WO2023201925A1 - 基于分布式基站的以太网组网系统及组网方法 - Google Patents

基于分布式基站的以太网组网系统及组网方法 Download PDF

Info

Publication number
WO2023201925A1
WO2023201925A1 PCT/CN2022/108581 CN2022108581W WO2023201925A1 WO 2023201925 A1 WO2023201925 A1 WO 2023201925A1 CN 2022108581 W CN2022108581 W CN 2022108581W WO 2023201925 A1 WO2023201925 A1 WO 2023201925A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
subunit
ethernet
programmable gate
gate array
Prior art date
Application number
PCT/CN2022/108581
Other languages
English (en)
French (fr)
Inventor
黄亚姣
周志强
张建军
李金龙
郑辙
Original Assignee
三维通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三维通信股份有限公司 filed Critical 三维通信股份有限公司
Publication of WO2023201925A1 publication Critical patent/WO2023201925A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to an Ethernet networking system and networking method based on distributed base stations.
  • the core concept of the distributed base station structure is to divide traditional macro base stations into: baseband processing module (Base Band Unit, BBU) and radio frequency remote module (Radio Remote Unit, RRU).
  • BBU Base Band Unit
  • RRU Radio Remote Unit
  • the BBU is responsible for completing the baseband processing part of the wireless signal
  • the RRU is responsible for completing the frequency conversion modulation and signal amplification of the baseband signal
  • the BBU and the RRU are directly connected using optical fiber and through the Common Public Radio Interface (CPRI) optical interface communication.
  • CPRI Common Public Radio Interface
  • the baseband processing module BBU, core network, and wireless network control equipment are concentrated in the computer room, and connected through optical fibers to the radio frequency remote module RRU deployed on the planned site to complete network coverage.
  • one BBU can support the connection of multiple RRUs, and the RRUs can be remote through optical fibers.
  • Multiple RRUs and BBUs can form a star or chain flexible network, which brings great convenience.
  • the communication between the baseband processing module BBU and the remote radio module RRU generally uses a network port connection.
  • a switch is also needed to implement Ethernet communication between the BBU and multiple RRUs. This method will not only increase the hardware overhead in BBU and RRU design, but also increase the cost of using switches.
  • the deployment location of RRU is often far from the BBU, and some distances are more than tens of kilometers. This far exceeds the transmission distance of the network cable, which will cause interference to the transmission signal and poor stability.
  • operations need to be carried out back and forth between multiple RRUs, which will also cause great inconvenience in terms of distance.
  • an Ethernet networking system and networking method based on distributed base stations are provided.
  • this application provides an Ethernet networking system based on distributed base stations, including a baseband processing module and a number of radio frequency remote modules deployed on respective planned sites;
  • An Ethernet link is established between the baseband processing module and each remote radio module through optical fiber connection based on the CPRI interface protocol;
  • the baseband processing module uses its built-in first processing unit and first field programmable gate array to perform network management and transmission management of each remote radio module through the Ethernet link.
  • the baseband processing module includes a first processing unit and a first field programmable gate array
  • the first field programmable gate array is connected to the remote radio frequency module through an Ethernet link and is used for network management and topology data processing of the remote radio frequency module;
  • the first processing unit is connected to an external network control device and the first field programmable gate array, and is used to manage the transmission of each remote radio module through the first field programmable gate array.
  • the first processing unit includes a first receiving data processing sub-unit, a first sending data processing sub-unit, a first virtual network card and a first CPRI interface;
  • the first CPRI interface is connected to the first virtual network card and the first field programmable gate array respectively;
  • the first sending data processing subunit is connected to the first virtual network card, and is used to obtain the downlink Ethernet data in the external network control device through the first virtual network card during downlink transmission, and transmit it through the third virtual network card.
  • a virtual network card routes the downlink Ethernet data to the first CPRI interface, so that the first CPRI interface transmits the downlink Ethernet data to the first field-readable interface based on the first CPRI interface protocol.
  • the first receiving data processing subunit is connected to the first virtual network card and is used to receive uplink data from the first field programmable gate array through the first virtual network card and the first CPRI interface during uplink transmission. Ethernet data, and transmits the uplink Ethernet data to the external network control device through the first virtual network card.
  • the first field programmable gate array includes a second CPRI interface, a first FIFO (First Input First Output) subunit, a data distribution subunit, a first data arbitration subunit, a second FIFO subunits and several third CPRI interfaces;
  • the second CPRI interface is respectively connected to the first FIFO subunit, the first data arbitration subunit and the first processing unit, and is used to route the downlink Ethernet data in the first processing unit to the The first FIFO subunit performs caching;
  • the data distribution subunit is connected to the first FIFO subunit and is used to perform network management and topology data processing of the remote radio module to obtain topology data; during downlink transmission, it is transmitted in the form of broadcast
  • the third CPRI interface distributes the downlink Ethernet data cached in the first FIFO subunit to each remote radio module according to the topology data;
  • Each of the third CPRI interfaces is respectively connected to the second FIFO subunit, the data distribution subunit and the corresponding remote radio module, and is used to route the upstream Ethernet data in the corresponding remote radio module. to the second FIFO subunit for caching;
  • the first data arbitration subunit is connected to the second FIFO subunit, and is used to use an arbitration algorithm during uplink transmission to pass the uplink Ethernet data buffered by the first FIFO subunit through the
  • the second CPRI interface is transmitted to the first processing unit.
  • the remote radio frequency module includes a second processing unit and a second field programmable gate array
  • the second field programmable gate array is connected to the baseband processing module and the second field programmable gate array in the radio frequency remote module on the adjacent planning site through an Ethernet link, and is used to perform communication on the adjacent planning site.
  • the second processing unit is connected to the second field programmable gate array and is used for topological data processing.
  • the second processing unit includes a second receiving data processing sub-unit, a second sending data processing sub-unit and a second virtual network card;
  • the second virtual network card is respectively connected to the second receiving data processing sub-unit, the second sending data processing sub-unit and the second field programmable gate array;
  • the second sending data processing subunit is used to receive Ethernet data and topology data from the second field programmable gate array, and perform topology data processing based on the topology data to determine whether there is downlink transmission; if there is downlink transmission Transmit, then transmit the downlink Ethernet data and topology data to the second field programmable gate array through the second virtual network card;
  • the second receiving data processing subunit is configured to transmit uplink Ethernet data to the second field programmable gate array through the second virtual network card during uplink transmission.
  • the second field programmable gate array includes a fourth CPRI interface, a control subunit, a second data arbitration subunit, and a fifth CPRI interface;
  • the fourth CPRI interface is respectively connected to the control subunit, the second data arbitration subunit, the second processing unit and the baseband processing module, and is used to connect the downlink Ethernet in the baseband processing module. routing network data and topology data to the second processing unit;
  • the control subunit is connected to the fifth CPRI interface, and is used to transmit the downlink Ethernet data to adjacent planning sites through the fifth CPRI interface according to the topology data during downlink transmission.
  • the fifth CPRI interface is respectively connected to the control subunit, the second data arbitration subunit and the radio frequency remote module on the adjacent planned site, and is used to transmit the uplink Ethernet data in the corresponding radio frequency remote module. Routing to the second data arbitration subunit;
  • the second data arbitration subunit is connected to the second processing unit and is used to receive the upstream Ethernet data in the second processing unit and the upstream Ethernet data in the radio frequency remote module, and transmit it in the upstream When the arbitration algorithm is used, the uplink Ethernet data is transmitted to the baseband processing module through the fourth CPRI interface.
  • the second field programmable gate array further includes a memory subunit
  • the storage subunit is connected to the second data arbitration subunit, and is used to cache the upstream Ethernet data in the second processing unit and the upstream Ethernet data in the radio frequency remote module.
  • the second field programmable gate array is connected to the second processing unit through an MII interface.
  • the second aspect provides an Ethernet networking method based on distributed base stations, including:
  • the network management and transmission management of each remote radio module deployed on the respective planned site are performed through the Ethernet link.
  • FIG. 1 is a structural block diagram of an Ethernet networking system based on distributed base stations according to an embodiment of the present application
  • FIG. 2 is a structural block diagram of a baseband processing module according to an embodiment of the present application.
  • FIG. 3 is a structural block diagram of a radio frequency remote module according to an embodiment of the present application.
  • Figure 4 is a flow chart of an Ethernet networking method based on distributed base stations according to an embodiment of the present application.
  • Second FIFO subunit; 126 the third CPRI interface; 200, radio frequency remote module; 210, second processing unit; 211, second sending data processing sub-unit; 212, second receiving data processing sub-unit; 213, second virtual network card; 220, two Field programmable gate array; 221, fourth CPRI interface; 222, control subunit; 223, second data arbitration subunit; 224, fifth CPRI interface.
  • Words such as “connected”, “connected”, “coupled” and the like mentioned in this application are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
  • the "plurality” mentioned in this application means two or more.
  • “And/or” describes the relationship between related objects, indicating that three relationships can exist. For example, “A and/or B” can mean: A alone exists, A and B exist simultaneously, and B exists alone. Normally, the character “/” indicates that the related objects are in an “or” relationship.
  • the terms “first”, “second”, “third”, etc. involved in this application only distinguish similar objects and do not represent a specific ordering of the objects.
  • This application provides an Ethernet networking system based on distributed base stations, including a baseband processing module 100 and a number of radio frequency remote modules 200 deployed on respective planned sites;
  • an Ethernet link is established through optical fiber connection based on the CPRI interface protocol
  • the baseband processing module 100 uses its built-in first processing unit and first field programmable gate array to perform network management and transmission management of each remote radio module 200 through an Ethernet link.
  • the Ethernet networking system is based on a distributed base station, which includes a baseband processing module 100 (Base Band Unit, BBU) and a radio remote module 200 (Radio Remote Unit, RRU).
  • BBU Base Band Unit
  • RRU Radio Remote Unit
  • the baseband processing module 100 and external network control equipment are centrally located in the central computer room, and are connected to the radio frequency remote module 200 deployed on the planned site through an Ethernet link to complete Network coverage.
  • One baseband processing module 100 can support the connection of multiple remote radio modules 200, and the remote radio modules 200 can be remotely deployed on the planned site through an Ethernet link, using the first processing unit and the first built-in baseband processing module 100.
  • the field programmable gate array performs network management and transmission management of each remote radio module 200 through an Ethernet link without the need to deploy additional switches, reducing deployment costs; multiple remote radio modules 200 and baseband
