WO2023202051A1 - 镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺 - Google Patents

镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺 Download PDF

Info

Publication number
WO2023202051A1
WO2023202051A1 PCT/CN2022/131632 CN2022131632W WO2023202051A1 WO 2023202051 A1 WO2023202051 A1 WO 2023202051A1 CN 2022131632 W CN2022131632 W CN 2022131632W WO 2023202051 A1 WO2023202051 A1 WO 2023202051A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding wire
powder
nickel
welding
based welding
Prior art date
Application number
PCT/CN2022/131632
Other languages
English (en)
French (fr)
Inventor
杨二娟
米紫昊
王艳松
王博
杨兰
韩天鹏
刘福广
李勇
刘刚
黎俊良
孙睿
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023202051A1 publication Critical patent/WO2023202051A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the present application relates to the technical field of welding materials, specifically, to a nickel-based welding wire, a manufacturing method of the nickel-based welding wire, and a welding process of the nickel-based welding wire.
  • the high-temperature gas-cooled nuclear reactor is an advanced nuclear reactor with good safety performance and high power generation efficiency.
  • Steam generators act as heat exchange devices, producing steam, thereby converting nuclear energy into mechanical energy.
  • the steam generator is an important device for isolating the primary and secondary circuits. In actual service, steam generator heat transfer tube failure accidents often occur, causing serious economic losses and endangering social safety.
  • High-temperature helium gas circulates in the heat transfer tube, and some of the helium gas carries radioactive substances. Therefore, ensuring the safety and stability of the steam generator heat transfer tube is a prerequisite for the normal operation of the high-temperature gas-cooled reactor.
  • the heat transfer tube material is Incoloy 800H, and the welding wire is ERNiCr-3.
  • the weld structure is uneven and the structure is locally coarse.
  • conventional ERNiCr-3 welding wire the solid solution strengthening effect of Ni, Co, and Cr elements is mainly used, and the strengthening method is relatively simple.
  • the first purpose of this application is to provide a nickel-based welding wire to solve the existing technical problem of poor welding effect on heat transfer tubes made of Incoloy800H material.
  • the nickel-based welding wire provided by this application is used for heat transfer in high-temperature gas-cooled reactors made of Incoloy 800H, and includes an outer skin and a flux core filled in the outer skin; the outer skin is an Inconel625 tape, and in terms of mass percentage, the flux core is The core includes: Co: 28.0 ⁇ 32.0%, Cr: 19.0% ⁇ 23.0%, Mo: 7.0% ⁇ 9.0%, Nb: 1.5% ⁇ 3.5%, Cu: 1.0% ⁇ 1.5%, W: 1.5% ⁇ 3.5%, B: 0.6% to 1.0%, La: 0.4% to 0.6%, and the rest is Ni.
  • the nickel-based welding wire provided in this application is aimed at the high-temperature helium gas (above 700°C) transmitted inside the high-temperature gas-cooled reactor heat transfer tube.
  • the main alloy in the welding wire The elements are Ni and Co, which have the effect of stabilizing the austenite structure of the cladding metal; the welding wire contains a certain amount of Cr element, which fully ensures the high-temperature oxidation resistance of the cladding metal; adding a certain amount of Mo, Nb, and W to achieve fusion Solid solution strengthening effect of metal-coated austenite matrix; adding trace amounts of B and La to strengthen and purify grain boundaries and improve creep life.
  • Inconel 625 tape was chosen for the outer cover.
  • Inconel625 tape has high contents of Ni, Cr, and Mo. With the designed content ratio of the powder, it is easier to achieve the target structure and properties of the cladding metal.
  • alloy elements There are many types of alloy elements, and the strengthening and toughening effects are significant.
  • the selection and content design of the elements fully consider the non-equilibrium characteristics of welding and the harmful effects of the extremely large cooling rate in the welding process on the weld structure. Therefore, when using this welding wire for welding, The operation requirements for welders are low, the welding process is stable, and the joint quality and reliability are high.
  • the tensile strength of the resulting deposited metal at room temperature can reach more than 570Mpa, the elongation can reach more than 30%, and the tensile strength at 600°C can reach more than 400Mpa.
  • the Incoloy800H base metal welded by the above welding wire can maintain high tensile strength and elongation at the joint part under normal and high temperature conditions.
  • the filling rate of the nickel-based welding wire is 30% to 35%.
  • the diameter of the nickel-based welding wire is 1.0 mm to 1.2 mm.
  • the second purpose of this application is to provide a method for manufacturing a nickel-based welding wire, which is used to manufacture the above-mentioned nickel-based welding wire, including the following steps:
  • Filling the medicated powder remove the grease on the surface of the outer skin, bend the outer skin into a U shape, fill the mixed medicated powder into the outer skin, and close the outer skin;
  • Drawn welding wire The finished welding wire is made by drawing process.
  • the nickel-based welding wire manufacturing method provided by this application can produce the above-mentioned welding wire.
  • the Incoloy800H base material is welded, and the tensile strength of the resulting deposited metal at room temperature is The strength can reach more than 570Mpa, the elongation can reach more than 30%, and the tensile strength at 600°C can reach more than 400Mpa.
  • Incoloy800H base metal welded by the above welding wire can maintain high tensile strength, elongation and good sealing under normal and high temperature conditions. That is, it has all the advantages of the above-mentioned nickel-based welding wire, which will not be described again.
  • the medicinal powder in the step of drying the medicinal powder, is heated in a vacuum environment, the heating temperature is 260°C to 280°C, and the holding time is 1h to 2h.
  • the particle size is 100 mesh to 200 mesh.
  • the raw material dimensions of the outer skin are 0.4mm in thickness and 7mm in width.
  • the optional technical solution also includes a welding wire packaging step: winding the finished welding wire on a welding wire reel and sealing it in a flux-cored welding wire vacuum packaging bag.
  • the third object of the present application is to provide a welding process of nickel-based welding wire, using any of the above-mentioned nickel-based welding wires to weld the parts to be welded.
  • Incoloy800H base metal welded by the above welding wire can maintain high tensile strength, elongation and good sealing under normal and high temperature conditions. That is, it has all the advantages of the above-mentioned nickel-based welding wire, which will not be described again.
  • the welding parts and welding wires of the parts to be welded are placed in a protective gas atmosphere;
  • the thickness of the welding part of the parts to be welded is 12mm ⁇ 18mm; the groove is V-shaped, and the angle of the groove is 50° ⁇ 55°;
  • the content of argon in the protective gas is 98%: the content of oxygen is 2%;
  • the welding current is 150A ⁇ 200A
  • the welding speed is 0.5m/min ⁇ 0.6m/min;
  • the wire feeding speed is 4m/min ⁇ 6m/min.
  • Figure 1 shows the forming situation of Incoloy 800H base metal surface surfacing using the nickel-based welding wire prepared in Example 2.
  • Figure 2 shows the metallographic structure of the joint obtained by butt welding of Incoloy 800H base metal using the nickel-based welding wire prepared in Example 2.
  • Figure 3 is a high-magnification scanning electron microscope morphology of the secondary phase of the joint obtained by butt welding of Incoloy 800H base metal using the nickel-based welding wire prepared in Example 2.
  • Figure 4 shows the friction and wear curve of the weld obtained by butt welding of Incoloy 800H base metal using the nickel-based welding wire prepared in Example 2.
  • Figure 5 shows the friction and wear morphology of the weld obtained by butt welding of Incoloy 800H base metal using the nickel-based welding wire prepared in Example 2.
  • the embodiments of this application provide nickel-based welding wire, a manufacturing method of nickel-based welding wire, and a welding process of nickel-based welding wire to weld heat transfer tubes made of Incoloy800H material to improve the strength and toughness of the heat transfer tube at high temperatures and ensure steam safe service of the generator.
  • the nickel-based welding wire provided in this embodiment includes an outer sheath and a flux core filled in the outer sheath; the outer sheath is an Inconel625 tape, and in terms of mass percentage, the flux core includes: Co: 28.0-32.0%, Cr: 19.0%- 23.0%, Mo: 7.0% to 9.0%, Nb: 1.5% to 3.5%, Cu: 1.0% to 1.5%, W: 1.5% to 3.5%, B: 0.6% to 1.0%, La: 0.4% to 0.6% , the rest is Ni, and the sum of the mass percentages of the above components is 100%.
  • the nickel-based welding wire provided in this application is aimed at the high-temperature helium gas (above 700°C) transmitted inside the high-temperature gas-cooled reactor heat transfer tube.
  • the main alloy in the welding wire The elements are Ni and Co, which have the effect of stabilizing the austenite structure of the cladding metal; the welding wire contains a certain amount of Cr element, which fully ensures the high-temperature oxidation resistance of the cladding metal; adding a certain amount of Mo, Nb, and W to achieve fusion Solid solution strengthening effect of metal-coated austenite matrix; adding trace amounts of B and La to strengthen and purify grain boundaries and improve creep life.
  • Inconel 625 tape was chosen for the outer cover.
  • Inconel625 tape has high contents of Ni, Cr, and Mo. With the designed content ratio of the powder, it is easier to achieve the target structure and properties of the cladding metal.
  • alloy elements There are many types of alloy elements, and the strengthening and toughening effects are significant.
  • the selection and content design of the elements fully consider the non-equilibrium characteristics of welding and the harmful effects of the extremely large cooling rate in the welding process on the weld structure. Therefore, when using this welding wire for welding, The operation requirements for welders are low, the welding process is stable, and the joint quality and reliability are high.
  • Incoloy800H base metal When the above-mentioned nickel-based welding wire is used to weld Incoloy800H base metal, the tensile strength of the resulting deposited metal at room temperature can reach more than 570Mpa, the elongation can reach more than 30%, and the tensile strength at 600°C can reach more than 400Mpa. Incoloy800H base metal welded by the above welding wire can maintain high tensile strength and elongation under normal and high temperature conditions.
  • the filling rate of the nickel-based welding wire is 30% to 35%.
  • the diameter of the welding wire is 1.0 mm to 1.2 mm.
  • Ni The main element in the welding wire is Ni, which comes from the addition of Inconel625 tape and powder.
  • Ni has a face-centered cubic structure. Due to the characteristics of its own atomic structure, Ni can dissolve more alloying elements to achieve alloying and still maintain the stable state of the austenite phase. Therefore, considering the service temperature of the superheated section of the heat transfer tube, choosing Ni as the main material can fully ensure the high temperature stability of the weld.
  • the second main element in the welding wire is Cr, which comes from the addition of Inconel 625 tape and powder.
