WO2022001332A1 - 用于nsa的组网装置、方法及移动通信系统 - Google Patents

用于nsa的组网装置、方法及移动通信系统 Download PDF

Info

Publication number
WO2022001332A1
WO2022001332A1 PCT/CN2021/090242 CN2021090242W WO2022001332A1 WO 2022001332 A1 WO2022001332 A1 WO 2022001332A1 CN 2021090242 W CN2021090242 W CN 2021090242W WO 2022001332 A1 WO2022001332 A1 WO 2022001332A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
radio frequency
signaling
mixed
base station
Prior art date
Application number
PCT/CN2021/090242
Other languages
English (en)
French (fr)
Inventor
王磊
钟小武
邓娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022001332A1 publication Critical patent/WO2022001332A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present disclosure relate to the field of wireless communication technologies, and in particular, to a networking device, a method, and a mobile communication system for an NSA.
  • the 5G era has arrived, with the expected speed of gigabit per second.
  • the 5G network architecture is very simple, that is, the 5G base station is connected to the 5G core network, which is the ultimate form of the 5G network architecture and can support all applications of 5G network connection.
  • the network architecture is simple, building such a 5G network requires building a large number of base stations and 5G core networks, which is expensive.
  • China Mobile alone has nearly 2.3 million 4G base stations, and it will cost a lot to build a 5G network of the same size.
  • 4G networks will carry 88% of the world's traffic in 2020, and even by 2025, the number of 4G users in the world will still account for 50%-60%. Therefore, compared with 4G networks, the industry is more cautious in investing in 5G.
  • Non-independent networking NSA (English full name: Non Standalone) is a kind of 5G service provided by 4G and 5G hybrid networking.
  • the currently disclosed NSA networking basically focuses on how the terminal chooses the network, and rarely explains how to introduce the 5G network on the basis of using the existing 2G/3G/4G base station equipment. Therefore, how to introduce 5G network on the basis of existing base station equipment has become an urgent problem to be solved.
  • the purpose of the present disclosure is to provide a networking device, method and mobile communication system for NSA, which can introduce a 5G network on the basis of existing base station equipment, improve equipment utilization, and reduce base station construction costs.
  • a networking device for NSA including a first baseband unit, a second baseband unit, and a mixed-mode radio frequency module, the second baseband unit is configured to process at least 5G baseband data, and the first baseband unit is configured to process at least 5G baseband data.
  • the baseband unit is configured to process other baseband data different from the 5G baseband data, and a first communication link is constructed between the first baseband unit, the second baseband unit and the mixed-mode radio frequency module; A second communication link is constructed between the baseband unit and the mixed-mode radio frequency module; and a main signaling link is constructed between the first baseband unit and the second baseband unit.
  • a networking method for NSA is proposed, which is applicable to a networking device including a first baseband unit, a second baseband unit and a mixed-mode radio frequency module, the method comprising: configuring the second baseband unit At least process 5G baseband data, and configure the first baseband unit to process other baseband data different from 5G baseband data; construct a first baseband unit between the first baseband unit, the second baseband unit and the mixed-mode radio frequency module; a communication link; a second communication link is constructed between the second baseband unit and the mixed-mode radio frequency module; a main signaling link is constructed between the first baseband unit and the second baseband unit .
  • a wireless communication system including the above-mentioned networking device.
  • FIG. 1 is a schematic diagram of the architecture of an NSA networking using 4G and 5G networking provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a networking device for an NSA provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of yet another networking device for NSA provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of yet another networking device for NSA provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a corresponding relationship between a first topology relationship, a second topology relationship, and a third topology relationship in yet another networking device for NSA provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of signaling transmission on a main signaling link, a first communication link, and a second communication link in yet another networking device for NSA provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of antenna data transmission on the main signaling link, the first communication link, and the second communication link in yet another networking device for NSA according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of signaling transmission on a main signaling link, a first communication link, and a second communication link in yet another networking device for NSA provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of steps of a networking method for an NSA provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of steps provided by an embodiment of the present disclosure to provide another networking method for NSA.
  • FIG. 11 is a schematic diagram of steps of yet another networking method for NSA provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of steps of yet another networking method for NSA provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of steps of yet another networking method for NSA provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of steps of yet another networking method for NSA provided by an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of steps of yet another networking method for NSA provided by an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of steps of yet another networking method for NSA provided by an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of steps of yet another networking method for NSA provided by an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of steps of yet another networking method for NSA provided by an embodiment of the present disclosure.
  • 90-4G core network 10-first baseband unit; 20-second baseband unit; 30-mixed-mode radio frequency module; 110-first baseband processing module; 210-second baseband processing module; 120-first base station control module ; 220 - the second base station control module; 111 - the first signaling forwarding module; 211 - the second signaling forwarding module; 311 - the first radio frequency device; 321 - the second radio frequency device; 112 - the first baseband processor; 212 - second baseband processor; A - signalling on primary signalling link; B - signalling on second communication link; C - signalling on first communication link; D - second communication link E-antenna data on the first communication link; A'-signaling between the first base station control module and the mixed-mode radio frequency module temporarily occupying the main signaling link; B'-temporarily occupying the first Signaling between the first base station control module and the mixed-mode radio frequency module of the second communication link.
  • the networking device for NSA of the present disclosure is suitable for the integration of 5G networks and other wireless mobile networks different from 5G networks, such as 2G/3G/4G, and can fully utilize existing base station resources on the basis of The introduction of 5G baseband processing equipment improves the utilization rate of old base stations and reduces the cost of base station construction.
  • the networking device can be connected to a 4G core network or a 5G core network according to the matched device performance. Each step of the networking device for NSA and the networking method for NSA of the present disclosure will be described in detail below.
  • FIG. 2 a schematic structural diagram of a networking device for NSA according to the present disclosure is shown. It can be understood that the networking device for NSA of the present disclosure belongs to a part of the wireless communication system, and belongs to the 4G baseband processing device and the 5G baseband processing device sharing a radio frequency unit to realize the transmission and reception of antenna data.
  • the networking device includes: a first baseband unit 10 , a second baseband unit 20 and a mixed-mode radio frequency module 30 .
  • the second baseband unit 20 is configured to process at least 5G baseband data
  • the first baseband unit 10 is configured to process other baseband data than the 5G baseband data.
  • the second baseband unit 20 can process at least 5G baseband data as a 5G baseband processing device, and the first baseband unit 10 can process 2G/3G/4G baseband data as another baseband processing device.
  • the unit here can be a baseband processing device or multiple basebands Handling equipment.
  • a first communication link is constructed between the first baseband unit 10 , the second baseband unit 20 and the mixed-mode radio frequency module 30 .
  • the first baseband unit 10 constructs a first communication link via the second baseband unit 20 to the mixed-mode radio frequency module 30, in order to realize information transmission different from 5G baseband processing equipment such as 4G baseband processing equipment and radio frequency equipment, and the information that can be transmitted Including signaling, baseband data other than 5G, and corresponding antenna data.
  • the realization of the first communication link can realize the transmission of other baseband data on the 5G baseband processing device.
  • the main function of the mixed-mode radio frequency module 30 is at least to realize the transmission and reception of 4G and 5G antenna data at the same time.
  • the mixed-mode radio frequency module 30 may include multiple radio frequency devices, and these radio frequency devices are connected in parallel to the second baseband unit 20 after various cascades. superior.
  • a second communication link is constructed between the second baseband unit 20 and the mixed-mode radio frequency module 30. Different from the first communication link, the information transmission between the 5G baseband processing device and the radio frequency device is realized.
  • the information that can be transmitted includes signaling, 5G baseband data and corresponding antenna data.
  • the second baseband unit 20 realizes the transmission of data different from that of the 5G baseband, it can realize dual-link transmission in which the same mixed-mode radio frequency module receives data from different antennas.
  • a main signaling link is constructed between the first baseband unit 10 and the second baseband unit 20 for sharing information between the two baseband units. It should be noted that the main signaling link transmits signaling, which ensures the coordinated work of information and resource sharing between the first baseband unit 10 and the second baseband unit 20 .
  • the first baseband unit and the second baseband unit in the networking device for NSA of the present disclosure share a mixed-mode radio frequency module, and the second baseband unit exchanges and shares information with the first baseband unit through the main signaling link, so that the second baseband unit
  • the first baseband unit is allocated an antenna data position on its own interconnection optical port and radio frequency optical port. Therefore, the networking device can introduce 5G baseband processing equipment on the basis of using existing 2G/3G/4G base station equipment (including 2G/3G/4G baseband units and mixed-mode radio frequency modules) to realize NSA networking and improve existing base station equipment.
  • the utilization rate of the base station is reduced, and the construction cost of the base station is reduced.
  • a second topology relationship is configured between the second baseband unit 20 and the mixed-mode radio frequency module 30 , and the second baseband unit 20 and The mixed-mode radio frequency modules 30 are communicatively connected according to the second topological relationship.
  • a first topological relationship is configured between the first baseband unit 10 and the mixed-mode radio frequency module 30 , and the first topological relationship and the second topological relationship are set in a one-to-one correspondence.
  • the purpose of configuring the topology relationship is to ensure that the second communication link between the second baseband unit 20 and the mixed-mode radio frequency module 30 is open, considering that the first baseband unit 10 passes through the second baseband unit 20 to the mixed-mode radio frequency module 30.
  • the establishment of a communication link The second baseband unit 20 and the mixed-mode radio frequency module 30 are communicatively connected according to the second topological relationship, and the second baseband unit 20 can allocate resources to the baseband and the mixed-mode radio frequency module 30 based on the second topological relationship to open up the second communication link.
  • the mixed-mode radio frequency module 30 may include multiple radio frequency devices.
  • the numbers RU51 and RU11 of the radio frequency devices are different because they are connected to different baseband units, but they are actually the same mixed-mode radio frequency module, which is connected in FIG. 5 .
  • Different numbers of the radio frequency devices RU of the same baseband unit represent radio frequency devices with different ID numbers, such as radio frequency devices RU51 and radio frequency RU52 connected in series and configured on the radio frequency optical port 1 of the first baseband unit 10 .
  • the application uses the same mixed-mode radio frequency module, which is respectively configured to the first baseband unit and the second baseband unit, wherein the mixed-mode radio frequency module and the first baseband unit are connected in real and virtual connection, and the mixed-mode radio frequency module is connected to the first baseband unit. It is a real connection with the second baseband unit.
  • a first topology relationship is configured between the first baseband unit 10 and the mixed-mode radio frequency module 30 , and the first topology relationship is a virtual link, that is, it is not actually connected after configuration, and the purpose is for the first baseband unit 10 Allocate resources on the baseband and mixed-mode radio frequency modules 30 according to the configuration of the first topology relationship.
  • the first topological relationship includes the topological shapes in which different radio frequency devices in the mixed-mode radio frequency module 30 are respectively connected to the radio frequency optical ports of the first baseband unit 10 after completing their internal cascade connections, and the topological relationship involves the radio frequency devices in the cascaded positions. model, and the number of the optical port configured to be connected to the radio frequency optical port of the first baseband unit 10 .
  • the second topological relationship includes the topological shapes of different radio frequency devices in the mixed-mode radio frequency module 30 connected to the radio frequency ports of the second baseband unit 20 after completing their internal cascading, and the topological relationship involves the radio frequency at the cascading position. The model of the device, and the number of the optical port configured to be connected to the radio frequency optical port of the second baseband unit 20 .
  • the first topological relationship and the second topological relationship are set to be in one-to-one correspondence, that is, the topological shapes of the first topological relationship and the second topological relationship are the same, the models of the radio frequency devices involved in the cascade positions in the topological relationship are the same, and the configuration is connected to the second baseband
  • the optical port numbers of the radio frequency optical ports of the unit 20 correspond. The purpose of this is to use the same topological relationship to allow the first baseband unit and the second baseband unit to allocate the same baseband and resources of their corresponding mixed-mode radio frequency modules, so as to prepare for further opening of the first communication link.
