WO2023202552A1 - 涡旋压缩机 - Google Patents

涡旋压缩机 Download PDF

Info

Publication number
WO2023202552A1
WO2023202552A1 PCT/CN2023/088856 CN2023088856W WO2023202552A1 WO 2023202552 A1 WO2023202552 A1 WO 2023202552A1 CN 2023088856 W CN2023088856 W CN 2023088856W WO 2023202552 A1 WO2023202552 A1 WO 2023202552A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
scroll
fixed scroll
scroll compressor
floating seal
Prior art date
Application number
PCT/CN2023/088856
Other languages
English (en)
French (fr)
Inventor
刘轩
张冲
秦岩
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210412992.3A external-priority patent/CN116950893A/zh
Priority claimed from CN202220912661.1U external-priority patent/CN217813919U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2023202552A1 publication Critical patent/WO2023202552A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to scroll compressors, and in particular, to scroll compressors with improvements in floating seal construction.
  • Scroll compressors usually include a compression mechanism composed of a fixed scroll and an orbiting scroll.
  • the fixed scroll can adopt a floating fixed scroll design, for example, through the fixed scroll and a casing or main bearing used to support the fixed scroll.
  • the clearance structure is used to provide axial flexibility and radial flexibility for the fixed scroll, thereby providing the possibility of unloading and adjusting the machining error for liquid startup.
  • a floating seal is provided, which is arranged in the annular recess of the fixed scroll and cooperates with the annular recess
  • a back-pressure chamber is formed, and the annular recess (i.e., back-pressure chamber) can be communicated with the middle compression chamber (often called the medium-pressure compression chamber) of the scroll compression structure. Therefore, the floating seal presses the pressure in the fluid in the back-pressure chamber. Float under the action of.
  • the diaphragm separates the internal space of the scroll compressor into a high-pressure side and a low-pressure side.
  • the upper surface of the floating seal contacts the lower surface of the diaphragm or diaphragm seal attachment (such as a collar) and generates contact pressure, forming an end face. Sealing effect to isolate the high pressure side from the low pressure side.
  • lip seals are respectively provided on the inner and outer sides of the floating seal to contact and seal with the radially inner annular wall and the radially outer annular wall of the annular recess (back pressure chamber), thereby connecting the back pressure chamber and the low pressure side. Isolate between the back pressure chamber and the high pressure side.
  • the back-pressure chamber on the fixed scroll introduces fluid, such as the medium-pressure compression chamber, to push the floating seal upward evenly until the upper surface of the floating seal and the partition or partition are sealed
  • the lower surface of the attachment contacts and forms an end seal to isolate the high pressure side from the low pressure side.
  • An object of the present disclosure is to provide a scroll compressor with improvements in floating sealing by providing an airflow reversing structure between a fluid passage allowing passage of compression chamber fluid and a floating seal to achieve reliable sealing.
  • the present disclosure provides a scroll compressor, including: a compression mechanism.
  • the compression mechanism includes a fixed scroll and an orbiting scroll.
  • the fixed scroll cooperates with the orbiting scroll to form a compression mechanism for working fluid.
  • a series of compression chambers the fixed scroll including a fluid channel; and a floating seal disposed on one side of the fixed scroll so as to be between the floating seal and the fixed scroll
  • the back pressure chamber communicates with a medium pressure compression chamber in the compression chamber via the fluid passage, so that the floating seal can be operated by the compression chamber fluid from the medium pressure compression chamber.
  • Axial floating, an air flow reversing structure is provided between the fluid channel and the floating seal, and the air flow reversing structure is configured to adjust the direction of the compression chamber fluid discharged from the fluid channel.
  • the air flow reversing structure is configured such that the fluid channel remains normally open.
  • the fluid channel includes an exhaust port in fluid communication with the back pressure chamber, and the air flow reversing structure includes a baffle arranged to be spaced apart from the exhaust port.
  • the airflow reversing structure is in the form of a cage and includes an annular support body and a central baffle axially offset relative to the annular support body, the annular support body and the central baffle passing through at least one Connecting arms connect to form a plurality of radial channels between the annular support body and the central baffle.
  • the cage is an integral component directly formed by a sheet metal process.
  • the retainer further includes a snap portion extending from the annular support body, the snap portion snaps with a corresponding portion of the fixed scroll to fix the retainer to the fixed scroll. .
  • the fixed scroll further includes an annular recess that accommodates the floating seal and defines the back pressure chamber, and the discharge port of the fluid channel is disposed at the bottom of the annular recess.
  • the bottom of the part is provided with a counterbore around the discharge port, and the counterbore is configured in a step shape to include a top inner wall surface, a top surface, a bottom surface and a bottom inner wall surface connecting the top surface and the bottom surface, so
  • the cage further includes a first snap portion and/or a second snap portion, the first snap portion extends radially from the annular support body and the radially outer end of the first snap portion snaps On the bottom inner wall surface, the second engaging portion extends radially from the annular support body and then extends axially and then extends radially to include an inner radial section, an axial section and an outer radial section, so The axial section is engaged with the bottom inner wall surface, and the radial outer end of the outer radial section is engaged with the top inner wall
  • the cage is constructed and arranged such that the central baffle is lower than the outer radial section or both the outer radial section and the top surface.
  • the airflow reversing structure is in the form of a bolt and includes a bolt portion provided with an axial channel and a nut portion provided with a radial channel, so that the compression chamber fluid discharged from the fluid channel first enters the The axial channel then enters the radial channel and is reversed.
  • the radial channel includes two mutually intersecting through holes penetrating the nut portion.
  • the fixed scroll further includes an annular recess that accommodates the floating seal and defines the back pressure chamber, and the discharge port of the fluid channel is disposed at the bottom of the annular recess, at the bottom of the annular recess.
  • a counterbore is provided around the discharge port, and the counterbore is configured in a step shape to include a top inner wall surface, a top surface, a bottom surface, and a bottom inner wall surface connecting the top surface and the bottom surface, and the bolt portion It is threadedly connected to the bottom inner wall surface to fix the bolt to the fixed scroll.
  • the fixed scroll further includes an annular recess that accommodates the floating seal and defines the back pressure chamber, and the discharge port of the fluid channel is disposed at the bottom of the annular recess, at the bottom of the annular recess.
  • a counterbore is provided around the discharge port, and the airflow reversing structure is arranged in the counterbore so that the airflow reversing structure does not protrude from the counterbore.
