WO2023206104A1 - 无线通信方法、装置、通信设备及存储介质 - Google Patents

无线通信方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2023206104A1
WO2023206104A1 PCT/CN2022/089400 CN2022089400W WO2023206104A1 WO 2023206104 A1 WO2023206104 A1 WO 2023206104A1 CN 2022089400 W CN2022089400 W CN 2022089400W WO 2023206104 A1 WO2023206104 A1 WO 2023206104A1
Authority
WO
WIPO (PCT)
Prior art keywords
comb
cyclic shift
under different
terminal
indication information
Prior art date
Application number
PCT/CN2022/089400
Other languages
English (en)
French (fr)
Inventor
罗星熠
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/089400 priority Critical patent/WO2023206104A1/zh
Priority to CN202280001419.1A priority patent/CN117296256A/zh
Publication of WO2023206104A1 publication Critical patent/WO2023206104A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present disclosure relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular, to a wireless communication method, device, communication equipment and storage medium.
  • CoMP Coordinated Multiple Point transmission
  • NR New Radio
  • the embodiments of the present disclosure disclose a wireless communication method, device, communication equipment and storage medium.
  • a wireless communication method is provided, wherein the method is executed by an access network device, and the method includes:
  • the indication information is used to indicate at least one of the following:
  • the comb resource structure type configured for terminals under different transmission access points TRP, the comb resource structure type is used to determine the frequency domain resources for transmitting the sounding reference signal SRS;
  • the cyclic shift parameter is used to determine the SRS resource sequence; the configurable cyclic shift parameter under different TRP is different.
  • the comb structure type includes one of the following:
  • the third type of comb structure comb-3 is the third type of comb structure comb-3;
  • the sixth type of comb structure comb-6 is the sixth type of comb structure comb-6.
  • the cyclic shift parameter includes a maximum cyclic shift value and/or an initial cyclic shift value.
  • the SRS resource sequences of different TRPs determined based on the cyclic shift parameter are orthogonal to each other.
  • the indication information further includes indicating at least one of the following:
  • a wireless communication method is provided, wherein the method is performed by a terminal, and the method includes:
  • the indication information is used to indicate at least one of the following:
  • the comb resource structure type configured for terminals under different transmission access points TRP, the comb resource structure type is used to determine the frequency domain resources for transmitting the sounding reference signal SRS;
  • the cyclic shift parameter is used to determine the SRS resource sequence; the configurable cyclic shift parameter under different TRP is different.
  • the comb structure type includes one of the following:
  • the third type of comb structure comb-3 is the third type of comb structure comb-3;
  • the sixth type of comb structure comb-6 is the sixth type of comb structure comb-6.
  • the cyclic shift parameter includes a maximum cyclic shift value and/or an initial cyclic shift value.
  • the SRS resource sequences of different TRPs determined based on the cyclic shift parameter are orthogonal to each other.
  • the indication information further includes indicating at least one of the following:
  • a wireless communication device wherein the device includes:
  • a sending module configured to send indication information to the terminal
  • the indication information is used to indicate at least one of the following:
  • the comb resource structure type configured for terminals under different transmission access points TRP, the comb resource structure type is used to determine the frequency domain resources for transmitting the sounding reference signal SRS;
  • the cyclic shift parameter is used to determine the SRS resource sequence; the configurable cyclic shift parameter under different TRP is different.
  • a wireless communication device where the device includes:
  • a receiving module configured to receive instruction information sent by the access network device
  • the indication information is used to indicate at least one of the following:
  • the comb resource structure type configured for terminals under different transmission access points TRP, the comb resource structure type is used to determine the frequency domain resources for transmitting the sounding reference signal SRS;
  • the cyclic shift parameter is used to determine the SRS resource sequence; the configurable cyclic shift parameter under different TRP is different.
  • a communication device includes:
  • memory for storing instructions executable by the processor
  • the processor is configured to implement the method described in any embodiment of the present disclosure when running the executable instructions.
  • a computer storage medium stores a computer executable program.
  • the executable program is executed by a processor, the method described in any embodiment of the present disclosure is implemented.
  • indication information is sent to the terminal; wherein the indication information is used to indicate at least one of the following: a comb resource structure type configured for the terminal under different transmission access points TRP, the comb resource The structure type is used to determine the frequency domain resource for transmitting the sounding reference signal SRS; the cyclic shift parameter configured for the terminal under different TPRs, the cyclic shift parameters are used to determine the SRS resource sequence; configurable under different TRPs The cyclic shift parameters are different.
  • the comb resource structure types configured for terminals under different transmission access points TRP are configured separately, the comb resource structure types determined based on the comb resource structure types configured for terminals under different transmission access points TRP
  • the frequency domain resources of SRS may be different, and/or, since the cyclic shift parameters configured for terminals under different TRPs are different, the SRS resource sequence is determined based on the cyclic shift parameters configured for terminals under different TRPs. It can be orthogonal. Compared with uniformly configuring comb resource structure types and/or cyclic shift parameters for terminals, it can ensure that users under two TRPs are allocated different resources to reduce interference between the SRSs and improve wireless Communication reliability.
  • Figure 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment.
  • Figure 2 is a schematic diagram of a joint communication scenario according to an exemplary embodiment.
  • FIG. 3 is a schematic diagram of a bandwidth distribution according to an exemplary embodiment.
  • Figure 4 is a schematic diagram of a comb resource distribution according to an exemplary embodiment.
  • Figure 5 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Figure 6 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Figure 7 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Figure 8 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Figure 9 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Figure 10 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Figure 11 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Figure 12 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Figure 13 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Figure 14 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Figure 15 is a schematic structural diagram of a wireless communication device according to an exemplary embodiment.
  • Figure 16 is a schematic structural diagram of a wireless communication device according to an exemplary embodiment.
  • Figure 17 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • Figure 18 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or "when” or "in response to determining.”
  • this article uses the terms “greater than” or “less than” when characterizing the size relationship. However, those skilled in the art can understand that the term “greater than” also encompasses the meaning of “greater than or equal to”, and “less than” also encompasses the meaning of “less than or equal to”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on mobile communication technology.
  • the wireless communication system may include several user equipments 110 and several base stations 120.
  • user equipment 110 may be a device that provides voice and/or data connectivity to a user.
  • the user equipment 110 may communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the user equipment 110 may be an Internet of Things user equipment, such as a sensor device, a mobile phone, and a computer with an Internet of Things user equipment. , for example, it can be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • the user equipment 110 may also be equipment of an unmanned aerial vehicle.
  • the user equipment 110 may also be a vehicle-mounted device, for example, it may be an on-board computer with a wireless communication function, or a wireless user equipment connected to an external on-board computer.
  • the user equipment 110 may also be a roadside device, for example, it may be a streetlight, a signal light or other roadside device with a wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system can be the 4th generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as the Long Term Evolution (LTE) system; or the wireless communication system can also be a 5G system, Also called new air interface system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 120 may be an evolved base station (eNB) used in the 4G system.
  • the base station 120 may also be a base station (gNB) that adopts a centralized distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed units, DU).
  • the centralized unit is equipped with a protocol stack including the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control protocol (Radio Link Control, RLC) layer, and the Media Access Control (Media Access Control, MAC) layer; distributed
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the base station 120.
  • a wireless connection may be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • an E2E (End to End, end-to-end) connection can also be established between user equipments 110 .
  • V2V vehicle to vehicle, vehicle to vehicle
  • V2I vehicle to infrastructure, vehicle to roadside equipment
  • V2P vehicle to pedestrian, vehicle to person
  • the above user equipment can be considered as the terminal equipment of the following embodiments.
  • the above-mentioned wireless communication system may also include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device can also be other core network devices, such as serving gateway (Serving GateWay, SGW), public data network gateway (Public Data Network GateWay, PGW), policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or Home Subscriber Server (HSS), etc.
  • serving gateway Serving GateWay, SGW
  • public data network gateway Public Data Network GateWay, PGW
  • Policy and Charging Rules Policy and Charging Rules
  • PCRF Policy and Charging Rules
  • HSS Home Subscriber Server
  • the embodiments of the present disclosure enumerate multiple implementations to clearly describe the technical solutions of the embodiments of the present disclosure.
  • the multiple embodiments provided in the embodiments of the present disclosure can be executed alone or in combination with the methods of other embodiments in the embodiments of the present disclosure. They can also be executed alone or in combination. It is then executed together with some methods in other related technologies; the embodiments of the present disclosure do not limit this.
  • TRP1 when multiple TRPs perform related joint transmission, the interference problem of SRS used for channel estimation between different TRPs will be more serious.
  • TRP1 needs to receive the SRS (SRS1) of user 1 (UE1).
  • SRS1 SRS1
  • UE1 User 1
  • TRP2 can be the TRP corresponding to the serving cell (Serving Cell).
  • the configuration of the SRS includes time domain location configuration and frequency domain location configuration.
  • the parameters configured in the time domain position include: starting symbol location (Starting symbol location l 0 ), duration (Time duration ) and period and slot offset (Periodicity and slot offset), etc.
  • the parameters of frequency domain position configuration include: sounding bandwidth, transmission comb spacing and comb offset (Transmission comb spacing and comb offset), etc. Please refer to Figure 3, which shows the maximum sounding bandwidth (Maximum Sounding Bandwidth) and the actual sounding bandwidth (Actual Sounding Bandwidth) in the bandwidth part (BWP, Bandwidth Part). Referring to Figure 4, transmission comb spacing (1, 1, 3, and 3, respectively) and comb offsets (0, 1, 0, and 1, respectively) are shown.
