WO2023203772A1 - デバイストランスレータ、通信システム、通信方法、および通信プログラム - Google Patents

デバイストランスレータ、通信システム、通信方法、および通信プログラム Download PDF

Info

Publication number
WO2023203772A1
WO2023203772A1 PCT/JP2022/018606 JP2022018606W WO2023203772A1 WO 2023203772 A1 WO2023203772 A1 WO 2023203772A1 JP 2022018606 W JP2022018606 W JP 2022018606W WO 2023203772 A1 WO2023203772 A1 WO 2023203772A1
Authority
WO
WIPO (PCT)
Prior art keywords
time synchronization
tsn
communication
network
synchronization message
Prior art date
Application number
PCT/JP2022/018606
Other languages
English (en)
French (fr)
Inventor
家佳 宋
大介 滝田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/018606 priority Critical patent/WO2023203772A1/ja
Priority to JP2024513190A priority patent/JP7475568B2/ja
Priority to TW111139247A priority patent/TW202344022A/zh
Publication of WO2023203772A1 publication Critical patent/WO2023203772A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present disclosure relates to a device translator, a communication system, a communication method, and a communication program.
  • Non-Patent Document 1 describes a standard in which a 5G network operates as one virtual TSN bridge in a TSN network.
  • NW-TT and DS-TT are equipped with TSN functionality.
  • TSN is an abbreviation for Time-Sensitive Networking.
  • NW-TT is an abbreviation for Network TSN Translator.
  • DS-TT is an abbreviation for Device Side TSN Translator.
  • gPTP is a communication protocol for synchronizing time between devices via a network.
  • gPTP is defined in IEEE802.1AS-2020, Non-Patent Document 2.
  • gPTP is an abbreviation for generalized Precision Time Protocol.
  • Non-Patent Document 2 describes the operation of NW-TT and DS-TT that realize the functions of 1AS.
  • Sync which is a frame for distributing time
  • Follow_Up which is transmitted immediately after Sync and is a frame for distributing accurate time together with Sync
  • Non-Patent Document 2 if the Sync that arrives first is transmitted with a delay, the next Sync will also be transmitted with a similar delay. After all, a delay in just one Follow_Up increases the possibility that a Sync timeout will occur on the TSN bridge side on the DS-TT side. In particular, when the Sync transmission cycle is short, the possibility that Sync timeout will occur becomes even higher. When the Sync timeout occurs on the TSN bridge on the DS-TT side, the time synchronization is not performed with the TSN grand master and the time synchronization performance of the entire system deteriorates.
  • Patent Document 1 discloses a method in which timing control is performed on the terminal side according to channel performance.
  • the NW-TT transmits Sync/Follow_Up as a set using the MDSyncSendSM state machine.
  • follow_Up received on the DS-TT side may be significantly delayed from Sync.
  • the Sync transmission is affected by the Follow_Up delay, so there is a problem in that the TSN slave ends up with a Sync timeout.
  • a wireless terminal determines whether to transmit or suspend a timing control signal based on the SINR value of the wireless channel.
  • SINR is an abbreviation for Signal-to-noise and IN interference ratio.
  • the Sync/Follow_Up will arrive late at the TSN slave. Therefore, even with the technology of Patent Document 1, there remains a problem that Sync timeout occurs in the TSN slave.
  • the present disclosure aims to stably operate TSN equipment by determining a time synchronization message transmission method based on the communication performance of the 5G network in time synchronization message communication via a 5G network bridge.
  • a device translator is a 5G network bridge that is configured with a 5G network to which 5G terminals are connected and functions as a network bridge, and is a 5G network bridge that functions as a network bridge between TSN devices using a standardized TSN (Time-Sensitive Networking) function.
  • the device translator included in the 5G network bridge that relays the communication of Obtaining from the 5G terminal a first time synchronization message that is transmitted first among the time synchronization messages communicated between the TSN devices and an index value serving as an index for evaluating communication performance of the 5G network; a 5G transmitting/receiving unit that calculates a communication evaluation value for evaluating communication performance of the 5G network using the index value; and a TSN transmitter/receiver that controls transmission timing of the first time synchronization message based on the communication evaluation value.
  • the device translator according to the present disclosure determines a time synchronization message transmission method based on the communication performance of the 5G network in communication of the time synchronization message of the TSN device via the 5G network bridge. Therefore, according to the device translator according to the present disclosure, it is possible to stably operate a TSN device.
  • FIG. 1 is a diagram showing an example of a network configuration of a communication system according to Embodiment 1.
  • FIG. FIG. 3 is a diagram illustrating an example of time synchronization message transfer when Follow_Up is delayed in a 5G-TSN network.
  • 1 is a diagram illustrating a configuration example of a device translator according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a configuration example of a 5G transmitter/receiver according to Embodiment 1.
  • FIG. 3 is a flow diagram showing an example of the operation of the TSN transmitter/receiver according to the first embodiment.
  • 6 is a diagram illustrating an example of a state transition diagram based on a comparison result between a communication evaluation value and a threshold value according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a time synchronization message transfer method in the device translator according to Embodiment 1.
  • FIG. 1 is a diagram illustrating an example of a hardware configuration of a device translator according to Embodiment 1.
  • FIG. 3 is an image diagram showing a configuration example of a time synchronization message for transmission in the device translator according to the first embodiment.
  • FIG. 1 is a diagram showing an example of a network configuration of a communication system 500 according to the present embodiment.
  • the communication system 500 according to the present embodiment is a system that performs communication between TSN devices via the 5G network bridge 10. For example, the communication system 500 transmits a time synchronization message from the TSN master 20m to the TSN slave 20s.
  • the TSN master 20m and the TSN slave 20s are TSN devices that communicate using standardized TSN functions.
  • the 5G network bridge 10 is configured by a 5G network 220 to which a 5G terminal 230 is connected.
  • the 5G network bridge 10 includes a 5G terminal 230, a 5G network 220 to which the 5G terminal 230 is connected, and a 5G system 200 including a UPF 210.
  • UPF 210 is a device that transfers data packets to 5G network 220.
  • UPF 210 is on the 5G network 220 side.
  • UPF is an abbreviation for User Plane Function.
  • the 5G network bridge 10 is composed of a 5G system 200 and operates as a virtual network bridge that relays communication between TSN devices. 5G network bridge 10 is also called TSN bridge.
  • the 5G network bridge 10 also includes a network translator 100 and a device translator 400.
  • the network translator 100 is a translator that is placed on the 5G network 220 side and has a TSN function.
  • the device translator 400 is a translator that is placed on the side of the 5G terminal 230 and has a TSN function.
  • Network translator 100 is also referred to as NW-TT.
  • Device translator 400 is also referred to as DS-TT.
  • the communication system 500 is a 5G-TSN network of the 5G-TSN method that connects TSN devices via the 5G system 200.
  • a function called a network translator 100 and a device translator 400 placed between the 5G system 200 and the TSN equipment work together, so that the 5G system 200 operates as a virtual network bridge that relays the TSN equipment.
  • the TSN master 20m is a TSN device that serves as a time source for a TSN network that communicates between TSN devices.
  • the TSN master 20m distributes the time to other TSN devices such as the TSN slave 20s.
  • TSN equipment is also referred to as network equipment.
  • the TSN master 20m distributes the time to the TSN slave 20s via the 5G network bridge 10.
  • the time synchronization messages transmitted between the network translator 100 and the device translator 400 are Sync and Follow_Up.
  • Sync has the role of quickly notifying each bridge to synchronize time without stopping at each bridge.
  • follow_Up is a message containing the master's time and the sum of link delays between the previous bridge and the master. Therefore, follow_Up is sent later than Sync.
  • Sync which is sent first among the time synchronization messages communicated between TSN devices, is an example of the first time synchronization message 401.
  • follow_Up which is sent after Sync, which is the first time synchronization message, is an example of the second time synchronization message 402.
  • the device translator 400 uses the timestamp TIN and the timestamp TOUT to calculate the residence time DT of the Sync inside the 5G network bridge 10.
  • the timestamp TIN is the timestamp when the Sync is input to the network translator 100.
  • TOUT is a timestamp when the device translator 400 outputs Sync.
  • FIG. 2 is a diagram illustrating an example of time synchronization message transfer when Follow_Up is delayed in the 5G-TSN network.
  • NW-TT Network Translator
  • DS-TT Device Translator