  • the present disclosure provides an improved floating seal design: 1) by arranging an airflow reversing structure between the fluid channel in fluid communication with the medium-pressure compression chamber and the floating seal, so that even if When the compressor starts quickly, the floating seal floats stably axially under the action of the compression chamber fluid adjusted by the air flow reversing structure to achieve reliable sealing.
  • the compression chamber fluid in the fluid channel fluidly connected to the medium-pressure compression chamber first flows through the air flow reversing structure, and its flow direction changes when flowing through the air flow reversing structure. For example, the flow direction can change from the approximate axial direction.
  • FIG. 1 is a schematic cross-sectional view of a related art scroll compressor including a fixed scroll and a seal assembly disposed in an annular recess of the fixed scroll.
  • FIG. 2 is an enlarged schematic cross-sectional view of the fixed scroll and seal assembly of the scroll compressor of FIG. 1 .
  • FIG 3 is a schematic perspective view of a fixed scroll of a scroll compressor including an airflow reversing structure in the form of a cage, according to one embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional view of the fixed scroll and the cage of the scroll compressor of FIG. 3 .
  • FIG. 5 is a perspective view of the cage of the scroll compressor of FIG. 3 .
  • FIG. 6 is a schematic perspective view of a fixed scroll of a scroll compressor including an airflow reversing structure in the form of bolts according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional view of the fixed scroll and bolts of the scroll compressor of FIG. 6 .
  • FIG. 8 is a perspective view of the bolt of the scroll compressor of FIG. 6 .
  • Figure 9 is a schematic cross-sectional view of the bolt of Figure 6 showing its reversing channel.
  • FIG. 10 is another schematic cross-sectional view of the bolt of FIG. 6 including its reversing channel.
  • the compressor (hereinafter also sometimes referred to as a compressor) generally includes a housing 110 .
  • the casing 110 may include a substantially cylindrical body 111, a top cover 112 disposed at one end of the body 111, a bottom cover 114 disposed at the other end of the body 111, and a bottom cover 114 disposed between the top cover 112 and the body 111 to separate the interior of the compressor.
  • a partition 116 separates the space into a high pressure side and a low pressure side.
  • the space between the partition 116 and the top cover 112 constitutes the high-pressure side, and the space between the partition 116, the body 111 and the bottom cover 114 constitutes the low-pressure side.
  • An air inlet joint (not shown) for sucking in fluid is provided on the low pressure side, and an exhaust joint 119 for discharging compressed fluid is provided on the high pressure side.
  • the motor 120 composed of a stator 122 and a rotor 124 is disposed in the housing 110 .
  • a drive shaft 130 is provided in the rotor 124 to drive a compression mechanism composed of the fixed scroll 150 and the movable scroll 160 .
  • the orbiting scroll 160 includes an end plate 164, a hub 162 formed on one side of the end plate, and a spiral blade 166 formed on the other side of the end plate.
  • the fixed scroll 150 includes an end plate 154, a spiral blade 156 formed on one side of the end plate, and an annular recess 158 formed on the other side of the end plate.
  • the annular recess includes a radially outer wall and a radially inner wall.
  • An exhaust port 159 is formed approximately in the center of the end plate. The space around the exhaust port 159 also constitutes the high pressure side.
  • a series of compression chambers C1, C2 and C3 whose volumes gradually decrease from the radially outer side to the radially inner side are formed between the spiral blades 156 of the fixed scroll 150 and the spiral blades 166 of the orbiting scroll 160.
  • the radially outermost compression chamber C1 is at suction pressure
  • the radially innermost compression chamber C3 is at exhaust pressure
  • the middle compression chamber C2 is between the suction pressure and the exhaust pressure, so it is also called a medium-pressure compression chamber.
  • One side of the orbiting scroll 160 is supported by the upper part (ie, the support part) of the main bearing seat 140 , and one end of the drive shaft 130 is supported by the main bearing provided in the main bearing seat 140 .
  • An eccentric crank pin 132 is provided at one end of the drive shaft 130 , and an unloading bushing is provided between the eccentric crank pin 132 and the hub 162 of the orbiting scroll 160 .
  • the above-mentioned translational rotation is realized by an Oldham slip ring provided between the fixed scroll 150 and the movable scroll 160 .
  • the fluid compressed by the fixed scroll 150 and the orbiting scroll 160 is discharged to the high-pressure side through the exhaust port 159 .
  • a one-way valve or an exhaust valve 190 can be provided at the exhaust port 159.
  • the valve can be a variable volume ratio valve, for example, it can be at In some low compression ratio working conditions where the ratio of discharge pressure to suction pressure is relatively low, the exhaust is carried out in advance to avoid the loss of power consumption caused by overcompression of the refrigerant, so that the scroll compressor can maintain high performance in a wider operating range. efficiency.
  • the fixed scroll 150 is provided with a positioning hole 151, and the main bearing seat 140 is provided with a hole for passing through the positioning hole 151.
  • the bolt 141, the positioning hole 151 and the bolt 141 are configured to form an axial gap and a radial gap between them, so as to provide axial flexibility and radial flexibility for the fixed scroll (relative to the main bearing seat).
  • a seal assembly S as a floating seal is provided in the annular recess 158 of the fixed scroll 150 . That is, the seal assembly S is provided between the partition plate 116 and the fixed scroll 150 .
  • the annular recess 158 is in fluid communication with one of a series of compression chambers C1 , C2 , C3 via a through hole 155 (also referred to as an intermediate pressure fluid passage) formed in the fixed scroll end plate 154 .
  • annular recess 158 is in fluid communication with intermediate pressure compression chamber C2 via through hole 155 .
  • the sealing component S cooperates with the annular recess 158 to form a back pressure chamber BC that provides back pressure for the orbiting scroll 150 .
  • the axial displacement of the seal assembly S is limited by the diaphragm 116 .
  • the pressure in each compression chamber exceeds the set value, the resultant force generated by the pressure in these compression chambers will exceed the downward pressure provided in the back pressure chamber BC, causing the fixed scroll 150 to move upward.
  • the fluid in the compression chamber will pass through the gap between the top of the spiral blade 156 of the fixed scroll 150 and the end plate 164 of the orbiting scroll 160 and the gap between the top of the spiral blade 166 of the orbiting scroll 160 and the fixed scroll 150
  • the gap between the end plates 154 leaks to the low pressure side for unloading, thereby providing axial flexibility to the scroll compressor. Therefore, the sealing assembly floats axially under the action of the compression chamber fluid from the medium-pressure passage to match the axial floating of the fixed scroll.
  • the sealing assembly S may include an upper plate S1 , a lower plate S2 , and a first seal S3 and a third seal S5 disposed between the upper plate S1 and the lower plate S2 .
  • the shape of the sealing component S substantially corresponds to the shape of the annular recess 158 (back pressure chamber BC), so that the first seal S3 can achieve sealing against the radially inner wall of the annular recess 158, and the third seal S5 can achieve sealing against the annular recess 158.
  • the radially outer walls of the recess 158 provide sealing.
  • the upper end of the upper plate S1 can be sealed against the partition plate 116 or a collar 117 provided on the partition plate 116 .
