WO2021169350A1 - 一种建筑墙体热工性能动态测试的装置及方法 - Google Patents

一种建筑墙体热工性能动态测试的装置及方法 Download PDF

Info

Publication number
WO2021169350A1
WO2021169350A1 PCT/CN2020/124385 CN2020124385W WO2021169350A1 WO 2021169350 A1 WO2021169350 A1 WO 2021169350A1 CN 2020124385 W CN2020124385 W CN 2020124385W WO 2021169350 A1 WO2021169350 A1 WO 2021169350A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
temperature
tested
test
box
Prior art date
Application number
PCT/CN2020/124385
Other languages
English (en)
French (fr)
Inventor
漆贵海
杜松
赖振彬
王玉麟
Original Assignee
贵州中建建筑科研设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州中建建筑科研设计院有限公司 filed Critical 贵州中建建筑科研设计院有限公司
Publication of WO2021169350A1 publication Critical patent/WO2021169350A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Definitions

  • the invention relates to a device and method for dynamic testing of thermal performance of building walls, and belongs to the technical field of thermal performance testing of building walls.
  • building energy consumption In energy consumption, building energy consumption accounts for about 30% of the country's total energy consumption, and it is showing an upward trend year by year.
  • the envelope structure is a large energy consumer in the building, and the outer wall is the part of the building envelope that has the largest contact area with the outside.
  • the outer wall accounts for the largest proportion of heating energy consumption, accounting for about the total energy consumption. 32.1 ⁇ 36.2%, so the thermal performance of the external wall plays a vital role in the energy consumption of the building.
  • the thermal performance test of the wall mostly adopts the heat flow meter method, the hot box method, the hot box-heat flow meter method, the constant power plane heat source method, and the infrared thermal imager method.
  • the above methods are used to test the heat transfer coefficient and thermal resistance of the wall under stable heat transfer conditions. None of the above test methods can detect the thermal performance of the wall under the dynamic thermal environment, and cannot analyze and evaluate the thermal performance of the wall under different climatic conditions and air-conditioning operation modes. Therefore, the existing technology still has shortcomings and needs to be further improved.
  • the purpose of the present invention is to provide a device and method for dynamically testing the thermal performance of a building wall, so as to solve the problem that the existing testing method cannot directly test the thermal performance of the wall in a dynamic thermal environment, and cannot analyze and evaluate the thermal performance in different climates.
  • the thermal performance of the wall under the conditions and air-conditioning operation mode.
  • the device for dynamically testing the thermal performance of a building wall of the present invention includes a test box; a wall to be tested is arranged in the test box, and the inner cavity of the test box is divided into a hot room and a cold room by the wall to be tested; the wall to be tested There are fixing devices on both sides; a protective box is provided outside the test box; a temperature regulating device and a temperature measuring device are set between the hot room, the cold room and the protective box and the test box.
  • the fixing device is made of polyurethane; the fixing device is located in the wall hole on both sides of the test box, and is slidably connected to the wall hole, and the wall to be tested is connected by the fixing device Squeeze and fix the body.
  • the protective box is made of polyurethane, and the thickness of the box is more than 10 cm; a closed external environment is created around the test box through the protective box.
  • the temperature adjustment device adopts an air conditioner or a hot air blower.
  • the temperature measuring device adopts a thermocouple and a sheet-type temperature sensor.
  • thermocouples In the aforementioned device for dynamic testing of thermal performance of building walls, the temperature measuring devices between the hot chamber, cold chamber, and protective box and the test box are thermocouples; at least five thermocouples are evenly arranged in the center and around.
  • the test wall is a masonry wall that has been air-dried for more than 14 days after masonry; the elevation dimension of the test wall is 1.5m ⁇ 1.5m; both sides of the test wall are equal There are more than five patch-type temperature sensors evenly arranged in a diagonal direction.
  • the method for dynamically testing the thermal performance of a building wall using the above-mentioned device for dynamic testing of the thermal performance of a building wall of the present invention is that the method performs the test according to the following steps:
  • the temperature of the cold room and the temperature between the protective box and the test box are uniformly heated to 20 ⁇ 2°C through the temperature adjusting device to stop heating;
  • the temperature of the heating chamber is evenly heated to above 50°C by the temperature adjusting device, and then the heating is stopped;
  • thermocouple Draw the temperature change and time of the thermocouple in the hot room and the cold room into a coordinate curve of the ambient temperature and time in the hot room and the cold room;
  • the temperature of the patch-type temperature sensors on both sides of the wall to be tested is the average value of all the patch-type temperature sensors on each side.
  • the temperature of the thermocouples in the hot chamber and the cold chamber is the average value of all the thermocouples on each side.
  • the present invention Due to the adoption of the above technical solution, compared with the prior art, the present invention has a simple and reasonable structure, can realize the test of the dynamic heat transfer process of the wall under different climatic conditions and air-conditioning operation modes, and can test the wall under different thermal environment conditions. Thermal performance analysis and evaluation, effectively overcome the shortcomings of the existing technology.
