WO2023202708A1 - 多光彩光变印刷装置及其印刷方法、可读存储介质 - Google Patents

多光彩光变印刷装置及其印刷方法、可读存储介质 Download PDF

Info

Publication number
WO2023202708A1
WO2023202708A1 PCT/CN2023/089828 CN2023089828W WO2023202708A1 WO 2023202708 A1 WO2023202708 A1 WO 2023202708A1 CN 2023089828 W CN2023089828 W CN 2023089828W WO 2023202708 A1 WO2023202708 A1 WO 2023202708A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically variable
curing
substrate
drying
color
Prior art date
Application number
PCT/CN2023/089828
Other languages
English (en)
French (fr)
Inventor
马健
李方见
郭丽莎
潘品李
陈戌冬
杨志洪
Original Assignee
中国印钞造币集团有限公司
中钞印制技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国印钞造币集团有限公司, 中钞印制技术研究院有限公司 filed Critical 中国印钞造币集团有限公司
Publication of WO2023202708A1 publication Critical patent/WO2023202708A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/08Machines
    • B41F15/12Machines with auxiliary equipment, e.g. for drying printed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0009Central control units
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2215/00Screen printing machines
    • B41P2215/10Screen printing machines characterised by their constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2215/00Screen printing machines
    • B41P2215/50Screen printing machines for particular purposes

