WO2023202269A1 - 一种耐热冲击测试方法和光伏组件 - Google Patents

一种耐热冲击测试方法和光伏组件 Download PDF

Info

Publication number
WO2023202269A1
WO2023202269A1 PCT/CN2023/081388 CN2023081388W WO2023202269A1 WO 2023202269 A1 WO2023202269 A1 WO 2023202269A1 CN 2023081388 W CN2023081388 W CN 2023081388W WO 2023202269 A1 WO2023202269 A1 WO 2023202269A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
detection area
temperature
shock resistance
thermal shock
Prior art date
Application number
PCT/CN2023/081388
Other languages
English (en)
French (fr)
Inventor
赵威
陈克勤
陈诚
龚海丹
吕俊
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2023202269A1 publication Critical patent/WO2023202269A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of solar energy technology, and in particular to a thermal shock resistance testing method and photovoltaic components.
  • the thermal shock resistance of the glass needs to be evaluated.
  • hot spots in photovoltaic modules can cause the glass in the photovoltaic modules to burst, affecting the power generation and safety of the photovoltaic modules.
  • the glass used needs to be tested for thermal shock resistance to determine whether the thermal shock resistance of the glass meets the requirements.
  • the glass sample is first placed in an oven at close to 100 degrees. After keeping it for several hours, the glass sample is taken out of the oven and immediately put into a mixture of ice and water. If the glass sample bursts, It means that the thermal shock resistance of the batch of glass sample does not meet the requirements, otherwise it is determined that the glass of this batch meets the requirements. It can be seen from this that the thermal shock resistance test process in the related art takes a long time and has low efficiency.
  • the invention provides a thermal shock resistance testing method and a photovoltaic module, aiming to solve the problem of low thermal shock resistance testing efficiency of glass.
  • the embodiment of the present invention provides a thermal shock resistance testing method, which includes:
  • the thermal shock resistance of the glass is determined based on the bursting of the glass.
  • the glass is a finished glass product, and the glass is used for photovoltaic components.
  • the area of the detection area is greater than or equal to 0.2 square centimeters, and/or the area of the detection area is less than 900 square centimeters.
  • the distance between the detection area and the corner of the glass is greater than or equal to 10 mm; and/or the distance between the detection area and the edge of the glass is less than or equal to 5 mm.
  • the selected detection area at the edge of the glass includes: selecting a plurality of detection areas at intervals at the edge of the glass.
  • the plurality of spaced detection areas surround the center of the glass.
  • the heating method includes: hot air heating or heating element heating.
  • the method further includes: arranging a heat insulator around the periphery of the detection area.
  • the glass includes an opposite first side and a second side; heating the detection area to reach the target temperature includes:
  • the temperature of the second side of the detection area is compared with the target temperature.
  • the set time is less than or equal to 1 minute.
  • the thermal shock resistance of the glass is determined based on the burst situation of the glass, including:
  • the detection area of the glass decreases from the target temperature by a set temperature difference to the first temperature, and the thermal shock resistance of the glass is determined based on the bursting of the glass;
  • determining the thermal shock resistance of the glass based on the bursting of the glass includes:
  • the detection area of the glass rises from the second temperature by a set temperature difference to the target temperature, and the thermal shock resistance of the glass is determined based on the bursting of the glass; wherein the detection area of the glass increases from the second temperature to the target temperature.
  • the process of raising the temperature difference to reach the target temperature is the same process as heating the detection area to reach the target temperature.
  • determining the thermal shock resistance of the glass based on the bursting of the glass includes:
  • the glass does not burst when the temperature change in the detection area reaches the set temperature difference, it is determined that the thermal shock resistance of the glass meets the requirements
  • the starting temperature difference is less than the set temperature difference value
  • the explosion point position of the bursting area is determined
  • Embodiments of the present invention also provide a photovoltaic module, which includes glass, and the glass is glass whose thermal shock resistance is up to standard using the thermal shock resistance test method as described above.
  • a detection area is selected at the edge of the glass, and the detection area is heated to reach the target temperature.
  • the burst of the glass is determined.
  • the conditions determine the thermal shock resistance of the glass.
  • the inspection area is selected from the edge of the glass for heating. Since the area of the detection area can be controlled within a smaller range, compared with heating the entire glass or the entire glass sample, the mass of the heated glass can be reduced, the heating process can be completed quickly, and the time required for the entire testing process can be shortened. Improve the work efficiency of thermal shock resistance testing.
  • Figure 1 shows a step flow chart of a thermal shock resistance testing method in an embodiment of the present invention
  • Figure 2 shows a top view of a glass in an embodiment of the present invention
  • Figure 3 shows a schematic diagram of a thermal shock resistance test scenario in an embodiment of the present invention.
  • the method may include:
  • Step 101 Select a detection area on the edge of the glass.
  • the edge of the glass is the area of the glass surface close to the edge of the glass.
  • the glass can be fixed first, one or more areas are selected from the edge of the glass as the detection area, and then the detection area is heated to the target temperature.
  • Figure 2 shows a top view of a glass in an embodiment of the present invention.
  • the glass 200 can first be fixed with a clamp, or the glass 200 can be placed on a horizontal test platform. 200 fixed. After the glass is fixed, an area from the edge on one side of the glass 200 can be selected as the detection area 201 .
  • the detection area 201 may be a smaller area in the edge or a larger area.
  • the area of the detection area 201 is greater than or equal to 0.2 square centimeters.
  • the area of the detection area 201 can be 0.2 square centimeters, 0.25 square centimeters, 0.4 square centimeters, 0.55 square centimeters, 0.7 square centimeters, 1 square centimeters, 1.7 square centimeters, or 2.5 square centimeters. cm etc.
  • the thermal shock during the test can be applied to a larger area, making it easier for users to observe the changes in the glass when it is subjected to thermal shock.
  • the area of the detection area 201 may be less than 900 square centimeters.
  • the area of the detection area 201 may be 890 square centimeters, 800 square centimeters, 700 square centimeters, 600 square centimeters, 500 square centimeters, 300 square centimeters, 200 square centimeters, 80 square centimeters, 50 square centimeters, 20 square centimeters, 10 square centimeters Square centimeters, 5 square centimeters, 2.5 square centimeters, etc.
  • the area of the detection region 201 is smaller than that of the glass sample.
  • the detection area can be a circular area, a rectangular area or other irregularly shaped areas.
  • the specific shape of the detection area can be set according to requirements.
  • the area of the detection area can be set according to the area of the glass.
  • the area of the glass is larger, the area of the edge of the glass is larger, so you can choose a larger detection area.
  • the area of the edge of the glass is smaller. Select a smaller detection area.
  • the shape and shape of the detection area are There is no area limit.
  • the glass is a finished glass product, and the glass is used for photovoltaic modules.
  • the glass can be a finished glass product used in photovoltaic modules, and the finished glass product can be a module cover or module backsheet in the photovoltaic module. It should be noted that when the glass is a finished glass product, the area of the finished glass product is much larger than the glass sample used in the impact resistance test in the prior art.
  • the finished glass products used for photovoltaic modules can be directly tested during the testing process without the need to prepare glass samples, which can improve the testing efficiency.
  • glass samples often cannot accurately characterize the thermal shock resistance of finished glass products.
  • it can more accurately determine whether the thermal shock resistance of finished glass products meets the requirements than testing glass samples.
  • the manufacturing efficiency of the entire photovoltaic module can be improved.
  • Step 102 Heat the detection area to reach the target temperature.
  • This target temperature is the final temperature of the heating step. Stop heating after reaching the target temperature.
  • the target temperature can be 100°C, 120°C, 125°C, 130°C, 140°C, 150°C, 170°C, 180°C, 190°C, 200°C or 210°C, etc.
  • Step 103 When the detection area of the glass experiences a temperature change of a set temperature difference within a set time, determine the thermal shock resistance of the glass based on the bursting of the glass.
  • the set temperature difference is not lower than the temperature difference required for the thermal shock resistance test, and the set time is used to control the temperature change of the detection area within the set time to reach the set temperature difference, that is, within the set time , subject the detection area to the thermal shock of the set temperature difference, observe whether the glass bursts, and determine whether the glass can withstand the thermal shock of the set temperature difference based on the burst situation to determine whether the thermal shock resistance of the glass meets the requirements.
  • the set time is less than or equal to 1 minute (min), and the set time is such as 27 seconds, 30 seconds, 43 seconds, 50 seconds or 60 seconds, etc.
  • the setting time is no more than 1 minute, which allows the detection area to withstand the temperature change of the set temperature difference in a short period of time, subjecting the detection area to thermal shock to determine whether the impact resistance of the glass meets the requirements.
  • the set temperature difference can be 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, etc.
  • the detection area can be heated on one side of the detection area, and the temperature of the detection area can be measured by a temperature sensor on the opposite side.
  • the detection area is first heated to the target temperature, and then Cool down the detection area. During the cooling process, the detection area is quickly cooled so that the temperature change in the detection area reaches the set temperature difference within the set time, so that the detection area can withstand the temperature change of the set temperature difference within the set time.
  • heat the detection area on one side of the detection area measure the temperature of the detection area through a temperature sensor on the opposite side, and rapidly heat during the heating process, so that the temperature change amount of the detection area is within the set value.
  • the set temperature difference is reached within a set time, so that the detection area can withstand the temperature change of the set temperature difference within the set time.
  • the heating method includes: hot air heating or heating element heating.
  • the detection area can be heated by hot air heating.