  • Figure 1 is a schematic diagram of the structure of the present invention
  • Figure 2 is a graph of the surface temperature of the ordinary concrete small hollow block wall and the change of the ambient temperature in the test box with time;
  • Figure 3 is a graph showing changes in the surface temperature of the autoclaved aerated concrete block wall and the ambient temperature in the test box over time.
  • the markings in the picture are explained as follows: 1- test box, 2- wall to be tested, 3- hot room, 4- cold room, 5- fixed device, 6-protection box, 7-temperature control device, 8-thermocouple, 9 -Post-chip temperature sensor.
  • the device for dynamically testing the thermal performance of building walls of the present invention includes a test box 1; the test box 1 is provided with a wall 2 to be tested, and the wall 2 to be tested divides the inner cavity of the test box 1 It is the hot room 3 and the cold room 4; there are fixing devices 5 on both sides of the wall 2 to be tested; the protective box 6 is provided outside the test box 1; the hot room 3, the cold room 4 and the protective box 6 and the test box 1 All are equipped with a temperature regulating device 7 and a temperature measuring device.
  • the fixing device 5 is made of polyurethane; the fixing device 5 is located in the wall holes on both sides of the test box 1 and is slidably connected to the wall hole, and the wall 2 to be tested is squeezed and fixed by the fixing device 5.
  • the protective box 6 is made of polyurethane, and the thickness of the box body is more than 10 cm; a closed external environment is created around the test box 1 through the protective box 6.
  • the temperature adjusting device 7 adopts an air conditioner or a hot air blower.
  • the temperature measuring device adopts a thermocouple 8 and a patch-type temperature sensor 9.
  • the temperature measuring device between the hot chamber 3, the cold chamber 4, the protective box 6 and the test box 1 is a thermocouple 8; the thermocouple 8 is located in the center and at least five evenly arranged around.
  • Test wall 2 is a masonry wall that has been air-dried for more than 14 days after masonry; the elevation dimension of test wall 2 is 1.5m ⁇ 1.5m; both sides of test wall 2 are equipped with more than five evenly arranged
  • a method of the present invention for dynamically testing the thermal performance of a building wall using the above-mentioned device for dynamic testing of the thermal performance of a building wall is, referring to Fig. 1, the method is tested according to the following steps:
  • the temperature of the cold room 4 and the temperature between the protective box 6 and the test box 1 are uniformly heated to 20 ⁇ 2°C by the temperature adjusting device 7 to stop heating;
  • the temperature of the heating chamber 3 is evenly heated to above 50°C by the temperature adjusting device 7 to stop heating;
  • thermocouple 8 Draw the temperature change and time of the thermocouple 8 in the hot chamber 3 and the cold chamber 4 into a coordinate curve of the ambient temperature and time of the hot chamber 3 and the cold chamber 4;
  • the temperature of the patch-type temperature sensors 9 on both sides of the wall to be tested 2 is the average value of all the patch-type temperature sensors 9 on each side.
  • the temperature of the thermocouples 8 in the hot chamber 3 and the cold chamber 4 is the average value of all the thermocouples 8 on each side.
  • the device of the present invention is used to perform dynamic tests on the thermal performance of the two walls made of 190mm thick ordinary concrete small hollow blocks and 190mm thick autoclaved aerated concrete blocks. Both the internal and external surfaces of the two walls were coated with 10mm thick ordinary cement plastering mortar, and the two walls were both masonry and air-dried for 14 days before being installed in the testing device for testing.
  • the test process is as follows: First, the wall made of 190mm thick ordinary concrete small hollow block is fixed in the test box 1 through the fixing device 5, and the test box 1 is connected to the test box 1 through the 190mm thick ordinary concrete small hollow block wall. Separate into a hot room 3 and a cold room 4; and evenly paste the sheet-type temperature sensor 9 on both sides of the 190mm thick ordinary concrete small hollow block wall. At the same time, some thermocouples 8 are evenly arranged in the hot chamber 3 and the cold chamber 4.
  • the temperature in the hot chamber 3 is evenly heated to above 50°C by the temperature adjusting device 7 to stop heating, and the heat is recorded by the hot plate temperature sensor 9 during the process of transferring the heat from the hot chamber 3 through the test wall to the cold chamber 4
  • the temperature change of the surface and the environmental temperature change measured by the thermocouple 8 in the hot chamber 3 and the cold chamber 4; and the wall temperature change process and the environmental temperature change process are drawn into ordinary concrete small hollow blocks as shown in Figure 2.
  • the delay time of the autoclaved aerated concrete block wall is obviously longer than that of the ordinary concrete small hollow block wall;
  • the wall of the autoclaved aerated concrete block hot chamber The highest temperature is 48.5°C, the highest temperature of the cold room wall is 25.7°C, the highest temperature of the ordinary concrete small hollow block wall is 39.3°C, the highest temperature of the cold room wall is 26.3°C;
  • the autoclaved aerated concrete block hot room wall The cooling rate of the surface temperature is slower than that of ordinary small hollow concrete blocks, and after cooling for a period of time, the wall of the heating chamber is higher than the ambient temperature of the heating chamber.
  • the device of the invention has a simple and reasonable structure, can realize the test of the dynamic heat transfer process of the wall under different climatic conditions and air-conditioning operation modes, and analyze and evaluate the thermal performance of the wall under different thermal environmental conditions.