Definitions

  • the present application relates to the technical field of anti-counterfeiting printing, and specifically to a multi-color optically variable printing device, its printing method, and a readable storage medium.
  • Glory light-changing technology refers to the technology in which light-changing magnetic ink produces dynamic light-changing phenomena after screen printing and magnetic orientation processes. At present, for the same screen printing pattern, printing equipment around the world can only achieve a single effect of brilliance light change technology, that is, to achieve a rolling effect under the action of a single magnetic field, or to achieve a changing effect under the action of a composite magnetic field. There is no simultaneous Multi-color light-changing technology that achieves two or more effects.
  • This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • the first object of this application is to provide a multi-color optically variable printing device.
  • the second purpose of this application is to provide a multi-color optically variable printing method.
  • the third object of this application is to provide a multi-color optically variable printing device.
  • the fourth object of this application is to provide a readable storage medium.
  • the first technical solution of the present application provides a multi-color optically variable printing device, including: a transport unit for transporting a substrate; a screen printing unit for printing magnetic substances on the substrate ink or varnish; and a plurality of glossy optically variable pattern forming units.
  • the plurality of glossy optically variable pattern forming units are respectively used to form glossy optically variable patterns in different areas of the substrate.
  • Each glossy optically variable pattern forming unit includes: a magnetized roller.
  • the magnetizing drum is equipped with a magnetic orientation component, and the magnetic The orientation component is used to magnetically orient the printing substrate; and the pre-drying and curing device is used to pre-dry and solidify the printing substrate; wherein, the conveying unit, the screen printing unit and the multiple optically variable pattern forming units are used for printing on the substrate. are arranged sequentially in the conveying direction of the object; wherein, the magnetic orientation components of at least two optically variable pattern forming units have different magnetization effects from each other, the pre-drying curing device is arranged oppositely outside the magnetic orientation component, and the substrate is processed by the magnetic orientation component.
  • the pre-drying and curing device simultaneously pre-dries and solidifies the substrate; and wherein, the pre-drying and curing device includes an optical mask curing device, which is fixed and used to project dynamically refreshable and removable images.
  • the pre-drying and curing device includes an optical mask curing device, which is fixed and used to project dynamically refreshable and removable images.
  • Variable light field graphics and text, the variable light field graphics and substrate move a predetermined distance synchronously.
  • the multi-color optically variable printing device includes a conveying unit, a screen printing unit and multiple color-coded optically variable pattern forming units.
  • the conveying unit is used to transport the substrate, and the screen printing unit is located in the next process of the conveying unit and is used to imprint ink or varnish containing magnetic substances on the substrate transported by the conveying unit to form a semi-finished product.
  • Multiple optically variable pattern forming units are located in the next process of the screen printing unit and are used to form optically variable patterns on semi-finished products.
  • the optically variable pattern forming unit includes a magnetized roller and a pre-drying and curing device.
  • the magnetizing cylinder is provided with a magnetic orientation component.
  • the magnetic orientation component is used to magnetically orient the printing material
  • the pre-drying and curing device is used to pre-dry and solidify the printing material.
  • the magnetic orientation components of at least two optically variable pattern forming units have different magnetization effects from each other, and the pre-drying and curing device is arranged oppositely outside the magnetic orientation components.
  • the pre-drying curing unit The curing device simultaneously pre-dries and solidifies the substrate.
  • the pre-drying curing device includes an optical mask curing device.
  • the optical mask curing device is used to project dynamically refreshable variable light field graphics and text.
  • the graphics and text formed by the variable light field are irradiated onto the substrate on the magnetized roller, and
  • the substrate moves synchronously, and the ink or varnish on the substrate is pre-dried, thus enabling omnidirectional splicing of fixed and variable multi-color light-changing graphics and texts, that is, splicing in any direction.
  • the optical mask curing device is fixedly installed. It should be noted that "fixed setting" means that the optical mask curing device is fixed during the continuous production process after the product is determined. When the product specifications change, the optical mask curing device can be moved along the axial direction of the magnetized drum to suit different needs. Product specifications.
  • multiple areas of the same screen printing pattern can be targeted to achieve multiple brilliance light-changing effects.
  • the omnidirectional splicing of various fixed-effect graphics and text can also realize the omni-directional splicing of variable-effect graphics and fixed-effect graphics and text.
  • Multiple effects can be rolling effects under the action of multiple single magnetic fields, or multiple composite magnetic fields.
  • the movement effect under the action can also be the rolling effect under the action of a single magnetic field and the movement effect under the action of a composite magnetic field.
  • the optical mask curing device can project moving graphics and text with a high refresh rate.
  • the control system uses sensors, such as rotary encoders, A grating ruler, etc., collects the position and speed of the substrate, conveyor or magnetized roller, and controls the synchronous movement of the graphics and text projected by the optical mask curing device with the substrate.
  • the mechanical body of the optical mask curing device is stationary.
  • the OVMP pigment flakes in the optically variable magnetic ink have a magnetic orientation effect on the OVMP pigment flakes before they are pre-cured or solidified or naturally penetrated and dried. It is always effective, so during this period, the magnetic orientation can be carried out two or more times, so that the same screen printing pattern can be realized and the multi-color optical change technology with more than two effects can be realized.
  • the multi-color optically variable printing device includes a sensor, which is used to collect the position information and speed information of the substrate;
  • the optical mask curing device includes: a light source, the light source is used to emit light; a controller, the controller is used to receive the sensor The controller is also used to receive, store, and process graphic and text data for projection, and generate control signals based on the position information, speed information, and graphic and text data for projection; lens; and spatial light modulator, spatial light
  • the modulator is used to receive the light emitted by the light source and the control signal to project a variable light field graphic through the lens; among them, the spatial light modulator includes one of the following: digital micromirror DMD, liquid crystal spatial light modulator and acousto-optic modulation device.
  • the multi-color optically variable printing device includes a sensor, which is used to collect position information and speed information of the substrate.
  • the optical mask curing device includes a light source, a controller, a lens and a spatial light modulator.
  • the controller is used to receive position information and speed information from the sensor, and is also used to receive, store, and process graphic and text data for projection, and generate control signals based on the position information, speed information, and graphic and text data for projection.
  • the spatial light modulator is used to receive the light emitted by the light source and the control signal to project a variable light field graphic through the lens.
  • the spatial light modulator can be a digital micromirror device (DMD), a liquid crystal spatial light modulator (SLM), or an acousto-optical modulator (AOM).
  • DMD digital micromirror device
  • SLM liquid crystal spatial light modulator
  • AOM acousto-optical modulator
  • the control system collects position information and speed information of the substrate through sensors, and controls the graphics and text projected by the optical mask curing device and the substrate. Objects move synchronously.
  • the optical mask curing device further includes a heat dissipation component, which is used to dissipate heat from the spatial light modulator and/or the light source.
  • the optical mask curing device further includes a heat dissipation component.
  • the heat dissipation component is used to dissipate heat from the spatial light modulator or the light source.
  • the light source includes a UV-LED light source or a laser light source, and the wavelength of the light emitted by the light source is 350nm ⁇ 425nm.
  • the light source can use UV-LED light source or laser light source, and the wavelength of the light emitted by the light source can be selected from 350nm to 425nm.
  • variable light field graphics include one of the following: graphics, text, numbers, prefix numbers, bar codes, and QR codes.
  • variable light field graphics can be graphics, text, numbers, prefix numbers, bar codes and QR codes.
  • the pre-drying curing device includes a plurality of optical mask curing devices, and the plurality of optical mask curing devices are spaced apart in the axial direction of the magnetizing drum.
  • the number of optical mask curing devices can be multiple.
  • the multiple optical mask curing devices are spaced apart in the axial direction of the magnetized drum. According to the size of the substrate, the optical mask curing devices can be used in combination. .
  • the pre-drying curing device also includes: a curing device adjustment mechanism.
  • the curing device adjustment mechanism includes a fixed beam, a motor and a guide rail.
  • the fixed beam extends along the axial direction of the magnetizing drum, and the optical mask curing device is located on the fixed beam.
  • the motor drives the optical mask curing device to move along the fixed beam.
  • the pre-drying curing device also includes a curing device adjustment mechanism.
  • the curing device adjustment mechanism includes a fixed beam, a motor and a guide rail.
  • the fixed beam extends along the long axis of the magnetizing drum, and the optical mask curing device is located on the fixed beam.
  • the motor drives the optical mask curing device to move along the fixed beam, thereby adjusting the spacing distance of the optical mask curing device.
  • the multi-color optically variable printing device also includes: a transfer system, and the transfer system package Including multiple transfer rollers, the transfer system is used to transfer substrates.
  • the multi-color optically variable printing device also includes a transfer system.
  • the transfer system includes a plurality of transfer rollers for transferring the substrate to a conveyor unit, a screen printing unit, multiple optically variable pattern forming units, drying and curing units. transmitted to the unit in sequence.
  • the multi-color optically variable printing device also includes: a first rearrangement magnetization device, the first rearrangement magnetization device is located between the screen printing unit and the color optically variable pattern forming unit; a second rearrangement magnetization device, The second rearrangement magnetization device is disposed between a plurality of luminous light-changing patterns.
  • the multi-color optically variable printing device further includes a first rearrangement magnetization device and a second rearrangement magnetization device.
  • the first rearrangement magnetization device is disposed between the screen printing unit and the optically variable pattern forming unit
  • the second rearrangement magnetization device is disposed between the multiple optically variable patterns.
  • the substrate travels from the screen printing unit to the first rearrangement magnetization device before entering the optically variable pattern forming unit, and then passes from the first optically variable pattern forming unit to the second rearrangement magnetization device before entering the second rearrangement magnetization device.
  • Two luminous light-changing pattern forming units When printing ink or varnish on a substrate, the magnetic pigment flakes inside are arranged in a disorderly manner.
  • the magnetic pigment flakes are arranged in a certain order. Regular rearrangement, such as arranging parallel to the substrate, can improve the consistency of the magnetization orientation of the magnetic pigment flakes when they pass through the magnetic orientation component, thereby making the light change effect brighter.
  • the ink or varnish includes glossy optically variable ink, curing varnish or other types of UV curing ink.
  • the ink or varnish can be glossy optically variable ink, curing varnish or other types of UV curing ink.
  • the printing substrate includes one of the following: paper, plastic sheet and metal sheet.
  • the substrate may be paper, plastic sheet or metal sheet.
  • the multi-color optically variable printing device also includes a drying and curing unit.
  • the drying and curing unit is provided downstream of the multiple color-coded optically variable pattern forming units and is used to dry and solidify the substrate.
  • the multi-color optically variable printing device also includes a drying and curing unit.
