WO2023202331A1 - 一种基于氮化铝镓材料的发光二极管外延结构及其制造方法 - Google Patents

一种基于氮化铝镓材料的发光二极管外延结构及其制造方法 Download PDF

Info

Publication number
WO2023202331A1
WO2023202331A1 PCT/CN2023/084342 CN2023084342W WO2023202331A1 WO 2023202331 A1 WO2023202331 A1 WO 2023202331A1 CN 2023084342 W CN2023084342 W CN 2023084342W WO 2023202331 A1 WO2023202331 A1 WO 2023202331A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium nitride
aluminum gallium
layer
type aluminum
light
Prior art date
Application number
PCT/CN2023/084342
Other languages
English (en)
French (fr)
Inventor
廖翊韬
Original Assignee
徐州立羽高科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州立羽高科技有限责任公司 filed Critical 徐州立羽高科技有限责任公司
Publication of WO2023202331A1 publication Critical patent/WO2023202331A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds

Definitions

  • the present invention relates to the technical field of semiconductors, and in particular, to a light-emitting diode epitaxial structure based on aluminum gallium nitride material and a manufacturing method thereof.
  • Visible spectrum LEDs based on indium gallium nitride and aluminum indium gallium phosphorus material systems have matured and are currently in mass production.
  • the development of UV LEDs is still hampered by many difficulties, including the fundamental material properties of aluminum gallium nitride alloys, especially alloys with high aluminum content.
  • EQE external quantum efficiencies
  • deep UV LEDs emitting less than 300 nanometers only have an EQE of up to 1% .
  • UV light-emitting diodes with emission wavelengths in the 230-350 nm range are expected to have a wide range of applications, most of which are based on the interaction between UV radiation and biological materials. Typical applications include surface disinfection, water purification, medical devices and biochemistry, ultra-high density optical recording light sources, white light illumination, fluorescence analysis, sensing and zero-emission vehicles. Despite years of intensive research, UV light-emitting diodes, especially those emitting less than 300 nanometers, are still inefficient compared to blue or green devices.
  • UV light-emitting diodes An important reason for the low efficiency of UV light-emitting diodes comes from the absorption of UV light by p-type gallium nitride materials. Since p-type aluminum gallium nitride with high aluminum content is difficult to provide sufficient hole concentration and conductivity, UV light-emitting diodes still continue to use the pn structure of p-type gallium nitride. Therefore, finding a new p-type layer structure solution that simultaneously meets ultraviolet light transmission and high conductivity is a key factor in breaking through the efficiency limitations of ultraviolet light-emitting diodes.
  • the purpose of the present invention is to provide a light-emitting diode epitaxial structure based on aluminum gallium nitride material and a manufacturing method thereof, which has the effect of effectively extracting ultraviolet light absorbed in traditional ultraviolet light-emitting diodes from the p-plane.
  • a light-emitting diode epitaxial structure based on aluminum gallium nitride material including a first layer of n-type aluminum gallium nitride disposed on a substrate and an aluminum nitride buffer layer, an aluminum gallium nitride active layer, and a p-type nitrogen aluminum gallium nitride, and a second layer of n-type aluminum gallium nitride structure placed above the p-type aluminum gallium nitride along the epitaxial growth direction, the main emission wavelength of the aluminum gallium nitride active layer is between 255 nanometers to 340 nanometers, between the p-type aluminum gallium nitride epitaxial layer and the second n-type aluminum gallium nitride epitaxial layer, there is an epitaxial layer mainly composed of gallium nitride, whose energy band bandwidth is smaller than the above-mentioned p -type aluminum gallium nitride and the second layer of n-
  • the thickness of the second n-type aluminum gallium nitride layer is 100 nanometers.
  • the thickness of the second n-type aluminum gallium nitride layer is 100 nanometers to 200 nanometers.
  • the thickness of the second n-type aluminum gallium nitride layer is 100 nanometers to 300 nanometers.
  • the thickness of the second n-type aluminum gallium nitride layer is 200 nanometers to 500 nanometers.
  • the thickness of the second n-type aluminum gallium nitride layer is between 0.8 times and 3 times the main wavelength of the ultraviolet light emitting diode.
  • a method for manufacturing a light-emitting diode epitaxial structure based on aluminum gallium nitride material is formed through wet etching and photolithography mask processes, so that the surface of the second layer of n-type aluminum gallium nitride forms a pyramid. Shape microstructure.
