WO2023202074A1 - 一种非对称高应力隧道爆破振动测试方法及系统 - Google Patents

一种非对称高应力隧道爆破振动测试方法及系统 Download PDF

Info

Publication number
WO2023202074A1
WO2023202074A1 PCT/CN2022/134329 CN2022134329W WO2023202074A1 WO 2023202074 A1 WO2023202074 A1 WO 2023202074A1 CN 2022134329 W CN2022134329 W CN 2022134329W WO 2023202074 A1 WO2023202074 A1 WO 2023202074A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
tunnel
asymmetric high
blasting
vibration
Prior art date
Application number
PCT/CN2022/134329
Other languages
English (en)
French (fr)
Inventor
何本国
冯夏庭
王杰
邱士宸
孟祥瑞
王雷
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to US18/547,754 priority Critical patent/US11982596B2/en
Publication of WO2023202074A1 publication Critical patent/WO2023202074A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/14Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force of explosions; for measuring the energy of projectiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/313Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by explosives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the invention relates to the technical field of tunnel engineering, and in particular to an asymmetric high-stress tunnel blasting vibration testing method and system.
  • In-situ stress is a natural stress that exists in the formation and has not been disturbed by engineering activities. Due to the coupling effects of multiple tectonic movements, surface sedimentation, and erosion, the three-dimensional original rock stress field of deep engineering rock masses is complex. Deeply buried tunnels are often caused by changing three-dimensional geostress (maximum principal stress ⁇ 1 > intermediate principal stress ⁇ 2 > minimum principal stress ⁇ 3 ), long-term strong tectonic activity, and the main direction of geostress does not usually coincide with the tunnel coordinate system. . Asymmetric stress distribution often occurs in tunnel cross-sections. The surrounding rock in the stress concentration area around the tunnel is easily damaged and has higher energy. It is more significantly affected by tunnel face blasting and is a key part of tunnel stability control.
  • the tangential stress of the surrounding rock behind the tunnel face of the high-stress tunnel gradually increases, the radial stress decreases, the stress difference increases, and the surrounding rock gradually becomes in an unfavorable stress state.
  • the blasting stress wave causes vibrations of the surrounding rock, which can easily induce rock mass rupture.
  • the local stress concentration is high enough, it may even lead to dynamic disasters such as rock bursts.
  • the drill and blast method is used in most highway tunnels and tunnels. It is widely used in the excavation of mountain tunnels.
  • a stress concentration area is formed in the surrounding rock in the vertical direction along the line of the maximum principal stress on the tunnel cross-section behind the tunnel face. This stress concentration area is more susceptible to the stress wave vibration of the blasting construction of the tunnel face. It is a good place to monitor the impact of blasting vibration. important parts.
  • the monitoring of tunnel face blasting vibration adopts a geometrically symmetrical method, which does not take into account the characteristics of the stress concentration zone of asymmetric high-stress tunnels.
  • the monitoring parts are often inconsistent with the easily damaged parts of the stress concentration zone, and the stability of the surrounding rock cannot be effectively evaluated.
  • the existing method does not consider the stress concentration area caused by asymmetric high stress during blasting vibration testing, and cannot effectively monitor the rupture caused by blasting vibration damage to the surrounding rock.
  • the above-mentioned existing blasting vibration testing methods do not consider the surrounding rock in the stress concentration area caused by the asymmetric high stress of the deep tunnel. Tunnel face blasting can easily trigger damage and instability of the surrounding rock in this area.
  • the present invention provides an asymmetric high-stress tunnel blasting vibration testing method and system. Compared with the existing technology, the method and system can focus on monitoring the blasting vibration speed and acceleration at different radial depths in the stress concentration zone, thereby improving the efficiency of tunnel excavation construction. Safety and construction efficiency, ensuring the safety of construction personnel and equipment.
  • the first aspect of the present invention provides an asymmetric high-stress tunnel blasting vibration testing method.
  • Three-axis vibration sensors are respectively fixed at different radial depth areas inside the surrounding rock of the stress concentration area behind the asymmetric high-stress tunnel face. Through each The three-axis vibration sensor monitors the blasting vibration velocity and acceleration at its location.
  • the method includes the following steps:
  • Step 1 Determine the location of the stress concentration area behind the tunnel face of the asymmetric high-stress tunnel and the different radial depths inside the surrounding rock of the stress concentration area;
  • Step 2 Set multiple boreholes extending from the tunnel wall to the interior of the surrounding rock in the stress concentration area behind the tunnel face;
  • Step 3 Fix three-axis vibration sensors in the different radial depth areas of each borehole
  • Step 4 Collect and store the blasting vibration velocity and acceleration measured by each three-axis vibration sensor at its location.
  • the location of the stress concentration area behind the asymmetric high-stress tunnel face is determined and different radial depths within the surrounding rock in the stress concentration zone.
  • the different radial depths are the surface layer inside the surrounding rock in the stress concentration area, the surface layer inward, and the deeper depth.
  • five drilling holes 1 # , 2 # , 3 # , 4 # , and 5 # are set at 10m intervals in the middle of the stress concentration area behind the tunnel face, and only Arranged in a row.
  • the first drilled hole is 2 times the hole span from the tunnel face.
  • the method of fixing three-axis vibration sensors in the different radial depth areas of each borehole is: using drilling debris mixed with cement and water to form a seal Blocking material is used, and a pump is used to transport the blocking material to the borehole to block the three-axis vibration sensor, so that the three-axis vibration sensor is integrated with the surrounding rock of the tunnel to ensure that the vibration speed and acceleration of the three-axis vibration sensor and the surrounding rock of the tunnel are consistent.