  • the first baseband processing module BPM (English full name: Baseband Process Module) and the second BPM in the figure are an embodiment of the first baseband processing module 110 and the second baseband processing module 210 respectively, which will be described in detail below.
  • a third topological relationship is configured between the first baseband unit 10 and the second baseband unit 20, and the first baseband unit 10 and the second baseband unit Communication lines are set between 20 according to the third topological relationship, and one of the communication lines is used as the main signaling link.
  • the purpose of configuring the third topology relationship is to mobilize the first baseband unit 10 and the second baseband unit 20 to allocate corresponding resources to realize the third topology relationship.
  • a communication line is formed between the unit 10 and the second baseband unit 20 .
  • One of the communication lines is set as the main signaling link for transmitting signaling between the first baseband unit and the second baseband unit to share messages.
  • the first baseband unit 10 includes a first baseband processing module 110 and a first base station control module 120
  • the second baseband unit 20 includes a second baseband processing module module 210 and the second base station control module 220
  • the first baseband processing module 110 includes a first signaling forwarding module 111
  • the second baseband processing module 210 includes a second signaling forwarding module 211
  • the first base station control module 120 is the first signaling forwarding module 210.
  • the forwarding module 111 configure a signaling forwarding route on the first communication link, the main signaling link, and the second base station control module 220 for the second signaling forwarding module 211 on the first communication link, the main signaling link, the second Two communication links configure signaling forwarding routes.
  • the first baseband unit 10 (full English name: Base Band Unit, abbreviated BBU) includes a first baseband processing module BPM (full English name: Baseband Process Module, abbreviated BPM) and a first base station control module CCM (full English name: Clock Control Module, abbreviated as CCM), the first BPM includes a first signaling forwarding module.
  • BPM full English name: Baseband Process Module
  • CCM full English name: Clock Control Module, abbreviated as CCM
  • the first BPM includes a first signaling forwarding module.
  • 30 is a 4&5G mixed-mode radio frequency module (full English name: Radio Unit, abbreviation RU).
  • the second BBU includes a second BPM and a second CCM, and the second BPM includes a second signaling forwarding module.
  • the first BPM completes the processing of 2G/3G/4G baseband data, realizes the conversion of baseband data and antenna data, and the antenna data is input/output from the radio frequency optical port of the first BPM.
  • the second BPM completes the processing of 5G baseband data, realizes the conversion of baseband data and antenna data, and the antenna data is input/output from the radio frequency optical port of the second BPM.
  • the first CCM and the second CCM are connected through a clock synchronization cable, and the first BPM and the second BPM can be connected through optical fiber communication.
  • the first CCM and the second CCM respectively complete the device management, clock management and transmission management in the respective baseband units, specifically:
  • the first/second CCM is responsible for the power-on management, version loading, and communication link management of each module in the respective baseband unit;
  • the first/second CCM synchronizes with the clock source to provide the reference clock for the respective baseband units
  • the first/second CCM is connected to the core network to complete the transmission of service data and the core network.
  • the interconnecting optical fibers between the first baseband processing module and the second baseband processing module there is only one optical fiber as the main signaling link, which is used to transmit the connection between the first baseband unit BBU and the second baseband unit BBU. Signaling between devices, such as device configuration, shared device status and other information. All interconnecting fibers between the first baseband processing module and the second baseband processing module can transmit signaling between the first baseband unit and the mixed-mode radio frequency module, such as a configuration message of the first baseband unit to the mixed-mode radio frequency module RU.
  • the signaling on the main signaling link includes signaling between the first base station control module 120 and the second base station control module 220
  • the first Signaling A on one communication link includes the signaling between the first base station control module 120 and the mixed-mode radio frequency module
  • signaling B on the second communication link includes the signal between the second base station control module 220 and the mixed-mode radio frequency module
  • the first signaling forwarding module 111 and the second signaling forwarding module 211 are configured to forward the signaling between the first base station control module 120 and the second base station control module 220, respectively.
  • the first signaling forwarding module 111 and the second signaling forwarding module 211 are configured to forward the signaling between the first base station control module 120 and the mixed-mode radio frequency module, respectively.
  • the second signaling forwarding module 211 is configured to forward the signaling between the second base station control module 220 and the mixed-mode radio frequency module.
  • the first baseband processing module BPM and the second baseband processing module BPM each have a signaling forwarding module.
  • the first signaling forwarding module of the first baseband processing module forwards the signaling sent by the first base station control CCM to the second base station control CCM from the main signaling link to the second signaling forwarding in the second baseband processing module BPM module, which is then forwarded by the second signaling forwarding module to the second base station control module CCM, and the signaling of the second base station control module CCM received from the main signaling link is forwarded to the first base station control module CCM.
  • the first signaling forwarding module of the first baseband processing module BPM forwards the signaling sent by the first base station control module CCM to the mixed-mode radio frequency module RU from the interconnected optical fiber link to the second baseband processing BPM, and receives the interconnected optical fiber link.
  • the received signaling of the mixed-mode radio frequency module RU is forwarded to the first base station control module CCM.
  • the second signaling forwarding module in the second baseband processing module BPM forwards the signaling sent by the second base station control module CCM to the first base station control module from the main signaling link to the first baseband processing module BPM, and forwards the signaling from the main signaling link to the first baseband processing module BPM.
  • the signaling of the first base station control module CCM received by the signaling link is forwarded to the second base station control module CCM.
  • the second signaling forwarding module in the second baseband processing module BPM forwards the signaling sent by the second base station control module CCM to the mixed-mode radio frequency module RU from the radio frequency fiber link between the second baseband unit and the mixed-mode radio frequency module to the The mixed-mode radio frequency module RU, and forwards the signaling sent by the mixed-mode radio frequency module RU to the second baseband unit received by the radio frequency optical fiber link to the second base station control module CCM.
  • the second signaling forwarding module of the second base station control module BPM also forwards the signaling sent by the first base station control module CCM to the mixed-mode radio frequency module RU received on the interconnected optical fiber link from the radio frequency optical fiber link to the mixed-mode radio frequency module RU, and forward the signaling sent by the mixed-mode radio frequency module RU to the first baseband unit received by the radio frequency optical fiber link to the first baseband processing module BPM through the interconnected optical fiber link.
  • the first signaling forwarding module 111 is configured to forward the communication between the first base station control module 120 and the mixed-mode radio frequency module through the main signaling link signaling to the second base station control module 220
  • the second signaling forwarding module 211 is configured to transmit the signaling between the first base station control module 120 and the mixed-mode radio frequency module between the second base station control module 220 and the mixed-mode radio frequency module Forward.
  • A' represents the signaling between the first base station control module and the mixed-mode radio frequency module that temporarily occupies the main signaling link;
  • B' represents the first base station control module and the mixed-mode radio frequency that temporarily occupy the second communication link Signaling between modules.
  • the interconnecting optical fiber between the first baseband processing module BPM and the second baseband processing module BPM has one and only one optical fiber as the main signaling link, which is used to transmit the signaling between the first baseband unit BBU and the second baseband unit BBU Such as device configuration, shared device information, etc.
  • the signaling between the first baseband unit BBU and the second mixed-mode radio frequency module RU is also transmitted through the main signaling link as a type of signaling between the first baseband unit BBU and the second baseband unit BBU.
  • the configuration message of the base station control module to the mixed-mode radio frequency module RU is also transmitted through the main signaling link as a type of signaling between the first baseband unit BBU and the second baseband unit BBU.
  • the first baseband processing module 110 includes a first radio frequency optical port and a first interconnecting optical port (see numbers 1-6, where only The first three 1-3 are applicable), the second baseband processing module includes a second interconnection optical port (refer to No. 1-3) and a second radio frequency optical port (refer to No.
  • the mixed-mode radio frequency module 30 includes a first radio frequency channel (on the radio frequency device on the virtual configuration link), the mixed-mode radio frequency module 30 includes a second radio frequency channel (on the radio frequency device on the radio frequency fiber link), and the first interconnected optical port and the second interconnected optical port are based on the third topology Relationship communication connection, the second radio frequency optical port and the second radio frequency channel are communicated and connected based on the second topology relationship, the second interconnection optical port and the second radio frequency optical port are configured in a one-to-one correspondence, and the first radio frequency optical port and the first radio frequency channel are based on The first topology relationship is configured as a one-to-one correspondence, wherein the first radio frequency optical port and the first interconnecting optical port are the same optical port, for example, the first radio frequency optical port and the first interconnecting optical port share the numbers 1-3 of the first BMP in the figure. 's light port.
  • the first baseband processing module BPM can at least process 4G baseband data and convert the baseband data into antenna data.
  • the first baseband processing module BMP has an interconnecting optical port and can exchange antenna data with the second baseband processing module BPM.
  • the second baseband processing module BPM completes the processing of 5G baseband data, realizes the conversion of 5G baseband data and antenna data, and the antenna data is input and output from the radio frequency optical port, which is connected to the mixed-mode radio frequency module through the radio frequency optical fiber link.
  • the second baseband processing module BPM also has an interconnecting optical port, which can exchange the antenna data of the first baseband data with the first baseband processing module BPM, and can send the first antenna data of the first baseband processing module BPM to the radio frequency optical port to complete the pairing process.
  • the first antenna data is forwarded.
  • the interconnected optical ports of the second baseband processing module BPM are in one-to-one correspondence with the RF optical ports.
  • the one-to-one correspondence means that the number of both sides is the same.
  • the antenna data could only be between one of the interconnected optical ports and one RF optical port. send and receive.
  • the second baseband processing module BMP is connected to the mixed-mode radio frequency module RU through an optical fiber. In order to distinguish the interconnecting optical fiber connection between the first baseband processing module and the second baseband processing module, it may be referred to as a radio frequency optical fiber connection here.
  • the mixed-mode RF module can be a 4G&5G mixed-mode RF RU, with 2G/3G/4G RF channels and 5G RF channels, that is, the first RF channel mentioned above is the 2G/3G/4G RF channel, and the second RF channel is 5G RF channel.
  • the antenna data sent by the baseband unit is sent from the corresponding radio frequency channel to the air interface, and in the uplink direction, the data received on the air interface is converted into antenna data and sent to the baseband unit.
  • the radio frequency optical port and the interconnecting optical port of the first baseband processing module BPM may be the same optical port, that is, the radio frequency optical port and the interconnecting optical port share the optical ports numbered 1-3 in FIG. 1-3 optical ports) input and output, and exchange the first antenna data sent by the first baseband processing module with the second baseband processing module.
  • the second baseband processing module BPM has 6 optical ports (optical ports numbered 1-6). Optical ports numbered 1-3 are interconnected optical ports, and optical ports numbered 4-6 are RF optical ports. One RF optical port corresponds to one interconnected optical port, such as numbered 1 to 4, numbered 2 to 5, and numbered 3 to 6.
  • the interconnected optical port of the second baseband processing module exchanges the first antenna data with the first baseband processing module BPM, and sends the first antenna data of the first baseband processing module to its own radio frequency optical port.
  • the 2G/3G/4G/5G antenna data is input and output from the RF optical port of the second baseband processing module.
  • the first radio frequency optical port and the first radio frequency channel are configured in a one-to-one correspondence based on the first topology relationship.
  • the one-to-one correspondence here is that the first radio frequency optical port and the first radio frequency channel are configured in the same number according to the first topology relationship, and one The radio frequency optical port corresponds to an interconnected optical port.
  • the radio frequency channel configuration of the radio frequency device with ID code RU_51 is one-to-one correspondence with the radio frequency optical port number 1
  • the radio frequency channel configuration of the radio frequency device with ID code RU_61 is One-to-one correspondence with the RF optical port No. 2.
  • the purpose of this configuration is that the first baseband unit allocates resources for the baseband and mixed-mode radio frequency modules.
  • the first base station control module 120 is the mixed-mode radio frequency module 30 configured between the first baseband processing module and the first interconnected optical port
  • the first base station control module and the second base station control module share at least the first antenna data route, the device information of the mixed-mode radio frequency module, and the first topology relationship (see the virtual configuration link shown in the figure, including the mixed-mode radio frequency module).