  • the detection area can be heated with a hot air gun. After selecting the detection area, the blowing port of the hot air gun can be aimed at the detection area 201 shown in Figure 2, hot air can be provided to the detection area 201, and the detection area can be heated by the hot air. Heats up quickly. In practical applications, the detection area can also be heated by hot air through other heating devices. Specific implementation methods of hot air heating may include but are not limited to the above examples.
  • the detection area can be heated by a heating element.
  • Heating element such as semiconductor heating plate.
  • the semiconductor heating sheet can be fixed on the detection area through high-temperature tape, and electricity is supplied to the semiconductor heating sheet to cause the semiconductor heating sheet to generate heat to heat the detection area.
  • the heating element can also be a heating element such as an electric heating wire. The specific type of the heating element can be set according to requirements, which is not limited in this embodiment.
  • the heating method when the detection area is heated by hot air heating or heating element heating, the heating method is simple and can quickly make the temperature of the detection area reach the target temperature, allowing the detection area to withstand the set temperature difference within the set time. value of temperature change.
  • step 103 may include:
  • Method 1 Within the set time, the detection area of the glass decreases from the target temperature by the set temperature difference to the first temperature, and the thermal shock resistance of the glass is determined based on the bursting of the glass.
  • Method 2 Within the set time, the detection area of the glass rises from the second temperature to the set temperature difference to reach the target temperature, and the thermal shock resistance performance of the glass is determined according to the burst situation of the glass; wherein, the detection area of the glass increases from the second temperature to the target temperature.
  • the process in which the temperature rises and the set temperature difference reaches the target temperature is the same process as the process in which the heating detection area reaches the target temperature.
  • the detection area can be subjected to a temperature change of a set temperature difference within a set time by means of cooling.
  • the target temperature is the cooling start temperature
  • the first temperature is the cooling end temperature
  • the temperature difference between the cooling start temperature and the cooling end temperature is equal to the set temperature difference.
  • the temperature of the detection area can be reduced from the cooling start temperature to the cooling end temperature, so that the detection area can withstand the temperature change of the set temperature difference within the set time.
  • the detection area is heated.
  • the temperature of the detection area is cooled so that the detection area decreases from the target temperature by a set temperature difference and then reaches the first temperature, so that the detection area reaches the first temperature at the set temperature.
  • the set temperature difference is 170 degrees
  • the target temperature can be set to 170 degrees
  • the first temperature can be set to 0 degrees
  • the target temperature can be set to 185 degrees
  • the first temperature can be set to 15 degrees
  • the target temperature can be set to 193 degrees, and the first temperature can be set to 23 degrees.
  • the target temperature as 170 degrees and the first temperature as 0 degrees as an example
  • the target temperature is reduced from the target temperature of 170 degrees to the first temperature of 0 degrees within a set time, so that the detection area undergoes a temperature change of the set temperature difference within the set time.
  • a semiconductor refrigeration chip can be fixed in the detection area, energized the semiconductor refrigeration chip, and the detection area is cooled by the semiconductor refrigeration chip, so that the temperature of the detection area is reduced from 170 degrees to 0 degrees within a set time. You can also use other methods to cool down the detection area.
  • the cooling liquid is, for example, a mixture of ice and water.
  • the specific type and cooling method of the cooling liquid can be set according to requirements, and this embodiment does not limit this.
  • the first temperature and the target temperature can be specifically set according to the test requirements, and the temperature difference between the first temperature and the target temperature only needs to be consistent with the set temperature difference.
  • direct heating can be used to cause the detection area to undergo a temperature change of a set temperature difference within a set time.
  • the target temperature is the heating end temperature
  • the second temperature is the heating start temperature
  • the temperature difference between the heating start temperature and the heating end temperature is equal to the set temperature difference.
  • the temperature of the detection area can be heated from the heating start temperature to the heating end temperature, so that the detection area undergoes a temperature change of the set temperature difference within the set time.
  • the temperature of the detection area is increased from the second temperature by a set temperature difference within a set time and then reaches the target temperature, so that the detection area undergoes a temperature change of the set temperature difference within the set time.
  • the second temperature can be 30 degrees
  • the ambient temperature of the glass and the target temperature can be set to 200 degrees.
  • the second temperature can also be higher than the ambient temperature or lower than the ambient temperature. For example, if the ambient temperature is 20 degrees, the second temperature can be 30 degrees or 10 degrees.
  • the detection area is first heated to a second temperature of 30 degrees, and then heating is continued so that the temperature of the detection area is heated from the second temperature of 30 degrees to the target temperature of 200 degrees within a set time.
  • the second temperature and the target temperature can be specifically set according to the test requirements. The temperature difference between the second temperature and the target temperature only needs to be consistent with the set temperature difference.
  • the detection area can be subjected to the temperature change of the set temperature difference within a set time by direct heating.
  • the detection area only needs to be heated, and there is no need to heat the detection area. Cooling treatment, simple operation, can improve testing efficiency.
  • determine the thermal shock resistance of the glass based on the bursting of the glass including:
  • the glass does not burst when the temperature change in the detection area reaches the set temperature difference, it is determined that the thermal shock resistance of the glass meets the requirements
  • the starting temperature difference is less than the set temperature difference
  • the explosion point position in the burst area is determined.
  • the glass burst area is the area where cracks appear in the glass under thermal shock after the glass undergoes a temperature change of a set temperature difference.
  • the burst point is the starting point of the burst area and is also the starting point of the crack in the burst area.
  • the detection area is subjected to the temperature change of the set temperature difference within the set time through Method 1 or Method 2
  • the glass does not burst, it can be determined that the glass is undergoing thermal shock of the set temperature difference. There will be no bursting afterwards, and it can be determined that the thermal shock resistance of the glass meets the requirements.
  • the temperature of the detection area drops from the target temperature within the set time. After reaching the first temperature, if the glass does not burst, it can be determined that the thermal shock resistance of the glass meets the requirements.
  • the thermal shock resistance of the glass meets the requirements.
  • a starting temperature difference can be set, the starting temperature difference is lower than the set temperature difference, and the detection area is subjected to the set temperature difference within a set time through method one or method two.
  • the detection area is subjected to a temperature change of a set temperature difference within a set time through method 1
  • a third temperature can be set. The third temperature is higher than the first temperature and lower than the target temperature. The third temperature The temperature difference from the target temperature is the starting temperature difference.
  • the set temperature difference is 170 degrees
  • the starting temperature difference is 120 degrees
  • the target temperature can be set to 170 degrees
  • the first temperature can be set to 0 degrees
  • the third temperature can be set to 50 degrees.
  • the temperature difference reaches the starting temperature difference of 120 degrees. If the glass cracks before the temperature reaches 50 degrees, it can be directly determined that the thermal shock resistance of the glass does not meet the requirements.
  • a fourth temperature can be set. The fourth temperature is higher than the second temperature and lower than the target temperature. The fourth temperature difference from the second temperature is the starting temperature difference.
  • the set temperature difference is 170 degrees
  • the starting temperature difference is 120 degrees
  • the target temperature can be set to 200 degrees
  • the second temperature can be set to the ambient temperature of 30 degrees
  • the fourth temperature can be set to 150 degrees.
  • the temperature difference reaches the starting temperature difference of 120. If the glass cracks before the temperature reaches 150 degrees, it can be directly determined that the thermal shock resistance of the glass does not meet the requirements.
  • the starting temperature difference can be set according to actual needs
  • the third temperature can be set according to the difference between the target temperature and the starting temperature
  • the fourth temperature can be set according to the difference between the second temperature and the starting temperature. In this embodiment, No restrictions.
  • the temperature change in the detection area reaches the starting temperature within a set time after starting to cool down. difference and before reaching the set temperature difference, if the glass bursts, it is necessary to determine the burst point position in the burst area. If the explosion point is at the edge of the glass, it means that the thermal shock resistance of the glass meets the requirements. If the explosion point is not at the edge of the glass, it means that the thermal shock resistance of the glass is Performance does not meet requirements.
  • the edge of the glass is the edge part of the glass surface. As shown in Figure 2, the edge of the glass 202 is one side edge of the rectangular glass.
  • the explosive point position When the explosive point position is located on the edge 202, the explosive point position coincides with the edge 202. When the explosive point position is not on the edge 202, the explosive point position does not coincide with the edge 202.
  • the location of the explosion point can be determined. If the location of the explosion point is at the edge of the glass, it means that the glass is damaged. The thermal shock resistance meets the requirements. If the explosion point is not at the edge of the glass, it means that the thermal shock resistance of the glass does not meet the requirements.