  • a method of manufacturing a light-emitting diode epitaxial structure based on aluminum gallium nitride material is made through dry etching and photolithography mask processes so that the surface of the second layer of n-type aluminum gallium nitride appears at xy plane (i.e., a two-dimensional plane perpendicular to the epitaxial growth direction plane), and such discontinuity can destroy the transmission of ultraviolet light in the epitaxial layer (ie, destroy the waveguide transmission or total reflection of light in the plane) and promote light extraction.
  • a method for manufacturing an epitaxial structure of a light-emitting diode based on aluminum gallium nitride material uses an electron beam lithography process or a nanoimprint process so that the surface of the second layer of n-type aluminum gallium nitride appears in x-y Discontinuity in the plane (i.e., a two-dimensional plane perpendicular to the epitaxial growth direction), and such discontinuity can destroy the transmission of ultraviolet light in the epitaxial layer (i.e., destroy the waveguide transmission or total reflection of light in the plane) ) to promote light extraction, the surface of the second layer of n-type aluminum gallium nitride forms a three-dimensional geometric structure similar to photonic crystals and nanowires.
  • Figure 1 shows the unprocessed epitaxial layer structure of the present invention
  • Figure 2 shows the epitaxial layer structure processed by the wet chemical etching process
  • Figure 3 shows the epitaxial layer structure processed by dry chemical etching process
  • Figure 4 shows the epitaxial layer structure processed by the electron beam lithography process or the nanoimprint process.
  • the marks in the figure are: 1. Substrate; 2. Aluminum nitride buffer layer; 3. First layer of n-type aluminum gallium nitride; 4. Aluminum gallium nitride active layer; 5. p-type aluminum nitride Gallium; 6. Gallium nitride layer; 7. The second layer of n-type aluminum gallium nitride.
  • the aluminum gallium nitride layer may be grown on a substrate, a buffer layer, another III-V material layer, or another material and form part of a semiconductor structure used in an optoelectronic or electronic component or device, such as an emitter , lasers, diodes, phototubes, solar cells, transistors, memory devices, microprocessors.
  • a semiconductor structure made by the method includes a layer containing aluminum gallium nitride material produced using a non-planar growth pattern. The growth surface of this layer is atomically smooth and has an RMS roughness of less than about 1 nanometer as measured by AFM.
  • the first quantum well layer is grown by a method selected from the group consisting of molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD, or MOVPE), and atomic layer deposition (ALD).
  • MBE molecular beam epitaxy
  • MOCVD metal organic chemical vapor deposition
  • ALD atomic layer deposition
  • the first quantum layer includes regions with different aluminum nitride (AlN) mole fractions, which regions are distributed perpendicular to the growth direction as a result of the growth process.
  • AlN aluminum nitride
  • the oxygen impurity concentration in the first quantum well layer is less than 1 ⁇ 10 18 atoms per cm 3 .
  • the growth step produces a quantum well layer with a smooth surface.
  • the smooth surface is substantially free of surface structure, and the smooth surface has a root mean square surface roughness of less than about 1 nanometer as measured by atomic force microscopy. This does not include creating a superlattice structure associated with the quantum well layer.
  • the oxygen impurity concentration in the barrier layer is less than 1 ⁇ 10 18 atoms per cm 3 . It also includes growing a buffer layer of AlN, GaN, aluminum gallium nitride or aluminum gallium nitride containing In directly on the surface of the substrate.
  • the substrate includes a material selected from the group consisting of: gemstone, silicon wafer, aluminum nitride, gallium nitride, aluminum gallium nitride, silicon carbide.
  • the buffer layer has a thickness ranging from about 1 micron to about 5 microns.
  • the buffer layer includes a polycrystalline or non-single crystal structure. wherein the substrate is sapphire, and the surface of the sapphire substrate on which the buffer layer is grown is nitrided by exposure to ammonia or plasma-activated nitrogen prior to growing the buffer layer . Which also includes An n-type aluminum gallium nitride layer is grown on the buffer layer.
  • the aluminum gallium nitride material of the n-type aluminum gallium nitride layer is described by the molecular formula Al(x)Ga(1-x)N, where 0 ⁇ x ⁇ 1.