  • phase rotation or cyclic shift can be obtained based on the following formula:
  • this embodiment provides a wireless communication method, where the method is executed by an access network device, and the method includes:
  • Step 51 Send instruction information to the terminal
  • the indication information is used to indicate at least one of the following:
  • the comb resource structure type configured for terminals under different transmission access points TRP.
  • the comb resource structure type is used to determine the frequency domain resources within the sounding bandwidth for transmitting the sounding reference signal SRS;
  • the cyclic shift parameters are used to determine the SRS resource sequence; the configurable cyclic shift parameters under different TRPs are different.
  • the terminals involved in this disclosure may be, but are not limited to, mobile phones, wearable devices, vehicle-mounted terminals, roadside units (RSU, Road Side Unit), smart home terminals, industrial sensing equipment and/or medical equipment, etc.
  • the terminal may be a Redcap terminal or a predetermined version of a new air interface NR terminal (for example, an R17 NR terminal).
  • the access network equipment involved in this disclosure can be various types of base stations, such as base stations of the third generation mobile communication (3G) network, base stations of the fourth generation mobile communication (4G) network, fifth generation mobile communication (5G) ) network base station or other evolved base station.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • TRP can be understood as a base station, but in some scenarios, a cell may not only be covered by one TRP, but jointly covered by multiple TRPs, thereby increasing the coverage radius of the cell and reducing the number of terminals in the cell. Continuously switch on.
  • the indication information may be sent to the terminal through an RRC message, where the indication information is used to indicate at least one of the following: the comb resource structure type configured for the terminal under different transmission access points TRP, the comb resource The structure type is used to determine the frequency domain resources within the sounding bandwidth for transmitting the sounding reference signal SRS; the cyclic shift parameters configured for terminals under different TPR, the cyclic shift parameters are used to determine the SRS resource sequence; the configurable cyclic under different TRP The shift parameters are different.
  • the access network device sends indication information to the terminal; wherein the indication information is used to indicate at least one of the following: a comb resource structure type configured for the terminal under different transmission access points TRP, a comb resource structure The type is used to determine the frequency domain resources within the sounding bandwidth for transmitting the sounding reference signal SRS; the cyclic shift parameters configured for terminals under different TPRs, the cyclic shift parameters are used to determine the SRS resource sequence; the configurable cyclic shifts under different TRPs The bit parameters are different.
  • the terminal can transmit the SRS based on the comb resource structure type and cyclic shift parameter indicated by the indication information.
  • the SRS may be transmitted according to the SRS resource sequence determined based on the frequency domain resource determined based on the comb resource structure type and the cyclic shift parameter.
  • the comb structure type includes one of the following:
  • the third type of comb structure comb-3 is the third type of comb structure comb-3;
  • the sixth type of comb structure comb-6 is the sixth type of comb structure comb-6.
  • the comb structure type may be, but is not limited to, the above-mentioned comb structure type. Different comb structure types can be configured for terminals under different TRPs. Of course, the same comb structure type can also be configured for terminals under different TRPs.
  • the cyclic shift parameter includes a maximum cyclic shift value and/or an initial cyclic shift value.
  • the cyclic shift parameter does not need to include the maximum cyclic shift value.
  • the terminal may directly determine the maximum cyclic shift value based on the comb structure type indicated by the indication information and the mapping relationship between the comb structure type and the maximum cyclic shift value. In this way, as long as the comb structure type is determined, the terminal can determine the maximum cyclic shift value.
  • the comb structure type indicates the maximum cyclic shift value in an implicit manner.
  • the maximum cyclic shift value can also be indicated through an explicit indication, that is, the maximum cyclic shift value is directly included in the instruction information sent by the access network device to the terminal.
  • indication information is sent to the terminal; wherein the indication information is used to indicate: cyclic shift parameters configured for the terminal under different TPRs, and the cyclic shift parameters are used to determine the SRS resource sequence; configurable under different TRPs
  • the circular shift parameters are different.
  • the SRS resource sequences of different TRPs determined based on the cyclic shift parameters are orthogonal to each other.
  • the SRS resource sequences of different TRPs determined by terminals under different TRPs based on the same base sequence and cyclic shift parameters are mutually orthogonal.
  • the indication information further includes indicating at least one of the following: a base sequence; a comb offset value.
  • the indication information may not directly carry the base sequence, but may indicate the base sequence through an indication identifier. For example, if the base sequence is divided into multiple groups, and each group contains multiple base sequences, then the identifier "x" can be used to indicate the group in which the base sequence is located, and the identifier "y" can be used to indicate the sequence number in the group where the base sequence is located. In this way, the indication information can directly carry the identifier "x" and the identifier "y", and the indication is provided in this implicit indication manner.
  • the base sequence can also be directly carried in the indication information and indicated by explicit indication.
  • indication information is sent to the terminal; wherein the indication information is used to indicate at least one of the following: information indicating that the SRS frequency domain resource is a comb-2 comb structure and information indicating the corresponding maximum number of cyclic shifts Dmax. , where Dmax is 12 or 24.
  • the sequence cyclic shift value ⁇ i of the SRS of the user SRS port p i is determined according to the following formula, where d 0 is configured by the network, The number of ports configured for the user's SRS resources;
  • the value of d 0 configured by the network can be: when Dmax is configured as 12, the initial value d 0 of the cyclic shift of the user (or terminal) under TRP1 can be configured as ⁇ 0, 2,4,6,8,10 ⁇ ; the user's initial cyclic shift value d 0 under TRP2 can be configured as ⁇ 1,3,5,7,9,11 ⁇ ; or, when Damx is 24, under TRP1
  • the initial cyclic shift value d 0 of the user (or terminal) can be configured as ⁇ 0, 2, 4, 6, 8, 10, ..., 22 ⁇ ; the initial cyclic shift value d 0 of the user under TRP2 can be configured as ⁇ 1,3,5,7,9,11,...,23 ⁇ .
  • the value of d 0 configured by the network can be: when Dmax is configured as 12, the initial value d 0 of the cyclic shift of the user (or terminal) under TRP1 can be configured as ⁇ 0,1,2 ,...,5 ⁇ ;
  • the initial cyclic shift value d 0 of users under TRP2 can be configured as ⁇ 0,1,2,...,11 ⁇ ; or, when Damx is 24, the user (or terminal) under TRP1
  • the initial cyclic shift value d 0 can be configured as ⁇ 0,1,2,...,5 ⁇ ; the initial cyclic shift value d 0 of users under TRP2 can be configured as ⁇ 0,1,2,...,11 ⁇ .
  • the sequence cyclic shift value ⁇ i of the SRS of the user SRS port p i is determined by the following formula:
  • terminals under different TRPs select the same base sequence.
  • TRP1 and TRP2 the user-selectable cyclic shifts under two different TRPs
  • the sequence cyclic shift values are not the same. will interfere with each other.
  • the inner product between two users is Among them, the possible values of
  • terminals under different TRPs select different base sequences. In this way, due to different base sequences, the SRS sequence correlation between the two TRP users is low and the interference is also small.
  • indication information is sent to the terminal; wherein the indication information is used to indicate: information indicating that the SRS frequency domain resource is a comb-3 comb structure and the corresponding maximum number of cyclic shifts Dmax (corresponding to the maximum cyclic shift value) information.
  • the indication information is used to indicate: information indicating that the SRS frequency domain resource is a comb-3 comb structure and the corresponding maximum number of cyclic shifts Dmax (corresponding to the maximum cyclic shift value) information.
  • resource mapping can be performed in the manner shown in Figure 6, wherein the offset value of the configurable comb structure comb is ⁇ 0, 1, 2 ⁇ .
  • the maximum number of cyclic shifts D max is 8 or 16.
  • the value of d 0 in network configuration can be: the optional d 0 for users under TRP1 is ⁇ 0,2,4,6 ⁇ , or ⁇ 0,2,4,6,8,10,...,14 ⁇ ;
  • the optional d 0 for users under TRP2 is ⁇ 1,3,5,7 ⁇ or ⁇ 1,3,4,7,9,...,15 ⁇ .
  • indication information is sent to the terminal; wherein the indication information is used to indicate: information indicating that the SRS frequency domain resource is a comb-6 comb structure and the corresponding maximum number of cyclic shifts Dmax (corresponding to the maximum cyclic shift value) information.
  • resource mapping can be performed in the manner shown in Figure 7, where the offset value of the configurable comb is ⁇ 0,1,2,3,4,5 ⁇ .
  • the maximum number of available cyclic shifts D max is 8.
  • the value of d 0 configured by the network: the user-selectable d 0 under TRP1 is ⁇ 0,2,4,6 ⁇ , and the user-selectable cyclic shift d 0 under TRP2 is ⁇ 1,3,5,7 ⁇ .
  • indication information is sent to the terminal; wherein the indication information is used to indicate at least one of the following: a comb resource structure type configured for the terminal under different transmission access points TRP, and the comb resource structure type is used to Determine the frequency domain resources for transmitting the sounding reference signal SRS; configure cyclic shift parameters for terminals under different TPRs.
  • the cyclic shift parameters are used to determine the SRS resource sequence; the configurable cyclic shift parameters under different TRPs are different.