  • a second aspect of the present invention provides an asymmetric high-stress tunnel blasting vibration testing system.
  • the system includes a plurality of three-axis vibration sensors; the plurality of three-axis vibration sensors are fixed in the stress concentration area behind the tunnel face of the asymmetric high-stress tunnel. In different radial depth areas inside the surrounding rock, each of the three-axis vibration sensors is used to monitor the blasting vibration speed and acceleration at its location.
  • the asymmetric high-stress tunnel blasting vibration testing system also includes a cloud platform for collecting and storing the blasting vibration velocity and acceleration measured by each three-axis vibration sensor at its location.
  • the method and system of the present invention focus on monitoring the blasting vibration speed and acceleration at different radial depths in the stress concentration area behind the asymmetric high-stress tunnel face.
  • the blasting charge amount, footage, and number of detonator sections are controlled. , step difference, blast hole layout and other parameters, and adjust the excavation method if necessary.
  • Corresponding support parameters can also be determined based on the blasting vibration speed and acceleration at different radial depths, including the thickness of the surrounding rock grouting circle and the length of the anchor rod, so as to improve the safety and construction efficiency of tunnel excavation construction and improve the efficiency of tunnel excavation construction.
  • Safety and construction efficiency ensuring the safety of construction personnel and equipment.
  • Figure 1 is a schematic flow chart of the asymmetric high-stress tunnel blasting vibration testing method in this embodiment
  • Figure 2 shows the stress distribution diagram of an asymmetric high-stress tunnel
  • Figure 3 shows the stress distribution diagram of an asymmetric high-stress tunnel
  • Figure 4 is a schematic diagram of the location of the stress concentration area behind the tunnel face of the asymmetric high-stress tunnel in this embodiment
  • Figure 5 is a schematic diagram of different radial depth positions inside the surrounding rock in the stress concentration area of this embodiment
  • Figure 6 is a schematic diagram of the installation position of the three-axis vibration sensor in this embodiment.
  • Figure 7 is a schematic structural diagram of the asymmetric high-stress tunnel blasting vibration testing system in this embodiment.
  • ⁇ 1 , ⁇ 2 and ⁇ 3 are the asymmetric maximum principal stress, intermediate principal stress and minimum principal stress respectively; 1 # , 2 # , 3 # , 4 # and 5 # are the 5 drilling positions respectively; a, b , c respectively represent the three different radial depths of the stress concentration area from the cave wall to the interior of the surrounding rock, namely the surface layer, the surface layer inward, and the deeper layer; ⁇ Indicates the installation position of the three-axis vibration sensor.
  • a first aspect of the present invention provides an asymmetric high-stress tunnel blasting vibration testing method.
  • the method is: fixing three-axis vibration sensors in different radial depth areas inside the surrounding rock of the stress concentration area behind the asymmetric high-stress tunnel face. , through each three-axis vibration sensor, the blasting vibration speed and acceleration at its location are monitored.
  • Figure 1 is a specific flow chart of the asymmetric high-stress tunnel blasting vibration testing method in this embodiment. As shown in Figure 1, the asymmetric high-stress tunnel blasting vibration test method is as follows:
  • Step 1 Based on the geological data of the surrounding rock of the tunnel, according to the asymmetric in-situ stress distribution of the original rock and the geometric characteristics of the tunnel cross-section, determine the location of the stress concentration area behind the tunnel face of the asymmetric high-stress tunnel and the different radial directions inside the surrounding rock of the stress concentration area. depth;
  • Step 2 Set up multiple boreholes extending from the tunnel wall to the interior of the surrounding rock in the stress concentration area behind the tunnel face of the asymmetric high-stress tunnel;
  • five boreholes 1 # , 2 # , 3 # , 4 # , and 5 # are set up at intervals of 10m in the stress concentration area behind the tunnel face as shown in Figure 6. They are only arranged in one row. , located in the middle of the stress concentration area behind the tunnel face, and the first drilled hole is 2 times the hole span from the tunnel face.
  • the drilling diameter is slightly larger than the diameter of the three-axis vibration sensor, such as 0.11m-0.13m, and the drilling depth reaches a certain depth such as 1m;
  • Step 3 Fix three-axis vibration sensors in the different radial depth areas of each borehole
  • this implementation method customizes a large-range three-axis vibration sensor to monitor the blasting vibration speed in three directions inside the surrounding rock. , acceleration.
  • a custom-made large-range three-axis vibration sensor is installed from the inside to the outside at point a on the surface of each borehole, point b inward from the surface, and point c in the deeper layer.
  • the drilling debris is mixed with cement and water to form a blocking material, and a pump is used to transport the blocking material to the borehole to block the three-axis vibration sensor, so that the three-axis vibration sensor is integrated with the interior of the tunnel surrounding rock to ensure that the three-axis vibration sensor is integrated with the tunnel surrounding rock.
  • the shaft vibration sensor has the same vibration speed and acceleration as the tunnel surrounding rock; the blocking material has the same wave impedance as the surrounding rock in the stress concentration area after seven days of solidification.
  • Step 4 Collect and store the blasting vibration velocity and acceleration measured by each three-axis vibration sensor at its location
  • the cloud platform is used to remotely control the three-axis vibration sensor to set relevant parameters, and collect and store the blasting vibration velocities in three directions at different depths in the stress concentration area behind the tunnel face caused by blasting during tunnel face construction. , acceleration.