  • the temperature change in the detection area reaches the starting temperature difference and does not reach the starting temperature difference. If the glass bursts before reaching the set temperature difference, it is necessary to determine the burst point position of the glass. If the explosion point is at the edge of the glass, it means that the thermal shock resistance of the glass meets the requirements. If the explosion point is not at the edge of the glass, it means that the thermal shock resistance of the glass does not meet the requirements. Based on the above example, during the heating process, after the temperature reaches 150 degrees and before the temperature reaches 200 degrees, if the glass bursts, determine the location of the explosion point. If the explosion point is at the edge of the glass, it indicates the heat resistance of the glass. The impact performance meets the requirements. If the explosion point is not at the edge of the glass, it means that the thermal shock resistance of the glass does not meet the requirements.
  • the cooling or heating can be stopped, and whether the thermal shock resistance of the glass meets the requirements is determined based on the temperature change at the current moment and the location of the explosion point.
  • the heating or cooling can be stopped to directly determine that the thermal shock resistance of the glass does not meet the requirements; similarly, Before the temperature change in the detection area reaches the starting temperature difference and does not reach the set temperature difference, if the glass bursts, the heating or cooling can be stopped. Based on the burst position, it can be determined whether the impact resistance of the glass meets the requirements.
  • the detection area is selected at the edge of the glass, the heating detection area reaches the target temperature, and the detection area of the glass undergoes a temperature change of the set temperature difference within the set time, according to The bursting of the glass determines the thermal shock resistance of the glass.
  • the inspection area is selected from the edge of the glass for heating. Since the area of the detection area can be controlled within a smaller range, compared with heating the entire glass or the entire glass sample, the mass of the heated glass can be reduced, the heating process can be completed quickly, and the time required for the entire testing process can be shortened. Improve the work efficiency of thermal shock resistance testing.
  • the operation is simple and fast, which can reduce testing time and improve testing efficiency.
  • the finished glass product can be tested directly. Compared with testing glass samples, it can be more accurately determined whether the finished glass product meets the requirements.
  • the distance between the detection area and the corner of the glass is greater than or equal to 10 mm; and/or the distance between the detection area and the edge of the glass is less than or equal to 5 mm.
  • the distance between the detection area and the corner of the glass can be made greater than or equal to 10 millimeters.
  • the distance between the detection area and the corner of the glass can be 10mm, 11mm, 11.5mm, 14mm, 15mm, 20mm, 25mm, 30mm, etc.
  • the detection area can be selected away from the corner of the glass. Since there will be structures such as openings and bubbles at the corners of the glass, openings and bubbles will reduce the thermal shock resistance of the glass. Setting the detection area away from the corners can avoid openings and bubbles from affecting the accuracy of the test.
  • the detection area when the glass surface is coated with glaze, the detection area can also be selected away from the glaze superposition to avoid the glaze superposition position affecting the accuracy of the test.
  • the distance between the detection area and the edge of the glass is less than or equal to 5 mm.
  • the distance between the detection area 201 and the edge of the glass 200 is L, and L can be 0, or a value greater than 0 and less than or equal to 5 mm, such as 0.8mm, 1mm, 1.7mm, 2.1mm , 3.1mm, 3.7mm, 4.5mm, 5mm.
  • the detection area can be made to cover the edge of the glass, or be close to the edge of the glass.
  • the central area of the glass has higher thermal shock resistance, while the edges have lower thermal shock resistance.
  • the detection area is selected from the center area of the glass for testing, a higher set temperature difference may be required. In this case, a more complex heating or cooling method needs to be used, which cannot achieve the purpose of fast and convenient testing. .
  • the set temperature difference during the test can be reduced and the difficulty of the test can be reduced.
  • step 101 may include:
  • Multiple detection areas are selected at intervals along the edge of the glass.
  • multiple detection areas can be selected on the edge of the glass, and two adjacent detection areas are separated by a certain distance.
  • the glass is rectangular. Multiple detection areas can be selected on one or more edges of the glass. 2, 3, 4 or 5 detection areas can be selected on each edge. After selecting multiple detection areas, you can select each detection area sequentially or simultaneously.
  • the test process from steps 101 to 103 is performed. During the test process of any detection area, if it is determined that the thermal shock resistance of the glass does not meet the requirements, it is determined that the thermal shock resistance of the entire glass does not meet the requirements.
  • multiple detection areas are selected for thermal shock resistance testing, multiple positions of the glass can be tested. Based on the test results at multiple positions, it can be more accurately judged whether the thermal shock resistance of the glass meets the requirements.
  • multiple detection areas are spaced around the center of the glass.
  • multiple detection areas may be positioned around the center of the glass. As shown in Figure 2, in the process of selecting the detection area, the target number of detection areas can be selected on each side edge. The number of targets can be 2, 3, 4 or 5. Multiple detection areas can surround the glass. Center setting. When multiple detection areas surround the center of the glass, the multiple detection areas can separately characterize the thermal shock resistance of each position of the glass, thereby improving the accuracy of the thermal shock resistance test.
  • the method may further include: arranging a heat insulator around the periphery of the detection area.
  • a heat insulator before heating the detection area, can be provided around the detection area to avoid excessive heat loss, so that the temperature change in the detection area can quickly reach the target temperature.
  • the heat insulator may be a wet towel, and after selecting the detection area 201 shown in FIG. 2, the wet towel may be placed around the periphery of the detection area 201 before heating. If a semiconductor heating element is used for heating, a wet towel can be placed around the heating element. During the heating process, the wet towel can block heat loss, thereby increasing the heating speed and reducing power consumption during the heating process.
  • the heat insulating piece can also be wood blocks or other types of heat insulating pieces.
  • heat insulation is provided on the periphery of the detection area, so that the temperature change amount of the detection area can quickly reach the target temperature within a set time, which can shorten the heating time and reduce power consumption.
  • the glass includes first and second opposite sides; heating the detection area to reach the target temperature includes:
  • the temperature of the second side of the detection area is compared with the target temperature. When the temperature of the second side of the detection area reaches the target temperature, heating is stopped.
  • the glass may be glass used in a photovoltaic module, including a second opposing side and a first side.
  • the first side is in contact with the adhesive film in the photovoltaic module.
  • the first side can be coated with glaze, and the second side is away from the adhesive film and is located outside the photovoltaic module and in contact with the air.
  • the first side of the detection area can be heated and the temperature of the second side can be measured by a temperature sensor.
  • Figure 3 shows a schematic diagram of a thermal shock resistance test scenario in an embodiment of the present invention.
  • the glass 200 is placed and fixed on the test platform 300, with the first side of the glass facing up and the second side facing Next, one edge of the glass 200 is suspended, and the detection area 201 is selected from the suspended edge.
  • the temperature sensor can be pasted on the second side of the detection area 201.
  • the display device 402 is connected to the temperature sensor. , which can display the temperature collected by the temperature sensor.
  • the user observes the temperature displayed on the display device 402 and compares the displayed temperature with the target temperature. When the displayed temperature reaches the target temperature, it is determined that the temperature of the detection area reaches the target temperature, and heating can be stopped.
  • the hot spot when a hot spot occurs in a photovoltaic module, the hot spot is located inside the photovoltaic module and will directly heat the first side of the glass, while the second side of the glass is located outside the photovoltaic module and has a different temperature than the first side. difference. Therefore, during the detection process, heating the first side of the detection area can directly simulate the heating process of the hot spot on the glass. Moreover, when detecting the temperature, detecting the second side can avoid the heating device from affecting the temperature of the temperature sensor, so that the temperature of the second side can be measured more accurately.
  • the method may also include:
  • the edge of the glass can be left suspended.
  • the glass 200 can be placed on the test platform 300 , with one or more edges of the glass 200 protruding from the edge of the test platform 300 by a preset length, so that the edges of the glass 200 are suspended.
  • the test platform can be adjusted so that the angle between the glass and the horizontal plane is less than or equal to 5 degrees, such as 0 degrees, 1 degree, 2 degrees, 3 degrees and 5 degrees. When the angle between the glass and the horizontal plane is less than or equal to 5 degrees, the glass can be made horizontal or close to horizontal.
  • the glass can also be fixed by other fixing devices so that the edge of the glass is suspended.
  • the detection area can be heated or cooled on one side of the detection area, and the temperature of the detection area can be collected by a temperature sensor on the other side.
  • the edge of the glass is not affected by other stresses and can avoid the impact of other stresses on the thermal shock resistance.
  • the edge is not in contact with other objects. During the heating process, heat conduction between the detection area and other objects can be avoided, thereby avoiding affecting the temperature of the detection area.
  • the preset length is no less than 50 mm and no more than 100 mm. Preset lengths such as 50mm, 60mm, 77mm, 89mm, 90mm and 100mm etc.
  • the edge of the glass can be freed from other stresses, and it can facilitate the selection of the detection area, and facilitate the heating on one side of the detection area and the setting on the other side.
  • Temperature Sensor The specific values of the preset length and the preset angle can be set according to requirements, and this embodiment does not limit this.
  • An embodiment of the present invention also provides a photovoltaic module, which includes glass, and the glass is glass whose thermal shock resistance is up to standard using the thermal shock resistance test method as described above.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种耐热冲击测试方法和光伏组件,该方法包括:在玻璃(200)的边缘选定检测区域(201),加热检测区域(201)达到目标温度,在设定时间内,玻璃(200)的检测区域(201)经受设定温度差值的温度变化的情况下,根据玻璃(200)的爆裂情况确定玻璃(200)的耐热冲击性能。在检测过程中,从玻璃(200)的边缘选定检测区域(201)进行加热。由于检测区域(201)的面积可以控制在较小的范围内,因此相对于对整个玻璃(200)或整个玻璃(200)试样进行加热,可以减少加热的玻璃(200)质量,快速完成加热工序,进而可以缩短整个测试过程所需时间,提高耐热冲击测试的工作效率。