  • the processing module 100 can be configured in a star or chain flexible networking mode, which brings great convenience.
  • the Ethernet link is established through optical fiber connection based on the CPRI interface protocol, which refers to the use of the FAST C&M Channel in the CPRI interface, which is the Ethernet interface, for data interaction.
  • the CPRI interface has different functions in different modes.
  • the CPRI interface as an indoor unit (IDU), is in Master mode and is responsible for the delivery and negotiation of main data.
  • the CPRI interface is in Slave mode and is responsible for responding to data being sent.
  • the CPRI interface will negotiate the rate of the Ethernet channel based on the highest public rate available at both ends of the Ethernet link, and use this method to establish the Ethernet link.
  • the resources of the relevant CPRI links can be used to reduce the additional hardware resources and wiring resources of the Ethernet link, and the Ethernet network bandwidth can be negotiated by both ends according to actual needs, with strong flexibility.
  • the baseband processing module 100 uses its built-in first processing unit and first field programmable gate array to perform network management and transmission management of each radio frequency remote module 200 through the Ethernet link; instead of Additional switches need to be deployed to reduce deployment costs, and the use of Ethernet links can improve the stability of long-distance transmission signals; this solves the problems of high deployment costs and poor long-distance transmission signal stability in related technologies.
  • the baseband processing module is described in detail below:
  • the baseband processing module 100 includes a first processing unit 110 and a first field programmable gate array 120;
  • the first field programmable gate array 120 is connected to the remote radio module 200 through an Ethernet link and is used for network management and topology data processing of the remote radio module 200;
  • the first processing unit 110 is connected to the external network control device and the first field programmable gate array 120, and is used to manage the transmission of each radio frequency remote module 200 through the first field programmable gate array 120.
  • the first field programmable gate array 120 may include but is not limited to a processing device such as a programmable logic device FPGA, which is used for network management and topology data processing of the remote radio module; wherein, network management refers to It is to carry out flexible networking of multiple radio frequency remote modules 200 and baseband processing modules 100 in star type, chain type, etc.
  • the topology data is used to describe the positional relationship between the remote radio module 200 and the baseband processing module 100 in the network, and an IP address is automatically assigned to the remote radio module 200 in the networking system based on the topology data.
  • Topological data processing refers to the processing of topological data to generate topological data.
  • the first processor may include but is not limited to a processing device such as a microprocessor MCU, and is used to manage transmission of each radio frequency remote module 200 through the first field programmable gate array 120 .
  • Transmission management includes downlink transmission and uplink transmission of Ethernet data.
  • the baseband processing module 100 can directly control the radio frequency remote module 200 or level. The operation and control functions of the connected radio frequency remote module 200.
  • the radio frequency remote modules 200 adjacent to the baseband processing module 100 are directly connected, and the radio frequency remote modules adjacent to the radio frequency remote module 200 200 is a cascaded radio frequency remote module 200.
  • the first processing unit 110 includes a first receiving data processing sub-unit 112, a first sending data processing sub-unit 111, a first virtual network card 113 and a first CPRI interface 114;
  • the first CPRI interface 114 is connected to the first virtual network card 113 and the first field programmable gate array 120 respectively;
  • the first sending data processing subunit 111 is connected to the first virtual network card 113, and is used to obtain the downlink Ethernet data in the external network control device through the first virtual network card 113 during downlink transmission, and transmit it to the first virtual network card 113 through the first virtual network card 113.
  • the downlink Ethernet data is routed to the first CPRI interface 114, so that the first CPRI interface 114 transmits the downlink Ethernet data to the first field programmable gate array 120 based on the CPRI interface protocol;
  • the first receiving data processing subunit 112 is connected to the first virtual network card 113 and is used to receive the uplink Ethernet in the first field programmable gate array 120 through the first virtual network card 113 and the first CPRI interface 114 during uplink transmission. Data is transmitted to the external network control device through the first virtual network card 113.
  • the first CPRI interface 114 can have multiple working modes. During downlink transmission, it is in the Master mode and is responsible for the delivery and negotiation of main data. During uplink transmission, it is in Slave mode and is responsible for responding to the data sent.
  • the first virtual network card 113 is mainly used to establish a local area network between remote computers. It is responsible for IP address filtering and CRC verification of Ethernet data packets. Ethernet data that meets the requirements are then processed for subsequent data processing.
  • the first sending data processing subunit 111 is mainly responsible for related processing of downlink transmission; during downlink transmission, it obtains the downlink Ethernet data in the external network control device, performs IP address filtering and CRC verification in the first virtual network card 113, and passes The first virtual network card 113 routes the downlink Ethernet data to the first CPRI interface 114 so that the first CPRI interface 114 transmits the downlink Ethernet data to the first field programmable gate array 120 based on the CPRI interface protocol.
  • the first receiving data processing subunit 112 is mainly responsible for related processing of uplink transmission; during uplink transmission, the uplink Ethernet data in the first field programmable gate array 120 is received through the first virtual network card 113 and the first CPRI interface 114. After IP address filtering and CRC verification are performed in the first virtual network card 113, the upstream Ethernet data is transmitted to the external network control device. Transmission management of each remote radio module 200 is implemented through the first processing unit 110 without unnecessary hardware overhead and cost.
  • the first field programmable gate array 120 includes a second CPRI interface 121, a first FIFO subunit 122, a data distribution subunit 123, a first data arbitration subunit 124, and a second FIFO subunit 125. and a number of third CPRI interfaces 126;
  • the second CPRI interface 121 is respectively connected to the first FIFO sub-unit 122, the first data arbitration sub-unit 124 and the first processing unit 110, and is used to route the downlink Ethernet data in the first processing unit 110 to the first FIFO sub-unit.
  • Unit 122 performs caching;
  • the data distribution subunit 123 is connected to the first FIFO subunit 122 and is used for network management and topology data processing of the remote radio module 200 to obtain topology data; during downlink transmission, it is broadcast through the third CPRI
  • the interface 126 distributes the downlink Ethernet data buffered in the first FIFO subunit 122 to each remote radio module according to the topology data;
  • Each third CPRI interface 126 is respectively connected to the second FIFO subunit 125, the data distribution subunit 123 and the corresponding remote radio module 200, and is used to route the upstream Ethernet data in the corresponding remote radio module to the third remote radio module.
  • the second FIFO subunit 125 performs caching;
  • the first data arbitration subunit 124 is connected to the second FIFO subunit 125 and is used to use an arbitration algorithm during uplink transmission to transmit the uplink Ethernet data buffered in the second FIFO subunit 125 through the second CPRI interface 121 transmitted to the first processing unit 110.
  • the second CPRI interface 121 and the third CPRI interface 126 can have multiple working modes. During downlink transmission, they are in Master mode and are responsible for the delivery and negotiation of main data. During uplink transmission, it is in Slave mode and is responsible for responding to the data sent.
  • the data distribution subunit 123 is mainly responsible for distributing Ethernet data; for example, distributing downlink Ethernet data to each remote radio module 200 in the form of broadcast through the third CPRI interface 126 according to the topology data.
  • Multiple radio frequency remote modules 200 and baseband processing module 100 can be networked in star, chain, etc., based on Ethernet links in the form of broadcast, and then distributed according to topology data, so that the baseband processing module 100 can be used in various ways.
  • the networked radio remote module RRU is managed without the need for additional switches and other equipment, reducing costs.
  • the data distributed to each remote radio module 200 includes downlink Ethernet data and corresponding topology data.
  • the downlink Ethernet data can be transmitted to its cascaded remote radio module based on the topology data. 200 in.
  • the first data arbitration subunit 124 uses an arbitration algorithm to transmit the uplink Ethernet data to the first processing unit 110 through the second CPRI interface 121 .
  • the arbitration algorithm is the Round-Robin arbitration algorithm.
  • the Round-Robin arbitration algorithm is a fair arbitration algorithm. After receiving permission, the priority of each requestor automatically drops to the last. Each requestor is equal and everyone The probability of being granted is equal when requesting, thus ensuring that each working CPRI interface has equal bandwidth resources.
  • the Ethernet data in the form of an AXI4-Stream bus interface output by the first data arbitration subunit 124 is sent to the first processing unit 110 by the second CPRI interface 121 .
  • the uplink Ethernet data received by the first processing unit 110 through the first CPRI interface 114 is sent to the upper layer for processing via the first virtual network card 113 .
  • the first FIFO subunit 122 and the second FIFO subunit 125 are both used to cache Ethernet data, and the only difference is that they cache different Ethernet data.
  • the first FIFO subunit 122 and the second FIFO subunit 125 can be integrated and implemented in one FIFO subunit, capable of buffering upstream Ethernet data and downstream Ethernet data.
  • the baseband processing module 100 includes: a first processing unit 110 and a first field programmable gate array 120; wherein the first processing unit 110 includes a first receiving data processing subunit 112, a first sending data processing subunit 111, The first virtual network card 113 and the first CPRI interface 114; wherein the first field programmable gate array 120 includes a second CPRI interface 121, a first FIFO subunit 122, a data distribution subunit 123, a first data arbitration subunit 124, A second FIFO subunit 125 and several third CPRI interfaces 126.
  • the first processing unit 110 routes the downlink Ethernet data from the external network control device to the first CPRI interface 114 through the first virtual network card 113 (matching the IP address and port) and sends it to the first CPRI interface 114.
  • a field programmable gate array 120 Inside the first field programmable gate array 120, the downlink Ethernet data from the first processing unit 110 is received through the second CPRI interface 121, and the CPRI protocol is parsed to obtain the Ethernet data therein.
  • the Ethernet data obtained from the second CPRI interface 121 is output in the form of an AXI4-Stream bus interface, which has low protocol complexity, supports high data stream transmission, and allows unlimited data burst transmission scale.
  • the acquired downlink Ethernet data is cached using the first FIFO subunit 122 inside the first field programmable gate array 120, and then is distributed to the first site in the form of broadcast through the third CPRI interface 126 via the data distribution subunit 123.
  • the radio frequency remote module 200 is connected under the n-channel optical port expanded by the programmable gate array 120.
  • MASTER CPRI delivers the topology data corresponding to each optical port to the radio remote module 200.
  • the multi-channel third CPRI interface 126 of the first field programmable gate array 120 receives the uplink Ethernet data from the remote radio module 200 .
  • the upstream Ethernet data output in the form of the AXI4-Stream bus interface is obtained by parsing the CPRI protocol and cached in the second FIFO subunit 125 .
  • the cached n-channel upstream Ethernet data passes through an n-slave 1 first data arbitration subunit 124 for arbitration strobe transmission of n-channel data.
  • the arbitration algorithm used is the Round-Robin arbitration algorithm to ensure that each CPRI interface has equal bandwidth resources.
  • the uplink Ethernet data in the form of an AXI4-Stream bus interface output by the first data arbitration subunit 124 is sent to the first processing unit 110 by the second CPRI interface 121 .