  • the DS-TT When the NW-TT and DS-TT transfer PTP messages in SyncLocked mode, the DS-TT is configured to transmit Sync after receiving Follow_Up. However, due to factors such as wireless software processing or retransmission due to deterioration of the communication zone environment, the time at which Follow_Up arrives at the DS-TT may be significantly delayed from the time at which Sync arrives. If Follow_Up lags behind Sync in this way, the DS-TT cannot transmit Sync until Follow_Up arrives. In the MDSyncsendSM state machine, if the Sync that arrived first is transmitted with a delay, the next Sync will also be transmitted with a similar delay.
  • the delay in just one Follow_Up increases the possibility that a Sync timeout will occur on the TSN bridge (B2) (denoted as TSN (B2) in FIG. 2) on the DS-TT side.
  • TSN (B2) denoted as TSN (B2) in FIG. 2
  • the possibility that Sync timeout will occur becomes even higher.
  • the Sync timeout occurs on the TSN bridge (B2) on the DS-TT side, the time synchronization is not performed with the TSN master, and the time synchronization performance of the entire system deteriorates.
  • FIG. 3 is a diagram showing a configuration example of device translator 400 according to this embodiment.
  • the device translator 400 includes a CPU control section 410, a TSN transmission/reception section 420, a 5G transmission/reception section 430, a time synchronization control section 440, a TSN time synchronization section 441, a 5G time synchronization section 442, and a delay measurement section 443.
  • CPU is an abbreviation for Central Processing Unit.
  • the CPU control unit 410 is a processor equipped with a logic circuit or a primary cache for performing arithmetic processing.
  • the TSN transmitter/receiver 420, 5G transmitter/receiver 430, and time synchronization control unit 440 are FPGA circuits that implement the time synchronization function and relay function of the device translator 400.
  • FPGA is an abbreviation for Field-Programmable Gate Array.
  • the TSN transmitting/receiving unit 420 analyzes the frame data received from the TSN side, extracts the header/message content of the PTP message, and notifies the time synchronization control unit 440 of the received time information, etc.
  • the TSN transceiver 420 also transmits two-step peer-to-peer (P2P) time synchronization messages called Pdelay_Req, Pdelay_Resp, and Pdelay_Resp_Follow_Up to the TSN side. Further, the TSN transmitting/receiving unit 420 transmits a time synchronization message such as Sync/Follow_Up generated by the time synchronization control unit 440.
  • P2P peer-to-peer
  • FIG. 4 is a diagram illustrating a configuration example of the 5G transmitter/receiver 430 according to the present embodiment.
  • the 5G transmitting/receiving unit 430 is a module that processes the time synchronization message, channel performance index, and delay index received from the 5G terminal 230.
  • the 5G transmitting/receiving unit 430 acquires Sync, which is a first time synchronization message, and an index value 41, which is an index for evaluating the communication performance of the 5G network, from the 5G terminal 230. Then, the 5G transmitting/receiving unit 430 uses the index value 41 to calculate a communication evaluation value 42 that evaluates the communication performance of the 5G network.
  • the 5G transmitting/receiving unit 430 calculates the communication evaluation value 42 using a combination of a plurality of performance indicators of the 5G network and a plurality of performance indicators defined by the user as the index value 41.
  • the plurality of performance indicators of the 5G network are physical layer performance indicators of channels in the wireless section, which will be described later.
  • the 5G transmitting/receiving section 430 includes a terminal interface 431, a calculation section 432, and an output section 433.
  • the terminal interface 431 extracts the received time synchronization message 40 (Sync or Follow_Up) and transfers it to the output unit 433.
  • the terminal interface 431 transmits the physical layer performance index of the channel of the wireless section in which the time synchronization message 40 (Sync or Follow_Up) is received to the calculation unit 432 as the index value 41.
  • the physical layer performance indicators are (SS-RSRP, CSI-RSRP, SS-RSRQ, CSI-RSRQ, SS-SINR, CSI-SINR) values.
  • SS-RSRP, CSI-RSRP, SS-RSRQ, CSI-RSRQ, SS-SINR, and CSI-SINR are as follows.
  • ⁇ SS-RSRP (SS reference signal received power): SS reference signal received power
  • CSI-RSRP (CSI reference signal received output): CSI reference signal received quality
  • ⁇ SS-RSRQ (SS reference signal received quality): Secondary synchronization signal reference signal received quality
  • ⁇ CSI-RSRQ (CSI reference signal received quality)
  • SS-SINR (SS signal-to-noise and interference ratio)
  • CSI-SINR CSI signal-to-noise and interference ratio
  • the calculation unit 432 uses the index value 41 to calculate the communication evaluation value 42 according to a user-defined algorithm. Specifically, the calculation unit 432 uses these index values 41 and a combination of a plurality of performance indices defined by the user to create a calculation function that meets the user's needs. The calculation unit 432 outputs the calculation result to the output unit 433 as the communication evaluation value 42.
  • the output unit 433 outputs the time synchronization message 40 (Sync or Follow_Up) and a communication evaluation value 42 that evaluates the communication environment in which the time synchronization message 40 (Sync or Follow_Up) was received.
  • the output 30 of the 5G transmitter/receiver 430 includes the time synchronization message 40 (Sync or Follow_Up) and the communication evaluation value 42.
  • the time synchronization message 40 (Sync or Follow_Up) is Sync or Follow_Up.
  • the time synchronization control unit 440 transmits a time synchronization message 40 (Sync or Follow_Up) to the TSN time synchronization unit 441, the 5G time synchronization unit 442, and the delay measurement unit 443.
  • the delay measurement unit 443 calculates the 5G internal delay value 33 based on the time synchronization message 40 (Sync or Follow_Up), and transmits the calculated 5G internal delay value 33 to the time synchronization control unit 440. Therefore, the signal 31 sent from the time synchronization control unit 440 to the TSN transmission/reception unit 420 includes the transmission time synchronization message 40 (Sync or Follow_Up) generated by the time synchronization control unit 440 and the communication evaluation output from the 5G transmission/reception unit 430. Contains the value 42.
  • FIG. 9 is an image diagram showing a configuration example of the time synchronization message 40 for transmission in the device translator 400 according to the present embodiment.
  • FUP_CORR_FLD is the total delay time with the master, which is stored in the TLV field of Follow_Up.
  • the TSN time synchronization unit 441 performs time synchronization with the TSN master based on the time synchronization message received from the TSN transmission/reception unit.
  • the 5G time synchronization unit 442 performs time synchronization with the 5G internal time source based on the time synchronization message received from the 5G transmission/reception unit 430.
  • the delay measuring unit 443 uses the TIN (time stamp when Sync is input to the 5G network) in the TLV2 field of the Follow_Up message received by the 5G transmitting/receiving unit 430 and the time stamp when the Sync received from the TSN transmitting/receiving unit 420 is output to 5G. Use TOUT to measure 5G internal delay. Furthermore, the 5G internal delay value 33 calculated by the delay measurement unit 443 is transmitted to the time synchronization control unit 440.
  • the operation procedure of the device translator 400 corresponds to a communication method. Further, a program that realizes the operation of the device translator 400 corresponds to a communication program.
  • FIG. 5 is a flow diagram showing an example of the operation of the TSN transmitter/receiver 420 according to this embodiment.
  • the TSN transmitter/receiver 420 controls the transmission timing of Sync, which is the first time synchronization message, based on the communication evaluation value 42.
  • step S101 the TSN transmitter/receiver 420 is in a state of waiting to receive Sync.
  • step S102 when the TSN transmitter/receiver 420 receives Sync, the TSN transmitter/receiver 420 compares the communication evaluation value 42 with a threshold value. Specifically, the TSN transmitter/receiver 420 uses the communication evaluation value 42 reported from the 5G transmitter/receiver 430 when receiving Sync, and compares it with a preset threshold.
  • the communication evaluation value 42 is determined by the 5G transmitting/receiving unit 430 as the index value 41, which is the performance index of the 5G network (SS-RSRP, CSI-RSRP, SS-RSRQ, CSI-RSRQ, SS-SINR, CSI- SINR) value and a user-defined combination of these performance indicators.
  • the index value 41 is the performance index of the 5G network (SS-RSRP, CSI-RSRP, SS-RSRQ, CSI-RSRQ, SS-SINR, CSI- SINR) value and a user-defined combination of these performance indicators.
  • step S103 If the communication evaluation value 42 is equal to or greater than the threshold value, the process advances to step S103. If the communication evaluation value 42 is smaller than the threshold value, the process advances to step S106.
  • step S103 the TSN transmitting/receiving unit 420 sends a second time synchronization message (Follow_Up) corresponding to the first time synchronization message (Sync), which is transmitted after the first time synchronization message. Wait for reception of (Follow_Up). Specifically, the device translator 400 transitions to a state in which it waits to receive Follow_Up, which is the second time synchronization message.