  • Cr is an indispensable alloying element in nickel-based high-temperature alloys. Cr can be solid dissolved in the austenite matrix, causing lattice distortion and elastic stress field strengthening, thus playing the role of solid solution strengthening. At the same time, Cr can significantly improve the durable strength of the alloy. Cr is also a carbide-forming element and can react with C to generate a series of M 23 C 6 and M 6 C carbides, which are dispersed and distributed in the grain boundaries to strengthen the grain boundaries. Cr can form a dense oxide film of Cr 2 O 3 at high temperatures, covering the surface of the clad metal, giving it good anti-oxidation and anti-corrosion capabilities. The content of Cr can be: 19%, 21%, 22%, 22.5%, 23%, and any mass percentage value between the two percentage value points;
  • the third main element in the welding wire is Co, which comes from the addition of powder.
  • Co and Ni belong to the same family of elements. Adding Co to Ni-based alloys can stabilize the austenite phase and improve the hot corrosion resistance and hot and cold fatigue properties of the clad metal. The fluidity of the molten pool during welding of Ni-based alloys is poor, and the addition of Co can improve the fluidity of the alloy. The melting point of Co is higher than that of Ni. After adding Co element to the nickel-based alloy, the high-temperature durable strength of the alloy increases, and the service life at high temperatures also increases.
  • Co solid solution in the austenite matrix can also reduce the stacking fault energy of the matrix, thereby increasing the resistance to dislocation movement and improving the ability of the clad metal to resist deformation.
  • the content of Co can be: 28%, 29%, 30%, 31%, 32%, and any mass percentage value between the two percentage value points.
  • the fourth main element in the welding wire is Mo, which comes from the addition of Inconel625 tape and powder as the outer sheath.
  • Mo atoms can be dissolved into the austenite matrix, but because Mo atoms are larger, the lattice constant of austenite will increase during solid solution, which can increase the yield strength of the clad metal. In welds containing W, when the Mo content is increased, the yield strength of the clad metal can be significantly increased.
  • Mo can also form M 6 C carbide with C, which is dispersed and distributed in the austenite matrix to play a strengthening role.
  • the content of Mo can be: 7%, 7.5%, 8%, 8.5%, 9%, and any mass percentage value between the two percentage value points.
  • the fifth main element in the welding wire is W, which comes from the addition of powder.
  • W similar to Mo, can be solid dissolved in the austenite matrix and strengthen the matrix structure by causing lattice distortion.
  • W can significantly reduce the stacking fault energy of the austenite matrix, and the reduction of stacking fault energy can effectively improve the creep properties of high-temperature alloys.
  • the content of W can be: 1.5%, 2%, 2.5%, 3%, 3.5%, and any mass percentage value between the two percentage value points;
  • the sixth main element in the welding wire is Nb, which comes from the addition of Inconel625 tape and powder as the outer sheath.
  • Nb is also one of the solid solution strengthening elements.
  • the radius of Nb atoms is larger than that of W and Mo, so when it is solid dissolved in the austenite matrix, its solid solution strengthening effect is more obvious. Similar to W and Mo, Nb can also reduce the stacking fault energy of the austenite matrix, thereby improving the creep life of the clad metal.
  • Nb is also a carbide-forming element and participates in the formation of boride, further strengthening the cladding metal.
  • the content of Nb can be: 1.5%, 2%, 2.5%, 3%, 3.5%, and any mass percentage value between the two percentage value points.
  • the seventh main element in the welding wire is Cu, which comes from the addition of powder. After the Cu element is added, nano-sized Cu-rich phases precipitate in the austenite matrix, which cooperates with MC carbides to improve the creep life of the austenite matrix.
  • the content of Cu can be: 1%, 1.2%, 1.3%, 1.4%, 1.5%, and any mass percentage value between the two percentage value points.
  • the eighth main element in the welding wire is B, which comes from the addition of powder.
  • a trace amount of B element is added to the powder.
  • B can be enriched at the grain boundaries, thereby increasing the binding force of the grain boundaries.
  • boride is dispersed in granular form at the grain boundaries, preventing grain boundary slippage and inhibiting the formation of grain boundary cavities. Connection and expansion; the addition of B element can also eliminate the precipitation of harmful phases at grain boundaries. Therefore, the addition of B element can significantly improve the high-temperature durability and creep properties of the clad metal.
  • the content of B can be: 0.6%, 0.7%, 0.8%, 0.9%, 1%, and any mass percentage value between the two percentage value points.
  • the ninth main element in the welding wire is La, which comes from the addition of powder.
  • a trace amount of the rare earth element La is added to the powder.
  • the La element can be solid dissolved in the austenite matrix, causing lattice distortion of the matrix and producing a strengthening effect.
  • La can reduce the diffusion rate of other elements, prevent the growth of brittle phases, and refine the size of brittle phases.
  • the content of La can be: 0.4%, 0.45%, 0.46%, 0.5%, 0.6%, and any mass percentage value between the two percentage value points.
  • the nickel-based welding wire provided in this embodiment uses multiple elements for comprehensive solid solution strengthening. Different elements entering the austenite matrix will have a greater impact on the lattice distortion, and they will also interact, making the austenite The solid solubility of stenite for certain elements increases, further improving the strengthening effect.
  • the manufacturing method of nickel-based welding wire provided by this embodiment is used to manufacture the above-mentioned nickel-based welding wire, including the following steps:
  • the medicinal powder is heated in a vacuum environment, the heating temperature is 260°C to 280°C, and the holding time is 1h to 2h.
  • Mixing medicinal powder fully mix the dried medicinal powder, the mixing time is 1h-2h; specifically, the dried medicinal powder can be placed in a powder mixer for mixing;
  • Filling with medicinal powder remove the grease on the surface of the skin.
  • Alcohol can be used to remove the grease on the surface of the raw material of the skin, and the skin can be bent into a U shape through a cored wire forming machine.
  • the mixed powder is filled into the skin and the skin is closed;
  • Drawn welding wire The drawing process is used to make the finished welding wire. Specifically, the drawing mold is used to draw the finished welding wire. A multi-pass drawing process is used. The aperture of the drawing mold in the first pass is 2.6mm. The diameter of the finished nickel-based welding wire is 1.0mm ⁇ 1.2mm.
  • the manufacturing method may also include a welding wire packaging step: winding the finished welding wire on a welding wire spool and sealing it in a flux-cored welding wire vacuum packaging bag.
  • the particle size of Co powder, Cr powder, Mo powder, Nb powder, Cu powder, W powder, B powder, La powder and Ni is 100 mesh to 200 mesh.
  • the raw material dimensions of the outer skin are 0.4mm in thickness and 7mm in width.
  • the nickel-based welding wire welding process uses the above-mentioned nickel-based welding wire to weld the parts to be welded.
  • the welding parts of the parts to be welded and the welding wire are placed in a protective gas atmosphere; in terms of volume percentage, the content of argon in the protective gas is 98% and the content of oxygen is 2%;
  • the above-mentioned nickel-based welding wire is used to weld the Incoloy800H base metal.
  • the thickness of the welding part of the parts to be welded (such as the welding test plate) is 12mm ⁇ 18mm, optionally 15mm; the groove is V-shaped, and the angle of the groove is 50 ° ⁇ 55°;
  • the welding current is 150A ⁇ 200A
  • the welding speed is 0.5m/min ⁇ 0.6m/min;
  • the wire feeding speed is 4m/min ⁇ 6m/min.
  • the nickel-based welding wire, its manufacturing method and welding process provided by the embodiments of this application have the following beneficial effects:
  • the nickel-based welding wire provided in the embodiment of this application is suitable for the welding connection of Incoloy 800H, the heat transfer tube material of the superheated section of the high-temperature gas-cooled reactor.
  • Nickel-based welding wire has excellent high-temperature strength and toughness, which can ensure the safe service of the steam generator.
  • the nickel-based welding wire provided in the embodiment of this application is targeted at the high-temperature helium gas (750°C) transmitted inside the heat transfer tube of a high-temperature gas-cooled reactor.
  • the main alloy elements in the welding wire are Ni and Co, which have the effect of stabilizing the austenite structure of the cladding metal; the welding wire contains a certain amount of Cr element, which fully ensures the high-temperature oxidation resistance of the cladding metal; a certain amount of Mo, Nb, and W are added , to achieve solid solution strengthening of the clad metal austenite matrix; add trace amounts of B and La to strengthen and purify grain boundaries and improve creep life.
  • Inconel 625 tape is selected as the outer sheath for drawing and preparing the flux-cored welding wire.
  • Inconel625 tape has high contents of Ni, Cr, and Mo. With the designed content ratio of the powder, it is easier to achieve the target structure and properties of the cladding metal.
  • the nickel-based welding wire provided in the embodiment of the present application can be used for both melting electrode welding (MIG/MAG) and non-melting electrode welding (TIG), and has a wide range of applications.
  • MIG/MAG melting electrode welding
  • TOG non-melting electrode welding
  • the nickel-based welding wire provided in the present application its manufacturing method and welding process are described in more detail below in conjunction with the drawings and examples, but they should not be understood as limiting the protection scope of the present application.
  • Step 1 Weigh the medicinal powder according to the following mass percentages: Co powder 28.0%, Cr powder 19.0%, Mo powder 7.0%, Nb powder 1.5%, Cu powder 1.0%, W powder 1.5%, B powder 0.6% , La powder 0.4%, and the rest is Ni powder, where the sum of the mass percentages of all the above components is 100%.
  • Step 2 Dry the powder and place it in a vacuum heating furnace for heating.
  • the heating temperature is 260°C and the holding time is 1 hour. to remove moisture from the medicinal powder.
  • Step 3 Mix the medicinal powder. Place the dried medicinal powder in a powder mixer for thorough mixing. The mixing time is 1 hour.
  • Step 4 Fill the powder, use Inconel 625 tape as the outer sheath of the flux-cored wire, use alcohol to remove the grease on the surface of the outer sheath raw material, and bend the outer sheath into a U shape through a flux-cored wire forming machine, fill the mixed powder into the outer sheath, and Close the outer skin.
  • Step 5 Draw the welding wire and use the drawing process to make the finished welding wire.
  • the drawing die is used to draw the finished welding wire.
  • a multi-pass drawing process is used.
  • the aperture of the drawing die in the first pass is 2.6mm.
  • the diameter of the mold aperture is gradually reduced, and the diameter of the final nickel-based welding wire is 1.0mm ⁇ 1.2mm.
  • Step 6 Welding wire packaging step, wind the finished welding wire on the welding wire spool and seal it in the flux-cored wire vacuum packaging bag.
  • the nickel-based welding wire manufactured by the manufacturing method in Example 1 was used to weld the butt joint of Incoloy 800H base material.