  • the sealing assembly S realizes sealing in the compressor in the following manner: 1) the upper end of the upper plate S1 abuts against the collar 117 on the partition plate 116 to separate the high-pressure side and the low-pressure side; 2) the first seal S3 abuts against the collar 117 on the partition plate 116; The radially inner wall of the annular recess 158 is used to isolate the high-pressure side from the back-pressure chamber BC; 3) the third seal S5 is pressed against the radially outer wall of the annular recess 158 to isolate the back-pressure chamber BC from the low-pressure side. open.
  • the present disclosure provides a compressor with an improved floating seal structure, and
  • the floating seal structure is described with reference to Figures 1 to 10.
  • FIG. 3 is a schematic perspective view of a fixed scroll of a scroll compressor including an airflow reversing structure in the form of a cage according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional view of the fixed scroll and the cage of the scroll compressor of FIG. 3 .
  • FIG. 5 is a perspective view of the cage of the scroll compressor of FIG. 3 .
  • the present disclosure is intended to provide an airflow reversing structure between the fluid channel of the fixed scroll that communicates with the medium-pressure compression chamber (for example, the through hole 155 provided in the fixed scroll end plate 154) and the floating seal or seal assembly,
  • the air flow reversing structure is configured to adjust the direction of the compression chamber fluid discharged from the fluid channel, for example, to adjust the compression chamber fluid in a direction different from a direction toward the floating seal.
  • the compression chamber fluid in the fluid channel fluidly connected to the medium-pressure compression chamber first flows through the air flow reversing structure.
  • its flow direction changes. For example, it can flow from an approximate axial direction to an approximate radial flow. It flows in the direction or changes to the direction at an angle to the axial direction, and then fills the entire back pressure cavity, thereby uniformly pushing the floating seal ring upward, isolating each cavity and providing the downforce for the dynamic and fixed scrolls to fit together. Function. Therefore, the fluid in the compression chamber after commutation does not directly impact the floating seal, thereby avoiding the phenomenon that the floating seal becomes tilted and stuck due to uneven stress, resulting in seal failure.
  • the airflow reversing structure may be in the form of a cage 200 and include an annular support body 220 and a central baffle 240 axially offset relative to the annular support body.
  • the annular support body and the central baffle are connected through at least one connecting arm.
  • 230 are connected to form a plurality of radial channels 250 between the annular support body and the central baffle.
  • the central baffle 240 is perpendicular to the axial direction such that the axially flowing compression chamber fluid flows out generally radially from the radial passage 250.
  • the central baffle may be tilted relative to the axial direction. Angle, as long as the central baffle is tilted at such an angle that the compression chamber fluid flowing out from the radial channel does not directly impact the floating seal.
  • the airflow reversing structure in the form of a cage can be directly formed into an integrated component using the sheet metal process, making the process simple and reducing the cost of accessories.
  • the retainer 200 further includes a snap portion extending from the annular support body, and the snap portion snaps into a corresponding portion of the fixed scroll to fix the retainer to the fixed scroll.
  • a counterbore 180 is provided around the discharge port at the bottom of the annular recess 158 (see FIG. 4 ), and the counterbore is configured in a step shape to include a top inner wall surface 181 , a top surface 182 , a bottom surface 183 and the bottom inner wall surface 184 connecting the top surface to the bottom surface.
  • the cage 200 may further include a first snap portion 222 and a second snap portion 221 .
  • the first snap portion 222 extends radially from the annular support body 220 and has a radially outer end of the first snap portion.
  • the second snap-in portion 221 extends radially from the annular support body 220 and then extends axially and then extends radially to include an inner radial section, an axial section and an outer radial section.
  • the axial direction The section is clamped to the bottom inner wall surface 184, and the radial outer end of the outer radial section is clamped to the top inner wall surface 181.
  • first clamping parts 222 evenly arranged along the circumferential direction of the annular support body 220 and two second clamping parts 221 arranged symmetrically are shown. However, those skilled in the art can set them as needed. The number of snap-in parts. Also, the cage 200 is constructed and arranged such that the central baffle 240 is lower than the outer radial section or both the outer radial section and the top surface.
  • the overall structure of the airflow reversing structure is flush with the surface of the end plate or located below the surface of the end plate. That is, the airflow reversing structure is arranged in the counterbore so that the airflow reversing structure is not Protrudes from the counterbore to avoid interference with the floating seal.
  • the mating connection between the snap-in part and the counterbore enables the retainer to be firmly connected to the fixed scroll, and the detachable connection between the snap-in part and the counterbore also facilitates assembly and maintenance.
  • FIG. 6 is a fixed scroll of a scroll compressor including an airflow reversing structure in the form of a bolt according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional view of the fixed scroll and bolts of the scroll compressor of FIG. 6 .
  • FIG. 8 is a perspective view of the bolt of the scroll compressor of FIG. 6 .
  • Figure 9 is a schematic cross-sectional view of the bolt of Figure 6 showing its reversing channel.
  • FIG. 10 is another schematic cross-sectional view of the bolt of FIG. 6 including its reversing channel.
  • the airflow reversing structure may be in the form of a bolt 300 and include a bolt part 320 provided with an axial channel 321 and a nut part 340 provided with a radial channel 341 , so that from the fluid channel 155 The discharged compression chamber fluid first enters the axial channel 321 and then enters the radial channel 341 to be reversed.
  • the axial channel is a vertical hole
  • the radial channel is a transverse through hole
  • the transverse through holes can be two cross-connected transverse holes that penetrate the nut part.
  • Through-hole and bolt installation methods are simple, which can improve assembly efficiency and reduce costs.
  • existing hexagonal head bolts can be directly used for drilling modification, in which the transverse through holes penetrate two opposite surfaces of the nut portion of the bolt, which results in high part processing efficiency and low cost.
  • This embodiment also has the same counterbore structure as the above-mentioned embodiment. Specifically, referring to FIG. 7 , a counterbore is provided around the discharge port at the bottom of the annular recess 158 , and the counterbore is configured in a step shape to include a top inner wall surface 181 , a top surface 182 , a bottom surface 183 and a hole connecting the top surface and the bottom surface.
  • the bottom inner wall surface 184 and the bolt portion 320 of the bolt 300 are threadedly connected to the bottom inner wall surface 184 to fix the bolt to the fixed scroll.
  • the air flow reversing structure for example in the form of a cage or a bolt, may be configured to keep the fluid passage normally open.
  • the central baffle of the cage as the air flow reversing structure or the nut portion of the bolt may be provided to function as a baffle spaced apart from the discharge port of the fluid channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种涡旋压缩机,包括定涡旋(150)、动涡旋(160)和浮动密封件(S),定涡旋包括流体通道(155),背压腔(BC)经由流体通道与压缩腔中的中压压缩腔(C2)连通,使得浮动密封件能够在来自中压压缩腔的压缩腔流体的作用下轴向浮动,在流体通道与浮动密封件之间设置有气流换向结构,其构造成对从流体通道排出的压缩腔流体的方向进行调节,从而实现可靠密封。