  • the n-type aluminum gallium nitride layer has a thickness ranging from about 100 nanometers to about 10 micrometers.
  • the n-type aluminum gallium nitride layer is doped with silicon (Si) or germanium (Ge).
  • the fabricated LED has an electroluminescence emission peak in the range from about 200 nanometers to about 365 nanometers.
  • the doping element is Si, and the Si concentration is in a range from about 1 ⁇ 10 16 cm -3 to about 1 ⁇ 10 21 cm -3 .
  • a light-emitting diode epitaxial structure based on aluminum gallium nitride material includes a first layer of n-type aluminum gallium nitride 3 disposed on a substrate 1 and an aluminum nitride buffer layer 2, nitride Aluminum gallium active layer 4, p-type aluminum gallium nitride 5, and a second layer n-type aluminum gallium nitride structure placed above the p-type aluminum gallium nitride along the epitaxial growth direction, the aluminum gallium nitride has The main emission wavelength of the source layer 4 is between 255 nanometers and 340 nanometers.
  • the p-type aluminum gallium nitride 5 epitaxial layer and the second layer n-type aluminum gallium nitride 7 epitaxial layer contains a layer mainly composed of nitrogen.
  • the energy band bandwidth of the epitaxial layer of the gallium layer 6 is smaller than the above-mentioned p-type aluminum gallium nitride 5 and the second layer n-type aluminum gallium nitride 7 epitaxial layer.
  • the surface has a roughened structure.
  • Preparation process A deep ultraviolet LED structure based on aluminum gallium nitride material system is used, and its luminescence band is between 255 nanometers and 340 nanometers.
  • the substrate 1 used includes but is not limited to: sapphire, silicon wafer, aluminum nitride, gallium nitride, aluminum gallium nitride, silicon carbide, etc.
  • the n-type layer used includes but is not limited to: an aluminum gallium nitride epitaxial layer doped with silicon element, and its aluminum component is higher than 10%.
  • the active layers used include but are not limited to: quantum wells, quantum dots, quantum disks and other structures composed of epitaxial layers such as gallium nitride, aluminum gallium nitride, and aluminum nitride.
  • an electron blocking layer based on aluminum gallium nitride.
  • n-type aluminum gallium nitride structure above its p-type carrier injection structure based on the tunneling effect (that is, along the epitaxial growth direction of the wafer), and its thickness is not less than 100 nanometers.
  • the n-type aluminum gallium nitride structure in step 6 is optimized for light extraction design and process development, so that its structure can maximize the extraction of ultraviolet light emitted from the active layer to the p-plane.
  • Light including but not limited to:
  • Option 1 Refer to Figure 2, a method for manufacturing a light-emitting diode epitaxial structure based on aluminum gallium nitride material.
  • the roughened structure is formed through wet etching and photolithography mask processes, so that the second layer of n-type nitrogen
  • the surface of aluminum gallium 7 forms a pyramid-shaped microstructure.
  • Option 2 Refer to Figure 3, a method for manufacturing a light-emitting diode epitaxial structure based on aluminum gallium nitride material.
  • the roughened structure is made of a second layer of aluminum gallium nitride through dry etching and photolithography mask processes. Discontinuities appear on the surface of the x-y plane (i.e., the two-dimensional plane perpendicular to the epitaxial growth direction), and such discontinuities can destroy the transmission of ultraviolet light in the epitaxial layer (i.e., destroy the transmission of light in this plane Waveguide transmission or total reflection) to promote light extraction.
  • Option 3 Refer to Figure 4, a method for manufacturing a light-emitting diode epitaxial structure based on aluminum gallium nitride material.
  • the roughened structure is made of n-type nitridation of the second layer through an electron beam lithography process or a nanoimprint process.
  • Discontinuities appear on the surface of aluminum gallium 7 in the x-y plane (i.e., the two-dimensional plane perpendicular to the epitaxial growth direction), and such discontinuities can destroy the transmission of ultraviolet light in the epitaxial layer (i.e., destroy the transmission of light in the epitaxial layer)
  • the planar waveguide transmission or total reflection promotes light extraction, and the surface of the second layer n-type aluminum gallium nitride 7 forms a three-dimensional geometric structure similar to photonic crystals and nanowires.
  • the above three solutions can mainly increase the effect of ultraviolet light output on the P surface.
  • the effects achieved include but are not limited to:

