WO2018098696A1 - 一种综合接入系统 - Google Patents

一种综合接入系统 Download PDF

Info

Publication number
WO2018098696A1
WO2018098696A1 PCT/CN2016/108047 CN2016108047W WO2018098696A1 WO 2018098696 A1 WO2018098696 A1 WO 2018098696A1 CN 2016108047 W CN2016108047 W CN 2016108047W WO 2018098696 A1 WO2018098696 A1 WO 2018098696A1
Authority
WO
WIPO (PCT)
Prior art keywords
bbu
cpri
module
board
rfc
Prior art date
Application number
PCT/CN2016/108047
Other languages
English (en)
French (fr)
Inventor
付维翔
吴旺军
吴兴国
张丹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16923103.2A priority Critical patent/EP3537754B1/en
Priority to PCT/CN2016/108047 priority patent/WO2018098696A1/zh
Priority to CN201680091081.8A priority patent/CN109983799B/zh
Priority to CA3045351A priority patent/CA3045351C/en
Publication of WO2018098696A1 publication Critical patent/WO2018098696A1/zh
Priority to US16/424,802 priority patent/US10979920B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to an integrated access system.
  • Lampsite is an indoor coverage solution.
  • LampSite is mainly dedicated to the indoor coverage of mobile broadband data. Through the digitization of indoor coverage, the indoor coverage construction and maintenance costs are greatly reduced, and the mobile broadband experience is continuously improved.
  • the integrated access system based on LampSite is a dedicated distributed system architecture supporting multi-standard multi-band.
  • the current integrated access system also Including other multiple product function modules, such as Base Band Unit (BBU), Remote Common Radio Interface (CPRI) data exchange unit (also known as RHUB), digital conversion unit (Digital) Conversion Unit (DCU), Remote Radio Unit (RRU), pico Remote Radio Unit (pRRU), etc.
  • BBU Base Band Unit
  • CPRI Remote Common Radio Interface
  • DCU Digital Conversion Unit
  • RRU Remote Radio Unit
  • pico Remote Radio Unit pico Remote Radio Unit
  • the DCU is used as a sink node, the DCU is used to support the feeding of a third-party radio frequency source, and the DCU is a conversion unit that converts the radio frequency signal into an in-phase/quadrature (I/Q), and the DCU passes respectively.
  • the CPRI channel is connected to the BBU, RRU, and RHUB.
  • the DCU is connected to the repeater network pipe system through the Operation Management (OM) channel.
  • OM Operation Management
  • the base station network pipe system is connected to the BBU through the OM channel, and the RHUB is connected to the electrical interface of the CPRI channel (also called Connect the pRRU for CPRI-E).
  • the BBU is used to centrally control and manage the entire base station system, the RHUB implements communication between the BBU and the pRRU, and the pRRU implements radio frequency signal processing.
  • the DCU becomes a bottleneck as a sink node, and the DCU needs to use the OM channel to connect the repeater network pipe system, the base station network pipe.
  • the system also needs to use the OM channel to connect to the BBU, which results in a complicated internal structure of the integrated access system.
  • the repeater network pipe system and the base station network pipe system are independent of each other, and there is no maintenance link between them, and the shared device cannot be simultaneously carrier. Resource points
  • the configuration transmission between the repeater network pipe system and the base station network pipe system needs to be manually implemented with low reliability and maintainability.
  • the embodiments of the present invention provide an integrated access system, which is used to simplify the internal networking structure of the existing integrated access system, reduce the number of independent network elements, and provide reliability and maintainability of the integrated access system. .
  • an embodiment of the present invention provides an integrated access system, including: a first baseband processing unit BBU, a remote universal public radio interface CPRI data exchange unit, a first radio frequency card RFC board, and a repeater network management object function.
  • a module a base station network management network pipe system, wherein the first RFC board is inserted in a slot of the first BBU, and the repeater network management object function module is disposed in the base station network pipe system;
  • the first BBU is connected to the remote CPRI data exchange unit by a first CPRI channel, and the first BBU is connected to the base station network pipe system by an operation management OM channel;
  • the first RFC board includes: a number And a frequency conversion module, a digital combination branch module, a CPRI compression and decompression module, wherein the digital up-down conversion module and the digital combination branch module are connected, the digital combination branch module and the CPRI compression and solution
  • the compression module is connected;
  • the first BBU includes: a CPRI mapping and demapping module, and the
  • the DCU is not required to be used as a convergence unit in the integrated access system, but the first BBU is used as a convergence unit in the integrated access system, and the remote CPRI data exchange unit and the base station network management network pipe system are directly connected with each other.
  • the first BBU is connected, and the first RFC board is inserted in the slot of the first BBU, and the common frame of the first RFC board and the first BBU is implemented.
  • the RFC does not need to be separately configured, and is implemented by the DCU in the prior art.
  • the function is completed by the digital multiplexer module and the CPRI compression and decompression module set on the first RFC board, so that removing the DCU as a separate device in the integrated access system does not affect the normal function of the entire system.
  • the repeater network management object function module is used as a separate functional module in the base station network management network pipe system, and the OM channel is connected between the base station network management network pipe system and the first BBU, thereby reducing the use of the OM channel. Number, saving system deployment costs.
  • the function module of the repeater network management object belongs to a part of the base station network pipe system.
  • the maintenance function of the repeater network management object function module and the base station network pipe system can be realized in the base station network pipe system, and the carrier resource allocation of the shared device can be realized at the same time.
  • the reliability and maintainability of the integrated access system have been greatly improved.
  • the first RFC board includes: multiple RFC modules, where each RFC module includes: a digital up-down frequency conversion module, and a digital combination A splitting module, a CPRI compression and decompression module, and a CPRI compression and decompression module in each RFC module are connected to the CPRI mapping and demapping module.
  • the CPRI mapping and demapping module is specifically a first interface board or a first baseband board in the first BBU. Therefore, the first interface board or the first baseband board in the first BBU can implement the functions of CPRI mapping and demapping.
  • the first BBU further includes: a main control board, where the main control board is connected to the base station network pipe system by using the OM channel .
  • the integrated access system further includes: a second BBU and a second RFC board, where the second RFC board is inserted The slot of the second BBU, wherein the first BBU is a master BBU, and the second BBU is a slave BBU; and the first BBU is connected to the second BBU by using a second CPRI channel.
  • the integrated access system includes a second BBU, where the N is greater than or equal to 2.
  • the first BBU is connected to the N second BBUs through the N second CPRI channels, wherein the first BBU is connected to a second through one of the second CPRI channels.
  • BBU the extended CPRI topology management protocol supports the networking topology of one primary BBU to multiple secondary BBUs.
  • the first BBU includes: a first baseband board
  • the second BBU includes: a second interface board
  • the first baseband board and the second interface board are connected by the second CPRI channel; the first BBU and the second BBU complete the in-phase orthogonal I/Q through the second CPRI channel Interaction of data, clock information CI, CPRI control word, OM message.
  • the CPRI channel multiplexing technology is used to extend the CPRI channel to complete the forwarding and convergence of the data between the frames, the clock recovery, the CPRI control word, and the OM message interaction only through the CPRI interconnection line.
  • the inter-frame OM message and the clock information are mutually transmitted through the fast Ethernet channel in the CPRI channel multiplexing technology.
  • the integrated access system further includes: a frequency remote unit RRU and a micro radio remote unit pRRU, wherein the RRU passes through the third CPRI channel and the second BBU Connected, the pRRU is connected to the remote CPRI data exchange unit via a fourth CPRI channel.
  • the first BBU includes: M slots, where the M slots are interconnected by two high-speed interconnects, and each slot is Can be used to converge an optical fiber, the M being a natural number greater than or equal to two.
  • the interconnection between the two slots is such that each slot can be used for converging the optical fiber to improve the fiber output efficiency.
  • the base station network pipe system after the base station network pipe system includes the repeater network management object function module, the base station network pipe system further includes: at least two different network standards Network management object function module.
  • the network pipe system includes a plurality of network management network management object function modules, thereby implementing network management of the integrated access system under various network standards.
  • FIG. 1 is a schematic diagram of a networking architecture of a LampSite provided by the prior art
