WO2023203897A1 - Novel diamine, method for producing same, and polyamic acid and polyimide produced from said diamine - Google Patents

Novel diamine, method for producing same, and polyamic acid and polyimide produced from said diamine Download PDF

Info

Publication number
WO2023203897A1
WO2023203897A1 PCT/JP2023/008307 JP2023008307W WO2023203897A1 WO 2023203897 A1 WO2023203897 A1 WO 2023203897A1 JP 2023008307 W JP2023008307 W JP 2023008307W WO 2023203897 A1 WO2023203897 A1 WO 2023203897A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamine
polyimide
polyamic acid
solvent
solvents
Prior art date
Application number
PCT/JP2023/008307
Other languages
French (fr)
Japanese (ja)
Inventor
勇二 坂口
亮輝 湯浅
秀文 仲辻
Original Assignee
田岡化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=87469808&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2023203897(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 田岡化学工業株式会社 filed Critical 田岡化学工業株式会社
Publication of WO2023203897A1 publication Critical patent/WO2023203897A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/57Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/04Formation of amino groups in compounds containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C229/60Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring with amino and carboxyl groups bound in meta- or para- positions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • polyimide which is the substrate material for FPC, is exposed to various thermal cycles during the mounting process and undergoes dimensional changes.
  • polyimide has high heat resistance (for example, the glass transition temperature (Tg) is higher than the process temperature).
  • Tg glass transition temperature
  • CTE coefficient of linear thermal expansion
  • the diamine represented by the above formula (8) has extremely poor solvent solubility, in order to perform homogeneous polymerization, it is necessary to completely dissolve the diamine under heating and mix it with the acid dianhydride. Therefore, problems such as a complicated manufacturing process and a decrease in production efficiency may occur.
  • An object of the present invention is to provide a novel diamine that has a similar structure to the diamine represented by formula (8) above and has excellent solvent solubility.
  • the present inventors have found that the diamine represented by the following formula (1) exhibits excellent solvent solubility and that the above problems can be solved.
  • the present invention includes the following inventions.
  • A represents a tetravalent aromatic group or a tetravalent aliphatic group.
  • the diamine of the present invention described above (diamine represented by the above formula (1)) has excellent solvent solubility despite having a similar structure to the diamine represented by the above formula (8). Therefore, it is possible to carry out the reaction in a homogeneous system even around room temperature (25°C) without any particular heating. Therefore, the polymerization reaction can proceed sufficiently even around room temperature (25°C), and oligomerization and gelation are possible.
  • a uniform solution of the polyamic acid of the present invention (polyamic acid having a repeating unit represented by the above general formula (3)) can be obtained by suppressing the above.
  • the diamine of the present invention has a structure represented by the above formula (1).
  • the diamine of the present invention can be obtained by, for example, reacting tert-butylhydroquinone or a derivative thereof with 4-nitrobenzoic acid or a derivative thereof to obtain a dinitro compound represented by the above formula (2) (esterification reaction). It can be produced by reducing the nitro group of a dinitro compound (amination reaction).
  • Examples of the above esterification reaction include a method of directly dehydrating tert-butylhydroquinone and 4-nitrobenzoic acids at high temperature; A method of dehydration condensation using a dehydrating reagent such as; A method of reacting a diacetate of tert-butylhydroquinone with 4-nitrobenzoic acids at high temperature to deacetate and esterify it (ester exchange method); A method of reacting butylhydroquinone and 4-nitrobenzoic acid halide in the presence of a deoxidizing agent (acid halide method); using a tosyl chloride/N,N-dimethylformamide/pyridine mixture to react the carboxyl group of 4-nitrobenzoic acid. Examples include a method of activating and reacting with tert-butylhydroquinone. Among these methods, the acid halide method is preferred from the viewpoints of economy and reactivity. The acid halide method will be explained in detail below.
  • Examples of the 4-nitrobenzoic acid halide in the above acid halide method include 4-nitrobenzoic acid chloride, 4-nitrobenzoic acid bromide, and 4-nitrobenzoic acid iodide. Among these 4-nitrobenzoic acid halides, 4-nitrobenzoic acid chloride is preferred.
  • the amount of 4-nitrobenzoic acid halide used is, for example, 2 mol to 4 mol, preferably 2 mol to 3 mol, per 1 mol of tert-butylhydroquinone.
  • the amount used is 2 moles or more, a sufficient reaction rate can be obtained, and if it is 4 moles or less, unreacted 4-nitrobenzoic acid halide can be reduced, and the purity of the obtained diamine of the present invention can be further improved. be able to.
  • deoxidizing agents in the acid halide method include organic tertiary amines such as pyridine, triethylamine, and N,N-dimethylaniline, epoxies such as propylene oxide and allyl glycidyl ether, and inorganic compounds such as potassium carbonate and sodium hydroxide. Examples include bases. These deoxidizers may be used alone or in combination of two or more. Among these deoxidizing agents, pyridine is preferred because it is inexpensive and easy to separate and remove after the reaction. Further, the amount of the deoxidizing agent used is, for example, 2 mol to 4 mol, preferably 2 mol to 3 mol, per 1 mol of tert-butylhydroquinone. If the amount used is 2 moles or more, a sufficient reaction rate can be obtained, and if the amount used is 4 moles or less, the production of impurities can be suppressed.
  • organic tertiary amines such as pyridine, triethylamine
  • the acid halide method is usually carried out in the presence of a solvent.
  • solvents that can be used in the acid halide method include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, and acetophenone; 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, Ether solvents such as dibutyl ether, diethyl ether, 1,4-dioxane, cyclopentyl methyl ether, diglyme, and triglyme; Aromatic hydrocarbon solvents such as toluene and xylene; Halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene Solvent: Nitrile solvents such as acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile,
  • ether solvents aromatic hydrocarbon solvents, and nitrile solvents are preferred from the viewpoint of availability and handling.
  • solvents may be used alone or in combination of two or more.
  • the amount used is, for example, 1 to 30 times by weight, preferably 1 to 5 times by weight, per 1 part by weight of tert-butylhydroquinone.
  • a separately prepared solution containing tert-butylhydroquinone, a deoxidizing agent, and the above solvent is added to a solution containing 4-nitrobenzoic acid halide and the above solvent under stirring at a temperature within the above temperature range.
  • a method of adding a deoxidizing agent or a deoxidizing agent to a solution containing 4-nitrobenzoic acid halide, tert-butylhydroquinone, and the above solvent may be used. Examples include a method in which a solution containing an agent and the above-mentioned solvent is added intermittently or continuously so as to maintain the above-mentioned temperature range, and then the reaction is further continued in the above-mentioned temperature range.
  • catalysts used in the catalytic reduction method include catalysts in which transition metal atoms such as palladium and platinum are supported on activated carbon.
  • catalysts in which palladium is supported on activated carbon (palladium/carbon) or platinum supported on activated carbon are used.
  • a catalyst (platinum/carbon) that has been prepared is preferable from the viewpoint of reaction rate.
  • These catalysts may be used alone or in combination of two or more. The amount of these catalysts used is, for example, 0.0001 times to 0.01 times the weight of the dinitro compound represented by the above formula (2) in terms of the weight of transition metal atoms in the catalyst.
  • the resulting reaction mixture is mixed with a solvent in which the diamine represented by the above formula (1) is difficult to dissolve (hereinafter, a solvent in which the target product is difficult to dissolve is referred to as "a solvent in which the target product is difficult to dissolve”).
  • the diamine represented by the above formula (1) can be separated by a method such as dropping the diamine into a “poor solvent” (sometimes referred to as “poor solvent”).
  • the diamine represented by the above formula (1) thus obtained may be used as is in the next step, but it can be purified by conventional purification methods (extraction, washing, adsorption, steam distillation, crystallization, column purification, etc.). You may. Moreover, purification may be performed only once or multiple times.
  • the polyamic acid of the present invention has a repeating unit represented by the above general formula (3).
  • the two carboxyl groups bonded to structural unit A are described as cis positions for convenience, but in reality they are a mixture of cis positions and trans positions.
  • Structural unit A in the above general formula (3) represents a tetravalent aromatic group or a tetravalent aliphatic group.
  • the tetravalent aromatic group is derived from an aromatic tetracarboxylic dianhydride
  • the tetravalent aliphatic group is derived from an aliphatic tetracarboxylic acid.
  • the structural unit A in the above general formula (3) preferably contains at least one of the structures represented by the following formulas (5) to (7). Note that * represents a bonding point.
  • the molecular weight of the polyamic acid of the present invention is, for example, a weight average molecular weight of 10,000 to 500,000, preferably 10,000 to 300,000, more preferably 20,000 to 200,000.
  • the molecular weight of the polyamic acid can be measured by a conventional method such as GPC (gel permeation chromatography).
  • the polyamic acid of the present invention includes, for example, the diamine represented by the above formula (1) (hereinafter sometimes referred to as “the diamine of the present invention”) and, if necessary, other diamines other than the diamine of the present invention (
  • a solution of the polymerization solvent hereinafter sometimes referred to as “polyamic acid solution”
  • a solvent polymerization solvent
  • acid dianhydride powder is added and polymerized.
  • the temperature during polymerization is preferably 10°C to 30°C.
  • diamines include, for example, aromatic diamines, aliphatic diamines, alicyclic diamines, and the like. More specifically, for example, 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 4,4-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,4'-diamino Diphenyl ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diamino Biphenyl, 3,7-diamino-dimethyldibenzothiophene-5,5-dioxide, 4,4-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-bis
  • acid dianhydrides include pyromellitic anhydride, oxydiphthalic dianhydride, biphenyl-3,4,3',4'-tetracarboxylic dianhydride, benzophenone-3,4,3',4' -Tetracarboxylic dianhydride, diphenylsulfone-3,4,3',4'-tetracarboxylic dianhydride, 4,4'-(2,2-hexafluoroisopropylidene)diphthalic dianhydride, m -terphenyl-3,4,3',4'-tetracarboxylic dianhydride, p-terphenyl-3,4,3',4'-tetracarboxylic dianhydride, cyclobutane-1,2 , 3,4-tetracarboxylic dianhydride, 1-carboxymethyl-2,3,5-cyclopentanetricarboxylic acid-2,6:3,5-diacid anhydride
  • acid dianhydrides pyromellitic anhydride, biphenyl-3,4,3',4'-tetracarboxylic dianhydride, bis (1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylic acid)1,4-phenylene is preferred.
  • acid dianhydrides may be used alone or in combination of two or more.
  • the amount of acid dianhydride to be used is 0.9 to 1.1 mole per mole of the total diamine including other diamines, depending on the degree of polymerization. From the viewpoint of further increasing the amount, the amount is preferably 0.95 mol to 1.05 mol.
  • polymerization solvent examples include amides such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, and 1,3-dimethyl-2-imidazolidinone.
  • Ester solvents such as ethyl acetate, butyl acetate, isobutyl acetate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -butyrolactone; ethylene carbonate, Carbonate solvents such as propylene carbonate; glycol solvents such as triethylene glycol, ethyl cellosolve, butyl cellosolve, propylene glycol methyl ether acetate, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, diethylene glycol; phenol, o-cresol, m - Phenolic solvents such as cresol, p-cresol, 3-chlorophenol, 4-chlorophenol; 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran
  • amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-pyrrolidone are preferred. These polymerization solvents may be used alone or in combination of two or more.
  • the amount of polymerization solvent used is such that the total concentration of monomer components (diamine + acid dianhydride) in the reaction system is usually 5% to 40% by weight, preferably 10% to 30% by weight.
  • a uniform polyamic acid solution with a high degree of polymerization can be obtained by carrying out the polymerization at a monomer concentration range of 5% by weight to 40% by weight.
  • the degree of polymerization of the polyamic acid may not be sufficiently high and the final polyimide film obtained may become brittle. If polymerization is carried out, the monomer may not be sufficiently dissolved or the reaction solution may become non-uniform and gel.
  • the polyamic acid solution represented by the above general formula (3) obtained by the above method is usually used as it is in the polyimidation step carried out by the method described below.
  • the polyimide of the present invention has a repeating unit represented by the above general formula (4).
  • the structural unit A in the above general formula (4) is the same as the structural unit A in the above general formula (3), and the preferred embodiments are also the same.
  • the polyimide of the present invention can be produced by subjecting the polyamic acid of the present invention obtained by the above method to a dehydration ring closure reaction (imidization reaction).
  • a dehydration ring closure reaction imidization reaction
  • Examples of the imidization reaction method include a thermal imidization method and a chemical imidization method. First, the thermal imidization method will be explained in detail.
  • Examples of the chemical imidization method include a method in which the polyamic acid of the present invention obtained by the above method is subjected to a dehydration ring-closing reaction in a solution in the presence of an organic acid anhydride and a base. More specifically, for example, if necessary, a solvent is added to the polyamic acid solution to adjust the solution viscosity to an appropriate level for easy stirring, and while stirring, a dehydrated solution consisting of an organic acid anhydride and a base is added. By adding a ring-closing agent (chemical imidization agent) and stirring at 0° C. to 100° C., preferably 10° C. to 50° C.
  • a ring-closing agent chemical imidization agent
  • the amount of the organic acid anhydride used is usually 1 mol to 10 mol, preferably 2 mol to 5 mol, per 1 mol of the theoretical dehydration amount of the polyamic acid.
  • the amount of the base used is usually 0.1 mol to 2 mol, preferably 0.2 mol to 1 mol, per 1 mol of the organic acid anhydride.
  • the poor solvent that can be used at this time may be any solvent that can precipitate polyimide, efficiently remove impurities, and is easy to dry, such as water; alcohols such as methanol, ethanol, and isopropanol; , these may be used in combination. If the concentration of the polyimide solution when added to a poor solvent for precipitation is too high, the precipitated polyimide may form agglomerates and impurities may remain in the coarse particles, or the resulting polyimide powder may be re-added to the solvent. It may take a long time to dissolve. On the other hand, if the concentration of the polyimide solution is too diluted, a large amount of poor solvent will be required, which may increase the environmental burden due to waste solvent treatment and increase manufacturing costs.
  • polyimide powder represented by the above general formula (4) When the polyimide powder represented by the above general formula (4) thus obtained is to be made into a polyimide film, it is necessary to first dissolve the polyimide powder represented by the above general formula (4) in a solvent to form a polyimide solution.
  • a solvent for example, the same solvents as the polymerization solvents described above, as well as turpentine, mineral spirits, petroleum naphtha-based solvents, and the like. These solvents may be used alone or in combination of two or more.
  • Polyimide powder can be dissolved in air or in an inert gas at a temperature ranging from room temperature to the boiling point of the solvent over a period of 1 hour to 48 hours to obtain a polyimide solution.
  • a polyimide film can be obtained by casting the polyimide solution thus obtained onto a glass plate and heating it in vacuum, in an inert gas such as nitrogen, or in air.
  • a polyimide film can be obtained by drying in an oven, usually at 200°C to 400°C, preferably at 250°C to 350°C.
  • the polyimide film is produced in a vacuum or in an inert gas.
  • the chemical imidization reaction can also be carried out by immersing the polyamic acid film formed on the substrate in a solution containing a dehydrating cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. .
  • a dehydrating cyclization reagent such as acetic anhydride
  • a tertiary amine such as pyridine or triethylamine.
  • the molecular weight of the polyimide represented by the general formula (4) obtained by the above method is preferably 10,000 to 500,000 in terms of weight average molecular weight, more preferably 10,000 to 300,000, and 2 More preferably, it is from 10,000 to 200,000. If the molecular weight of the polyimide is 10,000 or more, it can be molded and it is easy to maintain good mechanical properties. Furthermore, if the molecular weight of the polyimide is 500,000 or less, it is easy to control the molecular weight during synthesis, and a solution with an appropriate viscosity can be easily obtained, which is often easy to handle. In addition, the molecular weight of polyimide can be measured, for example, by a conventional method such as a GPC method.
  • Example 1 (Production example of dinitro compound represented by the above formula (2)) 245.62 g (1.32 mol) of 4-nitrobenzoic acid chloride and 400 g of acetonitrile were placed in a four-necked flask equipped with a stirrer, a thermometer, and a reflux condenser, and the mixture was cooled to 0° C. with stirring. Thereafter, while stirring, a mixed solution of 100.01 g (0.60 mol) of tert-butylhydroquinone, 400.00 g of acetonitrile, and 104.71 g (1.32 mol) of pyridine was added dropwise at 0°C to 15°C over 20 minutes. .
  • Example 2 (Production example of diamine represented by the above formula (1)) 40.01 g (0.09 mol) of the dinitro compound represented by formula (2) obtained in Example 1 and palladium/carbon powder containing 50% by weight of water (palladium content: 0.80 g (5% by weight on dry weight basis) and 400.01 g of N,N-dimethylformamide were charged, and the reaction vessel was purged with hydrogen. This was heated to 80° C. with stirring to dissolve the dinitro compound represented by formula (2), and then stirred at 80° C. for 2 hours to react. After the reaction was completed, the palladium/carbon powder was removed by filtration, and the filtrate was cooled to room temperature and then dropped into a large amount of water to precipitate crystals.
  • Example 3 (Production example of polyamic acid having a repeating unit represented by the above general formula (3) and polyimide having a repeating unit represented by the above general formula (4)) 6.08 g (15.00 mmol) of the diamine represented by the above formula (1) obtained in Example 2 was dissolved in 24.46 g of dehydrated N-methylpyrrolidone (hereinafter sometimes referred to as "NMP"). .
  • NMP dehydrated N-methylpyrrolidone
  • the obtained polyamic acid solution was coated on a glass plate and heated at 80°C for 3 hours to obtain a polyamic acid film, which was further heated at 250°C for 1 hour and at 300°C for 1 hour to form thermal imide. . Thereafter, in order to remove residual stress, it was peeled from the glass substrate and heated at 310° C. for 1 hour to obtain a polyimide film having repeating units represented by the above general formula (4).
  • the glass transition temperature, 5% weight loss temperature, linear thermal expansion coefficient, dielectric constant, and dielectric loss tangent of the obtained polyimide film were measured. The measurement results are shown in Table 2.