  • the second base station control module 210 is at least the second interconnected optical port and the second radio frequency optical port of the mixed-mode radio frequency module 30 Configure the third antenna data routing between them.
  • the third topological relationship mentioned above includes the respective optical port numbers of the first interconnecting optical port and the second interconnecting optical port, and uses for transmitting the first antenna data between the first baseband unit BBU and the mixed-mode radio frequency module RU.
  • the first antenna data route between the first baseband unit BBU and the mixed-mode radio frequency module RU includes two parts: the first antenna data route from the first baseband processor 112 to the interconnected optical port of the first baseband processing module BPM, and the second Data routing from the interconnected optical port of the baseband processing module BPM to the third antenna of the mixed-mode radio frequency module RU.
  • the first antenna data route is configured by the first base station control module CCM.
  • the third antenna data route from the interconnected optical port of the second baseband control module BPM to the mixed-mode radio frequency module RU is configured by the second base station control module CCM.
  • the antenna data on the second radio frequency optical port of the second baseband processing module BPM includes two parts: the first antenna data from the first baseband processor 112 of the first baseband processing module from the second interconnected optical port to the mixed-mode radio frequency module RU, The second baseband processor 212 of the second baseband processing module to the second antenna data of the mixed-mode radio frequency module RU.
  • the third antenna data routing from the second interconnect optical port to the second RF optical port and the second antenna data routing from the second baseband processor 212 of the second baseband processing module to the second radio frequency optical port are controlled by the second base station control module CCM configuration.
  • the device information of the mixed-mode radio frequency module includes the serial number ID of the mixed-mode radio frequency module, and the second base station control module is based on the mixed-mode radio frequency module.
  • the mixed-mode radio frequency module is configured with a third antenna data route from the second interconnect optical port to the second radio frequency optical port, and the mixed-mode radio frequency module is configured with a second antenna data route from the second baseband processing module to the second radio frequency optical port.
  • the second base station control module obtains the corresponding relationship between the radio frequency device ID of the mixed-mode radio frequency module and the radio frequency device ID of the mixed-mode radio frequency module according to the first topology relationship, the second topology relationship, the third topology relationship and the device information of the mixed-mode radio frequency module,
  • the purpose is to convert the first antenna data of the mixed-mode radio frequency module into the third antenna data of the mixed-mode radio frequency module.
  • the RF device ID of the RF module thereby establishing a third antenna data route to find an endpoint.
  • the first base station control module CCM notifies the second base station control module CCM of the information of the first antenna data position of the mixed-mode radio frequency module RU on the first interconnected optical port through the main signaling link, and the second base station control module is based on the above information. Allocate the first antenna data from the second interconnected optical port to the third antenna data route on the second radio frequency optical port.
  • the interconnected optical ports are configured on the first baseband unit and the second baseband unit, and the first topology relationship, the second topology relationship and the third topology relationship with the mixed mode radio frequency module and the mixed mode radio frequency module are configured.
  • Initialize the first signaling forwarding module and the second signaling forwarding module configure the signaling forwarding routes for the main signaling link, the first communication link, and the second communication link, and the mixed-mode radio frequency module RU establishes the A baseband unit BBU and a first communication link and a second communication link of a second baseband unit BBU.
  • the first base station control module CCM sends the third topology relationship and the first topology relationship of the "virtually configured" RU under the interconnected optical port to the second base station control module CCM through the main signaling link.
  • the second base station control module CCM calculates, according to the second topology relationship, the third topology relationship sent by the first base station control module, and the first topology relationship, the RF device ID of the mixed-mode RF module and the ID of the RF device RU of the mixed-mode RF module.
  • the corresponding relationship between the IDs so that according to the corresponding relationship, the second base station control module obtains the RF device ID of the mixed-mode RF module that corresponds to the RF device ID of the mixed-mode RF module one-to-one, and converts the ID of the RF device of the mixed-mode RF module RU. It is the ID of the radio frequency device of the mixed-mode radio frequency module RU, and an endpoint is found for establishing the third antenna data route.
  • the first base station control module allocates the mixed-mode radio frequency module RU to the first baseband unit from the first baseband processor of the first baseband processing module BPM to the interconnected optical port of the first baseband processing module BPM.
  • the first antenna data is routed, and the antenna data position of the mixed-mode radio frequency module RU at the first interconnected optical port is notified to the second base station control module CCM in the form of a RU carrier through signaling.
  • the second base station control module CCM allocates the antenna data position on the second radio frequency optical port to the mixed-mode radio frequency module RU, it allocates the third antenna data route according to the radio frequency device ID of the corresponding mixed-mode radio frequency module converted above, and allocates the third antenna data route. Two-antenna data routing.
  • the configuration of the first antenna data route, the second antenna data route, and the third antenna data route is completed, and the cell is successfully established.
  • the first base station control module performs configuration management and operation and maintenance on the standard of the mixed-mode radio frequency module related to the first baseband unit.
  • the second base station control module performs configuration management and operation maintenance on the standard of the mixed-mode radio frequency module related to the second baseband unit.
  • the first base station control module and the second base station control module perform configuration management and operation maintenance on the systems of the first baseband unit and the second baseband unit independent of the mixed-mode radio frequency module.
  • the second base station control module performs version management on the mixed-mode radio frequency module.
  • the first base station control module is clocked with the second base station control module, and the first base station control module performs equipment management, configuration management, version management, and operation and maintenance on the first baseband unit.
  • the second base station control module performs equipment management, configuration management, version management and operation and maintenance on the second baseband unit.
  • the mixed-mode radio frequency module performs configuration management and configuration management on the first communication link and the second communication link based on a system related to the first baseband unit and a system related to the second baseband unit. Operation and maintenance.
  • a networking method for NSA of the present disclosure is shown, which is applicable to a networking apparatus including a first baseband unit, a second baseband unit and a mixed-mode radio frequency module.
  • the second baseband unit 20 is configured to process at least 5G baseband data
  • the first baseband unit 10 is configured to process other baseband data different from the 5G baseband data.
  • the second baseband unit 20 can process at least 5G baseband data as a 5G baseband processing device, and the first baseband unit 10 can process 2G/3G/4G baseband data as another baseband processing device.
  • the unit here can be a baseband processing device or multiple basebands Handling equipment.
  • step 20 a first communication link is established between the first baseband unit 10 , the second baseband unit 20 and the mixed-mode radio frequency module 30 .
  • the first baseband unit 10 constructs a first communication link to the mixed-mode radio frequency module 30 via the second baseband unit, in order to realize information transmission different from 5G baseband processing equipment such as 4G baseband processing equipment and radio frequency equipment, and the information that can be transmitted includes Signaling, baseband data different from 5G, and corresponding antenna data.
  • the realization of the first communication link can realize the transmission of other baseband data on the 5G baseband processing device.
  • the main function of the mixed-mode radio frequency module 30 is at least to realize the transmission and reception of 4G and 5G antenna data at the same time.
  • the mixed-mode radio frequency module 30 may include multiple radio frequency devices, and these radio frequency devices are connected in parallel to the second baseband unit after various cascades. .
  • step 30 a second communication link is established between the second baseband unit 20 and the mixed-mode radio frequency module 30 .
  • a second communication link is constructed between the second baseband unit 20 and the mixed-mode radio frequency module 30. Different from the first communication link, the information transmission between the 5G baseband processing device and the radio frequency device is realized.
  • the information that can be transmitted includes signaling, 5G baseband data and corresponding antenna data.
  • the second baseband unit 20 realizes the transmission of data different from that of the 5G baseband, it can realize dual-link transmission in which the same mixed-mode radio frequency module receives data from different antennas.
  • step 40 a main signaling link is established between the first baseband unit 10 and the second baseband unit 20.
  • a main signaling link is constructed between the first baseband unit 10 and the second baseband unit 20 for sharing information between the two baseband units. It should be noted that the main signaling link transmits signaling, which ensures the coordinated work of information and resource sharing between the first baseband unit 10 and the second baseband unit 20 .
  • the first baseband unit and the second baseband unit in the networking device for NSA of the present disclosure share a mixed-mode radio frequency module, and the second baseband unit exchanges and shares information with the first baseband unit through the main signaling link, so that the second baseband unit
  • the first baseband unit is allocated an antenna data position on its own interconnection optical port and radio frequency optical port. Therefore, the networking device can introduce 5G baseband processing equipment on the basis of using existing 2G/3G/4G base station equipment (including 2G/3G/4G baseband units and mixed-mode radio frequency modules) to realize NSA networking and improve existing base station equipment.
  • the utilization rate of the base station is reduced, and the construction cost of the base station is reduced.
  • the mixed-mode radio frequency module includes multiple radio frequency devices and radio frequency channels.
  • step 30 further includes step 300 and step 310 .
  • a first topology relationship is configured between the first baseband unit and the mixed-mode radio frequency module
  • a second topology relationship is configured between the second baseband unit and the mixed-mode radio frequency module
  • the first topology relationship and the second topology relationship are set as One-to-one correspondence.
  • the purpose of configuring the topology relationship is to ensure that the second communication link between the second baseband unit 20 and the mixed-mode radio frequency module 30 is open, considering that the first baseband unit passes through the second baseband unit 20 to the mixed-mode radio frequency module 30.
  • the establishment of communication links The second baseband unit 20 and the mixed-mode radio frequency module 30 are communicatively connected according to the second topological relationship, and the second baseband unit 20 can allocate resources to the baseband and the mixed-mode radio frequency module 30 based on the second topological relationship to open up the second communication link.
  • the mixed-mode radio frequency module 30 may include multiple radio frequency devices.
  • the numbers RU51 and RU11 of the radio frequency devices are different because they are connected to different baseband units respectively, so the numbers of the radio frequency devices are different, but they are actually the same mixed-mode radio frequency module.
  • different numbers of radio frequency devices RU connected to the same baseband unit represent radio frequency devices with different ID numbers, for example, radio frequency device RU51 and radio frequency RU52 are connected in series and configured on the radio frequency optical port 1 of the first baseband unit.
  • the application uses the same mixed-mode radio frequency module, which is respectively configured to the first baseband unit and the second baseband unit, wherein the mixed-mode radio frequency module and the first baseband unit are connected in real and virtual connection, and the mixed-mode radio frequency module is connected to the first baseband unit. It is a real connection with the second baseband unit.
  • a first topology relationship is configured between the first baseband unit 10 and the mixed-mode radio frequency module 30 , and the first topology relationship is a virtual link, that is, it is not actually connected after configuration, and the purpose is for the first baseband unit 10 Allocate resources on the baseband and mixed-mode radio frequency modules 30 according to the configuration of the first topology relationship.
  • the first topological relationship includes the topological shapes in which different radio frequency devices in the mixed-mode radio frequency module 30 are respectively connected to the radio frequency optical ports of the first baseband unit 10 after completing their internal cascade connections, and the topological relationship involves the radio frequency devices in the cascaded positions. model, and the number of the optical port configured to be connected to the radio frequency optical port of the second baseband unit 20 .
  • the second topological relationship includes the topological shapes of different radio frequency devices in the mixed-mode radio frequency module 30 connected to the radio frequency ports of the second baseband unit 20 after completing their internal cascading, and the topological relationship involves the radio frequency at the cascading position. The model of the device, and the number of the optical port configured to be connected to the radio frequency optical port of the second baseband unit 20 .
  • step 310 a communication connection is established between the second baseband unit and the mixed-mode radio frequency module according to the second topology relationship.
  • the first topological relationship and the second topological relationship are set to be in a one-to-one correspondence, that is, the topological shape of the first topological relationship and the second topological relationship are the same, the models of the radio frequency devices involved in the cascading positions in the topological relationship are the same, and they are finally connected to the second baseband
  • the optical port numbers of the radio frequency optical ports of the unit 20 correspond. The purpose of this is to use the same topological relationship to allow the first baseband unit and the second baseband unit to allocate the same baseband and resources of their corresponding mixed-mode radio frequency modules, so as to prepare for further opening of the first communication link.