  • FIG. 2 is a schematic structural diagram of a structure of an integrated access system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of data transmission between a first RFC board and a first BBU according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of another integrated access system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of data transmission between a first BBU and a second BBU according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of interconnection between a first BBU and a plurality of second BBUs according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a connection between a first BBU and a plurality of second BBUs through a baseband board and an interface board according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of another integrated access system according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a system architecture deployment of an integrated access system according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of an implementation scenario of using a primary BBU and a secondary BBU in an integrated system according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of an implementation scenario of using a BBU in an integrated access system according to an embodiment of the present disclosure
  • 12-a is a schematic diagram of a plurality of slots in a BBU connected to the same slot in the prior art
  • 12-b is a schematic diagram of a plurality of slots in a BBU connected by a high-speed interconnect line according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of a scenario in which the same operation and maintenance interface is used for customer operation and maintenance according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of an implementation scenario of a function module of a repeater network management object applied to a base station network pipe system according to an embodiment of the present invention.
  • the embodiments of the present invention provide an integrated access system, which is used to simplify the internal networking structure of the existing integrated access system, reduce the number of independent network elements, and provide reliability and maintainability of the integrated access system. .
  • the integrated access system provided by the embodiment of the present invention is applicable to a scenario in which a single operator and a multi-operator operate in a unified manner, so that the network management object function module and the base station network pipe system of the repeater are implemented by an independent network element, and the sharing can be realized.
  • An Internet Protocol (IP) address and a shared operation and maintenance interface are used to maintain the repeater network management object function module and the base station network pipe system.
  • IP Internet Protocol
  • a DCU is provided, and the DCU includes an RFC module and a digital processing card (DPC), and the DPC is used for converging the optical fiber and processing the in-phase orthogonal data.
  • the DCU is removed from the integrated access system, and the RFC board is configured.
  • the RFC board is co-located with the first BBU, and the RFC board is inserted into the slot of the first BBU.
  • an integrated access system 100 may include:
  • a first BBU 101 a remote CPRI data exchange unit 102, a first radio frequency card (RFC) board 103, a repeater network management object function module 104, and a base station network management network pipe system 105, wherein
  • RRC radio frequency card
  • the first RFC board 103 is inserted in the slot of the first BBU 101, and the repeater network management object function module 104 is disposed in the base station network pipe system 105;
  • the first BBU 101 is connected to the remote CPRI data exchange unit 102 through the first CPRI channel, and the first BBU 101 is connected to the base station network pipe system 105 through the OM channel;
  • the first RFC board includes: a digital up-and-down conversion module, a digital combination branch module, a CPRI compression and decompression module, wherein the digital up-down conversion module and the digital combination branch module are connected, the digital combination branch module and the CPRI compression and solution The compression modules are connected;
  • the first BBU includes: a CPRI mapping and demapping module, a CPRI mapping and demapping module, and a CPRI compression and decompression module.
  • the first RFC board includes: a digital up-down frequency conversion module, a digital combination branch module, and a CPRI compression and decompression module, wherein the digital up-down frequency conversion module is configured to perform up-down frequency conversion processing on the in-phase orthogonal data.
  • the digital combining and splitting module performs radio frequency combining and splitting processing on the in-phase orthogonal data
  • the CPRI compression and decompression module is used for compressing and decompressing the in-phase orthogonal data according to the CPRI protocol, wherein the downlink data transmission process is performed.
  • CPRI decompression performs CPRI compression for the upstream data transmission process.
  • the RFC board provided by the embodiment of the present invention includes a digital combining and splitting module and a CPRI compression and decompression module. Therefore, the RFC board provided by the embodiment of the present invention can complete the RF combining and splitting of the in-phase orthogonal data. Processing and compression and decompression according to the CPRI protocol.
  • the communication connection between the first RFC board and the first BBU can be completed by the CPRI mapping and demapping module in the first BBU, that is, the CPRI mapping and demapping module and the CPRI compression and decompression.
  • the modules are connected.
  • the CPRI mapping and demapping are completed in the first BBU, and the CPRI mapping and demapping can be completed without setting the DCU in the integrated access system. Therefore, by setting the aforementioned first RFC board and the first in the integrated access system The BBU can remove the DCU in the integrated access system, thereby reducing the number of independent network elements in the integrated access system and optimizing the networking structure.
  • the first RFC board includes: a plurality of RFC modules, wherein each RFC module includes: a digital up/down module, a digital splitter module, and a CPRI compression and decompression module.
  • a CPRI compression and decompression module within each RFC module is coupled to the CPRI mapping and demapping module.
  • the first RFC board includes six RFC modules, which are RFC-0, RFC-1, and RFC-. 2. RFC3, RFC-4, and RFC-5, each of which is provided with a digital up-and-down conversion module, a digital combined branching module, and a CPRI compression and decompression module.
  • the connection mode between the first RFC board and the first BBU supports a flexible networking, and the first RFC and the first BBU are shared.
  • the RFC module in the DCU only performs digital up-down conversion
  • the RFC board provided by the embodiment of the present invention implements a distributed digital splitting and CPRI compression/decompression function, and completes 6 corresponding copies on the RFC board.
  • the distribution of the downlink data of the CPRI data and the combination of the uplink data, the RFC board can complete the functions of CPRI compression decompression and digital combining and splitting.
  • the RFC board provided by the embodiment of the present invention replaces the functions of the DCU in the prior art, and the distributed digital splitting and CPRI compression/decompression processing is performed by the RFC board. Reduce the functional complexity of the fiber-optic board through distributed processing technology.
  • the function of the DCU in the prior art is implemented by the fusion architecture of the RFC board and the CPRI mapping and demapping module provided by the embodiment of the present invention, which reduces the initial deployment cost of the integrated system, and supports the CPRI mapping and demapping module to aggregate the fiber. .
  • the CPRI mapping and demapping module is specifically a first interface board or a first baseband board in the first BBU.
  • the first interface board or the first baseband board in the first BBU can be connected to the CPRI compression and decompression module in the first RFC board, that is, the first interface in the first BBU.
  • the board or the first baseband board can implement CPRI mapping and demapping functions.
  • the communication message and the frame format between the RFC board and the CPRI mapping and demapping module in the frame need to adopt CPRI (simple CPRI, sCPRI) frame mapping, and the control word is a sCPRI message, which needs to be based on the aggregation and output.
  • the number of optical ports of the board determines the number of I/Q data.
  • the integrated access system 100 further includes: a second BBU 106 and a second RFC board 107, and the second RFC board 107 is inserted in the slot of the second BBU 106.
  • the first BBU is the primary BBU
  • the second BBU is the secondary BBU; the first BBU is adopted.
  • the second CPRI channel is connected to the second BBU.
  • the connection between the second BBU and the second RFC board is similar to the connection between the first BBU and the first RFC board. Please refer to the description of the foregoing embodiment.
  • one BBU is used as the primary BBU, and the remaining BBUs are connected as the secondary BBU, and the primary BBU and the secondary BBU are connected using the second CPRI channel.
  • the remote CPRI data exchange unit is directly connected to the second BBU, and the second BBU is connected to the first BBU through the second CPRI channel.
  • the first BBU includes: a first baseband board
  • the second BBU includes: a second interface board
  • the first baseband board and the second interface board are connected by a second CPRI channel
  • the BBU and the second BBU complete the interaction of the in-phase orthogonal I/Q data, the clock information (Clock Information, CI), the CPRI control word, and the OM message through the second CPRI channel.
  • the first BBU is provided with a first baseband board and a main control board
  • the second BBU is provided with a second interface board and a second baseband board, between the first baseband board and the second interface board. Connected through a second CPRI channel.
  • the interconnection between two BBU frames needs to connect two types of lines: one is an I/Q interconnection line, and the inter-frame forwarding, aggregation, and clock recovery of CPRI I/Q data are completed, and one is a CI interconnection line.
  • CPRI control words, OM messages, and clock information also known as clock synchronization information.
  • the clock information refers to the time information in the CPRI control word.
  • the CPRI channel multiplexing technology is used to extend the CPRI channel to complete the forwarding and convergence of the data between the frames, the clock recovery, the CPRI control word, and the OM message interaction only through the CPRI interconnection line.
  • the inter-frame OM message and the clock information are mutually transmitted through the fast Ethernet channel in the CPRI channel multiplexing technology.