  • the drying and curing unit is provided downstream of the multiple color-coded optically variable pattern forming units and is used to dry and solidify the substrate.
  • the spatial light modulator also includes a GLV modulator.
  • the spatial light modulator also includes a GLV modulator.
  • GLV is Grating Light Valve, short for Light Valve, is a technology that can be used in projectors and switches.
  • the second aspect of the technical solution of the present application provides a multi-color optically variable printing method, which includes: printing ink or varnish containing magnetic substances on a substrate through a screen printing unit to form a semi-finished product; and sequentially transporting the semi-finished product to multiple light-color printing machines.
  • the variable pattern forming unit uses the magnetic orientation component and the pre-drying curing device of the optically variable pattern forming unit to magnetically orient the semi-finished product and perform pre-drying and curing at the same time to form optically variable patterns in different areas of the substrate, thereby forming multiple Optically changeable product; wherein, the magnetic orientation components of at least two luminous optically changeable pattern forming units have different magnetization effects from each other, and the pre-drying curing device includes an optical mask curing device, the optical mask curing device is fixedly arranged for projecting dynamic The variable light field graphics and text can be refreshed, and the variable light field graphics and substrate move a predetermined distance synchronously.
  • ink or varnish containing magnetic substances is first printed on the substrate to form a semi-finished product, and then passes through multiple optically variable pattern forming units in sequence, and is solidified by adding magnetic orientation components and pre-drying.
  • the device performs pre-drying and solidification while magnetically orienting the semi-finished product to form a luminous light-changing pattern in different areas of the substrate, thereby forming multiple light-changing products.
  • the magnetic orientation components of at least two optically variable pattern forming units have different magnetization effects from each other
  • the pre-drying curing device includes an optical mask curing device, and the optical mask curing device is used to project a dynamically refreshable variable light field.
  • the graphics and text, the variable light field graphics and the substrate move synchronously, thereby realizing two or more magnetization positioning and pre-curing drying of the same silk screen graphics and text, and completing the production of fixed and variable multi-color light-changing graphics and texts.
  • Omnidirectional splicing that is, splicing in any direction.
  • the multi-color optically variable printing method also includes: after sequentially transporting the semi-finished products to multiple optically variable pattern forming units, the multiple optically variable products are transported to a drying and curing unit for drying and solidification.
  • the multiple optically variable products are transported to the drying and curing unit for drying and solidification, thereby obtaining the final product.
  • the optical mask curing device includes: a light source, which is used to emit light; a controller, which is used to receive the position information and speed information of the semi-finished product collected by the sensor, and the controller is also used to receive, store, and process the projection Use graphic and text data, and generate control signals based on position information and velocity information and projection using graphic and text data; lens; and spatial light modulator, space
  • the light modulator is used to receive the light emitted by the light source and the control signal to project a variable light field graphic through the lens; among them, the spatial light modulator includes one of the following: digital micromirror DMD, liquid crystal spatial light modulator and acousto-optic Modulator.
  • the optical mask curing device includes a light source, a controller, a lens and a spatial light modulator.
  • the controller is used to receive position information and speed information from the sensor.
  • the controller is also used to receive, store, and process graphic and text data for projection, and generate control signals based on the position information, speed information and the graphic and text data for projection.
  • the spatial light modulator is used to receive the light emitted by the light source and the control signal to project a variable light field graphic through the lens.
  • the spatial light modulator can be a digital micromirror DMD, a liquid crystal spatial light modulator (SLM), an acousto-optic modulator (AOM), and a GLV modulator.
  • the optical mask curing device can project moving graphics and text with a high refresh rate.
  • the control system collects the position information and speed information of the substrate through sensors and controls the projection of the optical mask curing device. Graphics, text and substrate move synchronously.
  • the third aspect of the technical solution of the present application provides a multi-color optically variable printing device, including: a memory and a processor, wherein the memory stores a program that can be run on the processor or Instructions, when the processor executes the program or instructions, implements the steps of the multi-color optically variable printing method of any one of the technical solutions of the second aspect, and therefore has the technical effects of any of the technical solutions of the second aspect, which will not be described again here.
  • the technical solution of the fourth aspect of the present application provides a readable storage medium on which a program or instructions are stored.
  • the program or instructions are executed by a processor, any of the technical solutions of the second aspect is realized.
  • the steps of the multi-color optically variable printing method have the technical effects of any of the above-mentioned technical solutions in the second aspect, and will not be described again here.
  • Figure 1 is a schematic structural diagram of a multi-color optically variable printing device according to an embodiment of the present application
  • Figure 2 is a partial structural schematic diagram of a multi-color optically variable printing device according to an embodiment of the present application
  • Figure 3 is a partial structural diagram of a multi-color optically variable printing device according to an embodiment of the present application. picture;
  • Figure 4 is a partial structural schematic diagram of a multi-color optically variable printing device according to an embodiment of the present application.
  • Figure 5 is a partial structural schematic diagram of a multi-color optically variable printing device according to an embodiment of the present application.
  • Figure 6 is a schematic structural block diagram of an optical mask curing device according to an embodiment of the present application.
  • Figure 7 is a schematic structural block diagram of a multi-color optically variable printing device according to an embodiment of the present application.
  • Figure 8 is a step flow chart of a multi-color optically variable printing method according to an embodiment of the present application.
  • Figure 9 is a step flow chart of a multi-color optically variable printing method according to an embodiment of the present application.
  • the corresponding relationship between the reference signs and component names in Figures 1 to 9 is: 10 multi-color optically variable printing device, 100 conveying unit, 110 screen printing unit, 130 magnetized roller, 132 magnetic orientation member, 160 pre-drying curing device, 210 fixed beam, 220 motor, 230 optical mask curing device, 232 light source, 234 controller, 236 lens, 238 spatial light modulator, 240 heat dissipation component, 250 linear guide rail, 280 first rearrangement magnetization device, 290 second rearrangement magnetization device, 370 drying and curing unit, 380 transfer system, 500 substrate, 300 memory, 400 processor.
  • 10 multi-color optically variable printing device 100 conveying unit, 110 screen printing unit, 130 magnetized roller, 132 magnetic orientation member, 160 pre-drying curing device, 210 fixed beam, 220 motor, 230 optical mask curing device, 232 light source, 234 controller, 236 lens, 238 spatial light modulator, 240 heat dissipation component, 250 linear guide rail, 280 first rearrangement magnetization
  • a multi-color optically variable printing device 10 includes: a transport unit 100 for transporting a substrate 500; a screen printing unit 110 for printing on the substrate 500 Ink or varnish containing magnetic substances; and multiple optically variable pattern forming units, each of which is used to form optically variable patterns in different areas of the substrate 500 , each optically variable pattern forming unit Including: magnetized roller 130, set on the magnetized roller 130 There is a magnetic orientation member 132, which is used to magnetically orient the substrate 500; and a pre-drying and curing device 160, which is used to pre-dry and solidify the substrate 500; wherein, the conveying unit 100, the silk The screen printing unit 110 and multiple optically variable pattern forming units are arranged sequentially in the conveying direction of the substrate 500; wherein, the magnetic orientation members 132 of at least two optically variable pattern forming units have different magnetization effects from each other, and are pre-dried and solidified.
  • the device 160 is disposed oppositely outside the magnetic orientation member 132.
  • the pre-drying and curing device 160 simultaneously pre-dries and solidifies the substrate 500; and wherein, the pre-drying and curing device 160 It includes an optical mask curing device 230.
  • the optical mask curing device 230 is fixedly installed and used to project dynamically refreshable variable light field graphics and text. The variable light field graphics and the substrate 500 move synchronously for a predetermined distance.
  • the multi-color optically variable printing device 10 includes a transport unit 100, a screen printing unit 110 and a plurality of color-coded optically variable pattern forming units.
  • the conveying unit 100 is used to convey the printing substrate 500.
  • the screen printing unit 110 is located in the next process of the conveying unit 100 and is used to imprint ink or varnish containing magnetic substances on the printing substrate 500 transported by the conveying unit 100 to form a semi-finished product.
  • a plurality of optically variable pattern forming units are located in the next process of the screen printing unit 110 and are used to form optically variable patterns on semi-finished products.
  • the optically variable pattern forming unit includes a magnetized roller 130 and a pre-drying curing unit 160.
  • the magnetizing roller 130 is provided with a magnetic orientation member 132.
  • the magnetic orientation member 132 is used to magnetically orient the substrate 500, and the pre-drying curing unit 160 is used to orient the substrate 500.
  • the printing substrate 500 is pre-dried and solidified.
  • the magnetic orientation members 132 of at least two optically variable pattern forming units have different magnetization effects from each other.
  • the pre-drying curing device 160 is arranged oppositely outside the magnetic orientation member 132, and the substrate 500 is magnetically oriented on the magnetic orientation member 132. During the process, the pre-drying and curing device 160 simultaneously performs pre-drying and curing on the substrate 500 .
  • the pre-drying curing device 160 includes an optical mask curing device 230.
  • the optical mask curing device 230 is used to project dynamically refreshable variable light field graphics and text.
  • the graphics and text formed by the variable light field are irradiated onto the printing substrate on the magnetized roller 130.
  • the object 500 moves synchronously with the substrate 500, and the ink or varnish on the substrate 500 is pre-dried, so that omnidirectional splicing of fixed and variable multi-color light-changing graphics and text can be completed, that is, splicing in any direction.
  • the optical mask curing device 230 is fixedly installed, that is, the optical mask curing device 230 is fixed during the continuous production process after the product is determined. It should be noted that "fixed setting" means that the optical mask curing device 230 is fixed during the continuous production process after the product is determined.
  • the optical mask curing device 230 can be moved along the axial direction of the magnetized drum 130. to suit different product specifications. By arranging magnetic orientation components 132 with different magnetic field effects, it can be achieved
  • the accurately cured optical mask curing device 230 serves as the pre-drying curing device 160, thereby achieving multiple brilliance light-changing effects for multiple areas of the same screen printing pattern, and realizing omnidirectional splicing of graphics and text with multiple fixed effects. , and can also realize omnidirectional splicing of variable-effect graphics and fixed-effect graphics.
  • the multiple effects can be rolling effects under the action of multiple single magnetic fields, or movement effects under the action of multiple composite magnetic fields, or rolling effects under the action of a single magnetic field and movement effects under the action of a composite magnetic field.
  • the ink or varnish can be glossy optically variable ink, curing varnish or other types of UV curing ink.
  • the substrate 500 may be paper, plastic sheet or metal sheet.
  • the optical mask curing device 230 can project moving graphics and text with a high refresh rate, and the control system uses sensors to Such as rotary encoders, grating rulers, etc., collect the position and speed of the substrate 500 or the conveyor or the magnetized roller 130, and control the synchronous movement of the graphics and text projected by the optical mask curing device 230 and the substrate 500.
  • the optical mask curing device 230 mechanically The body is motionless.