  • the data collected and stored based on the cloud platform include the blasting vibration velocity and acceleration in three directions at each three-axis vibration sensor position, and the corresponding The horizontal distance between the sensor and the tunnel face, the radial depth of the sensor's location, and blasting-related parameters of the tunnel face were used to establish a blasting vibration propagation model for asymmetric high-stress tunnels.
  • V represents the calculated value of blasting vibration speed, cm/s
  • Q represents the amount of explosives causing blasting vibration, kg
  • R represents the blast distance, m
  • K a——respectively behind the asymmetric high-stress tunnel tunnel face Coefficients and attenuation indexes related to the physical and mechanical parameters of the surrounding rock in the stress concentration area and geological conditions;
  • L is the horizontal distance between the tunnel face and the three-axis vibration sensor
  • D is the vertical distance between the tunnel wall and the three-axis vibration sensor, that is, the drilling depth.
  • the blasting vibration velocity at different positions in the stress concentration area of the rear surrounding rock during the blasting construction of the asymmetric high-stress tunnel face can be calculated, and based on the generated values of the surrounding rock measured by the three-axis vibration sensor
  • the critical vibration speed of the crack can be used to determine the damage and destruction range of the stress concentration zone, and then evaluate the stability of the surrounding rock in the stress concentration zone of the asymmetric high-stress tunnel, and then determine the support parameters at different horizontal distances and different radial depths, which is the basis for excavation and Support provides more accurate scientific basis.
  • the above blasting vibration velocity test method can provide a theoretical basis for evaluating the safety of stress concentration zones and support parameters at different radial depths during blasting construction of asymmetric high-stress tunnels.
  • the invention also provides a blasting vibration testing system for an asymmetric high-stress tunnel.
  • the system includes a plurality of three-axis vibration sensors; the plurality of three-axis vibration sensors are fixed around the stress concentration area behind the tunnel face of the asymmetric high-stress tunnel. Different radial depth areas inside the rock, each of the three-axis vibration sensors is used to monitor the blasting vibration velocity and acceleration at its location. The details are as described above: first determine the location of the stress concentration zone behind the tunnel face of the asymmetric high-stress tunnel and the different radial depths inside the surrounding rock of the stress concentration zone, and then set up multiple stress concentration zones behind the tunnel face from the tunnel wall to the surrounding area. Boreholes extending inside the rock.
  • the boreholes are set in the stress concentration area behind the tunnel face.
  • the five drill holes 2 # , 3 # , 4 # , and 5 # are only arranged in one row.
  • the first drill hole is 2 times the hole span from the tunnel face.
  • the diameter of each drill hole is slightly larger than the diameter of the three-axis vibration sensor, such as 0.11 m-0.13m, to a certain depth such as 1m after the depth reaches the deeper layer; and then use plugging materials to fix the three-axis vibration sensor in the different radial depth areas of each borehole.
  • the plugging materials are crushed by the drilled holes. It is formed by mixing slag with cement and water.
  • the cloud platform Before detonation, as shown in Figure 7, the cloud platform is used to control the three-axis vibration sensor setting time, sensor position and other related parameters; after each blasting vibration test is completed, the cloud platform is used to collect and store the location of each three-axis vibration sensor in different directions. Blast vibration data, and record in detail information such as the magnitude and direction of ground stress, the size and shape of the excavation section, blasting time, blasting location, blast hole layout, blast hole number, charge amount, charge structure, detonator section and other information.
  • the blasting vibration velocity and acceleration generated by the tunnel face blasting on the rear stress concentration area collected by the three-axis vibration sensor directly reflect the blasting vibration velocity and acceleration inside the stress concentration area where the three-axis vibration sensor is located.
  • a blasting face blasting parameter is established.
  • a blasting vibration propagation model for asymmetric high-stress tunnels After the blasting vibration propagation model is established, the blasting vibration speed at different positions in the stress concentration area of the rear surrounding rock during the blasting construction of the asymmetric high-stress tunnel tunnel can be calculated, and the stress concentration can be determined based on the critical vibration speed of cracks in the surrounding rock.
  • the damage and destruction range of the area can be evaluated to evaluate the stability of the surrounding rock in the stress concentration area of the asymmetric high-stress tunnel, and then determine the support parameters at different horizontal distances and different radial depths, providing a more accurate scientific basis for excavation and support.
  • the method and system of the present invention focus on monitoring the blasting vibration speed and acceleration at different radial depths in the stress concentration area behind the asymmetric high-stress tunnel face. By analyzing the monitored data, the blasting charge, footage, number of sections, and step differences are optimized. , blast hole layout and other parameters, and adjust the excavation method if necessary. Corresponding support parameters can also be determined based on the blasting vibration speed and acceleration at different radial depths, including the thickness of the surrounding rock grouting circle and the length of the anchor rod, to improve the safety and construction efficiency of tunnel excavation construction and ensure the safety of construction personnel and equipment. Safety.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明提供一种非对称高应力隧道爆破振动测试方法及系统,涉及隧道工程技术领域。本发明方法是在非对称高应力隧道掌子面后方应力集中区围岩内部的不同径向深度区域分别固定三轴振动传感器,通过每个三轴振动传感器监测其所在位置处的爆破振动速度和加速度。本发明系统包括多个三轴振动传感器;所述多个三轴振动传感器固定在非对称高应力隧道掌子面后方应力集中区围岩内部的不同径向深度区域,每个所述三轴振动传感器用于监测其所在位置处的爆破振动速度和加速度。该方法及系统能够重点监测应力集中区不同径向深度的爆破振动速度、加速度,提高隧道开挖施工的安全与施工效率,保证施工人员和设备的安全。