Abstract

一种建筑墙体热工性能动态测试的装置及方法,装置包括测试箱(1);测试箱(1)内设有待测试墙体(2),待测试墙体(2)将测试箱(1)内腔分为热室(3)和冷室(4);待测试墙体(2)两侧边设有固定装置(5);测试箱(1)外设有防护箱(6);热室(3)、冷室(4)和防护箱(6)与测试箱(1)之间均设有调温装置(7)和测温装置。该装置结构简单合理,可实现在不同气候条件和空调运行模式下墙体动态传热过程的测试,对不同热环境条件下墙体的热工性能进行分析和评价。

Description

一种建筑墙体热工性能动态测试的装置及方法 技术领域
本发明涉及一种建筑墙体热工性能动态测试的装置及方法,属于建筑墙体热工性能测试技术领域。
背景技术
在能源消耗中,建筑能耗约占全国能源消耗总量的30%左右,并且呈现逐年上升的趋势。围护结构是建筑物中的一个耗能大户,而外墙是建筑围护结构中与室外接触面积最大的部分,外墙体在采暖能耗中所占的比例最大,约占总能耗的32.1~36.2%,因此外墙热工性能的优劣对建筑能耗的高低起着至关重要的作用。
现有技术对墙体热工性能测试大多采用热流计法、热箱法、热箱-热流计法、常功率平面热源法以及红外热像仪法等方法。上述方法均是在稳定传热条件下检测墙体传热系数,热阻等指标。上述测试方法均不能对墙体动态热环境下的热工性能进行检测,无法对不同气候条件和空调运行模式下墙体的热工性能进行分析和评价。因此,现有技术仍存在不足,有待进一步改进。
发明内容
本发明的目的在于,提供一种建筑墙体热工性能动态测试的装置及方法,以解决现有测试方法无法直接测试墙体在动态热环境下的热工性能,无法分析和评价在不同气候条件和空调运行模式下墙体热工性能的问题,从而克服现有技术存在的不足。
为实现上述目的,本发明采用如下技术方案:
本发明的一种建筑墙体热工性能动态测试的装置,包括测试箱; 测试箱内设有待测试墙体,待测试墙体将测试箱内腔分为热室和冷室;待测试墙体两侧边设有固定装置;测试箱外设有防护箱;热室、冷室和防护箱与测试箱之间均设有调温装置和测温装置。
前述建筑墙体热工性能动态测试的装置中,所述固定装置采用聚氨酯制成;固定装置位于测试箱两侧的墙体孔洞内,并与墙体孔洞滑动连接,通过固定装置将待测试墙体挤住并固定。
前述建筑墙体热工性能动态测试的装置中,所述防护箱采用聚氨酯制成,箱体的厚度10厘米以上;通过防护箱在测试箱周围营造一个密闭的外部环境。
前述建筑墙体热工性能动态测试的装置中,所述调温装置采用空调或热风机。
前述建筑墙体热工性能动态测试的装置中,所述测温装置采用热电偶和帖片式温度传感器。
前述建筑墙体热工性能动态测试的装置中,所述热室、冷室和防护箱与测试箱之间的测温装置为热电偶;热电偶位于中央及四周至少均匀布置五个以上。
前述建筑墙体热工性能动态测试的装置中,所述测试墙体为砌筑后风干14天以上的砌体墙;测试墙体的立面尺寸为1.5米×1.5米;测试墙体两面均设有按对角方向均匀布置的五个以上帖片式温度传感器。
本发明的一种采用上述建筑墙体热工性能动态测试的装置进行建筑墙体热工性能动态测试的方法为,该方法按以下步骤进行测试:
a、通过固定装置将待测试墙体固定在测试箱内,通过待测试墙体将测试箱分隔为热室和冷室;
b、通过调温装置将冷室温度和防护箱与测试箱之间的温度均匀加热至20±2℃停止加热;
c、通过调温装置将热室温度均匀加热至50℃以上即停止加 热;
d、将待测试墙体两侧帖片式温度传感器的温度变化及时间,绘制成待测试墙体两侧温度和时间的坐标曲线;
e、将热室和冷室内热电偶的温度变化及时间,绘制成热室和冷室环境温度和时间的坐标曲线;
f、更换不同的通过待测试墙体重复步骤a~e,并比较两次测试绘制成的待测试墙体两侧温度和时间的坐标曲线和热室和冷室环境温度和时间的坐标曲线,得出两种或两种以上不同待测试墙体的保温性能。
前述建筑墙体热工性能动态测试方法中,所述待测试墙体两侧帖片式温度传感器的温度为每侧所有帖片式温度传感器的平均值。
前述建筑墙体热工性能动态测试方法中,所述热室和冷室内热电偶温度为每侧所有热电偶的平均值。
由于采用了上述技术方案,本发明与现有技术相比,本发明结构简单合理,可实现在不同气候条件和空调运行模式下墙体动态传热过程的测试,对不同热环境条件下墙体的热工性能进行分析和评价,有效地克服了现有技术的不足。
附图说明
图1是本发明的结构示意图;
图2是普通混凝土小型空心砌块墙体的表面温度以及测试箱体内环境温度温度随时间的变化曲线图;
图3是蒸压加气混凝土砌块墙体的表面温度以及测试箱体内环境温度温度随时间的变化曲线图。
图中标记说明如下:1-测试箱、2-待测试墙体、3-热室、4-冷室、5-固定装置、6-防护箱、7-调温装置、8-热电偶、9-帖片式温度传感器。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。
本发明的一种建筑墙体热工性能动态测试的装置,如图1所示,包括测试箱1;测试箱1内设有待测试墙体2,待测试墙体2将测试箱1内腔分为热室3和冷室4;待测试墙体2两侧边设有固定装置5;测试箱1外设有防护箱6;热室3、冷室4和防护箱6与测试箱1之间均设有调温装置7和测温装置。固定装置5采用聚氨酯制成;固定装置5位于测试箱1两侧的墙体孔洞内,并与墙体孔洞滑动连接,通过固定装置5将待测试墙体2挤住并固定。防护箱6采用聚氨酯制成,箱体的厚度10厘米以上;通过防护箱6在测试箱1周围营造一个密闭的外部环境。调温装置7采用空调或热风机。测温装置采用热电偶8和帖片式温度传感器9。热室3、冷室4和防护箱6与测试箱1之间的测温装置为热电偶8;热电偶8位于中央及四周至少均匀布置五个以上。测试墙体2为砌筑后风干14天以上的砌体墙;测试墙体2的立面尺寸为1.5米×1.5米;测试墙体2两面均设有按对角方向均匀布置的五个以上帖片式温度传感器9。
本发明的一种采用上述建筑墙体热工性能动态测试的装置进行建筑墙体热工性能动态测试的方法为,参考图1,该方法按以下步骤进行测试:
a、通过固定装置5将待测试墙体2固定在测试箱1内,通过待测试墙体2将测试箱1分隔为热室3和冷室4;
b、通过调温装置7将冷室4温度和防护箱6与测试箱1之间的温度均匀加热至20±2℃停止加热;