  • the uplink Ethernet data received by the first processing unit 110 through the first CPRI interface 114 is sent to the external network control device for processing through the first virtual network card 113 .
  • radio frequency remote module 200 is described in detail below:
  • the radio frequency remote module 200 includes a second processing unit 210 and a second field programmable gate array 220;
  • the second field programmable gate array 220 is connected to the baseband processing module 100 and the second field programmable gate array 220 in the radio frequency remote module 200 on the adjacent planning site through an Ethernet link, and is used for performing communication on the adjacent planning site. Network management and transmission management of the remote radio module 200;
  • the second processing unit 210 is connected to the second field programmable gate array 220 and is used for topological data processing.
  • the second field programmable gate array 220 may include but is not limited to a processing device such as a programmable logic device FPGA, and is used for network management and transmission management of the radio frequency remote module 200 on adjacent planned sites.
  • network management refers to network management of cascaded remote radio modules 200 .
  • transmission management refers to the transmission management of uplink and downlink Ethernet data.
  • the second processing unit 210 may include but is not limited to a processing device such as a microprocessor MCU, which is used for topological data processing; the topological data is used to describe the positional relationship between the radio frequency remote module 200 and the baseband processing module 100 in the network, through which The built-in second virtual network card 213 can determine the IP addresses of itself and the cascaded radio remote module 200 from the topology data.
  • a processing device such as a microprocessor MCU, which is used for topological data processing
  • the topological data is used to describe the positional relationship between the radio frequency remote module 200 and the baseband processing module 100 in the network, through which The built-in second virtual network card 213 can determine the IP addresses of itself and the cascaded radio remote module 200 from the topology data.
  • the second processing unit 210 includes a second receiving data processing sub-unit 212, a second sending data processing sub-unit 211 and a second virtual network card 213;
  • the second virtual network card 213 is respectively connected to the second receiving data processing sub-unit 212, the second sending data processing sub-unit 211 and the second field programmable gate array 220;
  • the second sending data processing subunit 211 is used to receive Ethernet data and topology data from the second field programmable gate array 220, and perform topology data processing based on the topology data to determine whether to transmit downlink; if there is downlink transmission, the downlink
  • the Ethernet data and topology data are transmitted to the second field programmable gate array 220 through the second virtual network card 213;
  • the second received data processing subunit 212 is configured to transmit the uplink Ethernet data to the second field programmable gate array 220 through the second virtual network card 213 during uplink transmission.
  • the second virtual network card 213 is mainly responsible for IP address filtering and CRC verification of Ethernet data packets, and subsequent data processing is performed on Ethernet data that meets the requirements.
  • the first virtual network card 113 and the second virtual network card 213 are both virtual network cards, but the difference is that they are set in different processors.
  • the second received data processing subunit 212 is mainly responsible for related processing of uplink transmission. For example: during upstream transmission, the second virtual network card 213 performs IP address filtering and CRC verification on the upstream Ethernet data packets, and transmits the upstream Ethernet data that meets the requirements to the second field programmable gate array 220 .
  • the upstream Ethernet data here includes the upstream Ethernet data of the current remote radio module 200 and the upstream Ethernet data transmitted from the cascade remote radio module 200 to the current remote radio module 200 .
  • the second transmission data processing subunit 211 is mainly responsible for related processing of downlink transmission.
  • Ethernet data and topology data are received from the second field programmable gate array 220, and topology data processing is performed based on the topology data to determine whether there is downlink transmission; if there is downlink transmission, the downlink Ethernet data and topology data are The data is transmitted to the second field programmable gate array 220 through the second virtual network card 213 .
  • downlink transmission occurs only when there is a cascaded lower-level remote radio module 200 in the current remote radio module 200 .
  • Network management and transmission management are implemented through the second processing unit 210 without unnecessary hardware overhead and cost.
  • the second field programmable gate array 220 includes a fourth CPRI interface 221, a control subunit 222, a second data arbitration subunit 223, and a fifth CPRI interface 224;
  • the fourth CPRI interface 221 is respectively connected to the control sub-unit 222, the second data arbitration sub-unit 223, the second processing unit 210 and the baseband processing module 100, and is used to route the downlink Ethernet data and topology data in the baseband processing module 100. to the second processing unit 210;
  • the control subunit 222 is connected to the fifth CPRI interface 224, and is used to transmit the downlink Ethernet data to the radio frequency remote module 200 on the adjacent planned site through the fifth CPRI interface 224 according to the topology data during downlink transmission;
  • the fifth CPRI interface 224 is respectively connected to the control sub-unit 222, the second data arbitration sub-unit 223 and the remote radio module 200 on the adjacent planned site, and is used to route the upstream Ethernet data in the corresponding remote radio module 200.
  • the second data arbitration subunit 223 is connected to the second processing unit 210 and is used to receive the uplink Ethernet data in the second processing unit 210 and the uplink Ethernet data in the cascade radio remote module 200. During uplink transmission, The arbitration algorithm is used to transmit the uplink Ethernet data to the baseband processing module 100 through the fourth CPRI interface 221.
  • the fourth CPRI interface 221 and the fifth CPRI interface 224 can have multiple working modes. During downlink transmission, they are in Master mode and are responsible for the delivery and negotiation of main data. During uplink transmission, it is in Slave mode and is responsible for responding to the data sent.
  • the control subunit 222 is mainly used to distribute downlink Ethernet data; it can transmit the downlink Ethernet data to the remote radio module 200 on the adjacent planned site through the fifth CPRI interface 224 according to the topology data. Of course, if there is no lower-level cascade remote radio module, there will be no downlink transmission.
  • the second data arbitration subunit 223 uses an arbitration algorithm to transmit the uplink Ethernet data to the baseband processing module 100 through the fourth CPRI interface 221.
  • the arbitration algorithm is the Round-Robin arbitration algorithm, which ensures that each working CPRI interface has equal bandwidth resources.
  • the upstream Ethernet data includes two types, namely, the upstream Ethernet data received from the second processing unit 210 and the upstream Ethernet data received from the cascade remote radio module 200 .
  • a storage subunit 225 may be provided in the second field programmable gate array 220 to cache the upstream Ethernet data in the second processing unit 210 and the upstream Ethernet data in the cascaded radio frequency remote module 200 .
  • the second data arbitration subunit 223 can perform two-channel arbitration in turn on the upstream Ethernet data in the second processing unit 210 and the upstream Ethernet data in the cascade remote radio module 200 .
  • the storage subunit 225 may be a RAM built in the second field programmable gate array 220 .
  • the second field programmable gate array 220 is connected to the second processing unit 210 through an MII interface.
  • Each subunit in the second field programmable gate array 220 is connected through the MII interface.
  • the fourth CPRI interface 221 is connected to the control sub-unit 222, the second data arbitration sub-unit 223, the second processing unit 210 and the baseband processing module 100 respectively through the MII interface
  • the fifth CPRI interface 224 is connected to the control sub-unit 222 through the MII interface respectively.
  • the subunit 222, the second data arbitration subunit 223 and the radio frequency remote module 200 on the adjacent planned site are connected.
  • the radio frequency remote module 200 is described in detail below in an optional embodiment:
  • the radio frequency remote module 200 includes a second processing unit 210 and a second field programmable gate array 220; wherein the second processing unit 210 includes a second receiving data processing subunit 212, a second sending data processing subunit 211 and The second virtual network card 213; wherein the second field programmable gate array 220 includes a fourth CPRI interface 221, a control subunit 222, a second data arbitration subunit 223 and a fifth CPRI interface 224.
  • the second field programmable gate array 220 Each subunit and interface is connected through the MII interface.
  • the second field programmable gate array 220 is connected to the second processing unit 210 through the MII interface and the SPI bus interface.
  • the fourth CPRI interface 221 of the second field programmable gate array 220 receives the downlink Ethernet data from the baseband processing module 100, and implements analysis of the CPRI interface data, outputs the Ethernet data in MII format, and parses out Topological data.
  • the downlink Ethernet data is sent to the second processing unit 210 through the MII interface, and the topology data is sent to the second processing unit 210 through the SPI bus interface.
  • the second virtual network card in the second processing unit 210 is responsible for IP address filtering and CRC verification of Ethernet data packets. Ethernet data that meets the requirements are then analyzed and processed by the second processing unit 210 for subsequent data packets.
  • the second processing unit 210 While processing the downlink Ethernet data, the second processing unit 210 automatically allocates a relevant IP address to the second virtual network card based on the received topology data. If the current remote radio frequency module 200 is connected to a subordinate cascaded remote radio module 200, and the fifth CPRI interface of the current remote radio module 200 can synchronize data with the fourth CPRI interface of the subordinate cascaded remote radio module 200, the current The radio frequency remote module 200 will deliver the downlink Ethernet data to the next level radio frequency remote module 200 through the fifth CPRI interface 224. At the same time, the current topology data will also be delivered by the fifth CPRI interface 224 through the vendor interface.
  • the second processing unit 210 issues uplink Ethernet data and sends it to the second field programmable gate array 220 through the MII interface, where it is cached through the internal RAM. If the current radio frequency remote module 200 has a lower-level cascaded radio frequency remote module 200, the upstream Ethernet data of the lower-level radio frequency remote module 200 is received through the fifth CPRI interface 224 and cached in RAM. The uplink Ethernet data from the second processing unit 210 and the lower-level radio frequency remote module 200 passes through a two-select second data arbitration subunit 223 to perform arbitration and gating of the two-channel data in turn. The Ethernet data output after arbitration is sent to the baseband processing module 100 through the fourth CPRI interface 221.
  • each of the above modules can be a functional module or a program module, and can be implemented by software or hardware.
  • each of the above-mentioned modules can be located in the same processor; or each of the above-mentioned modules can also be located in different processors in any combination.
  • This embodiment also provides an Ethernet networking method based on distributed base stations. This method is implemented based on the above embodiments and optional implementations. What has been explained will not be described again.
  • FIG 4 is a flow chart of an Ethernet networking method based on distributed base stations according to this embodiment. As shown in Figure 4, the method includes:
  • Step S401 Establish an Ethernet link through optical fiber connection based on the CPRI interface protocol
  • Step S402 In the baseband processing module, network management and transmission management of each radio frequency remote module deployed on the respective planned site are performed through the Ethernet link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于分布式基站的以太网组网系统及组网方法,其中,该系统包括:基带处理模块(100)和若干部署在各自规划站点上的射频拉远模块(200);基带处理模块(100)和每个射频拉远模块(200)之间,基于CPRI接口协议通过光纤连接以建立以太网链路;基带处理模块(100),利用其内置的第一处理单元(110)和第一现场可编程门阵列(120),通过以太网链路进行对每个射频拉远模块(200)的组网管理和传输管理。