Description

一种非对称高应力隧道爆破振动测试方法及系统 技术领域
本发明涉及隧道工程技术领域,特别是涉及一种非对称高应力隧道爆破振动测试方法及系统。
背景技术
地应力是存在于地层中未受工程活动扰动的天然应力,由于多次构造运动、地表沉积、剥蚀的耦合作用,深部工程岩体三维原岩应力场复杂。深埋隧道多赋存于不断变化的三维高地应力(最大主应力σ 1>中间主应力σ 2>最小主应力σ 3)、长期强烈构造活动,且地应力主方向与隧道坐标系通常不重合。隧道横断面,常常出现应力非对称分布,洞周应力集中区围岩易破坏,能量更高,受到掌子面爆破影响更加显著,为隧道稳定性控制的关键部位。
随着掌子面的推进,高应力隧道掌子面后方围岩切向应力逐渐增大、径向应力减小,应力差增大,围岩逐渐处于不利应力状态。此时,深埋隧道掌子面爆破开挖时,爆破应力波引起围岩振动,极易诱发岩体破裂的发生。当局部应力集中程度足够高时,甚至会导致岩爆等动力灾害。
如今由于钻爆法施工具有经济优势、且对大型机械的依赖程度较低、只需要简单机械即可施工、在各种地质条件下均能够有效施工等特点,钻爆法在大部分公路隧道和山岭隧道的开挖中应用相当普遍。经验表明,掌子面后方隧道横断面所受最大主应力连线的垂直方向围岩处形成应力集中区,该应力集中区更易受掌子面爆破施工应力波振动的影响,为爆破振动影响监测的重要部位。
目前,对掌子面爆破振动的监测均采用几何对称的方式,没有考虑非对称高应力隧道应力集中区的特点,往往监测部位与应力集中区易破坏部位不一致,不能有效评估围岩稳定性。二是高应力隧道开挖后,应力集中区围岩内部会发生损伤,承载能力下降,能量积聚与释放特性也不同,发生深部灾害岩体类型也不同。洞壁多为脆性拉破坏,随着围岩内部与洞壁距离的增加,围岩内部由脆性拉破坏逐渐过渡到延性剪破坏,对爆破振动效应不同。现有的方法爆破振动测试时钻孔位置和深度均未考虑非对称高应力引起的应力集中区,不能有效地监测爆破振动损伤围岩引起的破裂。
发明内容
针对上述现有爆破振动测试方法未考虑深埋隧道非对称高应力引起的应力集中区围岩,掌子面爆破易触发该部位围岩破坏失稳。本发明提供一种非对称高应力隧道爆破振动测试方法及系统,相对于现有技术,该方法及系统能够重点监测应力集中区不同径向深度的爆破振动速度、加速度,提高隧道开挖施工的安全与施工效率,保证施工人员和设备的安全。
本发明的技术方案为:
本发明第一方面提供一种非对称高应力隧道爆破振动测试方法,在非对称高应力隧道掌子面后方应力集中区围岩内部的不同径向深度区域分别固定三轴振动传感器,通过每个三轴振动传感器监测其所在位置处的爆破振动速度和加速度。
根据所述的非对称高应力隧道爆破振动测试方法,该方法包括下述步骤:
步骤1:确定非对称高应力隧道掌子面后方应力集中区位置及应力集中区围岩内部的不同径向深度;
步骤2:在掌子面后方应力集中区设置多个由洞壁向围岩内部延伸的钻孔;
步骤3:分别在每个钻孔的所述不同径向深度区域固定三轴振动传感器;
步骤4:采集并储存每个三轴振动传感器测得的其所在位置处的爆破振动速度和加速度。
根据所述的非对称高应力隧道爆破振动测试方法,基于隧道围岩的地质资料,根据非对称原岩地应力分布与隧道横断面几何特征,确定非对称高应力隧道掌子面后方应力集中区位置以及应力集中区围岩内部的不同径向深度。
根据上述任一项所述的非对称高应力隧道爆破振动测试方法,所述不同径向深度为应力集中区围岩内部表层、表层向内、较深层三处深度。
根据所述的非对称高应力隧道爆破振动测试方法,在掌子面后方应力集中区的中间位置间隔10m设置1 #、2 #、3 #、4 #、5 #五个钻孔,且仅为一排布置。
根据所述的非对称高应力隧道爆破振动测试方法,第一个所述钻孔距离掌子面2倍洞跨。
根据所述的非对称高应力隧道爆破振动测试方法,所述在每个钻孔的所述不同径向深度区域固定三轴振动传感器的方法为:利用钻孔碎渣和水泥、水混合形成封堵材料,并利用泵将封堵材料输送到钻孔以封堵三轴振动传感器,使三轴振 动传感器与隧道围岩内部成为一体,以保证三轴振动传感器与隧道围岩振动速度、加速度一致。
本发明第二方面提供一种非对称高应力隧道爆破振动测试系统,该系统包括多个三轴振动传感器;所述多个三轴振动传感器固定在非对称高应力隧道掌子面后方应力集中区围岩内部的不同径向深度区域,每个所述三轴振动传感器用于监测其所在位置处的爆破振动速度和加速度。
如上所述的非对称高应力隧道爆破振动测试系统,该系统还包括云平台,用于采集存储每个三轴振动传感器测得的其所在位置处的爆破振动速度和加速度。
本发明的有益效果为:
本发明方法及系统重点监测非对称高应力隧道掌子面后方应力集中区不同径向深度处的爆破振动速度、加速度,通过对监测的数据进行分析,控制爆破的装药量、进尺、雷管段数、段差、炮孔布置等参数,必要时对开挖方法进行调整。也可根据不同径向深度的爆破振动速度、加速度,确定相应的支护参数,包括围岩注浆圈厚度、锚杆长度,提高隧道开挖施工的安全与施工效率,提高隧道开挖施工的安全与施工效率,保证施工人员和设备的安全。
附图说明
图1为本实施方式非对称高应力隧道爆破振动测试方法的流程示意图;
图2为非对称高应力隧道应力分布图;
图3为非对称高应力隧道应力分布图;
图4为本实施方式非对称高应力隧道掌子面后方应力集中区位置示意图;
图5为本实施方式应力集中区围岩内部不同径向深度位置示意图;
图6为本实施方式三轴振动传感器安装位置示意图;
图7为本实施方式非对称高应力隧道爆破振动测试系统的结构示意图。
其中σ 1、σ 2、σ 3分别为非对称最大主应力、中间主应力、最小主应力;1 #、2 #、3 #、4 #、5 #分别为5个钻孔位置;a、b、c分别应力集中区由洞壁至围岩内部3个不同径向深度即表层、表层向内、较深层;·表示三轴振动传感器的安装位置。
具体实施方式
下面将结合附图和实施例,对本发明作进一步描述。
本发明第一方面提供一种非对称高应力隧道爆破振动测试方法,该方法为:在非对称高应力隧道掌子面后方应力集中区围岩内部的不同径向深度区域分别固定三轴振动传感器,通过每个三轴振动传感器监测其所在位置处的爆破振动速度和加速度。图1为本实施方式非对称高应力隧道爆破振动测试方法的具体流程示意图。如图1所示,所述非对称高应力隧道爆破振动测试方法,具体如下:
步骤1:基于隧道围岩的地质资料,根据非对称原岩地应力分布与隧道横断面几何特征,确定非对称高应力隧道掌子面后方应力集中区位置以及应力集中区围岩内部的不同径向深度;