  • the frequency domain resources of the SRS determined based on the comb resource structure types configured by terminals under different transmission access points TRP can be Different, and/or, because the cyclic shift parameters configured for terminals under different TRPs are different, the SRS resource sequences determined based on the cyclic shift parameters configured for terminals under different TRPs can be orthogonal, compared to unifying the terminals.
  • the method of configuring the comb resource structure type and/or cyclic shift parameters can ensure that users under two TRPs are allocated different resources to reduce interference between SRSs and improve the reliability of wireless communications.
  • this embodiment provides a wireless communication method, where the method is executed by an access network device, and the method includes:
  • Step 81 Send indication information to the terminal; wherein the indication information is used to indicate at least one of the following: the comb resource structure type configured for the terminal under different transmission access points TRP, and the comb resource structure type is used to determine the transmission detection reference Frequency domain resources of the signal SRS; cyclic shift parameters configured for terminals under different TPRs.
  • the cyclic shift parameters are used to determine the SRS resource sequence; the configurable cyclic shift parameters under different TRPs are different; comb structure types include the following 1: The second type of comb structure comb-2; the third type of comb structure comb-3; the fourth type of comb structure comb-4; the sixth type of comb structure comb-6.
  • the comb structure type may be, but is not limited to, the above-mentioned comb structure type. Different comb structure types can be configured for terminals under different TRPs. Of course, the same comb structure type can also be configured for terminals under different TRPs.
  • the comb structure type indicated by the indication information may be A; when the number of terminals under TRP is less than the quantity threshold, the comb structure type indicated by the indication information may be B , where A’s resource distribution density is smaller than B’s resource distribution density.
  • the comb structure type can be adapted to the number of terminals under TRP.
  • the comb structure type indicated by the indication information may be comb3; when the number of terminals under the TRP is less than the quantity threshold, the comb structure type indicated by the indication information may be comb2.
  • this embodiment provides a wireless communication method, where the method is executed by an access network device, and the method includes:
  • Step 91 Send indication information to the terminal; wherein the indication information is used to indicate at least one of the following: the comb resource structure type configured for the terminal under different transmission access points TRP, and the comb resource structure type is used to determine the transmission detection reference.
  • Frequency domain resources of the signal SRS cyclic shift parameters configured for terminals under different TPRs.
  • the cyclic shift parameters are used to determine the SRS resource sequence; the configurable cyclic shift parameters under different TRPs are different; the cyclic shift parameters include the maximum cyclic Shift value and/or rotation initial value.
  • the cyclic shift parameter may not include the maximum cyclic shift value.
  • the terminal may directly determine the maximum cyclic shift value based on the comb structure type indicated by the indication information and the mapping relationship between the comb structure type and the maximum cyclic shift value. In this way, as long as the comb structure type is determined, the terminal can determine the maximum cyclic shift value. In essence, the comb structure type indicates the maximum cyclic shift value in an implicit manner.
  • the maximum cyclic shift value can also be indicated through an explicit indication, that is, the maximum cyclic shift value is directly included in the instruction information sent by the access network device to the terminal.
  • step 91 For other instructions in step 91, please refer to the instructions in step 51, which will not be repeated here.
  • this embodiment provides a wireless communication method, where the method is executed by an access network device, and the method includes:
  • Step 101 Send indication information to the terminal; wherein the indication information is used to indicate at least one of the following: the comb resource structure type configured for the terminal under different transmission access points TRP, and the comb resource structure type is used to determine the transmission detection reference Frequency domain resources of the signal SRS; cyclic shift parameters configured for terminals under different TPRs.
  • the cyclic shift parameters are used to determine the SRS resource sequence; the configurable cyclic shift parameters under different TRPs are different; determined based on the cyclic shift parameters
  • the SRS resource sequences of different TRPs are orthogonal to each other.
  • indication information is sent to the terminal; wherein the indication information is used to indicate: cyclic shift parameters configured for the terminal under different TPRs, and the cyclic shift parameters are used to determine the SRS resource sequence; configurable under different TRPs
  • the circular shift parameters are different.
  • the SRS resource sequences of different TRPs determined based on the cyclic shift parameters are orthogonal to each other.
  • the SRS resource sequences of different TRPs determined by terminals under different TRPs based on the same base sequence and cyclic shift parameters are mutually orthogonal.
  • step 91 For other instructions in step 91, please refer to the instructions in step 51, which will not be repeated here.
  • this embodiment provides a wireless communication method, wherein the method is executed by a terminal, and the method includes:
  • Step 111 Receive the instruction information sent by the access network device
  • the indication information is used to indicate at least one of the following:
  • the comb resource structure type configured for terminals under different transmission access points TRP.
  • the comb resource structure type is used to determine the frequency domain resources within the sounding bandwidth for transmitting the sounding reference signal SRS;
  • the cyclic shift parameters are used to determine the SRS resource sequence; the configurable cyclic shift parameters under different TRPs are different.
  • the terminals involved in this disclosure may be, but are not limited to, mobile phones, wearable devices, vehicle-mounted terminals, roadside units (RSU, Road Side Unit), smart home terminals, industrial sensing equipment and/or medical equipment, etc.
  • the terminal may be a Redcap terminal or a predetermined version of a new air interface NR terminal (for example, an R17 NR terminal).
  • the access network equipment involved in this disclosure can be various types of base stations, such as base stations of the third generation mobile communication (3G) network, base stations of the fourth generation mobile communication (4G) network, fifth generation mobile communication (5G) ) network base station or other evolved base station.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • TRP can be understood as a base station, but in some scenarios, a cell may not only be covered by one TRP, but jointly covered by multiple TRPs, thereby increasing the coverage radius of the cell and reducing the number of terminals in the cell. Continuously switch on.
  • the indication information broadcast by the access network device may be received through a system message, where the indication information is used to indicate at least one of the following: a comb resource structure type configured for terminals under different transmission access points TRP. , the comb resource structure type is used to determine the frequency domain resources for transmitting the sounding reference signal SRS within the sounding bandwidth; for the cyclic shift parameters configured by the terminal under different TPR, the cyclic shift parameter is used to determine the SRS resource sequence; under different TRP The configurable cyclic shift parameters are different.
  • the indication information sent by the access network device may be received through an RRC message, where the indication information is used to indicate at least one of the following: a comb resource structure type configured for terminals under different transmission access points TRP. , the comb resource structure type is used to determine the frequency domain resources for transmitting the sounding reference signal SRS within the sounding bandwidth; for the cyclic shift parameters configured by the terminal under different TPR, the cyclic shift parameter is used to determine the SRS resource sequence; under different TRP The configurable cyclic shift parameters are different.
  • the instruction information sent by the access network device is received; wherein the instruction information is used to indicate at least one of the following: a comb resource structure type configured for terminals under different transmission access points TRP, a comb resource structure The type is used to determine the frequency domain resources within the sounding bandwidth for transmitting the sounding reference signal SRS; the cyclic shift parameters configured for terminals under different TPRs, the cyclic shift parameters are used to determine the SRS resource sequence; the configurable cyclic shifts under different TRPs The bit parameters are different.
  • the terminal can transmit SRS based on the comb resource structure type and cyclic shift parameter indicated by the indication information. For example, the terminal may transmit the SRS according to the SRS resource sequence determined based on the frequency domain resource determined based on the comb resource structure type and the cyclic shift parameter.
  • the comb structure type includes one of the following:
  • the third type of comb structure comb-3 is the third type of comb structure comb-3;
  • the sixth type of comb structure comb-6 is the sixth type of comb structure comb-6.
  • the comb structure type may be, but is not limited to, the above-mentioned comb structure type. Different comb structure types can be configured for terminals under different TRPs. Of course, the same comb structure type can also be configured for terminals under different TRPs.
  • the cyclic shift parameter includes a maximum cyclic shift value and/or an initial cyclic shift value.
  • the cyclic shift parameter does not need to include the maximum cyclic shift value.
  • the terminal may directly determine the maximum cyclic shift value based on the comb structure type indicated by the indication information and the mapping relationship between the comb structure type and the maximum cyclic shift value. In this way, as long as the comb structure type is determined, the terminal can determine the maximum cyclic shift value.
  • the comb structure type indicates the maximum cyclic shift value in an implicit manner.
  • the maximum cyclic shift value can also be indicated through an explicit indication, that is, the maximum cyclic shift value is directly included in the instruction information sent by the access network device to the terminal.
  • indication information sent by the access network is received; wherein the indication information is used to indicate: cyclic shift parameters configured for terminals under different TPRs, and the cyclic shift parameters are used to determine SRS resource sequences; under different TRPs
  • the configurable cyclic shift parameters are different. It should be noted that the SRS resource sequences of different TRPs determined based on the cyclic shift parameters are orthogonal to each other. For example, the SRS resource sequences of different TRPs determined by terminals under different TRPs based on the same base sequence and cyclic shift parameters are mutually orthogonal.
  • the indication information further includes indicating at least one of the following: a base sequence; a comb offset value.
  • the indication information may not directly carry the base sequence, but may indicate the base sequence through an indication identifier. For example, if the base sequence is divided into multiple groups, and each group contains multiple base sequences, then the identifier "x" can be used to indicate the group in which the base sequence is located, and the identifier "y" can be used to indicate the sequence number in the group where the base sequence is located. In this way, the indication information can directly carry the identifier "x" and the identifier "y", and the indication is provided in this implicit indication manner.