  • the TSN transmitting/receiving unit 420 After receiving Follow_Up, the TSN transmitting/receiving unit 420 transmits Sync in step S104. After transmitting Sync, in step S105, the TSN transmitting/receiving unit 420 transmits Follow_Up. Specifically, after receiving Follow_Up, the TSN transmitting/receiving unit 420 sequentially transmits Sync and Follow_Up (steps S104 and S105). Steps S103 to S105 are an example of a state machine when the CSI-SINR value is large.
  • step S106 the TSN transmitting/receiving unit 420 transmits the first time synchronization message (Sync) without waiting for reception of the second time synchronization message (Follow_Up). After transmitting the first time synchronization message (Sync) without waiting for reception of the second time synchronization message (Follow_Up), the TSN transmitting/receiving unit 420 waits for reception of the second time synchronization message (Follow_Up) in step S107.
  • the TSN transceiver 420 Upon receiving the second time synchronization message (Follow_Up), in step S108, the TSN transceiver 420 transmits the received second time synchronization message (Follow_Up).
  • the second time synchronization message (Follow_Up) to be transmitted here is the second time synchronization message (Follow_Up) for transmission updated by the delay value 33 of the delay measurement unit 443. Specifically, it is as follows.
  • the device translator 400 immediately transfers Sync first without waiting for reception of Follow_Up (step S106).
  • the device translator 400 notifies the delay measurement unit 443 of the Sync transmission time stamp TOUT, and transitions to a Follow_Up reception wait state (step S107).
  • the device translator 400 receives Follow_Up with the same Sequence ID, it transmits Follow_Up updated by the delay value 33 of the delay measurement unit 443 to the TSN side (step S108).
  • FIG. 6 is a diagram showing an example of a state transition diagram based on a comparison result between the communication evaluation value 42 and a threshold value according to the present embodiment.
  • the bold portion shows the state transition when the communication evaluation value is small.
  • FIG. 7 is a diagram illustrating an example of a time synchronization message transfer method in device translator 400 according to the present embodiment.
  • the delay in Follow_Up caused by the influence of the wireless section does not affect the transmission timing of Sync. Therefore, since the timing at which Sync transmitted from the device translator 400 arrives at the TSN slave is not affected, stable time synchronization operation of the TSN slave can be expected.
  • FIG. 7 shows a method of transferring a time synchronization message 40 (Sync or Follow_Up) when using CSI-SINR as a communication evaluation value.
  • FIG. 8 is a diagram showing an example of the hardware configuration of device translator 400 according to this embodiment.
  • Device translator 400 is a computer.
  • Device translator 400 is realized by processor 901, memory 902, and communication device 904. These processor 901, memory 902, and communication device 904 are connected via a bus 903.
  • Processor 901 functions as CPU control unit 410.
  • the processor 901 is a CPU, a system LSI, or the like.
  • the CPU is also referred to as a central processing unit, processing unit, arithmetic unit, processor, microprocessor, microcomputer, or DSP.
  • DSP is an abbreviation for Digital Signal Processor.
  • LSI is an abbreviation for Large Scale Integration.
  • Memory 902 is non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, or EEPROM.
  • RAM is an abbreviation for Random Access Memory.
  • ROM is an abbreviation for Read Only Memory.
  • EPROM is an abbreviation for Erasable Programmable Read Only Memory.
  • EEPROM is an abbreviation for Electrically Erasable Programmable Read-Only Memory.
  • DVD is an abbreviation for Digital Versatile Disc.
  • the TSN transmitter/receiver 420, 5G transmitter/receiver 430, and time synchronization controller 440 are realized by hardware, software, firmware, or a combination thereof.
  • the TSN transmitter/receiver 420, 5G transmitter/receiver 430, and time synchronization controller 440 may be realized by software or firmware.
  • the TSN transmitter/receiver 420 , 5G transmitter/receiver 430 , and time synchronization controller 440 load programs for the processor 901 to operate as the TSN transmitter/receiver 420 , 5G transmitter/receiver 430 , and time synchronization controller 440 from the memory 902 . This is achieved by reading and executing.
  • Device translator 400 comprises a memory 902 for storing a program that results in the steps implementing the operations of device translator 400 being executed when its functions are executed by processor 901. Furthermore, these programs cause the computer to execute various processes performed by the device translator 400.
  • the program according to this embodiment is also referred to as a communication program.
  • Data, information, signal values and variable values utilized, processed or output by the communication program are stored in memory or in registers or cache memory within the processor.
  • the "unit" of each part of the device translator 400 may be read as “circuit,””process,””procedure,””process,” or “circuitry.”
  • the communication program causes the computer to execute various processes of the TSN transmitting/receiving section 420, the 5G transmitting/receiving section 430, and the time synchronization control section 440.
  • the "processing" of each part of the TSN transmitting/receiving unit 420, 5G transmitting/receiving unit 430, and time synchronization control unit 440 is referred to as a "program,”"programproduct,"”computer-readable storage medium storing a program," or " It may also be read as "a computer-readable recording medium on which a program is recorded.”
  • the communication method is a method performed by the device translator 400 executing a communication program.
  • the communication program may be provided stored in a computer-readable recording medium. Further, the communication program may be provided as a program product.
  • the device translator 400 may be implemented with dedicated hardware.
  • the dedicated hardware may be a single circuit, a complex circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • One of the TSN transmitting/receiving unit 420, 5G transmitting/receiving unit 430, and time synchronization control unit 440 may be implemented by dedicated hardware, and the remaining components may be implemented by the processor 901 and memory 902 described above.
  • processors and each of the electronic circuits which are dedicated hardware, are also called processing circuitry.
  • the functions of the device translator 400 are realized by processing circuitry.
  • the hardware configurations of other devices in the communication system 500 are basically the same.
  • the communication system according to this embodiment includes the following device translator.
  • the device translator according to this embodiment has a function of suppressing the influence of wireless delay of the 5G network and operating a time slave outside the 5G network with stable synchronized time.
  • the device translator 5G transmitting/receiving section is communicatively connected to the 5G terminal.
  • the TSN transmitter/receiver has a time synchronization message transmission method based on the performance index of the 5G network acquired by the 5G transmitter/receiver. Therefore, according to the communication system according to the present embodiment, it is possible to provide a new device translator transfer function in order to suppress the influence of unstable transfer in the 5G wireless section and allow the TSN slave to operate stably.
  • the device translator receives Sync transmitted from the network translator. Thereby, the device translator can determine that the network translator has sent Follow_Up. Therefore, the device translator can refer to the physical layer performance index of the channel in the wireless section reported by the 5G terminal and can omit the Follow_Up reception waiting procedure. This makes it possible to implement a device translator transfer function that accelerates the Sync transmission timing. Further, according to the timing control function by the device translator according to the present embodiment, it is possible to connect even a general wireless terminal, so there is an effect that it is highly practical.
  • each part of each device of the communication system has been described as an independent functional block.
  • the configuration of each device in the communication system may not be the same as in the embodiments described above.
  • the functional blocks of each device in the communication system may have any configuration as long as they can realize the functions described in the embodiments described above.
  • each device of the communication system may not be one device, but may be a system composed of a plurality of devices.
  • a plurality of parts of Embodiment 1 may be combined and implemented.
  • one part of this embodiment may be implemented.
  • this embodiment may be implemented in any combination, either in whole or in part. That is, in Embodiment 1, it is possible to freely combine each embodiment, to modify any component of each embodiment, or to omit any component in each embodiment.
  • 105G network bridge 20m TSN master, 20S TSN slave, 30 output, 31 signals, 33 delay values, 40 hours synchronous messages, 41 indicators, 42 communication evaluation values, 100 network transritors, 200 5g system, 210 UPF, 220 g Network, 230 5G terminal, 400 Device translator, 401 First time synchronization message, 402 Second time synchronization message, 410 CPU control unit, 420 TSN transmission/reception unit, 430 5G transmission/reception unit, 431 Terminal interface, 432 Arithmetic unit, 433 Output unit , 440 time synchronization control unit, 441 TSN time synchronization unit, 442 5G time synchronization unit, 443 delay measurement unit, 500 communication system, 901 processor, 902 memory, 903 bus, 904 communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