在本实施方式中,首先基于隧道围岩的地质资料,确定隧道开挖过程中地应力的分布情况如图2、3所示。然后根据地应力分布情况,与隧道几何形状的空间关系,得到如图4所示的非对称高应力隧道掌子面后方应力集中区。最后基于隧道围岩的地质资料并进行相关研究,确定如图5所示的应力集中区围岩内部表层a点、表层向内b点、较深层c点三处深度。
步骤2:在非对称高应力隧道掌子面后方应力集中区设置多个由洞壁向围岩内部延伸的钻孔;
本实施方式中在隧道爆破施工时,如图6所示在掌子面后方应力集中区间隔10m设置1 #、2 #、3 #、4 #、5 #五个钻孔,仅为一排布置,位于掌子面后方应力集中区的中间位置,第一个钻孔距离掌子面2倍洞跨。钻孔直径稍大于三轴振动传感器直径如0.11m-0.13m,钻孔深度至较深层后一定深度如1m;
步骤3:分别在每个钻孔的所述不同径向深度区域固定三轴振动传感器;
由于非对称高应力隧道掌子面后方应力集中区内围岩振动更易受掌子面爆破施工振动影响,因此本实施方式定制大量程三轴振动传感器,监测围岩内部三个方向的爆破振动速度,加速度。在本实施方式按照图6所示由内向外利用定制的接管把定制的大量程三轴振动传感器分别安装到每个钻孔表层a点、表层向内b点、较深层c点处。利用钻孔碎渣和水泥、水混合形成封堵材料,并利用泵将封堵材料输送到钻孔以封堵三轴振动传感器,使三轴振动传感器与隧道围岩内部成为一体,以保证三轴振动传感器与隧道围岩振动速度、加速度一致;所述封堵材料凝固七天后与应力集中区围岩波阻抗一致。
步骤4:采集储存每个三轴振动传感器测得的其所在位置处的爆破振动速 度和加速度;
本实施方式掌子面爆破施工过程中,利用云平台远程控制三轴振动传感器设置相关参数,采集储存掌子面施工爆破对掌子面后方应力集中区内部不同深度处三个方向的爆破振动速度、加速度。
为了直观地反映出非对称高应力隧道掌子面后方应力集中区的损伤破坏程度,基于云平台采集储存的数据包括每个三轴振动传感器位置处的三个方向的爆破振动速度和加速度、相应传感器与掌子面的水平距离和该传感器所处位置的径向深度、掌子面爆破相关参数,建立一种非对称高应力隧道的爆破振动传播模型。
该非对称高应力隧道的爆破振动传播模型利用如下公式表达:
Figure PCTCN2022134329-appb-000001
式中:V代表爆破振动速度的计算值,cm/s;Q代表引起爆破振动的炸药量,kg;R代表爆距,m;K、a——分别为非对称高应力隧道掌子面后方应力集中区围岩的物理力学参数及地质条件有关的系数和衰减指数;
上述R通过如下公式计算得到:
Figure PCTCN2022134329-appb-000002
其中的L为掌子面与三轴振动传感器的水平距离,D为洞壁与三轴振动传感器的垂直距离即钻孔深度。
上述爆破振动传播模型建立后,可以求得非对称高应力隧道掌子面爆破施工时后方围岩应力集中区不同位置处的爆破振动速度计算值,并根据三轴振动传感器测得的围岩产生裂隙的临界振动速度,确定应力集中区的损伤破坏范围,进而评估非对称高应力隧道应力集中区围岩稳定性,进而确定不同水平距离、不同径向深度处的支护参数,为开挖和支护提供更准确的科学依据。
可见通过上述爆破振动速度测试方法能够为评价非对称高应力隧道爆破施工时的应力集中区安全性评估及不同径向深度的支护参数提供理论基础。
本发明还提供一种非对称高应力隧道的爆破振动测试系统,该系统包括多个三轴振动传感器;所述多个三轴振动传感器固定在非对称高应力隧道掌子面后方应力集中区围岩内部的不同径向深度区域,每个所述三轴振动传感器用于 监测其所在位置处的爆破振动速度和加速度。具体如上所述:首先确定非对称高应力隧道掌子面后方应力集中区位置及应力集中区围岩内部的不同径向深度,然后在掌子面后方应力集中区设置多个由洞壁向围岩内部延伸的钻孔,在本实施方式中所述钻孔设置在掌子面后方的应力集中区内,如图6所示在掌子面后方应力集中区的中间位置间隔10m设置1 #、2 #、3 #、4 #、5 #五个钻孔,仅为一排布置,第一个钻孔距离掌子面2倍洞跨,每个钻孔直径稍大于三轴振动传感器直径如0.11m-0.13m,深度至较深层后一定深度如1m;再然后分别在每个钻孔的所述不同径向深度区域采用封堵材料固定三轴振动传感器,所述封堵材料由钻孔碎渣和水泥、水混合形成。
在起爆前,如图7所示,利用云平台控制三轴振动传感器设置时间、传感器位置等相关参数;每次爆破振动测试完成后,利用云平台采集储存各个三轴振动传感器所在位置不同方向的爆破振动数据,并详细记录地应力大小和方向、开挖断面的大小和形状、爆破时间、爆破位置、炮孔布置、炮孔数量、装药量、装药结构、雷管段别等信息。
利用三轴振动传感器采集到的掌子面爆破对后方应力集中区产生的爆破振动速度、加速度,直接反映三轴振动传感器所在位置处的应力集中区内部的爆破振动速度、加速度。
利用云平台记录的每次爆破振动数据(每个三轴振动传感器所在位置处的三个方向的爆破振动速度和加速度、相应传感器的水平距离和径向深度、掌子面爆破参数),建立一种非对称高应力隧道的爆破振动传播模型。所述爆破振动传播模型建立后,可以计算非对称高应力隧道掌子面爆破施工时后方围岩应力集中区不同位置处的爆破振动速度,并根据围岩产生裂隙的临界振动速度,确定应力集中区的损伤破坏范围,进而评估非对称高应力隧道应力集中区围岩稳定性,进而确定不同水平距离、不同径向深度处的支护参数,为开挖和支护提供更准确的科学依据。
本发明方法及系统重点监测非对称高应力隧道掌子面后方应力集中区不同径向深度处的爆破振动速度、加速度,通过对监测的数据进行分析,优化爆破装药量、进尺、段数、段差、炮孔布置等参数,必要时对开挖方法进行调整。也可根据不同径向深度的爆破振动速度、加速度,确定相应的支护参数,包括 围岩注浆圈厚度、锚杆长度,提高隧道开挖施工的安全与施工效率,保证施工人员和设备的安全。
上述对本发明的一个实施例进行了详细说明。显然,上述实施例仅仅是本发明的一部分实施例,而不是全部的实施例;上述实施例仅用于解释本发明,并不构成对本发明保护范围的限定。基于上述实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,也即凡在本申请的精神和原理之内所作的所有修改、等同替换和改进等,均落在本发明要求的保护范围内。