Description

涡旋压缩机
本申请要求以下中国专利申请的优先权:于2022年4月19日提交中国专利局的申请号为202210412992.3、发明创造名称为“涡旋压缩机”的中国专利申请;于2022年4月19日提交中国专利局的申请号为202220912661.1、发明创造名称为“涡旋压缩机”的中国专利申请。这些专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及涡旋压缩机,特别是,涉及浮动密封构造方面做出改进的涡旋压缩机。
背景技术
涡旋压缩机通常包括由定涡旋和动涡旋构成的压缩机构,定涡旋可以采用浮动定涡旋设计,例如,通过定涡旋与用于支撑定涡旋的壳体或主轴承座借助于定位孔和螺栓配合间隙构造,以为定涡旋提供轴向柔性和径向柔性,从而为带液启动提供卸载可能以及调整加工误差。
进一步地,为了将涡旋压缩机的高压侧和低压侧隔绝并且配合定涡旋的轴向浮动提供了浮动密封件,该浮动密封件设置在定涡旋的环形凹部内并且与该环形凹部配合形成背压腔,环形凹部(即背压腔)可以与涡旋压缩结构的中间的压缩腔(通常称为中压压缩腔)连通,因此,该浮动密封件在背压腔的流体中压压力的作用下浮动。隔板将涡旋压缩机的内部空间分隔成高压侧和低压侧,浮动密封件的上表面和隔板或隔板密封附接件(例如套环)的下表面接触并产生接触压力,形成端面密封效果,以将高压侧与低压侧隔绝。并且,在浮动密封件的内外侧分别设置唇形密封件,以分别与环形凹部(背压腔)的径向内环形壁和径向外侧环形壁接触密封,从而将背压腔与低压侧之间、背压腔与高压侧之间隔绝。
正常情况下,在压缩机启动后,定涡旋上的背压腔引入例如中压压缩腔的流体,以推动浮动密封件均匀向上抬升,直至浮动密封件的上表面和隔板或隔板密封附接件的下表面接触并形成端面密封,以将高压侧与低压侧隔绝。
然而,例如在压缩机快速启动的情况下,进入定涡旋上的背压腔的流体流速太快并且瞬时冲击到浮动密封件的下表面上以推动浮动密封件上升,浮动密封件由于其下表面受力不均而各部分上升速率不同,使得整个密封结构倾斜而卡死在背压腔两侧,进而导致高压侧、低压侧和背压腔之间流体泄漏而密封失效。
发明内容
本公开的一个目的是通过在允许压缩腔流体通过的流体通道与浮动密封件之间设置气流换向结构以浮动密封方面进行改进以实现可靠密封的涡旋压缩机。
本公开提供了一种涡旋压缩机,包括:压缩机构,所述压缩机构包括定涡旋和动涡旋,所述定涡旋与所述动涡旋配合而形成用于对工作流体进行压缩的一系列压缩腔,所述定涡旋包括流体通道;以及浮动密封件,所述浮动密封件设置在所述定涡旋的一侧以在所述浮动密封件与所述定涡旋之间限定背压腔,所述背压腔经由所述流体通道与所述压缩腔中的中压压缩腔连通,使得所述浮动密封件能够在来自所述中压压缩腔的压缩腔流体的作用下轴向浮动,在所述流体通道与所述浮动密封件之间设置有气流换向结构,所述气流换向结构构造成对从所述流体通道排出的所述压缩腔流体的方向进行调节。
有利地,所述气流换向结构构造成使得所述流体通道保持常开。
有利地,所述流体通道包括与所述背压腔流体连通的排出端口,所述气流换向结构包括设置成与所述排出端口间隔开的挡板。
有利地,所述气流换向结构呈保持架的形式并且包括环形支承本体和相对于所述环形支承本体轴向偏置的中央挡板,所述环形支承本体与所述中央挡板通过至少一个连接臂连接以在所述环形支承本体与所述中央挡板之间形成多个径向通道。
有利地,所述保持架为由钣金工艺直接成型的一体构件。
有利地,所述保持架还包括从所述环形支承本体延伸的卡接部,所述卡接部与所述定涡旋的对应部分卡接以将所述保持架固定至所述定涡旋。
有利地,所述定涡旋还包括容纳所述浮动密封件并且限定所述背压腔的环形凹部,所述流体通道的排出端口设置在所述环形凹部的底部,在所述环形凹 部的底部围绕所述排出端口设置有沉孔,所述沉孔构造成台阶状从而包括顶内壁面、顶表面、底表面和将所述顶表面与所述底表面连接的底内壁面,所述保持架还包括第一卡接部和/或第二卡接部,所述第一卡接部从所述环形支承本体径向延伸并且所述第一卡接部的径向外端卡接于所述底内壁面,所述第二卡接部从所述环形支承本体径向延伸再轴向延伸再径向延伸从而包括内径向部段、轴向部段和外径向部段,所述轴向部段卡接于所述底内壁面,所述外径向部段的径向外端卡接于所述顶内壁面。
有利地,所述保持架构造和布置成使得所述中央挡板低于所述外径向部段或者低于所述外径向部段进和所述顶表面两者。
有利地,所述气流换向结构呈螺栓的形式并且包括设置有轴向通道的螺栓部和设置有径向通道的螺帽部,使得从所述流体通道排出的所述压缩腔流体首先进入所述轴向通道然后进入所述径向通道而发生换向。
有利地,所述径向通道包括贯穿所述螺帽部的相互交叉的两条通孔。
有利地,所述定涡旋还包括容纳所述浮动密封件并且限定所述背压腔的环形凹部,所述流体通道的排出端口设置在所述环形凹部的底部,在所述环形凹部的底部围绕所述排出端口设置有沉孔,所述沉孔构造成台阶状从而包括顶内壁面、顶表面、底表面和将所述顶表面与所述底表面连接的底内壁面,所述螺栓部与所述底内壁面螺纹连接从而将所述螺栓固定至所述定涡旋。
有利地,所述定涡旋还包括容纳所述浮动密封件并且限定所述背压腔的环形凹部,所述流体通道的排出端口设置在所述环形凹部的底部,在所述环形凹部的底部围绕所述排出端口设置有沉孔,所述气流换向结构布置在所述沉孔中使得所述气流换向结构不从所述沉孔中突出。
与现有的涡旋压缩机相比,本公开提供了改进的浮动密封设计:1)借助于在与中压压缩腔流体连通的流体通道与浮动密封件之间设置气流换向结构,使得即使在压缩机快速启动的情况下,所述浮动密封件在通过气流换向结构调节后的压缩腔流体的作用下稳定地轴向浮动,以实现可靠的密封。具体地,与中压压缩腔流体连通的流体通道中的压缩腔流体首先流过气流换向结构,流经该气流换向结构时其流动方向发生改变,例如,可以从近似轴向方向流动变为近似径向方向流动,然后充满整个背压腔,从而均匀的推动浮动密封圈上抬,实现隔绝各个腔体及提供动定涡旋贴合的下压力的功能。因此,换向后的压缩 腔流体不会再直接冲击浮动密封件,从而避免浮动密封件由于受力不均而倾斜卡死导致密封失效的现象;2)借助呈保持架形式的气流换向结构,还可以利用钣金工艺直接成型为一体构件,使得工艺简单并且减少配件成本;3)借助呈螺栓形式的气流换向结构,安装方式简单,提高装配效率和降低成本。并且还可以直接利用现有的六角头螺栓进行打孔改造,进一步提高零件加工效率高和降低成本。