Description

基于分布式基站的以太网组网系统及组网方法
相关申请
本申请要求2022年4月22日申请的,申请号为202210428694.3,发明名称为“基于分布式基站的以太网组网系统及组网方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别是涉及基于分布式基站的以太网组网系统及组网方法。
背景技术
在当前网络中,分布式基站得到了广泛的应用。分布式基站结构的核心概念就是将传统宏基站分为:基带处理模块(Base Band Unit,BBU)及射频拉远模块(Radio Remote Unit,RRU)。其中,BBU负责完成无线信号的基带处理部分;RRU负责完成基带信号的变频调制和信号放大;BBU与RRU使用光纤进行直连,并通过通用公共无线接口(Common Public Radio Interface,CPRI)光接口进行通信。在网路部署时,将基带处理模块BBU与核心网、无线网络控制设备集中在机房内,通过光纤与规划站点上部署的射频拉远模块RRU进行连接,完成网络覆盖。在这种模式下,一个BBU可以支持连接多个RRU,且RRU可以通过光纤拉远,多个RRU和BBU可以呈星型、链型灵活的组网方式,带来极大的便利。
但在相关的基带处理模块BBU管理射频拉远模块RRU的以太网组网系统中,基带处理模块BBU和射频拉远模块RRU通信一般采用的是网口连接。当组网系统中有多个级联RRU时,还需使用交换机来实现BBU与多个RRU的以太网通信。这种方式不仅会增加BBU和RRU设计时的硬件开销,同时还增加了使用交换机的成本。并且在分布式基站运用中,对于一些偏远地区或地域宽广的区域,往往RRU的布署位置距离BBU会比较远,有的间隔在几十公里以上。这远远超出了网线传输的距离,会导致传输信号被干扰,稳定性较差。且这种远距离要实现对RRU的日常管理和控制,需要在多个RRU之间来回进行操作,在距离上也会造成极大不便。
针对相关技术中存在部署成本高,且远距离传输信号稳定性差的问题,目前还没有提出有效的解决方案。
发明内容
根据本申请的各种实施例,提供一种基于分布式基站的以太网组网系统及组网方法。
第一个方面,本申请提供一种基于分布式基站的以太网组网系统,包括基带处理模块和若干部署在各自规划站点上的射频拉远模块;
所述基带处理模块和每个所述射频拉远模块之间,基于CPRI接口协议通过光纤连接以建立以太网链路;
所述基带处理模块,利用其内置的第一处理单元和第一现场可编程门阵列,通过所述以太网链路进行对每个所述射频拉远模块的组网管理和传输管理。
在其中的一些实施例中,所述基带处理模块包括第一处理单元和第一现场可编程门阵列;
所述第一现场可编程门阵列,通过以太网链路与所述射频拉远模块连接,用于进行对所述射频拉远模块的组网管理和拓扑数据处理;
所述第一处理单元,与外部网络控制设备和所述第一现场可编程门阵列连接,用于通过所述第一现场可编程门阵列进行对每个所述射频拉远模块传输管理。
在其中的一些实施例中,所述第一处理单元包括第一接收数据处理子单元、第一发送数据处理子单元、第一虚拟网卡以及第一CPRI接口;
所述第一CPRI接口,分别与所述第一虚拟网卡和所述第一现场可编程门阵列连接;
所述第一发送数据处理子单元,与所述第一虚拟网卡连接,用于在下行传输时,通过所述第一虚拟网卡获取外部网络控制设备中下行的以太网数据,并通过所述第一虚拟网卡将所述下行的以太网数据路由至所述第一CPRI接口,以使所述第一CPRI接口基于第一CPRI接口协议将所述下行的以太网数据传输至所述第一现场可编程门阵列;
所述第一接收数据处理子单元,与所述第一虚拟网卡连接,用于在上行传输时,通过所述第一虚拟网卡和第一CPRI接口接收所述第一现场可编程门阵列中上行的以太网数据,通过所述第一虚拟网卡将所述上行的以太网数据传输至所述外部网络控制设备。
在其中的一些实施例中,所述第一现场可编程门阵列包括第二CPRI接口、第一FIFO(First Input First Output)子单元、数据分发子单元、第一数据仲裁子单元、第二FIFO子单元以及若干第三CPRI接口;
所述第二CPRI接口,分别与所述第一FIFO子单元、第一数据仲裁子单元以及所述第一处理单元连接,用于将所述第一处理单元中下行的以太网数据路由至所述第一FIFO子单元进行缓存;
所述数据分发子单元,与所述第一FIFO子单元连接,用于进行对所述射频拉远模块的组网管理和拓扑数据处理,得到拓扑数据;在下行传输时,以广播的形式通过所述第三CPRI接口根据所述拓扑数据,将缓存在所述第一FIFO子单元的下行的以太网数据,分发至各个所述射频拉远模块;
每个所述第三CPRI接口,分别与第二FIFO子单元、数据分发子单元以及对应的所述射频拉远模块连接,用于将对应的所述射频拉远模块中上行的以太网数据路由至所述第二FIFO子单元进行缓存;
所述第一数据仲裁子单元,与所述第二FIFO子单元连接,用于在上行传输时,采用仲裁算法,将经过所述第一FIFO子单元缓存的上行的以太网数据,通过所述第二CPRI接口传输至所述第一处理单元。
在其中的一些实施例中,所述射频拉远模块包括第二处理单元和第二现场可编程门阵列;
所述第二现场可编程门阵列,通过以太网链路与所述基带处理模块和相邻规划站点上射频拉远模块中的第二现场可编程门阵列连接,用于进行对相邻规划站点上射频拉远模块的组网管理和传输管理;
所述第二处理单元,与所述第二现场可编程门阵列连接,用于进行拓扑数据处理。
在其中的一些实施例中,所述第二处理单元包括第二接收数据处理子单元、第二发送数据处理子单元以及第二虚拟网卡;
所述第二虚拟网卡,分别与所述第二接收数据处理子单元、所述第二发送数据处理子单元以及第二现场可编程门阵列连接;
所述第二发送数据处理子单元,用于从所述第二现场可编程门阵列的接收以太网数据和拓扑数据,并基于所述拓扑数据进行拓扑数据处理以判断是否下行传输;若有下行传输,则将所述下行的以太网数据和拓扑数据通过所述第二虚拟网卡传输至第二现场可编程门阵列;
所述第二接收数据处理子单元,用于在上行传输时,通过所述第二虚拟网卡,将上行的以太网数据传输至所述第二现场可编程门阵列。
在其中的一些实施例中,所述第二现场可编程门阵列包括第四CPRI接口、控制子单元、第二数据仲裁子单元以及第五CPRI接口;
所述第四CPRI接口,分别与所述控制子单元、所述第二数据仲裁子单元、所述第二处理单元以及所述基带处理模块连接,用于将所述基带处理模块中下行的以太网数据和拓扑数据路由至所述第二处理单元;
所述控制子单元,与所述第五CPRI接口连接,用于在下行传输时,通过所述第五CPRI接口根据所述拓扑数据,将所述下行的以太网数据,传输至相邻规划站点上所述射频拉远模块;
所述第五CPRI接口,分别与所述控制子单元、第二数据仲裁子单元以及相邻规划站点上射频拉远模块连接,用于将对应的所述射频拉远模块中上行的以太网数据路由至所述第二数据仲裁子单元;
所述第二数据仲裁子单元,与所述第二处理单元连接,用于接收所述第二处理单元中上行的以太网数据和所述射频拉远模块中上行的以太网数据,在上行传输时,采用仲裁算法,将所述上行的以太网数据通过所述第四CPRI接口传输至所述基带处理模块。
在其中的一些实施例中,所述第二现场可编程门阵列还包括存储子单元;
所述存储子单元,与所述第二数据仲裁子单元连接,用于对所述第二处理单元中上行的以太网数据和所述射频拉远模块中上行的以太网数据进行缓存。
在其中的一些实施例中,所述第二现场可编程门阵列通过MII接口与第二处理单元连 接。
第二个方面,提供一种基于分布式基站的以太网组网方法,包括:
基于CPRI接口协议通过光纤连接以建立以太网链路;
在基带处理模块中,通过所述以太网链路进行对每个部署在各自规划站点上射频拉远模块的组网管理和传输管理。
本申请的一个或多个实施例的细节在以下附图和描述中提出,以使本申请的其他特征、目的和优点更加简明易懂。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1是根据本申请一实施例的基于分布式基站的以太网组网系统的结构框图;
图2是根据本申请一实施例的基带处理模块的结构框图;
图3是根据本申请一实施例的射频拉远模块的结构框图;
图4是根据本申请一实施例的基于分布式基站的以太网组网方法的流程图。
图中:100、基带处理模块;110、第一处理单元;111、第一发送数据处理子单元;112、第一接收数据处理子单元;113、第一虚拟网卡;114、第一CPRI接口;120、第一现场可编程门阵列;121、第二CPRI接口;122、第一FIFO子单元;123、数据分发子单元;124、第一数据仲裁子单元;125、第二FIFO子单元;126、第三CPRI接口;200、射频拉远模块;210、第二处理单元;211、第二发送数据处理子单元;212、第二接收数据处理子单元;213、第二虚拟网卡;220、二现场可编程门阵列;221、第四CPRI接口;222、控制子单元;223、第二数据仲裁子单元;224、第五CPRI接口。
具体实施方式
为更清楚地理解本申请的目的、技术方案和优点,下面结合附图和实施例,对本申请进行了描述和说明。
除另作定义外,本申请所涉及的技术术语或者科学术语应具有本申请所属技术领域具备一般技能的人所理解的一般含义。在本申请中的“一”、“一个”、“一种”、“该”、“这些”等类似的词并不表示数量上的限制,它们可以是单数或者复数。在本申请中所涉及的术语“包括”、“包含”、“具有”及其任何变体,其目的是涵盖不排他的包含;例如,包含一系列步骤或模块(单元)的过程、方法和系统、产品或设备并未限定于列出的步骤或模块(单元),而可包括未列出的步骤或模块(单元),或者可包括这些过程、方法、产品或设备固有的其他步骤或模块(单元)。在本申请中所涉及的“连接”、“相连”、“耦接”等类似的词语并不限定于物理的或机械连接,而可以包括电气连接,无论是直接连接还是间接连接。 在本申请中所涉及的“多个”是指两个或两个以上。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。通常情况下,字符“/”表示前后关联的对象是一种“或”的关系。在本申请中所涉及的术语“第一”、“第二”、“第三”等,只是对相似对象进行区分,并不代表针对对象的特定排序。
请参阅图1,本申请提供一种基于分布式基站的以太网组网系统,包括基带处理模块100和若干部署在各自规划站点上的射频拉远模块200;
基带处理模块100和每个射频拉远模块200之间,基于CPRI接口协议通过光纤连接以建立以太网链路;
基带处理模块100,利用其内置的第一处理单元和第一现场可编程门阵列,通过以太网链路进行对每个射频拉远模块200的组网管理和传输管理。