Description

一种耐热冲击测试方法和光伏组件
本申请要求在2022年04月19日提交中国专利局、申请号为202210408413.8、名称为“一种耐热冲击测试方法和光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及太阳能技术领域,特别是涉及一种耐热冲击测试方法和光伏组件。
背景技术
在玻璃的一些使用场景中,需要对玻璃的耐热冲击性能进行评估。例如,在光伏组件中,光伏组件的热斑会导致光伏组件中的玻璃爆裂,影响光伏组件的发电量和使用安全。在光伏组件的生成过程中,需要对所用的玻璃进行耐热冲击测试,确定玻璃的耐热冲击性能是否符合要求。
相关技术中,针对玻璃的耐热冲击测试,首先将玻璃样品放置在接近100度的烘箱中,保持若干小时后,从烘箱中取出玻璃样品立即放入冰水混合物中,若玻璃样品出现爆裂,则说明玻璃样品所在批次的玻璃耐热冲击性能不符合要求,反之则确定该批次的玻璃符合要求。由此可知,相关技术中的耐热冲击测试过程所用时间较长,效率较低。
发明内容
本发明提供一种耐热冲击测试方法和光伏组件,旨在解决玻璃的耐热冲击测试效率较低的问题。
本发明实施例提供了一种耐热冲击测试方法,包括:
在玻璃的边缘选定检测区域;
加热所述检测区域达到目标温度;
在设定时间内,玻璃的所述检测区域经受设定温度差值的温度变化的情况下,根据玻璃的爆裂情况确定玻璃的耐热冲击性能。
可选地,所述玻璃为玻璃成品,所述玻璃用于光伏组件。
可选地,所述检测区域的面积大于或等于0.2平方厘米,和/或,所述检测区域的面积小于900平方厘米。
可选地,所述检测区域与所述玻璃的拐角之间的距离大于或等于10毫米;和/或,所述检测区域与所述玻璃的边沿之间的距离小于或等于5毫米。
可选地,所述在玻璃的边缘选定检测区域,包括:在所述玻璃的边缘选定间隔的多个检测区域。
可选地,所述间隔的多个检测区域环绕玻璃中心。
可选地,所述加热的方式包括:热风加热或加热件加热。
可选地,在玻璃的边缘选定检测区域之后,在加热所述检测区域达到目标温度之前,还包括:在所述检测区域的外围设置隔热件。
可选地,所述玻璃包括相对的第一面和第二面;所述加热所述检测区域达到目标温度,包括:
对玻璃的检测区域的第一面进行加热;
测量所述检测区域的第二面的温度;
比较所述检测区域的第二面的温度与目标温度。
可选地,所述设定时间小于或等于1分钟。
可选地,所述在设定时间内,玻璃的所述检测区域经受设定温度差值的温度变化的情况下,根据玻璃的爆裂情况确定玻璃的耐热冲击性能,包括:
在所述设定时间内,玻璃的所述检测区域从目标温度降低设定温度差值达到第一温度,根据玻璃的爆裂情况确定玻璃的耐热冲击性能;
或者,所述在设定时间内,玻璃的所述检测区域经受设定温度差值的温度变化的情况下,根据玻璃的爆裂情况确定玻璃的耐热冲击性能,包括:
在设定时间内,玻璃的所述检测区域从第二温度升高设定温度差值达到目标温度,根据玻璃的爆裂情况确定玻璃的耐热冲击性能;其中,玻璃的所述检测区域从第二温度升高设定温度差值达到所述目标温度的过程,与加热所述检测区域达到目标温度的过程为同一过程。
可选地,所述根据玻璃的爆裂情况确定玻璃的耐热冲击性能,包括:
若所述玻璃在所述检测区域的温度变化达到所述设定温度差值时未出现爆裂,则确定所述玻璃的耐热冲击性能符合要求;
若所述玻璃在所述检测区域的温度变化达到起始温度差值之前出现爆裂,则确定所述玻璃的耐热冲击性能不符合要求;所述起始温度差值小于所述设定温度差值;
若所述玻璃在所述检测区域的温度变化达到所述起始温度差值之后、且在达到所述设定温度差值之前出现爆裂,则确定爆裂区域的爆点位置,
在所述爆点位置位于所述玻璃的边沿的情况下,确定所述玻璃的耐热冲击性能符合要求;
在所述爆点位置位于除所述边沿之外的其他位置的情况下,确定所述玻璃的耐热性不符合要求。
本发明实施例还提供了一种光伏组件,所述光伏组件包括玻璃,所述玻璃为采用如上所述的耐热冲击测试方法检测耐热冲击性能达标的玻璃。
在本发明实施例中,在玻璃的边缘选定检测区域,加热检测区域达到目标温度,在设定时间内,玻璃的检测区域经受设定温度差值的温度变化的情况下,根据玻璃的爆裂情况确定玻璃的耐热冲击性能。在检测过程中,从玻璃的边缘选定检测区域进行加热。由于检测区域的面积可以控制在较小的范围内,因此相对于对整个玻璃或整个玻璃试样进行加热,可以减少加热的玻璃质量,快速完成加热工序,进而可以缩短整个测试过程所需时间,提高耐热冲击测试的工作效率。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例中的一种耐热冲击测试方法的步骤流程图;
图2示出了本发明实施例中的一种玻璃的俯视图;
图3示出了本发明实施例中的一种耐热冲击测试的场景示意图。
附图标记说明:
200-玻璃,201-检测区域,202-边沿,300-测试平台,401-热风枪,402-显示设备。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参照图1,示出了本发明实施例中的一种耐热冲击测试方法的步骤流程图,该方法可以包括:
步骤101、在玻璃的边缘选定检测区域。
其中,玻璃的边缘为玻璃表面靠近玻璃边沿的区域。
在一种实施例中,在对玻璃进行耐热冲击测试的过程中,首先可以固定玻璃,从玻璃的边缘选择一个或多个区域作为检测区域,然后将检测区域加热到目标温度。如图2所示,图2示出了本发明实施例中的一种玻璃的俯视图,在测试过程中,首先可以通过夹具固定玻璃200,或者将玻璃200放置在水平的测试平台上,使玻璃200固定。在固定玻璃之后,可以从玻璃200一侧的边缘选定一个区域作为检测区域201。检测区域201可以是边缘中的一个较小的区域,也可以是一个较大的区域。检测区域201的面积大于或等于0.2平方厘米,例如检测区域201的面积可以是0.2平方厘米、0.25平方厘米、0.4平方厘米、0.55平方厘米、0.7平方厘米、1平方厘米、1.7平方厘米、2.5平方厘米等。检测区域的面积不低于0.2平方厘米时,可以使测试过程中的热冲击作用在较大的区域,便于用户观察玻璃在受到热冲击时的变化情况。检测区域201的面积可以小于900平方厘米。例如,检测区域201的面积可以是890平方厘米、800平方厘米、700平方厘米、600平方厘米、500平方厘米、300平方厘米、200平方厘米、80平方厘米、50平方厘米、20平方厘米、10平方厘米、5平方厘米、2.5平方厘米等。此时,相对于玻璃试样,检测区域201的面积较小。在实际应用中,检测区域可以是圆形区域,也可以是矩形区域或者其它不规则形状的区域,检测区域的具体形状可以根据需求设置。检测区域的面积可以根据玻璃的面积设置,玻璃的面积较大时,玻璃的边缘的面积较大,可以选择较大面积的检测区域,玻璃的面积较小时,玻璃的边缘的面积较小,可以选择较小面积的检测区域,本实施例对检测区域的形状和 面积不做限制。
可选地,玻璃为玻璃成品,玻璃用于光伏组件。玻璃可以是应用于光伏组件的玻璃成品,玻璃成品可以是光伏组件中的组件盖板或者组件背板。需要说明的是,当玻璃为玻璃成品时,玻璃成品的面积远大于在先技术中耐冲击测试所用的玻璃样品。
本发明实施例中,测试过程中可以直接对用于光伏组件的玻璃成品进行测试,不需要制作玻璃样品,可以提高测试效率。同时,在实际生产中,玻璃样品往往无法准确表征玻璃成品的耐热冲击性能。直接对玻璃成品进行测试时,相比于对玻璃样品的测试,可以更准确的确定玻璃成品的耐热冲击性能是否符合要求。进一步的,由于测试效率的提高,可以提高整个光伏组件的制造效率。
步骤102、加热检测区域达到目标温度。该目标温度为加热步骤的最终温度。加热至该目标温度后停止加热。目标温度可以为100℃、120℃、125℃、130℃、140℃、150℃、170℃、180℃、190℃、200℃或210℃等。