c、通过调温装置7将热室3温度均匀加热至50℃以上即停止加热;
d、将待测试墙体2两侧帖片式温度传感器9的温度变化及时间,绘制成待测试墙体两侧温度和时间的坐标曲线;
e、将热室3和冷室4内热电偶8的温度变化及时间,绘制成热室3和冷室4环境温度和时间的坐标曲线;
f、更换不同的通过待测试墙体2重复步骤a~e,并比较两次测试绘制成的待测试墙体两侧温度和时间的坐标曲线和热室3和冷室4环境温度和时间的坐标曲线,得出两种或两种以上不同待测试墙体2的保温性能。
前述待测试墙体2两侧帖片式温度传感器9的温度为每侧所有帖片式温度传感器9的平均值。热室3和冷室4内热电偶8温度为每侧所有热电偶8的平均值。
实施例
首先按图1所示建造建筑墙体热工性能动态测试装置。然后采用本发明的装置分别对190mm厚的普通混凝土小型空心砌块和190mm厚的蒸压加气混凝土砌块砌筑而成的两种墙体进行墙体热工性能动态测试。两种墙体内外表面均涂抹10mm厚的普通水泥抹面砂浆,两种墙体均砌筑风干14天后再安装到测试装置中进行测试。
测试过程如下:首先将190mm厚的普通混凝土小型空心砌块而成的墙体通过固定装置5固定在测试箱1内,通过190mm厚的普通混凝土小型空心砌块而成的墙体将测试箱1分隔为热室3和冷室4;并在190mm厚的普通混凝土小型空心砌块墙体两面均匀贴上帖片式温度传感器9。同时在热室3和冷室4均匀布置一些热电偶8。然后通过调温装置7将热室3内温度均匀加热至50℃以上即停止加热,通过热帖片式温度传感器9记录热量从热室3通过测试墙体传递到冷室4的过程中墙体表面的温度变化以及热室3和冷室4中热电偶8所测得的环境温度变化;并将墙体温度变化过程和环境温度变化过程绘制成如图2所示的普通混凝土小型空心砌块墙体动态传热过程曲线图。
然后将待测试墙体2更换成蒸压加气混凝土砌块墙体,重复上述 测试过程,绘制成如图3所示的蒸压加气混凝土砌块墙体动态传热过程曲线图。
对比图2和图3可见,在对热室环境温度进行加热过程中,热室墙面温度随着热室环境温度的升高而升高;冷室墙面温度也随之升高,但是有一定的延迟性。当热室环境停止加热后,热室环境温度、热室墙面温度均随之降低;冷室墙面温度有一定的延迟性,先继续升高后开始降低。对两种不同待测试墙体2进行比较可知,蒸压加气混凝土砌块墙体的延迟时间明显要比普通混凝土小型空心砌块墙体的长;蒸压加气混凝土砌块热室墙面最高温度48.5℃、冷室墙面最高温度25.7℃,普通混凝土小型空心砌块墙体热室墙面最高温度39.3℃、冷室墙面最高温度26.3℃;蒸压加气混凝土砌块热室墙面温度降温速率比普通混凝土小型空心砌块的降温速率缓慢,并且降温一段时间后热室墙面高于热室环境温度。
以上测试结果表明与普通混凝土小型空心砌块墙体相比,蒸压加气混凝土砌块墙体保温性能更好,在夏季时能有效延缓室外温度向室内传递,在冬季时能有效延缓室内温度向室外传递。
本发明的装置结构简单合理,可实现在不同气候条件和空调运行模式下墙体动态传热过程的测试,对不同热环境条件下墙体的热工性能进行分析和评价。