在本实施例中,以太网组网系统是基于分布式基站的,该分布式基站包括基带处理模块100(Base Band Unit,BBU)和射频拉远模块200(Radio Remote Unit,RRU)。在网络部署时,基带处理模块100与外部网络控制设备(核心网、无线网络控制等设备)集中设置中机房内,通过以太网链路与规划站点上部署的射频拉远模块200进行连接,完成网络覆盖。一个基带处理模块100可以支持连接多个射频拉远模块200,且射频拉远模块200可以通过以太网链路拉远部署在规划站点上,利用基带处理模块100内置的第一处理单元和第一现场可编程门阵列,通过以太网链路进行对每个射频拉远模块200的组网管理和传输管理,而不需要再部署额外的交换机,降低部署成本;多个射频拉远模块200和基带处理模块100可以呈星型、链型灵活的组网方式,带来极大的便利。
其中,以太网链路,是基于CPRI接口协议通过光纤连接建立的,指的是利用CPRI接口中的FAST C&M Channel即以太网接口来进行数据的交互。CPRI接口在不同模式下具有不同的作用,比如:CPRI接口作为室内单元(Indoor Unit,IDU)是Master模式,负责主要数据的下发、协商等。CPRI接口作为室外单元(Outdoor Unit,ODU)是Slave模式,负责对下发数据进行响应等。
当基带处理模块100和射频拉远模块200的以太网链路启动时,CPRI接口将根据以太网链路两端可用的最高公共速率协商以太网信道的速率,采用此方式来建立以太网链路,可以利用相关CPRI链路的资源,减少另外增加以太网链路的硬件资源和布线资源,且以太网网带宽可以根据实际需要由两端相互协商,灵活性强。
通过上述系统,基带处理模块100,利用其内置的第一处理单元和第一现场可编程门阵列,通过以太网链路进行对每个射频拉远模块200的组网管理和传输管理;而不需要再部署额外的交换机,降低部署成本,而且利用以太网链路能够提高远距离传输信号稳定性;解决了相关技术中存在部署成本高,且远距离传输信号稳定性差的问题。
如图2所示,下面对基带处理模块进行详细说明:
在其中的一些实施例中,基带处理模块100包括第一处理单元110和第一现场可编程门阵列120;
第一现场可编程门阵列120,通过以太网链路与射频拉远模块200连接,用于进行对 射频拉远模块200的组网管理和拓扑数据处理;
第一处理单元110,与外部网络控制设备和第一现场可编程门阵列120连接,用于通过第一现场可编程门阵列120进行对每个射频拉远模块200传输管理。
具体的,第一现场可编程门阵列120可以包括但不限于可编程逻辑器件FPGA等的处理装置,用于进行对射频拉远模块的组网管理和拓扑数据处理;其中,组网管理指的是进行对多个射频拉远模块200和基带处理模块100呈星型、链型等灵活组网。拓扑数据用于描述射频拉远模块200和基带处理模块100处于网络中的位置关系,根据拓扑数据为组网系统中的射频拉远模块200自动分配IP地址。拓扑数据处理是指对拓扑数据的处理,以生成拓扑数据。第一处理器可以包括但不限于微处理器MCU等的处理装置,用于通过第一现场可编程门阵列120进行对每个射频拉远模块200传输管理。传输管理包括以太网数据的下行传输和上行传输等。那么通过第一处理单元110和第一现场可编程门阵列120的配合使用,即可实现对以太网数据的组网管理和传输管理,能实现基带处理模块100直接对射频拉远模块200或级联的射频拉远模块200的操作和控制功能。
其中,对于部署在各自规划站点上的射频拉远模块200来说,与基带处理模块100相邻的射频拉远模块200为直接相连的,与该射频拉远模块200相邻的射频拉远模块200为级联的射频拉远模块200。
在其中的一些实施例中,第一处理单元110包括第一接收数据处理子单元112、第一发送数据处理子单元111、第一虚拟网卡113以及第一CPRI接口114;
第一CPRI接口114,分别与第一虚拟网卡113和第一现场可编程门阵列120连接;
第一发送数据处理子单元111,与第一虚拟网卡113连接,用于在下行传输时,通过第一虚拟网卡113获取外部网络控制设备中下行的以太网数据,并通过第一虚拟网卡113将下行的以太网数据路由至第一CPRI接口114,以使第一CPRI接口114基于CPRI接口协议将下行的以太网数据传输至第一现场可编程门阵列120;
第一接收数据处理子单元112,与第一虚拟网卡113连接,用于在上行传输时,通过第一虚拟网卡113和第一CPRI接口114接收第一现场可编程门阵列120中上行的以太网数据,通过第一虚拟网卡113将上行的以太网数据传输至外部网络控制设备。
具体的,第一CPRI接口114可以有多种工作模式,在下行传输时,处于Master模式,负责主要数据的下发、协商等。在上行传输时,处于Slave模式,负责对下发数据进行响应等。第一虚拟网卡113主要是建立远程计算机间的局域网,其负责以太网数据包的IP地址过滤以及CRC校验,符合要求的以太网数据再进行后续数据处理。第一发送数据处理子单元111主要负责下行传输的相关处理;下行传输时,获取外部网络控制设备中下行的以太网数据,在第一虚拟网卡113中进行IP地址过滤以及CRC校验后,通过第一虚拟网卡113将下行的以太网数据路由至第一CPRI接口114,以使第一CPRI接口114基于CPRI接口协议将下行的以太网数据传输至第一现场可编程门阵列120。第一接收数据处理子单元112主要负责上行传输的相关处理;在上行传输时,通过第一虚拟网卡113和第一CPRI接口114接收第一现场可编程门阵列120中上行的以太网数据,在第一虚拟网卡113中进行IP地址过滤以及CRC校验后,将上行的以太网数据传输至外部网络控制设备。通过第 一处理单元110实现对每个射频拉远模块200传输管理,而不需要多余硬件开销和成本。
在其中的一些实施例中,第一现场可编程门阵列120包括第二CPRI接口121、第一FIFO子单元122、数据分发子单元123、第一数据仲裁子单元124、第二FIFO子单元125以及若干第三CPRI接口126;
第二CPRI接口121,分别与第一FIFO子单元122、第一数据仲裁子单元124以及第一处理单元110连接,用于将第一处理单元110中下行的以太网数据路由至第一FIFO子单元122进行缓存;
数据分发子单元123,与第一FIFO子单元122连接,用于进行对射频拉远模块200的组网管理和拓扑数据处理,得到拓扑数据;在下行传输时,以广播的形式通过第三CPRI接口126根据拓扑数据,将缓存在第一FIFO子单元122的下行的以太网数据,分发至各个射频拉远模块;
每个第三CPRI接口126,分别与第二FIFO子单元125、数据分发子单元123以及对应的射频拉远模块200连接,用于将对应的射频拉远模块中上行的以太网数据路由至第二FIFO子单元125进行缓存;
第一数据仲裁子单元124,与第二FIFO子单元125连接,用于在上行传输时,采用仲裁算法,将缓存在第二FIFO子单元125的上行的以太网数据,通过第二CPRI接口121传输至第一处理单元110。
具体的,第二CPRI接口121、第三CPRI接口126可以有多种工作模式,在下行传输时,处于Master模式,负责主要数据的下发、协商等。在上行传输时,处于Slave模式,负责对下发数据进行响应等。数据分发子单元123主要负责以太网数据的分发;比如:以广播的形式通过第三CPRI接口126根据拓扑数据,将下行的以太网数据分发至各个射频拉远模块200。多个射频拉远模块200和基带处理模块100可以呈星型、链型等方式组网,以广播的形式基于以太网链路,再根据拓扑数据分发,可以使基带处理模块100对各种方式组网的射频拉远模块RRU进行管理,而不需要额外增设交换机等设备,降低成本。分发到各个射频拉远模块200的数据包括下行的以太网数据和对应的拓扑数据,在射频拉远模块200中可以再根据拓扑数据将下行的以太网数据传输至与其级联的射频拉远模块200中。
第一数据仲裁子单元124,采用仲裁算法将上行的以太网数据,通过第二CPRI接口121传输至第一处理单元110。其中,仲裁算法为Round-Robin仲裁算法,Round-Robin仲裁算法是一种公平的仲裁算法,每个requestor在得到许可之后优先级自动掉到最后,每个requestor之间都是平等的,大家都request的时候被grant的几率是相等的,从而能够确保每个工作的CPRI接口拥有同等的带宽资源。第一数据仲裁子单元124输出的一路AXI4-Stream总线接口形式的以太网数据由第二CPRI接口121发送至第一处理单元110。第一处理单元110通过第一CPRI接口114接收的上行的以太网数据经由第一虚拟网卡113发送至上层处理。第一FIFO子单元122和第二FIFO子单元125都是用于缓存以太网数据,区别只是缓存不同的以太网数据。在其他实施例中,第一FIFO子单元122和第二FIFO子单元125可以集成在一个FIFO子单元中实现,能够缓存上行的以太网数据和下行的以太 网数据。
下面在可选实施例中对基带处理模块进行详细说明:
具体的,基带处理模块100包括:第一处理单元110和第一现场可编程门阵列120;其中,第一处理单元110包括第一接收数据处理子单元112、第一发送数据处理子单元111、第一虚拟网卡113以及第一CPRI接口114;其中,第一现场可编程门阵列120包括第二CPRI接口121、第一FIFO子单元122、数据分发子单元123、第一数据仲裁子单元124、第二FIFO子单元125以及若干第三CPRI接口126。
在下行传输时,第一处理单元110将外部网络控制设备中下行的以太网数据通过第一虚拟网卡113将数据(IP地址和端口匹配下发)路由至第一CPRI接口114,并发送给第一现场可编程门阵列120。在第一现场可编程门阵列120内部,通过第二CPRI接口121接收来自第一处理单元110的下行的以太网数据,并实现对CPRI协议的解析以获取其中的以太网数据。从第二CPRI接口121中获取的以太网数据采用AXI4-Stream总线接口形式输出,该接口协议复杂度低,支持高数据流传输,且允许无限制的数据突发传输规模。获取的下行的以太网数据在第一现场可编程门阵列120内部利用第一FIFO子单元122进行缓存,再经由数据分发子单元123,以广播形式通过第三CPRI接口126下发给第一现场可编程门阵列120扩展的n路光口下连接的射频拉远模块200。同时,通过CPRI协议中的vendor-specific数据接口,由MASTER CPRI下发每个光口对应的拓扑数据至射频拉远模块200。