  • the thickness of the welding test plate was 15mm, the groove was a symmetrical V-shaped groove, and the angle was 50°.
  • the CMT welding power source was used to weld the test plate.
  • the welding shielding gas was 98% Ar+2% O2, the welding current range was 150 ⁇ 200A, the welding speed was 50 ⁇ 60cm/min, and the wire feeding speed was 4 ⁇ 6m/min.
  • the arc burns stably, the droplets transfer evenly, and there is less spatter. After welding, the weld seam is beautifully formed without defects such as pores and cracks.
  • Step 1 Weigh the medicinal powder according to the following mass percentages: Co powder 32.0%, Cr powder 23.0%, Mo powder 9.0%, Nb powder 3.5%, Cu powder 1.5%, W powder 3.5%, B powder 1.0% , La powder 0.6%, and the rest is Ni powder, where the sum of the mass percentages of all the above components is 100%.
  • Step 2 Dry the powder and place it in a vacuum heating furnace for heating.
  • the heating temperature is 280°C and the holding time is 2 hours. to remove moisture from the medicinal powder.
  • Step 3 Mix the medicinal powder. Place the dried medicinal powder in a powder mixer for thorough mixing. The mixing time is 2 hours.
  • Step 4 Fill the powder, use Inconel 625 tape as the outer sheath of the flux-cored wire, use alcohol to remove the grease on the surface of the outer sheath raw material, and bend the outer sheath into a U shape through a flux-cored wire forming machine, fill the mixed powder into the outer sheath, and Close the outer skin.
  • Step 5 Draw the welding wire and use the drawing process to make the finished welding wire.
  • the drawing die is used to draw the finished welding wire.
  • a multi-pass drawing process is used.
  • the aperture of the drawing die in the first pass is 2.6mm.
  • the diameter of the mold aperture is gradually reduced, and the diameter of the final nickel-based welding wire is 1.0mm ⁇ 1.2mm.
  • Step 6 Welding wire packaging step, wind the finished welding wire on the welding wire spool and seal it in the flux-cored wire vacuum packaging bag.
  • the nickel-based welding wire manufactured by the manufacturing method in Example 2 was used for butt joint welding of Incoloy 800H base metal.
  • the thickness of the welding test plate was 15mm, the groove was a symmetrical V-shaped groove, and the angle was 55°.
  • the CMT welding power source was used to weld the test plate.
  • the welding shielding gas was 98% Ar+2% O2, the welding current range was 150 ⁇ 200A, the welding speed was 50 ⁇ 60cm/min, and the wire feeding speed was 4 ⁇ 6m/min.
  • Figure 1 shows the surface cladding welding of Incoloy 800H base metal on the nickel-based welding wire produced by the manufacturing method in Example 2. It can be seen from the figure that the cladding weld is beautifully formed and has no defects such as pores and cracks.
  • Figure 2 shows the metallographic structure of the joint obtained by butt welding Incoloy 800H base metal with this nickel-based welding wire. It can be seen from the figure that the weld has a fully austenitic structure, which meets the design requirements of the welding wire for the structure.
  • Figure 3 is a high-magnification scanning electron microscope morphology of the secondary phase of the joint obtained by butt welding of Incoloy 800H base metal with this nickel-based welding wire.
  • Figure 4 is the friction and wear curve of the weld obtained by butt welding Incoloy 800H base metal with this nickel-based welding wire. It can be seen from the figure that compared with the ERNiCr-3 welding wire, the wear resistance of the cladding metal of the welding wire of this application is better. Good, the friction process curve is gentle.
  • Figure 5 shows the friction and wear morphology of the weld obtained by butt welding Incoloy 800H base metal with this nickel-based welding wire. It can be seen from the figure that the surface is mainly adhesive wear and has good wear resistance.
  • Step 1 Weigh the medicinal powder according to the following mass percentages: Co powder 30.0%, Cr powder 21.0%, Mo powder 8.0%, Nb powder 2.5%, Cu powder 1.3%, W powder 2.5%, B powder 0.8% , La powder 0.5%, and the rest is Ni powder, where the sum of the mass percentages of all the above components is 100%.
  • Step 2 Dry the powder and place it in a vacuum heating furnace for heating.
  • the heating temperature is 270°C and the holding time is 1.5 hours. to remove moisture from the medicinal powder.
  • Step 3 Mix the medicinal powder. Place the dried medicinal powder in a powder mixer for thorough mixing. The mixing time is 1.5 hours.
  • Step 4 Fill the powder, use Inconel 625 tape as the outer sheath of the flux-cored wire, use alcohol to remove the grease on the surface of the outer sheath raw material, and bend the outer sheath into a U shape through a flux-cored wire forming machine, fill the mixed powder into the outer sheath, and Close the outer skin.
  • Step 5 Draw the welding wire and use the drawing process to make the finished welding wire.
  • the drawing die is used to draw the finished welding wire.
  • a multi-pass drawing process is used.
  • the aperture of the drawing die in the first pass is 2.6mm.
  • the diameter of the mold aperture is gradually reduced, and the diameter of the final nickel-based welding wire is 1.0mm ⁇ 1.2mm.
  • Step 6 Welding wire packaging step, wind the finished welding wire on the welding wire spool and seal it in the flux-cored wire vacuum packaging bag.
  • the nickel-based welding wire manufactured by the manufacturing method in Example 3 was used for butt joint welding of Incoloy 800H base metal.
  • the thickness of the welding test plate was 15mm, the groove was a symmetrical V-shaped groove, and the angle was 50°.
  • the CMT welding power source was used to weld the test plate.
  • the welding shielding gas was 98% Ar+2% O2, the welding current range was 150 ⁇ 200A, the welding speed was 50 ⁇ 60cm/min, and the wire feeding speed was 4 ⁇ 6m/min.
  • the arc burns stably, the droplets transfer evenly, and there is less spatter. After welding, the weld seam is beautifully formed without defects such as pores and cracks.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Step 1 Weigh the medicinal powder according to the following mass percentages: Co powder 29.0%, Cr powder 22.0%, Mo powder 7.5%, Nb powder 3.0%, Cu powder 1.2%, W powder 2.0%, B powder 0.7% , La powder 0.45%, and the rest is Ni powder, where the sum of the mass percentages of all the above components is 100%.
  • Step 2 Dry the powder and place it in a vacuum heating furnace for heating.
  • the heating temperature is 270°C and the holding time is 1.2 hours. to remove moisture from the medicinal powder.
  • Step 3 Mix the medicinal powder. Place the dried medicinal powder in a powder mixer for thorough mixing. The mixing time is 1.2 hours.
  • Step 4 Fill the powder, use Inconel 625 tape as the outer sheath of the flux-cored wire, use alcohol to remove the grease on the surface of the outer sheath raw material, and bend the outer sheath into a U shape through a flux-cored wire forming machine, fill the mixed powder into the outer sheath, and Close the outer skin.
  • Step 5 Draw the welding wire and use the drawing process to make the finished welding wire.
  • the drawing die is used to draw the finished welding wire.
  • a multi-pass drawing process is used.
  • the aperture of the drawing die in the first pass is 2.6mm.
  • the diameter of the mold aperture is gradually reduced, and the diameter of the final nickel-based welding wire is 1.0mm ⁇ 1.2mm.
  • Step 6 Welding wire packaging step, wind the finished welding wire on the welding wire spool and seal it in the flux-cored wire vacuum packaging bag.
  • the nickel-based welding wire manufactured by the manufacturing method in Example 4 was used for butt joint welding of Incoloy 800H base metal.
  • the thickness of the welding test plate was 15mm, the groove was a symmetrical V-shaped groove, and the angle was 55°.
  • the CMT welding power source was used to weld the test plate.
  • the welding shielding gas was 98% Ar+2% O2, the welding current range was 150 ⁇ 200A, the welding speed was 50 ⁇ 60cm/min, and the wire feeding speed was 4 ⁇ 6m/min.
  • the arc burns stably, the droplets transfer evenly, and there is less spatter. After welding, the weld is beautifully formed and free of defects such as pores and cracks.
  • Step 1 Weigh the medicinal powder according to the following mass percentages: Co powder 31.0%, Cr powder 22.5%, Mo powder 8.5%, Nb powder 2.0%, Cu powder 1.4%, W powder 3.0%, B powder 0.9% , La powder 0.46%, and the rest is Ni powder, where the sum of the mass percentages of all the above components is 100%.
  • Step 2 Dry the powder and place it in a vacuum heating furnace for heating.
  • the heating temperature is 270°C and the holding time is 1.2 hours. to remove moisture from the medicinal powder.
  • Step 3 Mix the medicinal powder. Place the dried medicinal powder in a powder mixer for thorough mixing. The mixing time is 1.2 hours.
  • Step 4 Fill the powder, use Inconel 625 tape as the outer sheath of the flux-cored wire, use alcohol to remove the grease on the surface of the outer sheath raw material, and bend the outer sheath into a U shape through a flux-cored wire forming machine, fill the mixed powder into the outer sheath, and Close the outer skin.
  • Step 5 Draw the welding wire and use the drawing process to make the finished welding wire.
  • the drawing die is used to draw the finished welding wire.
  • a multi-pass drawing process is used.
  • the aperture of the drawing die in the first pass is 2.6mm.
  • the diameter of the mold aperture is gradually reduced, and the diameter of the final nickel-based welding wire is 1.0mm ⁇ 1.2mm.
  • Step 6 Welding wire packaging step, wind the finished welding wire on the welding wire spool and seal it in the flux-cored wire vacuum packaging bag.
  • the nickel-based welding wire manufactured by the manufacturing method in Example 5 was used for butt joint welding of Incoloy 800H base metal.
  • the thickness of the welding test plate was 15mm, the groove was a symmetrical V-shaped groove, and the angle was 55°.
  • the CMT welding power source was used to weld the test plate.
  • the welding shielding gas was 98% Ar+2% O2, the welding current range was 150 ⁇ 200A, the welding speed was 50 ⁇ 60cm/min, and the wire feeding speed was 4 ⁇ 6m/min.
  • the arc burns stably, the droplets transfer evenly, and there is less spatter. After welding, the weld seam is beautifully formed without defects such as pores and cracks.
  • the comparative example is Example 1 in the invention patent application with publication number CN110280923A, titled Fe-Ni-based alloy welding wire for 800H alloy welding and its preparation method, and welding method of 800H alloy.
  • Table 1 in Examples 1 to 5 of the present application, the percentage of the element in the weight of the powder is represented, while in the comparative example, the percentage of the element in the weight of the welding wire is represented.
  • Table 1 Comparison table of components (mass percentage) of the welding wires of each embodiment and comparative example.
  • Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4 Embodiment 5 Comparative ratio Ni 41 25.9 33.4 34.15 30.24 29.73 Cr 19 twenty three twenty one twenty two 22.5 17.84 Co 28 32 30 29 31 - Mo 7 9 8 7.5 8.5 2.03 W 1.5 3.5 2.5 2 3 - Nb 1.5 3.5 2.5 3 2 0.39 Cu 1 1.5 1.3 1.2 1.4 - B 0.6 1 0.8 0.7 0.9 0.0086 La 0.4 0.6 0.5 0.45 0.46 - Fe - - - - - 45.8702 C - - - - - - 0.077 Si - - - - - 0.47 Mn - - - - - 0.83 Al - - - - - - 2.73 N - - - - - 0.016 P - - - - - 0.0082
  • Table 2 Comparison table of mechanical properties test data of joints welded in various examples and comparative examples
  • the nickel-based welding wire provided in this application is suitable for the welding of Incoloy 800H base metal.
  • the preparation method of the welding wire is simple and easy to control, and is suitable for industrial promotion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