  • the magnetic orientation of the OVMP pigment flakes before pre-curing or curing or natural penetration and drying of the OVMP pigment flakes in the optically variable magnetic ink The effect is always effective, so the magnetic orientation can be carried out two or more times during this period, so that the same screen printing pattern can be realized and the multi-color optical change technology with more than two effects can be realized.
  • the multi-color optically variable printing device 10 includes a sensor, and the sensor is used to collect position information and speed information of the substrate 500 .
  • the optical mask curing device 230 includes a light source 232, a controller 234, a lens 236, and a spatial light modulator 238.
  • the controller 234 is used to receive the position information and speed information of the sensor, and is also used to receive, store, and process the graphic and text data for projection, and generate a control signal based on the position information, speed information and the graphic and text data for projection.
  • the spatial light modulator 238 is used to receive the light emitted by the light source 232 and the control signal to project a variable light field graphic through the lens 236 .
  • the spatial light modulator 238 may be a digital micromirror DMD, a liquid crystal spatial light modulator (SLM) or an acousto-optic modulator (AOM), and a GLV modulator.
  • DMD is the abbreviation of Digital Micromirror Device
  • SLM is the abbreviation of Spatial Light Modulator
  • AOM is the abbreviation of Acousto Optical Modulator
  • GLV is the abbreviation of Grating Light Valve.
  • the control system collects position information and speed information of the substrate 500 through sensors, and controls the graphics and text projected by the optical mask curing device 230 to move synchronously with the substrate 500 .
  • the synchronous projection control method of the optical mask curing device 230 solves the problem of continuous production of the substrate 500, that is, the substrate 500 completes the magnetization orientation and precise curing of the pattern during continuous high-speed movement, so that the projected graphics and the substrate 500 can be The printed pattern is accurately registered.
  • the optical mask curing device 230 further includes a heat dissipation component 240 .
  • the heat dissipation component 240 is used to dissipate heat from the spatial light modulator 238 or the light source 232 .
  • the number of the optical mask curing devices 230 can be multiple.
  • the multiple optical mask curing devices 230 are spaced apart in the axial direction of the magnetized drum 130. According to the size of the substrate 500, the optical mask curing devices 230 can be Use in combination.
  • variable graphics and text may be any graphics, text, text, numbers, prefix numbers, barcodes, QR codes, etc.
  • the pre-drying curing device 160 also includes a curing device adjustment mechanism.
  • the curing device adjustment mechanism includes a fixed beam 210, a motor 220 and a guide rail.
  • the fixed beam 210 is along the axis of the magnetizing drum 130. Extending in the direction, the optical mask curing device 230 is installed on the fixed beam 210.
  • the motor 220 drives the optical mask curing device 230 to move along the fixed beam 210, thereby adjusting the spacing distance of the optical mask curing device 230.
  • the fixed crossbeam 210 includes a horizontal plate and a vertical plate, the horizontal plate and the vertical plate are connected, and the motor 220 is arranged on the horizontal plate.
  • the guide rail includes a linear guide rail 250 and a curing device guide rail.
  • the linear guide rail 250 is located on the horizontal plate, and the curing device guide rail is located on the vertical plate.
  • Multiple optical mask curing devices 230 are respectively connected to the linear guide rail 250, so that they can be fixed on the cross beam 210. move.
  • the multi-color optically variable printing device 10 also includes a transfer system 380.
  • the transfer system 380 includes a plurality of transfer rollers for transferring the substrate 500 between the conveying unit 100, the screen printing unit 110, and multiple optically variable colors.
  • the pattern forming unit and the optional drying and curing unit 370 to be described below are sequentially transferred.
  • the multi-color optically variable printing device 10 further includes a first rearrangement magnetization device 280 and a second rearrangement magnetization device 290 .
  • the first rearrangement magnetization device 280 is disposed between the screen printing unit 110 and the optically changeable pattern forming unit
  • the second rearrangement magnetization device 290 is disposed between a plurality of optically changeable pattern forming units.
  • the substrate 500 is printed from the screen printing unit 110 After entering the first rearrangement magnetization device 280, it enters the first optically variable pattern forming unit, and then passes through the second rearrangement magnetization device 290 from the first optically variable pattern forming unit to enter the second optically variable optical pattern. Pattern forming unit.
  • the magnetic pigment flakes inside are arranged in a disorderly manner.
  • the magnetic pigment flakes Being rearranged according to a certain rule, such as being arranged parallel to the printing substrate 500, the consistency of the magnetization orientation of the magnetic pigment flakes when passing through the magnetized roller 130 can be improved, thereby making the light change effect brighter.
  • the multi-color optically variable printing device 10 further includes a drying and curing unit 370 .
  • the drying and curing unit 370 is provided downstream of the multiple color-coded optically variable pattern forming units and is used to dry and solidify the substrate 500 .
  • the second embodiment of the present application provides a multi-color optically variable printing method, including:
  • Step S102 Print ink or varnish containing magnetic substances on the substrate through a screen printing unit to form a semi-finished product
  • Step S104 The semi-finished products are sequentially transported to multiple optically variable pattern forming units, and the semi-finished products are magnetically oriented and pre-dried and cured through the magnetic orientation components and pre-drying curing units of the optically variable pattern forming units, so that the semi-finished products can be pre-dried and cured according to different printing substrates.
  • the area forms a luminous light-changing pattern, thereby forming multiple light-changing products;
  • the magnetic orientation components of at least two optically variable pattern forming units have different magnetization effects from each other
  • the pre-drying curing device includes an optical mask curing device.
  • the optical mask curing device is fixedly arranged and used to project a dynamically refreshable and removable image.
  • Variable light field graphics and text, the variable light field graphics and substrate move a predetermined distance synchronously.
  • ink or varnish containing magnetic substances is first printed on the substrate to form a semi-finished product, and then the semi-finished product is magnetically oriented through a plurality of optically variable pattern forming units, a magnetic orientation component and a pre-drying curing device. Pre-drying and curing are performed at the same time to form luminous light-changing patterns in different areas of the substrate, thereby forming multiple light-changing products.
  • the magnetic orientation components of at least two optically variable pattern forming units have different magnetization effects from each other
  • the pre-drying curing device includes an optical mask curing device, and the optical mask curing device is used to project a dynamically refreshable variable light field.
  • variable light field graphics and substrate move synchronously, thereby achieving two or more screen printing graphics and text for the same screen printing Magnetization positioning and pre-curing drying complete the omnidirectional splicing of fixed and variable multi-color optically variable graphics, that is, splicing in any direction.
  • the multi-color optically variable printing method provided in the above embodiment also includes the following steps:
  • Step S202 After the semi-finished products are sequentially transported to multiple optically variable pattern forming units, the multiple optically variable products are transported to a drying and curing unit for drying and solidification.
  • the multiple optically variable products are transported to the drying and curing unit for drying and solidification, thereby obtaining the final product.
  • the optical mask curing device includes a light source, a controller, a lens and a spatial light modulator.
  • the controller is used to receive position information and speed information from the sensor.
  • the controller is also used to receive, store, and process graphic and text data for projection, and generate control signals based on the position information, speed information and the graphic and text data for projection.
  • the spatial light modulator is used to receive the light emitted by the light source and the control signal to project a variable light field graphic through the lens.
  • the spatial light modulator can be a digital micromirror DMD, a liquid crystal spatial light modulator (SLM), an acousto-optic modulator (AOM), and a GLV modulator.
  • the optical mask curing device can project moving graphics and text with a high refresh rate.
  • the control system collects the position information and speed information of the substrate through sensors and controls the projection of the optical mask curing device. Graphics, text and substrate move synchronously.
  • the synchronous projection control method of the optical mask curing device solves the problem of continuous production of substrates. That is, the substrate completes the magnetization orientation and precise curing of the pattern during continuous high-speed movement, which can accurately match the projected graphics and the existing printed patterns on the substrate. allow.
  • the third embodiment of the present application provides a multi-color optically variable printing device 10, including: a memory 300 and a processor 400, wherein the memory 300 stores information that can be run on the processor 400.
  • Programs or instructions When the processor 400 executes the program or instructions, it implements the steps of the multi-color optically variable printing method in any one of the embodiments of the second aspect. Therefore, it has the technical effects of any one of the embodiments of the second aspect, which will not be mentioned here. Again.
  • the embodiment of the fourth aspect of the present application provides a readable storage medium on which a program or instructions are stored.
  • the program or instructions are executed by a processor, the multi-color optically variable printing of any one of the embodiments of the second aspect is implemented.
  • the steps of the method therefore have the technical effect of any embodiment of the second aspect mentioned above, here No longer.
  • a multi-color optically variable printing device 10 includes a conveying unit 100, a screen printing unit 110, a magnetized roller 130, a magnetic orientation member 132, a pre-drying and curing unit. 160 and optical mask curing device 230.
  • the sheet-like base material is transported to the screen printing unit 110 through the conveying unit 100, and the sheet-like base material is embossed with an ink or varnish carrier through screen printing to form the printing substrate 500.
  • the printing substrate is transported to the magnetizing drum 130 through the transfer roller.
  • the variable light emitted by the optical mask curing device 230 of the pre-drying curing device 160 opposite to the magnetizing drum 130 is emitted.
  • the pattern formed by the light field enables precise and variable pre-drying and curing of the magnetized portion of the ink or varnish carrier.
  • the graphics and text of the variable light field must move synchronously with the printing substrate 500 . Since the pre-drying curing device 160 is fixed, the pattern needs to be movable within the projection area. Due to the limitation of the projection area, the graphics and text of the variable light field can be partial at first, then complete graphics, and then partial graphics depending on the direction of rotation. After the substrate is magnetized two or more times and pre-dried and solidified, it is transported to the drying and curing unit 370 through the transfer roller for drying and solidification to form a printed material.
  • Two or more sets of magnetized rollers and pre-drying curing devices are connected in series. This structure can achieve two or more magnetization positioning and pre-curing drying for the same screen printing image and text;
  • the specially designed pre-drying curing device with an optical mask curing device can emit a variable light field.
  • the graphics and text formed by the variable light field are irradiated onto the substrate on the magnetized roller.
  • the ink or varnish on the substrate is pre-dried;
  • Dual-color optically variable graphics and text splicing technology design two suitable magnetic field generating devices to complete the omnidirectional splicing of fixed and variable dual-color optically variable graphics and text;
  • Fixed graphics and text can be circular, rectangular, and diagonal; variable graphics and text can be numbers, prefix numbers, barcodes, QR codes, and other arbitrary graphics and texts.
  • variable light field emitted by the pre-drying and curing device is highly dynamically refreshed.
  • the refresh rate of the variable light field can match the speed of the magnetized roller.
  • the graphics and text illuminated on the substrate can move synchronously with the substrate to increase curing. time;
  • the light source can use LED light source and laser light source.
  • connection can be a fixed connection, a detachable connection, or an integral connection; “connection” can be Either directly or indirectly through an intermediary.
  • connection can be Either directly or indirectly through an intermediary.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)
  • Printing Methods (AREA)