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

公开了一种基于氮化铝镣材料的发光二极管外延结构及其制造方法。该结构包含设置在衬底(1)和氧化铝缓冲层(2)上的第一层n-型氮化铝镣(3),氮化铝镣有源层(4),p-型氮化铝镣(5),氮化镣层(6),第二层n-型氮化铝镣(7)。所述氮化铝镣有源层(4)的主发光波长介于255纳米到340纳米之间,所述氮化镣层(6)的能带带宽小于上述p-型氮化铝镣(5)和第二层n-型氮化铝镣(7),在所述第二层n-型氮化铝镣(7)的表面有粗化结构。

Description

一种基于氮化铝镓材料的发光二极管外延结构及其制造方法 技术领域
本发明涉及半导体的技术领域,尤其是指一种基于氮化铝镓材料的发光二极管外延结构及其制造方法。
背景技术
基于氮化铟镓和铝铟镓磷材料系统的可见光谱LED已经成熟,目前正在批量生产。然而,紫外光LED的发展仍然受到许多困难的阻碍,包括氮化铝镓合金的基本材料性能,特别是高铝含量的合金。例如,与外部量子效率大于50%(EQE,提取光子与注入电子-空穴对的比率)的可见光谱范围内的LED相比,发射小于300纳米的深紫外LED仅具有可达1%的EQE。预计发射波长在230-350纳米范围内的紫外发光二极管将有广泛的应用,其中大部分基于紫外辐射和生物材料之间的相互作用。典型应用包括表面消毒、水净化、医疗设备和生物化学、超高密度光记录光源、白光照明、荧光分析、传感和零排放车辆。尽管经过多年的深入研究,紫外发光二极管,尤其是那些发射小于300纳米的,与蓝色或绿色器件相比仍然效率低下。
紫外发光二极管效率低下的一个重要原因来自p型氮化镓材料对紫外光的吸收。由于高铝组分的p型氮化铝镓难以提供足够的空穴浓度和导电率,紫外发光二极管仍然继续使用p型氮化镓的pn结构。于是,寻找新的p型层结构方案,同时满足对紫外线透光和高导电率,是突破紫外发光二极管效率限制的关键因素。
发明内容
本发明的目的是提供一种基于氮化铝镓材料的发光二极管外延结构及其制造方法,其具有将传统紫外发光二极管中被吸收的紫外光,有效的从p面提取出来的效果。
本发明的上述发明目的是通过以下技术方案得以实现的:
一种基于氮化铝镓材料的发光二极管外延结构,包含设置在衬底和氮化铝缓冲层上的第一层n-型氮化铝镓,氮化铝镓有源层,p-型氮化铝镓,和沿着外延生长方向置于p-型氮化铝镓上方的第二层n-型氮化铝镓结构,所述氮化铝镓有源层的主发光波长介于255纳米到340纳米之间,在p-型氮化铝镓外延层和第二层n-型氮化铝镓外延层的中间,包含一个主要为氮化镓的外延层,其能带带宽小于上述p-型氮化铝镓和第二层n-型氮化铝镓外延层,在第二层n-型氮化铝镓的表面有粗化结构。
优选的,所述第二层n-型氮化铝镓层,其厚度为100纳米。
优选的,所述第二层n-型氮化铝镓层,其厚度为100纳米至200纳米。
优选的,所述第二层n-型氮化铝镓层,其厚度为100纳米至300纳米。
优选的,所述第二层n-型氮化铝镓层,其厚度为200纳米至500纳米。
优选的,所述第二层n-型氮化铝镓层,其厚度为该紫外发光二极管发光主波长的0.8倍到3倍之间。
一种基于氮化铝镓材料的发光二极管外延结构的制造方法,所述粗化结构通过湿法刻蚀和光刻掩膜工艺形成,使得第二层n-型氮化铝镓的表面形成金字塔形状的微观结构。
一种基于氮化铝镓材料的发光二极管外延结构的制造方法,所述粗化结构通过干法刻蚀和光刻掩膜工艺,使得第二层n-型氮化铝镓的表面出现在x-y平面(即,与外延生长方向垂直的二维平 面)的不连续性,且该类不连续性可以破坏紫外光在该外延层内的传输(即,破坏光在该平面的波导传输或全反射)而促进出光。