5Gネットワークブリッジ(10)は、5Gシステム(200)から構成され、TSN(Time-Sensitive Networking)機能を用いたTSN機器同士の通信を中継する。デバイストランスレータ(400)は、5Gネットワークブリッジ(10)の5G端末(230)側にある。デバイストランスレータ(400)は、5G端末(230)から、先に送信される第1時刻同期メッセージと、5Gネットワークの通信性能を評価する指標となる指標値とを取得する。そして、デバイストランスレータ(400)は、指標値を用いて5Gネットワークの通信性能を評価する通信評価値を算出する。5Gネットワーク(220)は、通信評価値に基づいて、第1時刻同期メッセージの送信タイミングを制御する。

Description

デバイストランスレータ、通信システム、通信方法、および通信プログラム
 本開示は、デバイストランスレータ、通信システム、通信方法、および通信プログラムに関する。
 非特許文献1では、TSNネットワークにおいて、5Gネットワークが1つの仮想的なTSNブリッジとして動作する規格について記載されている。5Gを介したTSNネットワークでは、NW-TTとDS-TTにTSN機能が備えられている。TSNは、Time-Sensitive Networkingの略語である。NW-TTは、Network TSN Translatorの略語である。DS-TTは、Device Side TSN Translatorの略語である。
 ネットワークを介した機器間で時刻を同期させるための通信プロトコルにgPTPがある。gPTPは、非特許文献2であるIEEE802.1AS-2020で規定されている。gPTPは、generalized Precision Time Protocolの略語である。非特許文献2には、1ASの機能を実現するNW-TTとDS-TTの動作について記載されている。
 gPTPでは、時刻を配信するフレームであるSyncと、Syncの直後に送信され、Syncと合わせて正確な時刻を配信するフレームであるFollow_Upとが転送される。
 NW-TTとDS-TTが、SyncLockedモードでPTPメッセージを転送する場合、DS-TTはFollow_Upを受信してからSyncを送信する仕組みになっている。しかし、無線のソフト処理、あるいは、通信区間の環境悪化による再送といった要因により、Follow_UpがDS-TTに到着する時刻がSyncの到着時刻より大幅に遅れることがある。このようにFollow_UpがSyncより遅れる場合、DS-TTがFollow_Upの到着までSyncを送信できない。
 非特許文献2で規定されたMDSyncsendSMステートマシンでは、先に到着したSyncが遅れて送信されると、次のSyncも同じく遅れて送信されてしまう。結局、たった1つのFollow_Upが遅れることで、DS-TT側のTSNブリッジ側でSyncのタイムアウトが起きる可能性が高くなる。特に、Syncの送信周期が短い場合は、Syncのタイムアウトが起きる可能性がさらに高くなる。DS-TT側のTSNブリッジはSyncタイムアウトになると、TSNグランドマスタに時刻同期せず、ローカル時刻で動作することになり、システム全体の時刻同期性能が悪くなる。
 特許文献1には、端末側でチャネル性能に応じたタイミング制御を行う方法が開示されている。
特表2021-507613号公報
 NW-TTは、MDSyncSendSMステートマシンによりSync/Follow_Upをセットで送信する。しかし、通信環境の悪化といった要因により、DS-TT側で受信したFollow_UpがSyncより大幅に遅れることがある。DS-TTでは、MDSyncSendSMステートマシンでメッセージが送信されると、Syncの送信がFollow_Upの遅れに影響されるため、結局、TSNスレーブはSyncタイムアウトが起こるという課題がある。
 特許文献1では、無線端末は無線チャネルのSINR値でタイミング制御信号を送信するか保留するかを判断する。SINRは、Signal-to-noise and INterference Ratioの略語である。しかし、SINR値が低くなり、タイミング制御信号を保留する場合、Sync/Follow_Upは遅れてTSNスレーブに到着する。よって、特許文献1の技術であっても、TSNスレーブにはSyncのタイムアウトが起こるという課題が残る。
 本開示は、5Gネットワークブリッジを介した時刻同期メッセージの通信において、5Gネットワークの通信性能に基づいて時刻同期メッセージの送信方式を決めることで、TSN機器を安定的に動作させることを目的とする。
 本開示に係るデバイストランスレータは、5G端末が接続された5Gネットワークにより構成され、ネットワークブリッジとして機能する5Gネットワークブリッジであって、標準化されているTSN(Time-Sensitive Networking)機能を用いたTSN機器同士の通信を中継する5Gネットワークブリッジに含まれるデバイストランスレータにおいて、
 前記5G端末から、前記TSN機器間で通信される時刻同期メッセージのうち先に送信される第1時刻同期メッセージと、前記5Gネットワークの通信性能を評価する指標となる指標値とを取得し、前記指標値を用いて前記5Gネットワークの通信性能を評価する通信評価値を算出する5G送受信部と、
 前記通信評価値に基づいて、前記第1時刻同期メッセージの送信タイミングを制御するTSN送受信部とを備える。
 本開示に係るデバイストランスレータでは、5Gネットワークブリッジを介したTSN機器の時刻同期メッセージの通信において、5Gネットワークの通信性能に基づいて時刻同期メッセージの送信方式を決める。よって、本開示に係るデバイストランスレータによれば、TSN機器を安定的に動作させることができる。
実施の形態1に係る通信システムのネットワーク構成例を示す図。 5G-TSNネットワークにおいてFollow_Upが遅れる場合の時刻同期メッセージの転送の例を示す図。 実施の形態1に係るデバイストランスレータの構成例を示す図。 実施の形態1に係る5G送受信部の構成例を示す図。 実施の形態1に係るTSN送受信部の動作例を示すフロー図。 実施の形態1に係る通信評価値と閾値との比較結果による状態遷移図の例を示す図。 実施の形態1に係るデバイストランスレータにおける時刻同期メッセージの転送方法の例を示す図。 実施の形態1に係るデバイストランスレータのハードウェア構成例を示す図。 実施の形態1に係るデバイストランスレータにおける送信用の時刻同期メッセージの構成例を示すイメージ図。
 以下、本実施の形態について、図を用いて説明する。各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。図中の矢印はデータの流れまたは処理の流れを主に示している。また、以下の図では各構成の大きさの関係が実際のものとは異なる場合がある。また、実施の形態の説明において、上、下、左、右、前、後、表、裏といった向きあるいは位置が示されている場合がある。これらの表記は、説明の便宜上の記載であり、装置、器具、あるいは部品などの配置、方向および向きを限定するものではない。
 実施の形態1.
***構成の説明***
 図1は、本実施の形態に係る通信システム500のネットワーク構成例を示す図である。
 本実施の形態に係る通信システム500は、5Gネットワークブリッジ10を介して、TSN機器同士の通信を行うシステムである。例えば、通信システム500は、TSNマスタ20mからTSNスレーブ20sへ時刻同期メッセージの送信を行う。
 TSNマスタ20mおよびTSNスレーブ20sは、標準化されているTSN機能を用いて通信するTSN機器である。
 5Gネットワークブリッジ10は、5G端末230が接続された5Gネットワーク220により構成される。具体的には、5Gネットワークブリッジ10は、5G端末230と、5G端末230が接続された5Gネットワーク220と、UPF210を備える5Gシステム200により構成される。UPF210は、5Gネットワーク220にデータパケットを転送する機器である。UPF210は、5Gネットワーク220の側にある。UPFは、User Plane Functionの略語である。
 5Gネットワークブリッジ10は、5Gシステム200からなり、TSN機器同士の通信を中継する、仮想的なネットワークブリッジとして動作する。5Gネットワークブリッジ10は、TSNブリッジとも呼ばれる。
 また、5Gネットワークブリッジ10は、ネットワークトランスレータ100とデバイストランスレータ400とを備える。
 ネットワークトランスレータ100は、5Gネットワーク220の側に配置され、TSN機能を有するトランスレータである。デバイストランスレータ400は、5G端末230の側に配置され、TSN機能を有する、TSN機能を有するトランスレータである。
 ネットワークトランスレータ100は、NW-TTとも称される。デバイストランスレータ400は、DS-TTとも称される。
 上述したように、通信システム500は、5Gシステム200を経由してTSN機器を接続する5G-TSN方式の5G-TSNネットワークである。5Gシステム200とTSN機器の間に配置された、ネットワークトランスレータ100、および、デバイストランスレータ400と呼ばれる機能が連携することによって、5Gシステム200がTSN機器を中継する仮想的なネットワークブリッジとして動作する。
 TSNマスタ20mは、TSN機器間で通信するTSNネットワークの時刻源となるTSN機器である。TSNマスタ20mは、その時刻をTSNスレーブ20sといった他のTSN機器に配信する。TSN機器は、ネットワーク装置ともいう。
 TSNマスタ20mは、5Gネットワークブリッジ10を介して、時刻をTSNスレーブ20sに配信する。
 ネットワークトランスレータ100とデバイストランスレータ400の間で伝送される時刻同期メッセージはSyncとFollow_Upである。Syncは、各ブリッジに立ち留まらず、素早く各ブリッジに時刻同期しようと通知する役割を持つ。Follow_Upは、マスタの時刻と前のブリッジとマスタ間のリンク遅延の総和を含むメッセージである。このため、Follow_Upは、Syncより遅く送信される。
 TSN機器間で通信される時刻同期メッセージのうち先に送信されるSyncは、第1時刻同期メッセージ401の例である。また、第1時刻同期メッセージであるSyncの後に送信されるFollow_Upは、第2時刻同期メッセージ402の例である。
 デバイストランスレータ400は、タイムスタンプTINとタイムスタンプTOUTを使用し、Syncが5Gネットワークブリッジ10内部にいる滞留時間DTを計算する。タイムスタンプTINは、Syncのネットワークトランスレータ100入力時のタイムスタンプである。TOUTは、Syncのデバイストランスレータ400出力時のタイムスタンプである。