Abstract

公开了一种多光彩光变印刷装置(10)及其印刷方法、可读存储介质。多光彩光变印刷装置包括:输送单元(100);丝网印刷单元(110),用于在承印物(500)上印刷含有磁性物质的油墨或清漆;以及多个光彩光变图案形成单元。每个光彩光变图案形成单元包括:磁化滚筒(130),磁化滚筒上设置有磁定向构件(132),其用于对承印物进行磁定向;以及预干燥固化器(160),其用于对承印物进行预干燥固化,预干燥固化器包括光学掩膜固化装置(230),光学掩膜固化装置固定设置,用于投射出动态可刷新的可变光场图文,可变光场图文与承印物同步运动预定距离。该多光彩光变印刷装置能够完成固定式和可变式的多光彩光变图文的全向拼接,即任意方向拼接。

Description

多光彩光变印刷装置及其印刷方法、可读存储介质
本申请要求于2022年04月22日提交到中国国家知识产权局、申请号为“202210429178.2”、申请名称为“多光彩光变印刷装置及其印刷方法、可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及防伪印刷技术领域,具体而言,涉及一种多光彩光变印刷装置及其印刷方法、可读存储介质。
背景技术
光彩光变技术是指光变磁性油墨经丝网印刷及磁定向工艺后而产生动感光变现象的技术。目前,针对同一个丝网印刷图案,世界范围内的印刷设备只能实现单一效果的光彩光变技术,即实现单一磁场作用下的滚动效果,或实现复合磁场作用下的变化效果,尚无同时实现两种或两种以上效果的多光彩光变技术。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
有鉴于此,本申请的第一目的在于提供一种多光彩光变印刷装置。
本申请的第二目的在于提供一种多光彩光变印刷方法。
本申请的第三目的在于提供一种多光彩光变印刷装置。
本申请的第四目的在于提供一种可读存储介质。
为了实现上述目的,本申请第一方面的技术方案提供了一种多光彩光变印刷装置,包括:输送单元,用于输送承印物;丝网印刷单元,用于在承印物上印刷含有磁性物质的油墨或清漆;以及多个光彩光变图案形成单元,多个光彩光变图案形成单元分别用于在承印物的不同区域形成光彩光变图案,每个光彩光变图案形成单元包括:磁化滚筒,磁化滚筒上设置有磁定向构件,磁 定向构件用于对承印物进行磁定向;以及预干燥固化器,预干燥固化器用于对承印物进行预干燥固化;其中,输送单元、丝网印刷单元以及多个光彩光变图案形成单元在承印物的输送方向上依次设置;其中,至少两个光彩光变图案形成单元的磁定向构件具有彼此不同的磁化效果,预干燥固化器在磁定向构件外侧相对设置,在磁定向构件对承印物进行磁定向的过程中,预干燥固化器同时对承印物进行预干燥固化;并且其中,预干燥固化器包括光学掩膜固化装置,光学掩膜固化装置固定设置,用于投射出动态可刷新的可变光场图文,可变光场图文与承印物同步运动预定距离。
根据本申请提供的多光彩光变印刷装置,包括输送单元、丝网印刷单元和多个光彩光变图案形成单元。输送单元用于输送承印物,丝网印刷单元位于输送单元的下一道工序,用于将由输送单元输送过来的承印物上压印含有磁性物质的油墨或清漆,形成半成品。多个光彩光变图案形成单元位于丝网印刷单元的下一道工序,用于在半成品上形成光彩光变图案。光彩光变图案形成单元包括磁化滚筒和预干燥固化器,磁化滚筒上设置有磁定向构件,磁定向构件用于对承印物进行磁定向,预干燥固化器用于对承印物进行预干燥固化。其中,至少两个光彩光变图案形成单元的磁定向构件具有彼此不同的磁化效果,预干燥固化器在磁定向构件外侧相对设置,在磁定向构件对承印物进行磁定向的过程中,预干燥固化器同时对承印物进行预干燥固化。预干燥固化器包括光学掩膜固化装置,光学掩膜固化装置用于投射出动态可刷新的可变光场图文,可变光场形成的图文照射到磁化滚筒上的承印物上,与承印物同步运动,承印物上的油墨或清漆完成预干燥,从而能够完成固定式和可变式的多光彩光变图文的全向拼接,即任意方向拼接。光学掩膜固化装置固定设置。需要说明的是,“固定设置”是指在产品确定后的连续生产过程中光学掩膜固化装置固定,当产品规格变化时可以沿磁化滚筒的轴向方向移动光学掩膜固化装置,以适用不同产品的规格。通过设置不同磁场效果的磁定向构件和能够实现精准固化的光学掩膜固化装置作为预干燥固化器,从而实现针对同一个丝网印刷图案的多个区域,分别实现多种光彩光变效果,实现多种固定效果图文的全向拼接,也能实现可变效果图文与固定效果图文的全向拼接。多种效果可以是多种单一磁场作用下的滚动效果,也可以是多种复合磁场 作用下的运动效果,还可以是单一磁场作用下的滚动效果和复合磁场作用下的运动效果。
其中,在承印物随着磁化滚筒同步运动的同时,即承印物被持续磁化的过程中,光学掩膜固化装置能够投射出高刷新率的运动图文,控制系统通过传感器,如旋转编码器、光栅尺等,采集承印物或输送装置或磁化滚筒的位置和速度,控制光学掩膜固化装置投射的图文与承印物同步运动,光学掩膜固化装置机械本体是不动的。
可以理解,由于油墨中的OVMP颜料片与承印物之间形成一定的夹角的原理,光变磁性油墨中的OVMP颜料片预固化或固化或自然渗透干燥之前,对OVMP颜料片的磁定向作用始终有效,所以在此期间可以进行两次或多次磁定向,从而可以实现在同一个丝网印刷图案,实现两种以上效果的多光彩光变技术。
另外,本申请提供的技术方案还可以具有如下附加技术特征:
上述技术方案中,多光彩光变印刷装置包括传感器,传感器用于采集承印物的位置信息和速度信息;光学掩膜固化装置包括:光源,光源用于发射光;控制器,控制器用于接收传感器的位置信息和速度信息,控制器还用于接收、存储、处理投射用图文数据,并且基于位置信息和速度信息及投射用图文数据产生控制信号;透镜;以及空间光调制器,空间光调制器用于接收光源发射的光以及控制信号,以通过透镜投射出可变光场图文;其中,空间光调制器包括以下之一:数字微反镜DMD、液晶空间光调制器和声光调制器。
在该技术方案中,多光彩光变印刷装置包括传感器,传感器用于采集承印物的位置信息和速度信息。光学掩膜固化装置包括光源、控制器、透镜和空间光调制器。控制器用于接收传感器的位置信息和速度信息,还用于接收、存储、处理投射用图文数据,并且基于位置信息和速度信息及投射用图文数据产生控制信号。空间光调制器用于接收光源发射的光以及控制信号,以通过透镜投射出可变光场图文。空间光调制器可以是数字微反镜DMD(Digital Micromirror Device)、液晶空间光调制器(SLM,Spatial Light Modulator)和声光调制器(AOM,Acousto Optical Modulator)。具体地,承印 物被持续磁化的过程中,光学掩膜固化装置能够投射出高刷新率的运动图文,控制系统通过传感器采集承印物的位置信息和速度信息,控制光学掩膜固化装置投射的图文与承印物同步运动。
上述技术方案中,光学掩膜固化装置还包括散热组件,散热组件用于对空间光调制器和/或光源进行散热。
在该技术方案中,光学掩膜固化装置还包括散热组件。散热组件用于对空间光调制器进行散热或对光源进行散热。
上述技术方案中,光源包括UV-LED光源或激光光源,光源所发射的光的波长为350nm~425nm。
在该技术方案中光源可以使用UV-LED光源或激光光源,光源所发射的光的波长可以选择350nm~425nm。
上述技术方案中,可变光场图文包括以下之一:图形、文字、数字、冠字号码、条形码、二维码。
在该技术方案中,可变光场图文可以是图形、文字、数字、冠字号码、条形码和二维码。
上述技术方案中,预干燥固化器包括多个光学掩膜固化装置,多个光学掩膜固化装置在磁化滚筒的轴向方向上间隔设置。
在该技术方案中,光学掩膜固化装置的数量可以为多个,多个光学掩膜固化装置在磁化滚筒的轴向方向上间隔设置,按照承印物幅面大小,光学掩膜固化装置可以组合使用。
上述技术方案中,预干燥固化器还包括:固化装置调整机构,固化装置调整机构包括固定横梁、电机和导轨,固定横梁沿磁化滚筒的轴向方向延伸,光学掩膜固化装置设于固定横梁上,电机驱动光学掩膜固化装置沿固定横梁移动。
在该技术方案中,预干燥固化器还包括固化装置调整机构,固化装置调整机构包括固定横梁、电机和导轨,固定横梁沿磁化滚筒的长轴方向延伸,光学掩膜固化装置设于固定横梁上,电机驱动光学掩膜固化装置沿固定横梁移动,从而调整光学掩膜固化装置的间隔距离。
上述技术方案中,多光彩光变印刷装置还包括:传递系统,传递系统包 括多个传送滚筒,传递系统用于传送承印物。
在该技术方案中,多光彩光变印刷装置还包括传递系统,传递系统包括多个传送滚筒,用于将承印物在输送单元、丝网印刷单元、多个光彩光变图案形成单元、干燥固化单元上依次传送。
上述技术方案中,多光彩光变印刷装置还包括:第一重排磁化装置,第一重排磁化装置设于丝网印刷单元与光彩光变图案形成单元之间;第二重排磁化装置,第二重排磁化装置设于多个光彩光变图案之间。
在该技术方案中,多光彩光变印刷装置还包括第一重排磁化装置和第二重排磁化装置。第一重排磁化装置设于丝网印刷单元与光彩光变图案形成单元之间,第二重排磁化装置设于多个光彩光变图案之间。可以理解,承印物从丝网印刷单元行进到第一重排磁化装置后,才进入光彩光变图案形成单元,然后从第一个光彩光变图案形成单元经过第二重排磁化装置才进入第二个光彩光变图案形成单元。在承印物上印刷油墨或清漆时,里面的磁性颜料片呈杂乱无规则排列,当这样的承印物输送至第一重排磁化装置和第二重排磁化装置时,磁性颜料片被按照一定的规律重新排列,如平行于承印物排列,由此能提高磁性颜料片经磁定向构件时,磁化定向的一致性,从而使得光彩光变效果更加明亮。
上述技术方案中,油墨或清漆包括光彩光变油墨、固化光油或其他类型的UV固化油墨。
在该技术方案中,油墨或清漆可以是光彩光变油墨、固化光油或其他类型的UV固化油墨。
上述技术方案中,承印物包括以下之一:纸张、塑料片和金属片。
在该技术方案中,承印物可以是纸张、塑料片或金属片。
上述技术方案中,多光彩光变印刷装置还包括干燥固化单元,干燥固化单元设置在多个光彩光变图案形成单元下游,用于对承印物进行干燥固化。
在该技术方案中,多光彩光变印刷装置还包括干燥固化单元,干燥固化单元设置在多个光彩光变图案形成单元下游,用于对承印物进行干燥固化。
上述技术方案中,空间光调制器还包括GLV调制器。
在该技术方案中,空间光调制器还包括GLV调制器。GLV是Grating  Light Valve的简称,是一种可用于投影仪,也可以用于开关的技术。
本申请第二方面的技术方案提供了一种多光彩光变印刷方法,包括:通过丝网印刷单元在承印物上印刷含有磁性物质的油墨或清漆,形成半成品;将半成品依次输送至多个光彩光变图案形成单元,通过光彩光变图案形成单元的磁定向构件和预干燥固化器对半成品进行磁定向的同时进行预干燥固化,以在承印物的不同区域形成光彩光变图案,从而形成多次光变产品;其中,至少两个光彩光变图案形成单元的磁定向构件具有彼此不同的磁化效果,预干燥固化器包括光学掩膜固化装置,光学掩膜固化装置固定设置,用于投射出动态可刷新的可变光场图文,可变光场图文与承印物同步运动预定距离。
根据本申请提供的多光彩光变印刷方法,首先在承印物上印刷含有磁性物质的油墨或清漆,形成半成品,然后依次通过多个光彩光变图案形成单元,通过进磁定向构件和预干燥固化器对半成品进行磁定向的同时进行预干燥固化,以在承印物的不同区域形成光彩光变图案,从而形成多次光变产品。其中,至少两个光彩光变图案形成单元的磁定向构件具有彼此不同的磁化效果,预干燥固化器包括光学掩膜固化装置,光学掩膜固化装置用于投射出动态可刷新的可变光场图文,可变光场图文与承印物同步运动,从而实现针对同一丝印图文的两次或多次磁化定位和预固化干燥,完成固定式和可变式的多光彩光变图文的全向拼接,即任意方向拼接。
上述技术方案中,多光彩光变印刷方法还包括:在将半成品依次输送至多个光彩光变图案形成单元之后将多次光变产品输送至干燥固化单元进行干燥固化。
在该技术方案中,在将半成品依次输送至多个光彩光变图案形成单元之后,将多次光变产品输送至干燥固化单元进行干燥固化,从而得到最终产品。