Claims (9)

  1. 一种非对称高应力隧道爆破振动测试方法,其特征在于,在非对称高应力隧道掌子面后方应力集中区围岩内部的不同径向深度区域分别固定三轴振动传感器,通过每个三轴振动传感器监测其所在位置处的爆破振动速度和加速度。
  2. 根据权利要求1所述的非对称高应力隧道爆破振动测试方法,其特征在于,该方法包括下述步骤:
    步骤1:确定非对称高应力隧道掌子面后方应力集中区位置及应力集中区围岩内部的不同径向深度;
    步骤2:在掌子面后方应力集中区设置多个由洞壁向围岩内部延伸的钻孔;
    步骤3:分别在每个钻孔的所述不同径向深度区域固定三轴振动传感器;
    步骤4:采集并储存每个三轴振动传感器测得的其所在位置处的爆破振动速度和加速度。
  3. 根据权利要求2所述的非对称高应力隧道爆破振动测试方法,其特征在于,基于隧道围岩的地质资料,根据非对称原岩地应力分布与隧道横断面几何特征,确定非对称高应力隧道掌子面后方横断面应力集中区位置以及应力集中区围岩内部的不同径向深度。
  4. 根据权利要求1-3任一项所述的非对称高应力隧道爆破振动测试方法,其特征在于,所述不同径向深度为应力集中区围岩内部表层、表层向内、较深层三处深度。
  5. 根据权利要求2所述的非对称高应力隧道爆破振动测试方法,其特征在于,在掌子面后方应力集中区的中间位置间隔10m设置1 #、2 #、3 #、4 #、5 #五个钻孔,且仅为一排布置。
  6. 根据权利要求5所述的非对称高应力隧道爆破振动测试方法,其特征在于,第一个所述钻孔距离掌子面2倍洞跨。
  7. 根据权利要求2所述的非对称高应力隧道爆破振动测试方法,其特征在于,所述在每个钻孔的所述不同径向深度区域固定三轴振动传感器的方法为:利用钻孔碎渣和水泥、水混合形成封堵材料,并利用泵将封堵材料输送到钻孔以封堵三轴振动传感器,使三轴振动传感器与隧道围岩内部成为一体,以保证三轴振动传感器与隧道围岩振动速度、加速度一致。
  8. 一种非对称高应力隧道爆破振动测试系统,其特征在于,该系统包括多个三轴 振动传感器;所述多个三轴振动传感器固定在非对称高应力隧道掌子面后方应力集中区围岩内部的不同径向深度区域,每个所述三轴振动传感器用于监测其所在位置处的爆破振动速度和加速度。
  9. 如权利要求8所述的非对称高应力隧道爆破振动测试系统,其特征在于,该系统还包括云平台,用于采集存储每个三轴振动传感器测得的其所在位置处的爆破振动速度和加速度。
PCT/CN2022/134329 2022-04-21 2022-11-25 一种非对称高应力隧道爆破振动测试方法及系统 WO2023202074A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/547,754 US11982596B2 (en) 2022-04-21 2022-11-25 Method and system for blast-induced vibration monitoring of tunnels in high asymmetric in-situ stresses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210420392.1 2022-04-21
CN202210420392.1A CN114964469B (zh) 2022-04-21 2022-04-21 一种非对称高应力隧道爆破振动测试方法及系统

Publications (1)

Publication Number Publication Date
WO2023202074A1 true WO2023202074A1 (zh) 2023-10-26

Family

ID=82972503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134329 WO2023202074A1 (zh) 2022-04-21 2022-11-25 一种非对称高应力隧道爆破振动测试方法及系统

Country Status (3)

Country Link
US (1) US11982596B2 (zh)
CN (1) CN114964469B (zh)
WO (1) WO2023202074A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114964469B (zh) * 2022-04-21 2023-07-21 东北大学 一种非对称高应力隧道爆破振动测试方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137834A (ja) * 1997-07-18 1999-02-12 Shimizu Corp トンネル切羽弾性波速度測定法
CN103697999A (zh) * 2013-12-30 2014-04-02 中国科学院武汉岩土力学研究所 一种高应力硬岩tbm施工隧道微震波速实时获取方法
US20140365143A1 (en) * 2011-11-11 2014-12-11 Orica International Pte Ltd Vibration analysis for blasting
CN107165678A (zh) * 2017-07-11 2017-09-15 北京市政建设集团有限责任公司 一种深埋地下供水管线的爆破振动监测方法
CN107238538A (zh) * 2017-05-27 2017-10-10 武汉大学 弱爆破诱导的应变型岩爆现场模拟试验方法
CN107478523A (zh) * 2017-08-30 2017-12-15 北京市政建设集团有限责任公司 一种小间距隧道中间岩墙的爆破振动速度测试方法及系统
CN109239779A (zh) * 2018-11-08 2019-01-18 中国建筑第二工程局有限公司 一种隧道围岩松动圈的测试方法及围岩损伤的分级方法
CN208858408U (zh) * 2018-09-30 2019-05-14 长安大学 一种隧道三台阶法施工中的爆破振动监测装置
CN110219655A (zh) * 2019-07-12 2019-09-10 华侨大学 一种隧道爆破掘进中围岩累积损伤的监测方法