 図2は、5G-TSNネットワークにおいてFollow_Upが遅れる場合の時刻同期メッセージの転送の例を示す図である。
 具体的には、NW-TT(ネットワークトランスレータ)とDS-TT(デバイストランスレータ)は、5Gネットワークのマスタに時刻同期する。これにより、NW-TTとDS-TTでは、同期した5G時刻を用いて、PTPメッセージのSyncが5Gネットワークブリッジの内部にいる滞留時間を計算する。
 NW-TTとDS-TTが、SyncLockedモードでPTPメッセージを転送する場合、DS-TTはFollow_Upを受信してからSyncを送信する仕組みになっている。しかし、無線のソフト処理、あるいは、通信区間の環境悪化による再送といった要因により、Follow_UpがDS-TTに到着する時刻はSyncの到着時刻より大幅に遅れることがある。このようにFollow_UpがSyncより遅れる場合、DS-TTがFollow_Upの到着までSyncを送信できない。
 MDSyncsendSMステートマシンでは、先に到着したSyncが遅れて送信されると、次のSyncも同じく遅れて送信されてしまう。結局、たった1つのFollow_Upが遅れることで、DS-TT側のTSNブリッジ(B2)(図2ではTSN(B2)と記載)側でSyncのタイムアウトが起きる可能性が高くなる。特に、Syncの送信周期が短い場合は、Syncのタイムアウトが起きる可能性がさらに高くなる。DS-TT側のTSNブリッジ(B2)はSyncタイムアウトになると、TSNマスタに時刻同期せず、ローカル時刻で動作することになり、システム全体の時刻同期性能が悪くなる。
 図3は、本実施の形態に係るデバイストランスレータ400の構成例を示す図である。
 デバイストランスレータ400は、CPU制御部410、TSN送受信部420、5G送受信部430、時刻同期制御部440、TSN時刻同期部441、5G時刻同期部442、および、遅延測定部443を有する。CPUは、Central Processing Unitの略語である。
 CPU制御部410は、演算処理を行うための論理回路あるいは1次キャッシュなどを実装しているプロセッサである。TSN送受信部420、5G送受信部430、および時刻同期制御部440は、デバイストランスレータ400の時刻同期機能と中継機能を実現するFPGA回路である。FPGAは、Field-Programmable Gate Arrayの略語である。
 TSN送受信部420は、TSN側から受信したフレームデータを解析し、PTPメッセージのヘッダ/メッセージ内容を抽出し、受信した時刻情報などを時刻同期制御部440に通知する。TSN送受信部420は、TSN側に対して、Pdelay_Req、Pdelay_Resp、およびPdelay_Resp_Follow_Upと呼ばれる2段階のピアツーピア(P2P)時刻同期メッセージも送信する。また、TSN送受信部420は、時刻同期制御部440で生成したSync/Follow_Upといった時刻同期メッセージの送信を行う。
 図4は、本実施の形態に係る5G送受信部430の構成例を示す図である。
 5G送受信部430は、5G端末230から受信した時刻同期メッセージと、チャネル性能指標および遅延指標とを処理するモジュールである。
 5G送受信部430は、5G端末230から、第1時刻同期メッセージであるSyncと、5Gネットワークの通信性能を評価する指標となる指標値41とを取得する。そして、5G送受信部430は、指標値41を用いて5Gネットワークの通信性能を評価する通信評価値42を算出する。
 より具体的には、5G送受信部430は、5Gネットワークの複数の性能指標、およびユーザにより定義された複数の性能指標の組み合わせを、指標値41として用いて通信評価値42を算出する。
 5Gネットワークの複数の性能指標とは、後述する無線区間のチャネルの物理層性能指標である。
 5G送受信部430は、端末インタフェース431、演算部432、出力部433により構成される。
 端末インタフェース431は、受信した時刻同期メッセージ40(SyncあるいはFollow_Up)を抽出し、出力部433に転送する。
 また、端末インタフェース431は、時刻同期メッセージ40(SyncあるいはFollow_Up)を受信した無線区間のチャネルの物理層性能指標を、指標値41として演算部432に送信する。
 物理層性能指標は、(SS-RSRP,CSI-RSRP,SS-RSRQ,CSI-RSRQ,SS-SINR,CSI-SINR)値である。SS-RSRP,CSI-RSRP,SS-RSRQ,CSI-RSRQ,SS-SINR,およびCSI-SINRは、以下の通りである。
・SS-RSRP(SS参照信号受信出力):SS reference signal received power
・CSI-RSRP(CSI基準信号受信出力):CSI reference signal received quality
・SS-RSRQ(SS基準信号受信品質):Secondary synchronization signal reference signal received quality
・CSI-RSRQ(CSI基準信号受信品質):CSI reference signal received quality
・SS-SINR(SS信号対雑音および干渉比):SS signal-to-noise and interference ratio
・CSI-SINR(CSI信号対雑音および干渉比):CSI signal-to-noise and interference ratio
 なお、SSは、同期信号(Sync Signal)の略語、CSIは、チャネル状態情報(Cannel state information)の略語である。
 演算部432では、指標値41を用いて、ユーザ定義のアルゴリズムにより、通信評価値42を算出する。具体的には、演算部432では、これらの指標値41と、ユーザにより定義された複数の性能指標の組み合わせとを用いて、ユーザのニーズに合わせた演算関数を作る。演算部432は演算の結果を通信評価値42として出力部433に出力する。
 出力部433は、時刻同期メッセージ40(SyncあるいはFollow_Up)と、時刻同期メッセージ40(SyncあるいはFollow_Up)を受信した通信環境を評価する通信評価値42とを出力する。
 図3に戻り説明を続ける。
 上記の記載により、5G送受信部430の出力30には、時刻同期メッセージ40(SyncあるいはFollow_Up)と通信評価値42とが含まれる。時刻同期メッセージ40(SyncあるいはFollow_Up)は、SyncあるいはFollow_Upである。
 時刻同期制御部440は、時刻同期メッセージ40(SyncあるいはFollow_Up)を、TSN時刻同期部441、5G時刻同期部442、遅延測定部443に送信する。
 遅延測定部443は、時刻同期メッセージ40(SyncあるいはFollow_Up)に基づいて5G内部の遅延値33を計算し、計算した5G内部の遅延値33を時刻同期制御部440に送信する。そのため、時刻同期制御部440からTSN送受信部420に送信する信号31は、時刻同期制御部440が生成した送信用の時刻同期メッセージ40(SyncあるいはFollow_Up)と5G送受信部430から出力された通信評価値42を含む。
 図9は、本実施の形態に係るデバイストランスレータ400における送信用の時刻同期メッセージ40の構成例を示すイメージ図である。
 FUP_CORR_FLDは、Follow_UpのTLVフィールドに格納される、マスタとの間の遅延時間の総和である。
 TSN時刻同期部441は、TSN送受信部から受信した時刻同期メッセージに基づいてTSNマスタに時刻同期を行う。
 5G時刻同期部442は、5G送受信部430から受信した時刻同期メッセージに基づいて5G内部の時刻源に時刻同期を行う。
 遅延測定部443は、5G送受信部430で受信したFollow_UpメッセージのTLV2フィールドにあるTIN(Syncが5Gネットワークに入力時のタイムスタンプ)とTSN送受信部420から受信したSyncが5Gに出力時のタイムスタンプTOUTを使用し、5G内部の遅延を測定する。また、遅延測定部443が計算した5G内部の遅延値33を時刻同期制御部440に送信する。
***動作の説明***
 次に、本実施の形態に係るデバイストランスレータ400の動作について説明する。デバイストランスレータ400の動作手順は、通信方法に相当する。また、デバイストランスレータ400の動作を実現するプログラムは、通信プログラムに相当する。
 図5は、本実施の形態に係るTSN送受信部420の動作例を示すフロー図である。
 TSN送受信部420は、通信評価値42に基づいて、第1時刻同期メッセージであるSyncの送信タイミングを制御する。
 ステップS101では、TSN送受信部420は、Syncの受信待ち状態である。
 ステップS102において、TSN送受信部420がSyncを受信すると、TSN送受信部420は、通信評価値42と閾値とを比較する。具体的には、TSN送受信部420は、Syncを受信した際に5G送受信部430から報告された通信評価値42を用いて、事前に設定されている閾値と比較する。
 上述したように、通信評価値42は、5G送受信部430により、指標値41として、5Gネットワークの性能指標(SS-RSRP,CSI-RSRP,SS-RSRQ,CSI-RSRQ,SS-SINR,CSI-SINR)値、および、ユーザが定義したこれらの性能指標の組み合わせを用いて、算出される。
 通信評価値42が閾値以上であれば、ステップS103に進む。
 通信評価値42が閾値より小さければ、ステップS106に進む。
 通信評価値42が閾値以上の場合、Follow_Upが遅れる確率が低いことを意味する。
 よって、ステップS103において、TSN送受信部420は、第1時刻同期メッセージ(Sync)に対応する第2時刻同期メッセージ(Follow_Up)であって、第1時刻同期メッセージの後に送信される第2時刻同期メッセージ(Follow_Up)の受信を待つ。具体的には、デバイストランスレータ400は、第2時刻同期メッセージであるFollow_Upの受信待ち状態に遷移する。
 Follow_Upの受信後、ステップS104において、TSN送受信部420は、Syncを送信する。
 Syncの送信後、ステップS105において、TSN送受信部420は、Follow_Upを送信する。
 具体的には、TSN送受信部420は、Follow_Upの受信後、SyncとFollow_Upを順番に送信する(ステップS104,S105)。
 ステップS103からステップS105は、CSI-SINR値が大きい場合のステートマシンの例である。
 通信評価値42が閾値より小さい場合、Follow_Upが遅れる確率が高いことを意味する。