  • the base sequence can also be directly carried in the indication information and indicated by explicit indication.
  • indication information sent by the access network device is received; wherein the indication information is used to indicate at least one of the following: information indicating that the SRS frequency domain resource is a comb-2 comb structure and the corresponding maximum cyclic shift Information about the number of times Dmax, where Dmax is 12 or 24.
  • the sequence cyclic shift value ⁇ i of the SRS of the user SRS port p i is determined according to the following formula, where d 0 is configured by the network, The number of ports configured for the user's SRS resources;
  • the value of d 0 configured by the network can be: when Dmax is configured as 12, the initial value d 0 of the cyclic shift of the user (or terminal) under TRP1 can be configured as ⁇ 0, 2,4,6,8,10 ⁇ ; the user's initial cyclic shift value d 0 under TRP2 can be configured as ⁇ 1,3,5,7,9,11 ⁇ ; or, when Damx is 24, under TRP1
  • the initial cyclic shift value d 0 of the user (or terminal) can be configured as ⁇ 0, 2, 4, 6, 8, 10, ..., 22 ⁇ ; the initial cyclic shift value d 0 of the user under TRP2 can be configured as ⁇ 1,3,5,7,9,11,...,23 ⁇ .
  • the value of d 0 configured by the network can be: when Dmax is configured as 12, the initial value d 0 of the cyclic shift of the user (or terminal) under TRP1 can be configured as ⁇ 0,1,2 ,...,5 ⁇ ;
  • the initial cyclic shift value d 0 of users under TRP2 can be configured as ⁇ 0,1,2,...,11 ⁇ ; or, when Damx is 24, the user (or terminal) under TRP1
  • the initial cyclic shift value d 0 can be configured as ⁇ 0,1,2,...,5 ⁇ ; the initial cyclic shift value d 0 of users under TRP2 can be configured as ⁇ 0,1,2,...,11 ⁇ .
  • the sequence cyclic shift value ⁇ i of the SRS of the user SRS port p i is determined by the following formula:
  • terminals under different TRPs select the same base sequence.
  • TRP1 and TRP2 the user-selectable cyclic shifts under two different TRPs
  • the sequence cyclic shift values are not the same. will interfere with each other.
  • the inner product between two users is Among them, the possible values of
  • terminals under different TRPs select different base sequences. In this way, due to different base sequences, the SRS sequence correlation between the two TRP users is low and the interference is also small.
  • the indication information sent by the access network device is received; wherein the indication information is used to indicate: information indicating that the SRS frequency domain resource is a comb-3 comb structure and the corresponding maximum number of cyclic shifts Dmax (corresponding to maximum cyclic shift value) information.
  • the indication information is used to indicate: information indicating that the SRS frequency domain resource is a comb-3 comb structure and the corresponding maximum number of cyclic shifts Dmax (corresponding to maximum cyclic shift value) information.
  • the indication information is used to indicate: information indicating that the SRS frequency domain resource is a comb-3 comb structure and the corresponding maximum number of cyclic shifts Dmax (corresponding to maximum cyclic shift value) information.
  • Dmax maximum number of cyclic shifts
  • the value of d 0 in network configuration can be: the optional d 0 for users under TRP1 is ⁇ 0,2,4,6 ⁇ , or ⁇ 0,2,4,6,8,10,...,14 ⁇ ;
  • the optional d 0 for users under TRP2 is ⁇ 1,3,5,7 ⁇ or ⁇ 1,3,4,7,9,...,15 ⁇ .
  • the indication information sent by the access network device is received; wherein the indication information is used to indicate: information indicating that the SRS frequency domain resource is a comb-6 comb structure and the corresponding maximum number of cyclic shifts Dmax (corresponding to maximum cyclic shift value) information.
  • the indication information is used to indicate: information indicating that the SRS frequency domain resource is a comb-6 comb structure and the corresponding maximum number of cyclic shifts Dmax (corresponding to maximum cyclic shift value) information.
  • the indication information is used to indicate: information indicating that the SRS frequency domain resource is a comb-6 comb structure and the corresponding maximum number of cyclic shifts Dmax (corresponding to maximum cyclic shift value) information.
  • Dmax maximum number of available cyclic shifts
  • this embodiment provides a wireless communication method, wherein the method is executed by a terminal, and the method includes:
  • Step 121 Receive indication information sent by the access network device; wherein the indication information is used to indicate at least one of the following: a comb resource structure type configured for terminals under different transmission access points TRP, and the comb resource structure type is used for Determine the frequency domain resources for transmitting the sounding reference signal SRS; configure cyclic shift parameters for terminals under different TPRs.
  • the cyclic shift parameters are used to determine the SRS resource sequence; the configurable cyclic shift parameters under different TRPs are different; comb structure
  • the types include one of the following: the second type comb structure comb-2; the third type comb structure comb-3; the fourth type comb structure comb-4; and the sixth type comb structure comb-6.
  • the comb structure type may be, but is not limited to, the above-mentioned comb structure type. Different comb structure types can be configured for terminals under different TRPs. Of course, the same comb structure type can also be configured for terminals under different TRPs.
  • the comb structure type indicated by the indication information may be A; when the number of terminals under TRP is less than the quantity threshold, the comb structure type indicated by the indication information may be B , where A’s resource distribution density is smaller than B’s resource distribution density.
  • the comb structure type can be adapted to the number of terminals under TRP.
  • the comb structure type indicated by the indication information may be comb3; when the number of terminals under the TRP is less than the quantity threshold, the comb structure type indicated by the indication information may be comb2.
  • this embodiment provides a wireless communication method, where the method is executed by a terminal, and the method includes:
  • Step 131 Receive indication information sent by the access network device; wherein the indication information is used to indicate at least one of the following: a comb resource structure type configured for terminals under different transmission access points TRP, and the comb resource structure type is used for Determine the frequency domain resources for transmitting the sounding reference signal SRS; configure cyclic shift parameters for terminals under different TPRs.
  • the cyclic shift parameters are used to determine the SRS resource sequence; the configurable cyclic shift parameters under different TRPs are different; cyclic shift Parameters include the maximum cyclic shift value and/or the initial cyclic shift value.
  • the cyclic shift parameter may not include the maximum cyclic shift value.
  • the terminal may directly determine the maximum cyclic shift value based on the comb structure type indicated by the indication information and the mapping relationship between the comb structure type and the maximum cyclic shift value. In this way, as long as the comb structure type is determined, the terminal can determine the maximum cyclic shift value. In essence, the comb structure type indicates the maximum cyclic shift value in an implicit manner.
  • the maximum cyclic shift value can also be indicated through an explicit indication, that is, the maximum cyclic shift value is directly included in the instruction information sent by the access network device to the terminal.
  • step 131 For other instructions on step 131, please refer to the instructions on step 101 and will not be repeated here.
  • this embodiment provides a wireless communication method, wherein the method is executed by a terminal, and the method includes:
  • Step 141 Receive indication information sent by the access network device; wherein the indication information is used to indicate at least one of the following: a comb resource structure type configured for terminals under different transmission access points TRP, and the comb resource structure type is used for Determine the frequency domain resources for transmitting the sounding reference signal SRS; configure cyclic shift parameters for terminals under different TPRs.
  • the cyclic shift parameters are used to determine the SRS resource sequence; the configurable cyclic shift parameters under different TRPs are different; based on the cyclic shift
  • the SRS resource sequences of different TRPs determined by the bit parameters are orthogonal to each other.
  • the instruction information sent by the access network device is received; wherein the instruction information is used to indicate: cyclic shift parameters configured for terminals under different TPRs, and the cyclic shift parameters are used to determine SRS resource sequences; different TRPs
  • the configurable cyclic shift parameters are different. It should be noted that the SRS resource sequences of different TRPs determined based on the cyclic shift parameters are orthogonal to each other. For example, the SRS resource sequences of different TRPs determined by terminals under different TRPs based on the same base sequence and cyclic shift parameters are mutually orthogonal to each other.
  • step 141 For other instructions on step 141, please refer to the instructions on step 101 and will not be repeated here.
  • this embodiment provides a wireless communication device, wherein the device includes:
  • the sending module 151 is configured to send indication information to the terminal;
  • the indication information is used to indicate at least one of the following:
  • the comb resource structure type configured for terminals under different transmission access points TRP, the comb resource structure type is used to determine the frequency domain resources for transmitting the sounding reference signal SRS;
  • the cyclic shift parameter is used to determine the SRS resource sequence; the configurable cyclic shift parameter under different TRP is different.
  • this embodiment provides a wireless communication device, which includes:
  • the receiving module 161 is configured to receive indication information sent by the access network device
  • the indication information is used to indicate at least one of the following:
  • the comb resource structure type configured for terminals under different transmission access points TRP, the comb resource structure type is used to determine the frequency domain resources for transmitting the sounding reference signal SRS;
  • the cyclic shift parameter is used to determine the SRS resource sequence; the configurable cyclic shift parameter under different TRP is different.
  • An embodiment of the present disclosure provides a communication device.
  • the communication device includes:
  • Memory used to store instructions executable by the processor
  • the processor is configured to: when executing executable instructions, implement the method applied to any embodiment of the present disclosure.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize information stored on the communication device after the communication device is powered off.
  • the processor can be connected to the memory through a bus, etc., and is used to read the executable program stored in the memory.