Abstract

The present invention provides a diamine represented by formula (1); a method for producing the same; and a polyamic acid and polyimide produced from this diamine.

Description

新規なジアミン及びその製造方法、並びに該ジアミンより製造されるポリアミック酸及びポリイミドNovel diamine, method for producing the same, and polyamic acid and polyimide produced from the diamine
 本発明は、ポリイミド樹脂等の原料として有用な新規なエステル基含有ジアミン及びその製造方法、並びに該ジアミンより製造されるポリアミック酸及びポリイミドに関する。 The present invention relates to a novel ester group-containing diamine useful as a raw material for polyimide resins, a method for producing the same, and a polyamic acid and polyimide produced from the diamine.
 ポリイミドは、現存する樹脂の中で最高レベルの耐熱性、耐薬品性、電気絶縁性、耐放射線性などを併せ持ち、原料の組み合わせによって容易に様々な用途に合わせた特性を発現できるため幅広い分野で使用されている。 Polyimide has the highest level of heat resistance, chemical resistance, electrical insulation, and radiation resistance among existing resins, and it is used in a wide range of fields because it can easily develop properties tailored to various uses by combining raw materials. It is used.
 中でもポリイミドの用途として、近年第5世代通信システムの普及に伴い、フレキシブルプリント配線板(FPC)に注目が集まっている。FPCの基板材料であるポリイミドは、実装工程において様々な熱サイクルに曝されて寸法変化が生じるため、これを抑えるために、ポリイミドの耐熱性が高い(例えば、ガラス転移温度(Tg)が工程温度よりも高い)こと、及び線熱膨張係数(CTE)ができるだけ低い(例えば、銅箔のCTE(約20ppm/K)と同等かそれより低い)ことが望ましい。 Among the uses of polyimide, flexible printed wiring boards (FPCs) have been attracting attention in recent years as fifth generation communication systems have become widespread. Polyimide, which is the substrate material for FPC, is exposed to various thermal cycles during the mounting process and undergoes dimensional changes. To suppress this, polyimide has high heat resistance (for example, the glass transition temperature (Tg) is higher than the process temperature). It is desirable that the coefficient of linear thermal expansion (CTE) be as low as possible (for example, equal to or lower than the CTE of copper foil (about 20 ppm/K)).
 このような高耐熱性かつ低CTEを有するポリイミドを与えるジアミンとして、下記式(8)で表されるジアミンが知られている(特許文献1)。 A diamine represented by the following formula (8) is known as a diamine that provides a polyimide having such high heat resistance and low CTE (Patent Document 1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
特開平08-048773号公報Japanese Patent Application Publication No. 08-048773
 しかしながら、上記式(8)で表されるジアミンは溶媒溶解性が極めて乏しいため、均一系で重合を行うには加熱下に該ジアミンを完溶させ、酸二無水物と混合する必要があり、そのため、製造工程が煩雑になったり、生産効率が低下するといった問題が生じる場合がある。 However, since the diamine represented by the above formula (8) has extremely poor solvent solubility, in order to perform homogeneous polymerization, it is necessary to completely dissolve the diamine under heating and mix it with the acid dianhydride. Therefore, problems such as a complicated manufacturing process and a decrease in production efficiency may occur.
 本発明は、上記式(8)で表されるジアミンと類似の構造を有し、且つ溶媒溶解性に優れる、新規なジアミンの提供を目的とする。 An object of the present invention is to provide a novel diamine that has a similar structure to the diamine represented by formula (8) above and has excellent solvent solubility.
 本発明者らは、鋭意研究を重ねた結果、下記式(1)で表されるジアミンが優れた溶媒溶解性を示し、前記課題が解決可能であることを見出した。具体的には、本発明は以下の発明を含む。 As a result of extensive research, the present inventors have found that the diamine represented by the following formula (1) exhibits excellent solvent solubility and that the above problems can be solved. Specifically, the present invention includes the following inventions.
〔1〕
 下記式(1):
[1]
The following formula (1):
Figure JPOXMLDOC01-appb-C000007

で表されるジアミン。
Figure JPOXMLDOC01-appb-C000007

Diamine represented by.
〔2〕
 下記式(2):
[2]
The following formula (2):
Figure JPOXMLDOC01-appb-C000008

で表されるジニトロ化合物を還元する、〔1〕に記載のジアミンの製造方法。
Figure JPOXMLDOC01-appb-C000008

The method for producing a diamine according to [1], which comprises reducing a dinitro compound represented by:
〔3〕
 下記式(2):
[3]
The following formula (2):
Figure JPOXMLDOC01-appb-C000009

で表されるジニトロ化合物。
Figure JPOXMLDOC01-appb-C000009

A dinitro compound represented by
〔4〕
 下記一般式(3):
[4]
General formula (3) below:
Figure JPOXMLDOC01-appb-C000010

(式中、Aは4価の芳香族基又は4価の脂肪族基を表す。)
で表される繰り返し単位を有するポリアミック酸。
Figure JPOXMLDOC01-appb-C000010

(In the formula, A represents a tetravalent aromatic group or a tetravalent aliphatic group.)
A polyamic acid having a repeating unit represented by:
〔5〕
 下記一般式(4):
[5]
General formula (4) below:
Figure JPOXMLDOC01-appb-C000011

(式中、Aは4価の芳香族基又は4価の脂肪族基を表す。)
で表される繰り返し単位を有するポリイミド。
Figure JPOXMLDOC01-appb-C000011