 ステップS106において、TSN送受信部420は、第2時刻同期メッセージ(Follow_Up)の受信を待たずに第1時刻同期メッセージ(Sync)を送信する。
 TSN送受信部420は、第2時刻同期メッセージ(Follow_Up)の受信を待たずに第1時刻同期メッセージ(Sync)を送信した後、ステップS107において、第2時刻同期メッセージ(Follow_Up)の受信を待つ。
 第2時刻同期メッセージ(Follow_Up)を受信すると、ステップS108において、TSN送受信部420は、受信した第2時刻同期メッセージ(Follow_Up)を送信する。なお、ここで、送信する第2時刻同期メッセージ(Follow_Up)は、遅延測定部443の遅延値33により更新された、送信用の第2時刻同期メッセージ(Follow_Up)である。
 具体的には、以下の通りである。
 デバイストランスレータ400は、Follow_Upの受信を待たずに、先にSyncを即時転送する(ステップS106)。
 デバイストランスレータ400が、Syncの送信タイムスタンプTOUTを遅延測定部443に通知し、Follow_Up受信待ち状態に遷移する(ステップS107)。
 デバイストランスレータ400は、同じSequenceIDのFollow_Upを受信した際に、遅延測定部443の遅延値33により更新されたFollow_UpをTSN側に送信する(ステップS108)。
 図6は、本実施の形態に係る通信評価値42と閾値との比較結果による状態遷移図の例を示す図である。
 図6では、太字部分が通信評価値が小さい場合の状態遷移を示している。
 Syncは受信後にすぐ送信する。Follow_Upは送信されたSyncと同じSequenceIDを持つことを確認次第、Follow_Upを生成して送信する。
 図7は、本実施の形態に係るデバイストランスレータ400における時刻同期メッセージの転送方法の例を示す図である。
 図7に示すように、本実施の形態に係るデバイストランスレータ400では、無線区間の影響で発生したFollow_Upの遅れが、Syncの送信タイミングに影響しない。よって、デバイストランスレータ400から送信したSyncがTSNスレーブに到着するタイミングも影響されないため、TSNスレーブの安定的な時刻同期動作を期待できる。図7はCSI-SINRを通信評価値として使用する場合における時刻同期メッセージ40(SyncあるいはFollow_Up)の転送方法を示している。
<ハードウェア構成例>
 図8は、本実施の形態に係るデバイストランスレータ400のハードウェア構成例を示す図である。
 デバイストランスレータ400は、コンピュータである。デバイストランスレータ400は、プロセッサ901、メモリ902、および通信装置904により実現される。これらのプロセッサ901、メモリ902、および通信装置904は、バス903を介して接続されている。
 プロセッサ901は、CPU制御部410として機能する。プロセッサ901は、CPU、システムLSIなどである。CPUは、中央処理装置、処理装置、演算装置、プロセッサ、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。DSPは、Digital Signal Processorの略語である。また、LSIは、Large Scale Integrationの略語である。
 メモリ902は、RAM、ROM、フラッシュメモリ、EPROM、またはEEPROMといった、不揮発性または揮発性の半導体メモリである。あるいは、メモリ902は、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVDである。RAMは、Random Access Memoryの略語である。ROMは、Read Only Memoryの略語である。EPROMは、Erasable Programmable Read Only Memoryの略語である。EEPROMは、Electrically Erasable Programmable Read-Only Memoryの略語である。DVDは、Digital Versatile Discの略語である。
 TSN送受信部420、5G送受信部430、および時刻同期制御部440は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの組み合わせにより実現される。
 ソフトウェアおよびファームウェアはプログラムとして記述され、メモリ902に格納される。
 TSN送受信部420、5G送受信部430、および時刻同期制御部440をソフトウェアまたはファームウェアで実現してもよい。TSN送受信部420、5G送受信部430、および時刻同期制御部440は、プロセッサ901が、TSN送受信部420、5G送受信部430、および時刻同期制御部440のそれぞれとして動作するためのプログラムをメモリ902から読み出して実行することにより実現される。デバイストランスレータ400は、その機能がプロセッサ901により実行されるときに、デバイストランスレータ400の動作を実施するステップが結果的に実行されることになるプログラムを格納するためのメモリ902を備える。また、これらのプログラムは、デバイストランスレータ400が行う各種処理をコンピュータに実行させるものである。
 本実施の形態に係るプログラムは、通信プログラムともいう。通信プログラムにより利用、処理または出力されるデータ、情報、信号値および変数値は、メモリ、または、プロセッサ内のレジスタあるいはキャッシュメモリに記憶される。
 デバイストランスレータ400の各部の「部」を「回路」、「工程」、「手順」、「処理」、あるいは「サーキットリー」に読み替えてもよい。通信プログラムは、TSN送受信部420、5G送受信部430、および時刻同期制御部440の各部の各種処理を、コンピュータに実行させる。TSN送受信部420、5G送受信部430、および時刻同期制御部440の各部の各種処理の「処理」を「プログラム」、「プログラムプロダクト」、「プログラムを記憶したコンピュータ読取可能な記憶媒体」、または「プログラムを記録したコンピュータ読取可能な記録媒体」に読み替えてもよい。また、通信方法は、デバイストランスレータ400が通信プログラムを実行することにより行われる方法である。
 通信プログラムは、コンピュータ読取可能な記録媒体に格納されて提供されてもよい。また、通信プログラムは、プログラムプロダクトとして提供されてもよい。
 デバイストランスレータ400は、専用のハードウェアで実現されてもよい。専用のハードウェアとしては、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせたものが該当する。ASICは、Application Specific Integrated Circuitの略語である。TSN送受信部420、5G送受信部430、および時刻同期制御部440の一方を専用のハードウェアで実現し、残りを上記のプロセッサ901およびメモリ902で実現するようにしてもよい。
 なお、プロセッサと専用のハードウェアである電子回路の各々は、プロセッシングサーキットリとも呼ばれる。つまり、デバイストランスレータ400の機能は、プロセッシングサーキットリにより実現される。
 また、通信システム500のその他の機器のハードウェア構成についても基本的に同様である。
***本実施の形態に係る効果の説明***
 本実施の形態に係る通信システムは、以下のようなデバイストランスレータを有する。
 本実施の形態に係るデバイストランスレータは、5Gネットワークの無線遅延影響を抑え、5Gネットワークの外部にある時刻スレーブを安定的な同期時刻で動作させる機能を持つ。デバイストランスレータ5G送受信部は、5G端末と通信接続する。TSN送受信部は、5G送受信部により取得した5Gネットワークの性能指標に基づいた時刻同期メッセージの送信方式を有する。
 よって、本実施の形態に係る通信システムによれば、5G無線区間における転送不安定の影響を抑え、TSNスレーブに安定的に動作させるため、新たなデバイストランスレータの転送機能を提供することができる。
 本実施の形態に係るデバイストランスレータは、ネットワークトランスレータから送信されたSyncを受信する。これにより、デバイストランスレータは、ネットワークトランスレータがFollow_Upを送信したことは判断できる。そのため、デバイストランスレータは、5G端末により報告された無線区間のチャネルの物理層性能指標を参考し、Follow_Upの受信待ち手順を省くことができる。これにより、Syncの送信タイミングが早まるデバイストランスレータ転送機能を実現することができる。
 また、本実施の形態に係るデバイストランスレータによるタイミング制御機能によれば、一般の無線端末でも接続できるため、実用性が高いという効果がある。
 以上の実施の形態1では、通信システムの各装置の各部を独立した機能ブロックとして説明した。しかし、通信システムの各装置の構成は、上述した実施の形態のような構成でなくてもよい。通信システムの各装置の機能ブロックは、上述した実施の形態で説明した機能を実現することができれば、どのような構成でもよい。また、通信システムの各装置は、1つの装置でなく、複数の装置から構成されたシステムでもよい。
 また、実施の形態1のうち、複数の部分を組み合わせて実施しても構わない。あるいは、この実施の形態のうち、1つの部分を実施しても構わない。その他、この実施の形態を、全体としてあるいは部分的に、どのように組み合わせて実施しても構わない。
 すなわち、実施の形態1では、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 なお、上述した実施の形態は、本質的に好ましい例示であって、本開示の範囲、本開示の適用物の範囲、および本開示の用途の範囲を制限することを意図するものではない。上述した実施の形態は、必要に応じて種々の変更が可能である。例えば、フロー図あるいはシーケンス図を用いて説明した手順は、適宜に変更してもよい。
 10 5Gネットワークブリッジ、20m TSNマスタ、20s TSNスレーブ、30 出力、31 信号、33 遅延値、40 時刻同期メッセージ、41 指標値、42 通信評価値、100 ネットワークトランスレータ、200 5Gシステム、210 UPF、220 5Gネットワーク、230 5G端末、400 デバイストランスレータ、401 第1時刻同期メッセージ、402 第2時刻同期メッセージ、410 CPU制御部、420 TSN送受信部、430 5G送受信部、431 端末インタフェース、432 演算部、433 出力部、440 時刻同期制御部、441 TSN時刻同期部、442 5G時刻同期部、443 遅延測定部、500 通信システム、901 プロセッサ、902 メモリ、903 バス、904 通信装置。