Claims (10)

  1. 一种建筑墙体热工性能动态测试的装置,包括测试箱(1);其特征在于:测试箱(1)内设有待测试墙体(2),待测试墙体(2)将测试箱(1)内腔分为热室(3)和冷室(4);待测试墙体(2)两侧边设有固定装置(5);测试箱(1)外设有防护箱(6);热室(3)、冷室(4)和防护箱(6)与测试箱(1)之间均设有调温装置(7)和测温装置。
  2. 根据权利要求1所述建筑墙体热工性能动态测试的装置,其特征在于:所述固定装置(5)采用聚氨酯制成;固定装置(5)位于测试箱(1)两侧的墙体孔洞内,并与墙体孔洞滑动连接,通过固定装置(5)将待测试墙体(2)挤住并固定。
  3. 根据权利要求1所述建筑墙体热工性能动态测试的装置,其特征在于:所述防护箱(6)采用聚氨酯制成,箱体的厚度10厘米以上;通过防护箱(6)在测试箱(1)周围营造一个密闭的外部环境。
  4. 根据权利要求1所述建筑墙体热工性能动态测试装置,其特征在于:所述调温装置(7)采用空调或热风机。
  5. 根据权利要求1所述建筑墙体热工性能动态测试的装置,其特征在于:所述测温装置采用热电偶(8)和帖片式温度传感器(9)。
  6. 根据权利要求5所述建筑墙体热工性能动态测试的装置,其特征在于:所述热室(3)、冷室(4)和防护箱(6)与测试箱(1)之间的测温装置为热电偶(8);热电偶(8)位于中央及四周至少均匀布置五个以上。
  7. 根据权利要求5所述建筑墙体热工性能动态测试的装置,其特征在于:所述测试墙体(2)为砌筑后风干14天以上的砌体墙;测试墙体(2)的立面尺寸为1.5米×1.5米;测试墙体(2)两面均设 有按对角方向均匀布置的五个以上帖片式温度传感器(9)。
  8. 一种采用权利要求1~7所述任一建筑墙体热工性能动态测试的装置进行建筑墙体热工性能动态测试的方法,其特征在于:该方法按以下步骤进行测试:
    a、通过固定装置将待测试墙体固定在测试箱内,通过待测试墙体将测试箱分隔为热室和冷室;
    b、通过调温装置将冷室温度和防护箱与测试箱之间的温度均匀加热至20±2℃停止加热;
    c、通过调温装置将热室温度均匀加热至50℃以上即停止加热;
    d、将待测试墙体两侧帖片式温度传感器的温度变化及时间,绘制成待测试墙体两侧温度和时间的坐标曲线;
    e、将热室和冷室内热电偶的温度变化及时间,绘制成热室和冷室环境温度和时间的坐标曲线;
    f、更换不同的通过待测试墙体重复步骤a~e,并比较两次测试绘制成的待测试墙体两侧温度和时间的坐标曲线和热室和冷室环境温度和时间的坐标曲线,得出两种或两种以上不同待测试墙体的保温性能。
  9. 根据权利要求8所述建筑墙体热工性能动态测试的方法,其特征在于:所述待测试墙体两侧帖片式温度传感器的温度为每侧所有帖片式温度传感器的平均值。
  10. 根据权利要求8所述建筑墙体热工性能动态测试的方法,其特征在于:所述热室和冷室内热电偶温度为每侧所有热电偶的平均值。
PCT/CN2020/124385 2020-02-25 2020-10-28 一种建筑墙体热工性能动态测试的装置及方法 WO2021169350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010117884.4 2020-02-25
CN202010117884.4A CN111380905A (zh) 2020-02-25 2020-02-25 一种建筑墙体热工性能动态测试的装置及方法

Publications (1)

Publication Number Publication Date
WO2021169350A1 true WO2021169350A1 (zh) 2021-09-02

Family

ID=71215221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124385 WO2021169350A1 (zh) 2020-02-25 2020-10-28 一种建筑墙体热工性能动态测试的装置及方法

Country Status (2)