  • An embodiment of the present disclosure also provides a computer storage medium, wherein the computer storage medium stores a computer executable program, and when the executable program is executed by a processor, the method of any embodiment of the present disclosure is implemented.
  • one embodiment of the present disclosure provides a structure of a terminal.
  • the terminal 800 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc. .
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communications component 816.
  • Processing component 802 generally controls the overall operations of terminal 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operations at device 800 . Examples of such data include instructions for any application or method operating on the terminal 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 806 provides power to various components of terminal 800.
  • Power component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to terminal 800.
  • Multimedia component 808 includes a screen that provides an output interface between terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. A touch sensor can not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • multimedia component 808 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) configured to receive external audio signals when terminal 800 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 804 or sent via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 814 includes one or more sensors that provide various aspects of status assessment for terminal 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the terminal 800, the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800, the user The presence or absence of contact with the terminal 800, the terminal 800 orientation or acceleration/deceleration and the temperature change of the terminal 800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • communications component 816 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal 800 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions, which can be executed by the processor 820 of the terminal 800 to complete the above method is also provided.
  • non-transitory computer-readable storage media may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • an embodiment of the present disclosure shows the structure of a base station.
  • the base station 900 may be provided as a network side device.
  • base station 900 includes a processing component 922, which further includes one or more processors, and memory resources represented by memory 932 for storing instructions, such as application programs, executable by processing component 922.
  • the application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the foregoing methods applied to the base station.
  • Base station 900 may also include a power supply component 926 configured to perform power management of base station 900, a wired or wireless network interface 950 configured to connect base station 900 to a network, and an input/output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

本公开实施例提供了一种无线通信方法,其中,方法由接入网设备执行,方法包括:向终端发送指示信息;其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;针对不同TRP下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同。

Description

无线通信方法、装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种无线通信方法、装置、通信设备及存储介质。
背景技术
为了改善服务小区边缘的信号质量,在服务器小区内提供更为均衡的服务,多点协作传输(CoMP,Coordinated Multiple Point transmission)技术在新空口(NR,New Radio)系统中仍然是一种重要的技术手段。针对多传输接收场景(TRP,Transmission-Reception Point),会涉及非相关联合传输(NC-JT,Non-Coherent Joint Transmission)和联合传输(C-JT,Coherent Joint Transmission)。在无线网络中,很多类型的网络已经可以实现相关联合传输,例如,集中式无线接入网络(C-RAN,Centralized Radio Access Network)架构和站内协作。
相关技术中,针对多个TRP进行相关联合传输的情况,不同TRP之间用于信道估计的探测参考信号(SRS,Sounding Reference Signal)之间的干扰严重,无线通信的可靠性低。
发明内容
本公开实施例公开了一种无线通信方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种无线通信方法,其中,所述方法由接入网设备执行,所述方法包括:
向终端发送指示信息;
其中,所述指示信息用于指示以下至少之一:
针对不同传输接入点TRP下的终端配置的梳状资源结构类型,所述梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;
针对不同所述TPR下的终端配置的循环移位参数,所述循环移位参数用于确定SRS资源序列;不同所述TRP下可配置的所述循环移位参数不同。
在一个实施例中,所述梳状结构类型包括以下之一:
第二类型梳状结构comb-2;
第三类型梳状结构comb-3;
第四类型梳状结构comb-4;
第六类型梳状结构comb-6。
在一个实施例中,所述循环移位参数包括最大循环移位值和/或循环移位初始值。
在一个实施例中,基于所述循环移位参数确定出的不同的所述TRP的所述SRS资源序列相互正交。
在一个实施例中,所述指示信息还包括指示以下至少之一:
基序列;
梳状偏移值。
根据本公开实施例的第二方面,提供一种无线通信方法,其中,所述方法由终端执行,所述方法包括:
接收接入网设备发送的指示信息;
其中,所述指示信息用于指示以下至少之一:
针对不同传输接入点TRP下的终端配置的梳状资源结构类型,所述梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;
针对不同所述TPR下的终端配置的循环移位参数,所述循环移位参数用于确定SRS资源序列;不同所述TRP下可配置的所述循环移位参数不同。
在一个实施例中,所述梳状结构类型包括以下之一:
第二类型梳状结构comb-2;
第三类型梳状结构comb-3;
第二类型梳状结构comb-4;
第六类型梳状结构comb-6。
在一个实施例中,所述循环移位参数包括最大循环移位值和/或循环移位初始值。
在一个实施例中,基于所述循环移位参数确定出的不同的所述TRP的SRS资源序列相互正交。
在一个实施例中,所述指示信息还包括指示以下至少之一:
基序列;
梳状偏移值。
根据本公开实施例的第三方面,提供一种无线通信装置,其中,所述装置包括:
发送模块,被配置为向终端发送指示信息;
其中,所述指示信息用于指示以下至少之一:
针对不同传输接入点TRP下的终端配置的梳状资源结构类型,所述梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;
针对不同所述TPR下的终端配置的循环移位参数,所述循环移位参数用于确定SRS资源序列;不同所述TRP下可配置的所述循环移位参数不同。
根据本公开实施例的第四方面,提供一种无线通信装置,所述装置包括:
接收模块,被配置为接收接入网设备发送的指示信息;
其中,所述指示信息用于指示以下至少之一:
针对不同传输接入点TRP下的终端配置的梳状资源结构类型,所述梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;
针对不同所述TPR下的终端配置的循环移位参数,所述循环移位参数用于确定SRS资源序列;不同所述TRP下可配置的所述循环移位参数不同。
根据本公开实施例的第五方面,提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第六方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
在本公开实施例中,向终端发送指示信息;其中,所述指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,所述梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;针对不同所述TPR下的终端配置的循环移位参数,所述循环移位参数用于确定SRS资源序列;不同所述TRP下可配置的所述循环移位参数不同。这里,由于针对不同所述传输接入点TRP下的终端配置的梳状资源结构类型进行了分别配置,则基于不同所述传输接入点TRP下的终端配置的梳妆资源结构类型确定的所述SRS的频域资源可以不同,和/或,由于针对不同所述TRP下的终端配置的循环移位参数不同,则基于不同所述TRP下的终端配置的循环移位参数确定出的SRS资源序列可以正交,相较于给终端统一配置梳状资源结构类型和/或循环移位参数的方式,可以确保两个TRP下的用户分配不同的资源以减少所述SRS之间的干扰,提升无线通信的可靠性。
附图说明
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种联合通信的场景示意图。
图3是根据一示例性实施例示出的一种带宽分布的示意图。
图4是根据一示例性实施例示出的一种梳状资源分布的示意图。
图5是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图6是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图7是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图8是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图9是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图10是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图11是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图12是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图13是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图14是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图15是根据一示例性实施例示出的一种无线通信装置的结构示意图。