上行传输时,第一现场可编程门阵列120的多路第三CPRI接口126接收来自射频拉远模块200的上行的以太网数据。同样的,通过对CPRI协议的解析获取以AXI4-Stream总线接口形式输出的上行的以太网数据,缓存至第二FIFO子单元125。缓存后的n路上行的以太网数据通过一个n从1的第一数据仲裁子单元124来进行n路数据的仲裁选通传输。采用的仲裁算法为Round-Robin仲裁算法,确保每个CPRI接口拥有同等的带宽资源。第一数据仲裁子单元124输出的一路AXI4-Stream总线接口形式的上行的以太网数据由第二CPRI接口121发送至第一处理单元110。第一处理单元110通过第一CPRI接口114接收的上行的以太网数据经由第一虚拟网卡113发送至外部网络控制设备处理。
如图3所示,下面对射频拉远模块200进行详细说明:
在其中的一些实施例中,射频拉远模块200包括第二处理单元210和第二现场可编程门阵列220;
第二现场可编程门阵列220,通过以太网链路与基带处理模块100和相邻规划站点上射频拉远模块200中的第二现场可编程门阵列220连接,用于进行对相邻规划站点上射频拉远模块200的组网管理和传输管理;
第二处理单元210,与第二现场可编程门阵列220连接,用于进行拓扑数据处理。
具体的,第二现场可编程门阵列220可以包括但不限于可编程逻辑器件FPGA等的处理装置,用于进行对相邻规划站点上射频拉远模块200的组网管理和传输管理。其中,组网管理指的是进行对级联的射频拉远模块200的组网管理。其中,传输管理指的是上下行以太网数据的传输管理。第二处理单元210可以包括但不限于微处理器MCU等的处理装 置,用于进行拓扑数据处理;拓扑数据用于描述射频拉远模块200和基带处理模块100处于网络中的位置关系,通过其内置的第二虚拟网卡213能够从拓扑数据中确定自身和级联射频拉远模块200的IP地址。
在其中的一些实施例中,第二处理单元210包括第二接收数据处理子单元212、第二发送数据处理子单元211以及第二虚拟网卡213;
第二虚拟网卡213,分别与第二接收数据处理子单元212、第二发送数据处理子单元211以及第二现场可编程门阵列220连接;
第二发送数据处理子单元211,用于从第二现场可编程门阵列220接收以太网数据和拓扑数据,并基于拓扑数据进行拓扑数据处理以判断是否下行传输;若有下行传输,则将下行的以太网数据和拓扑数据通过第二虚拟网卡213传输至第二现场可编程门阵列220;
第二接收数据处理子单元212,用于在上行传输时,通过第二虚拟网卡213,将上行的以太网数据传输至第二现场可编程门阵列220。
具体的,第二虚拟网卡213主要是负责以太网数据包的IP地址过滤以及CRC校验,符合要求的以太网数据再进行后续数据处理。第一虚拟网卡113和第二虚拟网卡213均为虚拟网卡,区别是设置在不同的处理器中。第二接收数据处理子单元212主要负责上行传输的相关处理。比如:在上行传输时,通过第二虚拟网卡213进行上行的以太网数据包的IP地址过滤以及CRC校验,将符合要求的上行的以太网数据传输至第二现场可编程门阵列220。这里上行的以太网数据包括当前射频拉远模块200上行的以太网数据和级联射频拉远模块200传输至当前射频拉远模块200上行的以太网数据。当然,如果没有级联的射频拉远模块200,只将自身的以太网数据进行上行传输。第二发送数据处理子单元211主要负责下行传输的相关处理。在下行传输时,从第二现场可编程门阵列220接收以太网数据和拓扑数据,并基于拓扑数据进行拓扑数据处理以判断是否下行传输;若有下行传输,则将下行的以太网数据和拓扑数据通过第二虚拟网卡213传输至第二现场可编程门阵列220。也就是说,当前射频拉远模块200中有级联的下级射频拉远模块200才会有下行传输。通过第二处理单元210实现组网管理和传输管理,而不需要多余硬件开销和成本。
在其中的一些实施例中,第二现场可编程门阵列220包括第四CPRI接口221、控制子单元222、第二数据仲裁子单元223以及第五CPRI接口224;
第四CPRI接口221,分别与控制子单元222、第二数据仲裁子单元223、第二处理单元210以及基带处理模块100连接,用于将基带处理模块100中下行的以太网数据和拓扑数据路由至第二处理单元210;
控制子单元222,与第五CPRI接口224连接,用于在下行传输时,通过第五CPRI接口224根据拓扑数据,将下行的以太网数据,传输至相邻规划站点上射频拉远模块200;
第五CPRI接口224,分别与控制子单元222、第二数据仲裁子单元223以及相邻规划站点上射频拉远模块200连接,用于将对应的射频拉远模块200中上行的以太网数据路由至第二数据仲裁子单元223;
第二数据仲裁子单元223,与第二处理单元210连接,用于接收第二处理单元210中上行的以太网数据和级联射频拉远模块200中上行的以太网数据,在上行传输时,采用仲 裁算法,将上行的以太网数据通过第四CPRI接口221传输至基带处理模块100。
具体的,第四CPRI接口221、第五CPRI接口224可以有多种工作模式,在下行传输时,处于Master模式,负责主要数据的下发、协商等。在上行传输时,处于Slave模式,负责对下发数据进行响应等。控制子单元222主要用于下行的以太网数据的分发;可以通过第五CPRI接口224根据拓扑数据,将下行的以太网数据传输至相邻规划站点上射频拉远模块200。当然如果没有下级级联的射频拉远模块,也不存在下行传输。
第二数据仲裁子单元223,采用仲裁算法将上行的以太网数据通过第四CPRI接口221传输至基带处理模块100。其中,仲裁算法为Round-Robin仲裁算法,从而能够确保每个工作的CPRI接口拥有同等的带宽资源。其中,上行的以太网数据包括两类,分别为接收第二处理单元210中上行的以太网数据和级联射频拉远模块200中上行的以太网数据。在其他实施例中,可以在第二现场可编程门阵列220中设置存储子单元225,来缓存第二处理单元210中上行的以太网数据和级联射频拉远模块200中上行的以太网数据。那么第二数据仲裁子单元223可以在仲裁后,对第二处理单元210中上行的以太网数据和级联射频拉远模块200中上行的以太网数据进行两路数据的轮流仲裁选通。存储子单元225可以为第二现场可编程门阵列220中内置的RAM。
在其中的一些实施例中,第二现场可编程门阵列220通过MII接口与第二处理单元210连接。第二现场可编程门阵列220中的各子单元均通过MII接口连接。比如:第四CPRI接口221,分别通过MII接口与控制子单元222、第二数据仲裁子单元223、第二处理单元210以及基带处理模块100连接,第五CPRI接口224,分别通过MII接口与控制子单元222、第二数据仲裁子单元223以及相邻规划站点上射频拉远模块200连接。
下面在可选实施例中对射频拉远模块200进行详细说明:
具体的,射频拉远模块200包括第二处理单元210和第二现场可编程门阵列220;其中,第二处理单元210包括第二接收数据处理子单元212、第二发送数据处理子单元211以及第二虚拟网卡213;其中,第二现场可编程门阵列220包括第四CPRI接口221、控制子单元222、第二数据仲裁子单元223以及第五CPRI接口224,第二现场可编程门阵列220中各子单元与接口均通过MII接口连接。第二现场可编程门阵列220与第二处理单元210通过MII接口和SPI总线接口连接。
在下行传输时,第二现场可编程门阵列220的第四CPRI接口221接收来自基带处理模块100下行的以太网数据,并实现对CPRI接口数据的解析,输出MII格式的以太网数据以及解析出拓扑数据。下行的以太网数据通过MII接口发送给第二处理单元210,拓扑数据则通过SPI总线接口发送至第二处理单元210。第二处理单元210中第二虚拟网卡负责以太网数据包的IP地址过滤以及CRC校验,符合要求的以太网数据再由第二处理单元210进行后续数据包的解析处理。下行的以太网数据的处理同时第二处理单元210根据接收的拓扑数据,为第二虚拟网卡自动分配相关IP地址。若当前射频拉远模块200连接有下级级联射频拉远模块200,且当前射频拉远模块200的第五CPRI接口能与下级级联射频拉远模块200的第四CPRI接口数据同步时,当前射频拉远模块200会将下行的以太网数据通过第五CPRI接口224下发至下一级射频拉远模块200。同时,当前的拓扑数据也会通过 vendor接口由第五CPRI接口224下发。
在上行传输时,第二处理单元210下发上行的以太网数据,通过MII接口发送至第二现场可编程门阵列220,在第二现场可编程门阵列220通过内部RAM进行缓存。若当前射频拉远模块200有下级级联射频拉远模块200,则通过第五CPRI接口224接收下级射频拉远模块200上行的以太网数据,缓存至RAM。来自第二处理单元210和下级射频拉远模块200的上行的以太网数据,经过一个二选一第二数据仲裁子单元223,进行两路数据的轮流仲裁选通。仲裁后输出的以太网数据通过第四CPRI接口221发送至基带处理模块100。
需要说明的是,上述各个模块可以是功能模块也可以是程序模块,既可以通过软件来实现,也可以通过硬件来实现。对于通过硬件来实现的模块而言,上述各个模块可以位于同一处理器中;或者上述各个模块还可以按照任意组合的形式分别位于不同的处理器中。
在本实施例中还提供了一种基于分布式基站的以太网组网方法,该方法基于上述实施例及可选实施方式实现,已经进行过说明的不再赘述。
图4是根据本实施例的基于分布式基站的以太网组网方法的流程图,如图4所示,该方法包括:
步骤S401、基于CPRI接口协议通过光纤连接以建立以太网链路;
步骤S402、在基带处理模块中,通过以太网链路进行对每个部署在各自规划站点上射频拉远模块的组网管理和传输管理。
通过上述方法,不需要再部署额外的交换机实现对每个射频拉远模块的组网管理和传输管理,降低部署成本,而且利用以太网链路能够提高远距离传输信号稳定性;解决了相关技术中存在部署成本高,且远距离传输信号稳定性差的问题。
应该明白的是,这里描述的具体实施例只是用来解释这个应用,而不是用来对它进行限定。根据本申请提供的实施例,本领域普通技术人员在不进行创造性劳动的情况下得到的所有其它实施例,均属本申请保护范围。
显然,附图只是本申请的一些例子或实施例,对本领域的普通技术人员来说,也可以根据这些附图将本申请适用于其他类似情况,但无需付出创造性劳动。另外,可以理解的是,尽管在此开发过程中所做的工作可能是复杂和漫长的,但是,对于本领域的普通技术人员来说,根据本申请披露的技术内容进行的某些设计、制造或生产等更改仅是常规的技术手段,不应被视为本申请公开的内容不足。
“实施例”一词在本申请中指的是结合实施例描述的具体特征、结构或特性可以包括在本申请的至少一个实施例中。该短语出现在说明书中的各个位置并不一定意味着相同的实施例,也不意味着与其它实施例相互排斥而具有独立性或可供选择。本领域的普通技术人员能够清楚或隐含地理解的是,本申请中描述的实施例在没有冲突的情况下,可以与其它实施例结合。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范 围。因此,本申请的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种基于分布式基站的以太网组网系统,其特征在于,包括基带处理模块和若干部署在各自规划站点上的射频拉远模块;