一种镍基焊丝,应用于材质为Incoloy800H的高温气冷堆传热管,包括外皮以及填充于外皮中的药芯;外皮为Inconel625带,以质量百分比计,药芯包括:Co:28.0~32.0%,Cr:19.0%~23.0%,Mo:7.0%~9.0%,Nb:1.5%~3.5%,Cu:1.0%~1.5%,W:1.5%~3.5%,B:0.6%~1.0%,La:0.4%~0.6%,其余为Ni。还公开了一种镍基焊丝的制造方法,还公开了一种镍基焊丝的焊接工艺。由该镍基焊丝焊接的Incoloy800H母材,接头部位在常温和高温条件下都可以保持较高的抗拉强度和延伸率。

Description

镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺
交叉引用
本申请要求在2022年4月19日提交中国国家知识产权局、申请号为202210410398.0、发明名称为“镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及焊接材料技术领域,具体而言,涉及一种镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺。
背景技术
高温气冷核反应堆是一种安全性能好、发电效率高的先进核反应堆。蒸汽发生器作为热交换设备,产生蒸汽,从而将核能转变为机械能。蒸汽发生器是隔离一回路和二回路的重要设备。在实际服役过程中,经常发生蒸汽发生器传热管失效事故,导致严重的经济损失,并危害社会安全。传热管内流通的是高温氦气,氦气中部分携带着放射性物质。因此保证蒸汽发生器传热管的安全稳定性是高温气冷堆正常运转的前提条件。
研究发现,蒸汽发生器传热管失效主要发生在焊缝区域。传热管材料为Incoloy 800H,焊丝为ERNiCr-3。在实际焊接过程中,由于局部热输入的作用,导致焊缝组织不均匀,局部存在组织粗大现象。常规ERNiCr-3焊丝中,主要借助Ni、Co、Cr元素的固溶强化作用,强化手段较单一。
发明内容
本申请的第一个目的在于提供一种镍基焊丝,以解决现有对Incoloy800H材料的传热管焊接效果差的技术问题。
本申请提供的镍基焊丝,应用于材质为Incoloy 800H的高温气冷堆传热,包括外皮以及填充于所述外皮中的药芯;所述外皮为Inconel625带,以质量百分比计,所述药芯包括:Co:28.0~32.0%,Cr:19.0%~23.0%,Mo:7.0%~9.0%,Nb:1.5%~3.5%,Cu:1.0%~1.5%,W:1.5%~3.5%,B:0.6%~1.0%,La:0.4%~0.6%,其余为Ni。
本申请镍基焊丝带来的有益效果是:
本申请所提供的镍基焊丝针对高温气冷堆传热管内部传输的高温氦气(700℃以上),为了保证其接头的高温可靠性,通过多种合金元素实现组合强化:焊丝中主要合金元素为Ni、Co,具有稳定熔覆金属奥氏体组织作用;焊丝中含有一定量的Cr元素,充分保证熔覆金属的高温抗氧化能力;添加一定量的Mo、Nb、W,实现对熔覆金属奥氏体基体的固溶强化作用;添加微量B、La,强化、净化晶界,提高蠕变寿命。而且,选择Inconel 625带作为外皮。Inconel625带中Ni、Cr、Mo含量较高,配合药粉的设计含量配比,可以较容易实现熔覆金属目标组织与性能的获得。合金元素种类多,强化、韧化效果显著,元素的选择与含量的设计充分考虑了焊接非平衡特点及焊接过程极大的冷却速度对焊缝组织的有害作用,因此采用该焊丝进行焊接时,对焊工的操作要求较低,焊接工艺稳定性强,接头质量可靠性高。采用上述的镍基焊丝对Incoloy800H母材进行焊接,所得的熔敷金属在室温下的抗拉强度可以达到570Mpa以上,延伸率可以达到30%以上,600℃的抗拉强度可以达到400Mpa以上。由上述焊丝焊接的Incoloy800H母材,接头部位在常温和高温条件下都可以保持较高的抗拉强度和延伸率。
可选的技术方案中,所述镍基焊丝的填充率为30%~35%。
可选的技术方案中,所述镍基焊丝的直径为1.0mm~1.2mm。
本申请的第二个目的在于提供一种镍基焊丝的制造方法,用于制造上述的镍基焊丝,包括如下步骤:
称取药粉:按质量百分比:Co粉28.0%~32.0%、Cr粉19.0%~23.0%、Mo粉7.0%~9.0%、Nb粉1.5%~3.5%、Cu粉1.0%~1.5%、W粉1.5%~3.5%、B粉0.6%~1.0%、La粉0.4%~0.6%、其余为Ni粉,其中,以上所有组分的质量百分比之和为100%,来称取药粉;
烘干药粉;
混合药粉;
填充药粉:去除外皮表面的油脂,并将外皮弯曲为U形,将混合好的所述药粉填充进所述外皮,并将所述外皮合口;
拉拔焊丝:采用拉拔工艺制成焊丝成品。
本申请镍基焊丝制造方法带来的有益效果是:
本申请提供的镍基焊丝制造方法,能够制造出上述的焊丝,通过采用本申请所提供的制造方法得到的镍基焊丝,对Incoloy800H母材进行焊接,所得的熔敷金属在室温下的抗拉强度可以达到570Mpa以上,延伸率可以达到30%以上,600℃的抗拉强度可以达到400Mpa以上。由上 述焊丝焊接的Incoloy800H母材,在常温和高温条件下都可以保持较高的抗拉强度、延伸率和较好的密封性。即,具有上述的镍基焊丝的全部优点,在此不再赘述。
可选的技术方案中,烘干药粉步骤中,将所述药粉置于真空环境中加热,加热温度为260℃~280℃,保温时间为1h~2h。
可选的技术方案中,所述Co粉、所述Cr粉、所述Mo粉、所述Nb粉、所述Cu粉、所述W粉、所述B粉、所述La粉、所述Ni的粒度为100目~200目。
可选的技术方案中,所述外皮的原材料尺寸为厚度为0.4mm,宽度为7mm。
可选的技术方案中,还包括焊丝包装步骤:将所述焊丝成品缠绕于焊丝盘,并密封在药芯焊丝真空包装袋内。
本申请的第三个目的在于提供一种镍基焊丝的焊接工艺,采用上述任一的镍基焊丝焊接待焊接件。
本申请提供的焊接工艺带来的有益效果是:
采用上述的焊接工艺,对Incoloy800H母材进行焊接,所得的熔敷金属在室温下的抗拉强度可以达到570Mpa以上,延伸率可以达到30%以上,600℃的抗拉强度可以达到400Mpa以上。由上述焊丝焊接的Incoloy800H母材,在常温和高温条件下都可以保持较高的抗拉强度、延伸率和较好的密封性。即,具有上述的镍基焊丝的全部优点,在此不再赘述。
可选的技术方案中,焊接时,将待焊接件的焊接部位和焊丝均置于保护气体氛围中;
所述待焊接件的焊接部位厚度为12mm~18mm;坡口为V形,所述坡口的角度为50°~55°;
和/或,以体积百分比计,所述保护气体中,氩气的含量为98%:氧气的含量为2%;
和/或,焊接电流为150A~200A;
和/或,焊接速度为0.5m/min~0.6m/min;
和/或,送丝速度为4m/min~6m/min。
附图说明
图1为使用实施例二制备的镍基焊丝进行Incoloy 800H母材表面堆焊的成型情况。
图2为使用实施例二制备的镍基焊丝进行Incoloy 800H母材的对接 焊接所得接头金相组织。
图3为使用实施例二制备的镍基焊丝进行Incoloy 800H母材的对接焊接所得接头二次相的高倍扫描电镜形貌。
图4为使用实施例二制备的镍基焊丝进行Incoloy 800H母材的对接焊接所得焊缝的摩擦磨损曲线。
图5为使用实施例二制备的镍基焊丝进行Incoloy 800H母材的对接焊接所得焊缝的摩擦磨损形貌。
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面结合附图对本申请的具体实施例做详细的说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例提供镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺,以对Incoloy800H材料的传热管进行焊接,以提高该传热管在高温时的强度和韧性,保证蒸汽发生器的安全服役。
第一方面,本实施例提供的镍基焊丝,包括外皮以及填充于外皮中的药芯;外皮为Inconel625带,以质量百分比计,药芯包括:Co:28.0~32.0%,Cr:19.0%~23.0%,Mo:7.0%~9.0%,Nb:1.5%~3.5%,Cu:1.0%~1.5%,W:1.5%~3.5%,B:0.6%~1.0%,La:0.4%~0.6%,其余为Ni,以上各个成分的质量百分比之和为100%。
本申请所提供的镍基焊丝针对高温气冷堆传热管内部传输的高温氦气(700℃以上),为了保证其接头的高温可靠性,通过多种合金元素实现组合强化:焊丝中主要合金元素为Ni、Co,具有稳定熔覆金属奥氏体组织作用;焊丝中含有一定量的Cr元素,充分保证熔覆金属的高温抗氧化能力;添加一定量的Mo、Nb、W,实现对熔覆金属奥氏体基体的固溶强化作用;添加微量B、La,强化、净化晶界,提高蠕变寿命。而且,选择Inconel 625带作为外皮。Inconel625带中Ni、Cr、Mo含量较高,配合药粉的设计含量配比,可以较容易实现熔覆金属目标组织与性能的获得。合金元素种类多,强化、韧化效果显著,元素的选择与含量的设计充分考虑了焊接非平衡特点及焊接过程极大的冷却速度对焊缝组织的有害作用,因此采用该焊丝进行焊接时,对焊工的操作要求较低,焊接工艺稳定性强,接头质量可靠性高。采用上述的镍基焊丝对Incoloy800H母材进行焊接,所得的熔敷金属在室温下的抗拉强度可以达到570Mpa以上,延伸率可以达到30%以上,600℃的抗拉强度可以达到400Mpa 以上。由上述焊丝焊接的Incoloy800H母材,在常温和高温条件下都可以保持较高的抗拉强度和延伸率。
本申请实施例的镍基焊丝中,镍基焊丝的填充率为30%~35%。
本申请实施例的镍基焊丝中,焊丝的直径为1.0mm~1.2mm。
具体的,本申请实施例中的各组分的作用机理和含量如下:
焊丝中主要元素为Ni,来自Inconel625带和药粉的添加。Ni具有面心立方结构,由于其自身原子结构的特点,可以溶解较多的合金元素实现合金化,并且仍然保持奥氏体相的稳定状态。因此,针对传热管过热段的服役温度,选择以Ni为主可以充分保证焊缝的高温稳定性。