附图说明
通过以下参照附图而提供的对具体实施例的详细描述,将能够更加容易地理解本公开的特征和优点。附图中,相同的特征或部件采用相同的附图标记来表示且附图不一定按比例绘制,并且附图中:
图1是相关技术的包括定涡旋和设置在定涡旋的环形凹部中的密封组件的涡旋压缩机的示意性剖视图。
图2是图1的涡旋压缩机的定涡旋和密封组件的放大示意性剖视图。
图3是根据本公开的一个实施方式的涡旋压缩机的包括呈保持架形式的气流换向结构的定涡旋的示意性立体图。
图4是图3的涡旋压缩机的定涡旋和保持架的示意性剖视图。
图5是图3的涡旋压缩机的保持架的立体图。
图6是根据本公开的另一实施方式的涡旋压缩机的包括呈螺栓形式的气流换向结构的定涡旋的示意性立体图。
图7是图6的涡旋压缩机的定涡旋和螺栓的示意性剖视图。
图8是图6的涡旋压缩机的螺栓的立体图。
图9是图6的螺栓的示出其换向通道的示意性剖视图。
图10是图6的螺栓的包括其换向通道的另一示意性剖视图。
具体实施方式
下面对本公开各种实施方式的描述仅仅是示范性的,而绝不是对本公开及其应用或用法的限制。在各个附图中采用相同的附图标记来表示相同的部件,因此相同部件的构造将不再重复描述。
首先将参照图1和图2描述涡旋压缩机的总体构造和运行原理。涡旋压缩 机(下文中有时也会称为压缩机)一般包括壳体110。壳体110可以包括大致圆筒形的本体111、设置在本体111一端的顶盖112、设置在本体111另一端的底盖114以及设置在顶盖112和本体111之间以将压缩机的内部空间分隔成高压侧和低压侧的隔板116。隔板116和顶盖112之间的空间构成高压侧,而隔板116、本体111和底盖114之间的空间构成低压侧。在低压侧设置有用于吸入流体的进气接头(未示出),在高压侧设置有用于排出压缩后的流体的排气接头119。壳体110中设置有由定子122和转子124构成的马达120。转子124中设置有驱动轴130以驱动由定涡旋150和动涡旋160构成的压缩机构。动涡旋160包括端板164、形成在端板一侧的毂部162和形成在端板另一侧的螺旋状的叶片166。定涡旋150包括端板154、形成在端板一侧的螺旋状的叶片156和形成在端板另一侧的环形凹部158,该环形凹部包括径向外侧壁和径向内侧壁。在端板的大致中央位置处形成有排气口159。排气口159周围的空间也构成高压侧。在定涡旋150的螺旋叶片156和动涡旋160的螺旋叶片166之间形成一系列体积在从径向外侧向径向内侧逐渐减小的压缩腔C1、C2和C3。其中,径向最外侧的压缩腔C1处于吸气压力,径向最内侧的压缩腔C3处于排气压力。中间的压缩腔C2处于吸气压力和排气压力之间,从而也被称之为中压压缩腔。
动涡旋160的一侧由主轴承座140的上部(即支撑部)支撑,驱动轴130的一端由设置在主轴承座140中的主轴承支撑。驱动轴130的一端设置有偏心曲柄销132,在偏心曲柄销132和动涡旋160的毂部162之间设置有卸载衬套。通过马达120的驱动,动涡旋160将相对于定涡旋150平动转动(即,动涡旋160的中心轴线绕定涡旋150的中心轴线旋转,但是动涡旋160本身不会绕自身的中心轴线旋转)以实现流体的压缩。上述平动转动通过定涡旋150和动涡旋160之间设置的十字滑环来实现。经过定涡旋150和动涡旋160压缩后的流体通过排气口159排出到高压侧。
为了防止高压侧的流体在特定情况下经由排气口159回流到低压侧,可以在排气口159处设置单向阀或排气阀190,该阀可以是可变容积比阀,例如可以在对一些排气压力和吸气压力比比较低的低压缩比的工况进行提前排气,以免对制冷剂过压缩造成功耗的损失,使得涡旋压缩机在更广的运行范围内保持高能效。
定涡旋150设置有定位孔151,主轴承座140上设置有用于穿过定位孔151 的螺栓141,该定位孔151和螺栓141构造成在它们之间形成轴向间隙和径向间隙,使得为定涡旋(相对于主轴承座)提供轴向柔性和径向柔性。
通常,在定涡旋150的环形凹部158中设置有作为浮动密封件的密封组件S。即,密封组件S设置在隔板116和定涡旋150之间。环形凹部158经由形成在定涡旋端板154中的通孔155(也称之为中压流体通道)与一系列压缩腔C1、C2、C3中的一个流体连通。优选地,环形凹部158经由通孔155与中压压缩腔C2流体连通。从而密封组件S与环形凹部158一起配合形成为动涡旋150提供背压的背压腔BC。密封组件S的轴向位移受到隔板116的限制。当各个压缩腔中的压力超过设定值时,这些压缩腔中的压力所产生的合力将超过背压腔BC中提供的下压力从而使得定涡旋150向上运动。此时,压缩腔中的流体将通过定涡旋150的螺旋叶片156的顶端与动涡旋160的端板164之间的间隙以及动涡旋160的螺旋叶片166的顶端与定涡旋150的端板154之间的间隙泄漏到低压侧以实现卸载,从而为涡旋压缩机提供了轴向柔性。因此,密封组件在来自中压通道的压缩腔流体的作用下轴向浮动以配合定涡旋的轴向浮动。
下面将更详细地描述密封组件S的构造和功能。如图10所示,密封组件S可以包括上板S1、下板S2和设置在上板S1与下板S2之间的第一密封件S3和第三密封件S5。密封组件S的形状与环形凹部158(背压腔BC)的形状基本对应,从而第一密封件S3可以抵靠环形凹部158的径向内侧壁实现密封,而第三密封件S5可以抵靠环形凹部158的径向外侧壁实现密封。此外,上板S1的上端可以抵靠隔板116或设置在隔板116上的套环117实现密封。
密封组件S在压缩机中实现了如下方式的密封:1)上板S1的上端抵靠隔板116上的套环117以实现高压侧和低压侧的隔开;2)第一密封件S3抵靠环形凹部158的径向内侧壁以实现高压侧与背压腔BC的隔开;3)第三密封件S5抵靠环形凹部158的径向外侧壁以实现背压腔BC与低压侧的隔开。