图16是根据一示例性实施例示出的一种无线通信装置的结构示意图。
图17是根据一示例性实施例示出的一种终端的结构示意图。
图18是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技术中的一些方法一起被执行;本公开实施例并不对此作出限定。
为了更好地理解本公开任一个实施例所描述的技术方案,首先,对相关技术中的应用场景进行说明:
在一个实施例中,对于多个TRP进行相关联合传输的情况,不同TRP之间用于信道估计的SRS的干扰问题会更加严重。请参见图2,为了估计联合传输的信道,TRP1需要接收用户1(UE1)的SRS(SRS1),此时离TRP2距离更近的用户2的SRS成为了干扰。如何消除TRP之间SRS的干扰,是需要解决的问题。需要说明的是,TRP1可以是图2中的关联小区(Coordination Cell)对应的TRP,TRP2可以是服务小区(Serving Cell)对应的TRP。
在一个实施例中,SRS的配置包括时域位置配置和频域位置配置。其中,时域位置配置的参数包括:起始符号位置(Starting symbol location l 0)、持续时长(Time duration
Figure PCTCN2022089400-appb-000001
)和周期与时隙偏移(Periodicity and slot offset)等。频域位置配置的参数包括:探测带宽(Sounding bandwidth)和传输梳 状间隔和梳状偏移(Transmission comb spacing and comb offset)等。请参见图3,示出了带宽部分(BWP,Bandwidth Part)中的最大探测带宽(Maximum Sounding Bandwidth)和实际探测带宽(Actual Sounding Bandwidth)。请参见图4,示出了传输梳状间隔(分别为1、1、3和3)和梳状结构偏移(分别为0、1、0和1)。
相位旋转或者循环移位的获取可以基于如下公式:
Figure PCTCN2022089400-appb-000002
Figure PCTCN2022089400-appb-000003
其中,
Figure PCTCN2022089400-appb-000004
由网络配置,
Figure PCTCN2022089400-appb-000005
为用户的SRS资源的端口数,p i为SRS端口数。
如图5所示,本实施例中提供一种无线通信方法,其中,该方法由接入网设备执行,该方法包括:
步骤51、向终端发送指示信息;
其中,指示信息用于指示以下至少之一:
针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS在探测带宽内的频域资源;
针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同。
这里,本公开所涉及的终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。在一些实施例中,该终端可以是Redcap终端或者预定版本的新空口NR终端(例如,R17的NR终端)。
本公开中涉及的接入网设备可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
需要说明的是,TRP可以理解为基站,但在一些场景下,一个小区可能不止通过一个TRP来覆盖,而是由多个TRP联合覆盖,从而增大了小区的覆盖半径,可以减少终端在小区上进行不断的切换。
在一个实施例中,可以是通过RRC消息向终端发送指示信息,其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS在探测带宽内的频域资源;针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同。
在一个实施例中,接入网设备向终端发送指示信息;其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS在探测带宽内的频域资源;针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同。终端在接收到指示信息后,就可以基于指示信息指示的梳状资源结构类型和循环移位参数传输SRS。示例性地,可以根据基于梳状资源结构类型确定的频域资源和循环移位参数确定的SRS资源序列传输SRS。
在一个实施例中,梳状结构类型包括以下之一:
第二类型梳状结构comb-2;
第三类型梳状结构comb-3;
第四类型梳状结构comb-4;
第六类型梳状结构comb-6。
需要说明的是,梳状结构类型可以是但不限于是上述梳状结构类型。针对不同TRP下的终端可以配置不同的梳状结构类型。当然,也可以针对不同TRP下的终端配置相同的梳状结构类型。
在一个实施例中,循环移位参数包括最大循环移位值和/或循环移位初始值。
需要说明的是,循环移位参数可以不包含最大循环移位值。示例性地,终端在接收到指示信息后,可以基于指示信息指示的梳状结构类型以及梳状结构类型及最大循环移位值之间的映射关系,直接确定最大循环移位值。如此,只要当梳状结构类型确定,终端就可以确定最大循环移位值,实质上,梳状结构类型通过隐性方式指示了最大循环移位值。当然,也可以通过显式指示的方式指示该最大循环移位值,即在接入网设备向终端发送的指示信息中就直接包含该最大循环移位值。
在一个实施例中,向终端发送指示信息;其中,指示信息用于指示:针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同。需要说明的是,基于循环移位参数确定出的不同的TRP的SRS资源序列相互正交。示例性地,不同的TRP下的终端基于相同的基序列和循环移位参数确定出的不同的TRP的SRS资源序列相互正交。
在一个实施例中,指示信息还包括指示以下至少之一:基序列;梳状偏移值。需要说明的是,指示信息可以不直接携带该基序列,可以通过指示标识指示该基序列。示例性地,基序列被分为多个分组,每个分组包含多个基序列,则可以通过标识“x”指示基序列所在的分组,通过标识“y”指示基序列所在分组内的序号。如此,指示信息可以直接携带标识“x”和标识“y”,通过这种隐性指示的方式进行指示。当然,该基序列也可以直接携带在指示信息中,通过显性指示的方式进行指示。
在一个实施例中,向终端发送指示信息;其中,指示信息用于指示以下至少之一:指示SRS频域资源为comb-2梳状结构的信息以及对应的循环移位的最大次数Dmax的信息,其中,Dmax为12或者24。需要说明的是,本公开实施例中用户SRS端口p i的SRS的序列循环移位值α i按下式确定,其中,d 0由网络配置,
Figure PCTCN2022089400-appb-000006
为用户的SRS资源配置的端口数;
Figure PCTCN2022089400-appb-000007
Figure PCTCN2022089400-appb-000008
本公开实施例中,针对上述公式,网络配置的d 0的取值可以为:当Dmax配置为12时,TRP1下的用户(或者终端)的循环移位初始值d 0可配置为{0,2,4,6,8,10};TRP2下的用户的循环移位初始值d 0可配置为{1,3,5,7,9,11};或者,当Damx为24时,TRP1下的用户(或者终端)的循环移位初始值d 0可配置为{0,2,4,6,8,10,…,22};TRP2下的用户的循环移位初始值d 0可配置为{1,3,5,7,9,11,…,23}。
在另一个实施例中,网络配置的d 0的取值可以为:当Dmax配置为12时,TRP1下的用户(或者 终端)的循环移位初始值d 0可配置为{0,1,2,…,5};TRP2下的用户的循环移位初始值d 0可配置为{0,1,2,…,11};或者,当Damx为24时,TRP1下的用户(或者终端)的循环移位初始值d 0可配置为{0,1,2,…,5};TRP2下的用户的循环移位初始值d 0可配置为{0,1,2,…,11}。且用户SRS端口p i的SRS的序列循环移位值α i按下式确定:
Figure PCTCN2022089400-appb-000009
在一个场景实施例中,不同TRP下的终端选用相同的基序列。通过以上处理后,两个不同的TRP(TRP1和TRP2)下的用户可选的循环移位不相同,即使选择了相同的基序列(root sequence),由于序列循环移位值不相同,也不会相互干扰。因为,两个用户之间的内积为
Figure PCTCN2022089400-appb-000010
其中|α ik|的可能取值为
Figure PCTCN2022089400-appb-000011
或者
Figure PCTCN2022089400-appb-000012
因为SRS的频域资源一定是4PRB的倍数,对于comb-2的情况,内积公式中N一定是12或者24的倍数,则内积始终为0,不同TRP下的终端的SRS资源序列相互正交,如此,不同TRP下的终端传输的SRS不会相互干扰。
在一个场景实施例中,不同TRP下的终端选用的基序列不相同。如此,由于基序列不同,两个TRP的用户之间的SRS序列相关性低,干扰也小。
在一个实施例中,向终端发送指示信息;其中,指示信息用于指示:指示SRS频域资源为comb-3梳状结构的信息以及对应的循环移位的最大次数Dmax(对应最大循环移位值)的信息。示例性地,请参见图6,可以按照图6所示的方式进行资源映射,其中,可以配置的梳状结构comb的偏移值为{0,1,2}。循环移位的最大次数D max为8或者16。网络配置的d 0的取值可以是:TRP1下的用户可选的d 0为{0,2,4,6},或者{0,2,4,6,8,10,…,14};TRP2下的用户可选的d 0为{1,3,5,7}或者{1,3,4,7,9,…,15}。
在一个实施例中,向终端发送指示信息;其中,指示信息用于指示:指示SRS频域资源为comb-6梳状结构的信息以及对应的循环移位的最大次数Dmax(对应最大循环移位值)的信息。示例性地,请参见图7,可以按照图7所示的方式进行资源映射,其中,可配置的comb的偏移值为{0,1,2,3,4,5}。可用的循环移位的最大次数D max为8。网络配置的d 0的取值:TRP1下的用户可选的d 0为{0,2,4,6},TRP2下的用户可选的循环移位d 0为{1,3,5,7}。
在本公开实施例中,向终端发送指示信息;其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同。这里,由于针对不同传输接入点TRP下的终端配置的梳状资源结构类型进行了分别配置,则基于不同传输接入点TRP下的终端配置的梳妆资源结构类型确定的SRS的频域资源可以不同,和/或,由于针对不同TRP下的终端配置的循环移位参数不同,则基于不同TRP下的终端配置的循环移位参数确定出的SRS资源序列可以正交,相较于给终端统一配置梳状资源结构类型和/或循环移位参数的方式,可以确保两个TRP下的用户分配不同的资源以减少SRS之间的干扰,提升无线通信的可靠性。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图8所示,本实施例中提供一种无线通信方法,其中,该方法由接入网设备执行,该方法包括:
步骤81、向终端发送指示信息;其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同;梳状结构类型包括以下之一:第二类型梳状结构comb-2;第三类型梳状结构comb-3;第四类型梳状结构comb-4;第六类型梳状结构comb-6。
需要说明的是,梳状结构类型可以是但不限于是上述梳状结构类型。针对不同TRP下的终端可以配置不同的梳状结构类型。当然,也可以针对不同TRP下的终端配置相同的梳状结构类型。
需要说明的是,当TRP下的终端数量大于数量阈值时,指示信息指示的梳状结构类型可以是A;当TRP下的终端数量小于数量阈值时,指示信息指示的梳状结构类型可以是B,其中,A的资源分布密度小于B的资源分布密度。如此,梳状结构类型可以适应于TRP下的终端数量。示例性地,当TRP下的终端数量大于数量阈值时,指示信息指示的梳状结构类型可以是comb3;当TRP下的终端数量小于数量阈值时,指示信息指示的梳状结构类型可以是comb2。需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图9所示,本实施例中提供一种无线通信方法,其中,该方法由接入网设备执行,该方法包括:
步骤91、向终端发送指示信息;其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同;循环移位参数包括最大循环移位值和/或循环移位初始值。
在一个实施例中,循环移位参数可以不包含最大循环移位值。示例性地,终端在接收到指示信息后,可以基于指示信息指示的梳状结构类型以及梳状结构类型及最大循环移位值之间的映射关系,直接确定最大循环移位值。如此,只要当梳状结构类型确定,终端就可以确定最大循环移位值,实质上,梳状结构类型通过隐性方式指示了最大循环移位值。当然,也可以通过显式指示的方式指示该最大循环移位值,即在接入网设备向终端发送的指示信息中就直接包含该最大循环移位值。
有关步骤91部分的其他说明,请具体参见步骤51部分的说明,在此不再赘述.
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图10所示,本实施例中提供一种无线通信方法,其中,该方法由接入网设备执行,该方法包括:
步骤101、向终端发送指示信息;其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP 下可配置的循环移位参数不同;基于循环移位参数确定出的不同的TRP的SRS资源序列相互正交。
在一个实施例中,向终端发送指示信息;其中,指示信息用于指示:针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同。需要说明的是,基于循环移位参数确定出的不同的TRP的SRS资源序列相互正交。示例性地,不同的TRP下的终端基于相同的基序列和循环移位参数确定出的不同的TRP的SRS资源序列相互正交。
有关步骤91部分的其他说明,请具体参见步骤51部分的说明,在此不再赘述.