焊丝中第二主要元素为Cr,来自Inconel 625带和药粉的添加。Cr是镍基高温合金中不可缺少的合金化元素,Cr可以固溶于奥氏体基体中,引起晶格畸变,产生弹性应力场强化,从而起到固溶强化的作用。同时,Cr可以显著提高合金的持久强度。Cr也是碳化物形成元素,可以与C反应生成一系列M 23C 6和M 6C碳化物,弥散分布于晶界,形成对晶界的强化。Cr在高温下可以形成Cr 2O 3致密氧化膜,覆盖在熔覆金属表面,使其具有良好的抗氧化和抗腐蚀能力。Cr的含量可以为:19%、21%、22%、22.5%、23%,以及两百分比取值点之间的任意质量百分比值;
焊丝中第三主要元素为Co,来自药粉的添加。Co与Ni属于同族元素,Ni基合金中添加Co可以稳定奥氏体相,并且提高熔覆金属抗热腐蚀性能和冷热疲劳性能。Ni基合金焊接时熔池流动性较差,Co的添加可以提高合金的流动性。Co的熔点较Ni高,在镍基合金中添加Co元素后,合金的高温持久强度升高,在高温下服役的寿命也提高。与此同时,Co固溶于奥氏体基体中也可以降低基体的堆垛层错能,从而提高了位错运动的阻力,提高熔覆金属抗变形的能力。Co的含量可以为:28%、29%、30%、31%、32%,以及两百分比取值点之间的任意质量百分比值。
焊丝中第四主要元素为Mo,来自作为外皮的Inconel625带和药粉的添加。Mo原子可以溶解入奥氏体基体中,但是由于Mo原子较大,固溶的时候将导致奥氏体的晶格常数增大,从而可以起到提高熔覆金属的屈服强度的作用。在含有W的焊缝中,当提高Mo含量后,可以显著提高熔覆金属的屈服强度。Mo还可以与C形成M 6C碳化物,弥散分布于奥氏体基体中,起到强化作用。Mo的含量可以为:7%、7.5%、8%、8.5%、9%,以及两百分比取值点之间的任意质量百分比值。
焊丝中第五主要元素为W,来自药粉的添加。W和Mo类似,可以固溶于奥氏体基体中,通过引起晶格畸变,起到强化基体组织的作用。 W可以明显降低奥氏体基体的层错能,层错能的降低可以有效改善高温合金的蠕变性能。W的含量可以为:1.5%、2%、2.5%、3%、3.5%,以及两百分比取值点之间的任意质量百分比值;
焊丝中第六主要元素为Nb,来自作为外皮的Inconel625带和药粉的添加。Nb也是固溶强化元素之一。Nb原子的半径比W和Mo更大,因此当其固溶于奥氏体基体中时,所起到的固溶强化作用更明显。和W、Mo类似,Nb也可以降低奥氏体基体的堆垛层错能,从而提高熔覆金属的蠕变寿命。此外,Nb还是碳化物形成元素,并且参与硼化物的形成,进一步强化熔覆金属。Nb的含量可以为:1.5%、2%、2.5%、3%、3.5%,以及两百分比取值点之间的任意质量百分比值。
焊丝中第七主要元素为Cu,来自药粉的添加。Cu元素添加后,在奥氏体基体中析出纳米尺寸的富Cu相,协同MC碳化物,提高奥氏体基体的蠕变寿命。Cu的含量可以为:1%、1.2%、1.3%、1.4%、1.5%,以及两百分比取值点之间的任意质量百分比值。
焊丝中第八主要元素为B,来自药粉的添加。药粉中添加了微量的B元素,B可以在晶界处富集,从而增加晶界的结合力;同时,硼化物在晶界以颗粒状弥散分布,阻止晶界滑移、抑制晶界空洞的连接与扩展;B元素的添加还可以消除有害相在晶界的析出。因此,B元素的添加可以显著提高熔覆金属的高温持久、蠕变性能。B的含量可以为:0.6%、0.7%、0.8%、0.9%、1%,以及两百分比取值点之间的任意质量百分比值。
焊丝中第九主要元素为La,来自药粉的添加。药粉中添加了微量的稀土元素La,La元素一方面可以固溶于奥氏体基体中,引起基体的晶格畸变,产生强化效果。同时,La可以降低其它元素的扩散速度,阻止脆性相的长大,细化脆性相尺寸。La的含量可以为:0.4%、0.45%、0.46%、0.5%、0.6%,以及两百分比取值点之间的任意质量百分比值。
综上所述,本实施例提供的镍基焊丝采用多种元素进行综合固溶强化,不同元素进入奥氏体基体中,对晶格畸变的影响更大,而且还会发生相互作用,使得奥氏体对于某些元素的固溶度增大,进一步提高强化效果。
另一方面,本实施例所提供的镍基焊丝的制造方法,用于制造上述的镍基焊丝,包括如下步骤:
称取药粉:按质量百分比:Co粉28.0%~32.0%、Cr粉19.0%~23.0%、Mo粉7.0%~9.0%、Nb粉1.5%~3.5%、Cu粉1.0%~1.5%、W粉1.5%~3.5%、 B粉0.6%~1.0%、La粉0.4%~0.6%、其余为Ni粉,其中,以上所有组分的质量百分比之和为100%,来称取药粉;
烘干药粉;其中,该步骤中,将药粉置于真空环境中加热,加热温度为260℃~280℃,保温时间为1h~2h。
混合药粉:将烘干后的药粉进行充分的混合,混合时间为1h-2h;具体的,可以将烘干的药粉置于混粉机中进行混合;
填充药粉:去除外皮表面的油脂,其中,可以采用酒精去除外皮原材料表面的油脂,并通过药芯焊丝成型机将外皮弯曲为U形,将混合好的药粉填充进外皮,并将外皮合口;
拉拔焊丝:采用拉拔工艺制成焊丝成品,具体的,采用拉拔模具拉拔制造焊丝成品,采用多道次拉拔的工艺,第一道次的拉拔模具孔径为2.6mm,所制成的镍基焊丝直径为1.0mm~1.2mm。
除上述步骤外,制造方法还可以包括焊丝包装步骤:将焊丝成品缠绕于焊丝盘,并密封在药芯焊丝真空包装袋内。
具体的,称取药粉的步骤中,Co粉、Cr粉、Mo粉、Nb粉、Cu粉、W粉、B粉、La粉、Ni的粒度为100目~200目。
具体的,外皮的原材料尺寸为厚度为0.4mm,宽度为7mm。
再一方面,本实施例所提供的镍基焊丝的焊接工艺,采用上述的镍基焊丝对待焊接件进行焊接。
具体的,焊接时,将待焊接件的焊接部位和焊丝均置于保护气体氛围中;以体积百分比计,保护气体中,氩气的含量为98%,氧气的含量为2%;
具体的,采用上述镍基焊丝对Incoloy800H母材进行焊接,待焊接件(例如焊接试板)的焊接部位厚度为12mm~18mm,可选为15mm;坡口为V形,坡口的角度为50°~55°;
和/或,焊接电流为150A~200A;
和/或,焊接速度为0.5m/min~0.6m/min;
和/或,送丝速度为4m/min~6m/min。
本申请实施例所提供的镍基焊丝及其制造方法和焊接工艺,具有以下有益效果:
(1)本申请实施例所提供的镍基焊丝适用于高温气冷堆过热段传热管材料Incoloy 800H的焊接连接。镍基焊丝高温强韧性较优异,可以保证蒸汽发生器的安全服役。
(2)本申请实施例所提供的镍基焊丝针对高温气冷堆传热管内部传 输的高温氦气(750℃),为了保证其接头的高温可靠性,通过多种合金元素实现组合强化:焊丝中主要合金元素为Ni、Co,具有稳定熔覆金属奥氏体组织作用;焊丝中含有一定量的Cr元素,充分保证熔覆金属的高温抗氧化能力;添加一定量的Mo、Nb、W,实现对熔覆金属奥氏体基体的固溶强化作用;添加微量B、La,强化、净化晶界,提高蠕变寿命。
(3)本申请实施例所提供的镍基焊丝,选择Inconel 625带作为外皮进行药芯焊丝的拉拔制备。Inconel625带中Ni、Cr、Mo含量较高,配合药粉的设计含量配比,可以较容易实现熔覆金属目标组织与性能的获得。
(4)本申请实施例所提供的镍基焊丝中合金元素种类多,强化、韧化效果显著,元素的选择与含量的设计充分考虑了焊接非平衡特点及焊接过程极大的冷却速度对焊缝组织的有害作用,因此采用该焊丝进行焊接时,对焊工的操作要求较低,焊接工艺稳定性强,接头质量可靠性高。
(5)本申请实施例所提供的镍基焊丝,既可以用于熔化极焊接(MIG/MAG),也可以用于非熔化极焊接(TIG),适用范围广。
为了进一步说明本申请,下面结合附图和实施例对本申请所提供的镍基焊丝及其制造方法和焊接工艺进行更加详细的描述,但不能将它们理解为对本申请保护范围的限定。
实施例一:
步骤1:称取药粉,按以下质量百分比来称取药粉:Co粉28.0%,Cr粉19.0%,Mo粉7.0%,Nb粉1.5%,Cu粉1.0%,W粉1.5%,B粉0.6%,La粉0.4%、其余为Ni粉,其中,以上所有组分的质量百分比之和为100%。
步骤2:烘干药粉,将药粉置于真空加热炉内加热,加热温度为260℃,保温时间为1h。以去除药粉中的水分。
步骤3:混合药粉,将烘干后的药粉置于混粉机中进行充分的混合,混合时间为1h。
步骤4:填充药粉,选用Inconel 625带作为药芯焊丝的外皮,采用酒精去除外皮原材料表面的油脂,并通过药芯焊丝成型机将外皮弯曲为U形,将混合好的药粉填充进外皮,并将外皮合口。
步骤5:拉拔焊丝,采用拉拔工艺制成焊丝成品,其中,采用拉拔模具拉拔制造焊丝成品,采用多道次拉拔的工艺,第一道次的拉拔模具孔径为2.6mm,模具孔径依次减少,最终所制成的镍基焊丝直径为1.0mm~1.2mm。
步骤6:焊丝包装步骤,将焊丝成品缠绕于焊丝盘,并密封在药芯焊丝真空包装袋内。
用实施例一中的制造方法制造的镍基焊丝进行Incoloy 800H母材的对接接头焊接,焊接试板厚度为15mm,坡口为对称V形坡口,角度为50°。采用CMT焊接电源进行试板的焊接,焊接保护气体为98%Ar+2%O2,焊接电流范围为150~200A,焊接速度为50~60cm/min,送丝速度为4~6m/min。
焊接过程中电弧燃烧稳定、熔滴过渡均匀、飞溅较少,焊后焊缝成型美观,无气孔、裂纹等缺陷。
焊接后的Incoloy 800H对接接头,在室温抗拉强度为598MPa,屈服强度为470Mpa,断后伸长率为30%,硬度HRC=33;接头在600℃高温时抗拉强度为402MPa,屈服强度为310Mpa,断后伸长率为35%。
实施例二:
步骤1:称取药粉,按以下质量百分比来称取药粉:Co粉32.0%,Cr粉23.0%,Mo粉9.0%,Nb粉3.5%,Cu粉1.5%,W粉3.5%,B粉1.0%,La粉0.6%,其余为Ni粉,其中,以上所有组分的质量百分比之和为100%。
步骤2:烘干药粉,将药粉置于真空加热炉内加热,加热温度为280℃,保温时间为2h。以去除药粉中的水分。
步骤3:混合药粉,将烘干后的药粉置于混粉机中进行充分的混合,混合时间为2h。