(In the formula, A represents a tetravalent aromatic group or a tetravalent aliphatic group.)
A polyimide having a repeating unit represented by
〔6〕
 〔4〕に記載のポリアミック酸および溶媒を含有するポリアミック酸溶液。
[6]
A polyamic acid solution containing the polyamic acid described in [4] and a solvent.
〔7〕
 〔4〕に記載のポリアミック酸を含有するフィルム。
[7]
A film containing the polyamic acid according to [4].
〔8〕
 〔5〕に記載のポリイミドを含有するフィルム。
[8]
A film containing the polyimide according to [5].
〔9〕
 〔5〕に記載のポリイミドを含有する層を有する積層体。
[9]
A laminate having a layer containing the polyimide according to [5].
 上記した本発明のジアミン(上記式(1)で表されるジアミン)は、上記式(8)で表されるジアミンと類似の構造を有するにも拘わらず、優れた溶媒溶解性を有する。そのため、特に加熱を行わず室温(25℃)付近でも均一系で反応を行うことが可能であり、ゆえに、室温(25℃)付近でも十分に重合反応が進行し、また、オリゴマー化やゲル化を抑制して本発明のポリアミック酸(上記一般式(3)で表される繰り返し単位を有するポリアミック酸)の均一な溶液を得ることができる。 The diamine of the present invention described above (diamine represented by the above formula (1)) has excellent solvent solubility despite having a similar structure to the diamine represented by the above formula (8). Therefore, it is possible to carry out the reaction in a homogeneous system even around room temperature (25°C) without any particular heating. Therefore, the polymerization reaction can proceed sufficiently even around room temperature (25°C), and oligomerization and gelation are possible. A uniform solution of the polyamic acid of the present invention (polyamic acid having a repeating unit represented by the above general formula (3)) can be obtained by suppressing the above.
 また、本発明のジアミンより製造される本発明のポリイミド(上記一般式(4)で表される繰り返し単位を有するポリイミド)は、高Tgかつ低CTEであるのみならず、低誘電特性(低誘電率、低誘電正接)にも優れる。近年の5G用途のFPC基板材料には、伝送損失(伝送ロス)低減の観点から低誘電特性(低誘電率、低誘電正接)を有することが求められていることから、本発明のポリイミドは、例えばFPC基板材料、特に高周波FPC基板材料(例えば、フレキシブル銅張積層板やカバーレイフィルム等の積層体における樹脂基板等)として好適に使用することができる。 Furthermore, the polyimide of the present invention (polyimide having a repeating unit represented by the above general formula (4)) produced from the diamine of the present invention not only has high Tg and low CTE, but also has low dielectric properties (low dielectric It also has excellent dielectric loss factor and low dielectric loss tangent. In recent years, FPC board materials for 5G applications are required to have low dielectric properties (low dielectric constant, low dielectric loss tangent) from the perspective of reducing transmission loss. For example, it can be suitably used as an FPC board material, particularly a high-frequency FPC board material (for example, a resin board in a laminate such as a flexible copper-clad laminate or a coverlay film).
図1は、実施例1で得られた上記式(2)で表されるジニトロ化合物のH-NMRチャートである。FIG. 1 is a 1 H-NMR chart of the dinitro compound represented by the above formula (2) obtained in Example 1. 図2は、実施例2で得られた上記式(1)で表されるジアミンのH-NMRチャートである。FIG. 2 is a 1 H-NMR chart of the diamine represented by the above formula (1) obtained in Example 2. 図3は、実施例2で得られた上記式(1)で表されるジアミンのLC-MSチャートである。FIG. 3 is an LC-MS chart of the diamine represented by the above formula (1) obtained in Example 2.
 本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。 In this specification, when a numerical range is indicated as "A to B", it means from A to B.
<本発明のジアミン>
 本発明のジアミンは、上記式(1)で表される構造を有する。
<Diamine of the present invention>
The diamine of the present invention has a structure represented by the above formula (1).
 本発明のジアミンは、例えば、tert-ブチルヒドロキノン又はその誘導体と、4-ニトロ安息香酸またはその誘導体とを反応させて上記式(2)で表されるジニトロ化合物を得(エステル化反応)、該ジニトロ化合物のニトロ基を還元する(アミノ化反応)方法により製造することができる。 The diamine of the present invention can be obtained by, for example, reacting tert-butylhydroquinone or a derivative thereof with 4-nitrobenzoic acid or a derivative thereof to obtain a dinitro compound represented by the above formula (2) (esterification reaction). It can be produced by reducing the nitro group of a dinitro compound (amination reaction).
 上記エステル化反応の方法としては、例えば、tert-ブチルヒドロキノンと4-ニトロ安息香酸類とを高温で直接脱水反応させる方法;tert-ブチルヒドロキノンと4-ニトロ安息香酸類とをN,N’-ジシクロヘキシルカルボジイミド等の脱水試薬を用いて脱水縮合させる方法;tert-ブチルヒドロキノンのジアセテート化体と4-ニトロ安息香酸類とを高温で反応させて脱酢酸してエステル化する方法(エステル交換法);tert-ブチルヒドロキノンと4-ニトロ安息香酸ハライドとを脱酸剤の存在下で反応させる方法(酸ハライド法);トシルクロリド/N,N-ジメチルホルムアミド/ピリジン混合物を用いて4-ニトロ安息香酸類のカルボキシル基を活性化しtert-ブチルヒドロキノンと反応させる方法等が挙げられる。これらの方法の中でも、経済性、反応性の観点から酸ハライド法が好ましい。以下、酸ハライド法について詳述する。 Examples of the above esterification reaction include a method of directly dehydrating tert-butylhydroquinone and 4-nitrobenzoic acids at high temperature; A method of dehydration condensation using a dehydrating reagent such as; A method of reacting a diacetate of tert-butylhydroquinone with 4-nitrobenzoic acids at high temperature to deacetate and esterify it (ester exchange method); A method of reacting butylhydroquinone and 4-nitrobenzoic acid halide in the presence of a deoxidizing agent (acid halide method); using a tosyl chloride/N,N-dimethylformamide/pyridine mixture to react the carboxyl group of 4-nitrobenzoic acid. Examples include a method of activating and reacting with tert-butylhydroquinone. Among these methods, the acid halide method is preferred from the viewpoints of economy and reactivity. The acid halide method will be explained in detail below.
 上記酸ハライド法における4-ニトロ安息香酸ハライドとしては、例えば、4-ニトロ安息香酸クロリド、4-ニトロ安息香酸ブロミド、4-ニトロ安息香酸ヨージド等が挙げられる。これら4-ニトロ安息香酸ハライドの中でも、4-ニトロ安息香酸クロリドが好ましい。また、4-ニトロ安息香酸ハライドの使用量は、例えば、tert-ブチルヒドロキノン1モルに対して2モル~4モル、好ましくは2モル~3モルである。使用量が2モル以上であれば十分な反応速度を得られ、また、4モル以下であれば未反応の4-ニトロ安息香酸ハライドが低減でき、得られる本発明のジアミンの純度をより向上させることができる。 Examples of the 4-nitrobenzoic acid halide in the above acid halide method include 4-nitrobenzoic acid chloride, 4-nitrobenzoic acid bromide, and 4-nitrobenzoic acid iodide. Among these 4-nitrobenzoic acid halides, 4-nitrobenzoic acid chloride is preferred. The amount of 4-nitrobenzoic acid halide used is, for example, 2 mol to 4 mol, preferably 2 mol to 3 mol, per 1 mol of tert-butylhydroquinone. If the amount used is 2 moles or more, a sufficient reaction rate can be obtained, and if it is 4 moles or less, unreacted 4-nitrobenzoic acid halide can be reduced, and the purity of the obtained diamine of the present invention can be further improved. be able to.
 上記酸ハライド法における脱酸剤として、例えば、ピリジン、トリエチルアミン、N,N-ジメチルアニリン等の有機3級アミン類、プロピレンオキサイド、アリルグリシジルエーテル等のエポキシ類、炭酸カリウム、水酸化ナトリウム等の無機塩基等が挙げられる。これら脱酸剤は単独で用いてもよく、2種以上を併用してもよい。これら脱酸剤の中でも、安価かつ反応後の分離除去が容易であることからピリジンが好ましい。また、脱酸剤の使用量は、例えば、tert-ブチルヒドロキノン1モルに対して2モル~4モル、好ましくは2モル~3モルである。使用量が2モル以上であれば十分な反応速度が得られ、また、4モル以下であれば不純物の生成を抑制することができる。 Examples of deoxidizing agents in the acid halide method include organic tertiary amines such as pyridine, triethylamine, and N,N-dimethylaniline, epoxies such as propylene oxide and allyl glycidyl ether, and inorganic compounds such as potassium carbonate and sodium hydroxide. Examples include bases. These deoxidizers may be used alone or in combination of two or more. Among these deoxidizing agents, pyridine is preferred because it is inexpensive and easy to separate and remove after the reaction. Further, the amount of the deoxidizing agent used is, for example, 2 mol to 4 mol, preferably 2 mol to 3 mol, per 1 mol of tert-butylhydroquinone. If the amount used is 2 moles or more, a sufficient reaction rate can be obtained, and if the amount used is 4 moles or less, the production of impurities can be suppressed.
 酸ハライド法は、通常溶媒の存在下に実施される。酸ハライド法で使用可能な溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、ジブチルエーテル、ジエチルエーテル、1,4-ジオキサン、シクロペンチルメチルエーテル、ジグライム、トリグライム等のエーテル系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素系溶媒;アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ベンゾニトリル等のニトリル系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒などが挙げられる。これら溶媒の中でも、入手性及び取扱性の点から、エーテル系溶媒、芳香族炭化水素系溶媒、ニトリル系溶媒が好ましい。これら溶媒は単独で用いてもよく、2種以上を併用してもよい。また、溶媒を使用する際の使用量は、例えば、tert-ブチルヒドロキノン1重量倍に対し1重量倍~30重量倍、好ましくは1重量倍~5重量倍である。 The acid halide method is usually carried out in the presence of a solvent. Examples of solvents that can be used in the acid halide method include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, and acetophenone; 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, Ether solvents such as dibutyl ether, diethyl ether, 1,4-dioxane, cyclopentyl methyl ether, diglyme, and triglyme; Aromatic hydrocarbon solvents such as toluene and xylene; Halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene Solvent: Nitrile solvents such as acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, benzonitrile; N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-diethyl Examples include amide solvents such as acetamide, N,N-dimethylformamide, and 1,3-dimethyl-2-imidazolidinone. Among these solvents, ether solvents, aromatic hydrocarbon solvents, and nitrile solvents are preferred from the viewpoint of availability and handling. These solvents may be used alone or in combination of two or more. Further, when using a solvent, the amount used is, for example, 1 to 30 times by weight, preferably 1 to 5 times by weight, per 1 part by weight of tert-butylhydroquinone.
 酸ハライド法は、例えば、-10℃~120℃、好ましくは-5℃~100℃、より好ましくは20℃~90℃で実施する。反応温度が120℃以下であれば、副生成物がより低減され、また、-10℃以上であれば十分な反応速度が得られる。 The acid halide method is carried out, for example, at -10°C to 120°C, preferably -5°C to 100°C, more preferably 20°C to 90°C. When the reaction temperature is 120°C or lower, by-products are further reduced, and when the reaction temperature is -10°C or higher, a sufficient reaction rate can be obtained.
 酸ハライド法は、例えば、撹拌下、4-ニトロ安息香酸ハライドと上記溶媒とを含む溶液に、別途調製したtert-ブチルヒドロキノン、脱酸剤及び上記溶媒を含む溶液を、上記した温度範囲となるよう間欠的あるいは連続的に添加した後、上記した温度範囲にてさらに反応を継続する方法や、4-ニトロ安息香酸ハライド、tert-ブチルヒドロキノン及び上記溶媒を含む溶液に、脱酸剤もしくは脱酸剤と上記溶媒とを含む溶液を上記温度範囲となるよう間欠的あるいは連続的に添加した後、上記温度範囲でさらに反応を継続する方法等が挙げられる。 In the acid halide method, for example, a separately prepared solution containing tert-butylhydroquinone, a deoxidizing agent, and the above solvent is added to a solution containing 4-nitrobenzoic acid halide and the above solvent under stirring at a temperature within the above temperature range. A method of adding a deoxidizing agent or a deoxidizing agent to a solution containing 4-nitrobenzoic acid halide, tert-butylhydroquinone, and the above solvent may be used. Examples include a method in which a solution containing an agent and the above-mentioned solvent is added intermittently or continuously so as to maintain the above-mentioned temperature range, and then the reaction is further continued in the above-mentioned temperature range.
 酸ハライド法実施後、得られた反応混合物は、そのまま後述するアミノ化反応に用いてもよく、慣用の精製方法(抽出、洗浄、吸着、水蒸気蒸留、晶析、カラム精製等)により精製してもよい。また、精製は一回のみ、もしくは複数回行ってもよい。 After carrying out the acid halide method, the obtained reaction mixture may be used as it is in the amination reaction described below, or purified by a conventional purification method (extraction, washing, adsorption, steam distillation, crystallization, column purification, etc.). Good too. Moreover, purification may be performed only once or multiple times.