上述技术方案中,光学掩膜固化装置包括:光源,光源用于发射光;控制器,控制器用于接收传感器所采集的半成品的位置信息和速度信息,控制器还用于接收、存储、处理投射用图文数据,并且基于位置信息和速度信息及投射用图文数据产生控制信号;透镜;以及空间光调制器,空间 光调制器用于接收光源发射的光以及控制信号,以通过透镜投射出可变光场图文;其中,空间光调制器包括以下之一:数字微反镜DMD、液晶空间光调制器和声光调制器。
在该技术方案中,光学掩膜固化装置包括光源、控制器、透镜和空间光调制器。控制器用于接收传感器的位置信息和速度信息,控制器还用于接收、存储、处理投射用图文数据,并且基于位置信息和速度信息及所投射用图文数据产生控制信号。空间光调制器用于接收光源发射的光以及控制信号,以通过透镜投射出可变光场图文。空间光调制器可以是数字微反镜DMD、液晶空间光调制器(SLM)、声光调制器(AOM)和GLV调制器。具体地,承印物被持续磁化的过程中,光学掩膜固化装置能够投射出高刷新率的运动图文,控制系统通过传感器采集承印物的位置信息和速度信息,控制光学掩膜固化装置投射的图文与承印物同步运动。
为实现本申请的第三目的,本申请第三方面的技术方案提供了一种多光彩光变印刷装置,包括:存储器和处理器,其中,存储器上存储有可在处理器上运行的程序或指令,处理器执行程序或指令时实现第二方面技术方案中任一项的多光彩光变印刷方法的步骤,故而具有上述第二方面任一技术方案的技术效果,在此不再赘述。
为实现本申请的第四目的,本申请第四方面的技术方案提供了一种可读存储介质,其上存储有程序或指令,程序或指令被处理器执行时实现第二方面技术方案中任一项的多光彩光变印刷方法的步骤,故而具有上述第二方面任一技术方案的技术效果,在此不再赘述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
图1是本申请的一个实施例的多光彩光变印刷装置的结构示意图;
图2是本申请的一个实施例的多光彩光变印刷装置的局部结构示意图;
图3是本申请的一个实施例的多光彩光变印刷装置的局部结构示意 图;
图4是本申请的一个实施例的多光彩光变印刷装置的局部结构示意图;
图5是本申请的一个实施例的多光彩光变印刷装置的局部结构示意图;
图6本申请的一个实施例的光学掩膜固化装置的结构示意框图;
图7是本申请的一个实施例的多光彩光变印刷装置的结构示意框图;
图8是本申请一个实施例的多光彩光变印刷方法的步骤流程图;
图9是本申请一个实施例的多光彩光变印刷方法的步骤流程图。
其中,图1至图9的附图标记与部件名称之间的对应关系为:
10多光彩光变印刷装置,100输送单元,110丝网印刷单元,130磁化滚
筒,132磁定向构件,160预干燥固化器,210固定横梁,220电机,230光学掩膜固化装置,232光源,234控制器,236透镜,238空间光调制器,240散热组件,250直线导轨,280第一重排磁化装置,290第二重排磁化装置,370干燥固化单元,380传递系统,500承印物,300存储器,400处理器。
具体实施方式
为了可以更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图9描述根据本申请的一些实施例。
如图1所示,根据本申请提出的一个实施例的多光彩光变印刷装置10,包括:输送单元100,用于输送承印物500;丝网印刷单元110,用于在承印物500上印刷含有磁性物质的油墨或清漆;以及多个光彩光变图案形成单元,多个光彩光变图案形成单元分别用于在承印物500的不同区域形成光彩光变图案,每个光彩光变图案形成单元包括:磁化滚筒130,磁化滚筒130上设置 有磁定向构件132,磁定向构件132用于对承印物500进行磁定向;以及预干燥固化器160,预干燥固化器160用于对承印物500进行预干燥固化;其中,输送单元100、丝网印刷单元110以及多个光彩光变图案形成单元在承印物500的输送方向上依次设置;其中,至少两个光彩光变图案形成单元的磁定向构件132具有彼此不同的磁化效果,预干燥固化器160在磁定向构件132外侧相对设置,在磁定向构件132对承印物500进行磁定向的过程中,预干燥固化器160同时对承印物500进行预干燥固化;并且其中,预干燥固化器160包括光学掩膜固化装置230,光学掩膜固化装置230固定设置,用于投射出动态可刷新的可变光场图文,可变光场图文与承印物500同步运动预定距离。
根据本申请提供的多光彩光变印刷装置10,包括输送单元100、丝网印刷单元110和多个光彩光变图案形成单元。输送单元100用于输送承印物500,丝网印刷单元110位于输送单元100的下一道工序,用于将由输送单元100输送过来的承印物500上压印含有磁性物质的油墨或清漆,形成半成品。多个光彩光变图案形成单元位于丝网印刷单元110的下一道工序,用于在半成品上形成光彩光变图案。光彩光变图案形成单元包括磁化滚筒130和预干燥固化器160,磁化滚筒130上设置有磁定向构件132,磁定向构件132用于对承印物500进行磁定向,预干燥固化器160用于对承印物500进行预干燥固化。其中,至少两个光彩光变图案形成单元的磁定向构件132具有彼此不同的磁化效果,预干燥固化器160在磁定向构件132外侧相对设置,在磁定向构件132对承印物500进行磁定向的过程中,预干燥固化器160同时对承印物500进行预干燥固化。预干燥固化器160包括光学掩膜固化装置230,光学掩膜固化装置230用于投射出动态可刷新的可变光场图文,可变光场形成的图文照射到磁化滚筒130上的承印物500上,与承印物500同步运动,承印物500上的油墨或清漆完成预干燥,从而能够完成固定式和可变式的多光彩光变图文的全向拼接,即任意方向拼接。光学掩膜固化装置230固定设置,即在产品确定后连续生产过程中光学掩膜固化装置230固定。需要说明的是,“固定设置”是指在产品确定后的连续生产过程中光学掩膜固化装置230固定,当产品规格变化时可以沿磁化滚筒130的轴向方向移动光学掩膜固化装置230,以适用不同产品的规格。通过设置不同磁场效果的磁定向构件132和能够实现 精准固化的光学掩膜固化装置230作为预干燥固化器160,从而实现针对同一个丝网印刷图案的多个区域,分别实现多种光彩光变效果,实现多种固定效果图文的全向拼接,也能实现可变效果图文与固定效果图文的全向拼接。多种效果可以是多种单一磁场作用下的滚动效果,也可以是多种复合磁场作用下的运动效果,还可以是单一磁场作用下的滚动效果和复合磁场作用下的运动效果。其中,墨或清漆可以是光彩光变油墨、固化光油或其他类型的UV固化油墨。承印物500可以是纸张、塑料片或金属片。
具体地,在承印物500随着磁化滚筒130同步运动的同时,即承印物500被持续磁化的过程中,光学掩膜固化装置230能够投射出高刷新率的运动图文,控制系统通过传感器,如旋转编码器、光栅尺等,采集承印物500或输送装置或磁化滚筒130的位置和速度,控制光学掩膜固化装置230投射的图文与承印物500同步运动,光学掩膜固化装置230机械本体是不动的。
可以理解,由于油墨中的OVMP颜料片与承印物500之间形成一定的夹角的原理,光变磁性油墨中的OVMP颜料片预固化或固化或自然渗透干燥之前,对OVMP颜料片的磁定向作用始终有效,所以在此期间可以进行两次或多次磁定向,从而可以实现在同一个丝网印刷图案,实现两种以上效果的多光彩光变技术。
如图5和图6所示,进一步地,多光彩光变印刷装置10包括传感器,传感器用于采集承印物500的位置信息和速度信息。光学掩膜固化装置230包括光源232、控制器234、透镜236和空间光调制器238。控制器234用于接收传感器的位置信息和速度信息,还用于接收、存储、处理投射用图文数据,并且基于位置信息和速度信息及投射用图文数据产生控制信号。空间光调制器238用于接收光源232发射的光以及控制信号,以通过透镜236投射出可变光场图文。空间光调制器238可以是数字微反镜DMD、液晶空间光调制器(SLM)或声光调制器(AOM)和GLV调制器。其中,DMD是Digital Micromirror Device的简称,SLM是Spatial Light Modulator的简称,AOM是Acousto Optical Modulator的简称,GLV是Grating Light Valve的简称。具体地,承印物500被持续磁化的过程中,光学掩膜固化装置230 能够投射出高刷新率的运动图文,控制系统通过传感器采集承印物500的位置信息和速度信息,控制光学掩膜固化装置230投射的图文与承印物500同步运动。光学掩膜固化装置230的同步投射控制方法解决了承印物500连续生产的问题,即承印物500在连续高速运动中完成图案的磁化定向及精准固化,可以使投射图文与承印物500已有印刷图案精确套准。
进一步地,光学掩膜固化装置230还包括散热组件240。散热组件240用于对空间光调制器238进行散热或对光源232进行散热。
具体地,光学掩膜固化装置230的数量可以为多个,多个光学掩膜固化装置230在磁化滚筒130的轴向方向上间隔设置,按照承印物500幅面大小,光学掩膜固化装置230可以组合使用。
在上述实施例中,可变图文可以是图形、文字、数字、冠字号码、条形码、二维码等任意图文。
如图2和图3所示,在上述实施例中,预干燥固化器160还包括固化装置调整机构,固化装置调整机构包括固定横梁210、电机220和导轨,固定横梁210沿磁化滚筒130的轴向方向延伸,光学掩膜固化装置230设于固定横梁210上,电机220驱动光学掩膜固化装置230沿固定横梁210移动,从而调整光学掩膜固化装置230的间隔距离。固定横梁210包括横板和竖板,横板和竖板相连,电机220设于横板上。导轨包括直线导轨250和固化装置导轨,直线导轨250设于横板上,固化装置导轨设于竖板上,多个光学掩膜固化装置230分别与直线导轨250相连,从而能够在固定横梁210上移动。
在上述实施例中,多光彩光变印刷装置10还包括传递系统380,传递系统380包括多个传送滚筒,用于将承印物500在输送单元100、丝网印刷单元110、多个光彩光变图案形成单元、以及下文将描述的可选的干燥固化单元370上依次传送。
如图4所示,在一些实施例中,多光彩光变印刷装置10还包括第一重排磁化装置280和第二重排磁化装置290。第一重排磁化装置280设于丝网印刷单元110与光彩光变图案形成单元之间,第二重排磁化装置290设于多个光彩光变图案形成单元之间。可以理解,承印物500从丝网印刷单元110行 进到第一重排磁化装置280后,才进入第一个光彩光变图案形成单元,然后从第一个光彩光变图案形成单元经过第二重排磁化装置290才进入第二个光彩光变图案形成单元。在承印物500上印刷油墨或清漆时,里面的磁性颜料片呈杂乱无规则排列,当这样的承印物500输送至第一重排磁化装置280和第二重排磁化装置290时,磁性颜料片被按照一定的规律重新排列,如平行于承印物500排列,由此能提高磁性颜料片经磁化滚筒130时,磁化定向的一致性,从而使得光彩光变效果更加明亮。
在上述实施例中,多光彩光变印刷装置10还包括干燥固化单元370,干燥固化单元370设置在多个光彩光变图案形成单元下游,用于对承印物500进行干燥固化。
如图8所示,本申请第二方面的实施例提供了一种多光彩光变印刷方法,包括:
步骤S102:通过丝网印刷单元在承印物上印刷含有磁性物质的油墨或清漆,形成半成品;
步骤S104:将半成品依次输送至多个光彩光变图案形成单元,通过光彩光变图案形成单元的磁定向构件和预干燥固化器对半成品进行磁定向的同时进行预干燥固化,以在承印物的不同区域形成光彩光变图案,从而形成多次光变产品;
其中,至少两个光彩光变图案形成单元的磁定向构件具有彼此不同的磁化效果,预干燥固化器包括光学掩膜固化装置,光学掩膜固化装置固定设置,用于投射出动态可刷新的可变光场图文,可变光场图文与承印物同步运动预定距离。
在该实施例中,首先在承印物上印刷含有磁性物质的油墨或清漆,形成半成品,然后依次通过多个光彩光变图案形成单元,通过磁定向构件和预干燥固化器对半成品进行磁定向的同时进行预干燥固化,以在承印物的不同区域形成光彩光变图案,从而形成多次光变产品。其中,至少两个光彩光变图案形成单元的磁定向构件具有彼此不同的磁化效果,预干燥固化器包括光学掩膜固化装置,光学掩膜固化装置用于投射出动态可刷新的可变光场图文,可变光场图文与承印物同步运动,从而实现针对同一丝印图文的两次或多次 磁化定位和预固化干燥,完成固定式和可变式的多光彩光变图文的全向拼接,即任意方向拼接。