CN114964469A (zh) * 2022-04-21 2022-08-30 东北大学 一种非对称高应力隧道爆破振动测试方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829899B (zh) * 2012-08-22 2014-10-22 武汉大学 一种适用于深埋圆形隧洞的围岩应力快速测算方法
CN203430571U (zh) * 2013-07-17 2014-02-12 中国水电顾问集团华东勘测设计研究院 三洞掘进微震传感器布置结构
CN103744112B (zh) * 2014-01-13 2017-01-18 中国科学院武汉岩土力学研究所 一种隧道微震监测传感器布置及与数据采集仪连接方法
CN103852157A (zh) * 2014-03-18 2014-06-11 华侨大学 爆破地震波作用下深埋圆形隧道围岩质点振动规律测试方法
CN104656124A (zh) * 2015-02-06 2015-05-27 山东大学 一种基于物探方法的多参量综合岩爆预测方法
IL251808B (en) * 2017-04-19 2019-03-31 Kimchy Yoav High resolution underground analysis
CN112180429B (zh) * 2020-09-16 2022-11-04 山东大学 利用隧道爆破震动反演的不良地质构造探测系统及方法
CN113552629A (zh) * 2021-07-21 2021-10-26 长安大学 一种隧道围岩纵波速度确定方法、装置和计算机设备
CN114153005B (zh) * 2022-02-10 2022-04-19 北京建筑大学 一种基于大数据分析的岩爆危险性等级评价方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137834A (ja) * 1997-07-18 1999-02-12 Shimizu Corp トンネル切羽弾性波速度測定法
US20140365143A1 (en) * 2011-11-11 2014-12-11 Orica International Pte Ltd Vibration analysis for blasting
CN103697999A (zh) * 2013-12-30 2014-04-02 中国科学院武汉岩土力学研究所 一种高应力硬岩tbm施工隧道微震波速实时获取方法
CN107238538A (zh) * 2017-05-27 2017-10-10 武汉大学 弱爆破诱导的应变型岩爆现场模拟试验方法
CN107165678A (zh) * 2017-07-11 2017-09-15 北京市政建设集团有限责任公司 一种深埋地下供水管线的爆破振动监测方法
CN107478523A (zh) * 2017-08-30 2017-12-15 北京市政建设集团有限责任公司 一种小间距隧道中间岩墙的爆破振动速度测试方法及系统
CN208858408U (zh) * 2018-09-30 2019-05-14 长安大学 一种隧道三台阶法施工中的爆破振动监测装置
CN109239779A (zh) * 2018-11-08 2019-01-18 中国建筑第二工程局有限公司 一种隧道围岩松动圈的测试方法及围岩损伤的分级方法
CN110219655A (zh) * 2019-07-12 2019-09-10 华侨大学 一种隧道爆破掘进中围岩累积损伤的监测方法
CN114964469A (zh) * 2022-04-21 2022-08-30 东北大学 一种非对称高应力隧道爆破振动测试方法及系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DING, YUANZHEN ET AL.: "Study on large deformation characteristics and control measures of soft rock tunnel in fault zone with high geostress", CHINA CIVIL ENGINEERING JOURNAL, vol. 51, no. S 1, 15 July 2017 (2017-07-15), pages 129 - 134, XP009549890, ISSN: 1000-131X, DOI: 10.15951/j.tmgcxb.2017.s1.023 *
SHEN ZHI, WANG ANMING, XUE JIANMEI: "Monitoring and Analysis of Blasting Vibration of a Cave Engineering", SOIL ENGINEERING AND FOUNDATION, vol. 22, no. 2, 15 April 2008 (2008-04-15), pages 75 - 77, XP093103475, ISSN: 1004-3152 *
XU JIANGBO, YAN CHANGGEN; WU FAQUAN; CHANG JINYUAN; SHA PENG; XI PENGCHENG: "Research on Blasting Vibration of the Luosha Tunnel Entrance", SCIENCE TECHNOLOGY AND ENGINEERING, ZHONGGUO JISHU JINGJI YANJIUHUI, CN, vol. 16, no. 9, 28 March 2016 (2016-03-28), CN , pages 93 - 98, XP093103481, ISSN: 1671-1815 *
ZHANG XIONG, MENGQING SUN, YANG ZHANG: "Study of Blasting Vibration Control on Earth-rock Interface Tunnel", HIGHWAY ENGINEERING, vol. 45, no. 4, 20 August 2020 (2020-08-20), pages 162 - 166, XP093103469, ISSN: 1674-0610, DOI: 10.19782/j.cnki.1674-0610.2020.04.028 *