 アミノ化反応の方法としては、例えば、上記式(2)で表されるジニトロ化合物を不活性な溶媒に溶解させ、水素雰囲気化、パラジウムや白金等の遷移金属原子を活性炭に担持させた触媒を用い還元する方法(接触還元法)等が挙げられる。 As a method for the amination reaction, for example, the dinitro compound represented by the above formula (2) is dissolved in an inert solvent, a hydrogen atmosphere is created, and a catalyst in which a transition metal atom such as palladium or platinum is supported on activated carbon is used. Examples include a method of reduction using a catalytic reduction method (catalytic reduction method).
 接触還元法における触媒としては、例えば、パラジウムや白金等の遷移金属原子を活性炭に担持させた触媒が挙げられ、この中でもパラジウムを活性炭に担持させた触媒(パラジウム/カーボン)又は白金を活性炭に担持させた触媒(白金/カーボン)が反応速度の観点から好ましい。これら触媒は、単独で用いてもよく、2種以上を併用してもよい。これら触媒の使用量は、例えば、触媒中の遷移金属原子の重量として、上記式(2)で表されるジニトロ化合物1重量倍に対し0.0001重量倍~0.01重量倍である。 Examples of catalysts used in the catalytic reduction method include catalysts in which transition metal atoms such as palladium and platinum are supported on activated carbon.Among these, catalysts in which palladium is supported on activated carbon (palladium/carbon) or platinum supported on activated carbon are used. A catalyst (platinum/carbon) that has been prepared is preferable from the viewpoint of reaction rate. These catalysts may be used alone or in combination of two or more. The amount of these catalysts used is, for example, 0.0001 times to 0.01 times the weight of the dinitro compound represented by the above formula (2) in terms of the weight of transition metal atoms in the catalyst.
 接触還元法における溶媒としては、例えば、上記式(2)で表されるジニトロ化合物、あるいは生成物である上記式(1)で表されるジアミンと反応せず、且つ接触還元時に反応を受けないものであればよく、例えば、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、ジブチルエーテル、ジエチルエーテル、1,4-ジオキサン、シクロペンチルメチルエーテル、ジグライム、トリグライム等のエーテル系溶媒;酢酸エチル、酢酸ブチル、酢酸イソブチル、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;クロロホルム、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化アルキル系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒;ジメチルスルホキシド、スルホラン等のスルホン系溶媒;ピコリン;ピリジン等が挙げられる。これら溶媒の中でも、アミド系溶媒が好ましい。これら溶媒は単独で用いてもよく、2種以上を併用してもよい。これら溶媒の使用量としては、例えば、上記式(2)で表されるジニトロ化合物1重量倍に対し2~10重量倍である。 As a solvent in the catalytic reduction method, for example, a solvent that does not react with the dinitro compound represented by the above formula (2) or the diamine represented by the above formula (1), which is a product, and does not undergo a reaction during the catalytic reduction. For example, ether solvents such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, dibutyl ether, diethyl ether, 1,4-dioxane, cyclopentyl methyl ether, diglyme, triglyme; Ester solvents such as ethyl acetate, butyl acetate, isobutyl acetate, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ-butyrolactone; acetone, methyl ethyl ketone, methyl isobutyl Ketone solvents such as ketone, diisobutylketone, cyclohexanone, and acetophenone; Halogenated alkyl solvents such as chloroform, dichloromethane, chloroform, and 1,2-dichloroethane; Aromatic hydrocarbon solvents such as toluene and xylene; N-methyl-2 - Amide solvents such as pyrrolidone, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, and 1,3-dimethyl-2-imidazolidinone; Sulfone solvents such as dimethylsulfoxide and sulfolane ; picoline; pyridine and the like. Among these solvents, amide solvents are preferred. These solvents may be used alone or in combination of two or more. The amount of these solvents to be used is, for example, 2 to 10 times the weight of the dinitro compound represented by formula (2) above.
 接触還元法は、例えば、20℃~160℃、反応速度の向上及び不純物生成抑制の観点から好ましくは20℃~100℃で実施される。 The catalytic reduction method is carried out, for example, at 20° C. to 160° C., preferably at 20° C. to 100° C. from the viewpoint of improving the reaction rate and suppressing the formation of impurities.
 接触還元法を実施後、例えば、触媒を濾過により除去した後、得られた反応混合物を上記式(1)で表されるジアミンが溶解し難い溶媒(以下、目的物が溶解し難い溶媒を「貧溶媒」と称することがある)に滴下する方法等により、上記式(1)で表されるジアミンを分離することができる。こうして得られた上記式(1)で表されるジアミンは、このまま次工程で使用してもよいが、慣用の精製方法(抽出、洗浄、吸着、水蒸気蒸留、晶析、カラム精製など)により精製してもよい。また、精製は一回のみ、もしくは複数回行ってもよい。 After carrying out the catalytic reduction method, for example, after removing the catalyst by filtration, the resulting reaction mixture is mixed with a solvent in which the diamine represented by the above formula (1) is difficult to dissolve (hereinafter, a solvent in which the target product is difficult to dissolve is referred to as "a solvent in which the target product is difficult to dissolve"). The diamine represented by the above formula (1) can be separated by a method such as dropping the diamine into a "poor solvent" (sometimes referred to as "poor solvent"). The diamine represented by the above formula (1) thus obtained may be used as is in the next step, but it can be purified by conventional purification methods (extraction, washing, adsorption, steam distillation, crystallization, column purification, etc.). You may. Moreover, purification may be performed only once or multiple times.
<本発明のポリアミック酸及びその製造方法>
 本発明のポリアミック酸は、上記一般式(3)で表される繰り返し単位を有する。なお、上記一般式(3)において、構造単位Aに結合した2つのカルボキシル基は便宜上シス位置として記載されているが、実際はシス位置とトランス位置とが混在したものである。
<Polyamic acid of the present invention and method for producing the same>
The polyamic acid of the present invention has a repeating unit represented by the above general formula (3). In addition, in the above general formula (3), the two carboxyl groups bonded to structural unit A are described as cis positions for convenience, but in reality they are a mixture of cis positions and trans positions.
 上記一般式(3)の構造単位Aは、4価の芳香族基または4価の脂肪族基を表す。なお、4価の芳香族基は芳香族テトラカルボン酸二無水物に由来し、4価の脂肪族基は脂肪族テトラカルボン酸に由来する。 Structural unit A in the above general formula (3) represents a tetravalent aromatic group or a tetravalent aliphatic group. Note that the tetravalent aromatic group is derived from an aromatic tetracarboxylic dianhydride, and the tetravalent aliphatic group is derived from an aliphatic tetracarboxylic acid.
 上記一般式(3)における構造単位Aとしては、下記式(5)~(7)で表される構造のうち少なくとも1つを含むことが好ましい。なお、*は結合点を表す。 The structural unit A in the above general formula (3) preferably contains at least one of the structures represented by the following formulas (5) to (7). Note that * represents a bonding point.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本発明のポリアミック酸の分子量は、例えば、重量平均分子量で1万~50万、好ましくは1万~30万、より好ましくは2万~20万である。ポリアミック酸の分子量が1万以上であれば、良好な力学特性を維持しやすい。またポリアミック酸の分子量が50万以下であれば、合成する場合に分子量をコントロールしやすく、また適度な粘度の溶液が得られやすく取扱いが容易である場合が多い。なお、ポリアミック酸の分子量は、例えば、GPC(ゲル浸透クロマトグラフィー)法等の常法により測定することができる。 The molecular weight of the polyamic acid of the present invention is, for example, a weight average molecular weight of 10,000 to 500,000, preferably 10,000 to 300,000, more preferably 20,000 to 200,000. When the molecular weight of the polyamic acid is 10,000 or more, it is easy to maintain good mechanical properties. Further, if the molecular weight of the polyamic acid is 500,000 or less, it is easy to control the molecular weight during synthesis, and a solution with an appropriate viscosity can be easily obtained and handling is often easy. The molecular weight of the polyamic acid can be measured by a conventional method such as GPC (gel permeation chromatography).
 本発明のポリアミック酸は、例えば、上記式(1)で表されるジアミン(以下、「本発明のジアミン」と称することがある)と、必要に応じて本発明のジアミン以外の他のジアミン(以下、「他のジアミン」と称することがある。)とを溶媒(重合溶媒)に溶解後、酸二無水物粉末を添加し重合させる方法等により、重合溶媒の溶液(以下、「ポリアミック酸溶液」と称することもある)として得ることができる。本発明のジアミンは溶媒溶解性に優れることから、特に加熱を行わず室温(25℃)付近でも均一系で反応を行うことが可能であり、ゆえに、室温(25℃)付近でも十分に重合反応が進行し、また、オリゴマー化やゲル化を抑制して本発明のポリアミック酸の均一な溶液を得ることができる。そのため、重合させる際の温度として、好ましくは10℃~30℃である。 The polyamic acid of the present invention includes, for example, the diamine represented by the above formula (1) (hereinafter sometimes referred to as "the diamine of the present invention") and, if necessary, other diamines other than the diamine of the present invention ( Hereinafter, a solution of the polymerization solvent (hereinafter sometimes referred to as "polyamic acid solution") is dissolved in a solvent (polymerization solvent), and then acid dianhydride powder is added and polymerized. ) can be obtained as Since the diamine of the present invention has excellent solvent solubility, it is possible to carry out the reaction in a homogeneous system even around room temperature (25°C) without particularly heating, and therefore, the polymerization reaction can be sufficiently carried out even around room temperature (25°C). progresses, and oligomerization and gelation can be suppressed to obtain a uniform solution of the polyamic acid of the present invention. Therefore, the temperature during polymerization is preferably 10°C to 30°C.
 他のジアミンとしては、例えば、芳香族ジアミン、脂肪族ジアミン、脂環式ジアミン等が挙げられる。より具体的には、例えば、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、4,4-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,7-ジアミノ-ジメチルジベンゾチオフェン-5,5-ジオキシド、4,4-ジアミノベンゾフェノン,3,3’-ジアミノベンゾフェノン,4,4’-ビス(4-アミノフェノル)スルフィド、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノベンズアニリド、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン、1,2-ビス[2-(4-アミノフェノキシ)エトキシ]エタン、9,9-ビス(4-アミノフェニル)フルオレン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス(4-アミノフェノキシフェニル)プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、4,6-ジヒドロキシ-1,3-フェニレンジアミン、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-ヘキサフルオロプロパン、3,3’,4,4’-テトラアミノビフェニル、1,6-ジアミノヘキサン、1,3-ビス(3-アミノプロピル)-1,1,3,3-テトラメチルジシロキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、4,4’-メチレンビス(4-シクロヘキシルアミン)、1,4-ジアミノシクロヘキサン、ビシクロ[2.2.1]ヘプタンビス(メチルアミン)、トリシクロ[3.3.1.13.7]デカン-1,3-ジアミン、4-アミノ安息香酸-4-アミノフェニルエステル、2-(4-アミノフェニル)-5-アミノベンゾオキサゾール、9,9-ビス[4-(4-アミノフェノキシ)フェニル]フルオレン、2,2’-ビス(3-スルホプロポキシ)-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル-3,3’-ジスルホン酸等が挙げられる。これら他のジアミンは、1種又は2種以上併用してもよい。他のジアミンを併用する場合、全ジアミン中の他のジアミンの使用量は、例えば、90重量%以下、好ましくは70重量%以下である。 Other diamines include, for example, aromatic diamines, aliphatic diamines, alicyclic diamines, and the like. More specifically, for example, 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 4,4-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,4'-diamino Diphenyl ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diamino Biphenyl, 3,7-diamino-dimethyldibenzothiophene-5,5-dioxide, 4,4-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-bis(4-aminophenol) sulfide, 4,4' -diaminodiphenylsulfone, 4,4'-diaminobenzanilide, 1,3-bis(4-aminophenoxy)propane, 1,4-bis(4-aminophenoxy)butane, 1,5-bis(4-aminophenoxy) ) pentane, 1,3-bis(4-aminophenoxy)-2,2-dimethylpropane, 1,2-bis[2-(4-aminophenoxy)ethoxy]ethane, 9,9-bis(4-aminophenyl) ) Fluorene, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-inden-5-amine, 1,4-bis(4-aminophenoxy)benzene, 1,3 -Bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'-bis(3-aminophenoxy)biphenyl , 2,2-bis(4-aminophenoxyphenyl)propane, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4 -(4-aminophenoxy)phenyl]hexafluoropropane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 4,6-dihydroxy-1,3-phenylenediamine, 3,3'-dihydroxy-4 , 4'-diaminobiphenyl, 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, 3,3',4,4'-tetraaminobiphenyl, 1,6-diaminohexane, 1, 3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, 4,4'-methylenebis(4- cyclohexylamine), 1,4-diaminocyclohexane, bicyclo[2.2.1]heptanebis(methylamine), tricyclo[3.3.1.13.7]decane-1,3-diamine, 4-aminobenzoic acid -4-aminophenyl ester, 2-(4-aminophenyl)-5-aminobenzoxazole, 9,9-bis[4-(4-aminophenoxy)phenyl]fluorene, 2,2'-bis(3-sulfonate) Propoxy)-4,4'-diaminobiphenyl, 4,4'-bis(4-aminophenoxy)biphenyl-3,3'-disulfonic acid, and the like. These other diamines may be used alone or in combination of two or more. When other diamines are used in combination, the amount of other diamines used in the total diamines is, for example, 90% by weight or less, preferably 70% by weight or less.