步骤4:填充药粉,选用Inconel 625带作为药芯焊丝的外皮,采用酒精去除外皮原材料表面的油脂,并通过药芯焊丝成型机将外皮弯曲为U形,将混合好的药粉填充进外皮,并将外皮合口。
步骤5:拉拔焊丝,采用拉拔工艺制成焊丝成品,其中,采用拉拔模具拉拔制造焊丝成品,采用多道次拉拔的工艺,第一道次的拉拔模具孔径为2.6mm,模具孔径依次减少,最终所制成的镍基焊丝直径为1.0mm~1.2mm。
步骤6:焊丝包装步骤,将焊丝成品缠绕于焊丝盘,并密封在药芯焊丝真空包装袋内。
用实施例二中的制造方法所制造的镍基焊丝进行Incoloy 800H母材的对接接头焊接,焊接试板厚度为15mm,坡口为对称V形坡口,角度为55°。采用CMT焊接电源进行试板的焊接,焊接保护气体为98%Ar+2%O2,焊接电流范围为150~200A,焊接速度为50~60cm/min, 送丝速度为4~6m/min。
图1为实施例二中的制造方法所制造的镍基焊丝进行Incoloy 800H母材表面堆焊的成型情况,从图中可以看出,堆焊焊缝成型美观,无气孔、裂纹等缺陷。图2为该镍基焊丝进行Incoloy 800H母材的对接焊接所得接头金相组织,从图中可以看出焊缝为全奥氏体组织,满足焊丝对组织的设计要求。图3为该镍基焊丝进行Incoloy 800H母材的对接焊接所得接头二次相的高倍扫描电镜形貌,从图中可以看出,二次相弥散分布在奥氏体枝晶间,起到对基体的强化作用。图4为该镍基焊丝进行Incoloy 800H母材的对接焊接所得焊缝的摩擦磨损曲线,从图中可以看出,本申请焊丝和ERNiCr-3焊丝相比,其熔覆金属的耐磨性较好,摩擦过程曲线平缓。图5为该镍基焊丝进行Incoloy 800H母材的对接焊接所得焊缝的摩擦磨损形貌,从图中可以看出,表面以黏着磨损为主,耐磨性较好。
焊接后的Incoloy 800H对接接头,在室温下抗拉强度为587MPa,屈服强度为460Mpa,断后伸长率为32%,硬度HRC=31;接头在600℃高温时抗拉强度为431MPa,屈服强度为325Mpa,断后伸长率为31%。
实施例三:
步骤1:称取药粉,按以下质量百分比来称取药粉:Co粉30.0%,Cr粉21.0%,Mo粉8.0%,Nb粉2.5%,Cu粉1.3%,W粉2.5%,B粉0.8%,La粉0.5%,其余为Ni粉,其中,以上所有组分的质量百分比之和为100%。
步骤2:烘干药粉,将药粉置于真空加热炉内加热,加热温度为270℃,保温时间为1.5h。以去除药粉中的水分。
步骤3:混合药粉,将烘干后的药粉置于混粉机中进行充分的混合,混合时间为1.5h。
步骤4:填充药粉,选用Inconel 625带作为药芯焊丝的外皮,采用酒精去除外皮原材料表面的油脂,并通过药芯焊丝成型机将外皮弯曲为U形,将混合好的药粉填充进外皮,并将外皮合口。
步骤5:拉拔焊丝,采用拉拔工艺制成焊丝成品,其中,采用拉拔模具拉拔制造焊丝成品,采用多道次拉拔的工艺,第一道次的拉拔模具孔径为2.6mm,模具孔径依次减少,最终所制成的镍基焊丝直径为1.0mm~1.2mm。
步骤6:焊丝包装步骤,将焊丝成品缠绕于焊丝盘,并密封在药芯焊丝真空包装袋内。
用实施例三中的制造方法所制造的镍基焊丝进行Incoloy 800H母材的对接接头焊接,焊接试板厚度为15mm,坡口为对称V形坡口,角度为50°。采用CMT焊接电源进行试板的焊接,焊接保护气体为98%Ar+2%O2,焊接电流范围为150~200A,焊接速度为50~60cm/min,送丝速度为4~6m/min。
焊接过程中电弧燃烧稳定、熔滴过渡均匀、飞溅较少,焊后焊缝成型美观,无气孔、裂纹等缺陷。
焊接后的Incoloy 800H对接接头,在室温下抗拉强度为588MPa,屈服强度为475Mpa,断后伸长率为34%,硬度HRC=34;接头在600℃高温时抗拉强度为424MPa,屈服强度为303Mpa,断后伸长率为34%。
实施例四:
步骤1:称取药粉,按以下质量百分比来称取药粉:Co粉29.0%,Cr粉22.0%,Mo粉7.5%,Nb粉3.0%,Cu粉1.2%,W粉2.0%,B粉0.7%,La粉0.45%,其余为Ni粉,其中,以上所有组分的质量百分比之和为100%。
步骤2:烘干药粉,将药粉置于真空加热炉内加热,加热温度为270℃,保温时间为1.2h。以去除药粉中的水分。
步骤3:混合药粉,将烘干后的药粉置于混粉机中进行充分的混合,混合时间为1.2h。
步骤4:填充药粉,选用Inconel 625带作为药芯焊丝的外皮,采用酒精去除外皮原材料表面的油脂,并通过药芯焊丝成型机将外皮弯曲为U形,将混合好的药粉填充进外皮,并将外皮合口。
步骤5:拉拔焊丝,采用拉拔工艺制成焊丝成品,其中,采用拉拔模具拉拔制造焊丝成品,采用多道次拉拔的工艺,第一道次的拉拔模具孔径为2.6mm,模具孔径依次减少,最终所制成的镍基焊丝直径为1.0mm~1.2mm。
步骤6:焊丝包装步骤,将焊丝成品缠绕于焊丝盘,并密封在药芯焊丝真空包装袋内。
用实施例四中的制造方法所制造的镍基焊丝进行Incoloy 800H母材的对接接头焊接,焊接试板厚度为15mm,坡口为对称V形坡口,角度为55°。采用CMT焊接电源进行试板的焊接,焊接保护气体为98%Ar+2%O2,焊接电流范围为150~200A,焊接速度为50~60cm/min,送丝速度为4~6m/min。
焊接过程中电弧燃烧稳定、熔滴过渡均匀、飞溅较少,焊后焊缝成 型美观,无气孔、裂纹等缺陷。
焊接后的Incoloy 800H对接接头,在室温下抗拉强度为590MPa,屈服强度为490Mpa,断后伸长率为31%,硬度HRC=32;接头在600℃高温时抗拉强度为417MPa,屈服强度为299Mpa,断后伸长率为32%。
实施例五:
步骤1:称取药粉,按以下质量百分比来称取药粉:Co粉31.0%,Cr粉22.5%,Mo粉8.5%,Nb粉2.0%,Cu粉1.4%,W粉3.0%,B粉0.9%,La粉0.46%,其余为Ni粉,其中,以上所有组分的质量百分比之和为100%。
步骤2:烘干药粉,将药粉置于真空加热炉内加热,加热温度为270℃,保温时间为1.2h。以去除药粉中的水分。
步骤3:混合药粉,将烘干后的药粉置于混粉机中进行充分的混合,混合时间为1.2h。
步骤4:填充药粉,选用Inconel 625带作为药芯焊丝的外皮,采用酒精去除外皮原材料表面的油脂,并通过药芯焊丝成型机将外皮弯曲为U形,将混合好的药粉填充进外皮,并将外皮合口。
步骤5:拉拔焊丝,采用拉拔工艺制成焊丝成品,其中,采用拉拔模具拉拔制造焊丝成品,采用多道次拉拔的工艺,第一道次的拉拔模具孔径为2.6mm,模具孔径依次减少,最终所制成的镍基焊丝直径为1.0mm~1.2mm。
步骤6:焊丝包装步骤,将焊丝成品缠绕于焊丝盘,并密封在药芯焊丝真空包装袋内。
用实施例五中的制造方法所制造的镍基焊丝进行Incoloy 800H母材的对接接头焊接,焊接试板厚度为15mm,坡口为对称V形坡口,角度为55°。采用CMT焊接电源进行试板的焊接,焊接保护气体为98%Ar+2%O2,焊接电流范围为150~200A,焊接速度为50~60cm/min,送丝速度为4~6m/min。
焊接过程中电弧燃烧稳定、熔滴过渡均匀、飞溅较少,焊后焊缝成型美观,无气孔、裂纹等缺陷。
焊接后的Incoloy 800H对接接头,在室温下抗拉强度为574MPa,屈服强度为468Mpa,断后伸长率为30%,硬度HRC=31;接头在600℃高温时抗拉强度为406MPa,屈服强度为311Mpa,断后伸长率为34%。
对比例为公开号为CN110280923A,名称为800H合金焊接用Fe-Ni基合金焊丝及其制备方法、800H合金的焊接方法的发明专利申请中的实 施例1。其中,在表一中,本申请的实施例一~实施例五中,表示的是该元素占药粉重量的百分比,而对比例中,则为该元素占焊丝重量的百分比。
表一:各实施例与对比例的焊丝的成分(质量百分比)对比表。
成分 实施例一 实施例二 实施例三 实施例四 实施例五 对比例
Ni 41 25.9 33.4 34.15 30.24 29.73
Cr 19 23 21 22 22.5 17.84
Co 28 32 30 29 31 -
Mo 7 9 8 7.5 8.5 2.03
W 1.5 3.5 2.5 2 3 -
Nb 1.5 3.5 2.5 3 2 0.39
Cu 1 1.5 1.3 1.2 1.4 -
B 0.6 1 0.8 0.7 0.9 0.0086
La 0.4 0.6 0.5 0.45 0.46 -
Fe - - - - - 45.8702
C - - - - - 0.077
Si - - - - - 0.47
Mn - - - - - 0.83
Al - - - - - 2.73
N - - - - - 0.016
P - - - - - 0.0082
表二:各实施例与对比例焊接的接头力学性能测试数据对比表
Figure PCTCN2022131632-appb-000001
其中,由表二的接头力学性能测试结果可知,相对于对比例而言,本申请实施例所提供的镍基焊丝焊接Incoloy800H母材后,焊接接头的室温抗拉强度有明显提高,而室温下的延伸率大致相当;高温状态下的抗拉强度相当,延伸率明显增加。由此可知,本申请实施例所提供的镍基焊丝,可以对Incoloy 800H母材进行焊接,并且具有更加优良的焊接性能。
综上所述,本申请所提供的镍基焊丝,适用于Incoloy 800H母 材的焊接,该焊丝的制备方法简单、易控,适宜工业化推广。
虽然本申请披露如上,但本申请并非限定于此。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各种更动与修改,因此本申请的保护范围应当以权利要求所限定的范围为准。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
上述实施例中,诸如“上”、“下”等方位的描述,均基于附图所示。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。
因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (13)