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图11所示,本实施例中提供一种无线通信方法,其中,该方法由终端执行,该方法包括:
步骤111、接收接入网设备发送的指示信息;
其中,指示信息用于指示以下至少之一:
针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS的在探测带宽内频域资源;
针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同。
这里,本公开所涉及的终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。在一些实施例中,该终端可以是Redcap终端或者预定版本的新空口NR终端(例如,R17的NR终端)。
本公开中涉及的接入网设备可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
需要说明的是,TRP可以理解为基站,但在一些场景下,一个小区可能不止通过一个TRP来覆盖,而是由多个TRP联合覆盖,从而增大了小区的覆盖半径,可以减少终端在小区上进行不断的切换。
在一个实施例中,可以是通过系统消息接收接入网设备广播的指示信息,其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS在探测带宽内的频域资源;针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同。
在一个实施例中,可以是通过RRC消息接收接入网设备发送的指示信息,其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS在探测带宽内的频域资源;针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的的循环移位参数不同。
在一个实施例中,接收接入网设备发送的指示信息;其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS在探测带宽内的频域资源;针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同。终端在接收到指示信息后,就可以基于指 示信息指示的梳状资源结构类型和循环移位参数传输SRS。示例性地,终端可以根据基于梳状资源结构类型确定的频域资源和循环移位参数确定的SRS资源序列传输SRS。
在一个实施例中,梳状结构类型包括以下之一:
第二类型梳状结构comb-2;
第三类型梳状结构comb-3;
第四类型梳状结构comb-4;
第六类型梳状结构comb-6。
需要说明的是,梳状结构类型可以是但不限于是上述梳状结构类型。针对不同TRP下的终端可以配置不同的梳状结构类型。当然,也可以针对不同TRP下的终端配置相同的梳状结构类型。
在一个实施例中,循环移位参数包括最大循环移位值和/或循环移位初始值。
需要说明的是,循环移位参数可以不包含最大循环移位值。示例性地,终端在接收到指示信息后,可以基于指示信息指示的梳状结构类型以及梳状结构类型及最大循环移位值之间的映射关系,直接确定最大循环移位值。如此,只要当梳状结构类型确定,终端就可以确定最大循环移位值,实质上,梳状结构类型通过隐性方式指示了最大循环移位值。当然,也可以通过显式指示的方式指示该最大循环移位值,即在接入网设备向终端发送的指示信息中就直接包含该最大循环移位值。
在一个实施例中,接收接入网发送的指示信息;其中,指示信息用于指示:针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同。需要说明的是,基于循环移位参数确定出的不同的TRP的SRS资源序列相互正交。示例性地,不同的TRP下的终端基于相同的基序列和循环移位参数确定出的不同的TRP的SRS资源序列相互正交。
在一个实施例中,指示信息还包括指示以下至少之一:基序列;梳状偏移值。需要说明的是,指示信息可以不直接携带该基序列,可以通过指示标识指示该基序列。示例性地,基序列被分为多个分组,每个分组包含多个基序列,则可以通过标识“x”指示基序列所在的分组,通过标识“y”指示基序列所在分组内的序号。如此,指示信息可以直接携带标识“x”和标识“y”,通过这种隐性指示的方式进行指示。当然,该基序列也可以直接携带在指示信息中,通过显性指示的方式进行指示。
在一个实施例中,接收接入网设备发送的指示信息;其中,指示信息用于指示以下至少之一:指示SRS频域资源为comb-2梳状结构的信息以及对应的循环移位的最大次数Dmax的信息,其中,Dmax为12或者24。需要说明的是,本公开实施例中用户SRS端口p i的SRS的序列循环移位值α i按下式确定,其中,d 0由网络配置,
Figure PCTCN2022089400-appb-000013
为用户的SRS资源配置的端口数;
Figure PCTCN2022089400-appb-000014
Figure PCTCN2022089400-appb-000015
本公开实施例中,针对上述公式,网络配置的d 0的取值可以为:当Dmax配置为12时,TRP1下的用户(或者终端)的循环移位初始值d 0可配置为{0,2,4,6,8,10};TRP2下的用户的循环移位初始值d 0可配置为{1,3,5,7,9,11};或者,当Damx为24时,TRP1下的用户(或者终端)的循环移位初始值d 0可配 置为{0,2,4,6,8,10,…,22};TRP2下的用户的循环移位初始值d 0可配置为{1,3,5,7,9,11,…,23}。
在另一个实施例中,网络配置的d 0的取值可以为:当Dmax配置为12时,TRP1下的用户(或者终端)的循环移位初始值d 0可配置为{0,1,2,…,5};TRP2下的用户的循环移位初始值d 0可配置为{0,1,2,…,11};或者,当Damx为24时,TRP1下的用户(或者终端)的循环移位初始值d 0可配置为{0,1,2,…,5};TRP2下的用户的循环移位初始值d 0可配置为{0,1,2,…,11}。且用户SRS端口p i的SRS的序列循环移位值α i按下式确定:
Figure PCTCN2022089400-appb-000016
在一个场景实施例中,不同TRP下的终端选用相同的基序列。通过以上处理后,两个不同的TRP(TRP1和TRP2)下的用户可选的循环移位不相同,即使选择了相同的基序列(root sequence),由于序列循环移位值不相同,也不会相互干扰。因为,两个用户之间的内积为
Figure PCTCN2022089400-appb-000017
其中|α ik|的可能取值为
Figure PCTCN2022089400-appb-000018
或者
Figure PCTCN2022089400-appb-000019
因为SRS的频域资源一定是4PRB的倍数,对于comb-2的情况,内积公式中N一定是12或者24的倍数,则内积始终为0,不同TRP下的终端的SRS资源序列相互正交,如此,不同TRP下的终端传输的SRS不会相互干扰。
在一个场景实施例中,不同TRP下的终端选用的基序列不相同。如此,由于基序列不同,两个TRP的用户之间的SRS序列相关性低,干扰也小。
在一个实施例中,接收接入网设备发送的指示信息;其中,指示信息用于指示:指示SRS频域资源为comb-3梳状结构的信息以及对应的循环移位的最大次数Dmax(对应最大循环移位值)的信息。示例性地,请再次参见图6,可以按照图6所示的方式进行资源映射,其中,可以配置的梳状结构comb的偏移值为{0,1,2}。循环移位的最大次数D max为8或者16。网络配置的d 0的取值可以是:TRP1下的用户可选的d 0为{0,2,4,6},或者{0,2,4,6,8,10,…,14};TRP2下的用户可选的d 0为{1,3,5,7}或者{1,3,4,7,9,…,15}。
在一个实施例中,接收接入网设备发送的指示信息;其中,指示信息用于指示:指示SRS频域资源为comb-6梳状结构的信息以及对应的循环移位的最大次数Dmax(对应最大循环移位值)的信息。示例性地,请再次参见图7,可以按照图7所示的方式进行资源映射,其中,可配置的comb的偏移值为{0,1,2,3,4,5}。可用的循环移位的最大次数D max为8。网络配置的d 0的取值:TRP1下的用户可选的d 0为{0,2,4,6},TRP2下的用户可选的循环移位d 0为{1,3,5,7}。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图12所示,本实施例中提供一种无线通信方法,其中,该方法由终端执行,该方法包括:
步骤121、接收接入网设备发送的指示信息;其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同;梳状结构类型包括以下之一:第二类型梳状结构comb-2;第三 类型梳状结构comb-3;第四类型梳状结构comb-4;第六类型梳状结构comb-6。
需要说明的是,梳状结构类型可以是但不限于是上述梳状结构类型。针对不同TRP下的终端可以配置不同的梳状结构类型。当然,也可以针对不同TRP下的终端配置相同的梳状结构类型。
需要说明的是,当TRP下的终端数量大于数量阈值时,指示信息指示的梳状结构类型可以是A;当TRP下的终端数量小于数量阈值时,指示信息指示的梳状结构类型可以是B,其中,A的资源分布密度小于B的资源分布密度。如此,梳状结构类型可以适应于TRP下的终端数量。示例性地,当TRP下的终端数量大于数量阈值时,指示信息指示的梳状结构类型可以是comb3;当TRP下的终端数量小于数量阈值时,指示信息指示的梳状结构类型可以是comb2。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图13所示,本实施例中提供一种无线通信方法,其中,该方法由终端执行,该方法包括:
步骤131、接收接入网设备发送的指示信息;其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同;循环移位参数包括最大循环移位值和/或循环移位初始值。
在一个实施例中,循环移位参数可以不包含最大循环移位值。示例性地,终端在接收到指示信息后,可以基于指示信息指示的梳状结构类型以及梳状结构类型及最大循环移位值之间的映射关系,直接确定最大循环移位值。如此,只要当梳状结构类型确定,终端就可以确定最大循环移位值,实质上,梳状结构类型通过隐性方式指示了最大循环移位值。当然,也可以通过显式指示的方式指示该最大循环移位值,即在接入网设备向终端发送的指示信息中就直接包含该最大循环移位值。
有关步骤131部分的其他说明,请具体参见步骤101部分的说明,在此不再赘述.