 酸二無水物としては、例えば、無水ピロメリット酸、オキシジフタル酸二無水物、ビフェニル-3,4,3’,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,4,3’,4’-テトラカルボン酸二無水物、ジフェニルスルホン-3,4,3’,4’-テトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、m-タ-フェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-タ-フェニル-3,4,3’,4’-テトラカルボン酸二無水物、シクロブタン-1,2,3,4-テトラカルボン酸二無水物、1-カルボキシメチル-2,3,5-シクロペンタントリカルボン酸-2,6:3,5-二酸無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、ブタン-1,2,3,4-テトラカルボン酸二無水物、4-フェニルエチニルフタル酸無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)1,4-フェニレン等が挙げられる。これら酸二無水物の中でも、上記一般式(3)における構造単位Aの好ましい態様に対応する、無水ピロメリット酸、ビフェニル-3,4,3’,4’-テトラカルボン酸二無水物、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)1,4-フェニレンが好ましい。これら酸二無水物は、単独で用いてもよく、2種以上を併用してもよい。酸二無水物の使用量は、例えば、本発明のジアミン、及び他のジアミンを併用する場合は他のジアミンも含めた全ジアミン1モルに対し0.9モル~1.1モル、重合度をより高める観点から好ましくは0.95モル~1.05モルである。 Examples of acid dianhydrides include pyromellitic anhydride, oxydiphthalic dianhydride, biphenyl-3,4,3',4'-tetracarboxylic dianhydride, benzophenone-3,4,3',4' -Tetracarboxylic dianhydride, diphenylsulfone-3,4,3',4'-tetracarboxylic dianhydride, 4,4'-(2,2-hexafluoroisopropylidene)diphthalic dianhydride, m -terphenyl-3,4,3',4'-tetracarboxylic dianhydride, p-terphenyl-3,4,3',4'-tetracarboxylic dianhydride, cyclobutane-1,2 , 3,4-tetracarboxylic dianhydride, 1-carboxymethyl-2,3,5-cyclopentanetricarboxylic acid-2,6:3,5-diacid anhydride, cyclohexane-1,2,4,5 -Tetracarboxylic dianhydride, butane-1,2,3,4-tetracarboxylic dianhydride, 4-phenylethynylphthalic anhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride , bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylic acid)1,4-phenylene, and the like. Among these acid dianhydrides, pyromellitic anhydride, biphenyl-3,4,3',4'-tetracarboxylic dianhydride, bis (1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylic acid)1,4-phenylene is preferred. These acid dianhydrides may be used alone or in combination of two or more. For example, when the diamine of the present invention and other diamines are used together, the amount of acid dianhydride to be used is 0.9 to 1.1 mole per mole of the total diamine including other diamines, depending on the degree of polymerization. From the viewpoint of further increasing the amount, the amount is preferably 0.95 mol to 1.05 mol.
 重合溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒;酢酸エチル、酢酸ブチル、酢酸イソブチル、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等のエステル系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;トリエチレングリコール、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールメチルエーテルアセテート、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、ジエチレングリコール等のグリコール系溶媒;フェノール、o-クレゾール、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒;1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、ジブチルエーテル、ジエチルエーテル、1,4-ジオキサン、シクロペンチルメチルエーテル、ジグライム、トリグライム等のエーテル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素系溶媒;ジメチルスルホキシド、スルホラン等のスルホン系溶媒等が挙げられる。これら重合溶媒の中でも、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-ピロリドン等のアミド系溶媒が好ましい。これら重合溶媒は、単独で用いてもよく、2種以上を併用してもよい。 Examples of the polymerization solvent include amides such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, and 1,3-dimethyl-2-imidazolidinone. Ester solvents such as ethyl acetate, butyl acetate, isobutyl acetate, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ-butyrolactone; ethylene carbonate, Carbonate solvents such as propylene carbonate; glycol solvents such as triethylene glycol, ethyl cellosolve, butyl cellosolve, propylene glycol methyl ether acetate, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, diethylene glycol; phenol, o-cresol, m - Phenolic solvents such as cresol, p-cresol, 3-chlorophenol, 4-chlorophenol; 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, dibutyl ether, diethyl ether, 1,4-dioxane , cyclopentyl methyl ether, diglyme, triglyme, and other ether solvents; acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, acetophenone, and other ketone solvents; toluene, xylene, and other aromatic hydrocarbon solvents; chlorobenzene, dichlorobenzene halogenated aromatic hydrocarbon solvents such as; sulfone solvents such as dimethyl sulfoxide and sulfolane; and the like. Among these polymerization solvents, amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-pyrrolidone are preferred. These polymerization solvents may be used alone or in combination of two or more.
 重合溶媒の使用量としては、反応系中のモノマー成分(ジアミン+酸二無水物)の合計濃度が通常5重量%~40重量%、好ましくは10重量%~30重量%となる量である。5重量%~40重量%のモノマー濃度範囲で重合を行うことにより、均一で高重合度のポリアミック酸溶液を得ることができる。なお、上記モノマー濃度範囲よりも低濃度で重合を行うと、ポリアミック酸の重合度が十分高くならず、最終的に得られるポリイミド膜が脆弱になる場合があり、上記モノマー濃度範囲よりも高濃度で重合を行うとモノマーが十分溶解しない場合や反応溶液が不均一になりゲル化する場合がある。上記の方法で得られた上記一般式(3)で表されるポリアミック酸溶液は通常、そのまま後述する方法で実施されるポリイミド化工程に使用する。 The amount of polymerization solvent used is such that the total concentration of monomer components (diamine + acid dianhydride) in the reaction system is usually 5% to 40% by weight, preferably 10% to 30% by weight. A uniform polyamic acid solution with a high degree of polymerization can be obtained by carrying out the polymerization at a monomer concentration range of 5% by weight to 40% by weight. In addition, if polymerization is carried out at a concentration lower than the above monomer concentration range, the degree of polymerization of the polyamic acid may not be sufficiently high and the final polyimide film obtained may become brittle. If polymerization is carried out, the monomer may not be sufficiently dissolved or the reaction solution may become non-uniform and gel. The polyamic acid solution represented by the above general formula (3) obtained by the above method is usually used as it is in the polyimidation step carried out by the method described below.
<本発明のポリイミド及びその製造方法>
 本発明のポリイミドは上記一般式(4)で表される繰り返し単位を有する。なお、上記一般式(4)における構造単位Aは、上記一般式(3)における構造単位Aと同じであり、好ましい態様についても同じである。
<Polyimide of the present invention and its manufacturing method>
The polyimide of the present invention has a repeating unit represented by the above general formula (4). Note that the structural unit A in the above general formula (4) is the same as the structural unit A in the above general formula (3), and the preferred embodiments are also the same.
 本発明のポリイミドは、上記の方法で得られた本発明のポリアミック酸を脱水閉環反応(イミド化反応)することで製造することができる。イミド化反応の方法としては、例えば、熱イミド化法や化学イミド化法が挙げられる。まず、熱イミド化法について詳述する。 The polyimide of the present invention can be produced by subjecting the polyamic acid of the present invention obtained by the above method to a dehydration ring closure reaction (imidization reaction). Examples of the imidization reaction method include a thermal imidization method and a chemical imidization method. First, the thermal imidization method will be explained in detail.
 熱イミド化法としては、例えば、上記の方法で得られた本発明のポリアミック酸溶液をガラス板上に流延し、真空中、あるいは窒素等の不活性ガス中、又は空気中で加熱を行う方法等が挙げられる。より具体的には、例えば、本発明のポリアミック酸溶液をガラス板上に流延し、これをオーブン中で50℃~190℃、好ましくは100℃~180℃で加熱して乾燥させることでポリアミック酸フィルム(薄膜)とし、更に、200℃~400℃、好ましくは230℃~350℃で加熱することでイミド化反応が進行し、ポリイミドフィルム(薄膜)が得られる。なお、イミド化反応は、真空中あるいは不活性ガス中で行うことが好ましい。 As a thermal imidization method, for example, the polyamic acid solution of the present invention obtained by the above method is cast onto a glass plate, and heated in vacuum, in an inert gas such as nitrogen, or in air. Examples include methods. More specifically, for example, the polyamic acid solution of the present invention is cast onto a glass plate and heated in an oven at 50°C to 190°C, preferably 100°C to 180°C to dry the polyamic acid solution. By forming an acid film (thin film) and further heating at 200° C. to 400° C., preferably 230° C. to 350° C., the imidization reaction proceeds and a polyimide film (thin film) is obtained. Note that the imidization reaction is preferably carried out in vacuum or in an inert gas.
 続いて、化学イミド化法について詳述する。化学イミド化法としては、例えば、上記の方法で得られた本発明のポリアミック酸を、溶液中で、有機酸の無水物および塩基存在下に脱水閉環反応させる方法が挙げられる。より具体的には、例えば、ポリアミック酸溶液に必要に応じて、更に溶媒を加えて撹拌し易い適度な溶液粘度に調整し、撹拌しながら、そこに有機酸の無水物と塩基とからなる脱水閉環剤(化学イミド化剤)を添加し、0℃~100℃、好ましくは10℃~50℃で1時間~72時間撹拌することで、イミド化反応が進行し、ポリイミドが得られる。使用可能な溶媒としては、例えば、ポリアミック酸の重合溶媒と同じものが挙げられ、好ましい態様についても同じである。使用可能な有機酸の無水物としては、例えば、無水酢酸、無水プロピオン酸等が挙げられ、中でも、取り扱いや分離のし易さから無水酢酸が好ましい。また、塩基としては、例えば、ピリジン、トリエチルアミン、キノリン等の3級アミン等が挙げられ、中でも、取り扱いや分離のし易さからピリジンが好ましい。有機酸の無水物の使用量は、ポリアミック酸の理論脱水量1モルに対し、通常1モル~10モル、好ましくは2モル~5モルである。また塩基の使用量は、有機酸の無水物1モルに対し、通常0.1モル~2モル、好ましくは0.2モル~1モルである。 Next, the chemical imidization method will be explained in detail. Examples of the chemical imidization method include a method in which the polyamic acid of the present invention obtained by the above method is subjected to a dehydration ring-closing reaction in a solution in the presence of an organic acid anhydride and a base. More specifically, for example, if necessary, a solvent is added to the polyamic acid solution to adjust the solution viscosity to an appropriate level for easy stirring, and while stirring, a dehydrated solution consisting of an organic acid anhydride and a base is added. By adding a ring-closing agent (chemical imidization agent) and stirring at 0° C. to 100° C., preferably 10° C. to 50° C. for 1 hour to 72 hours, the imidization reaction proceeds and polyimide is obtained. Usable solvents include, for example, the same solvents as the polymerization solvent for polyamic acid, and preferred embodiments are also the same. Usable organic acid anhydrides include, for example, acetic anhydride, propionic anhydride, etc. Among them, acetic anhydride is preferred because of ease of handling and separation. Further, examples of the base include tertiary amines such as pyridine, triethylamine, and quinoline, and among them, pyridine is preferred because of ease of handling and separation. The amount of the organic acid anhydride used is usually 1 mol to 10 mol, preferably 2 mol to 5 mol, per 1 mol of the theoretical dehydration amount of the polyamic acid. The amount of the base used is usually 0.1 mol to 2 mol, preferably 0.2 mol to 1 mol, per 1 mol of the organic acid anhydride.