一种基于氮化铝镓材料的发光二极管外延结构的制造方法,所述粗化结构通过电子束光刻工艺或者纳米压印工艺,使得第二层n-型氮化铝镓的表面出现在x-y平面(即,与外延生长方向垂直的二维平面)的不连续性,且该类不连续性可以破坏紫外光在该外延层内的传输(即,破坏光在该平面的波导传输或全反射)而促进出光,该第二层n-型氮化铝镓的表面形成类似于光子晶体和纳米线的三维几何结构。
综上所述,本发明的有益效果:
在前序三种方案的基础上,进一步采用A-D的光提取结构方案,可以达到增加紫外光在p面输出的效果,其达到的效果包括但不限于:
1、增加紫外发光二极管整体量子效率的效果,其主要增量的贡献来自于光提取效率的增加。
2、减少紫外光在氮化铝镓外延层的光波导传输效应。
3、减少紫外发光二极管的发热效应。
4、提高紫外发光二极管的光功率输出值。
5、提高紫外发光二极管的外量子效率(EQE)。
附图说明
图1为本发明的未处理的外延层结构;
图2为湿法化学刻蚀工艺处理的外延层结构;
图3为干法化学刻蚀工艺处理的外延层结构;
图4为电子束光刻工艺或者纳米压印工艺处理的外延层结构。
图中标识分别为,1、衬底;2、氮化铝缓冲层;3、第一层n-型氮化铝镓;4、氮化铝镓有源层;5、p-型氮化铝镓;6、氮化镓层;7、第二层n-型氮化铝镓。
具体实施方式
为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。以下结合附图对本发明进行详细的描述。
以下结合附图对本发明作进一步详细说明。
氮化铝镓层可生长在基板、缓冲层、另一III-V族材料层或另一种材料上,并形成半导体结构的一部分,该半导体结构用于光电或电子元件或装置,例如发射器、激光器、二极管、光电管、太阳能电池、晶体管、存储装置、微处理器,本发明的另一方面是通过该方法制成的半导体结构。该半导体结构包括含有使用非平面生长模式制成的氮化铝镓材料的层。该层的生长表面是原子平滑的,并且通过AFM测量的RMS粗糙度小于约1纳米。其中,第一量子阱层由从以下组成的组中选择的方法生长:分子束外延(MBE)、金属有机化学气相沉积(MOCVD,或MOVPE)、和原子层沉积(ALD)。其中,所述第一量子层包括具有不同氮化铝(AlN)摩尔分数的区域,所述区域作为生长过程的结果而垂直于生长方向分布。其中,所述第一量子阱层中的氧杂质浓度小于1×1018个原子每cm3。其中,所述生长步骤产生具有光滑表面的量子阱层。其中,所述光滑表面基本没有面结构,所述光滑表面具有由原子力显微镜法测量的小于约1纳米的均方根表面粗糙度。其中,不包括产生与所述量子阱层相关联的超晶格结构。其中,所述势垒层中的氧杂质浓度小于1×1018个原子每cm3。还包括直接在衬底的表面上生长AlN、GaN、氮化铝镓或含有In的氮化铝镓的缓冲层。其中,所述衬底包括从由以下组成的组中选择的材料:宝石、硅片、氮化铝、氮化镓、氮化铝镓、碳化硅。其中,所述缓冲层具有从约1微米到约5微米范围中的厚度。其中,所述缓冲层包括多晶或非单晶结构。其中,所述衬底是蓝宝石,并且在生长所述缓冲层之前,通过暴露于氨或等离子体活化的氮来使所述缓冲层在其上生长的所述蓝宝石衬底的所述表面氮化。其中,还包括 在所述缓冲层上生长n型氮化铝镓层。其中,由分子式Al(x)Ga(1-x)N来描述所述n型氮化铝镓层的氮化铝镓材料,其中,0≤x≤1。其中,所述n型氮化铝镓层具有从约100纳米到约10微米范围中的厚度。其中,以硅(Si)或锗(Ge)掺杂所述n型氮化铝镓层。其中,所制造的LED具有从约200纳米到约365纳米范围中的电致发光发射峰。其中,所述掺杂元素是Si,并且所述Si浓度处于从约1×1016cm-3到约1×1021cm-3的范围中。