如图9所示,根据上述实施例提供的多光彩光变印刷方法,还包括以下步骤:
步骤S202:在将半成品依次输送至多个光彩光变图案形成单元之后将多次光变产品输送至干燥固化单元进行干燥固化。
在该实施例中,在将半成品依次输送至多个光彩光变图案形成单元之后,将多次光变产品输送至干燥固化单元进行干燥固化,从而得到最终产品。
在上述实施例中,光学掩膜固化装置包括光源、控制器、透镜和空间光调制器。控制器用于接收传感器的位置信息和速度信息,控制器还用于接收、存储、处理投射用图文数据,并且基于位置信息和速度信息及所投射用图文数据产生控制信号。空间光调制器用于接收光源发射的光以及控制信号,以通过透镜投射出可变光场图文。空间光调制器可以是数字微反镜DMD、液晶空间光调制器(SLM)、声光调制器(AOM)和GLV调制器。具体地,承印物被持续磁化的过程中,光学掩膜固化装置能够投射出高刷新率的运动图文,控制系统通过传感器采集承印物的位置信息和速度信息,控制光学掩膜固化装置投射的图文与承印物同步运动。光学掩膜固化装置的同步投射控制方法解决了承印物连续生产的问题,即承印物在连续高速运动中完成图案的磁化定向及精准固化,可以使投射图文与承印物已有印刷图案精确套准。
如图7所示,本申请第三方面的实施例提供了一种多光彩光变印刷装置10,包括:存储器300和处理器400,其中,存储器300上存储有可在处理器400上运行的程序或指令,处理器400执行程序或指令时实现第二方面的实施例中任一项的多光彩光变印刷方法的步骤,故而具有上述第二方面任一实施例的技术效果,在此不再赘述。
本申请第四方面的实施例提供了一种可读存储介质,其上存储有程序或指令,程序或指令被处理器执行时实现第二方面的实施例中任一项的多光彩光变印刷方法的步骤,故而具有上述第二方面任一实施例的技术效果,在此 不再赘述。
如图1至图9所示,根据本申请提出的一个具体实施例的多光彩光变印刷装置10,包括输送单元100、丝网印刷单元110、磁化滚筒130、磁定向构件132、预干燥固化器160和光学掩膜固化装置230。其中,片状基材通过输送单元100被输送至丝网印刷单元110,通过丝网印刷将片状基材上压印油墨或清漆载体以形成承印物500。承印物通过传送滚筒输送至磁化滚筒130,承印物500上的油墨或清漆载体被磁化定位的同时,通过与磁化滚筒130相对设置的预干燥固化器160的光学掩膜固化装置230发出的可变光场形成的图案可对磁化后的部分油墨或清漆载体进行精确可变的预干燥固化。为了增加预干燥固化时间,可变光场的图文要跟随承印物500同步运动。由于预干燥固化器160是固定的,就需要图案可以投射面积内移动。由于投射面积的限制,可变光场的图文随旋转方向一开始可以是部分的,然后是完整图形,然后是部分图形。在承印物经两次或多次磁化并预干燥固化后,通过传送滚筒被输送至干燥固化单元370进行干燥固化,以形成印刷物。
综上,本申请实施例的有益效果为:
1、两组或多组磁化滚筒和预干燥固化器串联结构,该结构可实现针对同一丝印图文的两次或多次磁化定位和预固化干燥;
2、精准可变预干燥技术,特殊设计的带有光学掩膜固化装置的预干燥固化器,可以发出可变光场,可变光场形成的图文照射到磁化滚筒上的承印物上,承印物上的油墨或清漆完成预干燥;
3、双光彩光变图文拼接技术,设计两种合适的磁场发生装置,完成固定式和可变式的双光彩光变图文的全向拼接;
4、固定图文可以是,环状,矩形,斜线;可变图文可以是数字、冠字号码、条形码、二维码等其他任意图文。
5、预干燥固化装置发出的可变光场是高动态刷新的,可变光场的刷新速率可与磁化滚筒速度匹配,照射到承印物上的图文可与承印物同步运动,以增加固化时间;
6、光学掩膜固化装置,光源可以使用LED光源和激光光源。
以上结合附图详细说明了本申请的技术方案,通过本申请的技术方案,针对同一个丝网印刷图案,实现了多种效果的多光彩光变技术,且实现多种效果图案的全向拼接技术。
在本申请中,术语“第一”、“第二”、仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种多光彩光变印刷装置,其中,包括:
    输送单元(100),用于输送承印物;
    丝网印刷单元(110),用于在所述承印物上印刷含有磁性物质的油墨或清漆;以及
    多个光彩光变图案形成单元,所述多个光彩光变图案形成单元分别用于在所述承印物的不同区域形成光彩光变图案,每个所述光彩光变图案形成单元包括:
    磁化滚筒(130),所述磁化滚筒(130)上设置有磁定向构件,所述磁定向构件用于对所述承印物进行磁定向;以及
    预干燥固化器(160),所述预干燥固化器(160)用于对所述承印物进行预干燥固化;
    其中,所述输送单元(100)、所述丝网印刷单元(110)以及多个所述光彩光变图案形成单元在所述承印物的输送方向上依次设置;
    其中,至少两个所述光彩光变图案形成单元的所述磁定向构件具有彼此不同的磁化效果,所述预干燥固化器(160)在所述磁定向构件外侧相对设置,在所述磁定向构件对所述承印物进行磁定向的过程中,所述预干燥固化器(160)同时对所述承印物进行预干燥固化;并且
    其中,所述预干燥固化器(160)包括光学掩膜固化装置(230),所述光学掩膜固化装置(230)固定设置,用于投射出动态可刷新的可变光场图文,所述可变光场图文与所述承印物同步运动预定距离。
  2. 根据权利要求1所述的多光彩光变印刷装置,其中,
    所述多光彩光变印刷装置包括传感器,所述传感器用于采集所述承印物的位置信息和速度信息;
    所述光学掩膜固化装置(230)包括:
    光源(232),所述光源(232)用于发射光;
    控制器(234),所述控制器(234)用于接收所述传感器的所述位置信息和所述速度信息,所述控制器(234)还用于接收、存储、处理 投射用图文数据,并且基于所述位置信息和所述速度信息及所述投射用图文数据产生控制信号;
    透镜(236);以及
    空间光调制器(238),所述空间光调制器(238)用于接收所述光源(232)发射的光以及所述控制信号,以通过所述透镜(236)投射出所述可变光场图文;
    其中,所述空间光调制器(238)包括以下之一:数字微反镜DMD、液晶空间光调制器和声光调制器。
  3. 根据权利要求2所述的多光彩光变印刷装置,其中,
    所述光学掩膜固化装置(230)还包括散热组件(240),所述散热组件(240)用于对所述空间光调制器(238)和/或所述光源(232)进行散热。
  4. 根据权利要求3所述的多光彩光变印刷装置,其中,
    所述光源(232)包括UV-LED光源或激光光源,所述光源(232)所发射的光的波长为350nm~425nm。
  5. 根据权利要求4所述的多光彩光变印刷装置,其中,
    所述可变光场图文包括以下之一:图形、文字、数字、冠字号码、条形码、二维码。
  6. 根据权利要求1至5中任一项所述的多光彩光变印刷装置,其中,
    所述预干燥固化器(160)包括多个所述光学掩膜固化装置(230),多个所述光学掩膜固化装置(230)在所述磁化滚筒(130)的轴向方向上间隔设置。
  7. 根据权利要求1至5中任一项所述的多光彩光变印刷装置,其中,所述预干燥固化器(160)还包括:
    固化装置调整机构,所述固化装置调整机构包括固定横梁(210)、电机(220)和导轨,所述固定横梁(210)沿所述磁化滚筒(130)的轴向方向延伸,所述光学掩膜固化装置(230)设于所述固定横梁(210)上,所述电机(220)驱动所述光学掩膜固化装置(230)沿所述固定横梁(210)移动。
  8. 根据权利要求1至5中任一项所述的多光彩光变印刷装置,其中,所述多光彩光变印刷装置还包括:
    传递系统(380),所述传递系统(380)包括多个传送滚筒,所述传递系统(380)用于传送所述承印物。
  9. 根据权利要求1至5中任一项所述的多光彩光变印刷装置,其中,所述多光彩光变印刷装置还包括:
    第一重排磁化装置(280),所述第一重排磁化装置(280)设于所述丝网印刷单元(110)与所述光彩光变图案形成单元之间;
    第二重排磁化装置(290),所述第二重排磁化装置(290)设于多个所述光彩光变图案形成单元之间。
  10. 根据权利要求1至5中任一项所述的多光彩光变印刷装置,其中,
    所述油墨或所述清漆包括光彩光变油墨、固化光油或其他类型的UV固化油墨。
  11. 根据权利要求1至5中任一项所述的多光彩光变印刷装置,其中,
    所述承印物包括以下之一:纸张、塑料片和金属片。
  12. 根据权利要求1至5中任一项所述的多光彩光变印刷装置,其中,所述多光彩光变印刷装置还包括干燥固化单元(370),所述干燥固化单元(370)设置在所述多个光彩光变图案形成单元下游,用于对所述承印物进行干燥固化。
  13. 根据权利要求2至5中任一项所述的多光彩光变印刷装置,其中,所述空间光调制器(238)还包括GLV调制器。
  14. 一种多光彩光变印刷方法,其中,包括:
    通过丝网印刷单元在承印物上印刷含有磁性物质的油墨或清漆,形成半成品;
    将所述半成品依次输送至多个光彩光变图案形成单元,通过所述光彩光变图案形成单元的磁定向构件和预干燥固化器对所述半成品进行磁定向的同时进行预干燥固化,以在所述承印物的不同区域形成光彩光变图案,从而形成多次光变产品;
    其中,至少两个所述光彩光变图案形成单元的所述磁定向构件具有彼此 不同的磁化效果,所述预干燥固化器包括光学掩膜固化装置,所述光学掩膜固化装置固定设置,用于投射出动态可刷新的可变光场图文,所述可变光场图文与所述承印物同步运动预定距离。
  15. 根据权利要求14所述的多光彩光变印刷方法,其中,所述多光彩光变印刷方法还包括:
    在将所述半成品依次输送至多个光彩光变图案形成单元之后将所述多次光变产品输送至干燥固化单元进行干燥固化。
  16. 根据权利要求14所述的多光彩光变印刷方法,其中,所述光学掩膜固化装置包括:
    光源,所述光源用于发射光;
    控制器,所述控制器用于接收传感器所采集的所述半成品的位置信息和速度信息,所述控制器还用于接收、存储、处理投射用图文数据,并且基于所述位置信息和所述速度信息及所述投射用图文数据产生控制信号;
    透镜;以及
    空间光调制器,所述空间光调制器用于接收所述光源发射的光以及所述控制信号,以通过所述透镜投射出所述可变光场图文;
    其中,所述空间光调制器包括以下之一:数字微反镜DMD、液晶空间光调制器和声光调制器。
  17. 一种多光彩光变印刷装置,其中,包括:
    存储器(300)和处理器(400),其中,所述存储器(300)上存储有能够在所述处理器(400)上运行的程序或指令,所述处理器(400)执行所述程序或所述指令时实现如权利要求14至16中任一项所述的多光彩光变印刷方法的步骤。
  18. 一种可读存储介质,其上存储有程序或指令,其中,所述程序或所述指令被处理器执行时实现如权利要求14至16中任一项所述的多光彩光变印刷方法的步骤。
PCT/CN2023/089828 2022-04-22 2023-04-21 多光彩光变印刷装置及其印刷方法、可读存储介质 WO2023202708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210429178.2A CN114801436B (zh) 2022-04-22 2022-04-22 多光彩光变印刷装置及其印刷方法、可读存储介质
CN202210429178.2 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023202708A1 true WO2023202708A1 (zh) 2023-10-26