    所述基带处理模块和每个所述射频拉远模块之间,基于CPRI接口协议通过光纤连接以建立以太网链路;
    所述基带处理模块,利用其内置的第一处理单元和第一现场可编程门阵列,通过所述以太网链路进行对每个所述射频拉远模块的组网管理和传输管理。
  2. 根据权利要求1所述的基于分布式基站的以太网组网系统,其中,所述基带处理模块包括第一处理单元和第一现场可编程门阵列;
    所述第一现场可编程门阵列,通过以太网链路与所述射频拉远模块连接,用于进行对所述射频拉远模块的组网管理和拓扑数据处理;
    所述第一处理单元,与外部网络控制设备和所述第一现场可编程门阵列连接,用于通过所述第一现场可编程门阵列进行对每个所述射频拉远模块传输管理。
  3. 根据权利要求2所述的基于分布式基站的以太网组网系统,其中,所述第一处理单元包括第一接收数据处理子单元、第一发送数据处理子单元、第一虚拟网卡以及第一CPRI接口;
    所述第一CPRI接口,分别与所述第一虚拟网卡和所述第一现场可编程门阵列连接;
    所述第一发送数据处理子单元,与所述第一虚拟网卡连接,用于在下行传输时,通过所述第一虚拟网卡获取外部网络控制设备中下行的以太网数据,并通过所述第一虚拟网卡将所述下行的以太网数据路由至所述第一CPRI接口,以使所述第一CPRI接口基于第一CPRI接口协议将所述下行的以太网数据传输至所述第一现场可编程门阵列;
    所述第一接收数据处理子单元,与所述第一虚拟网卡连接,用于在上行传输时,通过所述第一虚拟网卡和第一CPRI接口接收所述第一现场可编程门阵列中上行的以太网数据,通过所述第一虚拟网卡将所述上行的以太网数据传输至所述外部网络控制设备。
  4. 根据权利要求2所述的基于分布式基站的以太网组网系统,其中,所述第一现场可编程门阵列包括第二CPRI接口、第一FIFO子单元、数据分发子单元、第一数据仲裁子单元、第二FIFO子单元以及若干第三CPRI接口;
    所述第二CPRI接口,分别与所述第一FIFO子单元、第一数据仲裁子单元以及所述第一处理单元连接,用于将所述第一处理单元中下行的以太网数据路由至所述第一FIFO子单元进行缓存;
    所述数据分发子单元,与所述第一FIFO子单元连接,用于进行对所述射频拉远模块的组网管理和拓扑数据处理,得到拓扑数据;在下行传输时,以广播的形式通过所述第三CPRI接口根据所述拓扑数据,将缓存在所述第一FIFO子单元的下行的以太网数据,分发至各个所述射频拉远模块;
    每个所述第三CPRI接口,分别与第二FIFO子单元、数据分发子单元以及对应的所述射频拉远模块连接,用于将对应的所述射频拉远模块中上行的以太网数据路由至所述第二FIFO子单元进行缓存;
    所述第一数据仲裁子单元,与所述第二FIFO子单元连接,用于在上行传输时,采用仲裁算法,将经过所述第一FIFO子单元缓存的上行的以太网数据,通过所述第二CPRI接口传输至所述第一处理单元。
  5. 根据权利要求1所述的基于分布式基站的以太网组网系统,其中,所述射频拉远模块包括第二处理单元和第二现场可编程门阵列;
    所述第二现场可编程门阵列,通过以太网链路与所述基带处理模块和相邻规划站点上射频拉远模块中的第二现场可编程门阵列连接,用于进行对相邻规划站点上射频拉远模块的组网管理和传输管理;
    所述第二处理单元,与所述第二现场可编程门阵列连接,用于进行拓扑数据处理。
  6. 根据权利要求5所述的基于分布式基站的以太网组网系统,其中,所述第二处理单元包括第二接收数据处理子单元、第二发送数据处理子单元以及第二虚拟网卡;
    所述第二虚拟网卡,分别与所述第二接收数据处理子单元、所述第二发送数据处理子单元以及第二现场可编程门阵列连接;
    所述第二发送数据处理子单元,用于从所述第二现场可编程门阵列接收以太网数据和拓扑数据,并基于所述拓扑数据进行拓扑数据处理以判断是否下行传输;若有下行传输,则将所述下行的以太网数据和拓扑数据通过所述第二虚拟网卡传输至第二现场可编程门阵列;
    所述第二接收数据处理子单元,用于在上行传输时,通过所述第二虚拟网卡,将上行的以太网数据传输至所述第二现场可编程门阵列。
  7. 根据权利要求5所述的基于分布式基站的以太网组网系统,其中,所述第二现场可编程门阵列包括第四CPRI接口、控制子单元、第二数据仲裁子单元以及第五CPRI接口;
    所述第四CPRI接口,分别与所述控制子单元、所述第二数据仲裁子单元、所述第二处理单元以及所述基带处理模块连接,用于将所述基带处理模块中下行的以太网数据和拓扑数据路由至所述第二处理单元;
    所述控制子单元,与所述第五CPRI接口连接,用于在下行传输时,通过所述第五CPRI接口根据所述拓扑数据,将所述下行的以太网数据,传输至相邻规划站点上所述射频拉远模块;
    所述第五CPRI接口,分别与所述控制子单元、第二数据仲裁子单元以及相邻规划站点上射频拉远模块连接,用于将对应的所述射频拉远模块中上行的以太网数据路由至所述第二数据仲裁子单元;
    所述第二数据仲裁子单元,与所述第二处理单元连接,用于接收所述第二处理单元中上行的以太网数据和所述射频拉远模块中上行的以太网数据,在上行传输时,采用仲裁算法,将所述上行的以太网数据通过所述第四CPRI接口传输至所述基带处理模块。
  8. 根据权利要求7所述的基于分布式基站的以太网组网系统,其中,所述第二现场可编程门阵列还包括存储子单元;
    所述存储子单元,与所述第二数据仲裁子单元连接,用于对所述第二处理单元中上行的以太网数据和所述射频拉远模块中上行的以太网数据进行缓存。
  9. 根据权利要求7所述的基于分布式基站的以太网组网系统,其中,所述第二现场可编程门阵列通过MII接口与第二处理单元连接。
  10. 一种基于分布式基站的以太网组网方法,其特征在于,包括:
    基于CPRI接口协议通过光纤连接以建立以太网链路;
    在基带处理模块中,通过所述以太网链路进行对每个部署在各自规划站点上射频拉远模块的组网管理和传输管理。
  11. 根据权利要求10所述的基于分布式基站的以太网组网方法,其中,所述基带处理模块包括第一处理单元和第一现场可编程门阵列;
    所述第一现场可编程门阵列通过以太网链路与所述射频拉远模块连接,进行对所述射频拉远模块的组网管理和拓扑数据处理;
    所述第一处理单元与外部网络控制设备和所述第一现场可编程门阵列连接,通过所述第一现场可编程门阵列进行对每个所述射频拉远模块传输管理。
  12. 根据权利要求11所述的基于分布式基站的以太网组网方法,其中,所述第一处理单元包括第一接收数据处理子单元、第一发送数据处理子单元、第一虚拟网卡以及第一CPRI接口;
    所述第一CPRI接口分别与所述第一虚拟网卡和所述第一现场可编程门阵列连接;
    所述第一发送数据处理子单元与所述第一虚拟网卡连接,在下行传输时,通过所述第一虚拟网卡获取外部网络控制设备中下行的以太网数据,并通过所述第一虚拟网卡将所述 下行的以太网数据路由至所述第一CPRI接口,以使所述第一CPRI接口基于第一CPRI接口协议将所述下行的以太网数据传输至所述第一现场可编程门阵列;
    所述第一接收数据处理子单元与所述第一虚拟网卡连接,在上行传输时,通过所述第一虚拟网卡和第一CPRI接口接收所述第一现场可编程门阵列中上行的以太网数据,通过所述第一虚拟网卡将所述上行的以太网数据传输至所述外部网络控制设备。
  13. 根据权利要求11所述的基于分布式基站的以太网组网方法,其中,所述第一现场可编程门阵列包括第二CPRI接口、第一FIFO子单元、数据分发子单元、第一数据仲裁子单元、第二FIFO子单元以及若干第三CPRI接口;
    所述第二CPRI接口分别与所述第一FIFO子单元、第一数据仲裁子单元以及所述第一处理单元连接,将所述第一处理单元中下行的以太网数据路由至所述第一FIFO子单元进行缓存;
    所述数据分发子单元与所述第一FIFO子单元连接,进行对所述射频拉远模块的组网管理和拓扑数据处理,得到拓扑数据;在下行传输时,以广播的形式通过所述第三CPRI接口根据所述拓扑数据,将缓存在所述第一FIFO子单元的下行的以太网数据,分发至各个所述射频拉远模块;
    每个所述第三CPRI接口分别与第二FIFO子单元、数据分发子单元以及对应的所述射频拉远模块连接,将对应的所述射频拉远模块中上行的以太网数据路由至所述第二FIFO子单元进行缓存;
    所述第一数据仲裁子单元与所述第二FIFO子单元连接,在上行传输时,采用仲裁算法,将经过所述第一FIFO子单元缓存的上行的以太网数据,通过所述第二CPRI接口传输至所述第一处理单元。
  14. 根据权利要求10所述的基于分布式基站的以太网组网方法,其中,所述射频拉远模块包括第二处理单元和第二现场可编程门阵列;
    所述第二现场可编程门阵列通过以太网链路与所述基带处理模块和相邻规划站点上射频拉远模块中的第二现场可编程门阵列连接,进行对相邻规划站点上射频拉远模块的组网管理和传输管理;
    所述第二处理单元与所述第二现场可编程门阵列连接,进行拓扑数据处理。
  15. 根据权利要求14所述的基于分布式基站的以太网组网方法,其中,所述第二处理单元包括第二接收数据处理子单元、第二发送数据处理子单元以及第二虚拟网卡;
    所述第二虚拟网卡分别与所述第二接收数据处理子单元、所述第二发送数据处理子单元以及第二现场可编程门阵列连接;
    所述第二发送数据处理子单元从所述第二现场可编程门阵列接收以太网数据和拓扑数据,并基于所述拓扑数据进行拓扑数据处理以判断是否下行传输;若有下行传输,则将所述下行的以太网数据和拓扑数据通过所述第二虚拟网卡传输至第二现场可编程门阵列;
    所述第二接收数据处理子单元在上行传输时,通过所述第二虚拟网卡,将上行的以太网数据传输至所述第二现场可编程门阵列。
PCT/CN2022/108581 2022-04-22 2022-07-28 基于分布式基站的以太网组网系统及组网方法 WO2023201925A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210428694.3 2022-04-22
CN202210428694.3A CN115021818B (zh) 2022-04-22 2022-04-22 基于分布式基站的以太网组网系统及组网方法