步骤103、在设定时间内,玻璃的检测区域经受设定温度差值的温度变化的情况下,根据玻璃的爆裂情况确定玻璃的耐热冲击性能。
其中,设定温度差值不低于耐热冲击测试所需的温度差值,设定时间用于控制检测区域在设定时间内的温度变化达到设定温度差值,即在设定时间内,使检测区域经受设定温度差值的热冲击,观察玻璃是否爆裂,根据爆裂情况确定玻璃是否可以承受设定温度差值的热冲击,以判断玻璃的耐热冲击性能是否符合要求。设定时间小于或等于1分钟(min),设定时间例如27秒、30秒、43秒、50秒或60秒等。设定时间不高于1分钟,可以使检测区域在较短的时间内经受设定温度差值的温度变化,使检测区域受到热冲击,以判断玻璃的耐冲击性能是否符合要求。该设定温度差值可以为100℃、110℃、120℃、130℃、140℃、150℃等。
本实施例中,在选定检测区域之后,可以在检测区域的一侧对检测区域进行加热,在相对的另一侧通过温度传感器测量检测区域的温度,先将检测区域加热到目标温度,然后对检测区域进行降温处理。在降温过程中,快速对检测区域进行降温,使检测区域的温度变化量在设定时间内达到设定温度差值,以使检测区域在设定时间内经受设定温度差值的温度变化。或者,在 选定检测区域之后,在检测区域的一侧对检测区域进行加热,在相对的另一侧通过温度传感器测量检测区域的温度,在加热过程中快速加热,使检测区域的温度变化量在设定时间内达到设定温度差值,以使检测区域在设定时间内经受设定温度差值的温度变化。
可选地,加热的方式包括:热风加热或加热件加热。
在一种实施方式中,可以通过热风加热的方式对检测区域进行加热。例如,可以通过热风枪对检测区域进行加热,在选定检测区域之后,可以将热风枪的吹风口对准图2所示的检测区域201,向检测区域201提供热风,通过热风对检测区域进行快速加热。实际应用中,也可以通过其它加热装置对检测区域进行热风加热,热风加热的具体实现方法可以包括但不限于上述举例。
在另一种实施方式中,可以通过加热件对检测区域进行加热。加热件例如半导体加热片。在选定检测区域之后,可以将半导体加热片通过高温胶带固定在检测区域上,向半导体加热片通电,使半导体加热片发热,对检测区域进行加热。加热件也可以是电热丝等加热件,加热件的具体类型可以根据需求设置,本实施例对此不做限制。
本发明实施例中,通过热风加热或加热件加热的方式对检测区域进行加热时,加热方式简单,可以使检测区域的温度快速达到目标温度,使检测区域在设定时间内经受设定温度差值的温度变化。
可选地,步骤103可以包括:
方式一:在设定时间内,玻璃的检测区域从目标温度降低设定温度差值达到第一温度,根据玻璃的爆裂情况确定玻璃的耐热冲击性能。
方式二:在设定时间内,玻璃的检测区域从第二温度升高设定温度差值达到目标温度,根据玻璃的爆裂情况确定玻璃的耐热冲击性能;其中,玻璃的检测区域从第二温度升高设定温度差值达到目标温度的过程,与加热检测区域达到目标温度的过程为同一过程。
在一种实施方式中,可以通过降温的方式,使检测区域在设定时间内经受设定温度差值的温度变化。在该方式中,目标温度为降温起始温度,第一温度为降温终止温度,降温起始温度与降温终止温度之间的温度差值等于设定温度差值。在设定时间内,可以将检测区域的温度从降温起始温度降低至降温终止温度,以使检测区域在设定时间内经受设定温度差值的温度变化。 在步骤102中对检测区域进行加热,将检测区域加热到目标温度后,对检测区域进行降温,使检测区域从目标温度降低设定温度差值之后达到第一温度,以使检测区域在设定时间内经受设定温度差值的温度变化。例如,若设定温度差值为170度,目标温度可以设置为170度,第一温度可以设置为0度;或者,目标温度可以设置为185度,第一温度可以设置为15度;或者,目标温度可以设置为193度,第一温度可以设置为23度。以目标温度为170度,第一温度为0度为例,首先可以采用缓慢加热或者快速加热的方式将检测区域加热到目标温度,然后开始对检测区域进行降温,使检测区域的温度在设定时间内从目标温度170度降低至第一温度0度,以使检测区域在设定时间内经受设定温度差值的温度变化。在降温过程中,可以在检测区域固定一个半导体制冷片,给半导体制冷片通电,通过半导体制冷片对检测区域进行降温,使检测区域的温度在设定时间内从170度降低至0度。也可以采用其它方式对检测区域进行降温,例如可以直接将检测区域所在的边缘置于冷却液中,通过冷却液使检测区域的温度在设定时间内从170度降低至0度,或者直接将冷却液喷淋到检测区域上,对检测区域进行降温。冷却液例如冰水混合物,冷却液的具体类型和降温方式可以根据需求设置,本实施例对此不做限制。其中,第一温度和目标温度可以根据测试需求具体设置,第一温度和目标温度之间的温度差值与设定温度差值保持一致即可。
在另一种实施方式中,可以通过直接加热的方式,使检测区域在设定时间内经受设定温度差值的温度变化。在该方式中,目标温度为加热终止温度,第二温度为加热起始温度,加热起始温度与加热终止温度之间的温度差值等于设定温度差值。在设定时间内,可以将检测区域的温度从加热起始温度加热至加热终止温度,以使检测区域在设定时间内经受设定温度差值的温度变化。在加热过程中,使检测区域的温度在设定时间内从第二温度升高设定温度差值之后达到目标温度,以使检测区域的在设定时间内经受设定温度差值的温度变化。例如,若设定温度差值为170度,第二温度可以为玻璃所处的环境温度30度,则目标温度可以设置为200度。在加热之前,首先可以将玻璃在30度的环境中放置一定时长,使玻璃的温度达到30度,然后选定检测区域,并对检测区域进行加热,使检测区域的温度在设定时长内从30度加热到200度,以使检测区域在设定时长内经受的温度变化达到设定温度差值170 度。其中,第二温度也可以高于环境温度或低于环境,例如环境温度为20度,第二温度可以30度或10度。在加热过程中,首先将检测区域加热到第二温度30度,然后继续进行加热,使检测区域的温度在设定时间内,从第二温度30度加热到目标温度200度。第二温度和目标温度可以根据测试需求具体设置,第二温度和目标温度之间的温度差值与设定温度差值保持一致即可。
在本发明实施例中,可以通过直接加热的方式使检测区域在设定时间内经受设定温度差值的温度变化,在该方式下,只需对检测区域进行加热,不需要对检测区域进行降温处理,操作简单,可以提高测试效率。
可选地,根据玻璃的爆裂情况确定玻璃的耐热冲击性能,包括:
若玻璃在检测区域的温度变化达到设定温度差值时未出现爆裂,则确定玻璃的耐热冲击性能符合要求;
若玻璃在检测区域的温度变化达到起始温度差值之前出现爆裂,则确定玻璃的耐热冲击性能不符合要求;起始温度差值小于设定温度差值;
若玻璃在检测区域的温度变化达到起始温度差值之后、在达到设定温度差值之前出现爆裂,则确定爆裂区域的爆点位置,
在爆点位置位于玻璃的边沿的情况下,确定玻璃的耐热冲击性能符合要求;
在爆点位置位于除边沿之外的其他位置的情况下,确定玻璃的耐热性不符合要求。
其中,检测区域在设定时间内经受设定温度差值的温度变化之后,若玻璃未出现爆裂,说明玻璃可以经受设定温度差值的热冲击,玻璃的耐热冲击性能符合要求。而当玻璃出现爆裂时,需要根据爆裂时的温度差值,以及爆裂区域的爆点位置,确定玻璃是否可以经受设定温度差值的热冲击,判断玻璃的耐热性能是否符合要求。爆裂区域为玻璃经受设定温度差值的温度变化之后,玻璃在热冲击下出现裂缝的区域,爆点为爆裂区域的起点,也是爆裂区域中裂缝的起点。
本实施例中,在通过方式一或方式二使检测区域在设定时间内经受设定温度差值的温度变化之后,若玻璃未出现爆裂,可以确定玻璃在经受设定温度差值的热冲击之后不会发生爆裂,可以确定玻璃的耐热冲击性能符合要求。结合上述举例,在降温过程中,检测区域的温度在设定时间内从目标温度降 低至第一温度之后,若玻璃未出现爆裂的情况,可以确定玻璃的耐热冲击性能符合要求。同理,在加热过程中,检测区域的温度在设定时间内从第二温度加热到目标温度之后,若玻璃未出现爆裂的情况,可以确定玻璃在经受设定温度差值的热冲击之后不会爆裂,玻璃的耐热冲击性能符合要求。