  • the integrated access system includes N second BBUs, N is a natural number greater than or equal to 2; the first BBU passes N of the second CPRI channels and N respectively The second BBU is connected, wherein the first BBU is connected to a second BBU through a second CPRI channel.
  • N is a natural number greater than or equal to 2; the first BBU passes N of the second CPRI channels and N respectively The second BBU is connected, wherein the first BBU is connected to a second BBU through a second CPRI channel.
  • a primary BBU is connected to multiple BBUs using a CPRI channel, and each slave BBU uses a CPRI channel to connect to the RRU.
  • the CPRI topology management protocol is extended, and the networking topology of one primary BBU to multiple secondary BBUs is supported.
  • the BBU is provided with multiple baseband boards, main control boards (main), and direct current (DC) in the main BBU.
  • Multiple RFC boards and main control boards (slave) are inserted from the BBU.
  • the interface board and the DC power supply, the main BBU is connected through a baseband board and one interface board from the BBU, and the other baseband board of the main BBU channel is connected to the other interface board of the BBU.
  • the integrated access system 100 further includes: an RRU 108 and a pRRU 109, wherein the RRU 108 is connected to the second BBU 106 through the third CPRI channel, and the pRRU 109 passes the The four CPRI channels are connected to the remote CPRI data exchange unit 102.
  • FIG. 9 is a schematic diagram of a system architecture deployment of an integrated access system according to an embodiment of the present invention, where a primary BBU and a primary BBU are disposed in the integrated access system.
  • the BBU is connected to the second BBU through the CPRI channel
  • the second BBU is connected to the RRU and the RHUB
  • the RHUB is connected to the pRRU through the CPRI-E interface.
  • the first BBU passes through the OM channel and the base station network.
  • the pipe system is connected, the first RFC board is inserted in the slot of the first BBU, and the function module of the repeater network pipe object is set in the base station network pipe system.
  • FIG. 10 is a schematic diagram of an implementation scenario of using a primary BBU and a secondary BBU in an integrated system according to an embodiment of the present invention.
  • the main BBU is connected to the BBU through the CPRI channel, and the BBU is the remote end, for example, the BBU is set in the building, and the BBU is connected to the RHUB through the CPRI channel.
  • a master BBU is provided with multiple slave BBUs to support the unified coverage of the core equipment room to the surrounding coverage.
  • the first BBU further includes: a main control board, wherein the main control board is connected to the base station network pipe system through the OM channel.
  • FIG. 11 is a schematic diagram of an implementation scenario of using a BBU in an integrated access system according to an embodiment of the present invention.
  • the function module of the repeater network management object is set in the base station network pipe system, and the base station network pipe system is connected to the first BBU.
  • the baseband board in the first BBU is connected to the RHUB.
  • the first BBU includes: M slots, and the M slots are interconnected by two high-speed interconnects, and each slot can be used to aggregate the fibers.
  • M is a natural number greater than or equal to 2.
  • the interconnection between the two slots allows each slot to be used to aggregate fibers and improve fiber output efficiency.
  • Figure 12-a shows a schematic diagram of multiple slots in a BBU connected to the same slot in the prior art.
  • Figure 12-b shows Description of the connection between a plurality of slots in the BBU provided by the embodiment of the invention through high-speed interconnect lines Figure.
  • the number of slots in the BBU is 7, which are slot 0, slot 1, slot 2, slot 3, slot 4, slot 5, and slot 6.
  • Bit 0, slot 1, slot 2, slot 3, slot 4, and slot 5 are connected to slot 6 and only support the slot of the main control board (that is, slot 6) to converge the fiber, backplane.
  • the maximum capacity between boards is 4.9G, and the maximum output capacity of the convergence board is 10.
  • the RFC card supports the full exchange of the backplane.
  • the backplane supports 10.1G*2 full switching, slot 0, slot 1, slot 2, slot 3, slot 4, and slot 5.
  • a high-speed interconnect is connected between the two slots.
  • the slot 0, the slot 1, the slot 2, the slot 3, the slot 4, and the slot 5 are also connected to the slot 6, so that all slots can be supported.
  • the panel has an optical fiber, and the fiber output can reach 36, and the interface board and the baseband board support the optical fiber.
  • the base station network pipe system further includes: at least two network management object function modules of different network standards.
  • the base station network pipe system includes a repeater network management object function module, or the base station network pipe system includes a repeater network management object function module and a universal mobile communication system (Universal Mobile Telecommunications system).
  • Universal Mobile Telecommunications system Universal Mobile Telecommunications system
  • System Universal Mobile Telecommunications system
  • UMTS Universal Mobile Telecommunications system
  • LTE Long Term Evolution
  • the base station network pipe system is used as an independent network element.
  • the following is an example of degrading the repeater network pipe system into a network management object function module in the base station network pipe system, the unified operation and maintenance of the BBU and the repeater, using a set of operation and maintenance interface, and the customer is transported.
  • the dimension feels consistent, thus saving operation and maintenance costs and manpower.
  • the logical architecture of the base station network pipe system can be divided into: Global System for Mobile Communication network management object function module, UMTS network management object function module, LTE network management object function module, and repeater network management object.
  • the function module and the base station common module, the base station common module implements device management and carrier management, and the repeater network management object function module in the base station network pipe system realizes communication between the RFC board and the cell through sub-band and cell mapping, and passes through the sector.
  • the device group and the corresponding sector device transmit data to the corresponding pRRU.
  • the integrated access system provided by the embodiment of the present invention can support the common frame of the RFC board and the BBU, and the common frame of the BBU and the RFC board.
  • the BBU and the RFC board are transported between the backplanes.
  • the I/Q aggregation fiber is completed through the baseband board in the scenario of the RFC board and the BBU.
  • the base station network pipe system and the repeater network management object function module are implemented by an independent network element, and only need to manage one base station network pipe system network element, one operation and maintenance node and transmission resource, support common master control configuration, and the operation and maintenance experience is consistent. Public resources and fault management are unified by one master.
  • the integrated access system includes: a first BBU, a remote CPRI data exchange unit, a first RFC board, a repeater network management object function module, and a base station network management network pipe system.
  • the first RFC board is inserted in the slot of the first BBU, and the function module of the repeater network management object is set in the base station network pipe system.
  • the first BBU is connected to the remote CPRI data exchange unit through the first CPRI channel, and the first BBU is connected to the base station network pipe system through the OM channel.
  • the first RFC board includes: a digital up-and-down conversion module, a digital combination branch module, a CPRI compression and decompression module, wherein the digital up-down conversion module and the digital combination branch module are connected, the digital combination branch module and the CPRI compression and solution The compression modules are connected.
  • the first BBU includes: a CPRI mapping and demapping module, a CPRI mapping and demapping module, and a CPRI compression and decompression module.
  • the DCU is not required to be used as a convergence unit in the integrated access system, but the first BBU is used as a convergence unit in the integrated access system, and the remote CPRI data exchange unit and the base station network management network pipe system are directly connected with each other.
  • the first BBU is connected, and the first RFC board is inserted in the slot of the first BBU, and the common frame of the first RFC board and the first BBU is implemented.
  • the RFC does not need to be separately configured, and is implemented by the DCU in the prior art.
  • the function is completed by the digital multiplexer module and the CPRI compression and decompression module set on the first RFC board, so that removing the DCU as a separate device in the integrated access system does not affect the normal function of the entire system.
  • the repeater network management object function module is used as a separate functional module in the base station network management network pipe system, and the OM channel is connected between the base station network management network pipe system and the first BBU, thereby reducing the use of the OM channel.
  • the function module of the repeater network management object belongs to a part of the base station network pipe system. Therefore, the maintenance function of the repeater network management object function module and the base station network pipe system can be realized in the base station network pipe system, and the carrier resource allocation of the shared device can be realized at the same time. The reliability and maintainability of the integrated access system have been greatly improved.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the devices indicates that there is a communication connection between them, and specifically may be implemented as one or more communication buses or signal lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种综合接入系统,包括:第一BBU、远端CPRI数据交换单元、第一射频卡RFC单板、直放站网管对象功能模块、基站网管网管子系统,其中,第一RFC单板插在第一BBU的插槽上,直放站网管对象功能模块设置在基站网管子系统内;第一BBU通过第一CPRI通道和远端CPRI数据交换单元相连接,第一BBU通过OM通道和基站网管子系统相连接;第一RFC单板包括:数字上下变频模块、数字合分路模块、CPRI压缩与解压缩模块,数字上下变频模块和数字合分路模块相连接,数字合分路模块和CPRI压缩与解压缩模块相连接;第一BBU包括:CPRI映射与解映射模块,CPRI映射与解映射模块和CPRI压缩与解压缩模块相连接。