 上記化学イミド化法で得られた反応混合物には、未反応の塩基や有機酸の無水物、副生成物等(以下、これらをまとめて不純物ということがある。)が混入しているため、これらを除去してポリイミドを単離・精製してもよい。精製方法としては公知の方法が利用でき、例えば、イミド化反応後に得られた反応混合物を撹拌しながら大量の貧溶媒中に添加してポリイミドを析出させた後、ポリイミド粉末を回収して不純物が除去されるまで繰返し洗浄し、減圧乾燥して、ポリイミド粉末を得る方法等が適用できる。この時、使用できる貧溶媒としては、ポリイミドを析出させ、不純物を効率よく除去でき、乾燥し易い溶媒であれば良く、例えば、水;メタノール、エタノール、イソプロパノールなどのアルコール類等が挙げられ、また、これらは混合して用いてもよい。貧溶媒中に添加して析出させる際のポリイミド溶液の濃度は、高すぎると析出するポリイミドが粒塊となり、その粗大な粒子中に不純物が残留する場合や、得られたポリイミド粉末を溶媒に再溶解する際に長時間要する場合がある。一方、ポリイミド溶液の濃度を薄くし過ぎると、多量の貧溶媒が必要となり、廃溶剤処理による環境負荷増大や製造コスト高になる場合がある。したがって、貧溶媒中に添加する際のポリイミド溶液の濃度は、20重量%以下、より好ましくは10重量%以下である。この時使用する貧溶媒の量はポリイミド溶液と同量(重量基準)以上が好ましく、1.5重量倍~10重量倍が好適である。得られたポリイミド粉末を回収し、残留溶媒を真空乾燥や熱風乾燥などで除去する。乾燥温度と時間は、ポリイミドが変質しない温度、時間であれば制限はなく、例えば、温度30℃~150℃で3時間~24時間乾燥させる。 The reaction mixture obtained by the above chemical imidization method contains unreacted bases, organic acid anhydrides, by-products, etc. (hereinafter collectively referred to as impurities). The polyimide may be isolated and purified by removing these. As a purification method, known methods can be used. For example, the reaction mixture obtained after the imidization reaction is added to a large amount of poor solvent while stirring to precipitate polyimide, and then the polyimide powder is collected to remove impurities. A method of obtaining polyimide powder by repeatedly washing until removed and drying under reduced pressure can be applied. The poor solvent that can be used at this time may be any solvent that can precipitate polyimide, efficiently remove impurities, and is easy to dry, such as water; alcohols such as methanol, ethanol, and isopropanol; , these may be used in combination. If the concentration of the polyimide solution when added to a poor solvent for precipitation is too high, the precipitated polyimide may form agglomerates and impurities may remain in the coarse particles, or the resulting polyimide powder may be re-added to the solvent. It may take a long time to dissolve. On the other hand, if the concentration of the polyimide solution is too diluted, a large amount of poor solvent will be required, which may increase the environmental burden due to waste solvent treatment and increase manufacturing costs. Therefore, the concentration of the polyimide solution when added to the poor solvent is 20% by weight or less, more preferably 10% by weight or less. The amount of the poor solvent used at this time is preferably at least the same amount (based on weight) as the polyimide solution, and preferably 1.5 times to 10 times the weight. The obtained polyimide powder is collected, and the residual solvent is removed by vacuum drying, hot air drying, or the like. The drying temperature and time are not limited as long as the polyimide does not change in quality. For example, drying is carried out at a temperature of 30° C. to 150° C. for 3 hours to 24 hours.
 このようにして得られた上記一般式(4)で表されるポリイミド粉末をポリイミドフィルムとする場合、一旦上記一般式(4)で表されるポリイミド粉末を溶媒に溶解させポリイミド溶液とする必要がある。使用可能な溶媒としては、例えば、上記重合溶媒と同じ溶媒の他、ターペン、ミネラルスピリット、石油ナフサ系溶媒等が挙げられる。これら溶媒は単独で用いてもよく、2種以上併用してもよい。ポリイミド粉末の溶解方法は、空気中、または不活性ガス中で室温~溶媒の沸点以下の温度範囲で1時間~48時間かけて溶解させ、ポリイミド溶液にすることができる。 When the polyimide powder represented by the above general formula (4) thus obtained is to be made into a polyimide film, it is necessary to first dissolve the polyimide powder represented by the above general formula (4) in a solvent to form a polyimide solution. be. Usable solvents include, for example, the same solvents as the polymerization solvents described above, as well as turpentine, mineral spirits, petroleum naphtha-based solvents, and the like. These solvents may be used alone or in combination of two or more. Polyimide powder can be dissolved in air or in an inert gas at a temperature ranging from room temperature to the boiling point of the solvent over a period of 1 hour to 48 hours to obtain a polyimide solution.
 こうして得られたポリイミド溶液をガラス板上に流延し、真空中、あるいは窒素等の不活性ガス中、または空気中で加熱することによりポリイミドフィルム(薄膜)を得ることができる。例えば、オーブン中、通常200℃~400℃、好ましくは250℃~350℃で乾燥させることにより、ポリイミドフィルムを得ることができる。ポリイミドフィルム作製は、真空中あるいは不活性ガス中で行うことが好ましい。 A polyimide film (thin film) can be obtained by casting the polyimide solution thus obtained onto a glass plate and heating it in vacuum, in an inert gas such as nitrogen, or in air. For example, a polyimide film can be obtained by drying in an oven, usually at 200°C to 400°C, preferably at 250°C to 350°C. Preferably, the polyimide film is produced in a vacuum or in an inert gas.
 化学イミド化反応は、基板上に形成されたポリアミック酸フィルムをピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を含有する溶液に浸漬することによって行うことも可能である。これにより、部分的またはほぼ完全にイミド化したポリイミドフィルムを作製することもでき、これを更に上記のように熱処理することでポリイミドフィルムが得られる。 The chemical imidization reaction can also be carried out by immersing the polyamic acid film formed on the substrate in a solution containing a dehydrating cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. . In this way, a partially or almost completely imidized polyimide film can also be produced, and by further heat-treating this as described above, a polyimide film can be obtained.
 上述した方法によって得られた上記一般式(4)で表されるポリイミドの分子量は、重量平均分子量で1万~50万であることが好ましく、1万~30万であることがより好ましく、2万~20万であることがさらに好ましい。ポリイミドの分子量が1万以上であれば、成型可能であり、また良好な力学特性を維持しやすい。またポリイミドの分子量が50万以下であれば、合成する場合に分子量をコントロールしやすく、また適度な粘度の溶液が得られやすく取扱いが容易である場合が多い。なお、ポリイミドの分子量は、例えば、GPC法等の常法により測定することができる。 The molecular weight of the polyimide represented by the general formula (4) obtained by the above method is preferably 10,000 to 500,000 in terms of weight average molecular weight, more preferably 10,000 to 300,000, and 2 More preferably, it is from 10,000 to 200,000. If the molecular weight of the polyimide is 10,000 or more, it can be molded and it is easy to maintain good mechanical properties. Furthermore, if the molecular weight of the polyimide is 500,000 or less, it is easy to control the molecular weight during synthesis, and a solution with an appropriate viscosity can be easily obtained, which is often easy to handle. In addition, the molecular weight of polyimide can be measured, for example, by a conventional method such as a GPC method.
 以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。また、各実施例・比較例で示した値は下記分析方法により分析した値である。 Examples of the present invention are shown below, but the present invention is not limited thereto. Moreover, the values shown in each example and comparative example are the values analyzed by the following analysis method.
[HPLC純度]
 次の測定条件でHPLC測定を行ったときの面積百分率値を、実施例に記載している各化合物の純度とした。
<液体クロマトグラフィー測定条件>
装置:島津製作所(株)製LC-20AD
カラム:L-column2 ODS(3μm、4.6mmφ×150mm)
移動相:A液=50%アセトニトリル水(0.1体積%ギ酸添加)
B液=アセトニトリル(0.1体積%ギ酸添加)
移動相グラジエント:B液濃度:50%(0分)→100%(15分後)→100%(25分後)
流量:1.0ml/min
カラム温度:40℃、検出波長:UV254nm
[HPLC purity]
The area percentage value obtained when HPLC measurement was performed under the following measurement conditions was defined as the purity of each compound described in the Examples.
<Liquid chromatography measurement conditions>
Equipment: LC-20AD manufactured by Shimadzu Corporation
Column: L-column2 ODS (3 μm, 4.6 mmφ x 150 mm)
Mobile phase: Solution A = 50% acetonitrile water (0.1% by volume formic acid added)
Solution B = Acetonitrile (0.1% by volume formic acid added)
Mobile phase gradient: B solution concentration: 50% (0 minutes) → 100% (after 15 minutes) → 100% (after 25 minutes)
Flow rate: 1.0ml/min
Column temperature: 40°C, detection wavelength: UV254nm
[NMR測定]
 H-NMRは、内部標準としてテトラメチルシランを用い、溶媒として重ジメチルスルホオキシド(DMSO)を用いて、JEOL-ESC400分光計によって記録した。
[NMR measurement]
1 H-NMR was recorded on a JEOL-ESC400 spectrometer using tetramethylsilane as internal standard and deuterated dimethyl sulfoxide (DMSO) as solvent.
[LC-MS測定]
 LC-MSは次の測定条件で分離、質量分析し、目的物を同定した。
<LC-MS測定条件>
装置:(株)Waters製「Xevo  G2  Q-Tof」
カラム:CELI製
L-column2 ODS(2μm、2.1mmφ×100mm)
カラム温度:40℃
検出波長:UV  220-550nm
移動相:A液=10mM酢酸アンモニウム水、B液=アセトニトリル、
C液=イソプロピルアルコール
移動相流量:0.4ml/min
移動相グラジエント:A/B/C=40/50/10→0/90/10(5.21分)
検出法:Q-Tof
イオン化法:ESI(+)(-)法
Ion  Source:電圧(+)2.0kV、温度120℃
Sampling Cone  :電圧  30V、ガスフロー50L/h
Desolvation Cas:温度400℃、ガスフロー1200L/h
[LC-MS measurement]
The target substance was identified by LC-MS separation and mass spectrometry under the following measurement conditions.
<LC-MS measurement conditions>
Device: “Xevo G2 Q-Tof” manufactured by Waters Co., Ltd.
Column: CELI L-column2 ODS (2 μm, 2.1 mmφ x 100 mm)
Column temperature: 40℃
Detection wavelength: UV 220-550nm
Mobile phase: A solution = 10mM ammonium acetate water, B solution = acetonitrile,
C liquid = isopropyl alcohol mobile phase flow rate: 0.4ml/min
Mobile phase gradient: A/B/C=40/50/10 → 0/90/10 (5.21 minutes)
Detection method: Q-Tof
Ionization method: ESI (+) (-) method Ion Source: Voltage (+) 2.0 kV, temperature 120°C
Sampling Cone: Voltage 30V, gas flow 50L/h
Desolvation Cas: Temperature 400℃, gas flow 1200L/h
[融点の測定]
 TG-DTA((株)リガク製  TG-DTA 8121/S)を用いて、窒素気流下、室温から500℃まで10℃/分で昇温し、融点(融解吸熱最大ピークにおけるピークトップ温度)を測定した。
[Measurement of melting point]
Using TG-DTA (TG-DTA 8121/S manufactured by Rigaku Co., Ltd.), the temperature was raised from room temperature to 500°C at a rate of 10°C/min under a nitrogen stream, and the melting point (peak top temperature at the maximum melting endothermic peak) was determined. It was measured.
[溶媒溶解性]
 ジアミン化合物1重量部と、下記する溶媒5重量部とを混合し、下記評価基準に基づき溶媒溶解性を評価した。
<溶媒>
・NMP(N-メチルピロリドン)
・DMAc(N,N-ジメチルアセトアミド)
・DMF(N,N-ジメチルホルムアミド)
<評価基準>
○:室温で溶解する
△:加温すると溶解し、冷却しても結晶が析出しない
×:加温すると溶解するが、冷却すると結晶が析出する、あるいは、加温しても溶解しない
[Solvent solubility]
1 part by weight of the diamine compound and 5 parts by weight of the solvent described below were mixed, and the solvent solubility was evaluated based on the following evaluation criteria.
<Solvent>
・NMP (N-methylpyrrolidone)
・DMAc (N,N-dimethylacetamide)
・DMF (N,N-dimethylformamide)
<Evaluation criteria>
○: Dissolves at room temperature △: Dissolves when heated, but crystals do not precipitate even when cooled ×: Dissolves when heated, but crystals precipitate when cooled, or does not dissolve even when heated
[5%重量減少温度の測定]
 TG-DTA((株)リガク製 TG-DTA 8121/S)を用いて、窒素気流下、室温から500℃まで10℃/分で昇温し、5%重量減少温度(T  in N、℃)を測定した。
[Measurement of 5% weight loss temperature]
Using TG-DTA (TG-DTA 8121/S, manufactured by Rigaku Co., Ltd.), the temperature was raised from room temperature to 500°C at a rate of 10°C/min under a nitrogen stream, and the temperature at which the weight decreased by 5% (T d 5 in N 2 , °C) were measured.
[ガラス転移温度の測定]
 DMA(SII DMS-6100(日立ハイテクサイエンス社製)を用いて、引張モード(昇温速度5℃/分、周波数1Hz、温度40℃-350℃)で測定し、損失弾性率の極大値からガラス転移温度(Tg、℃)を求めた。
[Measurement of glass transition temperature]
Measurement was performed using DMA (SII DMS-6100 (manufactured by Hitachi High-Tech Science) in tensile mode (heating rate of 5°C/min, frequency of 1Hz, temperature of 40°C to 350°C), and from the maximum value of the loss modulus, the glass The transition temperature (Tg, °C) was determined.
[線熱膨張係数の測定]
 5mm×10mmのサイズのポリイミドフィルムを熱機械分析装置((株)日立ハイテクサイエンス製 TMA-7100)を用いて、荷重(静荷重)を膜厚(μm)×0.5g重として、150℃まで加熱後40℃まで冷却した。これを450℃まで5℃/minでセカンドランして得られたTMA曲線の、100℃から200℃までの傾きの平均を線熱膨張係数(CTE、ppm/K)とした。
[Measurement of linear thermal expansion coefficient]
A polyimide film with a size of 5 mm x 10 mm was analyzed up to 150°C using a thermomechanical analyzer (TMA-7100 manufactured by Hitachi High-Tech Science Co., Ltd.) at a load (static load) of film thickness (μm) x 0.5 g weight. After heating, it was cooled to 40°C. This was subjected to a second run up to 450°C at 5°C/min, and the average slope of the TMA curve obtained from 100°C to 200°C was defined as the coefficient of linear thermal expansion (CTE, ppm/K).
[比誘電率および誘電正接の測定]