参见图1到图4,一种基于氮化铝镓材料的发光二极管外延结构,包含设置在衬底1和氮化铝缓冲层2上的第一层n-型氮化铝镓3,氮化铝镓有源层4,p-型氮化铝镓5,和沿着外延生长方向置于p型氮化铝镓上方的第二层n型氮化铝镓结构,所述氮化铝镓有源层4的主发光波长介于255纳米到340纳米之间,在p-型氮化铝镓5外延层和第二层n-型氮化铝镓7外延层的中间,包含一个主要为氮化镓层6的外延层,其能带带宽小于上述p-型氮化铝镓5和第二层n-型氮化铝镓7外延层,在第二层n-型氮化铝镓7的表面有粗化结构。
制备过程:采用基于氮化铝镓材料系统的深紫外LED结构,其发光波段为介于255纳米到340纳米之间。
1、其采用的衬底1包括但不限于:蓝宝石、硅片、氮化铝、氮化镓、氮化铝镓、碳化硅等等。
2、其采用的n-型层包括但不限于:掺有硅元素的氮化铝镓外延层,其含铝组分高于10%。
3、其采用的有源层包括但不限于:氮化镓,氮化铝镓,氮化铝等外延层组成的量子阱、量子点、量子盘等结构。
4、在其有源层的上方(即,沿着晶圆的外延生长方向),有一层基于氮化铝镓的电子阻挡层。
5、在其电子阻挡层的上方(即,沿着晶圆的外延生长方向),生长一个基于隧穿效应的p型载子注入结构。
6、在其基于隧穿效应的p-型载子注入结构上方(即,沿着晶圆的外延生长方向),生长一个n-型氮化铝镓结构,并且其厚度不低于100纳米。
在以上方案的基础上,对第6步骤中的n-型氮化铝镓结构进行光提取的优化设计和工艺制程开发,使得其结构能够最大程度的提取从有源层发射至p面的紫外光。包括但不限于:
方案一:参见图2,一种基于氮化铝镓材料的发光二极管外延结构的制造方法,所述粗化结构通过湿法刻蚀和光刻掩膜工艺形成,使得第二层n-型氮化铝镓7的表面形成金字塔形状的微观结构。
方案二:参见图3,一种基于氮化铝镓材料的发光二极管外延结构的制造方法,所述粗化结构通过干法刻蚀和光刻掩膜工艺,使得第二层型氮化铝镓的表面出现在x-y平面(即,与外延生长方向垂直的二维平面)的不连续性,且该类不连续性可以破坏紫外光在该外延层内的传输(即,破坏光在该平面的波导传输或全反射)而促进出光。
方案三:参见图4,一种基于氮化铝镓材料的发光二极管外延结构的制造方法,所述粗化结构通过电子束光刻工艺或者纳米压印工艺,使得第二层n-型氮化铝镓7的表面出现在x-y平面(即,与外延生长方向垂直的二维平面)的不连续性,且该类不连续性可以破坏紫外光在该外延层内的传输(即,破坏光在该平面的波导传输或全反射)而促进出光,该第二层n-型氮化铝镓7的表面形成类似于光子晶体和纳米线的三维几何结构。
以上三种方案主要能够增加紫外光在P面输出的效果,其达到的效果包括但不限于:
1、增加紫外发光二极管整体量子效率的效果,其主要增量的贡献来自于光提取效率的增加。
2、减少紫外光在氮化铝镓外延层的光波导传输效应。
3、减少紫外发光二极管的发热效应。
4、提高紫外发光二极管的光功率输出值。
5、提高紫外发光二极管的外量子效率(EQE)。
以上所述,仅是本发明较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明以较佳实施例公开如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当利用上述揭示的技术内容作出些许变更或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明技术是指对以上实施例所作的任何简单修改、等同变化与修饰,均属于本发明技术方案的范围内。