Also Published As

Publication number Publication date
CN114964469B (zh) 2023-07-21
US11982596B2 (en) 2024-05-14
CN114964469A (zh) 2022-08-30
US20240044740A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
CN104390537B (zh) 一种基于爆破振动测试的边坡预裂爆破开挖损伤控制方法
Ramulu et al. Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project–A case study
CN111946356B (zh) 超长距离硬岩顶管施工方法
CN107238538B (zh) 弱爆破诱导的应变型岩爆现场模拟试验方法
CN104913696A (zh) 边坡开挖光面爆破法施工方法
KR101555618B1 (ko) 터널굴착시 진동저감과 굴진장증대를 위한 굴착방법
WO2023202074A1 (zh) 一种非对称高应力隧道爆破振动测试方法及系统
CN104005415A (zh) 微风化花岗岩中地下连续墙的高效成槽施工方法
CN106767205A (zh) 繁华市区地铁车区间隧道微振综合控制爆破方法
CN108489601A (zh) 一种隧道近距穿越地下管线的爆破振动监测及控制方法
CN107605491A (zh) 一种隧道挖掘方法
CN102661688B (zh) 一种整板岩石区的桩基控制爆破开挖方法
CN115788435A (zh) 煤矿井上下立体防治冲击地压的系统和方法
CN114297824A (zh) 一种深部高应力硬岩板裂化岩爆释能支护体系设计方法
CN106494460B (zh) 强矿震区域的高铁路基稳定性预警方法
CN112484589B (zh) 在高架支墩下方进行隧道爆破的方法
CN103760595B (zh) 一种大直径调压井开挖微震实时监测传感器布置方法
Wang et al. Numerical analysis of the influence of foundation pit blasting on a nearby metro tunnel
CN105467436B (zh) 一种适用于超深竖井施工过程中微震传感器的布置方法
CN114991770A (zh) 基于多级发散式定向井的孤岛工作面注浆防冲回采方法
CN215726341U (zh) 一种岩壁梁爆破质点振动速度分布式监测结构
Luo et al. Numerical analysis about blasting effect of digital detonator and millisecond detonator in upper and lower cross tunnels
CN111998746B (zh) 控制埋地燃气管道振动效应的桥梁桩基爆破方法
CN217518658U (zh) 一种下穿管线隧道减震加固监测系统
CN115075826B (zh) 一种下穿管线爆破减震加固系统及其施工方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18547754

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938293

Country of ref document: EP

Kind code of ref document: A1