 ベクトルネットワークアナライザ(Anritsu社製、商品名;MS46122B)及びTEモードの空洞共振器(AET社製)を用いて、周波数10GHzにおけるポリイミドフィルムの比誘電率および誘電正接を測定した。なお、測定に使用した材料は、温度:24℃~26℃、相対湿度:25%未満の条件下で、24時間放置したものである。
[Measurement of relative permittivity and dielectric loss tangent]
The relative permittivity and dielectric loss tangent of the polyimide film at a frequency of 10 GHz were measured using a vector network analyzer (manufactured by Anritsu, trade name: MS46122B) and a TE mode cavity resonator (manufactured by AET). The materials used in the measurements were left for 24 hours at a temperature of 24°C to 26°C and a relative humidity of less than 25%.
[実施例1](上記式(2)で表されるジニトロ化合物の製造例)
 攪拌機、温度計及び還流冷却管を備えた四つ口フラスコに4-ニトロ安息香酸クロリド245.62g(1.32mol)、アセトニトリル400gを仕込み、攪拌しながら0℃まで冷却した。その後、攪拌しながらtert-ブチルヒドロキノン100.01g(0.60mol)、アセトニトリル400.00g、ピリジン104.71g(1.32mol)を混合溶解したものを0℃~15℃で20分かけて滴下した。その後20℃まで昇温し、反応温度を20℃~25℃に保ちながら15時間攪拌した。反応終了後、析出していた結晶を濾過、乾燥することにより、上記式(2)で表されるジニトロ化合物の白色粉末275.28g(HPLC純度98.28%、有姿収率98.51%)を得た。H-NMRのスペクトル値を下記すると共に、図1に測定チャートを示す。
[Example 1] (Production example of dinitro compound represented by the above formula (2))
245.62 g (1.32 mol) of 4-nitrobenzoic acid chloride and 400 g of acetonitrile were placed in a four-necked flask equipped with a stirrer, a thermometer, and a reflux condenser, and the mixture was cooled to 0° C. with stirring. Thereafter, while stirring, a mixed solution of 100.01 g (0.60 mol) of tert-butylhydroquinone, 400.00 g of acetonitrile, and 104.71 g (1.32 mol) of pyridine was added dropwise at 0°C to 15°C over 20 minutes. . Thereafter, the temperature was raised to 20°C, and the mixture was stirred for 15 hours while maintaining the reaction temperature at 20°C to 25°C. After the reaction, the precipitated crystals were filtered and dried to obtain 275.28 g of white powder of the dinitro compound represented by the above formula (2) (HPLC purity 98.28%, tangible yield 98.51%). ) was obtained. The 1 H-NMR spectrum values are shown below, and a measurement chart is shown in FIG.
H-NMR(ジメチルスルホキシド-d6)]
δ(ppm)=8.47-8.37ppm(8H、m)、7.42-7.39(2H、m)、7.33(1H、dd)、1.32(9H、s)。
[ 1 H-NMR (dimethyl sulfoxide-d6)]
δ (ppm) = 8.47-8.37ppm (8H, m), 7.42-7.39 (2H, m), 7.33 (1H, dd), 1.32 (9H, s).
[実施例2](上記式(1)で表されるジアミンの製造例)
 水素導入管を有する四つ口フラスコに実施例1で得られた式(2)で表されるジニトロ化合物40.01g(0.09mol)、水を50重量%含むパラジウム/カーボン粉末(パラジウム含量:乾燥重量換算で5重量%)0.80g及びN,N-ジメチルホルムアミド400.01gを仕込み、反応容器を水素で置換した。これを撹拌しながら80℃まで昇温し、式(2)で表されるジニトロ化合物を溶解させた後、80℃で2時間攪拌し反応させた。反応終了後、パラジウム/カーボン粉末を濾過により除去し、濾液を室温まで冷却した後、大量の水中に滴下することで結晶を析出させた。析出した結晶を濾別し、メタノールで洗浄した後、90℃で6時間真空乾燥することで上記式(1)で表されるジアミンの灰色粉末32.99g(HPLC純度99.81%、有姿収率94.68%)を得た。融点(TG-DTA)は295.2℃であった。また、H-NMR及びLC-MSのスペクトル値を下記すると共に、図2及び3にそれぞれの測定チャートを示す。また、上記評価基準に従って溶媒溶解性を評価した結果を表1に示す。
[Example 2] (Production example of diamine represented by the above formula (1))
40.01 g (0.09 mol) of the dinitro compound represented by formula (2) obtained in Example 1 and palladium/carbon powder containing 50% by weight of water (palladium content: 0.80 g (5% by weight on dry weight basis) and 400.01 g of N,N-dimethylformamide were charged, and the reaction vessel was purged with hydrogen. This was heated to 80° C. with stirring to dissolve the dinitro compound represented by formula (2), and then stirred at 80° C. for 2 hours to react. After the reaction was completed, the palladium/carbon powder was removed by filtration, and the filtrate was cooled to room temperature and then dropped into a large amount of water to precipitate crystals. The precipitated crystals were filtered, washed with methanol, and then vacuum-dried at 90°C for 6 hours to obtain 32.99 g of gray powder of the diamine represented by the above formula (1) (HPLC purity 99.81%, solid state). A yield of 94.68%) was obtained. The melting point (TG-DTA) was 295.2°C. In addition, 1 H-NMR and LC-MS spectrum values are shown below, and respective measurement charts are shown in FIGS. 2 and 3. Further, Table 1 shows the results of evaluating the solvent solubility according to the above evaluation criteria.
H-NMR(ジメチルスルホキシド-d6)]
δ(ppm)=7.82-7.78ppm(4H、m)、7.14-7.09(3H、m)、6.66-6.62(4H、m)、6.19-6.15(4H、m)、1.29(9H、s)。
[ 1 H-NMR (dimethyl sulfoxide-d6)]
δ (ppm) = 7.82-7.78ppm (4H, m), 7.14-7.09 (3H, m), 6.66-6.62 (4H, m), 6.19-6. 15 (4H, m), 1.29 (9H, s).
[LC-MS]
マススペクトル値([M+H]):405.1822
(上記式(1)で表されるジアミンの計算上の分子量(ESI;[C2424+H]):405.1809)。
[LC-MS]
Mass spectrum value ([M+H] + ): 405.1822
(Calculated molecular weight (ESI + ; [C 24 H 24 N 2 O 4 +H] + ) of the diamine represented by the above formula (1): 405.1809).
[比較例1](上記式(8)で表される化合物)
 上記式(8)で表される化合物(HPLC純度:99.68%)について、上記評価基準に従って溶媒溶解性を評価した。結果を表1に示す。
[Comparative Example 1] (Compound represented by the above formula (8))
The solvent solubility of the compound represented by the above formula (8) (HPLC purity: 99.68%) was evaluated according to the above evaluation criteria. The results are shown in Table 1.
[参考例1](下記式(9)で表される化合物)
 下記式(9)で表される化合物(HPLC純度:99.51%)について、上記評価基準に従って溶媒溶解性を評価した。結果を表1に示す。
[Reference Example 1] (Compound represented by the following formula (9))
The solvent solubility of the compound represented by the following formula (9) (HPLC purity: 99.51%) was evaluated according to the above evaluation criteria. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
[実施例3](上記一般式(3)で表される繰り返し単位を有するポリアミック酸及び上記一般式(4)で表される繰り返し単位を有するポリイミドの製造例)
 実施例2で得られた上記式(1)で表されるジアミン6.08g(15.00mmol)を脱水N-メチルピロリドン(以下、「NMP」と称することがある)24.46g中に溶解した。次いで、ビフェニル-3,4,3’,4’-テトラカルボン酸二無水物(以下「BPDA」と称することがある)4.41g(15.00mmol)をゆっくり加えた後(全溶質濃度:30重量%)、室温で24時間撹拌したところ、増粘して撹拌困難になったため、適宜脱水NMPを加えながら更に48時間撹拌して上記一般式(3)で表される繰り返し単位を有するポリアミック酸の溶液を得た(最終溶質濃度:18.53重量%)。次いで、得られたポリアミック酸溶液をガラス板上に塗布した後、80℃で3時間加熱してポリアミック酸フィルムを得、更にこれを250℃で1時間、300℃で1時間加熱して熱イミド化を行った。その後、残留応力を取り除くためガラス基板から剥離して310℃で1時間加熱し、上記一般式(4)で表される繰り返し単位を有するポリイミドフィルムを得た。得られたポリイミドフィルムについて、ガラス転移温度、5%重量減少温度、線熱膨張係数、比誘電率及び誘電正接を測定した。測定結果を表2に示す。
[Example 3] (Production example of polyamic acid having a repeating unit represented by the above general formula (3) and polyimide having a repeating unit represented by the above general formula (4))
6.08 g (15.00 mmol) of the diamine represented by the above formula (1) obtained in Example 2 was dissolved in 24.46 g of dehydrated N-methylpyrrolidone (hereinafter sometimes referred to as "NMP"). . Next, 4.41 g (15.00 mmol) of biphenyl-3,4,3',4'-tetracarboxylic dianhydride (hereinafter sometimes referred to as "BPDA") was slowly added (total solute concentration: 30 When stirred at room temperature for 24 hours, the viscosity increased and stirring became difficult, so the polyamic acid having a repeating unit represented by the above general formula (3) was stirred for an additional 48 hours while adding dehydrated NMP as appropriate. A solution of (final solute concentration: 18.53% by weight) was obtained. Next, the obtained polyamic acid solution was coated on a glass plate and heated at 80°C for 3 hours to obtain a polyamic acid film, which was further heated at 250°C for 1 hour and at 300°C for 1 hour to form thermal imide. . Thereafter, in order to remove residual stress, it was peeled from the glass substrate and heated at 310° C. for 1 hour to obtain a polyimide film having repeating units represented by the above general formula (4). The glass transition temperature, 5% weight loss temperature, linear thermal expansion coefficient, dielectric constant, and dielectric loss tangent of the obtained polyimide film were measured. The measurement results are shown in Table 2.
[参考例2](上記式(8)で表されるジアミンとBPDAから得られるポリイミド)
 上記式(8)で表されるジアミン1.05g(3.00mmol)を脱水NMP7.71g中に加え、室温にてしばらく撹拌を行ったが完溶しなかった。そこで、95℃に加熱してジアミンを溶解し、次いで、95℃加熱下にBPDA0.88g(3.00mmol)をゆっくり加えた後(全溶質濃度:30重量%)、室温まで放冷して2時間反応させたところ、増粘して撹拌が困難になったため、脱水NMPを使用して15.15重量%まで希釈し、さらに撹拌を継続してポリアミック酸溶液を得た(BPDA添加後~ポリアミック酸を得るまで、合計72時間撹拌を行った)。得られたポリアミック酸溶液をガラス板上に塗布した後、80℃で3時間加熱してポリアミック酸フィルムとし、更にこれを250℃で1時間、300℃で1時間加熱して熱イミド化を行った。その後、残留応力を取り除くためガラス基板から剥離して310℃で1時間加熱してポリイミドフィルムを得た。得られたポリイミドフィルムについて、ガラス転移温度、5%重量減少温度、線熱膨張係数、比誘電率及び誘電正接を測定した。測定結果を表2に示す。
[Reference Example 2] (Polyimide obtained from diamine represented by the above formula (8) and BPDA)
1.05 g (3.00 mmol) of the diamine represented by the above formula (8) was added to 7.71 g of dehydrated NMP and stirred for a while at room temperature, but it was not completely dissolved. Therefore, the diamine was dissolved by heating to 95°C, and then 0.88 g (3.00 mmol) of BPDA was slowly added while heating at 95°C (total solute concentration: 30% by weight), and then allowed to cool to room temperature. When reacted for an hour, the viscosity increased and stirring became difficult, so it was diluted to 15.15% by weight using dehydrated NMP, and stirring was continued to obtain a polyamic acid solution (after addition of BPDA ~ polyamic acid solution). Stirring was carried out for a total of 72 hours until the acid was obtained). After applying the obtained polyamic acid solution onto a glass plate, it was heated at 80°C for 3 hours to form a polyamic acid film, which was further heated at 250°C for 1 hour and 300°C for 1 hour to perform thermal imidization. Ta. Thereafter, in order to remove residual stress, it was peeled off from the glass substrate and heated at 310° C. for 1 hour to obtain a polyimide film. The glass transition temperature, 5% weight loss temperature, linear thermal expansion coefficient, dielectric constant, and dielectric loss tangent of the obtained polyimide film were measured. The measurement results are shown in Table 2.
[参考例3](上記式(9)で表されるジアミンとBPDAから得られるポリイミド)
 上記式(8)で表されるジアミンに変えて上記式(9)で表されるジアミン3.62g(10.00mmоl)を使用した以外は参考例2と同様にしてポリイミドフィルムを得た。得られたポリイミドフィルムについて、ガラス転移温度、5%重量減少温度、線熱膨張係数、比誘電率及び誘電正接を測定した。測定結果を表2に示す。
[Reference Example 3] (Polyimide obtained from diamine represented by the above formula (9) and BPDA)
A polyimide film was obtained in the same manner as in Reference Example 2, except that 3.62 g (10.00 mmol) of the diamine represented by the above formula (9) was used instead of the diamine represented by the above formula (8). The glass transition temperature, 5% weight loss temperature, linear thermal expansion coefficient, dielectric constant, and dielectric loss tangent of the obtained polyimide film were measured. The measurement results are shown in Table 2.
[参考例4](下記式(10)で表されるジアミンとBPDAから得られるポリイミド)
 上記式(8)で表されるジアミンに変えて上記式(10)で表されるジアミン0.69g(1.50mmоl)を使用した以外は参考例2と同様にしてポリイミドフィルムを得た。得られたポリイミドフィルムについて、ガラス転移温度、5%重量減少温度、線熱膨張係数、比誘電率及び誘電正接を測定した。測定結果を表2に示す。
[Reference Example 4] (Polyimide obtained from diamine represented by the following formula (10) and BPDA)
A polyimide film was obtained in the same manner as in Reference Example 2, except that 0.69 g (1.50 mmol) of the diamine represented by the above formula (10) was used instead of the diamine represented by the above formula (8). The glass transition temperature, 5% weight loss temperature, linear thermal expansion coefficient, dielectric constant, and dielectric loss tangent of the obtained polyimide film were measured. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018