  • the first baseband processing module BPM (full English name: Baseband Process Module) and the second BPM in FIG. 5 are an embodiment of the first baseband processing module 110 and the second baseband processing module 210 respectively, which will be described in detail below.
  • the first baseband unit includes a first baseband processing module and a first base station control module
  • the second baseband unit includes a second baseband processing module and a second base station control module
  • the first The baseband processing module includes a first signaling forwarding module
  • the second baseband processing module includes a second signaling forwarding module.
  • step 20 further includes step 200, wherein the first base station control module is used for the first signaling forwarding module to configure a signaling forwarding route on the first communication link, and the second base station control module is used for the second signaling The forwarding module configures a signaling forwarding route on the first communication link.
  • the first baseband unit 10 (full English name: Base Band Unit, abbreviated BBU) includes a first baseband processing module BPM (full English name: Baseband Process Module, abbreviated BPM) and a first base station control module CCM (full English name: Clock Control Module, abbreviated as CCM), the first BPM includes a first signaling forwarding module.
  • the mixed-mode module 30 is a 4&5G mixed-mode radio frequency module (full English name: Radio Unit, abbreviated as RU).
  • the second BBU includes a second BPM and a second CCM, and the second BPM includes a second signaling forwarding module.
  • the first BPM completes the processing of 2G/3G/4G baseband data, realizes the conversion of baseband data and antenna data, and the antenna data is input/output from the radio frequency optical port of the first BPM.
  • the second BPM completes the processing of 5G baseband data, realizes the conversion of baseband data and antenna data, and the antenna data is input/output from the radio frequency optical port of the second BPM.
  • step 30 further includes step 320, wherein the second base station control module is used to configure a signaling forwarding route on the second communication link for the second signaling forwarding module.
  • the first CCM and the second CCM are connected through a clock synchronization cable, and the first BPM and the second BPM can be connected through optical fiber communication.
  • the first CCM and the second CCM respectively complete the device management, clock management and transmission management in the respective baseband units, specifically:
  • the first/second CCM is responsible for the power-on management, version loading, and communication link management of each module in the respective baseband unit;
  • the first/second CCM synchronizes with the clock source to provide the reference clock for the respective baseband units
  • the first/second CCM is connected to the core network to complete the transmission of service data and the core network.
  • step 40 further includes step 400, wherein the first base station control module is used for the first signaling forwarding module to configure a signaling forwarding route on the main signaling link, and the second base station control module is used for the second signaling The forwarding module configures a signaling forwarding route on the main signaling link.
  • one and only one optical fiber is selected as the main signaling link for transmitting the first baseband unit BBU and the second baseband Signaling between unit BBUs such as device configuration, shared device status and other information.
  • All interconnecting fibers between the first baseband processing module and the second baseband processing module can transmit signaling between the first baseband unit and the mixed-mode radio frequency module, such as a configuration message of the first baseband unit to the mixed-mode radio frequency module RU.
  • the signaling on the main signaling link includes signaling between the first base station control module and the second base station control module, the signaling on the first communication link It includes the signaling between the first base station control module and the mixed-mode radio frequency module, and the signaling on the second communication link includes the signaling between the second base station control module and the mixed-mode radio frequency module.
  • the first base station control module is used to configure a signaling forwarding route for the first signaling forwarding module on the first communication link
  • the second base station control module is used to forward the second signaling
  • the method further includes: in step 210, configuring the first signaling forwarding module and the second signaling forwarding module to forward the first base station control module and the mixed signal forwarding module respectively. Signaling between analog RF modules.
  • the first baseband processing module BPM and the second baseband processing module BPM each have a signaling forwarding module.
  • the first signaling forwarding module of the first baseband processing module forwards the signaling sent by the first base station control CCM to the second base station control CCM from the main signaling link to the second signaling forwarding in the second baseband processing module BPM module, which is then forwarded by the second signaling forwarding module to the second base station control module CCM, and the signaling of the second base station control module CCM received from the main signaling link is forwarded to the first base station control module CCM.
  • the first signaling forwarding module of the first baseband processing module BPM forwards the signaling sent by the first base station control module CCM to the mixed-mode radio frequency module RU from the interconnected optical fiber link to the second baseband processing BPM, and receives the interconnected optical fiber link.
  • the received signaling of the mixed-mode radio frequency module RU is forwarded to the first base station control module CCM.
  • step 320 after the second communication link is configured with a signaling forwarding route for the second signaling forwarding module by the second base station control module, the method further includes: in step 330, The second signaling forwarding module is configured to forward the signaling between the second base station control module and the mixed-mode radio frequency module.
  • the second signaling forwarding module in the second baseband processing module BPM forwards the signaling sent by the second base station control module CCM to the first base station control module from the main signaling link to the first baseband processing module BPM, and forwards the signaling from the main signaling link to the first baseband processing module BPM.
  • the signaling of the first base station control module CCM received by the signaling link is forwarded to the second base station control module CCM.
  • the first base station control module is used to configure a signaling forwarding route on the main signaling link for the first signaling forwarding module
  • the second base station control module is used to forward the second signaling
  • the method further includes: in step 410, configuring the first signaling forwarding module and the second signaling forwarding module to forward the first base station control module and the second signaling forwarding module respectively. Signaling between two base station control modules.
  • the second signaling forwarding module in the second baseband processing module BPM forwards the signaling sent by the second base station control module CCM to the mixed-mode radio frequency module RU from the radio frequency fiber link between the second baseband unit and the mixed-mode radio frequency module to the The mixed-mode radio frequency module RU, and forwards the signaling sent by the mixed-mode radio frequency module RU to the second baseband unit received by the radio frequency optical fiber link to the second base station control module CCM.
  • the second signaling forwarding module of the second base station control module BPM also forwards the signaling sent by the first base station control module CCM to the mixed-mode radio frequency module RU received on the interconnected optical fiber link from the radio frequency optical fiber link to the mixed-mode radio frequency module RU, and forward the signaling sent by the mixed-mode radio frequency module RU to the first baseband unit received by the radio frequency optical fiber link to the first baseband processing module BPM through the interconnected optical fiber link.
  • the first base station control module is used to configure the signaling forwarding route on the main signaling link for the first signaling forwarding module
  • the method further includes: in step 420, transferring the first signaling forwarding module and the first signaling forwarding module to the second signaling forwarding module.
  • the second signaling forwarding module is configured to forward the signaling between the first base station control module and the mixed-mode radio frequency module through the main signaling link.
  • the interconnecting optical fiber between the first baseband processing module BPM and the second baseband processing module BPM has one and only one optical fiber as the main signaling link, which is used to transmit the signaling between the first baseband unit BBU and the second baseband unit BBU Such as device configuration, shared device information, etc.
  • step 320 after the second base station control module is used to configure the signaling forwarding route for the second communication link for the second signaling forwarding module, the method further includes: in step 340, converting the The second signaling forwarding module is configured to forward the signaling between the first base station control module and the mixed-mode radio frequency module between the second base station control module and the mixed-mode radio frequency module.
  • A' represents the signaling between the first base station control module and the mixed-mode radio frequency module temporarily occupying the main signaling link.
  • B' represents the signaling between the first base station control module and the mixed-mode radio frequency module temporarily occupying the second communication link.
  • the signaling between the first baseband unit BBU and the second mixed-mode radio frequency module RU is also transmitted through the main signaling link as a type of signaling between the first baseband unit BBU and the second baseband unit BBU, such as the first The configuration message of the base station control module to the mixed-mode radio frequency module RU.
  • a wireless communication system of the present disclosure includes the networking device described above.
  • the networking device includes: a first baseband unit 10 , a second baseband unit 20 and a mixed-mode radio frequency module 30 .
  • the second baseband unit 20 is configured to process at least 5G baseband data
  • the first baseband unit 10 is configured to process other baseband data than the 5G baseband data.
  • the second baseband unit 20 can process at least 5G baseband data as a 5G baseband processing device, and the first baseband unit 10 can process 2G/3G/4G baseband data as another baseband processing device.
  • the unit here can be a baseband processing device or multiple basebands Handling equipment.
  • a first communication link is constructed between the first baseband unit 10 , the second baseband unit 20 and the mixed-mode radio frequency module 30 .
  • the first baseband unit 10 constructs a first communication link via the second baseband unit 20 to the mixed-mode radio frequency module 30, in order to realize information transmission different from 5G baseband processing equipment such as 4G baseband processing equipment and radio frequency equipment, and the information that can be transmitted Including signaling, baseband data other than 5G, and corresponding antenna data.
  • the realization of the first communication link can realize the transmission of other baseband data on the 5G baseband processing device.
  • the main function of the mixed-mode radio frequency module 30 is at least to realize the transmission and reception of 4G and 5G antenna data at the same time.
  • the mixed-mode radio frequency module 30 may include multiple radio frequency devices, and these radio frequency devices are connected in parallel to the second baseband unit 20 after various cascades. superior.
  • a second communication link is constructed between the second baseband unit 20 and the mixed-mode radio frequency module 30. Different from the first communication link, the information transmission between the 5G baseband processing device and the radio frequency device is realized.
  • the information that can be transmitted includes signaling, 5G baseband data and corresponding antenna data.
  • the second baseband unit 20 realizes the transmission of data different from that of the 5G baseband, it can realize dual-link transmission in which the same mixed-mode radio frequency module receives data from different antennas.
  • a main signaling link is constructed between the first baseband unit 10 and the second baseband unit 20 for sharing information between the two baseband units. It should be noted that the main signaling link transmits signaling, which ensures the coordinated work of information and resource sharing between the first baseband unit 10 and the second baseband unit 20 .
  • the first baseband unit and the second baseband unit in the networking device for NSA of the present disclosure share a mixed-mode radio frequency module, and the second baseband unit exchanges and shares information with the first baseband unit through the main signaling link, so that the second baseband unit
  • the first baseband unit is allocated an antenna data position on its own interconnection optical port and radio frequency optical port. Therefore, the networking device can introduce 5G baseband processing equipment on the basis of using existing 2G/3G/4G base station equipment (including 2G/3G/4G baseband units and mixed-mode radio frequency modules) to realize NSA networking and improve existing base station equipment.
  • the utilization rate of the base station is reduced, and the construction cost of the base station is reduced.
  • the networking device for the NSA of the present disclosure has carried out a modified networking with a second baseband unit that supports at least 5G baseband data processing and a first baseband unit that supports other baseband data processing different from 5G baseband data, respectively. Sharing the same mixed-mode radio frequency module to realize the transmission and reception of different antenna data corresponding to the first baseband unit and the second baseband unit respectively.
  • the mixed-mode radio frequency module can use the radio frequency module of the old base station, and the first baseband unit can also use the old 2G /3G/4G baseband processing equipment, that is, it can make full use of the original equipment resources of old base stations to introduce 5G baseband processing equipment to realize NSA networking, provide users with 5G network speed, and make full use of old equipment to reduce base station construction costs.
  • a first communication link may be constructed between the first baseband unit, the second baseband unit and the mixed-mode radio frequency module
  • a second communication link may be constructed between the second baseband unit and the mixed-mode radio frequency module
  • a main signaling link is constructed between the first baseband unit and the second baseband unit.
  • the first baseband unit such as a 4G base station
  • the 5G base station can work normally through the second communication link
  • a main signaling link for information sharing is constructed between the first baseband unit and the second baseband unit to ensure resource sharing and coordination between base stations on both sides to ensure that the networking device provides 5G network speed and meets user needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种用于NSA的组网装置、方法及移动通信系统。该用于NSA的组网装置,包括第一基带单元、第二基带单元和混模射频模块,所述第二基带单元配置为至少处理5G基带数据,所述第一基带单元配置为处理不同于5G基带数据的其它基带数据,并且在所述第一基带单元、所述第二基带单元和混模射频模块之间构建有第一通信链路;在所述第二基带单元和所述混模射频模块之间构建有第二通信链路,在所述第一基带单元和所述第二基带单元之间构建有主信令链路。