Description

一种综合接入系统 技术领域
本发明实施例涉及通信领域,尤其涉及一种综合接入系统。
背景技术
无线点系统(Lampsite)是一种室内覆盖解决方案,LampSite主要致力于移动宽带数据的室内覆盖,通过室内覆盖的数字化,大幅度降低室内覆盖建设和维护成本,促进移动宽带体验的持续提升。
随着移动通信市场的迅猛发展,用户越来越希望可随时随地提供高质量通信。为此,移动通信服务商开始在室外、建筑物内部及地下等电波难以覆盖的盲区设置直放站,以最大限度地满足用户对于通话服务的需求。基于LampSite实现的综合接入系统是专用的支持多制式多频段的分布式系统架构,在综合接入系统中同时存在直放站网管子系统和基站网管子系统,目前的综合接入系统中还包括其它的多种产品功能模块,例如基带处理单元(Base Band Unit,BBU)、远端通用公共无线接口(Common Public Radio Interface,CPRI)数据交换单元(也称为RHUB)、数字转换单元(Digital Conversion Unit,DCU)、射频拉远单元(Remote Radio Unit,RRU)、微射频拉远单元(pico Remote Radio Unit,pRRU)等。其中,DCU作为汇聚节点,DCU用于支持第三方的无线电射频信源的馈入,DCU是将射频信号转换为同相正交(In-phase/Quadrature,I/Q)的转换单元,DCU分别通过CPRI通道连接BBU、RRU、RHUB,DCU分别通过操作管理(Operate Management,OM)通道连接直放站网管子系统,基站网管子系统通过OM通道和BBU连接,RHUB通过CPRI通道的电接口(也称为CPRI-E)连接pRRU。BBU用于集中控制管理整个基站系统,RHUB实现BBU与pRRU之间的通信,pRRU实现射频信号处理功能。
在目前的综合接入系统中,至少存在如下技术问题:随着BBU小区能力和CPRI能力不断提升,DCU作为汇聚节点逐渐成为瓶颈,DCU需要使用OM通道连接直放站网管子系统,基站网管子系统还需要使用OM通道连接BBU,造成综合接入系统内部的组成结构复杂,另外直放站网管子系统和基站网管子系统相互独立,相互之间没有维护链路,无法同时对共享设备进行载波资源分 配,直放站网管子系统和基站网管子系统之间的配置传输需要用人工来实现,可靠性和可维护性低。
发明内容
本发明实施例提供了一种综合接入系统,用于简化现有的综合接入系统的内部组网结构,减少独立网元的配置个数,提供综合接入系统的可靠性和可维护性。
第一方面,本发明实施例提供一种综合接入系统,包括:第一基带处理单元BBU、远端通用公共无线接口CPRI数据交换单元、第一射频卡RFC单板、直放站网管对象功能模块、基站网管网管子系统,其中,所述第一RFC单板插在所述第一BBU的插槽上,所述直放站网管对象功能模块设置在所述基站网管子系统内;所述第一BBU通过第一CPRI通道和所述远端CPRI数据交换单元相连接,所述第一BBU通过操作管理OM通道和所述基站网管子系统相连接;所述第一RFC单板包括:数字上下变频模块、数字合分路模块、CPRI压缩与解压缩模块,其中,所述数字上下变频模块和所述数字合分路模块相连接,所述数字合分路模块和所述CPRI压缩与解压缩模块相连接;所述第一BBU包括:CPRI映射与解映射模块,所述CPRI映射与解映射模块和所述CPRI压缩与解压缩模块相连接。在本发明实施例中综合接入系统中不需要设置DCU作为汇聚单元,而是将第一BBU作为综合接入系统内的汇聚单元,远端CPRI数据交换单元、基站网管网管子系统都直接与第一BBU相连接,并且第一RFC单板插在第一BBU的插槽上,实现第一RFC单板和第一BBU的共框,RFC不需要单独配置,现有技术中由DCU实现的功能通过第一RFC单板上设置的数字合分路模块、CPRI压缩与解压缩模块来完成,从而在综合接入系统内去除DCU这个独立装置后并不影响整个系统的正常功能。并且本发明实施例中直放站网管对象功能模块作为基站网管网管子系统内的一个单独功能模块,基站网管网管子系统和第一BBU之间使用OM通道连接,从而减少了OM通道的使用个数,节省系统的部署成本。直放站网管对象功能模块属于基站网管子系统内的一部分,因此可以在基站网管子系统内实现直放站网管对象功能模块和基站网管子系统的共同维护,实现同时对共享设备进行载波资源分配,综合接入系统的可靠性和可维护性得到很大提高。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一RFC单板包括:多个RFC模块,其中,每个RFC模块包括:一个数字上下变频模块、一个数字合分路模块、一个CPRI压缩与解压缩模块,所述每个RFC模块内的一个CPRI压缩与解压缩模块都和所述CPRI映射与解映射模块相连接。
结合第一方面,在第一方面的第二种可能的实现方式中,所述CPRI映射与解映射模块,具体为所述第一BBU内的第一接口板或者第一基带板。因此,第一BBU内的第一接口板或者第一基带板可以实现CPRI映射与解映射的功能。
结合第一方面,在第一方面的第三种可能的实现方式中,所述第一BBU还包括:主控板,所述主控板通过所述OM通道和所述基站网管子系统相连接。
结合第一方面,在第一方面的第四种可能的实现方式中,所述综合接入系统,还包括:第二BBU和第二RFC单板,所述第二RFC单板插在所述第二BBU的插槽上,其中,所述第一BBU为主BBU,所述第二BBU为从BBU;所述第一BBU通过第二CPRI通道和所述第二BBU相连接。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述综合接入系统包括的第二BBU为N个,所述N为大于或等于2的自然数;所述第一BBU通过N个的所述第二CPRI通道分别和所述N个的第二BBU相连接,其中,所述第一BBU通过一个所述第二CPRI通道连接一个第二BBU。本发明实施例中扩展CPRI拓扑管理协议,支持1个主BBU对多个从BBU的组网拓扑。
结合第一方面的第四种可能的实现方式,在第一方面的第六种可能的实现方式中,所述第一BBU包括:第一基带板,所述第二BBU包括:第二接口板所述第一基带板和所述第二接口板之间通过所述第二CPRI通道相连接;所述第一BBU和所述第二BBU通过所述第二CPRI通道完成同相正交I/Q数据、时钟信息CI、CPRI控制字、OM消息的交互。本发明实施例中通过CPRI通道复用技术,扩展CPRI通道实现只通过CPRI互联线就可以完成框间相关数据的转发和汇聚,时钟恢复,CPRI控制字,OM消息的交互。本发明实施例中通过CPRI通道复用技术中,通过快速以太网通道完成框间OM消息以及时钟信息的互传。
结合第一方面的第四种可能或第五种可能或第六种可能的实现方式,在第 一方面的第七种可能的实现方式中,述综合接入系统,还包括:频拉远单元RRU和微射频拉远单元pRRU,其中,所述RRU通过第三CPRI通道和所述第二BBU相连接,所述pRRU通过第四CPRI通道和所述远端CPRI数据交换单元相连接。
结合第一方面或第一方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能的实现方式,在第一方面的第八种可能的实现方式中,所述第一BBU包括:M个槽位,所述M个槽位通过高速互连线实现两两槽位之间的互连,每一个槽位都能够用于汇聚出光纤,所述M为大于或等于2的自然数。本发明实施例中通过两两槽位之间互连使得每个槽位都能够用于汇聚出光纤,提高出纤效率。
结合第一方面或第一方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能或第八种可能的实现方式,在第一方面的第九种可能的实现方式中,所述基站网管子系统除了包括所述直放站网管对象功能模块之后,所述基站网管子系统还包括:至少两种不同网络制式的网管对象功能模块。本发明实施例中网管子系统中包括有多种网络制式的网管对象功能模块,从而实现综合接入系统在多种网络制式下的网络管理。
附图说明
图1为现有技术提供的一种LampSite的组网架构示意图;
图2为本发明实施例提供的一种综合接入系统的组成结构示意图;
图3为本发明实施例提供的第一RFC单板与第一BBU之间的数据传输示意图;