Claims (9)

  1. 一种基于氮化铝镓材料的发光二极管外延结构,其特征在于:包含设置在衬底(1)和氧化铝缓冲层(2)上的第一层n-型氮化铝镓(3),氮化铝镓有源层(4),p-型氮化铝镓(5),和沿着外延生长方向置于p-型氮化铝镓(5)上方的第二层n-型氮化铝镓结构(7),所述氮化铝镓有源层(4)的主发光波长介于255纳米到340纳米之间,在p-型氮化铝镓(5)外延层和第二层n-型氮化铝镓(7)外延层的中间,包含一个主要为氮化镓层(6)的外延层,其能带带宽小于上述p-型氮化铝镓(5)和第二层n-型氮化铝镓(7)外延层,在第二层n-型氮化铝镓(7)的表面有粗化结构。
  2. 根据权利要求1所述一种基于氮化铝镓材料的发光二极管外延结构,其特征在于:所述第二层n-型氮化铝镓(7)层,其厚度为100纳米。
  3. 根据权利要求1所述一种基于氮化铝镓材料的发光二极管外延结构,其特征在于:所述第二层n-型氮化铝镓(7)层,其厚度为100纳米至200纳米。
  4. 根据权利要求1所述一种基于氮化铝镓材料的发光二极管外延结构,其特征在于:所述第二层n-型氮化铝镓(7)层,其厚度为100纳米至300纳米。
  5. 根据权利要求1所述一种基于氮化铝镓材料的发光二极管外延结构,其特征在于:所述第二层n-型氮化铝镓(7)层,其厚度为200纳米至500纳米。
  6. 根据权利要求1所述一种基于氮化铝镓材料的发光二极管外延结构,其特征在于:上述第二层n-型氮化铝镓(7)层,其厚度为该氮化铝镓有源层(4)发光主波长的0.8倍到3倍之间。
  7. 实现权利要求1到6任意一项所述一种基于氮化铝镓材料的发光二极管外延结构的制造方法,其特征在于:所述粗化结构通过湿法刻蚀和光刻掩膜工艺形成,使得第二层n-型氮化铝镓(7)的表面形成金字塔形状的微观结构。
  8. 实现权利要求1到6任意一项所述一种基于氮化铝镓材料的发光二极管外延结构的制造方法,其特征在于:所述粗化结构通过干法刻蚀和光刻掩膜工艺,使得第二层n-型氮化铝镓(7)的表面出现在x-y平面的不连续性,且该类不连续性可以破坏紫外光在该外延层内的传输而促进出光。
  9. 实现权利要求1到6任意一项所述一种基于氮化铝镓材料的发光二极管外延结构的制造方法,其特征在于:所述粗化结构通过电子束光刻工艺或者纳米压印工艺,使得第二层n-型氮化铝镓(7)的表面出现在x-y平面的不连续性,且该类不连续性可以破坏紫外光在该外延层内的传输而促进出光,该第二层n-型氮化铝镓(7)的表面形成类似于光子晶体和纳米线的三维几何结构。
PCT/CN2023/084342 2022-04-19 2023-03-28 一种基于氮化铝镓材料的发光二极管外延结构及其制造方法 WO2023202331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210409685.X 2022-04-19
CN202210409685.XA CN114497307B (zh) 2022-04-19 2022-04-19 一种基于氮化铝镓材料的发光二极管外延结构及其制造方法

Publications (1)

Publication Number Publication Date
WO2023202331A1 true WO2023202331A1 (zh) 2023-10-26

Family

ID=81489310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084342 WO2023202331A1 (zh) 2022-04-19 2023-03-28 一种基于氮化铝镓材料的发光二极管外延结构及其制造方法

Country Status (2)