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图14所示,本实施例中提供一种无线通信方法,其中,该方法由终端执行,该方法包括:
步骤141、接收接入网设备发送的指示信息;其中,指示信息用于指示以下至少之一:针对不同传输接入点TRP下的终端配置的梳状资源结构类型,梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同;基于循环移位参数确定出的不同的TRP的SRS资源序列相互正交。
在一个实施例中,接收接入网设备发送的指示信息;其中,指示信息用于指示:针对不同TPR下的终端配置的循环移位参数,循环移位参数用于确定SRS资源序列;不同TRP下可配置的循环移位参数不同。需要说明的是,基于循环移位参数确定出的不同的TRP的SRS资源序列相互正交。示例性地, 不同的TRP下的终端基于相同的基序列和循环移位参数确定出的不同的TRP的SRS资源序列相互正交。
有关步骤141部分的其他说明,请具体参见步骤101部分的说明,在此不再赘述.
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图15所示,本实施例中提供一种无线通信装置,其中,所述装置包括:
发送模块151,被配置为向终端发送指示信息;
其中,所述指示信息用于指示以下至少之一:
针对不同传输接入点TRP下的终端配置的梳状资源结构类型,所述梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;
针对不同所述TPR下的终端配置的循环移位参数,所述循环移位参数用于确定SRS资源序列;不同所述TRP下可配置的所述循环移位参数不同。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图16所示,本实施例中提供一种无线通信装置,所述装置包括:
接收模块161,被配置为接收接入网设备发送的指示信息;
其中,所述指示信息用于指示以下至少之一:
针对不同传输接入点TRP下的终端配置的梳状资源结构类型,所述梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;
针对不同所述TPR下的终端配置的循环移位参数,所述循环移位参数用于确定SRS资源序列;不同所述TRP下可配置的所述循环移位参数不同。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
本公开实施例提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现应用于本公开任意实施例的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执 行程序被处理器执行时实现本公开任意实施例的方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图17所示,本公开一个实施例提供一种终端的结构。
参照图17所示终端800本实施例提供一种终端800,该终端具体可是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图17,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小 键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图18所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图18,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种无线通信方法,其中,所述方法由接入网设备执行,所述方法包括:
    向终端发送指示信息;
    其中,所述指示信息用于指示以下至少之一:
    针对不同传输接入点TRP下的终端配置的梳状资源结构类型,所述梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;
    针对不同所述TPR下的终端配置的循环移位参数,所述循环移位参数用于确定SRS资源序列;不同所述TRP下可配置的所述循环移位参数不同。
  2. 根据权利要求1所述的方法,其中,所述梳状结构类型包括以下之一:
    第二类型梳状结构comb-2;
    第三类型梳状结构comb-3;
    第四类型梳状结构comb-4;
    第六类型梳状结构comb-6。
  3. 根据权利要求1所述的方法,其中,所述循环移位参数包括最大循环移位值和/或循环移位初始值。
  4. 根据权利要求3所述的方法,其中,基于所述循环移位参数确定出的不同的所述TRP的所述SRS资源序列相互正交。
  5. 根据权利要求1所述的方法,其中,所述指示信息还包括指示以下至少之一:
    基序列;
    梳状偏移值。
  6. 一种无线通信方法,其中,所述方法由终端执行,所述方法包括:
    接收接入网设备发送的指示信息;
    其中,所述指示信息用于指示以下至少之一:
    针对不同传输接入点TRP下的终端配置的梳状资源结构类型,所述梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;
    针对不同所述TPR下的终端配置的循环移位参数,所述循环移位参数用于确定SRS资源序列;不同所述TRP下可配置的所述循环移位参数不同。
  7. 根据权利要求6所述的方法,其中,所述梳状结构类型包括以下之一:
    第二类型梳状结构comb-2;
    第三类型梳状结构comb-3;
    第二类型梳状结构comb-4;
    第六类型梳状结构comb-6。
  8. 根据权利要求6所述的方法,其中,所述循环移位参数包括最大循环移位值和/或循环移位初始值。
  9. 根据权利要求8所述的方法,其中,基于所述循环移位参数确定出的不同的所述TRP的SRS资源序列相互正交。
  10. 根据权利要求6所述的方法,其中,所述指示信息还包括指示以下至少之一:
    基序列;
    梳状偏移值。
  11. 一种无线通信装置,其中,所述装置包括:
    发送模块,被配置为向终端发送指示信息;
    其中,所述指示信息用于指示以下至少之一:
    针对不同传输接入点TRP下的终端配置的梳状资源结构类型,所述梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;
    针对不同所述TPR下的终端配置的循环移位参数,所述循环移位参数用于确定SRS资源序列;不同所述TRP下可配置的所述循环移位参数不同。
  12. 一种无线通信装置,其中,所述装置包括:
    接收模块,被配置为接收接入网设备发送的指示信息;
    其中,所述指示信息用于指示以下至少之一:
    针对不同传输接入点TRP下的终端配置的梳状资源结构类型,所述梳状资源结构类型用于确定传输探测参考信号SRS的频域资源;
    针对不同所述TPR下的终端配置的循环移位参数,所述循环移位参数用于确定SRS资源序列;不同所述TRP下可配置的所述循环移位参数不同。
  13. 一种通信设备,其中,包括:
    存储器;
    处理器,与所述存储器连接,被配置为通过执行存储在所述存储器上的计算机可执行指令,并能够实现权利要求1至5任一项所述的方法。
  14. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至5任一项所述的方法。
PCT/CN2022/089400 2022-04-26 2022-04-26 无线通信方法、装置、通信设备及存储介质 WO2023206104A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/089400 WO2023206104A1 (zh) 2022-04-26 2022-04-26 无线通信方法、装置、通信设备及存储介质
CN202280001419.1A CN117296256A (zh) 2022-04-26 2022-04-26 无线通信方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089400 WO2023206104A1 (zh) 2022-04-26 2022-04-26 无线通信方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023206104A1 true WO2023206104A1 (zh) 2023-11-02

Family

ID=88516586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089400 WO2023206104A1 (zh) 2022-04-26 2022-04-26 无线通信方法、装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN117296256A (zh)
WO (1) WO2023206104A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102026298A (zh) * 2009-09-22 2011-04-20 中兴通讯股份有限公司 消除多点协作中不同小区用户间srs干扰的方法与系统
US20110098054A1 (en) * 2009-04-23 2011-04-28 Qualcomm Incorporated Sounding reference signal for coordinated multi-point operation
CN102065557A (zh) * 2010-12-31 2011-05-18 中兴通讯股份有限公司 用于协作多点传输系统的测量参考信号发送方法及系统
CN103947265A (zh) * 2011-10-03 2014-07-23 高通股份有限公司 用于协作多点发送和接收的srs 优化

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110098054A1 (en) * 2009-04-23 2011-04-28 Qualcomm Incorporated Sounding reference signal for coordinated multi-point operation
CN102026298A (zh) * 2009-09-22 2011-04-20 中兴通讯股份有限公司 消除多点协作中不同小区用户间srs干扰的方法与系统
CN102065557A (zh) * 2010-12-31 2011-05-18 中兴通讯股份有限公司 用于协作多点传输系统的测量参考信号发送方法及系统
CN103947265A (zh) * 2011-10-03 2014-07-23 高通股份有限公司 用于协作多点发送和接收的srs 优化

Also Published As

Publication number Publication date
CN117296256A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2021253241A1 (zh) 参考信号资源的配置方法、装置、通信设备及存储介质
US20230276430A1 (en) Resource scheduling method and apparatus, communication device and storage medium
CN112236977A (zh) 参数配置方法、装置、通信设备和存储介质
WO2023184187A1 (zh) 确定传输方向的方法、装置、通信设备及存储介质
WO2023193211A1 (zh) Rsrp门限确定方法、装置、通信设备及存储介质
US20220303063A1 (en) Method and device for determining resource multiplexing, method and device for information demodulation and medium thereof
WO2022178723A1 (zh) 测量间隔的配置方法、装置、通信设备及存储介质
EP4319259A1 (en) Measurement gap processing method and apparatus, and communication device and storage medium
WO2023184186A1 (zh) 确定传输方向的方法、装置、通信设备及存储介质
WO2019140692A1 (zh) 信息配置方法及装置、接收功率的确定方法及装置和基站
CN112640559B (zh) 无线传输的方法、装置、通信设备及存储介质
WO2023206104A1 (zh) 无线通信方法、装置、通信设备及存储介质
WO2021226766A1 (zh) 发送数据的方法、装置、通信设备及存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
CN114080852A (zh) 能力信息的上报方法、装置、通信设备及存储介质
CN113383596A (zh) 网络分配向量的确定方法、装置及存储介质
WO2023155111A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2024021097A1 (zh) 信道状态信息的测量方法、装置、通信设备及存储介质
WO2024031391A1 (zh) 测距或侧行链路定位方法、装置、通信设备及存储介质
WO2023108428A1 (zh) 收发ncd-ssb的配置信息的方法、装置、通信设备及存储介质
WO2023201660A1 (zh) Rsrp门限参数确定方法、装置、通信设备及存储介质
WO2023151055A1 (zh) 发送配置信息的方法、装置、通信设备及存储介质
WO2024000124A1 (zh) 寻呼协商方法、装置、通信设备及存储介质
WO2024007274A1 (zh) 接纳控制方法、装置、通信设备及存储介质
WO2023123433A1 (zh) 终端的功率配置方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001419.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938960

Country of ref document: EP

Kind code of ref document: A1