  1. 一种镍基焊丝,其特征在于,应用于材质为Incoloy 800H的高温气冷堆传热管,包括外皮以及填充于所述外皮中的药芯;所述外皮为Inconel625带,所述镍基焊丝的填充率为30%~35%;所述药芯包括以下质量百分比的组分:Co:28.0~32.0%,Cr:19.0%~23.0%,Mo:7.0%~9.0%,Nb:1.5%~3.5%,Cu:1.0%~1.5%,W:1.5%~3.5%,B:0.6%~1.0%,La:0.4%~0.6%,其余为Ni。
  2. 根据权利要求1所述的镍基焊丝,其特征在于,所述镍基焊丝的直径为1.0mm~1.2mm。
  3. 一种镍基焊丝的制造方法,其特征在于,所述镍基焊丝包括外皮以及填充于所述外皮中的药芯;所述镍基焊丝的填充率为30%~35%,包括如下步骤:
    称取药粉:按质量百分比:Co粉28.0%~32.0%、Cr粉19.0%~23.0%、Mo粉7.0%~9.0%、Nb粉1.5%~3.5%、Cu粉1.0%~1.5%、W粉1.5%~3.5%、B粉0.6%~1.0%、La粉0.4%~0.6%、其余为Ni粉,其中,以上所有组分的质量百分比之和为100%,来称取药粉;
    烘干药粉;
    混合药粉;
    填充药粉:选用Inconel625带作为所述镍基焊丝的外皮,去除所述外皮表面的油脂,并将所述外皮弯曲为U形,将混合好的所述药粉填充进所述外皮,并将所述外皮合口;
    拉拔焊丝:采用拉拔工艺制成焊丝成品。
  4. 根据权利要求3所述的镍基焊丝的制造方法,其特征在于,烘干药粉步骤中,将所述药粉置于真空环境中加热,加热温度为260℃~280℃, 保温时间为1h~2h。
  5. 根据权利要求3所述的镍基焊丝的制造方法,其特征在于,所述Co粉、所述Cr粉、所述Mo粉、所述Nb粉、所述Cu粉、所述W粉、所述B粉、所述La粉、所述Ni的粒度为100目~200目。
  6. 根据权利要求3所述的镍基焊丝的制造方法,其特征在于,所述外皮的原材料尺寸为厚度为0.4mm,宽度为7mm。
  7. 根据权利要求3所述的镍基焊丝的制造方法,其特征在于,还包括焊丝包装步骤:将所述焊丝成品缠绕于焊丝盘,并密封在药芯焊丝真空包装袋内。
  8. 一种镍基焊丝的焊接工艺,其特征在于,采用权利要求1~2中任一项的镍基焊丝焊接待焊接件。
  9. 根据权利要求8所述的镍基焊丝的焊接工艺,其特征在于,焊接时,将待焊接件的焊接部位和焊丝均置于保护气体氛围中;
    所述待焊接件的焊接部位厚度为12mm~18mm;坡口为V形,所述坡口的角度为50°~55°。
  10. 根据权利要求9所述的镍基焊丝的焊接工艺,其特征在于,以体积百分比计,所述保护气体中,氩气的含量为98%:氧气的含量为2%。
  11. 根据权利要求8所述的镍基焊丝的焊接工艺,其特征在于,焊接电流为150A~200A。
  12. 根据权利要求8所述的镍基焊丝的焊接工艺,其特征在于,焊接速度为0.5m/min~0.6m/min。
  13. 根据权利要求8所述的镍基焊丝的焊接工艺,其特征在于,送丝速度为4m/min~6m/min。
PCT/CN2022/131632 2022-04-19 2022-11-14 镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺 WO2023202051A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210410398.0A CN114505619B (zh) 2022-04-19 2022-04-19 镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺
CN202210410398.0 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023202051A1 true WO2023202051A1 (zh) 2023-10-26