图4为本发明实施例提供的另一种综合接入系统的组成结构示意图;
图5为本发明实施例提供的第一BBU与第二BBU之间的数据传输示意图;
图6为本发明实施例提供的第一BBU与多个第二BBU之间相互连接的示意图;
图7为本发明实施例提供的第一BBU与多个第二BBU之间通过基带板和接口板进行连接的示意图;
图8为本发明实施例提供的另一种综合接入系统的组成结构示意图;
图9为本发明实施例提供的一种综合接入系统的系统架构部署示意图;
图10为本发明实施例提供的综合系统内使用主BBU和从BBU的实现场景示意图;
图11为本发明实施例提供的综合接入系统使用一个BBU的实现场景示意图;
图12-a为现有技术中BBU内的多个槽位分别连接同一个槽位连接的示意图;
图12-b为本发明实施例提供的BBU内的多个槽位之间通过高速互连线连接的示意图;
图13为本发明实施例提供的客户运维使用同一套运维界面的场景示意图;
图14为本发明实施例提供的直放站网管对象功能模块应用于基站网管子系统的实现场景示意图。
具体实施方式
本发明实施例提供了一种综合接入系统,用于简化现有的综合接入系统的内部组网结构,减少独立网元的配置个数,提供综合接入系统的可靠性和可维护性。
下面结合附图,对本发明的实施例进行描述。本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本发明的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本发明实施例提供的综合接入系统适用于在单运营商和多运营商统一运维的场景,使得直放站网管对象功能模块和基站网管子系统通过一个独立网元实现,可以实现共用同一个互联网协议(Internet Protocol,IP)地址和共用同一个运维界面来维护直放站网管对象功能模块和基站网管子系统。现有技术 中,综合接入系统内设置有DCU,该DCU中包括有RFC模块和数字处理卡(Digital Process Card,DPC),DPC用于汇聚出光纤和对同相正交数据的处理,本发明实施例中从综合接入系统内移除DCU,设置RFC单板,并且该RFC单板与第一BBU共框设计,RFC单板插入第一BBU的插槽上。请参阅如图2所示,本发明实施例提供的一种综合接入系统100,可以包括:
第一BBU101、远端CPRI数据交换单元102、第一射频卡(Radio Frequency Card,RFC)单板103、直放站网管对象功能模块104、基站网管网管子系统105,其中,
第一RFC单板103插在第一BBU101的插槽上,直放站网管对象功能模块104设置在基站网管子系统105内;
第一BBU101通过第一CPRI通道和远端CPRI数据交换单元102相连接,第一BBU101通过OM通道和基站网管子系统105相连接;
第一RFC单板包括:数字上下变频模块、数字合分路模块、CPRI压缩与解压缩模块,其中,数字上下变频模块和数字合分路模块相连接,数字合分路模块和CPRI压缩与解压缩模块相连接;
第一BBU包括:CPRI映射与解映射模块,CPRI映射与解映射模块和CPRI压缩与解压缩模块相连接。
在本发明实施例中,第一RFC单板包括:数字上下变频模块、数字合分路模块、CPRI压缩与解压缩模块,其中,数字上下变频模块用于对同相正交数据进行上下变频处理,数字合分路模块对同相正交数据进行射频合路和分路的处理,CPRI压缩与解压缩模块用于对同相正交数据按照CPRI协议进行压缩与解压缩,其中,对于下行数据传输过程执行CPRI解压缩,对于上行数据传输过程执行CPRI压缩。本发明实施例提供的RFC单板包括有数字合分路模块、CPRI压缩与解压缩模块,因此通过本发明实施例提供的RFC单板就可以完成对同相正交数据进行射频合路和分路的处理,以及按照CPRI协议进行压缩与解压缩。本发明实施例中,第一RFC单板和第一BBU之间的通信连接,可以通过第一BBU内的CPRI映射与解映射模块来完成,即CPRI映射与解映射模块和CPRI压缩与解压缩模块相连接,本发明实施例中CPRI映射与解映射在第一BBU内完成,不需要在综合接入系统内设置DCU就可以完成CPRI映射与解映射。因此通过在综合接入系统中设置前述的第一RFC单板和第一 BBU,可以将综合接入系统内的DCU移除掉,从而减少综合接入系统内的独立网元的个数,优化组网结构。
在本发明的一些实施例中,第一RFC单板包括:多个RFC模块,其中,每个RFC模块包括:一个数字上下变频模块、一个数字合分路模块、一个CPRI压缩与解压缩模块,每个RFC模块内的一个CPRI压缩与解压缩模块都和CPRI映射与解映射模块相连接。请参阅图3所示,举例说明第一RFC单板与第一BBU之间的数据传输,以第一RFC单板包括6个RFC模块为例,分别为RFC-0、RFC-1、RFC-2、RFC3、RFC-4、RFC-5,每个RFC模块内都设置有一个数字上下变频模块、一个数字合分路模块、一个CPRI压缩与解压缩模块。本发明实施例中第一RFC单板与第一BBU之间的连接方式支持灵活组网,可实现第一RFC和第一BBU共框。现有技术中DCU内的RFC模块只完成数字上下变频,而本发明实施例提供的RFC单板实现分布式的数字合分路及CPRI压缩/解压缩功能,在RFC单板完成相应的6份CPRI数据的下行数据的分发复制和上行数据的合路功能,RFC单板可以完成CPRI压缩解压缩、数字合分路的功能。通过本发明实施例提供的RFC单板取代了现有技术中DCU的功能,由RFC单板进行分布式的数字合分路及CPRI压缩/解压缩处理。通过分布式处理技术,降低出纤板的功能复杂度。这样现有技术中DCU的功能就由本发明实施例提供的RFC单板和CPRI映射与解映射模块的融合架构来实现了,降低综合系统的初期部署成本,支持CPRI映射与解映射模块汇聚出光纤。
在本发明的一些实施例中,CPRI映射与解映射模块,具体为第一BBU内的第一接口板或者第一基带板。结合图3所示,第一BBU内的第一接口板或者第一基带板可以和第一RFC单板内的CPRI压缩与解压缩模块相连接,也就是说,第一BBU内的第一接口板或者第一基带板可以实现CPRI映射与解映射的功能。
本发明实施例中,框内RFC单板和CPRI映射与解映射模块之间的通信消息和帧格式需要采用类CPRI(simple CPRI,sCPRI)帧映射,控制字为sCPRI消息,需要根据汇聚出纤板的光口数来确定I/Q数据的个数。
在本发明的一些实施例中,请参阅图4所示,综合接入系统100,还包括:第二BBU106和第二RFC单板107,第二RFC单板107插在第二BBU106的插槽上,其中,第一BBU为主BBU,第二BBU为从BBU;第一BBU通过 第二CPRI通道和第二BBU相连接。其中,第二BBU和第二RFC单板之间的连接方式与第一BBU和第一RFC单板之间的连接方式相类似,请参阅前述实施例的描述。在综合接入系统内设置有多个BBU时,其中一个BBU作为主BBU,其余BBU作为从BBU,主BBU和从BBU之间使用第二CPRI通道相连接。在图4所示场景下,远端CPRI数据交换单元直接和第二BBU相连接,第二BBU再通过第二CPRI通道和第一BBU相连接。
在本发明的一些实施例中,第一BBU包括:第一基带板,第二BBU包括:第二接口板;第一基带板和第二接口板之间通过第二CPRI通道相连接;第一BBU和第二BBU通过第二CPRI通道完成同相正交I/Q数据、时钟信息(Clock Information,CI)、CPRI控制字、OM消息的交互。请参阅图5所示,第一BBU上设置有第一基带板和主控板,第二BBU上设置有第二接口板和第二基带板,则第一基带板和第二接口板之间通过第二CPRI通道相连接。
现有技术中两个BBU框间的互连需要连接两类线:1根是I/Q互联线,完成CPRI I/Q数据的框间转发,汇聚和时钟恢复,1根是CI互联线,完成CPRI控制字,OM消息,时钟信息(也称为时钟同步信息)的交互。其中,时钟信息是指CPRI控制字里的时间信息。本发明实施例中通过CPRI通道复用技术,扩展CPRI通道实现只通过CPRI互联线就可以完成框间相关数据的转发和汇聚,时钟恢复,CPRI控制字,OM消息的交互。本发明实施例中通过CPRI通道复用技术中,通过快速以太网通道完成框间OM消息以及时钟信息的互传。
