰中频率较低的第一谐振峰,所述压电元件和所述第一振动元件的谐振产生所述两个谐振峰中频率较高的第二谐振峰。
  3. 根据权利要求2所述的声学输出装置,其中,所述第一谐振峰的频率在50Hz-2000Hz范围内,所述第二谐振峰的频率在1kHz-10kHz范围内。
  4. 根据权利要求1所述的声学输出装置,还包括连接件,所述第二振动元件和所述弹性元件通过所述连接件连接于所述压电元件的所述第二位置。
  5. 根据权利要求1所述的声学输出装置,其中,所述压电元件包括梁状结构,所述第一位置位于所述梁状结构的长度延伸方向的中心。
  6. 根据权利要求5所述的声学输出装置,其中,所述第二位置位于所述梁状结构的所述长度延伸方向的端部。
  7. 根据权利要求5或6所述的声学输出装置,其中,所述振动通过所述第二振动元件以骨传导的方式传递给用户。
  8. 根据权利要求2所述的声学输出装置,还包括:
    第二压电元件,所述第二压电元件接收所述第二振动元件的振动,所述第二压电元件谐振产生频率高于所述两个谐振峰的第三谐振峰。
  9. 根据权利要求8所述的声学输出装置,其中,所述第三谐振峰的频率在10kHz-40kHz范围内。
  10. 根据权利要求8所述的声学输出装置,还包括:
    第四振动元件,所述第四振动元件至少通过第三弹性元件连接在所述第二压电元件的第三位置,所述第三弹性元件和所述第四振动元件谐振产生频率低于所述第三谐振峰频率的第五谐振峰,其中,
    所述第二谐振峰与所述第五谐振峰对应的频率之间的差值的绝对值与所述第二谐振峰对应的频率之间的比值范围为0-4。
  11. 根据权利要求8所述的声学输出装置,其中,所述压电元件和所述第二压电元件 均包括梁状结构,所述第二压电元件的梁状结构的长度短于所述压电元件的梁状结构的长度。
  12. 根据权利要求11所述的声学输出装置,其中,所述第二压电元件的梁状结构的长度与所述压电元件的梁状结构的长度之间的比值在0.1-1范围内。
  13. 根据权利要求8至12中任一项所述的声学输出装置,其中,所述压电元件与所述第二压电元件的激励信号的相位差的绝对值在45°-135°范围内。
  14. 根据权利要求8至13中任一项所述的声学输出装置,还包括:
    第三压电元件,所述第三压电元件振动并传递给所述第二压电元件,所述第三压电元件谐振产生频率低于所述第三谐振峰的第四谐振峰。
  15. 根据权利要求14所述的声学输出装置,还包括:
    第三振动元件,所述第三振动元件至少通过第二弹性元件与所述第三压电元件相连,所述第三压电元件的振动通过所述第三振动元件传递给所述第二压电元件。
  16. 根据权利要求1所述的声学输出装置,其中,所述压电元件包括梁状结构,所述第一振动元件包括两个子振动元件,其中,
    所述两个子振动元件分别连接在所述压电元件的长度延伸方向的两端。
  17. 根据权利要求16所述的声学输出装置,其中,所述两个子振动元件的质量相同,且所述两个子振动元件与所述压电元件连接的两个第一位置相对于所述压电元件的中心对称。
  18. 根据权利要求1至17中任一项所述的声学输出装置,其中,所述压电元件的长度在3mm-30mm范围内。
  19. 根据权利要求1至18中任一项所述的声学输出装置,其中,所述压电元件包括两层压电片和基板,所述两层压电片分别贴附在所述基板的相反两侧,所述基板根据所述两层压电片沿长度延伸方向的伸缩产生振动。
PCT/CN2022/085561 2022-04-07 2022-04-07 声学输出装置 WO2023193189A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112023007702A BR112023007702A2 (pt) 2022-04-07 2022-04-07 Dispositivo de saída acústica
MX2023005370A MX2023005370A (es) 2022-04-07 2022-04-07 Dispositivo de salida acustica.
JP2023534192A JP2024516051A (ja) 2022-04-07 2022-04-07 音響出力装置
KR1020237017113A KR20230145032A (ko) 2022-04-07 2022-04-07 음향출력장치
EP22877659.7A EP4284017A1 (en) 2022-04-07 2022-04-07 Acoustic output device
CN202280006548.XA CN117203980A (zh) 2022-04-07 2022-04-07 声学输出装置
PCT/CN2022/085561 WO2023193189A1 (zh) 2022-04-07 2022-04-07 声学输出装置
US18/298,396 US20230328458A1 (en) 2022-04-07 2023-04-11 Acoustic output device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085561 WO2023193189A1 (zh) 2022-04-07 2022-04-07 声学输出装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/298,396 Continuation US20230328458A1 (en) 2022-04-07 2023-04-11 Acoustic output device