Family

ID=82505295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089828 WO2023202708A1 (zh) 2022-04-22 2023-04-21 多光彩光变印刷装置及其印刷方法、可读存储介质

Country Status (2)

Country Link
CN (1) CN114801436B (zh)
WO (1) WO2023202708A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114801436B (zh) * 2022-04-22 2024-05-24 中钞印制技术研究院有限公司 多光彩光变印刷装置及其印刷方法、可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001034150A (ja) * 1999-07-26 2001-02-09 Ricoh Co Ltd ホログラフィックステレオグラム作成装置
CN104149508A (zh) * 2014-07-01 2014-11-19 虎彩印艺股份有限公司 一种形成可变移印效果的方法及其设备
CN108594617A (zh) * 2018-04-27 2018-09-28 郑州大学 非相干数字全息大视场成像记录方法与装置
CN208180497U (zh) * 2017-08-07 2018-12-04 甄欣 一种光磁双场形成可变安全图案的系统
CN113547834A (zh) * 2021-07-14 2021-10-26 中钞印制技术研究院有限公司 多光彩光变印刷装置及其印刷方法
CN114801436A (zh) * 2022-04-22 2022-07-29 中钞印制技术研究院有限公司 多光彩光变印刷装置及其印刷方法、可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170052683A (ko) * 2014-09-12 2017-05-12 케이비에이-노타시스 에스에이 결합된 인쇄기
EP3015266A1 (en) * 2014-10-30 2016-05-04 KBA-NotaSys SA Printing press comprising a magnetic orientation unit and a movable drying/curing unit
WO2018099413A1 (zh) * 2016-12-01 2018-06-07 任磊 光磁双场形成安全图案的系统
CN108943999B (zh) * 2018-08-02 2021-01-22 中国人民银行印制科学技术研究所 预干燥固化机构、丝网印刷机及印刷方法
CN112976869A (zh) * 2021-03-17 2021-06-18 中钞印制技术研究院有限公司 防伪元件、制作方法、装置、磁性墨水的制作方法和介质
CN114132052B (zh) * 2021-11-16 2023-07-21 中钞印制技术研究院有限公司 磁性墨水防伪元件及其制作设备、方法、可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001034150A (ja) * 1999-07-26 2001-02-09 Ricoh Co Ltd ホログラフィックステレオグラム作成装置
CN104149508A (zh) * 2014-07-01 2014-11-19 虎彩印艺股份有限公司 一种形成可变移印效果的方法及其设备
CN208180497U (zh) * 2017-08-07 2018-12-04 甄欣 一种光磁双场形成可变安全图案的系统
CN108594617A (zh) * 2018-04-27 2018-09-28 郑州大学 非相干数字全息大视场成像记录方法与装置
CN113547834A (zh) * 2021-07-14 2021-10-26 中钞印制技术研究院有限公司 多光彩光变印刷装置及其印刷方法
CN114801436A (zh) * 2022-04-22 2022-07-29 中钞印制技术研究院有限公司 多光彩光变印刷装置及其印刷方法、可读存储介质

Also Published As

Publication number Publication date
CN114801436A (zh) 2022-07-29
CN114801436B (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
WO2023202708A1 (zh) 多光彩光变印刷装置及其印刷方法、可读存储介质
CN102555434A (zh) 用于在衬底上形成图像的系统和方法
CN101626895B (zh) 用于形成呈现二维油墨梯度的油墨图案的方法和装置
US7393073B2 (en) Multi-printhead digital printer
CN102472978B (zh) 图案形成设备、图案形成方法及装置制造方法
US8263191B2 (en) Method for the creation of color effect images
KR100363058B1 (ko) 감열식그래픽인쇄시스템및방법
KR101451345B1 (ko) 다중 프린트헤드 유닛을 사용한 프린트 마스터의 디지털 생성 시스템 및 방법
US10691067B2 (en) Systems and methods for fabricating variable digital optical images by printing directly on generic optical matrices
US20150202653A1 (en) Magnetic printing apparatus and magnetic printing method
CN108943999B (zh) 预干燥固化机构、丝网印刷机及印刷方法
WO2020135265A1 (zh) 可写入可变编码信息的安全图案及其制备方法和设备
CN105034570A (zh) 一种磁性印刷品的制造设备
CN105966055A (zh) 一种磁性印刷设备、磁定向装置及磁性印刷方法
JP6662473B2 (ja) 露光方法
WO2014101250A1 (zh) 浮雕图案印刷装置
CN113547834A (zh) 多光彩光变印刷装置及其印刷方法
JP2007062268A (ja) 紫外線硬化インクを用いたインクジェットプリンター装置
CN103314328B (zh) 膜曝光方法
US20200369068A1 (en) Label including a lens array
CN114132052B (zh) 磁性墨水防伪元件及其制作设备、方法、可读存储介质
CN101992586B (zh) 一种全息定位模压方法及系统
US7396171B2 (en) Thor expandable ring printer for wide print media
US7802870B2 (en) Scalable expandable rotojet rotating spray jet printhead
JPH02187287A (ja) レーザマーカ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791360

Country of ref document: EP

Kind code of ref document: A1