然而,例如在压缩机快速启动的情况下,进入定涡旋上的背压腔的流体流速太快并且瞬时冲击到浮动密封件/密封组件的下表面上以推动浮动密封件上升,浮动密封件由于其下表面受力不均而各部分上升速率不同,使得整个密封结构倾斜而卡死在背压腔两侧,进而导致高压侧、低压侧和背压腔之间流体泄漏而密封失效。
有鉴于此,本公开提供了一种具有改进的浮动密封构造的压缩机,并且结 合图1至图10对浮动密封构造进行描述。
参见图3至图5对本申请的一个实施方式进行描述,图3是根据本公开的一个实施方式的涡旋压缩机的包括呈保持架形式的气流换向结构的定涡旋的示意性立体图。图4是图3的涡旋压缩机的定涡旋和保持架的示意性剖视图。图5是图3的涡旋压缩机的保持架的立体图。
本公开旨在定涡旋的与中压压缩腔连通的流体通道(例如,设置在定涡旋端板154中的通孔155)与浮动密封件或密封组件之间设置有气流换向结构,气流换向结构构造成对从流体通道排出的压缩腔流体的方向进行调节,例如,将该压缩腔流体调节成与朝向浮动密封件的方向不同的方向。借助于上述气流换向结构,使得即使在压缩机快速启动的情况下浮动密封件在通过气流换向结构调节后的压缩腔流体的作用下稳定地轴向浮动,以实现可靠的密封,具体地,与中压压缩腔流体连通的流体通道中的压缩腔流体首先流过气流换向结构,流经气流换向结构时其流动方向发生改变,例如,可以从近似轴向方向流动变为近似径向方向流动或变为与轴向方向成角度的方向流动,然后充满整个背压腔,从而均匀的推动浮动密封圈上抬,实现隔绝各个腔体及提供动定涡旋贴合的下压力的功能。因此,换向后的压缩腔流体并不直接冲击浮动密封件,从而避免浮动密封件由于受力不均而倾斜卡死导致密封失效的现象。
参见图5,该气流换向结构可以呈保持架200的形式并且包括环形支承本体220和相对于环形支承本体轴向偏置的中央挡板240,环形支承本体与中央挡板通过至少一个连接臂230连接以在环形支承本体与中央挡板之间形成多个径向通道250。
借助于该保持架结构,来自流体通道的大致轴向流动的压缩腔流体被中央挡板阻挡,并且因此经由多个径向通道大致径向地(压缩腔流体从之前的大致轴向方向变成大致径向方向)流出,例如被导向至定涡旋的环形凹部的侧壁。附图中,中央挡板240垂直于轴向方向使得轴向流动的压缩腔流体从径向通道250大致径向地流出,在实施方式的其他方面,中央挡板可以相对于轴向方向倾斜一定角度,只要该倾斜角度的中央挡板使得从径向通道流出的压缩腔流体不直接冲击浮动密封件即可。
保持架形式的气流换向结构可以利用钣金工艺直接成型为一体构件,使得工艺简单并且减少配件成本。
保持架200还包括从环形支承本体延伸的卡接部,卡接部与定涡旋的对应部分卡接以将保持架固定至定涡旋。在根据第一实施方式的有利方面,在环形凹部158(参见图4)的底部围绕排出端口设置有沉孔180,该沉孔构造成台阶状从而包括顶内壁面181、顶表面182、底表面183和将顶表面与底表面连接的底内壁面184。
再参见图5,保持架200还可以包括第一卡接部222和第二卡接部221,第一卡接部222从环形支承本体220径向延伸并且第一卡接部的径向外端卡接于底内壁面184,第二卡接部221从环形支承本体220径向延伸再轴向延伸再径向延伸从而包括内径向部段、轴向部段和外径向部段,轴向部段卡接于底内壁面184,外径向部段的径向外端卡接于顶内壁面181。在附图中,示出了沿环形支承本体220周向均匀设置的6个第一卡接部222和对称布置的两个第二卡接部221,然而,本领域的技术人员可以根据需要设置卡接部的数目。并且,保持架200构造和布置成使得中央挡板240低于外径向部段或者低于外径向部段进和顶表面两者。
借助于保持架卡接于沉孔的构造,使得气流换向结构整体结构与端板表面齐平或位于端板表面之下,即,气流换向结构布置在沉孔中使得气流换向结构不从沉孔中突出,从而避免与浮动密封件的干涉。同时,卡接部与沉孔的配合连接使得将保持件稳固地连接至定涡旋,并且卡接部与沉孔的可拆卸的连接配合也有利于组装和维护。
接下来,参见图6至图10对本申请的另一个实施方式进行描述,图6是根据本公开的另一实施方式的涡旋压缩机的包括呈螺栓形式的气流换向结构的定涡旋的示意性立体图。图7是图6的涡旋压缩机的定涡旋和螺栓的示意性剖视图。图8是图6的涡旋压缩机的螺栓的立体图。图9是图6的螺栓的示出其换向通道的示意性剖视图。图10是图6的螺栓的包括其换向通道的另一示意性剖视图。
具体地,参见图6至图10,气流换向结构可以呈螺栓300的形式并且包括设置有轴向通道321的螺栓部320和设置有径向通道341的螺帽部340,使得从流体通道155排出的压缩腔流体首先进入轴向通道321然后进入径向通道341而发生换向。在图示的通气螺栓结构中,轴向通道为竖向孔,并且径向通道为横向通孔,并且,横向通孔可以是贯穿螺帽部的相互交叉连通的两个横向 通孔,螺栓的安装方式简单,可以提高装配效率和降低成本。在实施方式的有利方面,可以直接利用现有的六角头螺栓进行打孔改造,其中,横向通孔贯穿螺栓的螺帽部的相对的两个表面,这样使得零件加工效率高并且成本低。
在该实施方式中,也存在与上述实施方式相同的沉孔构造。具体地,参见图7,在环形凹部158的底部围绕排出端口设置有沉孔,沉孔构造成台阶状从而包括顶内壁面181、顶表面182、底表面183和将顶表面与底表面连接的底内壁面184,螺栓300的螺栓部320与底内壁面184螺纹连接从而将螺栓固定至定涡旋。
在本申请的实施方式中,例如呈保持架或呈螺栓形式的气流换向结构可以构造成使得流体通道保持常开。其中,作为气流换向结构的保持架的中央挡板或螺栓的螺帽部可以设置成用作与流体通道的排出端口间隔开的挡板。
尽管在此已详细描述了本公开的优选实施方式,但要理解的是本公开并不局限于在此详细描述和示出的具体结构,在不偏离本公开的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有这些变型和变体都落入本公开要求保护的权利要求的范围内。