Description

用于NSA的组网装置、方法及移动通信系统
相关申请的交叉引用
本申请要求享有2020年06月28日提交的名称为“用于NSA的组网装置、方法及移动通信系统”的中国专利申请CN202010594876.9的优先权,其全部内容通过引用并入本申请中。
技术领域
本公开实施例涉及无线通信技术领域,尤其涉及一种用于NSA的组网装置、方法及移动通信系统。
背景技术
5G时代已经来临,带着期许的每秒上G的网速。5G网络架构很简单,就是5G基站连接5G核心网,这是5G网络架构的终极形态,可以支持5G网络连接的所有应用。虽然网络架构简单,但是要建这样一个5G网络需要新建大量的基站和5G核心网,代价不菲。目前仅中国移动就有将近230万个4G基站,如果再建同样大的5G网络要付出的花费巨大。据相关预测,2020年4G网络将承载全球88%的流量,即使到了2025年全球的4G用户数量仍然占据50%-60%。因此相比于4G网络,业界对5G的投资呈现比较谨慎的态度。
非独立组网NSA(英文全称为:Non Standalone)是一种通过4G和5G混合组网的方式提供5G服务。目前公开的有关NSA组网基本上侧重于终端怎么选择网络,很少说明如何在利旧现有2G/3G/4G基站设备的基础上引入5G网络。因此,如何在现有基站设备的基础上引入5G网络,成为亟待解决的问题。
发明内容
本公开的目的是提供一种用于NSA的组网装置、方法及移动通信系统,可以在现有基站设备的基础上引入5G网络,提高设备利用率,降低基站的建设成本。
第一方面,提供了一种用于NSA的组网装置,包括第一基带单元、第二基带单元和混模射频模块,所述第二基带单元配置为至少处理5G基带数据,所述第一基带单元配置为处理不同于5G基带数据的其它基带数据,并且在所述第一基带单元、所述第二基带单元和混模射频模块之间构建有第一通信链路;在所述第二基带单元和所述混模射频模块之间构建有第二通信链路;在所述第一基带单元和所述第二基带单元之间构建有主信令链路。
第二方面,提出了一种用于NSA的组网方法,适用于包括第一基带单元、第二基带单元和混模射频模块的组网装置,所述方法包括:配置所述第二基带单元至少处理5G基带数据,以及配置所述第一基带单元处理不同于5G基带数据的其它基带数据;在所述第一基带单元、所述第二基带单元和所述混模射频模块之间构建第一通信链路;在所述第二基带单元和所述混模射频模块之间构建第二通信链路;在所述第一基带单元和所述第二基带单元之间构建主信令链路。
第三方面,提出了一种无线通信系统,包括如上文所述的组网装置。
附图说明
为了更清楚地说明本说明书一个或多个实施例,下面结合附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施例。
图1是本公开实施例提供一种利用4G和5G组网NSA组网的架构示意图。
图2是本公开实施例提供一种用于NSA的组网装置的结构示意图。
图3是本公开实施例提供又一种用于NSA的组网装置的结构示意图。
图4是本公开实施例提供又一种用于NSA的组网装置的结构示意图。
图5是本公开实施例提供又一种用于NSA的组网装置中第一拓扑关系、第二拓扑关系和第三拓扑关系的对应关系示意图。
图6是本公开实施例提供又一种用于NSA的组网装置中主信令链路、第一通信链路和第二通信链路上的信令传输示意图。
图7是本公开实施例提供又一种用于NSA的组网装置中主信令链路、第一通信链路和第二通信链路上的天线数据传输示意图。
图8是本公开实施例提供又一种用于NSA的组网装置中主信令链路、第一通信链路和第二通信链路上的信令传输示意图。
图9是本公开实施例提供一种用于NSA的组网方法的步骤示意图。
图10是本公开实施例提供另一种用于NSA的组网方法的步骤示意图。
图11是本公开实施例提供又一种用于NSA的组网方法的步骤示意图。
图12是本公开实施例提供又一种用于NSA的组网方法的步骤示意图。
图13是本公开实施例提供又一种用于NSA的组网方法的步骤示意图。
图14是本公开实施例提供又一种用于NSA的组网方法的步骤示意图。
图15是本公开实施例提供又一种用于NSA的组网方法的步骤示意图。
图16是本公开实施例提供又一种用于NSA的组网方法的步骤示意图。
图17是本公开实施例提供又一种用于NSA的组网方法的步骤示意图。
图18是本公开实施例提供又一种用于NSA的组网方法的步骤示意图。
90-4G核心网;10-第一基带单元;20-第二基带单元;30-混模射频模块;110-第一基带处理模块;210-第二基带处理模块;120-第一基站控制模块;220-第二基站控制模块;111-第一信令转发模块;211-第二信令转发模块;311-第一射频器;321-第二射频器;112-第一基带处理器;212-第二基带处理器;A-主信令链路上的信令;B-第二通信链路上的信令;C-第一通信链路上的信令;D-第二通信链路上的天线数据;E-第一通信链路上的天线数据;A’-暂时占用主信令链路的第一基站控制模块和混模射频模块之间的信令;B’-暂时占用第二通信链路的第一基站控制模块和混模射频模块之间的信令。
具体实施方式
为了使本技术领域技术人员更好地理解本公开的技术方案,下面将结合附图对本公开一个或多个实施例中的技术方案进行清楚、完整地描述,显然,所描述的一个或多个实施例仅仅是本公开一部分实施例,而不是全部实施例。
参照图1所示,本公开的用于NSA的组网装置适用于5G网络与不同于5G网络的其它无线移动网络比如2G/3G/4G的融合,可以在充分利用现有基站资源的基础上引入5G基带处理设备,提高旧有基站的利用率的同时降低基站建设成本。该组网装置根据所匹配的设备性能可以连接4G核心网或者5G核心网。下面将详细地描述本公开的用于NSA的组网装置及用于NSA的组网方法的各个步骤。
实施例一
参照图2所示为本公开的一种用于NSA的组网装置的结构示意图。可以理解的是,本公开的用于NSA的组网装置属于无线通信系统的一部分,属于4G基带处理设备和5G基带处理设备共用一个射频单元实现天线数据的收发。该组网装置包括:第一基带单元10、第二基带单元20和混模射频模块30。
第二基带单元20配置为至少处理5G基带数据,以及第一基带单元10配置为处理不同于5G基带数据的其它基带数据。
第二基带单元20作为5G基带处理设备可以至少处理5G基带数据,第一基带单元10作为其他基带处理设备可以处理2G/3G/4G基带数据,这里的单元可以是一个基带处理设 备或者多个基带处理设备。
在第一基带单元10、第二基带单元20和混模射频模块30之间构建有第一通信链路。
第一基带单元10经由第二基带单元20至混模射频模块30构建有第一通信链路,目的是实现不同于5G基带处理设备比如4G基带处理设备和射频设备的信息传输,可以传输的信息包括信令、不同于5G的基带数据和对应的天线数据。第一通信链路的实现可以在5G基带处理设备上实现其他基带数据的传输。
混模射频模块30的主要功能至少是同时实现4G和5G天线数据的收发,混模射频模块30可以包括多个射频设备,这些射频设备在进行各种级联后并联连接至第二基带单元20上。
第二基带单元20和混模射频模块30之间构建有第二通信链路,区别于第一通信链路实现5G基带处理设备和射频设备的信息传输,可以传输的信息包括信令、5G基带数据和对应的天线数据。
可以看出,第二基带单元20实现了不同于5G基带数据的传输就可以实现同一个混模射频模块接收不同天线数据的双链路传输。
第一基带单元10和第二基带单元20之间构建有主信令链路,用于两个基带单元共享信息。需要说明的是主信令链路传输的均是信令,确保第一基带单元10和第二基带单元20之间信息、资源共享协调工作。
本公开的用于NSA的组网装置中的第一基带单元和第二基带单元共享混模射频模块,第二基带单元通过主信令链路与第一基带单元交互共享信息从而第二基带单元在其自身的互联光口和射频光口上为第一基带单元分配天线数据位置。因此该组网装置可以在利用现有2G/3G/4G基站设备(包括2G/3G/4G基带单元和混模射频模块)的基础上引入5G基带处理设备实现NSA组网,提高现有基站设备的利用率,降低基站建设成本。
参见图5所示,在一些实施例中,本公开的用于NSA的组网装置中,第二基带单元20和混模射频模块30之间配置有第二拓扑关系,第二基带单元20和混模射频模块30之间根据第二拓扑关系通信连接,第一基带单元10和混模射频模块30之间配置有第一拓扑关系,第一拓扑关系和第二拓扑关系设置为一一对应。
拓扑关系的配置目的是确保第二基带单元20和混模射频模块30之间第二通信链路打通的前提下考虑到第一基带单元10经过第二基带单元20至混模射频模块30的第一通信链路的搭建。第二基带单元20和混模射频模块30之间根据第二拓扑关系通信连接,第二基带单元20可以基于第二拓扑关系为基带和混模射频模块30分配资源,打通第二通信链路。
参见图5所示,混模射频模块30可以包括多个射频设备,射频设备的编号RU51、RU11不同是因为分别连接到不同的基带单元,但实际是同一个混模射频模块,图5中连接同一基带单元的射频设备RU的不同编号表示不同编号ID的射频设备,比如射频设备RU51、射频RU52串联连接后配置到第一基带单元10的射频光口1上。本申请采用的是同一个混模射频模块,该混模射频模块分别配置至第一基带单元和第二基带单元,其中混模射频模块与第一基带单元是实配虚连接,混模射频模块与第二基带单元是实配实连接。
正如图5所示,第一基带单元10和混模射频模块30之间配置有第一拓扑关系,第一拓扑关系是虚配链路,即配置后并不实际连接,目的是第一基带单元10根据第一拓扑关系的配置分配基带和混模射频模块30上的资源。
第一拓扑关系包括混模射频模块30中不同射频设备在完成它们内部的级接后分别连接到第一基带单元10的射频光口上的拓扑形状,并且拓扑关系中涉及级联位置的射频设备的型号,以及配置连接至第一基带单元10的射频光口的光口编号。同样地,第二拓扑关系包括混模射频模块30中不同射频设备在完成他们内部的级联后分别连接到第二基带单元20的射频关口上的拓扑形状,拓扑关系中涉及级联位置的射频设备的型号,以及配置连接至第二基带单元20的射频光口的光口编号。
第一拓扑关系和第二拓扑关系设置为一一对应是第一拓扑关系和第二拓扑关系的拓扑形状相同,拓扑关系中涉及级联位置的射频设备的型号相同,以及配置连接至第二基带单元20的射频光口的光口编号对应。这样做的目的是采用相同的拓扑关系分别使得第一基带单元和第二基带单元分配相同的基带和各自对应的混模射频模块的资源,从而为进一步打通第一通信链路做准备。
图中第一基带处理模块BPM(英文全称:Baseband Process Module)和第二BPM分别是第一基带处理模块110和第二基带处理模块210的一个实施例,下文将会详细描述。
参见图5所示,在一些实施例中,本公开的组网装置中,第一基带单元10和第二基带单元20之间配置有第三拓扑关系,第一基带单元10和第二基带单元20之间根据第三拓扑关系设置有通信线路,通信线路中的一条作为主信令链路。
同样地,配置第三拓扑关系的目的在于分别调动第一基带单元10和第二基带单元20分配相应的资源来实现第三拓扑关系,如图5根据第三拓扑关系进行实际连接在第一基带单元10和第二基带单元20之间形成通信线路。
设定其中一条通信线路为主信令链路,用于传输第一基带单元和第二基带单元之间的信令以共享消息。
参见图3、图4和图5所示,本公开的组网装置中,第一基带单元10包括第一基带处理模块110和第一基站控制模块120,第二基带单元20包括第二基带处理模块210和第二基站控制模块220,第一基带处理模块110包括第一信令转发模块111,第二基带处理模块210包括第二信令转发模块211,第一基站控制模块120为第一信令转发模块111在第一通信链路、主信令链路配置信令转发路由,第二基站控制模块220为第二信令转发模块211在第一通信链路、主信令链路、第二通信链路配置信令转发路由。
第一基带单元10(英文全称为:Base Band Unit,缩写BBU)包括第一基带处理模块BPM(英文全称为:Baseband Process Module,缩写BPM)和第一基站控制模块CCM(英文全称为:Clock Control Module,缩写CCM),所述第一BPM包括第一信令转发模块。30为4&5G混模射频模块(英文全称为:Radio Unit,缩写RU)。第二BBU包括第二BPM和第二CCM,所述第二BPM包括第二信令转发模块。第一BPM完成2G/3G/4G基带数据的处理,实现基带数据和天线数据的转换,天线数据从第一BPM的射频光口输入/输出。第二BPM完成5G基带数据的处理,实现基带数据和天线数据的转换,天线数据从第二BPM的射频光口输入/输出。
第一CCM和第二CCM通过时钟同步线缆连接,第一BPM和第二BPM可以通过光纤通信连接。第一CCM和第二CCM分别完成各自基带单元中的设备管理、时钟管理和传输管理,具体为:
a.设备管理:第一/第二CCM负责各自基带单元中各模块的上电管理、版本加载、通讯链路管理;
b.时钟管理:第一/第二CCM与时钟源进行同步,为各自基带单元提供工作所参考的时钟;
c.传输管理:第一/第二CCM连接核心网,完成业务数据与核心网的传输。
正如上文所述,第一基带处理模块和第二基带处理模块之间的互联光纤中有且只有一条光纤作为主信令链路,用于传递第一基带单元BBU和第二基带单元BBU之间的信令比如设备配置、共享设备状态等信息。第一基带处理模块和第二基带处理模块之间的所有互联光纤都可以传输第一基带单元和混模射频模块之间的信令比如第一基带单元对混模射频模块RU的配置消息。