本发明的一些实施例中,第一BBU和第二BBU之间只需要使用第二CPRI通道连接即可,对于主BBU和从BBU之间进行框间通信优化,支持主BBU和多个从BBU的组网拓扑。进一步的,在本发明的一些实施例中,综合接入系统包括的第二BBU为N个,N为大于或等于2的自然数;第一BBU通过N个的第二CPRI通道分别和N个的第二BBU相连接,其中,第一BBU通过一个第二CPRI通道连接一个第二BBU。请参阅图6所示,一个主BBU分别使用CPRI通道和多个从BBU相连接,每个从BBU再使用CPRI通道连接RRU。在现有技术中只能支持1个BBU和1个BBU间的通信,本发明实施例中扩展CPRI拓扑管理协议,支持1个主BBU对多个从BBU的组网拓扑。举例说明如下,请参阅图7所示,以一个主BBU通过CPRI通道连接2个从 BBU为例,在主BBU内设置有多个基带板、主控板(主)和直流电源(Direct Current,DC),从BBU内设置插入有多个RFC单板、主控板(从)、接口板和直流电源,主BBU通过一个基带板和一个从BBU的接口板相连接,主BBU通道另一个基带板和另一个从BBU的接口板相连接。
进一步的,在本发明的一些实施例中,请参阅图8所示,综合接入系统100,还包括:RRU108和pRRU109,其中,RRU108通过第三CPRI通道和第二BBU106相连接,pRRU109通过第四CPRI通道和远端CPRI数据交换单元102相连接。
在本发明的另一些实施例中,请参阅图9所示,图9为本发明实施例提供的一种综合接入系统的系统架构部署示意图,以综合接入系统内设置有一个主BBU和一个从BBU为例,第一BBu通过CPRI通道和第二BBU相连接,第二BBU和RRU、RHUB相连接,RHUB再通过CPRI-E接口和pRRU相连接,第一BBU通过OM通道和基站网管子系统相连接,第一RFC单板插在第一BBU的插槽上,直放站网管对象功能模块设置在基站网管子系统内。
在本发明的一些实施例中,请参阅图10所示,图10为本发明实施例提供的综合系统内使用主BBU和从BBU的实现场景示意图,靠近中心机房的近端BBU为主BBU,主BBU通过CPRI通道和从BBU相连接,从BBU是远端,例如从BBU设置在楼宇内,从BBU通过CPRI通道和RHUB相连接。通过1个主BBU带多个从BBU,支持核心机房统一设备到周边的覆盖。
在本发明的一些实施例中,第一BBU还包括:主控板,主控板通过OM通道和基站网管子系统相连接。请参阅图11所示,为本发明实施例提供的综合接入系统使用一个BBU的实现场景示意图,直放站网管对象功能模块设置在基站网管子系统内,基站网管子系统连接和第一BBU内的主控板上,第一BBU内的基带板再和RHUB相连接。
在本发明的一些实施例中,第一BBU包括:M个槽位,M个槽位通过高速互连线实现两两槽位之间的互连,每一个槽位都能够用于汇聚出光纤,M为大于或等于2的自然数。通过两两槽位之间互连使得每个槽位都能够用于汇聚出光纤,提高出纤效率。举例说明如下,请参阅图12-a和图12-b所示,图12-a为现有技术中BBU内的多个槽位分别连接同一个槽位连接的示意图,图12-b为本发明实施例提供的BBU内的多个槽位之间通过高速互连线连接的示意 图。以BBU内设置的槽位个数为7个为例,分别为槽位0、槽位1、槽位2、槽位3、槽位4、槽位5、槽位6,现有技术中槽位0、槽位1、槽位2、槽位3、槽位4、槽位5分别和槽位6相连接,只支持主控板的槽位(即槽位6)汇聚出光纤,背板板间最大能力4.9G,汇聚板最大出纤能力10根。本发明实施例中RFC单板卡支持背板全交换,通常背板支持10.1G*2全交换,槽位0、槽位1、槽位2、槽位3、槽位4、槽位5之间两两槽位之间都连接有高速互连线,槽位0、槽位1、槽位2、槽位3、槽位4、槽位5也和槽位6相连接,因此可以支持全面板出光纤,出纤能够达到36根,且支持接口板以及基带板汇聚出光纤。
在本发明的一些实施例中,基站网管子系统除了包括直放站网管对象功能模块之后,基站网管子系统还包括:至少两种不同网络制式的网管对象功能模块。举例说明如下,请参阅图13所示,基站网管子系统内包括有直放站网管对象功能模块,或者基站网管子系统内包括有直放站网管对象功能模块、通用移动通信系统(Universal Mobile Telecommunications System,UMTS)网管对象功能模块、长期演进(Long Term Evolution,LTE)网管对象功能模块,从而支持BBU和直放站的统一运维,本发明实施例中基站网管子系统作为一个独立网元,使用一个独立IP地址,BBU和直放站的统一运维,使用一套运维界面。如图14所示,举例说明如下,将直放站网管子系统退化为基站网管子系统内的一个网管对象功能模块,BBU和直放站的统一运维,使用一套运维界面,客户运维感受一致,从而节省运维成本和人力。其中,图14中,基站网管子系统的逻辑架构可以分为:全球移动通信系统(Global System for Mobile Communication)网管对象功能模块、UMTS网管对象功能模块、LTE网管对象功能模块、直放站网管对象功能模块和基站公共模块,该基站公共模块实现设备管理和载波管理,基站网管子系统内的直放站网管对象功能模块通过子带、小区映射,实现RFC单板和小区的通信,通过扇区设备组以及对应的扇区设备向对应的pRRU传输数据。
在本发明实施例中,由前述多个示例的说明可知,本发明实施例提供的综合接入系统中,可以支持RFC单板和BBU的共框,BBU和RFC单板共机框、共电源,BBU和RFC单板间走背板传输。支持RFC单板和BBU共框场景下,通过基带板完成I/Q汇聚出光纤。支持通过RFC单板完成分布式数字合分路 及CPRI压缩/解压缩功能。支持框间CPRI互联,支持OM消息、CPRI共通道传输,支持通过光纤拉远传输。支持RFC单板的高速互连通道,完成I/Q转发和汇聚。基站网管子系统和直放站网管对象功能模块通过一个独立网元实现,只需要管理一个基站网管子系统网元,一个运维节点和传输资源,支持共主控的配置,运维体验保持一致,公共资源和故障管理由一个主控统一完成。
通过前述实施例对本发明的举例说明可知,综合接入系统包括:第一BBU、远端CPRI数据交换单元、第一RFC单板、直放站网管对象功能模块、基站网管网管子系统。其中,第一RFC单板插在第一BBU的插槽上,直放站网管对象功能模块设置在基站网管子系统内。第一BBU通过第一CPRI通道和远端CPRI数据交换单元相连接,第一BBU通过OM通道和基站网管子系统相连接。第一RFC单板包括:数字上下变频模块、数字合分路模块、CPRI压缩与解压缩模块,其中,数字上下变频模块和数字合分路模块相连接,数字合分路模块和CPRI压缩与解压缩模块相连接。第一BBU包括:CPRI映射与解映射模块,CPRI映射与解映射模块和CPRI压缩与解压缩模块相连接。在本发明实施例中综合接入系统中不需要设置DCU作为汇聚单元,而是将第一BBU作为综合接入系统内的汇聚单元,远端CPRI数据交换单元、基站网管网管子系统都直接与第一BBU相连接,并且第一RFC单板插在第一BBU的插槽上,实现第一RFC单板和第一BBU的共框,RFC不需要单独配置,现有技术中由DCU实现的功能通过第一RFC单板上设置的数字合分路模块、CPRI压缩与解压缩模块来完成,从而在综合接入系统内去除DCU这个独立装置后并不影响整个系统的正常功能。并且本发明实施例中直放站网管对象功能模块作为基站网管网管子系统内的一个单独功能模块,基站网管网管子系统和第一BBU之间使用OM通道连接,从而减少了OM通道的使用个数,节省系统的部署成本。直放站网管对象功能模块属于基站网管子系统内的一部分,因此可以在基站网管子系统内实现直放站网管对象功能模块和基站网管子系统的共同维护,实现同时对共享设备进行载波资源分配,综合接入系统的可靠性和可维护性得到很大提高。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同 时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的系统实施例附图中,装置之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。