Claims (12)

  1. 一种涡旋压缩机,包括:
    压缩机构(CM),所述压缩机构包括定涡旋(150)和动涡旋(160),所述定涡旋与所述动涡旋配合而形成用于对工作流体进行压缩的一系列压缩腔,所述定涡旋包括流体通道(155);以及
    浮动密封件(S),所述浮动密封件设置在所述定涡旋的一侧以在所述浮动密封件与所述定涡旋之间限定背压腔(BC),所述背压腔经由所述流体通道与所述压缩腔中的中压压缩腔连通,使得所述浮动密封件能够在来自所述中压压缩腔的压缩腔流体的作用下轴向浮动,
    其特征在于,在所述流体通道(155)与所述浮动密封件(S)之间设置有气流换向结构(200;300),所述气流换向结构构造成对从所述流体通道排出的所述压缩腔流体的方向进行调节。
  2. 根据权利要求1所述的涡旋压缩机,其中,所述气流换向结构构造成使得所述流体通道保持常开。
  3. 根据权利要求1所述的涡旋压缩机,其中,所述流体通道包括与所述背压腔(BC)流体连通的排出端口,所述气流换向结构包括设置成与所述排出端口间隔开的挡板。
  4. 根据权利要求1至3中任一项所述的涡旋压缩机,其中,所述气流换向结构呈保持架(200)的形式并且包括环形支承本体(220)和相对于所述环形支承本体轴向偏置的中央挡板(240),所述环形支承本体与所述中央挡板通过至少一个连接臂(230)连接以在所述环形支承本体与所述中央挡板之间形成多个径向通道(250)。
  5. 根据权利要求4所述的涡旋压缩机,其中,所述保持架为由钣金工艺直接成型的一体构件。
  6. 根据权利要求4所述的涡旋压缩机,其中,所述保持架还包括从所述环形支承本体延伸的卡接部(221,222),所述卡接部与所述定涡旋的对应部分卡接以将所述保持架固定至所述定涡旋。
  7. 根据权利要求6所述的涡旋压缩机,其中:
    所述定涡旋还包括容纳所述浮动密封件并且限定所述背压腔的环形凹部(158),所述流体通道的排出端口设置在所述环形凹部的底部,
    在所述环形凹部的底部围绕所述排出端口设置有沉孔(180),所述沉孔构造成台阶状从而包括顶内壁面(181)、顶表面(182)、底表面(183)和将所述顶表面与所述底表面连接的底内壁面(184),
    所述保持架还包括第一卡接部(222)和/或第二卡接部(221),所述第一卡接部(222)从所述环形支承本体(220)径向延伸并且所述第一卡接部的径向外端卡接于所述底内壁面(184),所述第二卡接部(221)从所述环形支承本体(220)径向延伸再轴向延伸再径向延伸从而包括内径向部段、轴向部段和外径向部段,所述轴向部段卡接于所述底内壁面(184),所述外径向部段的径向外端卡接于所述顶内壁面(181)。
  8. 根据权利要求7所述的涡旋压缩机,其中,所述保持架构造和布置成使得所述中央挡板(240)低于所述外径向部段或者低于所述外径向部段进和所述顶表面两者。
  9. 根据权利要求1至3中任一项所述的涡旋压缩机,其中,所述气流换向结构呈螺栓(300)的形式并且包括设置有轴向通道(321)的螺栓部(320)和设置有径向通道(341)的螺帽部(340),使得从所述流体通道(155)排出的所述压缩腔流体首先进入所述轴向通道(321)然后进入所述径向通道(341)而发生换向。
  10. 根据权利要求9所述的涡旋压缩机,其中,所述径向通道包括贯穿所述螺帽部的相互交叉的两条通孔。
  11. 根据权利要求9所述的涡旋压缩机,其中:
    所述定涡旋还包括容纳所述浮动密封件并且限定所述背压腔的环形凹部(158),所述流体通道的排出端口设置在所述环形凹部的底部,
    在所述环形凹部的底部围绕所述排出端口设置有沉孔,所述沉孔构造成台阶状从而包括顶内壁面(181)、顶表面(182)、底表面(183)和将所述顶表面与所述底表面连接的底内壁面(184),
    所述螺栓部(320)与所述底内壁面(184)螺纹连接从而将所述螺栓固定至所述定涡旋。
  12. 根据权利要求1至3中任一项所述的涡旋压缩机,其中:
    所述定涡旋还包括容纳所述浮动密封件并且限定所述背压腔的环形凹部(158),所述流体通道的排出端口设置在所述环形凹部的底部,
    在所述环形凹部的底部围绕所述排出端口设置有沉孔,所述气流换向结构布置在所述沉孔中使得所述气流换向结构不从所述沉孔中突出。
PCT/CN2023/088856 2022-04-19 2023-04-18 涡旋压缩机 WO2023202552A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210412992.3A CN116950893A (zh) 2022-04-19 2022-04-19 涡旋压缩机
CN202210412992.3 2022-04-19
CN202220912661.1 2022-04-19
CN202220912661.1U CN217813919U (zh) 2022-04-19 2022-04-19 涡旋压缩机