参见图6所示,在一些实施例中,本公开的组网装置中,主信令链路上的信令包括第一基站控制模块120和第二基站控制模块220之间的信令,第一通信链路上的信令A包括第一基站控制模块120和混模射频模块之间的信令,第二通信链路上的信令B包括第二基站控制模块220和混模射频模块之间的信令,第一信令转发模块111和第二信令转发模块 211配置为分别转发第一基站控制模块120和第二基站控制模块220之间的信令。第一信令转发模块111和第二信令转发模块211配置为分别转发第一基站控制模块120和混模射频模块之间的信令。第二信令转发模块211配置为转发第二基站控制模块220和混模射频模块之间的信令。
第一基带处理模块BPM和第二基带处理模块BPM各有一个信令转发模块。其中第一基带处理模块的第一信令转发模块将第一基站控制CCM发给第二基站控制CCM的信令从主信令链路转发到第二基带处理模块BPM中的第二信令转发模块,由第二信令转发模块再转发至第二基站控制模块CCM,并且从主信令链路收到的第二基站控制模块CCM的信令转发到第一基站控制模块CCM。第一基带处理模块BPM的第一信令转发模块将第一基站控制模块CCM发给混模射频模块RU的信令从互联光纤链路转发到第二基带处理BPM,并将互联光纤链路收到的混模射频模块RU的信令转发到第一基站控制模块CCM。第二基带处理模块BPM中的第二信令转发模块将第二基站控制模块CCM发给第一基站控制模块的信令从主信令链路转发到第一基带处理模块BPM,并将从主信令链路收到的第一基站控制模块CCM的信令转发到第二基站控制模块CCM。第二基带处理模块BPM中的第二信令转发模块将第二基站控制模块CCM发给混模射频模块RU的信令从第二基带单元和混模射频模块之间的射频光纤链路转发给混模射频模块RU,并将射频光纤链路收到的混模射频模块RU发送给第二基带单元的信令转发至第二基站控制模块CCM。另外第二基站控制模块BPM的第二信令转发模块还将互联光纤链路上收到的第一基站控制模块CCM发给混模射频模块RU的信令从射频光纤链路转发给混模射频模块RU,并将射频光纤链路收到的混模射频模块RU发送给第一基带单元的信令通过互联光纤链路转发到第一基带处理模块BPM上。
参见图8所示,在一些实施例中,本公开的组网装置中,第一信令转发模块111配置为通过主信令链路转发第一基站控制模块120和混模射频模块之间的信令至第二基站控制模块220,第二信令转发模块211配置为将第一基站控制模块120和混模射频模块之间的信令在第二基站控制模块220和混模射频模块之间转发。
图8中A’表示暂时占用主信令链路的第一基站控制模块和混模射频模块之间的信令;B’表示暂时占用第二通信链路的第一基站控制模块和混模射频模块之间的信令。第一基带处理模块BPM和第二基带处理模块BPM之间的互联光纤上有且只有一条光纤作为主信令链路,用于传递第一基带单元BBU和第二基带单元BBU之间的信令比如设备配置、共享设备信息等。第一基带单元BBU和第二混模射射频模块RU之间的信令也作为第一基带单元BBU和第二基带单元BBU之间信令的一种通过主信令链路传递,比如第一基站控制模块对混模射频模块RU的配置消息。
参见图5-图8所示,在一些实施例中,本公开的组网装置中,第一基带处理模块110包括第一射频光口和第一互联光口(参见编号1-6,其中仅适用前面三个1-3),第二基带处理模块包括第二互联光口(参见编号1-3)和第二射频光口(参见编号4-6),混模射频模块30包括第一射频通道(虚配链路上的射频设备上),混模射频模块30包括第二射频通道(射频光纤链路上的射频设备上),第一互联光口与第二互联光口基于第三拓扑关系通信连接,第二射频光口与第二射频通道基于第二拓扑关系通信连接,第二互联光口与第二射频光口配置为一一对应,第一射频光口与第一射频通道基于第一拓扑关系配置为一一对应,其中第一射频光口和第一互联光口为相同的光口比如第一射频光口和第一互联光口共用图中第一BMP的编号1-3的光口。
第一基带处理模块BPM可以至少完成4G基带数据的处理,并且将基带数据转换为天线数据,第一基带处理模块BMP具有互联光口可以与第二基带处理模块BPM交互天线数据。第二基带处理模块BPM完成5G基带数据的处理,实现5G基带数据和天线数据的转换,并且天线数据从射频光口输入输出,射频光口通过射频光纤链路连接混模射频模块。
第二基带处理模块BPM还具有互联光口可以与第一基带处理模块BPM交互第一基带数据的天线数据,并且可以将第一基带处理模块BPM的第一天线数据发送到射频光口上,完成对第一天线数据转发。
第二基带处理模块BPM的互联光口和射频光口一一对应,这里的一一对应是双方数量相同,一一对应过去,天线数据只能在其中一个互联光口和一个射频光口之间收发。第二基带处理模块BMP与混模射频模块RU通过光纤连接,为了区别第一基带处理模块和第二基带处理模块之间的互联光纤连接,这里可以叫做射频光纤连接。
混模射频模块可以是4G&5G混模射频RU,具有2G/3G/4G射频通道和5G射频通道,就是前面说的第一射频通道即为2G/3G/4G射频通道,第二射频通道即为5G射频通道。下行方向将基带单元发来的天线数据从相应的射频通道发送到空中接口,上行方向将空中接口接收到的数据转换为天线数据发送给基带单元。
第一基带处理模块BPM的射频光口和互联光口可以是相同的光口,即射频光口和互联光口共用图5中的编号1-3的光口,天线数据从互联光口(编号1-3的光口)输入输出,与第二基带处理模块交互第一基带处理模块发过来的第一天线数据。
第二基带处理模块BPM有6个光口(编号1-6的光口)。编号1-3的光口是互联光口,编号4-6的光口是射频光口,一个射频光口对应一个互联光口如编号1对4、编号2对5、编号3对6。第二基带处理模块的互联光口与第一基带处理模块BPM交互第一天线数据,并将第一基带处理模块的第一天线数据发送到其本身的射频光口上。2G/3G/4G/5G天线数 据从第二基带处理模块的射频光口输入输出。
第一射频光口与第一射频通道基于第一拓扑关系配置为一一对应,此处的一一对应是根据第一拓扑关系配置第一射频光口和第一射频通道的数量相同,并且一个射频光口对应一个互联光口,如图5所示,ID码为RU_51的射频设备的射频通道配置为与编号1的射频光口一一对应,ID码为RU_61的射频设备的射频通道配置为与编号2的射频光口一一对应。这样配置的目的是第一基带单元为基带和混模射频模块分配资源。
参见图5-图8所示,在一些实施例中,本公开的组网装置中,第一基站控制模块120为混模射频模块30在第一基带处理模块和第一互联光口之间配置第一天线数据路由,第一基站控制模块和第二基站控制模块至少共享第一天线数据路由、混模射频模块的设备信息和第一拓扑关系(参见图中所示虚配链路,包括混模射频模块30的射频设备ID以及第一互联光口的光口编号)和第三拓扑关系后第二基站控制模块210至少为混模射频模块30在第二互联光口和第二射频光口之间配置第三天线数据路由。
第一基带处理模块BPM和第二基带处理模块BPM之间有多条互联光纤即为上文提到的第三拓扑关系包括第一互联光口和第二互联光口各自的光口编号,用于传递第一基带单元BBU和混模射频模块RU之间的第一天线数据。
第一基带单元BBU和混模射频模块RU之间的第一天线数据路由包括两部分:第一基带处理器112到第一基带处理模块BPM的互联光口的第一天线数据路由,以及第二基带处理模块BPM的互联光口到混模射频模块RU的第三天线数据路由。第一天线数据路由由第一基站控制模块CCM配置。第二基带控制模块BPM的互联光口到混模射频模块RU的第三天线数据路由由第二基站控制模块CCM配置。
第二基带处理模块BPM的第二射频光口上的天线数据包括两部分:第二互联光口过来的第一基带处理模块的第一基带处理器112到混模射频模块RU的第一天线数据,第二基带处理模块的第二基带处理器212到混模射频模块RU的第二天线数据。从第二互联光口到第二射频光口的第三天线数据路由以及第二基带处理模块的第二基带处理器212到第二射频光口的第二天线数据路由都由第二基站控制模块CCM配置。
参见图5-图8所示,在一些实施例中,本公开的组网装置中,混模射频模块的设备信息包括混模射频模块的编号ID,第二基站控制模块基于混模射频模块的ID、第一拓扑关系、第二拓扑关系和第三拓扑关系得出混模射频模块的ID与混模射频模块的ID的对应关系后,根据混模射频模块的ID和第一天线数据路由为混模射频模块配置从第二互联光口至第二射频光口的第三天线数据路由,并且为混模射频模块配置从第二基带处理模块至第二射频光口的第二天线数据路由。
第二基站控制模块根据第一拓扑关系、第二拓扑关系、第三拓扑关系和混模射频模块的设备信息得到混模射频模块的射频设备ID与混模射频模块的射频设备ID的对应关系,目的是将混模射频模块的第一天线数据转换成混模射频模块的第三天线数据,根据该对应关系第二基站控制模块分别得到与混模射频模块的射频设备ID一一对应的混模射频模块的射频设备ID,从而建立第三天线数据路由找到一个端点。另外,对于混模射频模块RU来说,由于第二基带处理模块BPM的第二互联光口上的第一天线数据的位置和第一基带处理模块BPM的第一互联光口上的第一天线数据位置一致,第一基站控制模块CCM通过主信令链路将混模射频模块RU在第一互联光口上的第一天线数据位置的信息告知第二基站控制模块CCM,第二基站控制模块根据上述信息为从第二互联光口过来的第一天线数据分配到第二射频光口上的第三天线数据路由。
下面描述组网的大致流程。
在第一基带单元和第二基带单元配置互联光口,并且配置好与混模射频模块、混模射频模块的第一拓扑关系和第二拓扑关系以及第三拓扑关系。
初始化第一信令转发模块和第二信令转发模块,配置主信令链路、第一通信链路和第二通信链路的信令转发路由,混模射频模块RU根据制式建立分别到第一基带单元BBU以及第二基带单元BBU的第一通信链路和第二通信链路。
第一基站控制模块CCM将第三拓扑关系以及互联光口下“虚配”RU的第一拓扑关系通过主信令链路发送给第二基站控制模块CCM。
第二基站控制模块CCM根据第二拓扑关系、第一基站控制模块发送过来的第三拓扑关系以及第一拓扑关系,计算出混模射频模块的射频设备ID与混模射频模块的射频设备RU的ID的对应关系,从而根据该对应关系第二基站控制模块得到与混模射频模块的射频设备ID一一对应的混模射频模块的射频设备ID,将混模射频模块RU的射频设备的ID转换为混模射频模块RU的射频设备的ID,为建立第三天线数据路由找到一个端点。
2G/3G/4G小区建立时,第一基站控制模块为第一基带单元分配混模射频模块RU从第一基带处理模块BPM的第一基带处理器到第一基带处理模块BPM的互联光口的第一天线数据路由,并通过信令将混模射频模块RU在第一互联光口的天线数据位置以RU载波的方式告知第二基站控制模块CCM。
第二基站控制模块CCM为混模射频模块RU分配第二射频光口上的天线数据位置时根据上文转换过来的对应的混模射频模块的射频设备ID分配第三天线数据路由,并且为分配第二天线数据路由。
第一天线数据路由、第二天线数据路由和第三天线数据路由配置完成,小区建立成功。
在一些实施例中,本公开的组网装置中,第一基站控制模块对混模射频模块有关第一基带单元的制式进行配置管理和操作维护。第二基站控制模块对混模射频模块有关第二基带单元的制式进行配置管理和操作维护。第一基站控制模块和第二基站控制模块对与混模射频模块无关第一基带单元和第二基带单元的制式进行配置管理和操作维护。第二基站控制模块对混模射频模块进行版本管理。
第一基站控制模块与第二基站控制模块时钟同步,第一基站控制模块对第一基带单元进行设备管理、配置管理、版本管理和操作维护。第二基站控制模块对第二基带单元进行设备管理、配置管理、版本管理和操作维护。
在一些实施例中,本公开的组网装置中,混模射频模块基于有关第一基带单元的制式和有关第二基带单元的制式对第一通信链路和第二通信链路进行配置管理和操作维护。
实施例二
参照图9,示出本公开的一种用于NSA的组网方法,适用于包括第一基带单元、第二基带单元和混模射频模块的组网装置。
在步骤10中,配置第二基带单元20至少处理5G基带数据,以及配置第一基带单元10处理不同于5G基带数据的其它基带数据。
第二基带单元20作为5G基带处理设备可以至少处理5G基带数据,第一基带单元10作为其他基带处理设备可以处理2G/3G/4G基带数据,这里的单元可以是一个基带处理设备或者多个基带处理设备。
在步骤20中,在第一基带单元10、第二基带单元20和混模射频模块30之间构建第一通信链路。
第一基带单元10经由第二基带单元至混模射频模块30构建有第一通信链路,目的是实现不同于5G基带处理设备比如4G基带处理设备和射频设备的信息传输,可以传输的信息包括信令、不同于5G的基带数据和对应的天线数据。第一通信链路的实现可以在5G基带处理设备上实现其他基带数据的传输。
混模射频模块30的主要功能至少是同时实现4G和5G天线数据的收发,混模射频模块30可以包括多个射频设备,这些射频设备在进行各种级联后并联连接至第二基带单元上。
在步骤30中,在第二基带单元20和混模射频模块30之间构建第二通信链路。
第二基带单元20和混模射频模块30之间构建有第二通信链路,区别于第一通信链路实现5G基带处理设备和射频设备的信息传输,可以传输的信息包括信令、5G基带数据和对应的天线数据。
可以看出,第二基带单元20实现了不同于5G基带数据的传输就可以实现同一个混模射频模块接收不同天线数据的双链路传输。
在步骤40中,在第一基带单元10和第二基带单元20之间构建主信令链路。
第一基带单元10和第二基带单元20之间构建有主信令链路,用于两个基带单元共享信息。需要说明的是主信令链路传输的均是信令,确保第一基带单元10和第二基带单元20之间信息、资源共享协调工作。