Claims (10)

  1. 一种综合接入系统,其特征在于,包括:第一基带处理单元BBU、远端通用公共无线接口CPRI数据交换单元、第一射频卡RFC单板、直放站网管对象功能模块、基站网管网管子系统,其中,
    所述第一RFC单板插在所述第一BBU的插槽上,所述直放站网管对象功能模块设置在所述基站网管子系统内;
    所述第一BBU通过第一CPRI通道和所述远端CPRI数据交换单元相连接,所述第一BBU通过操作管理OM通道和所述基站网管子系统相连接;
    所述第一RFC单板包括:数字上下变频模块、数字合分路模块、CPRI压缩与解压缩模块,其中,所述数字上下变频模块和所述数字合分路模块相连接,所述数字合分路模块和所述CPRI压缩与解压缩模块相连接;
    所述第一BBU包括:CPRI映射与解映射模块,所述CPRI映射与解映射模块和所述CPRI压缩与解压缩模块相连接。
  2. 根据权利要求1所述的综合接入系统,其特征在于,所述第一RFC单板包括:多个RFC模块,其中,每个RFC模块包括:一个数字上下变频模块、一个数字合分路模块、一个CPRI压缩与解压缩模块,所述每个RFC模块内的一个CPRI压缩与解压缩模块都和所述CPRI映射与解映射模块相连接。
  3. 根据权利要求1所述的综合接入系统,其特征在于,所述CPRI映射与解映射模块,具体为所述第一BBU内的第一接口板或者第一基带板。
  4. 根据权利要求1所述的综合接入系统,其特征在于,所述第一BBU还包括:主控板,所述主控板通过所述OM通道和所述基站网管子系统相连接。
  5. 根据权利要求1所述的综合接入系统,其特征在于,所述综合接入系统,还包括:第二BBU和第二RFC单板,所述第二RFC单板插在所述第二BBU的插槽上,其中,所述第一BBU为主BBU,所述第二BBU为从BBU;
    所述第一BBU通过第二CPRI通道和所述第二BBU相连接。
  6. 根据权利要求5所述的综合接入系统,其特征在于,所述综合接入系统包括的第二BBU为N个,所述N为大于或等于2的自然数;
    所述第一BBU通过N个的所述第二CPRI通道分别和所述N个的第二BBU相连接,其中,所述第一BBU通过一个所述第二CPRI通道连接一个第二BBU。
  7. 根据权利要求5所述的综合接入系统,其特征在于,所述第一BBU包括:第一基带板,所述第二BBU包括:第二接口板;
    所述第一基带板和所述第二接口板之间通过所述第二CPRI通道相连接;
    所述第一BBU和所述第二BBU通过所述第二CPRI通道完成同相正交I/Q数据、时钟信息CI、CPRI控制字、OM消息的交互。
  8. 根据权利要求5至7中任一项所述的综合接入系统,其特征在于,所述综合接入系统,还包括:频拉远单元RRU和微射频拉远单元pRRU,其中,
    所述RRU通过第三CPRI通道和所述第二BBU相连接,
    所述pRRU通过第四CPRI通道和所述远端CPRI数据交换单元相连接。
  9. 根据权利要求1至8中任一项所述的综合接入系统,其特征在于,所述第一BBU包括:M个槽位,所述M个槽位通过高速互连线实现两两槽位之间的互连,每一个槽位都能够用于汇聚出光纤,所述M为大于或等于2的自然数。
  10. 根据权利要求1至9中任一项所述的综合接入系统,其特征在于,所述基站网管子系统除了包括所述直放站网管对象功能模块之后,所述基站网管子系统还包括:至少两种不同网络制式的网管对象功能模块。
PCT/CN2016/108047 2016-11-30 2016-11-30 一种综合接入系统 WO2018098696A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16923103.2A EP3537754B1 (en) 2016-11-30 2016-11-30 Integrated access system
PCT/CN2016/108047 WO2018098696A1 (zh) 2016-11-30 2016-11-30 一种综合接入系统
CN201680091081.8A CN109983799B (zh) 2016-11-30 2016-11-30 一种综合接入系统
CA3045351A CA3045351C (en) 2016-11-30 2016-11-30 Integrated access system
US16/424,802 US10979920B2 (en) 2016-11-30 2019-05-29 Integrated access system with baseband unit and base station network management