Claims (9)

  1.  5G端末が接続された5Gネットワークにより構成され、ネットワークブリッジとして機能する5Gネットワークブリッジであって、標準化されているTSN(Time-Sensitive Networking)機能を用いたTSN機器同士の通信を中継する5Gネットワークブリッジに含まれるデバイストランスレータにおいて、
     前記5G端末から、前記TSN機器間で通信される時刻同期メッセージのうち先に送信される第1時刻同期メッセージと、前記5Gネットワークの通信性能を評価する指標となる指標値とを取得し、前記指標値を用いて前記5Gネットワークの通信性能を評価する通信評価値を算出する5G送受信部と、
     前記通信評価値に基づいて、前記第1時刻同期メッセージの送信タイミングを制御するTSN送受信部と
    を備えるデバイストランスレータ。
  2.  前記TSN送受信部は、
     前記通信評価値が閾値以上であれば、前記第1時刻同期メッセージに対応する第2時刻同期メッセージであって前記第1時刻同期メッセージの後に送信される第2時刻同期メッセージの受信を待ち、
     前記通信評価値が閾値より小さければ、前記第2時刻同期メッセージの受信を待たずに前記第1時刻同期メッセージを送信する請求項1に記載のデバイストランスレータ。
  3.  前記TSN送受信部は、
     前記通信評価値が閾値より小さければ、前記第2時刻同期メッセージの受信を待たずに前記第1時刻同期メッセージを送信して前記第2時刻同期メッセージの受信を待ち、前記第2時刻同期メッセージを受信すると、受信した前記第2時刻同期メッセージを送信する請求項2に記載のデバイストランスレータ。
  4.  前記5G送受信部は、
     前記5Gネットワークの複数の性能指標、および、ユーザにより定義された前記複数の性能指標の組み合わせを、前記指標値として用いて前記通信評価値を算出する請求項1から請求項3のいずれか1項に記載のデバイストランスレータ。
  5.  前記複数の性能指標には、SS-RSRP(SS reference signal received power)とCSI-RSRP(CSI reference signal received quality)とSS-RSRQ(Secondary synchronization signal reference signal received quality)とCSI-RSRQ(CSI reference signal received quality)とSS-SINR(SS signal-to-noise and interference ratio)とCSI-SINR(CSI signal-to-noise and interference ratio)と、が含まれる請求項4に記載のデバイストランスレータ。
  6.  前記5G送受信部は、
     ユーザ定義のアルゴリズムにより前記通信評価値を算出する演算部を備える請求項1から請求項5のいずれか1項に記載のデバイストランスレータ。
  7.  5G端末が接続された5Gネットワークを5Gネットワークブリッジとして、標準化されているTSN(Time-Sensitive Networking)機能を用いてTSNマスタからTSNスレーブへ時刻同期メッセージの送信を行う通信システムにおいて、
     前記5Gネットワークブリッジは、
     前記5Gネットワークの側に配置され、TSN機能を有するネットワークトランスレータと、前記5G端末の側に配置され、TSN機能を有するデバイストランスレータとを備え、
     前記ネットワークトランスレータは、
     前記時刻同期メッセージのうち先に送信される第1時刻同期メッセージと、前記第1時刻同期メッセージの後に送信される第2時刻同期メッセージとを前記5G端末に送信し、
     前記デバイストランスレータは、
     前記5G端末から、前記第1時刻同期メッセージと前記5Gネットワークの通信性能を評価する指標となる指標値とを取得し、前記指標値に基づいて前記5Gネットワークの通信性能を評価する通信評価値を算出し、前記通信評価値に基づいて、前記第1時刻同期メッセージの送信タイミングを制御する通信システム。
  8.  5G端末が接続された5Gネットワークにより構成され、ネットワークブリッジとして機能する5Gネットワークブリッジであって、標準化されているTSN(Time-Sensitive Networking)機能を用いたTSN機器同士の通信を中継する5Gネットワークブリッジに含まれるデバイストランスレータに用いられる通信方法において、
     プロセッサが、前記5G端末から、前記TSN機器間で通信される時刻同期メッセージのうち先に送信される第1時刻同期メッセージと、前記5Gネットワークの通信性能を評価する指標となる指標値とを取得し、前記指標値を用いて前記5Gネットワークの通信性能を評価する通信評価値を算出し、
     プロセッサが、前記通信評価値に基づいて、前記第1時刻同期メッセージの送信タイミングを制御する通信方法。
  9.  5G端末が接続された5Gネットワークにより構成され、ネットワークブリッジとして機能する5Gネットワークブリッジであって、標準化されているTSN(Time-Sensitive Networking)機能を用いたTSN機器同士の通信を中継する5Gネットワークブリッジに含まれるデバイストランスレータに用いられる通信プログラムにおいて、
     前記5G端末から、前記TSN機器間で通信される時刻同期メッセージのうち先に送信される第1時刻同期メッセージと、前記5Gネットワークの通信性能を評価する指標となる指標値とを取得し、前記指標値を用いて前記5Gネットワークの通信性能を評価する通信評価値を算出する5G送受信処理と、
     前記通信評価値に基づいて、前記第1時刻同期メッセージの送信タイミングを制御するTSN送受信処理と
    をコンピュータに実行させる通信プログラム。
PCT/JP2022/018606 2022-04-22 2022-04-22 デバイストランスレータ、通信システム、通信方法、および通信プログラム WO2023203772A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2022/018606 WO2023203772A1 (ja) 2022-04-22 2022-04-22 デバイストランスレータ、通信システム、通信方法、および通信プログラム
JP2024513190A JP7475568B2 (ja) 2022-04-22 2022-04-22 デバイストランスレータ、通信システム、通信方法、および通信プログラム
TW111139247A TW202344022A (zh) 2022-04-22 2022-10-17 設備轉換器、通訊系統、通訊方法、及通訊程式產品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018606 WO2023203772A1 (ja) 2022-04-22 2022-04-22 デバイストランスレータ、通信システム、通信方法、および通信プログラム