本公开的用于NSA的组网装置中的第一基带单元和第二基带单元共享混模射频模块,第二基带单元通过主信令链路与第一基带单元交互共享信息从而第二基带单元在其自身的互联光口和射频光口上为第一基带单元分配天线数据位置。因此该组网装置可以在利用现有2G/3G/4G基站设备(包括2G/3G/4G基带单元和混模射频模块)的基础上引入5G基带处理设备实现NSA组网,提高现有基站设备的利用率,降低基站建设成本。
在一些实施例中,本公开的组网方法中,混模射频模块包括多个射频设备和射频通道。
参见图10所示,步骤30进一步包括步骤300和步骤310。
在步骤300中,第一基带单元和混模射频模块之间配置第一拓扑关系,第二基带单元和混模射频模块之间配置第二拓扑关系,第一拓扑关系和第二拓扑关系设置为一一对应。
拓扑关系的配置目的是确保第二基带单元20和混模射频模块30之间第二通信链路打通的前提下考虑到第一基带单元经过第二基带单元20至混模射频模块30的第一通信链路的搭建。第二基带单元20和混模射频模块30之间根据第二拓扑关系通信连接,第二基带单元20可以基于第二拓扑关系为基带和混模射频模块30分配资源,打通第二通信链路。
参见图5所示,混模射频模块30可以包括多个射频设备,射频设备的编号RU51、RU11不同是因为分别连接到不同的基带单元所以射频设备的编号不同,实际是同一个混模射频模块,图5中连接同一基带单元的射频设备RU的不同编号表示不同编号ID的射频设备,比如射频设备RU51、射频RU52串联连接后配置到第一基带单元的射频光口1上。本申请采用的是同一个混模射频模块,该混模射频模块分别配置至第一基带单元和第二基带单元,其中混模射频模块与第一基带单元是实配虚连接,混模射频模块与第二基带单元是实配实连接。
正如图5所示,第一基带单元10和混模射频模块30之间配置有第一拓扑关系,第一 拓扑关系是虚配链路,即配置后并不实际连接,目的是第一基带单元10根据第一拓扑关系的配置分配基带和混模射频模块30上的资源。
第一拓扑关系包括混模射频模块30中不同射频设备在完成它们内部的级接后分别连接到第一基带单元10的射频光口上的拓扑形状,并且拓扑关系中涉及级联位置的射频设备的型号,以及配置连接至第二基带单元20的射频光口的光口编号。同样地,第二拓扑关系包括混模射频模块30中不同射频设备在完成他们内部的级联后分别连接到第二基带单元20的射频关口上的拓扑形状,拓扑关系中涉及级联位置的射频设备的型号,以及配置连接至第二基带单元20的射频光口的光口编号。
在步骤310中,第二基带单元和混模射频模块之间根据第二拓扑关系建立通信连接。
第一拓扑关系和第二拓扑关系设置为一一对应是第一拓扑关系和第二拓扑关系的拓扑形状相同,拓扑关系中涉及级联位置的射频设备的型号相同,以及最终连接至第二基带单元20的射频光口的光口编号对应。这样做的目的是采用相同的拓扑关系分别使得第一基带单元和第二基带单元分配相同的基带和各自对应的混模射频模块的资源,从而为进一步打通第一通信链路做准备。
图5中第一基带处理模块BPM(英文全称:Baseband Process Module)和第二BPM分别是第一基带处理模块110和第二基带处理模块210的一个实施例,下文将会详细描述。
在一些实施例中,本公开的组网方法中,第一基带单元包括第一基带处理模块和第一基站控制模块,第二基带单元包括第二基带处理模块和第二基站控制模块,第一基带处理模块包括第一信令转发模块,第二基带处理模块包括第二信令转发模块。
参见图11所示,步骤20进一步包括步骤200,其中采用第一基站控制模块为第一信令转发模块在第一通信链路配置信令转发路由,采用第二基站控制模块为第二信令转发模块在第一通信链路配置信令转发路由。
第一基带单元10(英文全称为:Base Band Unit,缩写BBU)包括第一基带处理模块BPM(英文全称为:Baseband Process Module,缩写BPM)和第一基站控制模块CCM(英文全称为:Clock Control Module,缩写CCM),所述第一BPM包括第一信令转发模块。混模模块30为4&5G混模射频模块(英文全称为:Radio Unit,缩写RU)。第二BBU包括第二BPM和第二CCM,所述第二BPM包括第二信令转发模块。第一BPM完成2G/3G/4G基带数据的处理,实现基带数据和天线数据的转换,天线数据从第一BPM的射频光口输入/输出。第二BPM完成5G基带数据的处理,实现基带数据和天线数据的转换,天线数据从第二BPM的射频光口输入/输出。
参见图12所示,步骤30进一步包括步骤320,其中采用第二基站控制模块为第二信令转发模块在第二通信链路配置信令转发路由。
第一CCM和第二CCM通过时钟同步线缆连接,第一BPM和第二BPM可以通过光纤通信连接。第一CCM和第二CCM分别完成各自基带单元中的设备管理、时钟管理和传输管理,具体为:
a.设备管理:第一/第二CCM负责各自基带单元中各模块的上电管理、版本加载、通讯链路管理;
b.时钟管理:第一/第二CCM与时钟源进行同步,为各自基带单元提供工作所参考的时钟;
c.传输管理:第一/第二CCM连接核心网,完成业务数据与核心网的传输。
参见图13所示,步骤40进一步包括步骤400,其中采用第一基站控制模块为第一信令转发模块在主信令链路配置信令转发路由,采用第二基站控制模块为第二信令转发模块在主信令链路配置信令转发路由。
正如上文所述,第一基带处理模块和第二基带处理模块之间的互联光纤中选用其中一条有且只有一条光纤作为主信令链路,用于传递第一基带单元BBU和第二基带单元BBU之间的信令比如设备配置、共享设备状态等信息。第一基带处理模块和第二基带处理模块之间的所有互联光纤都可以传输第一基带单元和混模射频模块之间的信令比如第一基带单元对混模射频模块RU的配置消息。
在一些实施例中,本公开的组网方法中,主信令链路上的信令包括第一基站控制模块和第二基站控制模块之间的信令,第一通信链路上的信令包括第一基站控制模块和混模射频模块之间的信令,第二通信链路上的信令包括第二基站控制模块和混模射频模块之间的信令。
参见图14所示,在步骤200中,所述采用第一基站控制模块为第一信令转发模块在第一通信链路配置信令转发路由,采用第二基站控制模块为第二信令转发模块在第一通信链路配置信令转发路由之后,所述方法还包括:在步骤210中,将第一信令转发模块和第二信令转发模块配置为分别转发第一基站控制模块和混模射频模块之间的信令。
第一基带处理模块BPM和第二基带处理模块BPM各有一个信令转发模块。其中第一基带处理模块的第一信令转发模块将第一基站控制CCM发给第二基站控制CCM的信令从主信令链路转发到第二基带处理模块BPM中的第二信令转发模块,由第二信令转发模块再转发至第二基站控制模块CCM,并且从主信令链路收到的第二基站控制模块CCM的信令 转发到第一基站控制模块CCM。第一基带处理模块BPM的第一信令转发模块将第一基站控制模块CCM发给混模射频模块RU的信令从互联光纤链路转发到第二基带处理BPM,并将互联光纤链路收到的混模射频模块RU的信令转发到第一基站控制模块CCM。
参见图15所示,在步骤320中,所述采用第二基站控制模块为第二信令转发模块在第二通信链路配置信令转发路由之后,所述方法还包括:在步骤330中,将第二信令转发模块配置为转发第二基站控制模块和混模射频模块之间的信令。
第二基带处理模块BPM中的第二信令转发模块将第二基站控制模块CCM发给第一基站控制模块的信令从主信令链路转发到第一基带处理模块BPM,并将从主信令链路收到的第一基站控制模块CCM的信令转发到第二基站控制模块CCM。
参见图16所示,在步骤400中,所述采用第一基站控制模块为第一信令转发模块在主信令链路配置信令转发路由,采用第二基站控制模块为第二信令转发模块在主信令链路配置信令转发路由之后,所述方法还包括:在步骤410中,将第一信令转发模块和第二信令转发模块配置为分别转发第一基站控制模块和第二基站控制模块之间的信令。
第二基带处理模块BPM中的第二信令转发模块将第二基站控制模块CCM发给混模射频模块RU的信令从第二基带单元和混模射频模块之间的射频光纤链路转发给混模射频模块RU,并将射频光纤链路收到的混模射频模块RU发送给第二基带单元的信令转发至第二基站控制模块CCM。另外第二基站控制模块BPM的第二信令转发模块还将互联光纤链路上收到的第一基站控制模块CCM发给混模射频模块RU的信令从射频光纤链路转发给混模射频模块RU,并将射频光纤链路收到的混模射频模块RU发送给第一基带单元的信令通过互联光纤链路转发到第一基带处理模块BPM上。
在一些实施例中,本公开的组网方法中,参见图17所示,在步骤400中,采用第一基站控制模块为第一信令转发模块在主信令链路配置信令转发路由,采用第二基站控制模块为第二信令转发模块在主信令链路配置信令转发路由之后,所述方法还包括:在步骤420中,将所述第一信令转发模块和所述第二信令转发模块配置为通过主信令链路转发第一基站控制模块和混模射频模块之间的信令。
第一基带处理模块BPM和第二基带处理模块BPM之间的互联光纤上有且只有一条光纤作为主信令链路,用于传递第一基带单元BBU和第二基带单元BBU之间的信令比如设备配置、共享设备信息等。
参见图18所示,在步骤320中,采用第二基站控制模块为第二信令转发模块在第二通信链路配置信令转发路由之后,所述方法还包括:在步骤340中,将所述第二信令转发模块配置为将第一基站控制模块和混模射频模块之间的信令在第二基站控制模块和混模射频 模块之间转发。
参见图8所示,A’表示暂时占用主信令链路的第一基站控制模块和混模射频模块之间的信令。B’表示暂时占用第二通信链路的第一基站控制模块和混模射频模块之间的信令。第一基带单元BBU和第二混模射射频模块RU之间的信令也作为第一基带单元BBU和第二基带单元BBU之间信令的一种通过主信令链路传递,比如第一基站控制模块对混模射频模块RU的配置消息。
实施例三
本公开的一种无线通信系统,包括如上文所述的组网装置。该组网装置包括:第一基带单元10、第二基带单元20和混模射频模块30。
第二基带单元20配置为至少处理5G基带数据,以及第一基带单元10配置为处理不同于5G基带数据的其它基带数据。
第二基带单元20作为5G基带处理设备可以至少处理5G基带数据,第一基带单元10作为其他基带处理设备可以处理2G/3G/4G基带数据,这里的单元可以是一个基带处理设备或者多个基带处理设备。
在第一基带单元10、第二基带单元20和混模射频模块30之间构建有第一通信链路。
第一基带单元10经由第二基带单元20至混模射频模块30构建有第一通信链路,目的是实现不同于5G基带处理设备比如4G基带处理设备和射频设备的信息传输,可以传输的信息包括信令、不同于5G的基带数据和对应的天线数据。第一通信链路的实现可以在5G基带处理设备上实现其他基带数据的传输。
混模射频模块30的主要功能至少是同时实现4G和5G天线数据的收发,混模射频模块30可以包括多个射频设备,这些射频设备在进行各种级联后并联连接至第二基带单元20上。
第二基带单元20和混模射频模块30之间构建有第二通信链路,区别于第一通信链路实现5G基带处理设备和射频设备的信息传输,可以传输的信息包括信令、5G基带数据和对应的天线数据。
可以看出,第二基带单元20实现了不同于5G基带数据的传输就可以实现同一个混模射频模块接收不同天线数据的双链路传输。
第一基带单元10和第二基带单元20之间构建有主信令链路,用于两个基带单元共享信息。需要说明的是主信令链路传输的均是信令,确保第一基带单元10和第二基带单元20之间信息、资源共享协调工作。
本公开的用于NSA的组网装置中的第一基带单元和第二基带单元共享混模射频模块,第二基带单元通过主信令链路与第一基带单元交互共享信息从而第二基带单元在其自身的互联光口和射频光口上为第一基带单元分配天线数据位置。因此该组网装置可以在利用现有2G/3G/4G基站设备(包括2G/3G/4G基带单元和混模射频模块)的基础上引入5G基带处理设备实现NSA组网,提高现有基站设备的利用率,降低基站建设成本。
可以看出,本公开的用于NSA的组网装置将分别至少支持5G基带数据处理的第二基带单元和支持不同于5G基带数据的其它基带数据处理的第一基带单元进行了改造组网,共用同一个混模射频模块实现分别对应第一基带单元和第二基带单元的不同天线数据的收发,混模射频模块可以利用旧有基站的射频模块,第一基带单元也可以利用旧有的2G/3G/4G基带处理设备,即可以充分利用旧有基站的原有设备资源引入5G基带处理设备实现NSA组网,为用户提供5G网络速度的同时充分利用旧有的设备,降低基站建设成本。具体地,可以在在第一基带单元、第二基带单元和混模射频模块之间构建有第一通信链路,在第二基带单元和混模射频模块之间构建有第二通信链路,在第一基带单元和第二基带单元之间构建有主信令链路,通过第一通信链路实现第一基带单元比如4G基站的正常工作,通过第二通信链路实现5G基站的正常工作,并且在第一基带单元和第二基带单元之间构建有用于信息共享的主信令链路,确保两边基站资源共享协调保证组网装置提供5G的网络速度,满足用户的需求。
总之,以上所述仅为本公开的某些实施例而已,并非用于限定本公开的保护范围。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本公开中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
上述对本公开一些实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且 仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。