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108047 WO2018098696A1 (zh) 2016-11-30 2016-11-30 一种综合接入系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/424,802 Continuation US10979920B2 (en) 2016-11-30 2019-05-29 Integrated access system with baseband unit and base station network management

Publications (1)

Publication Number Publication Date
WO2018098696A1 true WO2018098696A1 (zh) 2018-06-07

Family

ID=62241125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108047 WO2018098696A1 (zh) 2016-11-30 2016-11-30 一种综合接入系统

Country Status (5)

Country Link
US (1) US10979920B2 (zh)
EP (1) EP3537754B1 (zh)
CN (1) CN109983799B (zh)
CA (1) CA3045351C (zh)
WO (1) WO2018098696A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022001316A1 (zh) * 2020-06-30 2022-01-06 中兴通讯股份有限公司 第三方设备的接入方法、系统、微射频拉远单元
EP3874701A4 (en) * 2018-10-31 2022-07-27 John Mezzalingua Associates, LLC ORCHESTRATOR AND LINK STRUCTURE MAPPER FOR A VIRTUAL WIRELESS BASE STATION

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10932176B1 (en) * 2019-12-17 2021-02-23 Sprint Communications Company L.P. Wireless access node fault recovery using integrated access and backhaul

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391485A (zh) * 2013-08-20 2013-11-13 武汉虹信通信技术有限责任公司 一种多业务接入的数字全光分布式系统
CN103686814A (zh) * 2013-12-25 2014-03-26 北京北方烽火科技有限公司 基带单元、基站以及基站系统
US20140378047A1 (en) * 2013-06-20 2014-12-25 Aviat U.S., Inc. Systems and methods for a fronthaul network
CN105763232A (zh) * 2014-12-15 2016-07-13 华为技术有限公司 通信装置和通信系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160301141A1 (en) * 2013-05-01 2016-10-13 Byron del Castillo Radio Communication System With Antenna Array
EP3108675B1 (en) * 2014-02-21 2017-08-23 Telefonaktiebolaget LM Ericsson (publ) Pico-rru-based network implementation for facilitating 6lowpan data access
US9369919B2 (en) * 2014-02-21 2016-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Pico-RRU-based network implementation for facilitating 6LoWPAN data access
EP3143830A4 (en) * 2014-05-12 2018-01-03 Intel Corporation C-ran front-end preprocessing and signaling unit
US10608734B2 (en) * 2015-10-22 2020-03-31 Phluido, Inc. Virtualization and orchestration of a radio access network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140378047A1 (en) * 2013-06-20 2014-12-25 Aviat U.S., Inc. Systems and methods for a fronthaul network
CN103391485A (zh) * 2013-08-20 2013-11-13 武汉虹信通信技术有限责任公司 一种多业务接入的数字全光分布式系统
CN103686814A (zh) * 2013-12-25 2014-03-26 北京北方烽火科技有限公司 基带单元、基站以及基站系统
CN105763232A (zh) * 2014-12-15 2016-07-13 华为技术有限公司 通信装置和通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537754A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3874701A4 (en) * 2018-10-31 2022-07-27 John Mezzalingua Associates, LLC ORCHESTRATOR AND LINK STRUCTURE MAPPER FOR A VIRTUAL WIRELESS BASE STATION
US11689939B2 (en) 2018-10-31 2023-06-27 John Mezzalingua Associates, LLC Orchestrator and interconnection fabric mapper for a virtual wireless base station
WO2022001316A1 (zh) * 2020-06-30 2022-01-06 中兴通讯股份有限公司 第三方设备的接入方法、系统、微射频拉远单元

Also Published As

Publication number Publication date
EP3537754A1 (en) 2019-09-11
EP3537754B1 (en) 2021-08-04
US20190281478A1 (en) 2019-09-12
US10979920B2 (en) 2021-04-13
CN109983799B (zh) 2021-06-01
EP3537754A4 (en) 2019-09-11
CA3045351C (en) 2022-10-18
CA3045351A1 (en) 2018-06-07
CN109983799A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN110049512B (zh) 一种前传网络数据处理装置及方法
US9692514B2 (en) Network node and a method therein enabling a first unit to connect or to be connected ad-hoc to a second unit
CN107846699B (zh) 多板卡lte网关的数据处理方法及系统
CN109963290B (zh) 多业务室内覆盖系统及工作方法
WO2011063740A1 (zh) 基站、网络系统及实现方法
US10979920B2 (en) Integrated access system with baseband unit and base station network management
WO2018227346A1 (zh) 一种综合接入系统、配置方法和基带处理单元
US20150222429A1 (en) Mutually secure multi-tenant optical data network and method
US20240163209A1 (en) Circuitry for Demarcation Devices and Methods Utilizing Same
EP3386230B1 (en) Communications system, control apparatus, and network management server
CN109548038B (zh) 一种连接方法、配置更新方法、控制面设备和用户面设备
JP7291204B2 (ja) サービス構成方法、装置及びシステム
CN105451272A (zh) 数据交互方法、基带处理单元、射频拉远单元及中继单元
US11184054B2 (en) Distributed antenna system using reconfigurable frame structure and method of operation thereof
JP7399093B2 (ja) 無線通信ネットワークに関するフロントホールシステム
CN102546022B (zh) 一种光纤传输子系统的传输方法
WO2015085572A1 (zh) 分布式天线系统及近端机
CN218959131U (zh) 组网架构及基站
CN117098141B (zh) 基于扩展型皮基站的室分覆盖系统及方法
US11452176B1 (en) Smart distributed antenna systems, platforms, and methods
KR102155140B1 (ko) 통신 노드와 이의 동작 방법, 및 이를 포함하는 분산 안테나 시스템
JP2012147193A (ja) 基地局システム
KR101462433B1 (ko) 무선 액세스 네트워크에서 회선을 재설정하기 위한 회선 재설정 시스템 및 그 방법
CN206023782U (zh) 一种集成多种通信制式的专网光纤分布系统
CN106804054B (zh) 一种虚拟化基站接入网络共享传输资源的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3045351

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016923103

Country of ref document: EP

Effective date: 20190606