在一种实施方式中,可以设置起始温度差值,起始温度差值低于设定温度差值,在通过方式一或方式二使检测区域在设定时间内经受设定温度差值的温度变化过程中,在检测区域的温度变化量达到起始温度差值之前,若玻璃出现破裂,可以确定玻璃无法承受低于起始温度差值的热冲击,可以确定玻璃的耐热冲击性能不符合要求。结合上述举例,在通过方式一使检测区域在设定时间内经受设定温度差值的温度变化时,可以设置第三温度,第三温度高于第一温度、且小于目标温度,第三温度与目标温度之间的温度差值为起始温度差值。例如,若设定温度差值为170度,起始温度差值为120度,目标温度可以设置为170度,第一温度可以设置为0度,第三温度可以设置为50度。在降温过程中,当检测区域的温度从170降低至50度时,温度差值达到起始温度差值120度。在温度达到50度之前,若玻璃出现破裂,可以直接确定玻璃的耐热冲击性能不符合要求。同理,在通过方式二使检测区域在设定时间内经受设定温度差值的温度变化时,可以设置第四温度,第四温度高于第二温度、且低于目标温度,第四温度与第二温度之间的温度差值为起始温度差值。例如,若设定温度差值为170度,起始温度差值为120度,目标温度可以设置为200度,第二温度为环境温度30度,第四温度可以设置为150度。在加热过程中,当检测区域的温度从30加热至150度时,温度差值达到起始温度差值120。在温度达到150度之前,若玻璃出现破裂,可以直接确定玻璃的耐热冲击性能不符合要求。其中,起始温度差值可以根据实际需求具体设置,第三温度可以根据目标温度和起始温度差值设置,第四温度可以根据第二温度和起始温度差值设置,本实施例对此不做限制。
本实施例中,在通过方式一使检测区域在设定时间内经受设定温度差值的温度变化的过程中,在开始降温之后的设定时间内,在检测区域的温度变化达到起始温度差值、且未达到设定温度差值之前,若玻璃出现爆裂,此时需要确定爆裂区域的爆点位置。若爆点位置在玻璃的边沿,则说明玻璃的耐热冲击性能符合要求,若爆点位置不在玻璃的边沿,则说明玻璃的耐热冲击 性能不符合要求。玻璃的边沿为玻璃表面沿边的部分,如图2所示,玻璃的边沿202矩形玻璃的一侧边沿。当爆点位置位于边沿202时,爆点位置与边沿202重合,当爆点位置不在边沿202时,爆点位置未与边沿202重合。结合上述举例,在降温过程中,在温度降低至50度之后、在温度降低至0度之前,若玻璃出现爆裂时,可以确定爆点位置,若爆点位置在玻璃的边沿,则说明玻璃的耐热冲击性能符合要求,若爆点位置不在玻璃的边沿,则说明玻璃的耐热冲击性能不符合要求。
在通过方式二使检测区域在设定时间内经受设定温度差值的温度变化的过程中,在开始加热之后的设定时间内,在检测区域的温度变化达到起始温度差值、且未达到设定温度差值之前,若玻璃出现爆裂,此时需要确定玻璃的爆点位置。若爆点位置在玻璃的边沿,则说明玻璃的耐热冲击性能符合要求,若爆点位置不在玻璃的边沿,则说明玻璃的耐热冲击性能不符合要求。结合上述举例,在加热过程中,在温度加热至150度之后、在温度达到200度之前,若玻璃出现爆裂时,确定爆点位置,若爆点位置在玻璃的边沿,则说明玻璃的耐热冲击性能符合要求,若爆点位置不在玻璃的边沿,则说明玻璃的耐热冲击性能不符合要求。
在本发明实施例中,在降温过程和升温过程中,若玻璃爆裂,可以停止降温或停止加热,根据当前时刻的温度变化和爆点位置确定玻璃的耐热冲击性能是否符合要求。结合上述举例,在降温过程和加热过程中,在检测区域的温度变化达到起始温度差值之前玻璃爆裂,可以停止加热或停止降温,直接确定玻璃的耐热冲击性能不符合要求;同样的,在检测区域的温度变化达到起始温度差值、且未达到设定温度差值之前,若玻璃出现爆裂,可以停止加热或停止降温,根据爆裂位置可以确定玻璃的耐冲击性能是否符合要求。
综上所述,本实施例中,在玻璃的边缘选定检测区域,加热检测区域达到目标温度,在设定时间内,玻璃的检测区域经受设定温度差值的温度变化的情况下,根据玻璃的爆裂情况确定玻璃的耐热冲击性能。在检测过程中,从玻璃的边缘选定检测区域进行加热。由于检测区域的面积可以控制在较小的范围内,因此相对于对整个玻璃或整个玻璃试样进行加热,可以减少加热的玻璃质量,快速完成加热工序,进而可以缩短整个测试过程所需时间,提高耐热冲击测试的工作效率。
并且,测试过程中不需要制作玻璃样品,操作简单快捷,可以减少测试时间,提高测试效率。可以直接对玻璃成品进行测试,相比于对玻璃样品的测试,可以更准确的确定玻璃成品是否符合要求。
可选地,检测区域与玻璃的拐角之间的距离大于或等于10毫米;和/或,检测区域与玻璃的边沿之间的距离小于或等于5毫米。
在一种实施方式中,在选定检测区域的过程中,可以使检测区域与玻璃的拐角之间的距离大于或等于10毫米。例如,检测区域与玻璃的拐角之间的距离可以为10mm、11mm、11.5mm、14mm、15mm、20mm、25mm、30mm等。检测区域与玻璃的拐角之间的距离大于或等于10毫米时,可以将检测区域选定在远离玻璃拐角的位置。由于玻璃的拐角会存在开孔和气泡等结构,开孔和气泡会降低玻璃的耐热冲击性能,将检测区域设置在远离拐角的位置可以避免开孔和气泡影响测试的准确性。其中,当玻璃表面涂有釉料时,也可以将检测区域选定在远离釉料叠加的位置,避免釉料叠加位置影响测试的准确性。
可选地,检测区域与玻璃的边沿之间的距离小于或等于5毫米。如图2所示,检测区域201与玻璃200的边沿之间的距离为L,L可以为0,或者大于0、且小于或等于5毫米的数值,例如0.8mm、1mm、1.7mm、2.1mm、3.1mm、3.7mm、4.5mm、5mm。检测区域与玻璃的边沿之间的距离小于或等于5毫米时,可以使检测区域覆盖玻璃的边沿,或者接近玻璃的边沿。在整个玻璃中,玻璃的中心区域的耐热冲击性能较高,而边缘的耐热冲击性能较低。在测试过程中,若从玻璃的中心区域选定检测区域进行测试,可能需要较高的设定温度差值,此时需要采用较为复杂的加热方式或降温方式,不能实现快速、便捷测试的目的。在接近玻璃边沿的位置选择检测区域时,可以降低测试过程中的设定温度差值,降低测试难度。
可选地,步骤101可以包括:
在玻璃的边缘选定间隔的多个检测区域。
在一种实施方式中,可以在玻璃的边缘选定多个检测区域,相邻的两个检测区域之间间隔一定距离。如图2所示,玻璃为矩形玻璃,可以在玻璃的一侧或多侧边缘分别选定多个检测区域,每侧边缘可以选定2、3、4或5等数量的检测区域。在选定多个检测区域之后,可以对每个检测区域依次或同 时进行步骤101至步骤103的测试过程,在任意一个检测区域的测试过程中,若确定玻璃的耐热冲击性能不符合要求,则确定整个玻璃的耐热冲击性能不符合要求。当选定多个检测区域进行耐热冲击测试时,可以对玻璃的多个位置进行测试,根据多个位置侧测试结果可以更准确的判断玻璃的耐热冲击性能是否符合要求。
可选地,间隔的多个检测区域环绕玻璃中心。
在一种实施方式中,多个检测区域可以环绕玻璃的中心设置。如图2所示,在选择检测区域的过程中,可以在每侧边缘分别选定目标数量个检测区域,目标数量可以是2、3、4或5等数量,多个检测区域可以环绕玻璃的中心设置。当多个检测区域环绕玻璃的中心时,多个检测区域可以分别表征玻璃各个位置的耐热冲击性能,从而可以提高耐热冲击测试的准确性。
可选地,在玻璃的边缘选定检测区域之后,在加热检测区域达到目标温度之前,该方法还可以包括:在检测区域的外围设置隔热件。
在一种实施方式中,在对检测区域进行加热之前,可以在检测区域的外围设置隔热件,以避免热量流失过快,从而使检测区域的温度变化量快速达到目标温度。例如,隔热件可以为湿毛巾,在选定图2所示的检测区域201之后,在加热之前,可以将湿毛巾围绕在检测区域201的外围。若采用半导体加热片进行加热,可以将湿毛巾围绕在加热片的周围。在加热过程中,湿毛巾可以阻挡热量流失,从而可以提高加热速度,同时可以降低加热过程中的功耗。其中,隔热件也可以为木块或其他种类的隔热件。