Publications (1)

Publication Number Publication Date
WO2023193189A1 true WO2023193189A1 (zh) 2023-10-12

Family

ID=88239059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085561 WO2023193189A1 (zh) 2022-04-07 2022-04-07 声学输出装置

Country Status (8)

Country Link
US (1) US20230328458A1 (zh)
EP (1) EP4284017A1 (zh)
JP (1) JP2024516051A (zh)
KR (1) KR20230145032A (zh)
CN (1) CN117203980A (zh)
BR (1) BR112023007702A2 (zh)
MX (1) MX2023005370A (zh)
WO (1) WO2023193189A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557176A (en) * 1978-10-23 1980-04-26 Seiko Epson Corp Piezoelectric buzzer device for electronic wristwatch
CN101611538A (zh) * 2007-01-12 2009-12-23 日本电气株式会社 压电致动器和电子装置
CN103262576A (zh) * 2010-12-20 2013-08-21 Nec卡西欧移动通信株式会社 振荡器设备和电子装置
CN114025293A (zh) * 2020-06-15 2022-02-08 乐金显示有限公司 声学装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557176A (en) * 1978-10-23 1980-04-26 Seiko Epson Corp Piezoelectric buzzer device for electronic wristwatch
CN101611538A (zh) * 2007-01-12 2009-12-23 日本电气株式会社 压电致动器和电子装置
CN103262576A (zh) * 2010-12-20 2013-08-21 Nec卡西欧移动通信株式会社 振荡器设备和电子装置
CN114025293A (zh) * 2020-06-15 2022-02-08 乐金显示有限公司 声学装置

Also Published As

Publication number Publication date
EP4284017A1 (en) 2023-11-29
BR112023007702A2 (pt) 2023-11-28
MX2023005370A (es) 2023-10-16
KR20230145032A (ko) 2023-10-17
JP2024516051A (ja) 2024-04-12
CN117203980A (zh) 2023-12-08
US20230328458A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
CN110611873B (zh) 一种骨传导扬声器的测试方法
JP3958739B2 (ja) 音響振動発生素子
TWI843498B (zh) 聲學輸出裝置
WO2023193189A1 (zh) 声学输出装置
CN105979449B (zh) 动圈压电复合扬声器
WO2023193191A1 (zh) 一种声学输出装置
US20160088409A1 (en) Acoustic device
WO2023206143A1 (zh) 一种声学输出装置
TWI843202B (zh) 聲學輸出裝置
RU2795203C1 (ru) Акустические выходные устройства
WO2023193195A1 (zh) 一种压电式扬声器
WO2014061646A1 (ja) イヤホン
TW202344073A (zh) 一種聲學輸出裝置
WO2024130627A1 (zh) 一种声学输出装置
WO2024108334A1 (zh) 一种声学输出装置
WO2023173355A1 (zh) 一种声学输出装置
US20230353926A1 (en) Acoustic output device and wearable device
TW202428044A (zh) 聲學輸出裝置
CN116801161A (zh) 一种声学输出装置
JP2007228610A (ja) 音響振動発生素子
JP2008085782A (ja) 受話装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280006548.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202317026881

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022877659

Country of ref document: EP

Effective date: 20230407

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/005370

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2023534192

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023007702

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023007702

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230424