Publications (1)

Publication Number Publication Date
WO2023202552A1 true WO2023202552A1 (zh) 2023-10-26

Family

ID=88419243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088856 WO2023202552A1 (zh) 2022-04-19 2023-04-18 涡旋压缩机

Country Status (1)

Country Link
WO (1) WO2023202552A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526180A (ja) * 1991-07-19 1993-02-02 Mitsubishi Heavy Ind Ltd スクロール型流体機械
CN103541901A (zh) * 2012-07-10 2014-01-29 艾默生环境优化技术(苏州)有限公司 压力控制阀和涡旋压缩机
CN209800962U (zh) * 2019-03-28 2019-12-17 成都星科圣世低温科技有限公司 一种气体缓冲装置
CN211737459U (zh) * 2020-01-06 2020-10-23 艾默生环境优化技术(苏州)有限公司 涡旋组件和涡旋压缩机
CN112555149A (zh) * 2020-12-14 2021-03-26 珠海格力节能环保制冷技术研究中心有限公司 一种涡旋压缩机和空调器
CN113530817A (zh) * 2021-08-27 2021-10-22 广东美的环境科技有限公司 压缩组件、涡旋压缩机及空调器
CN113931842A (zh) * 2020-06-29 2022-01-14 艾默生环境优化技术(苏州)有限公司 涡旋压缩机构和涡旋压缩机
CN217813919U (zh) * 2022-04-19 2022-11-15 艾默生环境优化技术(苏州)有限公司 涡旋压缩机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526180A (ja) * 1991-07-19 1993-02-02 Mitsubishi Heavy Ind Ltd スクロール型流体機械
CN103541901A (zh) * 2012-07-10 2014-01-29 艾默生环境优化技术(苏州)有限公司 压力控制阀和涡旋压缩机
CN209800962U (zh) * 2019-03-28 2019-12-17 成都星科圣世低温科技有限公司 一种气体缓冲装置
CN211737459U (zh) * 2020-01-06 2020-10-23 艾默生环境优化技术(苏州)有限公司 涡旋组件和涡旋压缩机
CN113931842A (zh) * 2020-06-29 2022-01-14 艾默生环境优化技术(苏州)有限公司 涡旋压缩机构和涡旋压缩机
CN112555149A (zh) * 2020-12-14 2021-03-26 珠海格力节能环保制冷技术研究中心有限公司 一种涡旋压缩机和空调器
CN113530817A (zh) * 2021-08-27 2021-10-22 广东美的环境科技有限公司 压缩组件、涡旋压缩机及空调器
CN217813919U (zh) * 2022-04-19 2022-11-15 艾默生环境优化技术(苏州)有限公司 涡旋压缩机

Similar Documents

Publication Publication Date Title
US11635078B2 (en) Compressor having capacity modulation assembly
CN100419270C (zh) 压缩机的排放阀
US6027321A (en) Scroll-type compressor having an axially displaceable scroll plate
AU1671601A (en) Scroll compressor
CN217813919U (zh) 涡旋压缩机
WO2023202552A1 (zh) 涡旋压缩机
US20070031276A1 (en) Rotary compressor
CN214196666U (zh) 涡旋压缩机
WO2003054391A1 (en) Suction mechanism of rotary compressor
CN116950893A (zh) 涡旋压缩机
WO2022127768A1 (zh) 涡旋压缩机
JPH09112450A (ja) スクロール圧縮機
JP2009138641A (ja) 圧縮機
US5803713A (en) Multi-stage liquid ring vacuum pump-compressor
CN114593075B (zh) 一种分子泵
JPH03149382A (ja) スクロール圧縮機
CN114635855A (zh) 涡旋压缩机
CN218030640U (zh) 涡旋压缩机
CN218062656U (zh) 涡旋压缩机
WO2024002348A1 (zh) 定涡旋组件和涡旋压缩机
WO2023203947A1 (ja) 流体圧縮機
KR100284851B1 (ko) 스크롤 압축기의 과압축 방지장치
JP2003278673A (ja) スクリュー圧縮機
CN116816682A (zh) 压缩机
CA2545394A1 (en) Seal member for scroll compressors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791207

Country of ref document: EP

Kind code of ref document: A1