Country Link
CN (1) CN111380905A (zh)
WO (1) WO2021169350A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115096934A (zh) * 2022-06-20 2022-09-23 江苏建筑职业技术学院 一种非稳态墙体传热特性测试装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380905A (zh) * 2020-02-25 2020-07-07 贵州中建建筑科研设计院有限公司 一种建筑墙体热工性能动态测试的装置及方法
CN111948257B (zh) * 2020-08-11 2023-06-23 兰州大学 一种接近实际使用状态的相变储能建筑材料及构件温度调节性能的测试方法
CN113252724B (zh) * 2021-05-21 2022-05-31 山东中坚工程质量检测有限公司 一种外墙保温性能的检测方法
CN113340940B (zh) * 2021-06-28 2022-07-12 江苏省建筑工程质量检测中心有限公司 一体化混凝土组合外墙板热工检测方法及其检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2828810Y (zh) * 2005-02-03 2006-10-18 北京中建建筑科学技术研究院 冷热箱式传热系数检测仪
CN101241091A (zh) * 2007-02-08 2008-08-13 北京秦润玻璃有限公司 建筑玻璃稳态热阻测定装置
US8186873B1 (en) * 2008-10-08 2012-05-29 Flir Systems, Inc. Determination of thermal resistance using infrared thermography
CN103076359A (zh) * 2013-01-08 2013-05-01 重庆大学 一种建筑围护结构传热系数现场检测装置
CN104391003A (zh) * 2014-11-25 2015-03-04 浙江威廉姆节能科技有限公司 基于薄体类型节能材料的热工检测装置与方法
CN110806425A (zh) * 2019-11-19 2020-02-18 河南日盛综合检测有限公司 墙体保温性能检测系统
CN111380905A (zh) * 2020-02-25 2020-07-07 贵州中建建筑科研设计院有限公司 一种建筑墙体热工性能动态测试的装置及方法
CN212060004U (zh) * 2020-02-25 2020-12-01 贵州中建建筑科研设计院有限公司 一种建筑墙体热工性能动态测试的装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2828810Y (zh) * 2005-02-03 2006-10-18 北京中建建筑科学技术研究院 冷热箱式传热系数检测仪
CN101241091A (zh) * 2007-02-08 2008-08-13 北京秦润玻璃有限公司 建筑玻璃稳态热阻测定装置
US8186873B1 (en) * 2008-10-08 2012-05-29 Flir Systems, Inc. Determination of thermal resistance using infrared thermography
CN103076359A (zh) * 2013-01-08 2013-05-01 重庆大学 一种建筑围护结构传热系数现场检测装置
CN104391003A (zh) * 2014-11-25 2015-03-04 浙江威廉姆节能科技有限公司 基于薄体类型节能材料的热工检测装置与方法
CN110806425A (zh) * 2019-11-19 2020-02-18 河南日盛综合检测有限公司 墙体保温性能检测系统
CN111380905A (zh) * 2020-02-25 2020-07-07 贵州中建建筑科研设计院有限公司 一种建筑墙体热工性能动态测试的装置及方法
CN212060004U (zh) * 2020-02-25 2020-12-01 贵州中建建筑科研设计院有限公司 一种建筑墙体热工性能动态测试的装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115096934A (zh) * 2022-06-20 2022-09-23 江苏建筑职业技术学院 一种非稳态墙体传热特性测试装置

Also Published As

Publication number Publication date
CN111380905A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2021169350A1 (zh) 一种建筑墙体热工性能动态测试的装置及方法
CN101576519B (zh) 一种建筑外墙隔热涂料隔热性能室外动态测试方法
Li et al. Experimental study on thermal performance improvement of building envelopes by integrating with phase change material in an intermittently heated room
CN104132959B (zh) 一种基于神经网络的严寒地区建筑外墙传热性能预测方法
CN106841289B (zh) 一种利用太阳光检测遮阳产品隔热性能的装置及方法
Zhang et al. Experimental study on the building evaporative cooling by using the Climatic Wind Tunnel
CN112229869A (zh) 一种建筑墙体热阻现场测试装置及方法
Yu et al. Experimental study on the thermal performance of a hollow block ventilation wall
CN109521049A (zh) 一种建筑保温材料节能率测量系统及测量方法
CN106442609A (zh) 一种固固相变保温材料等效导热系数的测评方法
Janković et al. Alternative method for on site evaluation of thermal transmittance
CN212060004U (zh) 一种建筑墙体热工性能动态测试的装置
Xing-guo et al. Experimental study of the thermal performance of a new type of building reflective coating in hot summer and cold winter zone of China
CN202133634U (zh) 用于测试屋面隔热模块及材料性能的检测装置
CN101113964A (zh) 建筑物围护结构透明部分热特性测量装置
CN101581682B (zh) 一种建筑外墙隔热涂料隔热性能室外动态测试装置
Sougkakis et al. An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions
Jia et al. Comparative Experimental Study on Heat Transfer Characteristics of Building Exterior Surface at High and Low Altitudes
CN104089787B (zh) 基于外环境控制的辐射末端性能测试试验装置
CN207717674U (zh) 外窗节能性能现场检测设备
Hui-Xing et al. The test and analysis of air tightness for zero energy building in cold region
CN209356434U (zh) 一种门窗保温性能检测设备
CN213600619U (zh) 一种建筑墙体热阻现场测试装置
CN201177608Y (zh) 建筑物围护结构透明部分热特性测量装置
CN113533418A (zh) 一种基于红外热像仪定量分析建筑热桥热损失的新方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921377

Country of ref document: EP

Kind code of ref document: A1