在本发明实施例中,在检测区域的外围设置隔热件,可以使检测区域的温度变化量在设定时间内快速达到目标温度,可以缩短加热时间、降低功耗。
可选地,玻璃包括相对的第一面和第二面;加热检测区域达到目标温度,包括:
对玻璃的检测区域的第一面进行加热;
测量检测区域的第二面的温度;
比较检测区域的第二面的温度与目标温度。当检测区域的第二面的温度达到目标温度时,停止加热。
在一种实施方式中,玻璃可以是应用于在光伏组件中的玻璃,包括相对的第二面和第一面。在光伏组件中,第一面与光伏组件中的胶膜接触,第一 面可以涂覆有釉料,第二面背离胶膜,位于光伏组件的外部,与空气接触。在测试过程中,可以对检测区域的第一面进行加热,并通过温度传感器测量第二面的温度。如图3所示,图3示出了本发明实施例中的一种耐热冲击测试的场景示意图,将玻璃200放置在测试平台300上固定,玻璃的第一面朝上,第二面朝下,使玻璃200的一侧边缘悬空,从悬空的边缘中选定检测区域201。可以将温度传感器粘贴在检测区域201的第二面,在通过热风枪401对检测区域201的第一面进行加热的过程中,通过温度传感器测量第二面的温度,显示设备402与温度传感器连接,可以显示温度传感器采集到的温度。在加热过程中,用户观察显示设备402显示的温度,比较显示的温度与目标温度,当显示的温度达到目标温度时,确定检测区域的温度达到目标温度,可以停止加热。
实际应用中,当光伏组件出现热斑时,热斑位于光伏组件的内部,会直接对玻璃的第一面进行加热,而玻璃的第二面位于光伏组件的外部,与第一面的温度存在差异。因此,在检测过程中,对检测区域的第一面进行加热,可以直接模拟热斑对玻璃的加热过程。并且,在检测温度时,对第二面进行检测,可以避免加热装置影响温度传感器的温度,从而可以更准确的测量第二面的温度。
可选地,在选定检测区域之前,该方法还可以包括:
固定玻璃,并使玻璃的边缘悬空。
在一种实施方式中,在固定玻璃的过程中,可以使玻璃的边缘悬空。如图3所示,可以将玻璃200放置在测试平台300上,并使玻璃200的一侧或多侧边缘突出测试平台300的边沿预设长度,使玻璃200的边缘悬空。可以调节测试平台,使玻璃与水平面之间的夹角小于或等于5度,例如0度、1度、2度、3度和5度。玻璃与水平面之间的夹角小于或等于5度时,可以使玻璃处于水平状态或者接近水平状态。
其中,也可以通过其他固定装置固定玻璃,使玻璃的边缘悬空。当玻璃的边缘悬空时,可以在检测区域的一侧对检测区域加热或降温,在另一侧通过温度传感器采集检测区域的温度。当玻璃处于水平或接近水平状态,并且玻璃的边缘悬空时,玻璃的边缘不受其他应力的影响,可以避免其他应力对耐热冲击性能力的影响。并且,当边缘悬空时,边缘不与其他物体接触,在 加热过程中,可以避免检测区域与其他物体之间的热传导,从而可以避免影响检测区域的温度。
可选地,预设长度不低于50毫米、且不高于100毫米。预设长度例如50毫米、60毫米、77毫米、89毫米、90毫米和100毫米等。设置预设长度不低于50毫米、且不高于100毫米时,可以使玻璃的边缘不受其他应力,并且可以便于选定检测区域,以及便于在检测区域的一侧加热、另一侧设置温度传感器。预设长度和预设角度的具体数值可以根据需求设置,本实施例对此不做限制。
本发明实施例还以供一种光伏组件,光伏组件中包括玻璃,玻璃为采用如上所述的耐热冲击测试方法检测耐热冲击性能达标的玻璃。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或 者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种耐热冲击测试方法,其特征在于,包括:
    在玻璃的边缘选定检测区域;
    加热所述检测区域达到目标温度;
    在设定时间内,玻璃的所述检测区域经受设定温度差值的温度变化的情况下,根据玻璃的爆裂情况确定玻璃的耐热冲击性能。
  2. 根据权利要求1所述的方法,其特征在于,所述玻璃为玻璃成品,所述玻璃用于光伏组件。
  3. 根据权利要求1所述的方法,其特征在于,所述检测区域的面积大于或等于0.2平方厘米,和/或,所述检测区域的面积小于900平方厘米。
  4. 根据权利要求1所述的方法,其特征在于,所述检测区域与所述玻璃的拐角之间的距离大于或等于10毫米;和/或,所述检测区域与所述玻璃的边沿之间的距离小于或等于5毫米。
  5. 根据权利要求1所述的方法,其特征在于,所述在玻璃的边缘选定检测区域,包括:在所述玻璃的边缘选定间隔的多个检测区域。
  6. 根据权利要求5所述的方法,其特征在于,所述间隔的多个检测区域环绕玻璃中心。
  7. 根据权利要求1所述的方法,其特征在于,所述加热的方式包括:热风加热或加热件加热。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,在玻璃的边缘选定检测区域之后,在加热所述检测区域达到目标温度之前,还包括:在所述检测区域的外围设置隔热件。
  9. 根据权利要求1-7中任一项所述的方法,其特征在于,所述玻璃包括相对的第一面和第二面;所述加热所述检测区域达到目标温度,包括:
    对玻璃的检测区域的第一面进行加热;
    测量所述检测区域的第二面的温度;
    比较所述检测区域的第二面的温度与所述目标温度。
  10. 根据权利要求1-7中任一项所述的方法,其特征在于,所述设定时间小于或等于1分钟。
  11. 根据权利要求1-7中任一项所述的方法,其特征在于,所述在设定时 间内,玻璃的所述检测区域经受设定温度差值的温度变化的情况下,根据玻璃的爆裂情况确定玻璃的耐热冲击性能,包括:
    在所述设定时间内,玻璃的所述检测区域从所述目标温度降低所述设定温度差值达到第一温度,根据玻璃的爆裂情况确定玻璃的耐热冲击性能;
    或者,所述在设定时间内,玻璃的所述检测区域经受设定温度差值的温度变化的情况下,根据玻璃的爆裂情况确定玻璃的耐热冲击性能,包括:
    在设定时间内,玻璃的所述检测区域从第二温度升高所述设定温度差值达到所述目标温度,根据玻璃的爆裂情况确定玻璃的耐热冲击性能;其中,玻璃的所述检测区域从所述第二温度升高所述设定温度差值达到所述目标温度的过程,与加热所述检测区域达到目标温度的过程为同一过程。
  12. 根据权利要求1-7中任一项所述的方法,其特征在于,所述根据玻璃的爆裂情况确定玻璃的耐热冲击性能,包括:
    若所述玻璃在所述检测区域的温度变化达到所述设定温度差值时未出现爆裂,则确定所述玻璃的耐热冲击性能符合要求;
    若所述玻璃在所述检测区域的温度变化达到起始温度差值之前出现爆裂,则确定所述玻璃的耐热冲击性能不符合要求;所述起始温度差值小于所述设定温度差值;
    若所述玻璃在所述检测区域的温度变化达到所述起始温度差值之后、在达到所述设定温度差值之前出现爆裂,则确定爆裂区域的爆点位置,
    在所述爆点位置位于所述玻璃的边沿的情况下,确定所述玻璃的耐热冲击性能符合要求;
    在所述爆点位置位于除所述边沿之外的其他位置的情况下,确定所述玻璃的耐热性不符合要求。
  13. 一种光伏组件,其特征在于,所述光伏组件包括玻璃,所述玻璃为采用权利要求1-12中任一项所述的耐热冲击测试方法检测耐热冲击性能达标的玻璃。
PCT/CN2023/081388 2022-04-19 2023-03-14 一种耐热冲击测试方法和光伏组件 WO2023202269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210408413.8 2022-04-19
CN202210408413.8A CN114878625A (zh) 2022-04-19 2022-04-19 一种耐热冲击测试方法和光伏组件