Family

ID=81554900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131632 WO2023202051A1 (zh) 2022-04-19 2022-11-14 镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺

Country Status (2)

Country Link
CN (1) CN114505619B (zh)
WO (1) WO2023202051A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114505619B (zh) * 2022-04-19 2022-09-27 西安热工研究院有限公司 镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺
CN116100197B (zh) * 2023-04-07 2023-08-18 西安热工研究院有限公司 低热输入wc强化镍基焊丝及其制备方法
CN116100195B (zh) * 2023-04-07 2023-08-18 西安热工研究院有限公司 水冷壁堆焊用碳化物增强防磨焊丝及其制备方法
CN116117381B (zh) * 2023-04-12 2023-08-18 西安热工研究院有限公司 双沉淀强化Ni-Cr焊丝及其制造方法和焊接工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1339070A (zh) * 1999-01-28 2002-03-06 住友电气工业株式会社 耐热合金丝
US20080166258A1 (en) * 2006-09-25 2008-07-10 Nippon Seisen Co., Ltd. Heat-resistant alloy spring and Ni-based alloy wire therefor
CN105014258A (zh) * 2015-06-26 2015-11-04 北京北冶功能材料有限公司 700℃以上超超临界煤发电设备用镍基高温合金焊丝
CN105143482A (zh) * 2013-02-14 2015-12-09 Vdm金属有限公司 镍-钴合金
CN105246642A (zh) * 2014-04-28 2016-01-13 利宝地工程有限公司 延性的含硼镍基焊接材料
CN112518172A (zh) * 2020-11-24 2021-03-19 中国华能集团有限公司 一种镍钴基高温合金焊丝
CN112935623A (zh) * 2021-02-05 2021-06-11 天津市金桥焊材集团股份有限公司 一种新型Ni-Cr-Co-Mo型高温镍基焊丝
CN113828960A (zh) * 2021-09-27 2021-12-24 西安理工大学 一种铜-钢复合板对接焊接用焊接材料及焊接方法
CN113828959A (zh) * 2021-09-06 2021-12-24 江苏金桥焊材科技股份有限公司 一种含铈等稀土的镍基焊丝及其制备方法
CN114505619A (zh) * 2022-04-19 2022-05-17 西安热工研究院有限公司 镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501127B2 (ja) * 1989-10-19 1996-05-29 三菱マテリアル株式会社 Ni基耐熱合金溶接ワイヤ―の製造方法
CN102513647A (zh) * 2011-12-29 2012-06-27 上海鸿威硬面技术有限公司 在助卷辊表面堆焊复合硬面镍基合金高温材料的工艺
CN106563890A (zh) * 2015-10-10 2017-04-19 丹阳市华龙特钢有限公司 一种成本较低廉的高性能镍基特种焊丝
CN109967913B (zh) * 2019-01-17 2021-06-04 北京奥邦新材料有限公司 一种用于连铸辊激光熔覆的药芯焊丝及其生产方法
CN112760525B (zh) * 2019-11-01 2022-06-03 利宝地工程有限公司 高γ′镍基超级合金、其用途及制造涡轮发动机构件的方法
CN111673311B (zh) * 2020-05-19 2022-02-25 西安理工大学 Ta1-q235b中间层焊接用焊丝及制备方法
CN113319465B (zh) * 2021-06-13 2022-07-05 石家庄铁道大学 一套用于超高强钢焊接的双丝气体保护焊焊丝及焊接方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1339070A (zh) * 1999-01-28 2002-03-06 住友电气工业株式会社 耐热合金丝
US20080166258A1 (en) * 2006-09-25 2008-07-10 Nippon Seisen Co., Ltd. Heat-resistant alloy spring and Ni-based alloy wire therefor
CN105143482A (zh) * 2013-02-14 2015-12-09 Vdm金属有限公司 镍-钴合金
CN105246642A (zh) * 2014-04-28 2016-01-13 利宝地工程有限公司 延性的含硼镍基焊接材料
CN105014258A (zh) * 2015-06-26 2015-11-04 北京北冶功能材料有限公司 700℃以上超超临界煤发电设备用镍基高温合金焊丝
CN112518172A (zh) * 2020-11-24 2021-03-19 中国华能集团有限公司 一种镍钴基高温合金焊丝
CN112935623A (zh) * 2021-02-05 2021-06-11 天津市金桥焊材集团股份有限公司 一种新型Ni-Cr-Co-Mo型高温镍基焊丝
CN113828959A (zh) * 2021-09-06 2021-12-24 江苏金桥焊材科技股份有限公司 一种含铈等稀土的镍基焊丝及其制备方法
CN113828960A (zh) * 2021-09-27 2021-12-24 西安理工大学 一种铜-钢复合板对接焊接用焊接材料及焊接方法
CN114505619A (zh) * 2022-04-19 2022-05-17 西安热工研究院有限公司 镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺

Also Published As

Publication number Publication date
CN114505619B (zh) 2022-09-27
CN114505619A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2023202051A1 (zh) 镍基焊丝、镍基焊丝的制造方法和镍基焊丝的焊接工艺
CN102581513B (zh) 一种用于核电站核岛主设备的镍基焊丝
JP5420406B2 (ja) 溶接に使用するための溶接合金および製品、溶接物ならびに溶接物の製造方法
JP5212533B2 (ja) 継目無オーステナイト系耐熱合金管
CN106541222B (zh) 高温高强度无裂纹缺陷的核电用镍基焊丝及其制备和使用
WO2023201891A1 (zh) Fe-Ni-Cr焊丝及其制备方法和焊接工艺
JP2010500178A5 (zh)
KR101568515B1 (ko) 내열강용 용접재료
CN102554505A (zh) 一种抗点状缺陷和裂纹缺陷的镍基光焊丝
TW201217544A (en) Welding process and corrosion-resistant filler alloy and consumables therefor
CN105215572A (zh) 一种核岛主设备用抗裂纹缺陷镍基焊丝及制备方法
CN114260615B (zh) T91-tp304h异种材料焊接用焊丝及制备方法
JPS60133996A (ja) クリ−プ破断延性の優れた溶接材料
CA2809175C (en) Processable high thermal neutron absorbing fe-base alloys
CN105397331A (zh) 一种高Mn高Nb的抗裂纹缺陷镍基焊丝及焊接方法
CN116117381B (zh) 双沉淀强化Ni-Cr焊丝及其制造方法和焊接工艺
KR102197134B1 (ko) Ni기 합금 플럭스 코어드 와이어
CN116079279B (zh) 抗磨损耐腐蚀Fe基焊丝及其制备方法
JPS58202993A (ja) ステンレス鋼溶接線材
CN116079280A (zh) 耐热腐蚀Ni-Cr焊丝、制造方法和焊接工艺
JPH02220797A (ja) Cr―Mo系低合金鋼用被覆アーク溶接棒
CN115008065A (zh) 用于钛-钢焊缝高熵化的药芯焊丝及其制备方法
JP4309172B2 (ja) 低合金耐熱鋼用低水素系被覆アーク溶接棒
CN116100192B (zh) 药芯焊丝和药芯焊丝的制造方法
CN116329809B (zh) 镍基非晶药芯焊丝及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938270

Country of ref document: EP

Kind code of ref document: A1