Publications (1)

Publication Number Publication Date
WO2023201925A1 true WO2023201925A1 (zh) 2023-10-26

Family

ID=83067598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108581 WO2023201925A1 (zh) 2022-04-22 2022-07-28 基于分布式基站的以太网组网系统及组网方法

Country Status (2)

Country Link
CN (1) CN115021818B (zh)
WO (1) WO2023201925A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104427512A (zh) * 2013-08-22 2015-03-18 中兴通讯股份有限公司 一种分布式基站的组网方法及装置
US20180294869A1 (en) * 2013-06-20 2018-10-11 Aviat U.S., Inc. Systems and methods for a fronthaul network
CN110858790A (zh) * 2018-08-22 2020-03-03 中兴通讯股份有限公司 一种数据包的传输方法、装置、存储介质及电子装置
CN112653638A (zh) * 2020-12-14 2021-04-13 中科院计算技术研究所南京移动通信与计算创新研究院 一种多路中频与基带高速交换路由的装置及其通信方法
CN113498078A (zh) * 2020-03-20 2021-10-12 富华科精密工业(深圳)有限公司 数据交互方法及射频拉远集线器
CN113795003A (zh) * 2021-11-10 2021-12-14 广东省新一代通信与网络创新研究院 用于5g室内无线通信的多rru扩展系统及实现方法
WO2022062323A1 (zh) * 2020-09-28 2022-03-31 三维通信股份有限公司 射频拉远单元及rru与bbu组网系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9866327B2 (en) * 2012-10-19 2018-01-09 Nippon Telegraph And Telephone Corporation Distributed radio communication base station system, base band unit, remote radio unit, and method for operating distributed radio communication base station system
CN103973396B (zh) * 2013-01-29 2019-09-13 南京中兴新软件有限责任公司 传输无线基带数据的方法、装置和射频拉远模块rru
CN103401598A (zh) * 2013-07-17 2013-11-20 三维通信股份有限公司 一种新型的多网融合室内分布系统
CN105451272A (zh) * 2014-09-17 2016-03-30 中兴通讯股份有限公司 数据交互方法、基带处理单元、射频拉远单元及中继单元
CN111615074B (zh) * 2020-05-12 2021-09-24 京信网络系统股份有限公司 室内分布式系统、数据传输方法和存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180294869A1 (en) * 2013-06-20 2018-10-11 Aviat U.S., Inc. Systems and methods for a fronthaul network
CN104427512A (zh) * 2013-08-22 2015-03-18 中兴通讯股份有限公司 一种分布式基站的组网方法及装置
CN110858790A (zh) * 2018-08-22 2020-03-03 中兴通讯股份有限公司 一种数据包的传输方法、装置、存储介质及电子装置
CN113498078A (zh) * 2020-03-20 2021-10-12 富华科精密工业(深圳)有限公司 数据交互方法及射频拉远集线器
WO2022062323A1 (zh) * 2020-09-28 2022-03-31 三维通信股份有限公司 射频拉远单元及rru与bbu组网系统
CN112653638A (zh) * 2020-12-14 2021-04-13 中科院计算技术研究所南京移动通信与计算创新研究院 一种多路中频与基带高速交换路由的装置及其通信方法
CN113795003A (zh) * 2021-11-10 2021-12-14 广东省新一代通信与网络创新研究院 用于5g室内无线通信的多rru扩展系统及实现方法

Also Published As

Publication number Publication date
CN115021818A (zh) 2022-09-06
CN115021818B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
CN110049512B (zh) 一种前传网络数据处理装置及方法
US9999057B2 (en) Resource allocation method of a wireless communication system and mechanism thereof
KR100447302B1 (ko) 메시형 무선 네트워크의 패킷 데이터용 통신 프로토콜
US8213456B2 (en) Communications system and communication apparatus
US6141355A (en) Time-synchronized multi-layer network switch for providing quality of service guarantees in computer networks
US11520712B2 (en) High-performance wireless side channel
EP2222130B1 (en) Base band unit, radio frequency unit and distributed bs system based on srio protocol
US20150078376A1 (en) Packet sharing data transmission system and relay to lower latency
WO2022062323A1 (zh) 射频拉远单元及rru与bbu组网系统
CN104796188B (zh) 微波辅助的空间信息网络骨干组网传输方法
AU2014318570A1 (en) Self-healing data transmission system to achieve lower latency
JP2011501912A (ja) 通信システムで無線チャンネル資源を共有する方法
CN104618917A (zh) 室内覆盖装置和多制式覆盖系统
JP2022552941A (ja) 分散アンテナシステムのマスタユニットのためのパッシブバックプレーンアーキテクチャ
US10244524B2 (en) Data transmission method, apparatus, and network system that supports CPRI data corresponding to multiple service flows to be exchanged
JP2004503990A (ja) 分散処理システム
WO2022001332A1 (zh) 用于nsa的组网装置、方法及移动通信系统
KR101912872B1 (ko) 고밀집 네트워크 환경을 위한 WiFi 네트워크 시스템
WO2023201925A1 (zh) 基于分布式基站的以太网组网系统及组网方法
CN105451272A (zh) 数据交互方法、基带处理单元、射频拉远单元及中继单元
CN104284444B (zh) 多频段无线通信通信方法、协调设备以及网络
CN107181614B (zh) 一种wifi网络及其组网方法和数据传输方法
WO2018098696A1 (zh) 一种综合接入系统
JP2017022514A (ja) 親局通信装置、光通信ネットワークシステム、及び通信システム
WO2015085572A1 (zh) 分布式天线系统及近端机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938150

Country of ref document: EP

Kind code of ref document: A1