Publications (1)

Publication Number Publication Date
WO2023202269A1 true WO2023202269A1 (zh) 2023-10-26

Family

ID=82669779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081388 WO2023202269A1 (zh) 2022-04-19 2023-03-14 一种耐热冲击测试方法和光伏组件

Country Status (2)

Country Link
CN (1) CN114878625A (zh)
WO (1) WO2023202269A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114878625A (zh) * 2022-04-19 2022-08-09 泰州隆基乐叶光伏科技有限公司 一种耐热冲击测试方法和光伏组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140113890A (ko) * 2014-08-21 2014-09-25 임영곤 정속 시험이 가능한 열 충격 시험기 및 열 충격 시험 방법
CN205562444U (zh) * 2016-04-27 2016-09-07 成都光明光电股份有限公司 玻璃温差稳定性测试装置
CN207675577U (zh) * 2017-11-30 2018-07-31 成都光明光电股份有限公司 光学玻璃受热后耐冷水冲击性能测试仪
CN109787549A (zh) * 2018-12-06 2019-05-21 上海晶澳太阳能科技有限公司 双玻光伏组件
CN110018077A (zh) * 2019-04-16 2019-07-16 英利能源(中国)有限公司 一种双玻组件抗温度冲击测试方法
CN111781226A (zh) * 2020-07-03 2020-10-16 华润水泥技术研发有限公司 一种人造石板材耐热性能测试方法
CN113624631A (zh) * 2021-07-19 2021-11-09 江阴硅普搪瓷股份有限公司 搪玻璃层耐温差急变性能试验装置及其试验方法
CN114878625A (zh) * 2022-04-19 2022-08-09 泰州隆基乐叶光伏科技有限公司 一种耐热冲击测试方法和光伏组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140113890A (ko) * 2014-08-21 2014-09-25 임영곤 정속 시험이 가능한 열 충격 시험기 및 열 충격 시험 방법
CN205562444U (zh) * 2016-04-27 2016-09-07 成都光明光电股份有限公司 玻璃温差稳定性测试装置
CN207675577U (zh) * 2017-11-30 2018-07-31 成都光明光电股份有限公司 光学玻璃受热后耐冷水冲击性能测试仪
CN109787549A (zh) * 2018-12-06 2019-05-21 上海晶澳太阳能科技有限公司 双玻光伏组件
CN110018077A (zh) * 2019-04-16 2019-07-16 英利能源(中国)有限公司 一种双玻组件抗温度冲击测试方法
CN111781226A (zh) * 2020-07-03 2020-10-16 华润水泥技术研发有限公司 一种人造石板材耐热性能测试方法
CN113624631A (zh) * 2021-07-19 2021-11-09 江阴硅普搪瓷股份有限公司 搪玻璃层耐温差急变性能试验装置及其试验方法
CN114878625A (zh) * 2022-04-19 2022-08-09 泰州隆基乐叶光伏科技有限公司 一种耐热冲击测试方法和光伏组件

Also Published As

Publication number Publication date
CN114878625A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2023202269A1 (zh) 一种耐热冲击测试方法和光伏组件
TWI693398B (zh) 熱處理系統之基板破裂偵測法
WO2021169350A1 (zh) 一种建筑墙体热工性能动态测试的装置及方法
CN103411992B (zh) 一种钢结构防火涂料耐火极限快速测试方法和装置
CN108896840B (zh) 一种原位实时测量压电材料高温压电应变常数的装置及方法
CN106288633A (zh) 用于制冷设备的防凝露控制方法及制冷设备
CN112229869A (zh) 一种建筑墙体热阻现场测试装置及方法
CN108681619A (zh) 方形软包锂离子电池热物性参数辨识方法
CN108802269A (zh) 一种基于空燃比例控制的涂料防火性能测试方法及装置
CN108132278B (zh) 一种建筑外窗节能性能检测装置及其控制方法
CN110568004A (zh) 一种电池隔膜热收缩率的测试方法
CN111220652A (zh) 一种基于保护热板法的高温导热系数测量装置
CN102745888B (zh) 超大板钢化玻璃热浸工艺
CN103147107B (zh) 一种引脚基座的加工工艺
CN207817107U (zh) 一种电芯的短路检测设备
CN110954634A (zh) 加热装置及热导检测器
CN108663399B (zh) 建筑玻璃的热导测量装置
CN205538770U (zh) 耐高温测试装置
CN111122647A (zh) 一种锂离子电池极片导热性能的测试方法
CN105509470B (zh) 一体式热震炉及抗热震性实验装置
CN211505361U (zh) 加热装置及热导检测器
CN206906177U (zh) 一种锂离子电池组件固体含量测试装置
CN104990786B (zh) 渣类材料快速熔融形成温度均匀液膜的方法及装置
CN206696103U (zh) 一种用于热电复合场下电迁移的装置
CN105486085B (zh) 分体式热震炉及抗热震性实验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790930

Country of ref document: EP

Kind code of ref document: A1