Country Link
CN (1) CN114497307B (zh)
WO (1) WO2023202331A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497307B (zh) * 2022-04-19 2022-08-02 徐州立羽高科技有限责任公司 一种基于氮化铝镓材料的发光二极管外延结构及其制造方法
CN114583026B (zh) * 2022-05-05 2022-11-29 徐州立羽高科技有限责任公司 一种半导体深紫外光源结构
CN117253947A (zh) * 2023-11-20 2023-12-19 徐州立羽高科技有限责任公司 一种深紫外发光外延片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301044A (zh) * 2018-10-15 2019-02-01 华中科技大学鄂州工业技术研究院 基于n型掺杂氧化镓正装结构的深紫外LED垂直芯片
CN110447113A (zh) * 2017-03-24 2019-11-12 威斯康星州男校友研究基金会 具有多层p型触点的III-V族氮化物基发光器件
US20210249554A1 (en) * 2020-02-12 2021-08-12 Epileds Technologies, Inc. Ultraviolet light-emitting diode and method of manufacturing the same
CN114497307A (zh) * 2022-04-19 2022-05-13 徐州立羽高科技有限责任公司 一种基于氮化铝镓材料的发光二极管外延结构及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208507A (zh) * 2011-05-03 2011-10-05 映瑞光电科技(上海)有限公司 发光二极管及其制造方法
CN103489975B (zh) * 2013-10-08 2016-09-07 东南大学 一种具有隧道结结构的氮极性面发光二极管
CN104157761B (zh) * 2014-08-30 2017-02-15 太原理工大学 一种提高光取出率的氮化镓基发光二极管结构及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110447113A (zh) * 2017-03-24 2019-11-12 威斯康星州男校友研究基金会 具有多层p型触点的III-V族氮化物基发光器件
CN109301044A (zh) * 2018-10-15 2019-02-01 华中科技大学鄂州工业技术研究院 基于n型掺杂氧化镓正装结构的深紫外LED垂直芯片
US20210249554A1 (en) * 2020-02-12 2021-08-12 Epileds Technologies, Inc. Ultraviolet light-emitting diode and method of manufacturing the same
CN114497307A (zh) * 2022-04-19 2022-05-13 徐州立羽高科技有限责任公司 一种基于氮化铝镓材料的发光二极管外延结构及其制造方法

Also Published As

Publication number Publication date
CN114497307B (zh) 2022-08-02
CN114497307A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023202331A1 (zh) 一种基于氮化铝镓材料的发光二极管外延结构及其制造方法
US8138493B2 (en) Optoelectronic semiconductor device
EP2297785B1 (en) Optoelectronic semiconductor device
CN101910050B (zh) 相异材料上的纳米线生长
KR100828873B1 (ko) 질화물 반도체 발광소자 및 그 제조방법
US7265374B2 (en) Light emitting semiconductor device
US20100019263A1 (en) Rough structure of optoelectronic device and fabrication thereof
US9000414B2 (en) Light emitting diode having heterogeneous protrusion structures
US20080043795A1 (en) Light-Emitting Device
CN110808320B (zh) 深紫外led结构及其制作方法
KR101023135B1 (ko) 이중요철구조의 기판을 갖는 반도체 발광소자 및 그 제조방법
An et al. Near ultraviolet light emitting diode composed of n-GaN∕ ZnO coaxial nanorod heterostructures on a p-GaN layer
CN114583026B (zh) 一种半导体深紫外光源结构
CN102214748A (zh) 一种氮化镓基垂直结构led外延结构及制造方法
KR100682873B1 (ko) 반도체 발광 소자 및 그 제조 방법
CN101872820B (zh) 具有纳米结构插入层的GaN基LED
Hsu et al. InGaN-GaN MQW leds with Si treatment
CN115588723B (zh) 发光二极管的外延片及其制作方法
JP2021150646A (ja) 発光装置およびその作成方法
TW202107734A (zh) 發光二極體及其製造方法
Kim et al. Improved GaN-based LED light extraction efficiencies via selective MOCVD using peripheral microhole arrays
Peng et al. The influence of driving current on emission spectra of GaN-based LED
CN109817776A (zh) 一种发光二极管芯片及其制作方法
CN213716927U (zh) 一种半导体发光器件
Moiseev et al. Type II heterostructures with InSb quantum dots inserted into pn InAs (Sb, P) junction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790991

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)