Claims (9)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001

    で表されるジアミン。
    The following formula (1):
    Figure JPOXMLDOC01-appb-C000001

    Diamine represented by.
  2.  下記式(2):
    Figure JPOXMLDOC01-appb-C000002

    で表されるジニトロ化合物を還元する、請求項1に記載のジアミンの製造方法。
    The following formula (2):
    Figure JPOXMLDOC01-appb-C000002

    The method for producing a diamine according to claim 1, which comprises reducing a dinitro compound represented by:
  3.  下記式(2):
    Figure JPOXMLDOC01-appb-C000003

    で表されるジニトロ化合物。
    The following formula (2):
    Figure JPOXMLDOC01-appb-C000003

    A dinitro compound represented by
  4.  下記一般式(3):
    Figure JPOXMLDOC01-appb-C000004

    (式中、Aは4価の芳香族基又は4価の脂肪族基を表す。)
    で表される繰り返し単位を有するポリアミック酸。
    General formula (3) below:
    Figure JPOXMLDOC01-appb-C000004

    (In the formula, A represents a tetravalent aromatic group or a tetravalent aliphatic group.)
    A polyamic acid having a repeating unit represented by:
  5.  下記一般式(4):
    Figure JPOXMLDOC01-appb-C000005

    (式中、Aは4価の芳香族基又は4価の脂肪族基を表す。)
    で表される繰り返し単位を有するポリイミド。
    General formula (4) below:
    Figure JPOXMLDOC01-appb-C000005

    (In the formula, A represents a tetravalent aromatic group or a tetravalent aliphatic group.)
    A polyimide having a repeating unit represented by
  6.  請求項4に記載のポリアミック酸および溶媒を含有するポリアミック酸溶液。 A polyamic acid solution containing the polyamic acid according to claim 4 and a solvent.
  7.  請求項4に記載のポリアミック酸を含有するフィルム。 A film containing the polyamic acid according to claim 4.
  8.  請求項5に記載のポリイミドを含有するフィルム。 A film containing the polyimide according to claim 5.
  9.  請求項5に記載のポリイミドを含有する層を有する積層体。 A laminate having a layer containing the polyimide according to claim 5.
PCT/JP2023/008307 2022-04-22 2023-03-06 Novel diamine, method for producing same, and polyamic acid and polyimide produced from said diamine WO2023203897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-070716 2022-04-22
JP2022070716 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023203897A1 true WO2023203897A1 (en) 2023-10-26

Family

ID=87469808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008307 WO2023203897A1 (en) 2022-04-22 2023-03-06 Novel diamine, method for producing same, and polyamic acid and polyimide produced from said diamine

Country Status (3)

Country Link
JP (1) JP7320334B1 (en)
TW (1) TW202348597A (en)
WO (1) WO2023203897A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255252A (en) * 2007-04-05 2008-10-23 Asahi Kasei Corp Polyesterimide precursor and polyesterimide
CN114989429A (en) * 2022-05-20 2022-09-02 广东鸿翔瑞材料科技有限公司 Polyimide film, graphite sheet, corresponding preparation method and resin composition
WO2022239534A1 (en) * 2021-05-14 2022-11-17 セイカ株式会社 Meta-ester aromatic diamines, method for producing same, and polyimide having said meta-ester aromatic diamines as raw material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255252A (en) * 2007-04-05 2008-10-23 Asahi Kasei Corp Polyesterimide precursor and polyesterimide
WO2022239534A1 (en) * 2021-05-14 2022-11-17 セイカ株式会社 Meta-ester aromatic diamines, method for producing same, and polyimide having said meta-ester aromatic diamines as raw material
CN114989429A (en) * 2022-05-20 2022-09-02 广东鸿翔瑞材料科技有限公司 Polyimide film, graphite sheet, corresponding preparation method and resin composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASEGAWA MASATOSHI, HISHIKI TOMOAKI: "Poly(ester imide)s Possessing Low Coefficients of Thermal Expansion and Low Water Absorption (V). Effects of Ester-linked Diamines with Different Lengths and Substituents", POLYMERS, vol. 12, no. 4, 8 April 2020 (2020-04-08), pages 859, XP093101104, DOI: 10.3390/polym12040859 *

Also Published As

Publication number Publication date
JP7320334B1 (en) 2023-08-03
TW202348597A (en) 2023-12-16
JP2023160742A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
KR100494631B1 (en) Polyamic acid, polyimide, process for producing these, and film of the polyimide
JP6635506B2 (en) Diamine having fluorene skeleton, polyamic acid, and polyimide
KR100625504B1 (en) Novel polyimide compositions and novel acid dianhydrides to be used therein
KR102564254B1 (en) Tetracarboxylic dianhydride, polyamic acid and polyimide having a cyclic hydrocarbon backbone and an ester group
WO2005066242A1 (en) Aromatic polyamic acid and polyimide
JP4829913B2 (en) Polyimide and method for producing the same
JP2021185165A (en) Polyimide having fluorene skeleton
JP6790756B2 (en) Polyimide, polyimide precursor, and polyimide film
JP2008163088A (en) Ester group-containing alicyclic tetracarboxylic acid anhydride and method for producing the same
JP6584011B2 (en) Diamine compound having fluorene skeleton, polyamic acid, and polyimide
JPH08157597A (en) Copolyimide and its production
WO2023203897A1 (en) Novel diamine, method for producing same, and polyamic acid and polyimide produced from said diamine
JP6793434B2 (en) Tetracarboxylic dianhydride, polyamic acid and polyimide
WO2016190170A1 (en) Tetracarboxylic acid dianhydride having cyclic hydrocarbon skeleton and ester group, polyamic acid and polyimide
WO2008056808A1 (en) Polyimide, diamine compound and method for producing the same
JP2008163090A (en) Tetracarboxylic acid dianhydride, method for producing the same and polymer
JP2011173806A (en) Phosphorus-containing diamine compound and flame-retardant polyimide
JP3339205B2 (en) Method for producing polyimide copolymer
JP7415218B2 (en) Tetracarboxylic dianhydride, polyamic acid, polyimide and polyimide solution
JPH06345868A (en) Polyimide and its production
KR940004533B1 (en) Polyimide
JP2724424B2 (en) New polyimide polymer film
JP2008163089A (en) Copolymer containing at least alicyclic polyester imide unit and aromatic polyimide unit and polyimide film
JP2018070823A (en) Polyimide having a fluorene skeleton
JP6873874B2 (en) Diamine, polyamic acid, polyimide and polyimide solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791552

Country of ref document: EP

Kind code of ref document: A1