Claims (15)

  1. 一种用于NSA的组网装置,包括第一基带单元、第二基带单元和混模射频模块,所述第二基带单元配置为至少处理5G基带数据,所述第一基带单元配置为处理不同于5G基带数据的其它基带数据,并且在所述第一基带单元、所述第二基带单元和混模射频模块之间构建有第一通信链路;在所述第二基带单元和所述混模射频模块之间构建有第二通信链路;在所述第一基带单元和所述第二基带单元之间构建有主信令链路。
  2. 如权利要求1所述的组网装置,所述第二基带单元和所述混模射频模块之间配置有第二拓扑关系,所述第二基带单元和所述混模射频模块之间根据所述第二拓扑关系通信连接;所述第一基带单元和所述混模射频模块之间配置有第一拓扑关系,所述第一拓扑关系和所述第二拓扑关系设置为一一对应。
  3. 如权利要求2所述的组网装置,所述第一基带单元和所述第二基带单元之间配置有第三拓扑关系,所述第一基带单元和所述第二基带单元之间根据所述第三拓扑关系设置有通信线路,所述通信线路中的一条作为所述主信令链路。
  4. 如权利要求2所述的组网装置,所述第一基带单元包括第一基带处理模块和第一基站控制模块,所述第二基带单元包括第二基带处理模块和第二基站控制模块,所述第一基带处理模块包括第一信令转发模块,所述第二基带处理模块包括第二信令转发模块,所述第一基站控制模块为所述第一信令转发模块在所述第一通信链路、所述主信令链路配置信令转发路由,所述第二基站控制模块为所述第二信令转发模块在所述第一通信链路、所述主信令链路、所述第二通信链路配置信令转发路由。
  5. 如权利要求4所述的组网装置,所述主信令链路上的信令包括所述第一基站控制模块和所述第二基站控制模块之间的信令,所述第一通信链路上的信令包括所述第一基站控制模块和所述混模射频模块之间的信令,所述第二通信链路上的信令包括所述第二基站控制模块和所述混模射频模块之间的信令,所述第一信令转发模块和所述第二信令转发模块配置为分别转发所述第一基站控制模块和所述第二基站控制模块之间的信令;所述第一信令转发模块和所述第二信令转发模块配置为分别转发所述第一基站控制模块和所述混模射频模块之间的信令;所述第二信令转发模块配置为转发所述第二基站控制模块和所述混模射频模块之间的信令。
  6. 如权利要求4所述的组网装置,所述第一信令转发模块配置为通过主信令链路转发所述第一基站控制模块和所述混模射频模块之间的信令至所述第二基站控制模块,所述第二信令转发模块配置为将所述第一基站控制模块和所述混模射频模块之间的信令在所述第二基站控制模块和所述混模射频模块之间转发。
  7. 如权利要求4至6中任一项所述的组网装置,所述第一基带处理模块包括第一 射频光口和第一互联光口,所述第二基带处理模块包括第二互联光口和第二射频光口,所述混模射频模块包括第一射频通道,所述混模射频模块包括第二射频通道,所述第一互联光口与所述第二互联光口基于所述第三拓扑关系通信连接,所述第二射频光口与所述第二射频通道基于所述第二拓扑关系通信连接,所述第二互联光口与所述第二射频光口配置为一一对应,所述第一射频光口与所述第一射频通道基于所述第一拓扑关系配置为一一对应,其中所述第一射频光口和所述第一互联光口为相同的光口。
  8. 如权利要求7所述的组网装置,所述第一基站控制模块为所述混模射频模块在所述第一基带处理模块和所述第一互联光口之间第一天线配置数据路由,所述第一基站控制模块和所述第二基站控制模块至少共享所述第一天线数据路由、所述混模射频模块的设备信息、所述第一拓扑关系和所述第三拓扑关系后所述第二基站控制模块至少为所述混模射频模块在所述第二互联光口和第二射频光口之间配置第三天线数据路由。
  9. 如权利要求所述8的组网装置,混模射频模块的设备信息包括混模射频模块的编号ID,所述第二基站控制模块基于所述混模射频模块的ID、所述第一拓扑关系、所述第三拓扑关系和所述第二拓扑关系得出所述混模射频模块的ID与所述混模射频模块的ID的对应关系后,根据所述混模射频模块的ID和所述第一天线数据路由为所述混模射频模块配置从所述第二互联光口至所述第二射频光口的第三天线数据路由,以及为所述混模射频模块配置从所述第二基带处理模块至所述第二射频光口的第二天线数据路由。
  10. 一种用于NSA的组网方法,适用于包括第一基带单元、第二基带单元和混模射频模块的组网装置,所述方法包括:
    配置所述第二基带单元至少处理5G基带数据,以及所述第一基带单元处理不同于5G基带数据的其它基带数据;
    在所述第一基带单元、所述第二基带单元和所述混模射频模块之间构建第一通信链路;
    在所述第二基带单元和所述混模射频模块之间构建第二通信链路;
    在所述第一基带单元和所述第二基带单元之间构建主信令链路。
  11. 如权利要求10所述的组网方法,所述混模射频模块包括多个射频设备和射频通道,在所述第二基带单元和所述混模射频模块之间构建第二通信链路,进一步包括:
    所述第二基带单元和所述混模射频模块之间配置第二拓扑关系;
    所述第二基带单元和所述混模射频模块之间根据所述第二拓扑关系建立通信连接;
    相应地,在所述第一基带单元、所述第二基带单元和所述混模射频模块之间构建第一通信链路,进一步包括:
    所述第一基带单元和所述混模射频模块之间配置第一拓扑关系,所述第一拓扑关系和所述第二拓扑关系设置为一一对应。
  12. 如权利要求10或11所述的组网方法,所述第一基带单元包括第一基带处理模块和第一基站控制模块,所述第二基带单元包括第二基带处理模块和第二基站控制模块,所述第一基带处理模块包括第一信令转发模块,所述第二基带处理模块包括第二信令转发模块;
    在第一基带单元、第二基带单元和所述混模射频模块之间构建第一通信链路,进一步包括:
    采用第一基站控制模块为第一信令转发模块在第一通信链路配置信令转发路由,采用第二基站控制模块为第二信令转发模块在第一通信链路配置信令转发路由;以及,
    在第二基带单元和混模射频模块之间构建第二通信链路,进一步包括:
    采用第二基站控制模块为第二信令转发模块在第二通信链路配置信令转发路由;
    在第一基带单元和第二基带单元之间构建主信令链路,进一步包括:
    采用第一基站控制模块为第一信令转发模块在主信令链路配置信令转发路由,采用第二基站控制模块为第二信令转发模块在主信令链路配置信令转发路由。
  13. 如权利要求12所述的组网方法,所述主信令链路上的信令包括所述第一基站控制模块和所述第二基站控制模块之间的信令,所述第一通信链路上的信令包括所述第一基站控制模块和所述混模射频模块之间的信令,所述第二通信链路上的信令包括所述第二基站控制模块和所述混模射频模块之间的信令;
    所述采用第一基站控制模块为第一信令转发模块在第一通信链路配置信令转发路由,采用第二基站控制模块为第二信令转发模块在第一通信链路配置信令转发路由之后,所述方法进一步包括:
    将第一信令转发模块和第二信令转发模块配置为分别转发第一基站控制模块和混模射频模块之间的信令;
    所述采用第二基站控制模块为第二信令转发模块在第二通信链路配置信令转发路由之后,所述方法进一步包括:
    将第二信令转发模块配置为转发第二基站控制模块和混模射频模块之间的信令;
    所述采用第一基站控制模块为第一信令转发模块在主信令链路配置信令转发路由,采用第二基站控制模块为第二信令转发模块在主信令链路配置信令转发路由之后,所述方法进一步包括:
    将第一信令转发模块和第二信令转发模块配置为分别转发第一基站控制模块和第二基站控制模块之间的信令。
  14. 如权利要求12所述的组网方法,采用第一基站控制模块为第一信令转发模块在主信令链路配置信令转发路由,采用第二基站控制模块为第二信令转发模块在主信令链路配置信令转发路由之后,所述方法进一步包括:
    将所述第一信令转发模块和所述第二信令转发模块配置为通过主信令链路转发第一基站控制模块和混模射频模块之间的信令;
    采用第二基站控制模块为第二信令转发模块在第二通信链路配置信令转发路由之后,所述方法进一步包括:
    将所述第二信令转发模块配置为将第一基站控制模块和混模射频模块之间的信令在第二基站控制模块和混模射频模块之间转发。
  15. 一种无线通信系统,包括如权利要求1-9所述的组网装置。
PCT/CN2021/090242 2020-06-28 2021-04-27 用于nsa的组网装置、方法及移动通信系统 WO2022001332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010594876.9 2020-06-28
CN202010594876.9A CN113852967A (zh) 2020-06-28 2020-06-28 用于nsa的组网装置、方法及移动通信系统

Publications (1)

Publication Number Publication Date
WO2022001332A1 true WO2022001332A1 (zh) 2022-01-06

Family

ID=78972377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090242 WO2022001332A1 (zh) 2020-06-28 2021-04-27 用于nsa的组网装置、方法及移动通信系统

Country Status (2)

Country Link
CN (1) CN113852967A (zh)
WO (1) WO2022001332A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566016A (zh) * 2022-03-02 2022-05-31 国网宁夏电力有限公司宁东供电公司 基于无线组网的电子围栏防护方法及电子围栏防护系统
WO2024001670A1 (zh) * 2022-06-29 2024-01-04 中兴通讯股份有限公司 网络共享方法、网元、存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110661546A (zh) * 2019-09-25 2020-01-07 北京科技大学 基于nsa架构的5g终端中谐波干扰数字域消除方法及系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110661546A (zh) * 2019-09-25 2020-01-07 北京科技大学 基于nsa架构的5g终端中谐波干扰数字域消除方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Release 15 Description; Summary of Rel-15 Work Items (Release 15)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 21.915, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG SA, no. V0.2.0, 13 July 2018 (2018-07-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 89, XP051474985 *
ERICSSON: "Analysis of 38.133 v0.2.0 for impacts to 36.133", 3GPP DRAFT; R4-1709318 38133 CHANGES AFFECTING 36133, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Nagoya, Japan; 20170918 - 20170921, 17 September 2017 (2017-09-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051344459 *
HUAWEI: "TDM solution for LTE-NR co-existence", 3GPP DRAFT; R3-174582, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Reno, Nevada, US; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051373403 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566016A (zh) * 2022-03-02 2022-05-31 国网宁夏电力有限公司宁东供电公司 基于无线组网的电子围栏防护方法及电子围栏防护系统
CN114566016B (zh) * 2022-03-02 2024-03-22 国网宁夏电力有限公司宁东供电公司 基于无线组网的电子围栏防护方法及电子围栏防护系统
WO2024001670A1 (zh) * 2022-06-29 2024-01-04 中兴通讯股份有限公司 网络共享方法、网元、存储介质

Also Published As

Publication number Publication date
CN113852967A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
KR100447302B1 (ko) 메시형 무선 네트워크의 패킷 데이터용 통신 프로토콜
US5809028A (en) Protocol converter for a wireless telecommunications system
WO2022001332A1 (zh) 用于nsa的组网装置、方法及移动通信系统
EP2222130B1 (en) Base band unit, radio frequency unit and distributed bs system based on srio protocol
WO2011063740A1 (zh) 基站、网络系统及实现方法
JP6401797B2 (ja) 遠隔無線ユニットハブrhub、屋内通信システム、及び信号伝送方法
CN102026422A (zh) 一种多模基站共享传输线路的方法和多模基站
CN104144484A (zh) 支持多连接的移动通信上行系统中构建数据单元的方法
CN103746925A (zh) 一种FiWi融合网络以及基于FiWi融合网络的通信方法
CN103650568B (zh) 一种通信系统、控制装置及网管服务器
CN103746886A (zh) 一种FiWi节点和一种FiWi融合组网方法
CN105323194A (zh) 一种基带数据交换装置和方法
CN106888078A (zh) 前传网络的数据传输方法及装置
Nakayama et al. Adaptive network architecture with moving nodes towards beyond 5G era
CN101365185B (zh) 一种实现回程数据传输的基站、方法及移动通信系统
JP2007074568A (ja) 無線通信システム及びネットワーク構成方法
WO2018098696A1 (zh) 一种综合接入系统
CN102869045B (zh) 一种数据传输方法和系统
CN102395219A (zh) 一种wlan数据传输方法、装置及系统
WO2015085572A1 (zh) 分布式天线系统及近端机
CN100420236C (zh) 用于WiMAX流交换的交换系统
CN102742317A (zh) 通信系统、方法及设备
EP2438795A1 (en) Method for interconnecting two private mobile radio networks
CN115021818B (zh) 基于分布式基站的以太网组网系统及组网方法
KR20190112539A (ko) 무선통신장치 및 데이터 스트림 전달 방법, 데이터스트림 변환장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21834099

Country of ref document: EP

Kind code of ref document: A1