Publications (1)

Publication Number Publication Date
WO2023203772A1 true WO2023203772A1 (ja) 2023-10-26

Family

ID=88419513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018606 WO2023203772A1 (ja) 2022-04-22 2022-04-22 デバイストランスレータ、通信システム、通信方法、および通信プログラム

Country Status (3)

Country Link
JP (1) JP7475568B2 (ja)
TW (1) TW202344022A (ja)
WO (1) WO2023203772A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210144666A1 (en) * 2018-07-25 2021-05-13 Nokia Solutions And Networks Oy Synchronizing tsn master clocks in wireless networks
WO2022063395A1 (en) * 2020-09-23 2022-03-31 Nokia Technologies Oy Synchronization accuracy enhancement with common 5gs time for sidelink devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702574B2 (ja) 2010-10-26 2015-04-15 京セラ株式会社 送信タイミングを補正する無線基地局および無線基地局における送信タイミング補正方法
US11627493B2 (en) 2018-08-13 2023-04-11 Nokia Technologies Oy Supporting the fulfilment of E2E QoS requirements in TSN-3GPP network integration
CN111490842A (zh) 2020-03-23 2020-08-04 腾讯科技(深圳)有限公司 时间同步方法、装置、计算机可读介质及电子设备
KR20220019569A (ko) 2020-08-10 2022-02-17 삼성전자주식회사 이동통신 네트워크에서 시각 동기 네트워크의 설정을 지원하는 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210144666A1 (en) * 2018-07-25 2021-05-13 Nokia Solutions And Networks Oy Synchronizing tsn master clocks in wireless networks
WO2022063395A1 (en) * 2020-09-23 2022-03-31 Nokia Technologies Oy Synchronization accuracy enhancement with common 5gs time for sidelink devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONG, JIAJIA, KUBOMI, MAKOTO, ZHAO, JEFFREY, TAKITA, DAISUKE, HOTTA, YOSHIFUMI: "5G-TSN Network Time Synchronization Performance Evaluation (paper no NS2020-143)", IEICE TECHNICAL REPORT, IEICE, JP, vol. 120, no. 413, 25 February 2021 (2021-02-25), JP , pages 120 - 125, XP009549679, ISSN: 2432-6380 *

Also Published As

Publication number Publication date
TW202344022A (zh) 2023-11-01
JPWO2023203772A1 (ja) 2023-10-26
JP7475568B2 (ja) 2024-04-26

Similar Documents

Publication Publication Date Title
US10862601B1 (en) Bridges including physical layer devices for indicating transmission times of synchronization frames by modifying previously generated corresponding follow up frames
US10931391B2 (en) One-step time stamping of synchronization packets for networked devices
US8081663B2 (en) Time synchronization method and relay apparatus
US10237008B2 (en) Synchronization with different clock transport protocols
US9219693B2 (en) Network devices with time aware medium access controller
JP6214008B2 (ja) 時間認識デバイス間で時間情報を通信する方法および装置
US10742555B1 (en) Network congestion detection and resolution
US9419738B2 (en) Communication device, method and system for queueing packets to be transmitted
JP5518191B2 (ja) 光伝送網が時刻同期プロトコルをキャリングする方法及びシステム
US10158441B1 (en) Securing time between nodes
WO2014173267A1 (zh) 时间戳生成方法、装置及系统
US8937974B1 (en) System and method for determining a margin of latency within a device
WO2010057398A1 (zh) 透传时钟的实现装置和方法
Exel Mitigation of asymmetric link delays in IEEE 1588 clock synchronization systems
WO2019174554A1 (zh) 一种补偿时延的方法和设备
JP5127482B2 (ja) タイミング同期方法、同期装置、同期システム及び同期プログラム
EP3260949B1 (en) An integrated circuit and method for processing synchronized network frames using a hardware synchronization circuit
WO2021063191A1 (zh) 一种报文转发方法、设备及系统
US20160087900A1 (en) A communication node for a packet-switched data network and a method for operation thereof
WO2014044487A1 (en) Synchronization method and electronic apparatus
WO2022052609A1 (zh) 时延补偿方法、装置、设备及计算机可读存储介质
WO2023203772A1 (ja) デバイストランスレータ、通信システム、通信方法、および通信プログラム
CN115603843A (zh) 出站分组的准确加时间戳
CN114641952A (zh) 用于使用时间同步传输层进行通信的节点的系统和方法
CN113228564B (zh) 一种打戳处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938571

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024513190

Country of ref document: JP